This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6993.16 13391.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13581.66 6291.25 3894.13 3488.89 1188.83 12494.26 7777.55 15195.86 2284.88 5895.87 13095.24 58
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6186.15 2093.37 1095.10 1390.28 992.11 6195.03 4589.75 2094.93 6579.95 11098.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6279.07 7988.54 9394.20 2773.53 16689.71 10694.82 5185.09 6595.77 3084.17 6598.03 3893.26 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13084.90 3883.41 18792.38 10170.25 21689.35 11890.68 19882.85 8994.57 7679.55 11595.95 12592.00 192
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18488.51 1790.11 9595.12 4490.98 688.92 24977.55 14097.07 8183.13 341
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
3Dnovator80.37 784.80 12684.71 13585.06 13486.36 24774.71 12588.77 8990.00 17475.65 14284.96 20293.17 11674.06 19291.19 18678.28 12891.09 25389.29 257
DeepC-MVS_fast80.27 886.23 10085.65 11987.96 8591.30 13376.92 10687.19 11091.99 11170.56 21184.96 20290.69 19780.01 13195.14 5978.37 12595.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6379.20 10093.83 2793.60 11090.81 792.96 13985.02 5698.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3879.03 10392.87 4693.74 10690.60 1195.21 5882.87 7898.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7876.26 11689.65 7095.55 787.72 2193.89 2694.94 4791.62 393.44 12478.35 12698.76 395.61 48
TAPA-MVS77.73 1285.71 11084.83 13188.37 7888.78 19179.72 7387.15 11293.50 5969.17 22485.80 18989.56 22380.76 12392.13 16173.21 19895.51 14293.25 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OpenMVScopyleft76.72 1381.98 18682.00 18081.93 20884.42 28268.22 19588.50 9489.48 18566.92 25081.80 26591.86 15672.59 21490.16 21971.19 21091.25 25287.40 286
ACMH76.49 1489.34 5591.14 3183.96 16092.50 9170.36 17689.55 7293.84 4981.89 6894.70 1395.44 3490.69 888.31 25983.33 7098.30 2493.20 139
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PCF-MVS74.62 1582.15 18180.92 20385.84 12189.43 17472.30 15480.53 24591.82 11957.36 33487.81 14689.92 21877.67 14993.63 11158.69 31395.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft73.85 1682.09 18280.31 21087.45 9090.86 14780.29 6985.88 13490.65 15168.17 23776.32 32086.33 27673.12 20892.61 14961.40 30190.02 27589.44 252
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OpenMVS_ROBcopyleft70.19 1777.77 24577.46 24378.71 25984.39 28361.15 27181.18 23982.52 28062.45 28683.34 23987.37 26066.20 24988.66 25564.69 27585.02 33886.32 296
HY-MVS64.64 1873.03 29372.47 29774.71 30883.36 30154.19 33682.14 22881.96 28556.76 33969.57 36886.21 28060.03 28684.83 30849.58 36782.65 36085.11 310
IB-MVS62.13 1971.64 30468.97 32879.66 24880.80 33262.26 26173.94 33476.90 31763.27 27868.63 37276.79 37833.83 39491.84 17159.28 31287.26 30784.88 312
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CMPMVSbinary59.41 2075.12 27373.57 28179.77 24475.84 37367.22 20281.21 23882.18 28350.78 37076.50 31787.66 25455.20 32082.99 32362.17 29490.64 27089.09 262
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet58.17 2166.41 34565.63 34868.75 34881.96 31449.88 36762.19 38672.51 35051.03 36868.04 37475.34 38650.84 33674.77 35845.82 38382.96 35581.60 357
PVSNet_051.08 2256.10 36954.97 37459.48 38175.12 37953.28 34455.16 39661.89 39044.30 38759.16 39862.48 40154.22 32365.91 38935.40 40047.01 40459.25 400
MVEpermissive40.22 2351.82 37250.47 37555.87 38362.66 41051.91 35331.61 40239.28 41140.65 39650.76 40574.98 38756.24 31444.67 40633.94 40364.11 40171.04 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MGCFI-Net85.04 12185.95 10982.31 20587.52 22063.59 23986.23 13193.96 4173.46 16788.07 14187.83 25186.46 5490.87 20076.17 15793.89 19692.47 170
testing9169.94 32268.99 32772.80 32083.81 29445.89 38171.57 35173.64 34368.24 23670.77 36277.82 36834.37 39384.44 31153.64 34587.00 31588.07 273
testing1167.38 33665.93 34471.73 33083.37 30046.60 37870.95 35669.40 36862.47 28566.14 37976.66 37931.22 39884.10 31549.10 36984.10 35084.49 316
testing9969.27 32868.15 33472.63 32283.29 30245.45 38371.15 35371.08 36067.34 24770.43 36377.77 37032.24 39684.35 31353.72 34486.33 32388.10 272
UWE-MVS66.43 34465.56 34969.05 34584.15 28840.98 39673.06 34364.71 38454.84 34676.18 32379.62 35729.21 40280.50 33738.54 39789.75 27785.66 304
ETVMVS64.67 35263.34 35768.64 34983.44 29841.89 39469.56 36561.70 39361.33 30168.74 37075.76 38428.76 40379.35 34134.65 40186.16 32684.67 315
sasdasda85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16988.47 13187.54 25686.45 5591.06 19175.76 16293.76 19892.54 166
testing22266.93 33865.30 35071.81 32983.38 29945.83 38272.06 34767.50 37364.12 27569.68 36776.37 38227.34 40783.00 32238.88 39488.38 29386.62 294
WB-MVSnew68.72 33269.01 32667.85 35383.22 30543.98 38974.93 32565.98 38155.09 34373.83 34479.11 35965.63 25571.89 36538.21 39885.04 33787.69 283
fmvsm_l_conf0.5_n_a81.46 19380.87 20483.25 18183.73 29573.21 13883.00 20085.59 24558.22 32682.96 24590.09 21672.30 21786.65 28181.97 9289.95 27689.88 245
fmvsm_l_conf0.5_n82.06 18381.54 19183.60 17183.94 29073.90 13083.35 18986.10 23658.97 32083.80 23090.36 20674.23 19086.94 27582.90 7790.22 27289.94 244
fmvsm_s_conf0.1_n_a82.58 17281.93 18184.50 14487.68 21573.35 13386.14 13277.70 30961.64 29685.02 20091.62 16677.75 14786.24 28782.79 8087.07 31193.91 108
fmvsm_s_conf0.1_n82.17 18081.59 18883.94 16286.87 23871.57 16685.19 14777.42 31262.27 29084.47 21391.33 17376.43 16985.91 29583.14 7187.14 30994.33 90
fmvsm_s_conf0.5_n_a82.21 17881.51 19284.32 15286.56 24073.35 13385.46 14177.30 31361.81 29284.51 21090.88 19177.36 15386.21 28982.72 8186.97 31693.38 131
fmvsm_s_conf0.5_n81.91 18881.30 19583.75 16686.02 25871.56 16784.73 15377.11 31662.44 28784.00 22790.68 19876.42 17085.89 29783.14 7187.11 31093.81 115
MM87.64 8387.15 8789.09 6589.51 17176.39 11588.68 9186.76 22984.54 4183.58 23493.78 10473.36 20596.48 187.98 996.21 11294.41 86
WAC-MVS37.39 40152.61 353
Syy-MVS69.40 32770.03 31867.49 35681.72 31738.94 39871.00 35461.99 38861.38 29970.81 36072.36 39161.37 27879.30 34264.50 27985.18 33484.22 321
test_fmvsmconf0.1_n86.18 10385.88 11387.08 9485.26 26978.25 8685.82 13691.82 11965.33 26888.55 12892.35 14782.62 9389.80 23286.87 3294.32 18593.18 141
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9285.94 25978.30 8586.93 11592.20 10565.94 25589.16 11993.16 11783.10 8689.89 23087.81 1194.43 18293.35 132
myMVS_eth3d64.66 35363.89 35466.97 35881.72 31737.39 40171.00 35461.99 38861.38 29970.81 36072.36 39120.96 41279.30 34249.59 36685.18 33484.22 321
testing371.53 30670.79 30873.77 31388.89 18741.86 39576.60 30559.12 39772.83 18380.97 27482.08 33319.80 41387.33 26965.12 27091.68 24492.13 188
SSC-MVS77.55 24681.64 18565.29 36690.46 15420.33 41173.56 33768.28 37185.44 3288.18 14094.64 5970.93 22881.33 33171.25 20892.03 23694.20 92
test_fmvsmconf_n85.88 10885.51 12186.99 9684.77 27678.21 8785.40 14491.39 13165.32 26987.72 14791.81 16182.33 9889.78 23386.68 3494.20 18892.99 149
WB-MVS76.06 26480.01 22064.19 36989.96 16720.58 41072.18 34668.19 37283.21 5486.46 17893.49 11170.19 23178.97 34565.96 25990.46 27193.02 147
test_fmvsmvis_n_192085.22 11685.36 12484.81 13785.80 26176.13 11985.15 14892.32 10261.40 29891.33 7490.85 19283.76 8086.16 29184.31 6393.28 21092.15 187
dmvs_re66.81 34266.98 33866.28 36176.87 36358.68 30771.66 35072.24 35160.29 31369.52 36973.53 38852.38 32964.40 39344.90 38481.44 36775.76 381
SDMVSNet81.90 18983.17 16178.10 27188.81 18962.45 25676.08 31386.05 23873.67 16383.41 23793.04 11982.35 9780.65 33670.06 22495.03 16091.21 211
dmvs_testset60.59 36662.54 36154.72 38577.26 35827.74 40874.05 33261.00 39560.48 31165.62 38467.03 39855.93 31568.23 38032.07 40569.46 39968.17 392
sd_testset79.95 22381.39 19475.64 30388.81 18958.07 31076.16 31282.81 27973.67 16383.41 23793.04 11980.96 12177.65 34958.62 31495.03 16091.21 211
test_fmvsm_n_192083.60 15682.89 16685.74 12385.22 27077.74 9584.12 16690.48 15559.87 31886.45 17991.12 18075.65 17385.89 29782.28 8790.87 26193.58 126
test_cas_vis1_n_192069.20 33069.12 32369.43 34373.68 38662.82 24970.38 36177.21 31446.18 38280.46 28678.95 36252.03 33065.53 39065.77 26577.45 38579.95 373
test_vis1_n_192071.30 30971.58 30470.47 33577.58 35759.99 28974.25 32984.22 26751.06 36774.85 33979.10 36055.10 32168.83 37568.86 23879.20 37782.58 345
test_vis1_n70.29 31569.99 31971.20 33375.97 37266.50 21276.69 30280.81 29444.22 38875.43 33277.23 37550.00 34068.59 37666.71 25582.85 35978.52 377
test_fmvs1_n70.94 31170.41 31472.53 32573.92 38366.93 20875.99 31484.21 26843.31 39279.40 29679.39 35843.47 37468.55 37769.05 23584.91 34182.10 352
mvsany_test158.48 36856.47 37364.50 36865.90 40768.21 19656.95 39542.11 41038.30 40165.69 38377.19 37756.96 30959.35 40046.16 38058.96 40365.93 394
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11584.26 4290.87 8793.92 9982.18 10389.29 24573.75 18594.81 17193.70 119
test_vis1_rt65.64 34964.09 35370.31 33666.09 40570.20 17761.16 38781.60 28938.65 40072.87 34969.66 39452.84 32660.04 39856.16 32777.77 38180.68 369
test_vis3_rt71.42 30770.67 30973.64 31469.66 39970.46 17466.97 37589.73 17742.68 39588.20 13983.04 31943.77 37360.07 39765.35 26986.66 31890.39 235
test_fmvs273.57 28872.80 29075.90 30172.74 39368.84 19277.07 29684.32 26645.14 38582.89 24684.22 30848.37 34470.36 36973.40 19187.03 31388.52 269
test_fmvs169.57 32569.05 32571.14 33469.15 40065.77 22073.98 33383.32 27342.83 39477.77 31278.27 36743.39 37768.50 37868.39 24584.38 34879.15 375
test_fmvs375.72 26875.20 26877.27 28475.01 38169.47 18378.93 26884.88 26046.67 37987.08 15987.84 25050.44 33971.62 36677.42 14488.53 29190.72 223
mvsany_test365.48 35062.97 35873.03 31969.99 39876.17 11864.83 37843.71 40943.68 39080.25 29087.05 26952.83 32763.09 39651.92 35972.44 39179.84 374
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7386.02 2993.12 4195.30 3684.94 6689.44 24174.12 17896.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7386.02 2993.12 4195.30 3684.94 6689.44 24174.12 17896.10 11894.45 82
test_f64.31 35565.85 34559.67 38066.54 40462.24 26257.76 39470.96 36140.13 39784.36 21582.09 33246.93 34851.67 40361.99 29581.89 36365.12 395
FE-MVS79.98 22278.86 22883.36 17886.47 24166.45 21389.73 6584.74 26372.80 18484.22 22591.38 17244.95 36993.60 11563.93 28091.50 24890.04 243
FA-MVS(test-final)83.13 16683.02 16483.43 17686.16 25666.08 21688.00 9988.36 20075.55 14385.02 20092.75 13465.12 25892.50 15174.94 17291.30 25191.72 199
iter_conf05_1178.40 23977.29 24881.71 21685.55 26460.95 27877.22 29386.90 22860.10 31675.79 32881.73 33764.08 26394.47 8270.37 22193.92 19489.72 246
bld_raw_dy_0_6481.25 19681.17 20081.49 21985.55 26460.85 27986.36 12895.45 957.08 33690.81 8882.69 32965.85 25493.91 10170.37 22196.34 10589.72 246
patch_mono-278.89 22879.39 22477.41 28384.78 27568.11 19775.60 31783.11 27560.96 30679.36 29789.89 21975.18 17872.97 36173.32 19292.30 22891.15 213
EGC-MVSNET74.79 27969.99 31989.19 6394.89 3787.00 1191.89 3486.28 2331.09 4072.23 40995.98 2381.87 11189.48 23779.76 11295.96 12491.10 214
test250674.12 28473.39 28476.28 29791.85 11444.20 38884.06 16848.20 40772.30 19581.90 26094.20 8027.22 40889.77 23464.81 27396.02 12194.87 67
test111178.53 23678.85 22977.56 28092.22 10147.49 37482.61 20969.24 36972.43 18985.28 19694.20 8051.91 33190.07 22665.36 26896.45 10295.11 62
ECVR-MVScopyleft78.44 23778.63 23377.88 27691.85 11448.95 36883.68 18169.91 36672.30 19584.26 22394.20 8051.89 33289.82 23163.58 28296.02 12194.87 67
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
tt080588.09 7489.79 5182.98 18893.26 7263.94 23691.10 4189.64 18185.07 3690.91 8491.09 18189.16 2291.87 17082.03 8995.87 13093.13 142
DVP-MVS++90.07 3891.09 3287.00 9591.55 12672.64 14496.19 294.10 3685.33 3393.49 3694.64 5981.12 11995.88 1787.41 2295.94 12692.48 168
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6991.55 12677.99 9091.01 14296.05 887.45 2098.17 3292.40 173
PC_three_145258.96 32190.06 9691.33 17380.66 12593.03 13875.78 16195.94 12692.48 168
No_MVS88.81 6991.55 12677.99 9091.01 14296.05 887.45 2098.17 3292.40 173
test_one_060193.85 5873.27 13694.11 3586.57 2593.47 3894.64 5988.42 26
eth-test20.00 416
eth-test0.00 416
GeoE85.45 11485.81 11584.37 14790.08 16167.07 20585.86 13591.39 13172.33 19487.59 14990.25 21084.85 6892.37 15578.00 13491.94 24093.66 120
test_method30.46 37329.60 37633.06 38817.99 4123.84 41513.62 40373.92 3372.79 40618.29 40853.41 40328.53 40443.25 40722.56 40635.27 40652.11 403
Anonymous2024052180.18 21881.25 19676.95 28783.15 30760.84 28082.46 21685.99 24068.76 23086.78 16493.73 10759.13 29477.44 35073.71 18697.55 6792.56 164
h-mvs3384.25 13982.76 16888.72 7191.82 11882.60 5684.00 17084.98 25871.27 20386.70 16790.55 20363.04 27293.92 10078.26 12994.20 18889.63 249
hse-mvs283.47 16081.81 18388.47 7591.03 14282.27 5782.61 20983.69 26971.27 20386.70 16786.05 28263.04 27292.41 15378.26 12993.62 20590.71 224
CL-MVSNet_self_test76.81 25577.38 24575.12 30686.90 23651.34 35773.20 34180.63 29668.30 23581.80 26588.40 24066.92 24680.90 33355.35 33594.90 16693.12 144
KD-MVS_2432*160066.87 34065.81 34670.04 33767.50 40147.49 37462.56 38479.16 30161.21 30477.98 30780.61 34525.29 41082.48 32553.02 34984.92 33980.16 371
KD-MVS_self_test81.93 18783.14 16278.30 26784.75 27752.75 34680.37 24789.42 18770.24 21790.26 9493.39 11374.55 18986.77 27968.61 24296.64 9295.38 52
AUN-MVS81.18 19878.78 23088.39 7790.93 14482.14 5882.51 21583.67 27064.69 27380.29 28785.91 28551.07 33592.38 15476.29 15693.63 20490.65 228
ZD-MVS92.22 10180.48 6791.85 11771.22 20690.38 9192.98 12386.06 6196.11 681.99 9196.75 90
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2988.75 1493.79 2894.43 6788.83 2495.51 4487.16 2997.60 6492.73 156
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2988.75 1493.79 2894.43 6790.64 1087.16 2997.60 6492.73 156
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14290.47 5193.69 5383.77 4794.11 2294.27 7490.28 1495.84 2386.03 4697.92 4692.29 179
IU-MVS94.18 4672.64 14490.82 14756.98 33789.67 10885.78 5097.92 4693.28 135
OPU-MVS88.27 8091.89 11277.83 9390.47 5191.22 17681.12 11994.68 7174.48 17395.35 14692.29 179
test_241102_TWO93.71 5283.77 4793.49 3694.27 7489.27 2195.84 2386.03 4697.82 5192.04 190
test_241102_ONE94.18 4672.65 14293.69 5383.62 4994.11 2293.78 10490.28 1495.50 46
SF-MVS90.27 3590.80 4288.68 7492.86 8377.09 10491.19 4095.74 581.38 7392.28 5993.80 10286.89 4994.64 7385.52 5197.51 7194.30 91
cl2278.97 22778.21 23981.24 22477.74 35459.01 30077.46 29287.13 21965.79 25884.32 21785.10 29658.96 29690.88 19975.36 16792.03 23693.84 110
miper_ehance_all_eth80.34 21380.04 21981.24 22479.82 34058.95 30177.66 28689.66 18065.75 26185.99 18785.11 29568.29 24091.42 18176.03 15992.03 23693.33 133
miper_enhance_ethall77.83 24276.93 25180.51 23576.15 37058.01 31175.47 32188.82 19258.05 32883.59 23380.69 34464.41 26091.20 18573.16 19992.03 23692.33 177
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2680.14 8891.29 7693.97 9287.93 3895.87 1988.65 497.96 4594.12 99
dcpmvs_284.23 14185.14 12681.50 21888.61 19561.98 26482.90 20493.11 7668.66 23292.77 5192.39 14278.50 14087.63 26576.99 14992.30 22894.90 65
cl____80.42 21080.23 21281.02 22879.99 33859.25 29677.07 29687.02 22467.37 24686.18 18289.21 22963.08 27190.16 21976.31 15595.80 13593.65 122
DIV-MVS_self_test80.43 20980.23 21281.02 22879.99 33859.25 29677.07 29687.02 22467.38 24586.19 18089.22 22863.09 27090.16 21976.32 15495.80 13593.66 120
eth_miper_zixun_eth80.84 20280.22 21482.71 19681.41 32260.98 27677.81 28490.14 17167.31 24886.95 16387.24 26464.26 26192.31 15775.23 16891.61 24594.85 71
9.1489.29 5891.84 11688.80 8895.32 1275.14 14991.07 7992.89 12887.27 4493.78 10683.69 6997.55 67
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
save fliter93.75 5977.44 9986.31 12989.72 17870.80 209
ET-MVSNet_ETH3D75.28 27072.77 29182.81 19583.03 30968.11 19777.09 29576.51 32160.67 31077.60 31480.52 34838.04 38791.15 18870.78 21390.68 26689.17 258
UniMVSNet_ETH3D89.12 6190.72 4384.31 15397.00 264.33 23289.67 6988.38 19988.84 1394.29 1897.57 390.48 1391.26 18472.57 20297.65 6097.34 15
EIA-MVS82.19 17981.23 19885.10 13387.95 20969.17 19083.22 19593.33 6470.42 21278.58 30479.77 35677.29 15494.20 8971.51 20788.96 28691.93 195
miper_refine_blended66.87 34065.81 34670.04 33767.50 40147.49 37462.56 38479.16 30161.21 30477.98 30780.61 34525.29 41082.48 32553.02 34984.92 33980.16 371
miper_lstm_enhance76.45 26176.10 25977.51 28176.72 36560.97 27764.69 38085.04 25563.98 27683.20 24188.22 24256.67 31078.79 34773.22 19393.12 21492.78 155
ETV-MVS84.31 13683.91 15285.52 12788.58 19670.40 17584.50 16193.37 6178.76 10884.07 22678.72 36480.39 12795.13 6073.82 18492.98 21891.04 215
CS-MVS88.14 7287.67 8089.54 5889.56 17079.18 7890.47 5194.77 1679.37 9884.32 21789.33 22783.87 7694.53 7982.45 8494.89 16794.90 65
D2MVS76.84 25475.67 26480.34 23880.48 33662.16 26373.50 33884.80 26257.61 33282.24 25487.54 25651.31 33487.65 26470.40 22093.19 21391.23 210
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14890.54 4891.01 14283.61 5093.75 3094.65 5689.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD85.33 3393.75 3094.65 5687.44 4395.78 2887.41 2298.21 2992.98 150
test_0728_SECOND86.79 10094.25 4572.45 15290.54 4894.10 3695.88 1786.42 3697.97 4392.02 191
test072694.16 4972.56 14890.63 4593.90 4583.61 5093.75 3094.49 6489.76 18
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4888.20 1993.24 3994.02 9090.15 1695.67 3486.82 3397.34 7492.19 185
DPM-MVS80.10 22079.18 22682.88 19490.71 15069.74 17978.87 27190.84 14660.29 31375.64 33185.92 28467.28 24393.11 13571.24 20991.79 24185.77 303
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 5180.98 7991.38 7393.80 10287.20 4695.80 2587.10 3197.69 5993.93 106
test_yl78.71 23478.51 23579.32 25284.32 28458.84 30378.38 27685.33 24875.99 13582.49 25086.57 27258.01 30090.02 22862.74 28892.73 22389.10 260
thisisatest053079.07 22677.33 24784.26 15487.13 22864.58 22883.66 18275.95 32368.86 22985.22 19787.36 26138.10 38693.57 11975.47 16594.28 18694.62 74
Anonymous2024052986.20 10287.13 8883.42 17790.19 15964.55 23084.55 15790.71 14985.85 3189.94 10295.24 4082.13 10490.40 21369.19 23396.40 10495.31 55
Anonymous20240521180.51 20881.19 19978.49 26388.48 19857.26 31776.63 30382.49 28181.21 7684.30 22092.24 15167.99 24186.24 28762.22 29195.13 15591.98 194
DCV-MVSNet78.71 23478.51 23579.32 25284.32 28458.84 30378.38 27685.33 24875.99 13582.49 25086.57 27258.01 30090.02 22862.74 28892.73 22389.10 260
tttt051781.07 19979.58 22285.52 12788.99 18566.45 21387.03 11475.51 32873.76 16288.32 13790.20 21137.96 38894.16 9479.36 11995.13 15595.93 42
our_test_371.85 30271.59 30272.62 32380.71 33353.78 33969.72 36471.71 35858.80 32278.03 30680.51 34956.61 31178.84 34662.20 29286.04 32785.23 308
thisisatest051573.00 29470.52 31180.46 23681.45 32159.90 29073.16 34274.31 33557.86 32976.08 32577.78 36937.60 38992.12 16365.00 27191.45 24989.35 254
ppachtmachnet_test74.73 28074.00 27876.90 28980.71 33356.89 32171.53 35278.42 30558.24 32579.32 29982.92 32357.91 30384.26 31465.60 26691.36 25089.56 250
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 7175.37 14792.84 4895.28 3885.58 6496.09 787.92 1097.76 5593.88 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS83.88 325
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6878.65 8389.15 8294.05 3884.68 4093.90 2494.11 8788.13 3496.30 484.51 6297.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part293.86 5777.77 9492.84 48
thres100view90075.45 26975.05 26976.66 29387.27 22451.88 35481.07 24073.26 34575.68 14183.25 24086.37 27545.54 36088.80 25051.98 35690.99 25589.31 255
tfpnnormal81.79 19082.95 16578.31 26688.93 18655.40 32980.83 24482.85 27876.81 12785.90 18894.14 8474.58 18886.51 28366.82 25495.68 14193.01 148
tfpn200view974.86 27774.23 27676.74 29286.24 25152.12 35179.24 26473.87 33873.34 17281.82 26384.60 30546.02 35488.80 25051.98 35690.99 25589.31 255
c3_l81.64 19181.59 18881.79 21580.86 33059.15 29978.61 27590.18 17068.36 23387.20 15387.11 26769.39 23391.62 17478.16 13194.43 18294.60 75
CHOSEN 280x42059.08 36756.52 37266.76 35976.51 36664.39 23149.62 39959.00 39843.86 38955.66 40468.41 39735.55 39268.21 38143.25 38776.78 38767.69 393
CANet83.79 15282.85 16786.63 10286.17 25472.21 15783.76 17991.43 12877.24 12574.39 34187.45 25975.36 17695.42 4977.03 14892.83 22192.25 183
Fast-Effi-MVS+-dtu82.54 17381.41 19385.90 11985.60 26276.53 11183.07 19789.62 18373.02 18179.11 30183.51 31480.74 12490.24 21668.76 23989.29 28190.94 217
Effi-MVS+-dtu85.82 10983.38 15693.14 387.13 22891.15 287.70 10488.42 19874.57 15483.56 23585.65 28678.49 14194.21 8872.04 20592.88 22094.05 102
CANet_DTU77.81 24477.05 24980.09 24281.37 32359.90 29083.26 19188.29 20369.16 22567.83 37683.72 31260.93 27989.47 23869.22 23289.70 27890.88 219
MVS_030486.35 9885.92 11187.66 8889.21 18073.16 13988.40 9583.63 27181.27 7480.87 27894.12 8671.49 22695.71 3287.79 1296.50 9894.11 100
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9894.51 1875.79 14092.94 4494.96 4688.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4578.43 11189.16 11992.25 15072.03 22296.36 388.21 790.93 25992.98 150
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs146.11 35383.88 325
sam_mvs45.92 358
IterMVS-SCA-FT80.64 20679.41 22384.34 15183.93 29169.66 18176.28 30981.09 29272.43 18986.47 17790.19 21260.46 28293.15 13477.45 14286.39 32290.22 237
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13867.85 24386.63 17094.84 5079.58 13495.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu80.84 20280.14 21682.93 19188.31 20171.73 16179.53 25787.17 21665.43 26479.59 29382.73 32676.94 16190.14 22273.22 19388.33 29486.90 291
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12192.78 9278.78 10692.51 5593.64 10988.13 3493.84 10584.83 5997.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5577.65 11991.97 6594.89 4888.38 2795.45 4889.27 397.87 5093.27 136
ambc82.98 18890.55 15364.86 22688.20 9689.15 18989.40 11793.96 9571.67 22591.38 18378.83 12296.55 9592.71 159
MTGPAbinary91.81 121
CS-MVS-test87.00 8786.43 10188.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26887.25 26382.43 9594.53 7977.65 13896.46 10194.14 98
Effi-MVS+83.90 15184.01 14983.57 17487.22 22665.61 22186.55 12692.40 9978.64 10981.34 27384.18 30983.65 8192.93 14174.22 17587.87 30292.17 186
xiu_mvs_v2_base77.19 25076.75 25378.52 26287.01 23461.30 26975.55 32087.12 22261.24 30374.45 34078.79 36377.20 15590.93 19564.62 27784.80 34583.32 337
xiu_mvs_v1_base80.84 20280.14 21682.93 19188.31 20171.73 16179.53 25787.17 21665.43 26479.59 29382.73 32676.94 16190.14 22273.22 19388.33 29486.90 291
new-patchmatchnet70.10 31873.37 28560.29 37981.23 32516.95 41259.54 38974.62 33162.93 28080.97 27487.93 24862.83 27471.90 36455.24 33695.01 16392.00 192
pmmvs686.52 9688.06 7481.90 20992.22 10162.28 26084.66 15589.15 18983.54 5289.85 10397.32 488.08 3686.80 27870.43 21997.30 7696.62 28
pmmvs570.73 31370.07 31672.72 32177.03 36252.73 34774.14 33075.65 32750.36 37472.17 35385.37 29355.42 31980.67 33552.86 35287.59 30684.77 313
test_post178.85 2723.13 40745.19 36780.13 33958.11 319
test_post3.10 40845.43 36377.22 352
Fast-Effi-MVS+81.04 20080.57 20582.46 20387.50 22163.22 24478.37 27889.63 18268.01 23881.87 26182.08 33382.31 9992.65 14867.10 25088.30 29891.51 207
patchmatchnet-post81.71 33845.93 35787.01 271
Anonymous2023121188.40 6789.62 5584.73 14090.46 15465.27 22288.86 8693.02 8487.15 2393.05 4397.10 682.28 10292.02 16576.70 15097.99 4096.88 25
pmmvs-eth3d78.42 23877.04 25082.57 20187.44 22274.41 12780.86 24379.67 30055.68 34184.69 20890.31 20960.91 28085.42 30262.20 29291.59 24687.88 280
GG-mvs-BLEND67.16 35773.36 38746.54 38084.15 16555.04 40358.64 40161.95 40229.93 40183.87 31938.71 39676.92 38671.07 388
xiu_mvs_v1_base_debi80.84 20280.14 21682.93 19188.31 20171.73 16179.53 25787.17 21665.43 26479.59 29382.73 32676.94 16190.14 22273.22 19388.33 29486.90 291
Anonymous2023120671.38 30871.88 30069.88 33986.31 24854.37 33570.39 36074.62 33152.57 35776.73 31688.76 23559.94 28772.06 36344.35 38693.23 21283.23 339
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 12184.07 4492.00 6494.40 7186.63 5195.28 5588.59 598.31 2392.30 178
MTMP90.66 4433.14 412
gm-plane-assit75.42 37744.97 38752.17 35972.36 39187.90 26154.10 342
test9_res80.83 10196.45 10290.57 229
MVP-Stereo75.81 26773.51 28382.71 19689.35 17573.62 13180.06 24985.20 25060.30 31273.96 34387.94 24757.89 30489.45 24052.02 35574.87 38985.06 311
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST992.34 9579.70 7483.94 17190.32 16165.41 26784.49 21190.97 18582.03 10693.63 111
train_agg85.98 10685.28 12588.07 8392.34 9579.70 7483.94 17190.32 16165.79 25884.49 21190.97 18581.93 10893.63 11181.21 9696.54 9690.88 219
gg-mvs-nofinetune68.96 33169.11 32468.52 35276.12 37145.32 38483.59 18355.88 40286.68 2464.62 39197.01 730.36 40083.97 31844.78 38582.94 35676.26 380
SCA73.32 28972.57 29575.58 30481.62 31955.86 32678.89 27071.37 35961.73 29374.93 33883.42 31760.46 28287.01 27158.11 31982.63 36283.88 325
Patchmatch-test65.91 34767.38 33661.48 37775.51 37543.21 39268.84 36663.79 38662.48 28472.80 35083.42 31744.89 37059.52 39948.27 37486.45 32081.70 355
test_892.09 10578.87 8183.82 17690.31 16365.79 25884.36 21590.96 18781.93 10893.44 124
MS-PatchMatch70.93 31270.22 31573.06 31881.85 31662.50 25573.82 33677.90 30752.44 35875.92 32681.27 34155.67 31781.75 32855.37 33477.70 38274.94 383
Patchmatch-RL test74.48 28173.68 28076.89 29084.83 27466.54 21172.29 34569.16 37057.70 33086.76 16586.33 27645.79 35982.59 32469.63 22790.65 26981.54 358
cdsmvs_eth3d_5k20.81 37427.75 3770.00 3930.00 4160.00 4180.00 40485.44 2460.00 4110.00 41282.82 32481.46 1150.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas6.41 3778.55 3800.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41176.94 1610.00 4120.00 4110.00 4100.00 408
agg_prior279.68 11496.16 11490.22 237
agg_prior91.58 12477.69 9690.30 16484.32 21793.18 132
tmp_tt20.25 37524.50 3787.49 3904.47 4138.70 41434.17 40125.16 4131.00 40832.43 40718.49 40539.37 3859.21 40921.64 40743.75 4054.57 405
canonicalmvs85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16988.47 13187.54 25686.45 5591.06 19175.76 16293.76 19892.54 166
anonymousdsp89.73 4988.88 6692.27 789.82 16886.67 1490.51 5090.20 16969.87 22095.06 1196.14 2184.28 7493.07 13787.68 1596.34 10597.09 21
alignmvs83.94 15083.98 15083.80 16387.80 21267.88 20084.54 15991.42 13073.27 17788.41 13487.96 24672.33 21690.83 20176.02 16094.11 19092.69 160
nrg03087.85 8088.49 7085.91 11890.07 16369.73 18087.86 10294.20 2774.04 15892.70 5394.66 5585.88 6391.50 17679.72 11397.32 7596.50 31
v14419284.24 14084.41 14283.71 16887.59 21961.57 26682.95 20291.03 14167.82 24489.80 10490.49 20473.28 20693.51 12181.88 9494.89 16796.04 38
FIs85.35 11586.27 10382.60 19891.86 11357.31 31685.10 14993.05 8075.83 13991.02 8193.97 9273.57 19892.91 14373.97 18198.02 3997.58 12
v192192084.23 14184.37 14483.79 16487.64 21861.71 26582.91 20391.20 13767.94 24190.06 9690.34 20772.04 22193.59 11682.32 8694.91 16596.07 36
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 9188.22 1888.53 12997.64 283.45 8394.55 7886.02 4898.60 1296.67 27
v119284.57 13084.69 13684.21 15587.75 21362.88 24783.02 19991.43 12869.08 22689.98 10190.89 18972.70 21393.62 11482.41 8594.97 16496.13 34
FC-MVSNet-test85.93 10787.05 9182.58 19992.25 9956.44 32385.75 13793.09 7877.33 12391.94 6694.65 5674.78 18493.41 12675.11 17098.58 1397.88 7
v114484.54 13284.72 13484.00 15887.67 21662.55 25482.97 20190.93 14570.32 21589.80 10490.99 18473.50 19993.48 12281.69 9594.65 17795.97 39
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6981.99 6591.47 7193.96 9588.35 2995.56 3987.74 1397.74 5792.85 153
v14882.31 17582.48 17581.81 21485.59 26359.66 29281.47 23486.02 23972.85 18288.05 14290.65 20170.73 22990.91 19775.15 16991.79 24194.87 67
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
AllTest87.97 7787.40 8589.68 5391.59 12183.40 4889.50 7595.44 1079.47 9488.00 14393.03 12182.66 9191.47 17770.81 21196.14 11594.16 96
TestCases89.68 5391.59 12183.40 4895.44 1079.47 9488.00 14393.03 12182.66 9191.47 17770.81 21196.14 11594.16 96
v7n90.13 3690.96 3887.65 8991.95 10971.06 17089.99 5993.05 8086.53 2694.29 1896.27 1782.69 9094.08 9586.25 4297.63 6197.82 8
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6881.91 6790.88 8694.21 7987.75 3995.87 1987.60 1897.71 5893.83 111
iter_conf0578.81 23177.35 24683.21 18382.98 31060.75 28284.09 16788.34 20163.12 27984.25 22489.48 22431.41 39794.51 8176.64 15195.83 13294.38 88
RRT_MVS88.30 7087.83 7789.70 5293.62 6375.70 12192.36 2689.06 19177.34 12293.63 3595.83 2565.40 25795.90 1585.01 5798.23 2797.49 13
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7077.96 9287.94 10191.97 11270.73 21094.19 2196.67 1176.94 16194.57 7683.07 7496.28 10896.15 33
PS-MVSNAJ77.04 25276.53 25578.56 26187.09 23261.40 26775.26 32287.13 21961.25 30274.38 34277.22 37676.94 16190.94 19464.63 27684.83 34483.35 336
jajsoiax89.41 5388.81 6891.19 2893.38 6884.72 4189.70 6690.29 16669.27 22394.39 1696.38 1586.02 6293.52 12083.96 6695.92 12895.34 53
mvs_tets89.78 4889.27 5991.30 2593.51 6484.79 4089.89 6390.63 15270.00 21994.55 1596.67 1187.94 3793.59 11684.27 6495.97 12395.52 49
EI-MVSNet-UG-set85.04 12184.44 14186.85 9983.87 29372.52 15083.82 17685.15 25280.27 8688.75 12585.45 29079.95 13291.90 16881.92 9390.80 26496.13 34
EI-MVSNet-Vis-set85.12 12084.53 13986.88 9884.01 28972.76 14183.91 17485.18 25180.44 8288.75 12585.49 28880.08 13091.92 16782.02 9090.85 26395.97 39
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13578.20 11386.69 16992.28 14980.36 12895.06 6286.17 4496.49 9990.22 237
test_prior478.97 8084.59 156
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6485.07 3689.99 9994.03 8986.57 5295.80 2587.35 2497.62 6294.20 92
v124084.30 13784.51 14083.65 16987.65 21761.26 27082.85 20591.54 12567.94 24190.68 9090.65 20171.71 22493.64 11082.84 7994.78 17296.07 36
pm-mvs183.69 15384.95 13079.91 24390.04 16559.66 29282.43 21787.44 21275.52 14487.85 14595.26 3981.25 11885.65 30168.74 24096.04 12094.42 85
test_prior283.37 18875.43 14584.58 20991.57 16781.92 11079.54 11696.97 83
X-MVStestdata85.04 12182.70 16992.08 895.64 2386.25 1892.64 1893.33 6485.07 3689.99 9916.05 40686.57 5295.80 2587.35 2497.62 6294.20 92
test_prior86.32 10890.59 15271.99 15992.85 8994.17 9292.80 154
旧先验281.73 23056.88 33886.54 17684.90 30772.81 200
新几何281.72 231
新几何182.95 19093.96 5578.56 8480.24 29755.45 34283.93 22991.08 18271.19 22788.33 25865.84 26393.07 21581.95 354
旧先验191.97 10871.77 16081.78 28791.84 15873.92 19493.65 20383.61 331
无先验82.81 20685.62 24458.09 32791.41 18267.95 24984.48 317
原ACMM282.26 224
原ACMM184.60 14392.81 8674.01 12991.50 12662.59 28282.73 24990.67 20076.53 16894.25 8669.24 23095.69 14085.55 305
test22293.31 7076.54 10979.38 26177.79 30852.59 35682.36 25390.84 19366.83 24791.69 24381.25 362
testdata286.43 28563.52 284
segment_acmp81.94 107
testdata79.54 25092.87 8172.34 15380.14 29859.91 31785.47 19591.75 16467.96 24285.24 30368.57 24492.18 23581.06 367
testdata179.62 25673.95 160
v886.22 10186.83 9684.36 14987.82 21162.35 25986.42 12791.33 13376.78 12892.73 5294.48 6573.41 20293.72 10883.10 7395.41 14497.01 23
131473.22 29172.56 29675.20 30580.41 33757.84 31281.64 23285.36 24751.68 36473.10 34876.65 38061.45 27785.19 30463.54 28379.21 37682.59 344
LFMVS80.15 21980.56 20678.89 25589.19 18155.93 32585.22 14673.78 34082.96 5884.28 22192.72 13557.38 30690.07 22663.80 28195.75 13890.68 226
VDD-MVS84.23 14184.58 13883.20 18491.17 13965.16 22583.25 19284.97 25979.79 9087.18 15494.27 7474.77 18590.89 19869.24 23096.54 9693.55 130
VDDNet84.35 13585.39 12381.25 22295.13 3159.32 29585.42 14381.11 29186.41 2787.41 15296.21 1973.61 19790.61 20966.33 25796.85 8593.81 115
v1086.54 9587.10 8984.84 13688.16 20663.28 24386.64 12492.20 10575.42 14692.81 5094.50 6374.05 19394.06 9683.88 6796.28 10897.17 20
VPNet80.25 21581.68 18475.94 30092.46 9247.98 37276.70 30181.67 28873.45 16884.87 20592.82 13074.66 18786.51 28361.66 29996.85 8593.33 133
MVS73.21 29272.59 29475.06 30780.97 32760.81 28181.64 23285.92 24146.03 38371.68 35577.54 37168.47 23989.77 23455.70 33185.39 33074.60 384
v2v48284.09 14484.24 14683.62 17087.13 22861.40 26782.71 20889.71 17972.19 19789.55 11491.41 17170.70 23093.20 13181.02 9893.76 19896.25 32
V4283.47 16083.37 15783.75 16683.16 30663.33 24281.31 23590.23 16869.51 22290.91 8490.81 19474.16 19192.29 15980.06 10890.22 27295.62 47
SD-MVS88.96 6389.88 4986.22 11291.63 12077.07 10589.82 6493.77 5078.90 10492.88 4592.29 14886.11 6090.22 21786.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS75.83 26674.61 27179.48 25181.87 31559.25 29673.42 33982.88 27768.68 23179.75 29281.80 33650.62 33789.46 23966.85 25285.64 32989.72 246
MSLP-MVS++85.00 12486.03 10881.90 20991.84 11671.56 16786.75 12293.02 8475.95 13787.12 15589.39 22577.98 14489.40 24477.46 14194.78 17284.75 314
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 7978.04 8992.84 1594.14 3383.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 150
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7785.17 3592.47 2595.05 1487.65 2293.21 4094.39 7290.09 1795.08 6186.67 3597.60 6494.18 95
ADS-MVSNet265.87 34863.64 35672.55 32473.16 38956.92 32067.10 37374.81 33049.74 37566.04 38182.97 32046.71 34977.26 35142.29 38869.96 39683.46 333
EI-MVSNet82.61 17082.42 17683.20 18483.25 30363.66 23783.50 18585.07 25376.06 13286.55 17185.10 29673.41 20290.25 21478.15 13390.67 26795.68 45
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
CVMVSNet72.62 29671.41 30676.28 29783.25 30360.34 28583.50 18579.02 30437.77 40276.33 31985.10 29649.60 34287.41 26770.54 21877.54 38481.08 365
pmmvs474.92 27672.98 28980.73 23284.95 27271.71 16476.23 31077.59 31052.83 35577.73 31386.38 27456.35 31384.97 30657.72 32187.05 31285.51 306
EU-MVSNet75.12 27374.43 27577.18 28583.11 30859.48 29485.71 13982.43 28239.76 39985.64 19188.76 23544.71 37187.88 26273.86 18385.88 32884.16 324
VNet79.31 22580.27 21176.44 29487.92 21053.95 33875.58 31984.35 26574.39 15682.23 25590.72 19672.84 21184.39 31260.38 30793.98 19390.97 216
test-LLR67.21 33766.74 34168.63 35076.45 36855.21 33167.89 36967.14 37762.43 28865.08 38772.39 38943.41 37569.37 37061.00 30284.89 34281.31 360
TESTMET0.1,161.29 36160.32 36764.19 36972.06 39451.30 35867.89 36962.09 38745.27 38460.65 39669.01 39527.93 40664.74 39256.31 32681.65 36676.53 379
test-mter65.00 35163.79 35568.63 35076.45 36855.21 33167.89 36967.14 37750.98 36965.08 38772.39 38928.27 40569.37 37061.00 30284.89 34281.31 360
VPA-MVSNet83.47 16084.73 13279.69 24790.29 15757.52 31581.30 23788.69 19576.29 13087.58 15094.44 6680.60 12687.20 27066.60 25696.82 8894.34 89
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 7081.99 6591.40 7294.17 8387.51 4295.87 1987.74 1397.76 5593.99 103
testgi72.36 29874.61 27165.59 36380.56 33542.82 39368.29 36873.35 34466.87 25181.84 26289.93 21772.08 22066.92 38546.05 38292.54 22587.01 290
test20.0373.75 28774.59 27371.22 33281.11 32651.12 36170.15 36272.10 35370.42 21280.28 28991.50 16964.21 26274.72 36046.96 37994.58 17887.82 282
thres600view775.97 26575.35 26777.85 27887.01 23451.84 35580.45 24673.26 34575.20 14883.10 24386.31 27845.54 36089.05 24655.03 33892.24 23292.66 161
ADS-MVSNet61.90 35862.19 36261.03 37873.16 38936.42 40367.10 37361.75 39149.74 37566.04 38182.97 32046.71 34963.21 39442.29 38869.96 39683.46 333
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8382.59 6188.52 13094.37 7386.74 5095.41 5086.32 3998.21 2993.19 140
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs5.91 3797.65 3820.72 3921.20 4140.37 41759.14 3900.67 4160.49 4101.11 4102.76 4090.94 4150.24 4111.02 4101.47 4081.55 407
thres40075.14 27174.23 27677.86 27786.24 25152.12 35179.24 26473.87 33873.34 17281.82 26384.60 30546.02 35488.80 25051.98 35690.99 25592.66 161
test1236.27 3788.08 3810.84 3911.11 4150.57 41662.90 3830.82 4150.54 4091.07 4112.75 4101.26 4140.30 4101.04 4091.26 4091.66 406
thres20072.34 29971.55 30574.70 30983.48 29651.60 35675.02 32473.71 34170.14 21878.56 30580.57 34746.20 35288.20 26046.99 37889.29 28184.32 320
test0.0.03 164.66 35364.36 35265.57 36475.03 38046.89 37764.69 38061.58 39462.43 28871.18 35877.54 37143.41 37568.47 37940.75 39282.65 36081.35 359
pmmvs362.47 35660.02 36969.80 34071.58 39664.00 23570.52 35958.44 40039.77 39866.05 38075.84 38327.10 40972.28 36246.15 38184.77 34673.11 385
EMVS61.10 36360.81 36561.99 37465.96 40655.86 32653.10 39858.97 39967.06 24956.89 40363.33 40040.98 38167.03 38454.79 33986.18 32563.08 396
E-PMN61.59 36061.62 36361.49 37666.81 40355.40 32953.77 39760.34 39666.80 25258.90 40065.50 39940.48 38366.12 38855.72 33086.25 32462.95 397
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4580.32 8591.74 6994.41 7088.17 3295.98 1186.37 3897.99 4093.96 105
LCM-MVSNet-Re83.48 15985.06 12778.75 25885.94 25955.75 32880.05 25094.27 2176.47 12996.09 594.54 6283.31 8589.75 23659.95 30894.89 16790.75 222
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
MCST-MVS84.36 13483.93 15185.63 12591.59 12171.58 16583.52 18492.13 10761.82 29183.96 22889.75 22179.93 13393.46 12378.33 12794.34 18491.87 196
mvs_anonymous78.13 24078.76 23176.23 29979.24 34750.31 36578.69 27384.82 26161.60 29783.09 24492.82 13073.89 19587.01 27168.33 24686.41 32191.37 208
MVS_Test82.47 17483.22 15880.22 24082.62 31257.75 31482.54 21491.96 11371.16 20782.89 24692.52 14177.41 15290.50 21180.04 10987.84 30392.40 173
MDA-MVSNet-bldmvs77.47 24776.90 25279.16 25479.03 34964.59 22766.58 37675.67 32673.15 17988.86 12288.99 23366.94 24581.23 33264.71 27488.22 29991.64 203
CDPH-MVS86.17 10485.54 12088.05 8492.25 9975.45 12283.85 17592.01 11065.91 25786.19 18091.75 16483.77 7994.98 6477.43 14396.71 9193.73 118
test1286.57 10390.74 14872.63 14690.69 15082.76 24879.20 13594.80 6895.32 14892.27 181
casdiffmvspermissive85.21 11785.85 11483.31 18086.17 25462.77 25083.03 19893.93 4374.69 15388.21 13892.68 13682.29 10191.89 16977.87 13793.75 20195.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive80.40 21180.48 20980.17 24179.02 35060.04 28777.54 28990.28 16766.65 25382.40 25287.33 26273.50 19987.35 26877.98 13589.62 27993.13 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline269.77 32366.89 33978.41 26579.51 34358.09 30976.23 31069.57 36757.50 33364.82 39077.45 37346.02 35488.44 25653.08 34877.83 38088.70 267
baseline173.26 29073.54 28272.43 32684.92 27347.79 37379.89 25374.00 33665.93 25678.81 30386.28 27956.36 31281.63 33056.63 32479.04 37887.87 281
YYNet170.06 31970.44 31268.90 34673.76 38553.42 34358.99 39267.20 37658.42 32487.10 15785.39 29259.82 28967.32 38259.79 30983.50 35385.96 299
PMMVS255.64 37159.27 37044.74 38764.30 40912.32 41340.60 40049.79 40653.19 35365.06 38984.81 30153.60 32549.76 40432.68 40489.41 28072.15 386
MDA-MVSNet_test_wron70.05 32070.44 31268.88 34773.84 38453.47 34158.93 39367.28 37558.43 32387.09 15885.40 29159.80 29067.25 38359.66 31083.54 35285.92 301
tpmvs70.16 31769.56 32271.96 32874.71 38248.13 37079.63 25575.45 32965.02 27170.26 36481.88 33545.34 36585.68 30058.34 31675.39 38882.08 353
PM-MVS80.20 21779.00 22783.78 16588.17 20586.66 1581.31 23566.81 38069.64 22188.33 13690.19 21264.58 25983.63 32071.99 20690.03 27481.06 367
HQP_MVS87.75 8287.43 8488.70 7393.45 6576.42 11389.45 7793.61 5679.44 9686.55 17192.95 12674.84 18295.22 5680.78 10295.83 13294.46 80
plane_prior793.45 6577.31 102
plane_prior692.61 8776.54 10974.84 182
plane_prior593.61 5695.22 5680.78 10295.83 13294.46 80
plane_prior492.95 126
plane_prior376.85 10777.79 11886.55 171
plane_prior289.45 7779.44 96
plane_prior192.83 85
plane_prior76.42 11387.15 11275.94 13895.03 160
PS-CasMVS90.06 3991.92 1184.47 14696.56 658.83 30589.04 8392.74 9391.40 596.12 496.06 2287.23 4595.57 3879.42 11898.74 599.00 2
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11592.86 8367.02 20682.55 21391.56 12483.08 5790.92 8291.82 16078.25 14393.99 9774.16 17698.35 2197.49 13
PEN-MVS90.03 4191.88 1484.48 14596.57 558.88 30288.95 8493.19 7291.62 496.01 696.16 2087.02 4795.60 3678.69 12398.72 898.97 3
TransMVSNet (Re)84.02 14785.74 11778.85 25691.00 14355.20 33382.29 22187.26 21579.65 9388.38 13595.52 3383.00 8786.88 27667.97 24896.60 9494.45 82
DTE-MVSNet89.98 4391.91 1384.21 15596.51 757.84 31288.93 8592.84 9091.92 396.16 396.23 1886.95 4895.99 1079.05 12098.57 1498.80 6
DU-MVS86.80 9186.99 9286.21 11393.24 7367.02 20683.16 19692.21 10481.73 6990.92 8291.97 15477.20 15593.99 9774.16 17698.35 2197.61 10
UniMVSNet (Re)86.87 8886.98 9386.55 10493.11 7668.48 19383.80 17892.87 8880.37 8389.61 11291.81 16177.72 14894.18 9075.00 17198.53 1596.99 24
CP-MVSNet89.27 5890.91 4084.37 14796.34 858.61 30888.66 9292.06 10990.78 695.67 795.17 4281.80 11295.54 4179.00 12198.69 998.95 4
WR-MVS_H89.91 4691.31 2985.71 12496.32 962.39 25789.54 7493.31 6790.21 1095.57 995.66 2981.42 11695.90 1580.94 9998.80 298.84 5
WR-MVS83.56 15784.40 14381.06 22793.43 6754.88 33478.67 27485.02 25681.24 7590.74 8991.56 16872.85 21091.08 19068.00 24798.04 3697.23 18
NR-MVSNet86.00 10586.22 10485.34 13093.24 7364.56 22982.21 22590.46 15680.99 7888.42 13391.97 15477.56 15093.85 10372.46 20398.65 1197.61 10
Baseline_NR-MVSNet84.00 14885.90 11278.29 26891.47 13153.44 34282.29 22187.00 22779.06 10289.55 11495.72 2877.20 15586.14 29272.30 20498.51 1695.28 56
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13294.02 5464.13 23384.38 16291.29 13484.88 3992.06 6393.84 10186.45 5593.73 10773.22 19398.66 1097.69 9
TSAR-MVS + GP.83.95 14982.69 17087.72 8689.27 17881.45 6383.72 18081.58 29074.73 15285.66 19086.06 28172.56 21592.69 14775.44 16695.21 15289.01 265
n20.00 417
nn0.00 417
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9683.09 5691.54 7094.25 7887.67 4195.51 4487.21 2898.11 3593.12 144
door-mid74.45 334
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11793.91 4480.07 8986.75 16693.26 11493.64 290.93 19584.60 6190.75 26593.97 104
mvsmamba87.87 7887.23 8689.78 5192.31 9876.51 11291.09 4291.87 11672.61 18892.16 6095.23 4166.01 25195.59 3786.02 4897.78 5397.24 17
MVSFormer82.23 17781.57 19084.19 15785.54 26669.26 18691.98 3190.08 17271.54 20176.23 32185.07 29958.69 29794.27 8486.26 4088.77 28889.03 263
jason77.42 24875.75 26282.43 20487.10 23169.27 18577.99 28181.94 28651.47 36577.84 30985.07 29960.32 28489.00 24770.74 21589.27 28389.03 263
jason: jason.
lupinMVS76.37 26274.46 27482.09 20685.54 26669.26 18676.79 29980.77 29550.68 37276.23 32182.82 32458.69 29788.94 24869.85 22588.77 28888.07 273
test_djsdf89.62 5089.01 6391.45 2292.36 9482.98 5391.98 3190.08 17271.54 20194.28 2096.54 1381.57 11494.27 8486.26 4096.49 9997.09 21
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2485.21 3592.51 5595.13 4390.65 995.34 5288.06 898.15 3495.95 41
K. test v385.14 11984.73 13286.37 10791.13 14069.63 18285.45 14276.68 32084.06 4592.44 5796.99 862.03 27594.65 7280.58 10593.24 21194.83 72
lessismore_v085.95 11791.10 14170.99 17170.91 36291.79 6794.42 6961.76 27692.93 14179.52 11793.03 21693.93 106
SixPastTwentyTwo87.20 8687.45 8386.45 10692.52 9069.19 18987.84 10388.05 20781.66 7094.64 1496.53 1465.94 25294.75 6983.02 7696.83 8795.41 51
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7580.37 6891.91 3393.11 7681.10 7795.32 1097.24 572.94 20994.85 6785.07 5497.78 5397.26 16
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1582.88 5991.77 6893.94 9890.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13393.60 5880.16 8789.13 12193.44 11283.82 7790.98 19383.86 6895.30 15193.60 125
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 4079.68 9292.09 6293.89 10083.80 7893.10 13682.67 8298.04 3693.64 123
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 14987.09 23265.22 22384.16 16494.23 2477.89 11691.28 7793.66 10884.35 7392.71 14580.07 10794.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 2182.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 2182.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
baseline85.20 11885.93 11083.02 18786.30 24962.37 25884.55 15793.96 4174.48 15587.12 15592.03 15382.30 10091.94 16678.39 12494.21 18794.74 73
test1191.46 127
door72.57 349
EPNet_dtu72.87 29571.33 30777.49 28277.72 35560.55 28482.35 21975.79 32466.49 25458.39 40281.06 34353.68 32485.98 29353.55 34692.97 21985.95 300
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268872.45 29770.56 31078.13 27090.02 16663.08 24568.72 36783.16 27442.99 39375.92 32685.46 28957.22 30885.18 30549.87 36581.67 36486.14 298
EPNet80.37 21278.41 23786.23 11176.75 36473.28 13587.18 11177.45 31176.24 13168.14 37388.93 23465.41 25693.85 10369.47 22896.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS70.66 172
HQP-NCC91.19 13684.77 15073.30 17480.55 283
ACMP_Plane91.19 13684.77 15073.30 17480.55 283
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8881.34 6490.19 5693.08 7980.87 8191.13 7893.19 11586.22 5995.97 1282.23 8897.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS77.30 145
HQP4-MVS80.56 28294.61 7493.56 128
HQP3-MVS92.68 9494.47 180
HQP2-MVS72.10 218
CNVR-MVS87.81 8187.68 7988.21 8192.87 8177.30 10385.25 14591.23 13677.31 12487.07 16091.47 17082.94 8894.71 7084.67 6096.27 11092.62 163
NCCC87.36 8486.87 9588.83 6892.32 9778.84 8286.58 12591.09 14078.77 10784.85 20690.89 18980.85 12295.29 5381.14 9795.32 14892.34 176
114514_t83.10 16782.54 17484.77 13992.90 8069.10 19186.65 12390.62 15354.66 34781.46 27090.81 19476.98 16094.38 8372.62 20196.18 11390.82 221
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 6283.16 5591.06 8094.00 9188.26 3095.71 3287.28 2798.39 2092.55 165
DSMNet-mixed60.98 36461.61 36459.09 38272.88 39145.05 38674.70 32746.61 40826.20 40465.34 38590.32 20855.46 31863.12 39541.72 39081.30 36969.09 391
tpm268.45 33366.83 34073.30 31678.93 35148.50 36979.76 25471.76 35647.50 37769.92 36683.60 31342.07 38088.40 25748.44 37379.51 37283.01 342
NP-MVS91.95 10974.55 12690.17 214
EG-PatchMatch MVS84.08 14584.11 14783.98 15992.22 10172.61 14782.20 22787.02 22472.63 18788.86 12291.02 18378.52 13991.11 18973.41 19091.09 25388.21 271
tpm cat166.76 34365.21 35171.42 33177.09 36150.62 36478.01 28073.68 34244.89 38668.64 37179.00 36145.51 36282.42 32749.91 36470.15 39581.23 364
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 6082.82 6092.60 5493.97 9288.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
CostFormer69.98 32168.68 33173.87 31177.14 36050.72 36379.26 26374.51 33351.94 36370.97 35984.75 30245.16 36887.49 26655.16 33779.23 37583.40 335
CR-MVSNet74.00 28573.04 28876.85 29179.58 34162.64 25282.58 21176.90 31750.50 37375.72 32992.38 14348.07 34684.07 31668.72 24182.91 35783.85 328
JIA-IIPM69.41 32666.64 34377.70 27973.19 38871.24 16975.67 31665.56 38270.42 21265.18 38692.97 12533.64 39583.06 32153.52 34769.61 39878.79 376
Patchmtry76.56 25977.46 24373.83 31279.37 34646.60 37882.41 21876.90 31773.81 16185.56 19392.38 14348.07 34683.98 31763.36 28595.31 15090.92 218
PatchT70.52 31472.76 29263.79 37179.38 34533.53 40577.63 28765.37 38373.61 16571.77 35492.79 13344.38 37275.65 35764.53 27885.37 33182.18 351
tpmrst66.28 34666.69 34265.05 36772.82 39239.33 39778.20 27970.69 36353.16 35467.88 37580.36 35048.18 34574.75 35958.13 31870.79 39481.08 365
BH-w/o76.57 25876.07 26078.10 27186.88 23765.92 21877.63 28786.33 23265.69 26280.89 27779.95 35368.97 23890.74 20453.01 35185.25 33377.62 378
tpm67.95 33468.08 33567.55 35578.74 35243.53 39175.60 31767.10 37954.92 34572.23 35288.10 24442.87 37975.97 35552.21 35480.95 37183.15 340
DELS-MVS81.44 19481.25 19682.03 20784.27 28662.87 24876.47 30792.49 9870.97 20881.64 26883.83 31175.03 17992.70 14674.29 17492.22 23490.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned80.96 20180.99 20180.84 23088.55 19768.23 19480.33 24888.46 19772.79 18586.55 17186.76 27174.72 18691.77 17361.79 29788.99 28582.52 348
RPMNet78.88 22978.28 23880.68 23479.58 34162.64 25282.58 21194.16 2974.80 15175.72 32992.59 13748.69 34395.56 3973.48 18982.91 35783.85 328
MVSTER77.09 25175.70 26381.25 22275.27 37861.08 27277.49 29185.07 25360.78 30886.55 17188.68 23743.14 37890.25 21473.69 18790.67 26792.42 171
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10379.74 9187.50 15192.38 14381.42 11693.28 12983.07 7497.24 7791.67 202
GBi-Net82.02 18482.07 17881.85 21186.38 24461.05 27386.83 11888.27 20472.43 18986.00 18495.64 3063.78 26690.68 20665.95 26093.34 20793.82 112
PVSNet_Blended_VisFu81.55 19280.49 20884.70 14291.58 12473.24 13784.21 16391.67 12362.86 28180.94 27687.16 26567.27 24492.87 14469.82 22688.94 28787.99 277
PVSNet_BlendedMVS78.80 23277.84 24181.65 21784.43 28063.41 24079.49 26090.44 15761.70 29575.43 33287.07 26869.11 23691.44 17960.68 30592.24 23290.11 241
UnsupCasMVSNet_eth71.63 30572.30 29869.62 34176.47 36752.70 34870.03 36380.97 29359.18 31979.36 29788.21 24360.50 28169.12 37358.33 31777.62 38387.04 289
UnsupCasMVSNet_bld69.21 32969.68 32167.82 35479.42 34451.15 36067.82 37275.79 32454.15 34977.47 31585.36 29459.26 29370.64 36848.46 37279.35 37481.66 356
PVSNet_Blended76.49 26075.40 26579.76 24584.43 28063.41 24075.14 32390.44 15757.36 33475.43 33278.30 36669.11 23691.44 17960.68 30587.70 30584.42 319
FMVSNet572.10 30171.69 30173.32 31581.57 32053.02 34576.77 30078.37 30663.31 27776.37 31891.85 15736.68 39078.98 34447.87 37592.45 22687.95 278
test182.02 18482.07 17881.85 21186.38 24461.05 27386.83 11888.27 20472.43 18986.00 18495.64 3063.78 26690.68 20665.95 26093.34 20793.82 112
new_pmnet55.69 37057.66 37149.76 38675.47 37630.59 40659.56 38851.45 40543.62 39162.49 39375.48 38540.96 38249.15 40537.39 39972.52 39069.55 390
FMVSNet378.80 23278.55 23479.57 24982.89 31156.89 32181.76 22985.77 24269.04 22786.00 18490.44 20551.75 33390.09 22565.95 26093.34 20791.72 199
dp60.70 36560.29 36861.92 37572.04 39538.67 40070.83 35764.08 38551.28 36660.75 39577.28 37436.59 39171.58 36747.41 37662.34 40275.52 382
FMVSNet281.31 19581.61 18780.41 23786.38 24458.75 30683.93 17386.58 23172.43 18987.65 14892.98 12363.78 26690.22 21766.86 25193.92 19492.27 181
FMVSNet184.55 13185.45 12281.85 21190.27 15861.05 27386.83 11888.27 20478.57 11089.66 10995.64 3075.43 17590.68 20669.09 23495.33 14793.82 112
N_pmnet70.20 31668.80 33074.38 31080.91 32884.81 3959.12 39176.45 32255.06 34475.31 33682.36 33055.74 31654.82 40147.02 37787.24 30883.52 332
cascas76.29 26374.81 27080.72 23384.47 27962.94 24673.89 33587.34 21355.94 34075.16 33776.53 38163.97 26491.16 18765.00 27190.97 25888.06 275
BH-RMVSNet80.53 20780.22 21481.49 21987.19 22766.21 21577.79 28586.23 23474.21 15783.69 23188.50 23973.25 20790.75 20363.18 28787.90 30187.52 284
UGNet82.78 16881.64 18586.21 11386.20 25376.24 11786.86 11685.68 24377.07 12673.76 34592.82 13069.64 23291.82 17269.04 23693.69 20290.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS67.91 33568.35 33266.58 36080.82 33148.12 37165.96 37772.60 34853.67 35171.20 35781.68 33958.97 29569.06 37448.57 37181.67 36482.55 346
XXY-MVS74.44 28376.19 25869.21 34484.61 27852.43 35071.70 34977.18 31560.73 30980.60 28190.96 18775.44 17469.35 37256.13 32888.33 29485.86 302
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15890.31 5496.31 380.88 8085.12 19889.67 22284.47 7295.46 4782.56 8396.26 11193.77 117
sss66.92 33967.26 33765.90 36277.23 35951.10 36264.79 37971.72 35752.12 36270.13 36580.18 35157.96 30265.36 39150.21 36281.01 37081.25 362
Test_1112_low_res73.90 28673.08 28776.35 29590.35 15655.95 32473.40 34086.17 23550.70 37173.14 34785.94 28358.31 29985.90 29656.51 32583.22 35487.20 288
1112_ss74.82 27873.74 27978.04 27389.57 16960.04 28776.49 30687.09 22354.31 34873.66 34679.80 35460.25 28586.76 28058.37 31584.15 34987.32 287
ab-mvs-re6.65 3768.87 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41279.80 3540.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs79.67 22480.56 20676.99 28688.48 19856.93 31984.70 15486.06 23768.95 22880.78 28093.08 11875.30 17784.62 30956.78 32390.90 26089.43 253
TR-MVS76.77 25675.79 26179.72 24686.10 25765.79 21977.14 29483.02 27665.20 27081.40 27182.10 33166.30 24890.73 20555.57 33285.27 33282.65 343
MDTV_nov1_ep13_2view27.60 40970.76 35846.47 38161.27 39445.20 36649.18 36883.75 330
MDTV_nov1_ep1368.29 33378.03 35343.87 39074.12 33172.22 35252.17 35967.02 37885.54 28745.36 36480.85 33455.73 32984.42 347
MIMVSNet183.63 15584.59 13780.74 23194.06 5362.77 25082.72 20784.53 26477.57 12190.34 9295.92 2476.88 16785.83 29961.88 29697.42 7293.62 124
MIMVSNet71.09 31071.59 30269.57 34287.23 22550.07 36678.91 26971.83 35560.20 31571.26 35691.76 16355.08 32276.09 35441.06 39187.02 31482.54 347
IterMVS-LS84.73 12784.98 12983.96 16087.35 22363.66 23783.25 19289.88 17676.06 13289.62 11092.37 14673.40 20492.52 15078.16 13194.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet77.32 24975.40 26583.06 18689.00 18472.48 15177.90 28382.17 28460.81 30778.94 30283.49 31559.30 29288.76 25454.64 34192.37 22787.93 279
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref95.74 139
IterMVS76.91 25376.34 25778.64 26080.91 32864.03 23476.30 30879.03 30364.88 27283.11 24289.16 23059.90 28884.46 31068.61 24285.15 33687.42 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon84.05 14683.22 15886.52 10591.73 11975.27 12383.23 19492.40 9972.04 19882.04 25888.33 24177.91 14693.95 9966.17 25895.12 15790.34 236
MVS_111021_LR84.28 13883.76 15385.83 12289.23 17983.07 5180.99 24183.56 27272.71 18686.07 18389.07 23281.75 11386.19 29077.11 14793.36 20688.24 270
DP-MVS88.60 6689.01 6387.36 9191.30 13377.50 9787.55 10592.97 8687.95 2089.62 11092.87 12984.56 7093.89 10277.65 13896.62 9390.70 225
ACMMP++97.35 73
HQP-MVS84.61 12984.06 14886.27 11091.19 13670.66 17284.77 15092.68 9473.30 17480.55 28390.17 21472.10 21894.61 7477.30 14594.47 18093.56 128
QAPM82.59 17182.59 17382.58 19986.44 24266.69 21089.94 6290.36 16067.97 24084.94 20492.58 13972.71 21292.18 16070.63 21787.73 30488.85 266
Vis-MVSNetpermissive86.86 8986.58 9887.72 8692.09 10577.43 10087.35 10992.09 10878.87 10584.27 22294.05 8878.35 14293.65 10980.54 10691.58 24792.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet61.16 36262.92 35955.87 38379.09 34835.34 40471.83 34857.98 40146.56 38059.05 39991.14 17949.95 34176.43 35338.74 39571.92 39355.84 402
IS-MVSNet86.66 9486.82 9786.17 11592.05 10766.87 20991.21 3988.64 19686.30 2889.60 11392.59 13769.22 23594.91 6673.89 18297.89 4996.72 26
HyFIR lowres test75.12 27372.66 29382.50 20291.44 13265.19 22472.47 34487.31 21446.79 37880.29 28784.30 30752.70 32892.10 16451.88 36086.73 31790.22 237
EPMVS62.47 35662.63 36062.01 37370.63 39738.74 39974.76 32652.86 40453.91 35067.71 37780.01 35239.40 38466.60 38655.54 33368.81 40080.68 369
PAPM_NR83.23 16383.19 16083.33 17990.90 14565.98 21788.19 9790.78 14878.13 11580.87 27887.92 24973.49 20192.42 15270.07 22388.40 29291.60 204
TAMVS78.08 24176.36 25683.23 18290.62 15172.87 14079.08 26780.01 29961.72 29481.35 27286.92 27063.96 26588.78 25350.61 36193.01 21788.04 276
PAPR78.84 23078.10 24081.07 22685.17 27160.22 28682.21 22590.57 15462.51 28375.32 33584.61 30474.99 18092.30 15859.48 31188.04 30090.68 226
RPSCF88.00 7686.93 9491.22 2790.08 16189.30 489.68 6891.11 13979.26 9989.68 10794.81 5482.44 9487.74 26376.54 15388.74 29096.61 29
Vis-MVSNet (Re-imp)77.82 24377.79 24277.92 27588.82 18851.29 35983.28 19071.97 35474.04 15882.23 25589.78 22057.38 30689.41 24357.22 32295.41 14493.05 146
test_040288.65 6589.58 5685.88 12092.55 8972.22 15684.01 16989.44 18688.63 1694.38 1795.77 2686.38 5893.59 11679.84 11195.21 15291.82 197
MVS_111021_HR84.63 12884.34 14585.49 12990.18 16075.86 12079.23 26687.13 21973.35 17185.56 19389.34 22683.60 8290.50 21176.64 15194.05 19290.09 242
CSCG86.26 9986.47 10085.60 12690.87 14674.26 12887.98 10091.85 11780.35 8489.54 11688.01 24579.09 13692.13 16175.51 16495.06 15990.41 234
PatchMatch-RL74.48 28173.22 28678.27 26987.70 21485.26 3475.92 31570.09 36464.34 27476.09 32481.25 34265.87 25378.07 34853.86 34383.82 35171.48 387
API-MVS82.28 17682.61 17281.30 22186.29 25069.79 17888.71 9087.67 21178.42 11282.15 25784.15 31077.98 14491.59 17565.39 26792.75 22282.51 349
Test By Simon79.09 136
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
USDC76.63 25776.73 25476.34 29683.46 29757.20 31880.02 25188.04 20852.14 36183.65 23291.25 17563.24 26986.65 28154.66 34094.11 19085.17 309
EPP-MVSNet85.47 11385.04 12886.77 10191.52 12969.37 18491.63 3687.98 20981.51 7287.05 16191.83 15966.18 25095.29 5370.75 21496.89 8495.64 46
PMMVS61.65 35960.38 36665.47 36565.40 40869.26 18663.97 38261.73 39236.80 40360.11 39768.43 39659.42 29166.35 38748.97 37078.57 37960.81 398
PAPM71.77 30370.06 31776.92 28886.39 24353.97 33776.62 30486.62 23053.44 35263.97 39284.73 30357.79 30592.34 15639.65 39381.33 36884.45 318
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2982.52 6292.39 5894.14 8489.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA83.55 15883.10 16384.90 13589.34 17683.87 4684.54 15988.77 19379.09 10183.54 23688.66 23874.87 18181.73 32966.84 25392.29 23089.11 259
PatchmatchNetpermissive69.71 32468.83 32972.33 32777.66 35653.60 34079.29 26269.99 36557.66 33172.53 35182.93 32246.45 35180.08 34060.91 30472.09 39283.31 338
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS86.38 9785.81 11588.08 8288.44 20077.34 10189.35 8093.05 8073.15 17984.76 20787.70 25378.87 13894.18 9080.67 10496.29 10792.73 156
F-COLMAP84.97 12583.42 15589.63 5592.39 9383.40 4888.83 8791.92 11473.19 17880.18 29189.15 23177.04 15993.28 12965.82 26492.28 23192.21 184
ANet_high83.17 16585.68 11875.65 30281.24 32445.26 38579.94 25292.91 8783.83 4691.33 7496.88 1080.25 12985.92 29468.89 23795.89 12995.76 43
wuyk23d75.13 27279.30 22562.63 37275.56 37475.18 12480.89 24273.10 34775.06 15094.76 1295.32 3587.73 4052.85 40234.16 40297.11 8059.85 399
OMC-MVS88.19 7187.52 8190.19 4491.94 11181.68 6187.49 10893.17 7376.02 13488.64 12791.22 17684.24 7593.37 12777.97 13697.03 8295.52 49
MG-MVS80.32 21480.94 20278.47 26488.18 20452.62 34982.29 22185.01 25772.01 19979.24 30092.54 14069.36 23493.36 12870.65 21689.19 28489.45 251
AdaColmapbinary83.66 15483.69 15483.57 17490.05 16472.26 15586.29 13090.00 17478.19 11481.65 26787.16 26583.40 8494.24 8761.69 29894.76 17584.21 323
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ITE_SJBPF90.11 4590.72 14984.97 3790.30 16481.56 7190.02 9891.20 17882.40 9690.81 20273.58 18894.66 17694.56 76
DeepMVS_CXcopyleft24.13 38932.95 41129.49 40721.63 41412.07 40537.95 40645.07 40430.84 39919.21 40817.94 40833.06 40723.69 404
TinyColmap81.25 19682.34 17777.99 27485.33 26860.68 28382.32 22088.33 20271.26 20586.97 16292.22 15277.10 15886.98 27462.37 29095.17 15486.31 297
MAR-MVS80.24 21678.74 23284.73 14086.87 23878.18 8885.75 13787.81 21065.67 26377.84 30978.50 36573.79 19690.53 21061.59 30090.87 26185.49 307
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS82.75 16981.93 18185.19 13182.08 31380.15 7085.53 14088.76 19468.01 23885.58 19287.75 25271.80 22386.85 27774.02 18093.87 19788.58 268
MSDG80.06 22179.99 22180.25 23983.91 29268.04 19977.51 29089.19 18877.65 11981.94 25983.45 31676.37 17186.31 28663.31 28686.59 31986.41 295
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1790.65 790.33 9393.95 9784.50 7195.37 5180.87 10095.50 14394.53 79
CLD-MVS83.18 16482.64 17184.79 13889.05 18267.82 20177.93 28292.52 9768.33 23485.07 19981.54 34082.06 10592.96 13969.35 22997.91 4893.57 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS72.29 30072.00 29973.14 31788.63 19485.00 3674.65 32867.39 37471.94 20077.80 31187.66 25450.48 33875.83 35649.95 36379.51 37258.58 401
Gipumacopyleft84.44 13386.33 10278.78 25784.20 28773.57 13289.55 7290.44 15784.24 4384.38 21494.89 4876.35 17280.40 33876.14 15896.80 8982.36 350
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015