This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13398.99 195.15 199.14 296.47 30
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9786.07 4898.48 1897.22 17
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 5899.27 199.54 1
Effi-MVS+-dtu85.82 11183.38 16393.14 487.13 23491.15 387.70 10888.42 20574.57 16283.56 24585.65 29978.49 14594.21 9372.04 21492.88 22594.05 103
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3297.60 6692.73 160
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10183.09 6191.54 7294.25 8387.67 4495.51 4787.21 3198.11 3893.12 148
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1298.15 3795.95 40
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17669.87 22995.06 1596.14 2584.28 7793.07 14187.68 1896.34 10697.09 19
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2797.62 6494.20 94
X-MVStestdata85.04 12582.70 17692.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 42186.57 5595.80 2887.35 2797.62 6494.20 94
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11498.27 2695.04 65
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2798.24 3094.56 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 195
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3098.39 2192.55 170
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4197.99 4393.96 106
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1697.76 5793.99 104
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3697.34 7692.19 191
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1098.23 3195.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2197.71 6093.83 113
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 15972.03 22896.36 488.21 1190.93 26492.98 154
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4298.21 3293.19 144
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13791.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 206
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 206
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3897.60 6694.18 97
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 17971.54 20894.28 2496.54 1681.57 11794.27 8986.26 4396.49 10097.09 19
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9588.22 2288.53 13397.64 383.45 8694.55 8386.02 5198.60 1396.67 25
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10495.50 14594.53 81
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15770.00 22894.55 1996.67 1487.94 3993.59 12084.27 6895.97 12495.52 49
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12684.07 4992.00 6694.40 7686.63 5495.28 5888.59 998.31 2492.30 184
RPSCF88.00 7986.93 9791.22 3190.08 16489.30 589.68 7391.11 14479.26 10489.68 10894.81 5982.44 9787.74 26876.54 15988.74 29996.61 27
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17369.27 23294.39 2096.38 1886.02 6593.52 12483.96 7095.92 13095.34 53
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1697.74 5992.85 157
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 897.96 4894.12 101
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15695.86 2384.88 6195.87 13295.24 58
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21494.85 7285.07 5897.78 5697.26 15
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3497.69 6193.93 107
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 59
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 59
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 10979.74 9687.50 15792.38 15281.42 11993.28 13383.07 7897.24 7991.67 211
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2098.20 3494.39 89
Skip Steuart: Steuart Systems R&D Blog.
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4291.48 13384.90 4283.41 19692.38 10670.25 22589.35 11990.68 20882.85 9294.57 8179.55 12095.95 12792.00 199
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 14082.67 8698.04 3993.64 125
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 14078.20 11886.69 17592.28 15880.36 13195.06 6786.17 4796.49 10090.22 248
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8298.76 494.87 68
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17293.26 12193.64 290.93 20084.60 6590.75 27193.97 105
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14193.60 6180.16 9189.13 12393.44 11883.82 8090.98 19883.86 7295.30 15393.60 128
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18584.24 7893.37 13177.97 14397.03 8495.52 49
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17181.56 7690.02 9991.20 18782.40 9990.81 20773.58 19794.66 17994.56 78
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12184.26 4790.87 8993.92 10382.18 10689.29 25073.75 19494.81 17393.70 121
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18696.10 11994.45 84
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18696.10 11994.45 84
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15592.84 5195.28 4485.58 6796.09 887.92 1497.76 5793.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14893.03 12982.66 9491.47 18270.81 22096.14 11694.16 98
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14893.03 12982.66 9491.47 18270.81 22096.14 11694.16 98
F-COLMAP84.97 12983.42 16289.63 5792.39 9683.40 5288.83 9291.92 12073.19 18680.18 30289.15 24277.04 16493.28 13365.82 27392.28 23692.21 190
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14485.02 6098.45 1992.41 177
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11870.73 21994.19 2596.67 1476.94 16694.57 8183.07 7896.28 10896.15 32
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22689.33 23883.87 7994.53 8482.45 8894.89 16994.90 66
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 140
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17489.71 10794.82 5685.09 6895.77 3484.17 6998.03 4193.26 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9678.78 11192.51 5893.64 11588.13 3693.84 10984.83 6397.55 6994.10 102
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9297.18 8190.45 244
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EGC-MVSNET74.79 28769.99 32989.19 6594.89 3887.00 1591.89 3786.28 2381.09 4222.23 42495.98 2781.87 11489.48 24279.76 11695.96 12591.10 223
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2197.98 4592.98 154
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MM87.64 8587.15 9089.09 6789.51 17476.39 11888.68 9686.76 23484.54 4683.58 24493.78 10873.36 21096.48 287.98 1396.21 11294.41 88
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14367.85 25386.63 17694.84 5579.58 13895.96 1587.62 1994.50 18294.56 78
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6697.81 5591.70 210
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC87.36 8786.87 9888.83 7092.32 10078.84 8686.58 13191.09 14578.77 11284.85 21590.89 19980.85 12595.29 5681.14 10195.32 15092.34 182
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14796.05 987.45 2398.17 3592.40 179
No_MVS88.81 7191.55 12977.99 9491.01 14796.05 987.45 2398.17 3592.40 179
h-mvs3384.25 14482.76 17588.72 7391.82 12182.60 6084.00 17984.98 26571.27 21186.70 17390.55 21363.04 27793.92 10578.26 13694.20 19189.63 259
SPE-MVS-test87.00 9086.43 10488.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 28087.25 27582.43 9894.53 8477.65 14596.46 10294.14 100
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 17792.95 13474.84 18795.22 5980.78 10695.83 13494.46 82
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5497.51 7394.30 93
hse-mvs283.47 16681.81 19088.47 7791.03 14582.27 6182.61 21883.69 27871.27 21186.70 17386.05 29563.04 27792.41 15878.26 13693.62 21090.71 235
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12878.35 13398.76 495.61 48
AUN-MVS81.18 20678.78 23988.39 7990.93 14782.14 6282.51 22483.67 27964.69 28480.29 29885.91 29851.07 34192.38 15976.29 16493.63 20990.65 239
TAPA-MVS77.73 1285.71 11284.83 13588.37 8088.78 19479.72 7787.15 11793.50 6269.17 23385.80 19589.56 23480.76 12692.13 16673.21 20795.51 14493.25 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19288.51 2190.11 9695.12 4990.98 688.92 25477.55 14797.07 8383.13 353
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18581.12 12294.68 7674.48 18195.35 14892.29 185
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15591.23 14177.31 13187.07 16691.47 17982.94 9194.71 7584.67 6496.27 11092.62 167
PHI-MVS86.38 10085.81 11788.08 8488.44 20477.34 10589.35 8593.05 8373.15 18784.76 21687.70 26578.87 14294.18 9580.67 10896.29 10792.73 160
train_agg85.98 10885.28 12988.07 8592.34 9879.70 7883.94 18090.32 16865.79 26984.49 22090.97 19481.93 11193.63 11581.21 10096.54 9890.88 230
CDPH-MVS86.17 10685.54 12388.05 8692.25 10175.45 12483.85 18492.01 11665.91 26786.19 18691.75 17383.77 8294.98 6977.43 15096.71 9393.73 120
DeepC-MVS_fast80.27 886.23 10285.65 12287.96 8791.30 13676.92 11087.19 11591.99 11770.56 22084.96 21190.69 20780.01 13595.14 6478.37 13295.78 13891.82 204
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_030485.37 11784.58 14287.75 8885.28 27373.36 13686.54 13385.71 24977.56 12981.78 27892.47 15070.29 23696.02 1185.59 5395.96 12593.87 111
TSAR-MVS + GP.83.95 15482.69 17787.72 8989.27 18181.45 6783.72 18981.58 29874.73 16085.66 19686.06 29472.56 22092.69 15275.44 17495.21 15489.01 275
Vis-MVSNetpermissive86.86 9286.58 10187.72 8992.09 10777.43 10487.35 11392.09 11478.87 11084.27 23194.05 9278.35 14693.65 11380.54 11091.58 25292.08 195
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 10086.25 4597.63 6397.82 8
PLCcopyleft73.85 1682.09 19180.31 21887.45 9290.86 15080.29 7385.88 14290.65 15668.17 24776.32 33386.33 28973.12 21392.61 15461.40 31190.02 28289.44 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 9087.95 2589.62 11192.87 13784.56 7393.89 10677.65 14596.62 9590.70 236
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9485.94 26578.30 8986.93 12092.20 11165.94 26589.16 12193.16 12483.10 8989.89 23587.81 1594.43 18593.35 135
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 20789.67 23384.47 7595.46 5082.56 8796.26 11193.77 119
test_fmvsmconf0.1_n86.18 10585.88 11587.08 9685.26 27478.25 9085.82 14591.82 12465.33 27988.55 13292.35 15682.62 9689.80 23786.87 3594.32 18893.18 145
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12295.88 1887.41 2595.94 12892.48 173
test_fmvsmconf_n85.88 11085.51 12486.99 9884.77 28278.21 9185.40 15491.39 13665.32 28087.72 15391.81 17082.33 10189.78 23886.68 3794.20 19192.99 153
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 4997.92 4992.29 185
EI-MVSNet-Vis-set85.12 12484.53 14586.88 10084.01 29672.76 14483.91 18385.18 25880.44 8688.75 12785.49 30280.08 13491.92 17282.02 9490.85 26995.97 38
EI-MVSNet-UG-set85.04 12584.44 14786.85 10183.87 30072.52 15383.82 18585.15 25980.27 9088.75 12785.45 30479.95 13691.90 17381.92 9790.80 27096.13 33
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 3997.97 4692.02 198
EPP-MVSNet85.47 11585.04 13286.77 10391.52 13269.37 18791.63 3987.98 21581.51 7787.05 16791.83 16866.18 25795.29 5670.75 22396.89 8695.64 46
CANet83.79 15882.85 17486.63 10486.17 26072.21 16083.76 18891.43 13377.24 13274.39 35387.45 27175.36 18195.42 5277.03 15592.83 22692.25 189
test1286.57 10590.74 15172.63 14990.69 15582.76 25979.20 13994.80 7395.32 15092.27 187
UniMVSNet (Re)86.87 9186.98 9686.55 10693.11 7968.48 19983.80 18792.87 9280.37 8789.61 11391.81 17077.72 15394.18 9575.00 17998.53 1696.99 22
DP-MVS Recon84.05 15183.22 16586.52 10791.73 12275.27 12583.23 20392.40 10472.04 20582.04 26988.33 25377.91 15093.95 10466.17 26795.12 15990.34 247
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19287.84 10788.05 21381.66 7594.64 1896.53 1765.94 25894.75 7483.02 8096.83 8995.41 51
K. test v385.14 12284.73 13686.37 10991.13 14369.63 18585.45 15276.68 32984.06 5092.44 6096.99 1062.03 28094.65 7780.58 10993.24 21694.83 73
test_prior86.32 11090.59 15571.99 16292.85 9394.17 9792.80 158
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14783.61 5593.75 3494.65 6189.76 1895.78 3286.42 3997.97 4690.55 242
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HQP-MVS84.61 13484.06 15486.27 11291.19 13970.66 17584.77 16092.68 9873.30 18280.55 29490.17 22572.10 22494.61 7977.30 15294.47 18393.56 131
BP-MVS182.81 17581.67 19286.23 11387.88 21668.53 19886.06 14084.36 27375.65 14985.14 20690.19 22245.84 36694.42 8685.18 5794.72 17895.75 43
EPNet80.37 22078.41 24686.23 11376.75 37473.28 13987.18 11677.45 32076.24 13868.14 38588.93 24565.41 26193.85 10769.47 23696.12 11891.55 215
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SD-MVS88.96 6789.88 5386.22 11591.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15786.11 6390.22 22286.24 4697.24 7991.36 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DU-MVS86.80 9486.99 9586.21 11693.24 7667.02 21383.16 20592.21 11081.73 7490.92 8491.97 16377.20 16093.99 10274.16 18498.35 2297.61 10
UGNet82.78 17681.64 19386.21 11686.20 25976.24 12086.86 12285.68 25077.07 13373.76 35792.82 13869.64 23991.82 17769.04 24493.69 20790.56 241
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11892.86 8667.02 21382.55 22291.56 12983.08 6290.92 8491.82 16978.25 14793.99 10274.16 18498.35 2297.49 13
IS-MVSNet86.66 9786.82 10086.17 11892.05 10966.87 21691.21 4388.64 20386.30 3389.60 11492.59 14569.22 24294.91 7173.89 19197.89 5296.72 24
GDP-MVS82.17 18880.85 21286.15 12088.65 19768.95 19585.65 14993.02 8768.42 24283.73 24089.54 23545.07 37794.31 8879.66 11993.87 20195.19 61
lessismore_v085.95 12191.10 14470.99 17470.91 37291.79 6994.42 7461.76 28192.93 14679.52 12293.03 22193.93 107
nrg03087.85 8288.49 7585.91 12290.07 16669.73 18387.86 10694.20 3074.04 16692.70 5694.66 6085.88 6691.50 18179.72 11797.32 7796.50 29
Fast-Effi-MVS+-dtu82.54 18181.41 20185.90 12385.60 26876.53 11583.07 20689.62 19173.02 18979.11 31283.51 32880.74 12790.24 22168.76 24789.29 29090.94 227
test_040288.65 6989.58 6085.88 12492.55 9272.22 15984.01 17889.44 19488.63 2094.38 2195.77 2986.38 6193.59 12079.84 11595.21 15491.82 204
PCF-MVS74.62 1582.15 19080.92 21085.84 12589.43 17772.30 15780.53 25491.82 12457.36 34487.81 15189.92 22977.67 15493.63 11558.69 32495.08 16091.58 214
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_LR84.28 14383.76 15985.83 12689.23 18283.07 5580.99 25083.56 28072.71 19486.07 18989.07 24381.75 11686.19 29577.11 15493.36 21188.24 281
test_fmvsm_n_192083.60 16282.89 17385.74 12785.22 27577.74 9984.12 17690.48 16059.87 32886.45 18591.12 18975.65 17885.89 30382.28 9190.87 26793.58 129
WR-MVS_H89.91 5091.31 3385.71 12896.32 962.39 26489.54 7993.31 7090.21 1295.57 1195.66 3381.42 11995.90 1780.94 10398.80 398.84 5
MCST-MVS84.36 13983.93 15785.63 12991.59 12471.58 16883.52 19392.13 11361.82 30283.96 23689.75 23279.93 13793.46 12778.33 13494.34 18791.87 203
CSCG86.26 10186.47 10385.60 13090.87 14974.26 13187.98 10491.85 12280.35 8889.54 11788.01 25779.09 14092.13 16675.51 17295.06 16190.41 245
ETV-MVS84.31 14183.91 15885.52 13188.58 20070.40 17884.50 17193.37 6478.76 11384.07 23478.72 37680.39 13095.13 6573.82 19392.98 22391.04 224
tttt051781.07 20779.58 23085.52 13188.99 18766.45 22087.03 11975.51 33773.76 17088.32 14190.20 22137.96 39894.16 9979.36 12495.13 15795.93 41
MVS_111021_HR84.63 13384.34 15185.49 13390.18 16375.86 12379.23 27587.13 22573.35 17985.56 20089.34 23783.60 8590.50 21676.64 15894.05 19790.09 254
NR-MVSNet86.00 10786.22 10785.34 13493.24 7664.56 23682.21 23490.46 16180.99 8288.42 13791.97 16377.56 15593.85 10772.46 21298.65 1297.61 10
LF4IMVS82.75 17781.93 18885.19 13582.08 32280.15 7485.53 15088.76 20168.01 24885.58 19987.75 26471.80 22986.85 28274.02 18993.87 20188.58 278
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13694.02 5864.13 24084.38 17291.29 13984.88 4492.06 6593.84 10586.45 5893.73 11173.22 20298.66 1197.69 9
EIA-MVS82.19 18781.23 20685.10 13787.95 21469.17 19383.22 20493.33 6770.42 22178.58 31679.77 36877.29 15994.20 9471.51 21688.96 29591.93 202
3Dnovator80.37 784.80 13084.71 13985.06 13886.36 25374.71 12788.77 9490.00 18175.65 14984.96 21193.17 12374.06 19791.19 19178.28 13591.09 25889.29 267
CNLPA83.55 16483.10 17084.90 13989.34 17983.87 5084.54 16988.77 20079.09 10683.54 24688.66 25074.87 18681.73 33766.84 26192.29 23589.11 269
v1086.54 9887.10 9284.84 14088.16 21063.28 25086.64 13092.20 11175.42 15492.81 5394.50 6874.05 19894.06 10183.88 7196.28 10897.17 18
test_fmvsmvis_n_192085.22 11985.36 12884.81 14185.80 26776.13 12285.15 15892.32 10861.40 30991.33 7690.85 20283.76 8386.16 29684.31 6793.28 21592.15 193
CLD-MVS83.18 17082.64 17884.79 14289.05 18467.82 20777.93 29192.52 10268.33 24485.07 20881.54 35282.06 10892.96 14469.35 23797.91 5193.57 130
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
114514_t83.10 17382.54 18184.77 14392.90 8369.10 19486.65 12990.62 15854.66 36081.46 28290.81 20476.98 16594.38 8772.62 21096.18 11490.82 232
Anonymous2023121188.40 7189.62 5984.73 14490.46 15765.27 22988.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 17076.70 15797.99 4396.88 23
MAR-MVS80.24 22578.74 24184.73 14486.87 24478.18 9285.75 14687.81 21665.67 27477.84 32178.50 37773.79 20190.53 21561.59 31090.87 26785.49 318
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended_VisFu81.55 20180.49 21684.70 14691.58 12773.24 14184.21 17391.67 12862.86 29280.94 28887.16 27767.27 25192.87 14969.82 23488.94 29687.99 288
原ACMM184.60 14792.81 8974.01 13291.50 13162.59 29382.73 26090.67 21076.53 17394.25 9169.24 23895.69 14185.55 316
mvsmamba80.30 22378.87 23684.58 14888.12 21167.55 20892.35 2984.88 26763.15 29085.33 20390.91 19850.71 34395.20 6266.36 26587.98 31190.99 225
fmvsm_s_conf0.1_n_a82.58 18081.93 18884.50 14987.68 22173.35 13786.14 13977.70 31861.64 30785.02 20991.62 17577.75 15186.24 29282.79 8487.07 32293.91 109
PEN-MVS90.03 4591.88 1884.48 15096.57 558.88 30888.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 12998.72 998.97 3
PS-CasMVS90.06 4391.92 1584.47 15196.56 658.83 31189.04 8892.74 9791.40 696.12 596.06 2687.23 4895.57 4179.42 12398.74 699.00 2
GeoE85.45 11685.81 11784.37 15290.08 16467.07 21285.86 14491.39 13672.33 20187.59 15590.25 22084.85 7192.37 16078.00 14191.94 24593.66 122
CP-MVSNet89.27 6290.91 4484.37 15296.34 858.61 31488.66 9792.06 11590.78 795.67 895.17 4781.80 11595.54 4479.00 12798.69 1098.95 4
v886.22 10386.83 9984.36 15487.82 21762.35 26686.42 13491.33 13876.78 13592.73 5594.48 7073.41 20793.72 11283.10 7795.41 14697.01 21
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15487.09 23865.22 23084.16 17494.23 2777.89 12291.28 7993.66 11484.35 7692.71 15080.07 11194.87 17295.16 62
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-SCA-FT80.64 21479.41 23184.34 15683.93 29869.66 18476.28 32081.09 30172.43 19686.47 18390.19 22260.46 28793.15 13877.45 14986.39 33390.22 248
fmvsm_s_conf0.5_n_a82.21 18681.51 20084.32 15786.56 24673.35 13785.46 15177.30 32261.81 30384.51 21990.88 20177.36 15886.21 29482.72 8586.97 32793.38 134
UniMVSNet_ETH3D89.12 6590.72 4784.31 15897.00 264.33 23989.67 7488.38 20688.84 1794.29 2297.57 490.48 1391.26 18972.57 21197.65 6297.34 14
thisisatest053079.07 23577.33 25584.26 15987.13 23464.58 23583.66 19175.95 33268.86 23885.22 20587.36 27338.10 39593.57 12375.47 17394.28 18994.62 76
v119284.57 13584.69 14084.21 16087.75 21962.88 25483.02 20891.43 13369.08 23589.98 10290.89 19972.70 21893.62 11882.41 8994.97 16696.13 33
DTE-MVSNet89.98 4791.91 1784.21 16096.51 757.84 31988.93 9092.84 9491.92 496.16 496.23 2186.95 5195.99 1279.05 12698.57 1598.80 6
MVSFormer82.23 18581.57 19884.19 16285.54 27069.26 18991.98 3490.08 17971.54 20876.23 33485.07 31358.69 30294.27 8986.26 4388.77 29789.03 273
v114484.54 13784.72 13884.00 16387.67 22262.55 26182.97 21090.93 15070.32 22489.80 10590.99 19373.50 20493.48 12681.69 9994.65 18095.97 38
EG-PatchMatch MVS84.08 15084.11 15383.98 16492.22 10372.61 15082.20 23687.02 23072.63 19588.86 12491.02 19278.52 14391.11 19473.41 19991.09 25888.21 282
IterMVS-LS84.73 13284.98 13383.96 16587.35 22963.66 24483.25 20189.88 18476.06 13989.62 11192.37 15573.40 20992.52 15578.16 13894.77 17695.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH76.49 1489.34 5991.14 3583.96 16592.50 9470.36 17989.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26483.33 7498.30 2593.20 143
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n82.17 18881.59 19683.94 16786.87 24471.57 16985.19 15777.42 32162.27 30184.47 22291.33 18276.43 17485.91 30183.14 7587.14 32094.33 92
alignmvs83.94 15583.98 15683.80 16887.80 21867.88 20684.54 16991.42 13573.27 18588.41 13887.96 25872.33 22190.83 20676.02 16894.11 19492.69 164
v192192084.23 14684.37 15083.79 16987.64 22461.71 27382.91 21291.20 14267.94 25190.06 9790.34 21772.04 22793.59 12082.32 9094.91 16796.07 35
PM-MVS80.20 22679.00 23583.78 17088.17 20986.66 1981.31 24466.81 39169.64 23088.33 14090.19 22264.58 26383.63 32771.99 21590.03 28181.06 380
fmvsm_s_conf0.5_n81.91 19781.30 20383.75 17186.02 26471.56 17084.73 16377.11 32562.44 29884.00 23590.68 20876.42 17585.89 30383.14 7587.11 32193.81 117
V4283.47 16683.37 16483.75 17183.16 31563.33 24981.31 24490.23 17569.51 23190.91 8690.81 20474.16 19692.29 16480.06 11290.22 27995.62 47
v14419284.24 14584.41 14883.71 17387.59 22561.57 27482.95 21191.03 14667.82 25489.80 10590.49 21473.28 21193.51 12581.88 9894.89 16996.04 37
v124084.30 14284.51 14683.65 17487.65 22361.26 27982.85 21491.54 13067.94 25190.68 9190.65 21171.71 23093.64 11482.84 8394.78 17496.07 35
v2v48284.09 14984.24 15283.62 17587.13 23461.40 27682.71 21789.71 18772.19 20489.55 11591.41 18070.70 23593.20 13581.02 10293.76 20396.25 31
fmvsm_l_conf0.5_n82.06 19281.54 19983.60 17683.94 29773.90 13383.35 19886.10 24158.97 33083.80 23990.36 21674.23 19586.94 28082.90 8190.22 27989.94 256
sasdasda85.50 11386.14 10983.58 17787.97 21267.13 21087.55 10994.32 2173.44 17788.47 13587.54 26886.45 5891.06 19675.76 17093.76 20392.54 171
canonicalmvs85.50 11386.14 10983.58 17787.97 21267.13 21087.55 10994.32 2173.44 17788.47 13587.54 26886.45 5891.06 19675.76 17093.76 20392.54 171
Effi-MVS+83.90 15684.01 15583.57 17987.22 23265.61 22886.55 13292.40 10478.64 11481.34 28584.18 32383.65 8492.93 14674.22 18387.87 31392.17 192
AdaColmapbinary83.66 16083.69 16083.57 17990.05 16772.26 15886.29 13690.00 18178.19 11981.65 27987.16 27783.40 8794.24 9261.69 30894.76 17784.21 335
MVSMamba_PlusPlus87.53 8688.86 7183.54 18192.03 11062.26 26891.49 4092.62 10088.07 2488.07 14596.17 2372.24 22395.79 3184.85 6294.16 19392.58 168
FA-MVS(test-final)83.13 17283.02 17183.43 18286.16 26266.08 22388.00 10388.36 20775.55 15185.02 20992.75 14265.12 26292.50 15674.94 18091.30 25691.72 208
Anonymous2024052986.20 10487.13 9183.42 18390.19 16264.55 23784.55 16790.71 15485.85 3689.94 10395.24 4682.13 10790.40 21869.19 24196.40 10595.31 55
FE-MVS79.98 23178.86 23783.36 18486.47 24766.45 22089.73 7084.74 27172.80 19284.22 23391.38 18144.95 37893.60 11963.93 28991.50 25390.04 255
PAPM_NR83.23 16983.19 16783.33 18590.90 14865.98 22488.19 10190.78 15378.13 12080.87 29087.92 26173.49 20692.42 15770.07 23188.40 30291.60 213
casdiffmvspermissive85.21 12085.85 11683.31 18686.17 26062.77 25783.03 20793.93 4674.69 16188.21 14292.68 14482.29 10491.89 17477.87 14493.75 20695.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_l_conf0.5_n_a81.46 20280.87 21183.25 18783.73 30273.21 14283.00 20985.59 25258.22 33682.96 25590.09 22772.30 22286.65 28681.97 9689.95 28389.88 257
TAMVS78.08 24876.36 26483.23 18890.62 15472.87 14379.08 27680.01 30861.72 30581.35 28486.92 28263.96 26988.78 25850.61 37293.01 22288.04 287
VDD-MVS84.23 14684.58 14283.20 18991.17 14265.16 23283.25 20184.97 26679.79 9587.18 16094.27 7974.77 19090.89 20369.24 23896.54 9893.55 133
EI-MVSNet82.61 17882.42 18383.20 18983.25 31263.66 24483.50 19485.07 26076.06 13986.55 17785.10 31073.41 20790.25 21978.15 14090.67 27395.68 45
mmtdpeth85.13 12385.78 11983.17 19184.65 28474.71 12785.87 14390.35 16777.94 12183.82 23896.96 1277.75 15180.03 35078.44 13096.21 11294.79 74
CDS-MVSNet77.32 25675.40 27383.06 19289.00 18672.48 15477.90 29282.17 29260.81 31878.94 31383.49 32959.30 29788.76 25954.64 35292.37 23287.93 290
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline85.20 12185.93 11383.02 19386.30 25562.37 26584.55 16793.96 4474.48 16387.12 16192.03 16282.30 10391.94 17178.39 13194.21 19094.74 75
balanced_conf0384.80 13085.40 12683.00 19488.95 18861.44 27590.42 5892.37 10771.48 21088.72 12993.13 12570.16 23895.15 6379.26 12594.11 19492.41 177
tt080588.09 7789.79 5582.98 19593.26 7563.94 24391.10 4589.64 18985.07 4190.91 8691.09 19089.16 2491.87 17582.03 9395.87 13293.13 146
ambc82.98 19590.55 15664.86 23388.20 10089.15 19789.40 11893.96 9971.67 23191.38 18878.83 12896.55 9792.71 163
新几何182.95 19793.96 5978.56 8880.24 30655.45 35483.93 23791.08 19171.19 23288.33 26365.84 27293.07 22081.95 367
xiu_mvs_v1_base_debu80.84 21080.14 22482.93 19888.31 20571.73 16479.53 26687.17 22265.43 27579.59 30482.73 34076.94 16690.14 22773.22 20288.33 30486.90 302
xiu_mvs_v1_base80.84 21080.14 22482.93 19888.31 20571.73 16479.53 26687.17 22265.43 27579.59 30482.73 34076.94 16690.14 22773.22 20288.33 30486.90 302
xiu_mvs_v1_base_debi80.84 21080.14 22482.93 19888.31 20571.73 16479.53 26687.17 22265.43 27579.59 30482.73 34076.94 16690.14 22773.22 20288.33 30486.90 302
DPM-MVS80.10 22979.18 23482.88 20190.71 15369.74 18278.87 28090.84 15160.29 32475.64 34385.92 29767.28 25093.11 13971.24 21891.79 24685.77 314
ET-MVSNet_ETH3D75.28 27872.77 30082.81 20283.03 31868.11 20377.09 30576.51 33060.67 32177.60 32680.52 36038.04 39691.15 19370.78 22290.68 27289.17 268
eth_miper_zixun_eth80.84 21080.22 22282.71 20381.41 33160.98 28577.81 29390.14 17867.31 25886.95 16987.24 27664.26 26592.31 16275.23 17691.61 25094.85 72
MVP-Stereo75.81 27573.51 29182.71 20389.35 17873.62 13480.06 25885.20 25760.30 32373.96 35587.94 25957.89 30989.45 24552.02 36674.87 40285.06 322
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FIs85.35 11886.27 10682.60 20591.86 11657.31 32385.10 15993.05 8375.83 14691.02 8393.97 9673.57 20392.91 14873.97 19098.02 4297.58 12
FC-MVSNet-test85.93 10987.05 9482.58 20692.25 10156.44 33085.75 14693.09 8177.33 13091.94 6894.65 6174.78 18993.41 13075.11 17898.58 1497.88 7
QAPM82.59 17982.59 18082.58 20686.44 24866.69 21789.94 6790.36 16667.97 25084.94 21392.58 14772.71 21792.18 16570.63 22687.73 31588.85 276
pmmvs-eth3d78.42 24677.04 25882.57 20887.44 22874.41 13080.86 25279.67 30955.68 35384.69 21790.31 21960.91 28585.42 30862.20 30291.59 25187.88 291
HyFIR lowres test75.12 28172.66 30282.50 20991.44 13565.19 23172.47 35587.31 22046.79 39280.29 29884.30 32152.70 33492.10 16951.88 37186.73 32890.22 248
Fast-Effi-MVS+81.04 20880.57 21382.46 21087.50 22763.22 25178.37 28789.63 19068.01 24881.87 27282.08 34682.31 10292.65 15367.10 25888.30 30891.51 216
jason77.42 25575.75 27082.43 21187.10 23769.27 18877.99 29081.94 29451.47 37977.84 32185.07 31360.32 28989.00 25270.74 22489.27 29289.03 273
jason: jason.
MGCFI-Net85.04 12585.95 11282.31 21287.52 22663.59 24686.23 13893.96 4473.46 17588.07 14587.83 26386.46 5790.87 20576.17 16593.89 20092.47 175
lupinMVS76.37 27074.46 28282.09 21385.54 27069.26 18976.79 30980.77 30450.68 38676.23 33482.82 33858.69 30288.94 25369.85 23388.77 29788.07 284
DELS-MVS81.44 20381.25 20482.03 21484.27 29362.87 25576.47 31892.49 10370.97 21781.64 28083.83 32575.03 18492.70 15174.29 18292.22 23990.51 243
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OpenMVScopyleft76.72 1381.98 19582.00 18781.93 21584.42 28968.22 20188.50 9989.48 19366.92 26081.80 27691.86 16572.59 21990.16 22471.19 21991.25 25787.40 297
pmmvs686.52 9988.06 7981.90 21692.22 10362.28 26784.66 16589.15 19783.54 5789.85 10497.32 588.08 3886.80 28370.43 22897.30 7896.62 26
MSLP-MVS++85.00 12886.03 11181.90 21691.84 11971.56 17086.75 12893.02 8775.95 14487.12 16189.39 23677.98 14889.40 24977.46 14894.78 17484.75 325
GBi-Net82.02 19382.07 18581.85 21886.38 25061.05 28286.83 12488.27 21072.43 19686.00 19095.64 3463.78 27090.68 21165.95 26993.34 21293.82 114
test182.02 19382.07 18581.85 21886.38 25061.05 28286.83 12488.27 21072.43 19686.00 19095.64 3463.78 27090.68 21165.95 26993.34 21293.82 114
FMVSNet184.55 13685.45 12581.85 21890.27 16161.05 28286.83 12488.27 21078.57 11589.66 11095.64 3475.43 18090.68 21169.09 24295.33 14993.82 114
v14882.31 18382.48 18281.81 22185.59 26959.66 29881.47 24386.02 24572.85 19088.05 14790.65 21170.73 23490.91 20275.15 17791.79 24694.87 68
c3_l81.64 20081.59 19681.79 22280.86 33959.15 30578.61 28490.18 17768.36 24387.20 15987.11 27969.39 24091.62 17978.16 13894.43 18594.60 77
mvs5depth83.82 15784.54 14481.68 22382.23 32168.65 19786.89 12189.90 18380.02 9487.74 15297.86 264.19 26782.02 33576.37 16195.63 14394.35 90
PVSNet_BlendedMVS78.80 24077.84 25081.65 22484.43 28763.41 24779.49 26990.44 16261.70 30675.43 34487.07 28069.11 24391.44 18460.68 31592.24 23790.11 253
RRT-MVS82.97 17483.44 16181.57 22585.06 27758.04 31787.20 11490.37 16577.88 12388.59 13193.70 11363.17 27493.05 14276.49 16088.47 30193.62 126
dcpmvs_284.23 14685.14 13081.50 22688.61 19961.98 27282.90 21393.11 7968.66 24192.77 5492.39 15178.50 14487.63 27076.99 15692.30 23394.90 66
BH-RMVSNet80.53 21580.22 22281.49 22787.19 23366.21 22277.79 29486.23 23974.21 16583.69 24188.50 25173.25 21290.75 20863.18 29787.90 31287.52 295
API-MVS82.28 18482.61 17981.30 22886.29 25669.79 18188.71 9587.67 21778.42 11782.15 26884.15 32477.98 14891.59 18065.39 27692.75 22782.51 362
VDDNet84.35 14085.39 12781.25 22995.13 3259.32 30185.42 15381.11 30086.41 3287.41 15896.21 2273.61 20290.61 21466.33 26696.85 8793.81 117
MVSTER77.09 25875.70 27181.25 22975.27 38961.08 28177.49 30185.07 26060.78 31986.55 17788.68 24843.14 38790.25 21973.69 19690.67 27392.42 176
cl2278.97 23678.21 24881.24 23177.74 36459.01 30677.46 30287.13 22565.79 26984.32 22685.10 31058.96 30190.88 20475.36 17592.03 24193.84 112
miper_ehance_all_eth80.34 22180.04 22781.24 23179.82 35058.95 30777.66 29589.66 18865.75 27285.99 19385.11 30968.29 24791.42 18676.03 16792.03 24193.33 136
PAPR78.84 23978.10 24981.07 23385.17 27660.22 29282.21 23490.57 15962.51 29475.32 34784.61 31874.99 18592.30 16359.48 32288.04 31090.68 237
WR-MVS83.56 16384.40 14981.06 23493.43 7054.88 34378.67 28385.02 26381.24 7990.74 9091.56 17772.85 21591.08 19568.00 25598.04 3997.23 16
cl____80.42 21880.23 22081.02 23579.99 34759.25 30277.07 30687.02 23067.37 25686.18 18889.21 24063.08 27690.16 22476.31 16395.80 13693.65 124
DIV-MVS_self_test80.43 21780.23 22081.02 23579.99 34759.25 30277.07 30687.02 23067.38 25586.19 18689.22 23963.09 27590.16 22476.32 16295.80 13693.66 122
BH-untuned80.96 20980.99 20880.84 23788.55 20168.23 20080.33 25788.46 20472.79 19386.55 17786.76 28374.72 19191.77 17861.79 30788.99 29482.52 361
MIMVSNet183.63 16184.59 14180.74 23894.06 5762.77 25782.72 21684.53 27277.57 12890.34 9395.92 2876.88 17285.83 30561.88 30697.42 7493.62 126
pmmvs474.92 28472.98 29880.73 23984.95 27871.71 16776.23 32177.59 31952.83 36977.73 32586.38 28756.35 31884.97 31257.72 33287.05 32385.51 317
cascas76.29 27174.81 27880.72 24084.47 28662.94 25373.89 34687.34 21955.94 35175.16 34976.53 39363.97 26891.16 19265.00 28090.97 26388.06 286
RPMNet78.88 23878.28 24780.68 24179.58 35162.64 25982.58 22094.16 3274.80 15975.72 34192.59 14548.69 35095.56 4273.48 19882.91 36983.85 340
miper_enhance_ethall77.83 24976.93 25980.51 24276.15 38158.01 31875.47 33288.82 19958.05 33883.59 24380.69 35664.41 26491.20 19073.16 20892.03 24192.33 183
thisisatest051573.00 30370.52 32180.46 24381.45 33059.90 29673.16 35374.31 34457.86 33976.08 33877.78 38137.60 39992.12 16865.00 28091.45 25489.35 264
FMVSNet281.31 20481.61 19580.41 24486.38 25058.75 31283.93 18286.58 23672.43 19687.65 15492.98 13163.78 27090.22 22266.86 25993.92 19992.27 187
D2MVS76.84 26175.67 27280.34 24580.48 34562.16 27173.50 34984.80 27057.61 34282.24 26587.54 26851.31 34087.65 26970.40 22993.19 21891.23 219
MSDG80.06 23079.99 22980.25 24683.91 29968.04 20577.51 29989.19 19677.65 12681.94 27083.45 33076.37 17686.31 29163.31 29686.59 33086.41 306
MVS_Test82.47 18283.22 16580.22 24782.62 32057.75 32182.54 22391.96 11971.16 21582.89 25692.52 14977.41 15790.50 21680.04 11387.84 31492.40 179
diffmvspermissive80.40 21980.48 21780.17 24879.02 36060.04 29377.54 29890.28 17466.65 26382.40 26387.33 27473.50 20487.35 27377.98 14289.62 28793.13 146
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CANet_DTU77.81 25177.05 25780.09 24981.37 33259.90 29683.26 20088.29 20969.16 23467.83 38883.72 32660.93 28489.47 24369.22 24089.70 28690.88 230
pm-mvs183.69 15984.95 13479.91 25090.04 16859.66 29882.43 22687.44 21875.52 15287.85 15095.26 4581.25 12185.65 30768.74 24896.04 12194.42 87
CMPMVSbinary59.41 2075.12 28173.57 28979.77 25175.84 38467.22 20981.21 24782.18 29150.78 38476.50 33087.66 26655.20 32582.99 33062.17 30490.64 27789.09 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_Blended76.49 26875.40 27379.76 25284.43 28763.41 24775.14 33490.44 16257.36 34475.43 34478.30 37869.11 24391.44 18460.68 31587.70 31684.42 330
TR-MVS76.77 26375.79 26979.72 25386.10 26365.79 22677.14 30483.02 28465.20 28181.40 28382.10 34466.30 25590.73 21055.57 34385.27 34382.65 356
VPA-MVSNet83.47 16684.73 13679.69 25490.29 16057.52 32281.30 24688.69 20276.29 13787.58 15694.44 7180.60 12987.20 27566.60 26496.82 9094.34 91
IB-MVS62.13 1971.64 31468.97 33979.66 25580.80 34162.26 26873.94 34576.90 32663.27 28968.63 38476.79 39033.83 40491.84 17659.28 32387.26 31884.88 323
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
FMVSNet378.80 24078.55 24379.57 25682.89 31956.89 32881.76 23885.77 24869.04 23686.00 19090.44 21551.75 33990.09 23065.95 26993.34 21291.72 208
testdata79.54 25792.87 8472.34 15680.14 30759.91 32785.47 20291.75 17367.96 24985.24 30968.57 25292.18 24081.06 380
GA-MVS75.83 27474.61 27979.48 25881.87 32459.25 30273.42 35082.88 28568.68 24079.75 30381.80 34950.62 34489.46 24466.85 26085.64 34089.72 258
test_yl78.71 24278.51 24479.32 25984.32 29158.84 30978.38 28585.33 25575.99 14282.49 26186.57 28558.01 30590.02 23362.74 29892.73 22889.10 270
DCV-MVSNet78.71 24278.51 24479.32 25984.32 29158.84 30978.38 28585.33 25575.99 14282.49 26186.57 28558.01 30590.02 23362.74 29892.73 22889.10 270
MDA-MVSNet-bldmvs77.47 25476.90 26079.16 26179.03 35964.59 23466.58 38975.67 33573.15 18788.86 12488.99 24466.94 25281.23 34064.71 28388.22 30991.64 212
LFMVS80.15 22880.56 21478.89 26289.19 18355.93 33285.22 15673.78 34982.96 6384.28 23092.72 14357.38 31190.07 23163.80 29195.75 13990.68 237
TransMVSNet (Re)84.02 15285.74 12078.85 26391.00 14655.20 34282.29 23087.26 22179.65 9888.38 13995.52 3783.00 9086.88 28167.97 25696.60 9694.45 84
Gipumacopyleft84.44 13886.33 10578.78 26484.20 29473.57 13589.55 7790.44 16284.24 4884.38 22394.89 5376.35 17780.40 34776.14 16696.80 9182.36 363
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet-Re83.48 16585.06 13178.75 26585.94 26555.75 33680.05 25994.27 2476.47 13696.09 694.54 6783.31 8889.75 24159.95 31994.89 16990.75 233
OpenMVS_ROBcopyleft70.19 1777.77 25277.46 25278.71 26684.39 29061.15 28081.18 24882.52 28862.45 29783.34 24987.37 27266.20 25688.66 26064.69 28485.02 34986.32 307
IterMVS76.91 26076.34 26578.64 26780.91 33764.03 24176.30 31979.03 31264.88 28383.11 25289.16 24159.90 29384.46 31768.61 25085.15 34787.42 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-MVSNAJ77.04 25976.53 26378.56 26887.09 23861.40 27675.26 33387.13 22561.25 31374.38 35477.22 38876.94 16690.94 19964.63 28584.83 35583.35 348
xiu_mvs_v2_base77.19 25776.75 26178.52 26987.01 24061.30 27875.55 33187.12 22861.24 31474.45 35278.79 37577.20 16090.93 20064.62 28684.80 35683.32 349
Anonymous20240521180.51 21681.19 20778.49 27088.48 20257.26 32476.63 31382.49 28981.21 8084.30 22992.24 16067.99 24886.24 29262.22 30195.13 15791.98 201
MG-MVS80.32 22280.94 20978.47 27188.18 20852.62 36082.29 23085.01 26472.01 20679.24 31192.54 14869.36 24193.36 13270.65 22589.19 29389.45 261
baseline269.77 33466.89 35178.41 27279.51 35358.09 31576.23 32169.57 37757.50 34364.82 40377.45 38546.02 36188.44 26153.08 35977.83 39388.70 277
tfpnnormal81.79 19982.95 17278.31 27388.93 18955.40 33880.83 25382.85 28676.81 13485.90 19494.14 8974.58 19386.51 28866.82 26295.68 14293.01 152
KD-MVS_self_test81.93 19683.14 16978.30 27484.75 28352.75 35780.37 25689.42 19570.24 22690.26 9593.39 11974.55 19486.77 28468.61 25096.64 9495.38 52
Baseline_NR-MVSNet84.00 15385.90 11478.29 27591.47 13453.44 35382.29 23087.00 23379.06 10789.55 11595.72 3277.20 16086.14 29772.30 21398.51 1795.28 56
PatchMatch-RL74.48 28973.22 29578.27 27687.70 22085.26 3875.92 32670.09 37464.34 28576.09 33781.25 35465.87 25978.07 35953.86 35483.82 36271.48 400
CHOSEN 1792x268872.45 30670.56 32078.13 27790.02 16963.08 25268.72 37883.16 28242.99 40775.92 33985.46 30357.22 31385.18 31149.87 37681.67 37686.14 309
SDMVSNet81.90 19883.17 16878.10 27888.81 19262.45 26376.08 32486.05 24473.67 17183.41 24793.04 12782.35 10080.65 34470.06 23295.03 16291.21 220
BH-w/o76.57 26676.07 26878.10 27886.88 24365.92 22577.63 29686.33 23765.69 27380.89 28979.95 36568.97 24590.74 20953.01 36285.25 34477.62 391
1112_ss74.82 28673.74 28778.04 28089.57 17260.04 29376.49 31787.09 22954.31 36173.66 35879.80 36660.25 29086.76 28558.37 32684.15 36087.32 298
TinyColmap81.25 20582.34 18477.99 28185.33 27260.68 28982.32 22988.33 20871.26 21386.97 16892.22 16177.10 16386.98 27962.37 30095.17 15686.31 308
Vis-MVSNet (Re-imp)77.82 25077.79 25177.92 28288.82 19151.29 37083.28 19971.97 36474.04 16682.23 26689.78 23157.38 31189.41 24857.22 33395.41 14693.05 150
ECVR-MVScopyleft78.44 24578.63 24277.88 28391.85 11748.95 37983.68 19069.91 37672.30 20284.26 23294.20 8551.89 33889.82 23663.58 29296.02 12294.87 68
thres40075.14 27974.23 28477.86 28486.24 25752.12 36279.24 27373.87 34773.34 18081.82 27484.60 31946.02 36188.80 25551.98 36790.99 26092.66 165
thres600view775.97 27375.35 27577.85 28587.01 24051.84 36680.45 25573.26 35475.20 15683.10 25386.31 29145.54 36889.05 25155.03 34992.24 23792.66 165
JIA-IIPM69.41 33766.64 35577.70 28673.19 39971.24 17275.67 32765.56 39470.42 22165.18 39992.97 13333.64 40683.06 32853.52 35869.61 41178.79 389
test111178.53 24478.85 23877.56 28792.22 10347.49 38582.61 21869.24 38072.43 19685.28 20494.20 8551.91 33790.07 23165.36 27796.45 10395.11 63
miper_lstm_enhance76.45 26976.10 26777.51 28876.72 37560.97 28664.69 39385.04 26263.98 28783.20 25188.22 25456.67 31578.79 35773.22 20293.12 21992.78 159
EPNet_dtu72.87 30471.33 31677.49 28977.72 36560.55 29082.35 22875.79 33366.49 26458.39 41581.06 35553.68 33085.98 29853.55 35792.97 22485.95 311
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-278.89 23779.39 23277.41 29084.78 28168.11 20375.60 32883.11 28360.96 31779.36 30889.89 23075.18 18372.97 37373.32 20192.30 23391.15 222
test_fmvs375.72 27675.20 27677.27 29175.01 39269.47 18678.93 27784.88 26746.67 39387.08 16587.84 26250.44 34671.62 37877.42 15188.53 30090.72 234
EU-MVSNet75.12 28174.43 28377.18 29283.11 31759.48 30085.71 14882.43 29039.76 41385.64 19788.76 24644.71 38087.88 26773.86 19285.88 33984.16 336
ab-mvs79.67 23380.56 21476.99 29388.48 20256.93 32684.70 16486.06 24368.95 23780.78 29193.08 12675.30 18284.62 31556.78 33490.90 26589.43 263
Anonymous2024052180.18 22781.25 20476.95 29483.15 31660.84 28782.46 22585.99 24668.76 23986.78 17093.73 11259.13 29977.44 36173.71 19597.55 6992.56 169
PAPM71.77 31270.06 32776.92 29586.39 24953.97 34876.62 31486.62 23553.44 36563.97 40584.73 31757.79 31092.34 16139.65 40681.33 38084.45 329
ppachtmachnet_test74.73 28874.00 28676.90 29680.71 34256.89 32871.53 36378.42 31458.24 33579.32 31082.92 33757.91 30884.26 32165.60 27591.36 25589.56 260
Patchmatch-RL test74.48 28973.68 28876.89 29784.83 28066.54 21872.29 35669.16 38157.70 34086.76 17186.33 28945.79 36782.59 33169.63 23590.65 27681.54 371
CR-MVSNet74.00 29473.04 29776.85 29879.58 35162.64 25982.58 22076.90 32650.50 38775.72 34192.38 15248.07 35384.07 32368.72 24982.91 36983.85 340
tfpn200view974.86 28574.23 28476.74 29986.24 25752.12 36279.24 27373.87 34773.34 18081.82 27484.60 31946.02 36188.80 25551.98 36790.99 26089.31 265
thres100view90075.45 27775.05 27776.66 30087.27 23051.88 36581.07 24973.26 35475.68 14883.25 25086.37 28845.54 36888.80 25551.98 36790.99 26089.31 265
reproduce_monomvs74.09 29373.23 29476.65 30176.52 37654.54 34477.50 30081.40 29965.85 26882.86 25886.67 28427.38 41884.53 31670.24 23090.66 27590.89 229
VNet79.31 23480.27 21976.44 30287.92 21553.95 34975.58 33084.35 27474.39 16482.23 26690.72 20672.84 21684.39 31960.38 31793.98 19890.97 226
Test_1112_low_res73.90 29573.08 29676.35 30390.35 15955.95 33173.40 35186.17 24050.70 38573.14 35985.94 29658.31 30485.90 30256.51 33683.22 36687.20 299
USDC76.63 26576.73 26276.34 30483.46 30557.20 32580.02 26088.04 21452.14 37583.65 24291.25 18463.24 27386.65 28654.66 35194.11 19485.17 320
test250674.12 29273.39 29276.28 30591.85 11744.20 39984.06 17748.20 42072.30 20281.90 27194.20 8527.22 42089.77 23964.81 28296.02 12294.87 68
CVMVSNet72.62 30571.41 31576.28 30583.25 31260.34 29183.50 19479.02 31337.77 41776.33 33285.10 31049.60 34987.41 27270.54 22777.54 39781.08 378
mvs_anonymous78.13 24778.76 24076.23 30779.24 35750.31 37678.69 28284.82 26961.60 30883.09 25492.82 13873.89 20087.01 27668.33 25486.41 33291.37 217
VPNet80.25 22481.68 19175.94 30892.46 9547.98 38376.70 31181.67 29673.45 17684.87 21492.82 13874.66 19286.51 28861.66 30996.85 8793.33 136
test_fmvs273.57 29772.80 29975.90 30972.74 40568.84 19677.07 30684.32 27545.14 39982.89 25684.22 32248.37 35170.36 38273.40 20087.03 32488.52 279
ANet_high83.17 17185.68 12175.65 31081.24 33345.26 39679.94 26192.91 9183.83 5191.33 7696.88 1380.25 13285.92 30068.89 24595.89 13195.76 42
sd_testset79.95 23281.39 20275.64 31188.81 19258.07 31676.16 32382.81 28773.67 17183.41 24793.04 12780.96 12477.65 36058.62 32595.03 16291.21 220
SCA73.32 29872.57 30475.58 31281.62 32855.86 33478.89 27971.37 36961.73 30474.93 35083.42 33160.46 28787.01 27658.11 33082.63 37483.88 337
131473.22 30072.56 30575.20 31380.41 34657.84 31981.64 24185.36 25451.68 37873.10 36076.65 39261.45 28285.19 31063.54 29379.21 38982.59 357
CL-MVSNet_self_test76.81 26277.38 25475.12 31486.90 24251.34 36873.20 35280.63 30568.30 24581.80 27688.40 25266.92 25380.90 34155.35 34694.90 16893.12 148
MVS73.21 30172.59 30375.06 31580.97 33660.81 28881.64 24185.92 24746.03 39771.68 36777.54 38368.47 24689.77 23955.70 34285.39 34174.60 397
ttmdpeth71.72 31370.67 31874.86 31673.08 40255.88 33377.41 30369.27 37955.86 35278.66 31593.77 11038.01 39775.39 36960.12 31889.87 28493.31 138
MonoMVSNet76.66 26477.26 25674.86 31679.86 34954.34 34686.26 13786.08 24271.08 21685.59 19888.68 24853.95 32985.93 29963.86 29080.02 38484.32 331
HY-MVS64.64 1873.03 30272.47 30674.71 31883.36 30954.19 34782.14 23781.96 29356.76 35069.57 38086.21 29360.03 29184.83 31449.58 37882.65 37285.11 321
thres20072.34 30871.55 31474.70 31983.48 30451.60 36775.02 33573.71 35070.14 22778.56 31780.57 35946.20 35988.20 26546.99 39089.29 29084.32 331
N_pmnet70.20 32668.80 34174.38 32080.91 33784.81 4359.12 40576.45 33155.06 35675.31 34882.36 34355.74 32154.82 41547.02 38987.24 31983.52 344
CostFormer69.98 33268.68 34273.87 32177.14 37050.72 37479.26 27274.51 34251.94 37770.97 37184.75 31645.16 37687.49 27155.16 34879.23 38883.40 347
Patchmtry76.56 26777.46 25273.83 32279.37 35646.60 38982.41 22776.90 32673.81 16985.56 20092.38 15248.07 35383.98 32463.36 29595.31 15290.92 228
testing371.53 31670.79 31773.77 32388.89 19041.86 40676.60 31659.12 41072.83 19180.97 28682.08 34619.80 42687.33 27465.12 27991.68 24992.13 194
test_vis3_rt71.42 31770.67 31873.64 32469.66 41270.46 17766.97 38889.73 18542.68 40988.20 14383.04 33343.77 38260.07 41065.35 27886.66 32990.39 246
FMVSNet572.10 31071.69 31073.32 32581.57 32953.02 35676.77 31078.37 31563.31 28876.37 33191.85 16636.68 40078.98 35447.87 38792.45 23187.95 289
tpm268.45 34566.83 35273.30 32678.93 36148.50 38079.76 26371.76 36647.50 39169.92 37883.60 32742.07 38988.40 26248.44 38579.51 38583.01 354
FPMVS72.29 30972.00 30873.14 32788.63 19885.00 4074.65 33967.39 38571.94 20777.80 32387.66 26650.48 34575.83 36749.95 37479.51 38558.58 414
MS-PatchMatch70.93 32270.22 32573.06 32881.85 32562.50 26273.82 34777.90 31652.44 37275.92 33981.27 35355.67 32281.75 33655.37 34577.70 39574.94 396
mvsany_test365.48 36262.97 37173.03 32969.99 41176.17 12164.83 39143.71 42243.68 40480.25 30187.05 28152.83 33363.09 40951.92 37072.44 40479.84 387
testing9169.94 33368.99 33872.80 33083.81 30145.89 39271.57 36273.64 35268.24 24670.77 37477.82 38034.37 40384.44 31853.64 35687.00 32688.07 284
pmmvs570.73 32370.07 32672.72 33177.03 37252.73 35874.14 34175.65 33650.36 38872.17 36585.37 30755.42 32480.67 34352.86 36387.59 31784.77 324
testing9969.27 33968.15 34672.63 33283.29 31045.45 39471.15 36471.08 37067.34 25770.43 37577.77 38232.24 40884.35 32053.72 35586.33 33488.10 283
our_test_371.85 31171.59 31172.62 33380.71 34253.78 35069.72 37571.71 36858.80 33278.03 31880.51 36156.61 31678.84 35662.20 30286.04 33885.23 319
ADS-MVSNet265.87 36063.64 36872.55 33473.16 40056.92 32767.10 38674.81 33949.74 38966.04 39482.97 33446.71 35677.26 36242.29 40069.96 40983.46 345
test_fmvs1_n70.94 32170.41 32472.53 33573.92 39466.93 21575.99 32584.21 27743.31 40679.40 30779.39 37043.47 38368.55 39069.05 24384.91 35282.10 365
baseline173.26 29973.54 29072.43 33684.92 27947.79 38479.89 26274.00 34565.93 26678.81 31486.28 29256.36 31781.63 33856.63 33579.04 39187.87 292
MVStest170.05 33069.26 33372.41 33758.62 42455.59 33776.61 31565.58 39353.44 36589.28 12093.32 12022.91 42471.44 38074.08 18889.52 28890.21 252
PatchmatchNetpermissive69.71 33568.83 34072.33 33877.66 36653.60 35179.29 27169.99 37557.66 34172.53 36382.93 33646.45 35880.08 34960.91 31472.09 40583.31 350
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmvs70.16 32769.56 33271.96 33974.71 39348.13 38179.63 26475.45 33865.02 28270.26 37681.88 34845.34 37385.68 30658.34 32775.39 40182.08 366
testing22266.93 35065.30 36271.81 34083.38 30745.83 39372.06 35867.50 38464.12 28669.68 37976.37 39427.34 41983.00 32938.88 40788.38 30386.62 305
testing1167.38 34865.93 35671.73 34183.37 30846.60 38970.95 36769.40 37862.47 29666.14 39276.66 39131.22 40984.10 32249.10 38084.10 36184.49 327
tpm cat166.76 35565.21 36371.42 34277.09 37150.62 37578.01 28973.68 35144.89 40068.64 38379.00 37345.51 37082.42 33449.91 37570.15 40881.23 377
test20.0373.75 29674.59 28171.22 34381.11 33551.12 37270.15 37372.10 36370.42 22180.28 30091.50 17864.21 26674.72 37246.96 39194.58 18187.82 293
test_vis1_n70.29 32569.99 32971.20 34475.97 38366.50 21976.69 31280.81 30344.22 40275.43 34477.23 38750.00 34768.59 38966.71 26382.85 37178.52 390
test_fmvs169.57 33669.05 33671.14 34569.15 41365.77 22773.98 34483.32 28142.83 40877.77 32478.27 37943.39 38668.50 39168.39 25384.38 35979.15 388
test_vis1_n_192071.30 31971.58 31370.47 34677.58 36759.99 29574.25 34084.22 27651.06 38174.85 35179.10 37255.10 32668.83 38868.86 24679.20 39082.58 358
test_vis1_rt65.64 36164.09 36570.31 34766.09 41870.20 18061.16 40081.60 29738.65 41472.87 36169.66 40752.84 33260.04 41156.16 33877.77 39480.68 382
KD-MVS_2432*160066.87 35265.81 35870.04 34867.50 41447.49 38562.56 39779.16 31061.21 31577.98 31980.61 35725.29 42282.48 33253.02 36084.92 35080.16 384
miper_refine_blended66.87 35265.81 35870.04 34867.50 41447.49 38562.56 39779.16 31061.21 31577.98 31980.61 35725.29 42282.48 33253.02 36084.92 35080.16 384
Anonymous2023120671.38 31871.88 30969.88 35086.31 25454.37 34570.39 37174.62 34052.57 37176.73 32988.76 24659.94 29272.06 37544.35 39893.23 21783.23 351
pmmvs362.47 36960.02 38269.80 35171.58 40864.00 24270.52 37058.44 41339.77 41266.05 39375.84 39527.10 42172.28 37446.15 39384.77 35773.11 398
WBMVS68.76 34368.43 34369.75 35283.29 31040.30 40967.36 38572.21 36257.09 34777.05 32885.53 30133.68 40580.51 34548.79 38290.90 26588.45 280
UnsupCasMVSNet_eth71.63 31572.30 30769.62 35376.47 37852.70 35970.03 37480.97 30259.18 32979.36 30888.21 25560.50 28669.12 38658.33 32877.62 39687.04 300
MIMVSNet71.09 32071.59 31169.57 35487.23 23150.07 37778.91 27871.83 36560.20 32671.26 36891.76 17255.08 32776.09 36541.06 40387.02 32582.54 360
test_cas_vis1_n_192069.20 34169.12 33469.43 35573.68 39762.82 25670.38 37277.21 32346.18 39680.46 29778.95 37452.03 33665.53 40365.77 27477.45 39879.95 386
XXY-MVS74.44 29176.19 26669.21 35684.61 28552.43 36171.70 36077.18 32460.73 32080.60 29290.96 19675.44 17969.35 38556.13 33988.33 30485.86 313
UWE-MVS66.43 35665.56 36169.05 35784.15 29540.98 40773.06 35464.71 39754.84 35876.18 33679.62 36929.21 41380.50 34638.54 41089.75 28585.66 315
YYNet170.06 32970.44 32268.90 35873.76 39653.42 35458.99 40667.20 38758.42 33487.10 16385.39 30659.82 29467.32 39559.79 32083.50 36585.96 310
MDA-MVSNet_test_wron70.05 33070.44 32268.88 35973.84 39553.47 35258.93 40767.28 38658.43 33387.09 16485.40 30559.80 29567.25 39659.66 32183.54 36485.92 312
PVSNet58.17 2166.41 35765.63 36068.75 36081.96 32349.88 37862.19 39972.51 35951.03 38268.04 38675.34 39850.84 34274.77 37045.82 39582.96 36781.60 370
ETVMVS64.67 36463.34 37068.64 36183.44 30641.89 40569.56 37661.70 40661.33 31268.74 38275.76 39628.76 41479.35 35134.65 41486.16 33784.67 326
test-LLR67.21 34966.74 35368.63 36276.45 37955.21 34067.89 38067.14 38862.43 29965.08 40072.39 40243.41 38469.37 38361.00 31284.89 35381.31 373
test-mter65.00 36363.79 36768.63 36276.45 37955.21 34067.89 38067.14 38850.98 38365.08 40072.39 40228.27 41669.37 38361.00 31284.89 35381.31 373
gg-mvs-nofinetune68.96 34269.11 33568.52 36476.12 38245.32 39583.59 19255.88 41586.68 2964.62 40497.01 930.36 41183.97 32544.78 39782.94 36876.26 393
WB-MVSnew68.72 34469.01 33767.85 36583.22 31443.98 40074.93 33665.98 39255.09 35573.83 35679.11 37165.63 26071.89 37738.21 41185.04 34887.69 294
UnsupCasMVSNet_bld69.21 34069.68 33167.82 36679.42 35451.15 37167.82 38375.79 33354.15 36277.47 32785.36 30859.26 29870.64 38148.46 38479.35 38781.66 369
tpm67.95 34668.08 34767.55 36778.74 36243.53 40275.60 32867.10 39054.92 35772.23 36488.10 25642.87 38875.97 36652.21 36580.95 38383.15 352
Syy-MVS69.40 33870.03 32867.49 36881.72 32638.94 41171.00 36561.99 40161.38 31070.81 37272.36 40461.37 28379.30 35264.50 28885.18 34584.22 333
UBG64.34 36763.35 36967.30 36983.50 30340.53 40867.46 38465.02 39654.77 35967.54 39074.47 40032.99 40778.50 35840.82 40483.58 36382.88 355
GG-mvs-BLEND67.16 37073.36 39846.54 39184.15 17555.04 41658.64 41461.95 41529.93 41283.87 32638.71 40976.92 39971.07 401
myMVS_eth3d64.66 36563.89 36666.97 37181.72 32637.39 41471.00 36561.99 40161.38 31070.81 37272.36 40420.96 42579.30 35249.59 37785.18 34584.22 333
CHOSEN 280x42059.08 38056.52 38566.76 37276.51 37764.39 23849.62 41459.00 41143.86 40355.66 41868.41 41035.55 40268.21 39443.25 39976.78 40067.69 406
WTY-MVS67.91 34768.35 34466.58 37380.82 34048.12 38265.96 39072.60 35753.67 36471.20 36981.68 35158.97 30069.06 38748.57 38381.67 37682.55 359
dmvs_re66.81 35466.98 35066.28 37476.87 37358.68 31371.66 36172.24 36060.29 32469.52 38173.53 40152.38 33564.40 40644.90 39681.44 37975.76 394
sss66.92 35167.26 34965.90 37577.23 36951.10 37364.79 39271.72 36752.12 37670.13 37780.18 36357.96 30765.36 40450.21 37381.01 38281.25 375
testgi72.36 30774.61 27965.59 37680.56 34442.82 40468.29 37973.35 35366.87 26181.84 27389.93 22872.08 22666.92 39846.05 39492.54 23087.01 301
test0.0.03 164.66 36564.36 36465.57 37775.03 39146.89 38864.69 39361.58 40762.43 29971.18 37077.54 38343.41 38468.47 39240.75 40582.65 37281.35 372
PMMVS61.65 37260.38 37965.47 37865.40 42169.26 18963.97 39561.73 40536.80 41860.11 41068.43 40959.42 29666.35 40048.97 38178.57 39260.81 411
SSC-MVS77.55 25381.64 19365.29 37990.46 15720.33 42573.56 34868.28 38285.44 3788.18 14494.64 6470.93 23381.33 33971.25 21792.03 24194.20 94
tpmrst66.28 35866.69 35465.05 38072.82 40439.33 41078.20 28870.69 37353.16 36867.88 38780.36 36248.18 35274.75 37158.13 32970.79 40781.08 378
mvsany_test158.48 38156.47 38664.50 38165.90 42068.21 20256.95 41042.11 42338.30 41565.69 39677.19 38956.96 31459.35 41346.16 39258.96 41665.93 407
WB-MVS76.06 27280.01 22864.19 38289.96 17020.58 42472.18 35768.19 38383.21 5986.46 18493.49 11770.19 23778.97 35565.96 26890.46 27893.02 151
TESTMET0.1,161.29 37460.32 38064.19 38272.06 40651.30 36967.89 38062.09 40045.27 39860.65 40969.01 40827.93 41764.74 40556.31 33781.65 37876.53 392
PatchT70.52 32472.76 30163.79 38479.38 35533.53 41877.63 29665.37 39573.61 17371.77 36692.79 14144.38 38175.65 36864.53 28785.37 34282.18 364
wuyk23d75.13 28079.30 23362.63 38575.56 38575.18 12680.89 25173.10 35675.06 15894.76 1695.32 4187.73 4352.85 41634.16 41597.11 8259.85 412
EPMVS62.47 36962.63 37362.01 38670.63 41038.74 41274.76 33752.86 41753.91 36367.71 38980.01 36439.40 39366.60 39955.54 34468.81 41380.68 382
EMVS61.10 37660.81 37861.99 38765.96 41955.86 33453.10 41358.97 41267.06 25956.89 41763.33 41340.98 39067.03 39754.79 35086.18 33663.08 409
dp60.70 37860.29 38161.92 38872.04 40738.67 41370.83 36864.08 39851.28 38060.75 40877.28 38636.59 40171.58 37947.41 38862.34 41575.52 395
E-PMN61.59 37361.62 37661.49 38966.81 41655.40 33853.77 41260.34 40966.80 26258.90 41365.50 41240.48 39266.12 40155.72 34186.25 33562.95 410
Patchmatch-test65.91 35967.38 34861.48 39075.51 38643.21 40368.84 37763.79 39962.48 29572.80 36283.42 33144.89 37959.52 41248.27 38686.45 33181.70 368
ADS-MVSNet61.90 37162.19 37561.03 39173.16 40036.42 41667.10 38661.75 40449.74 38966.04 39482.97 33446.71 35663.21 40742.29 40069.96 40983.46 345
new-patchmatchnet70.10 32873.37 29360.29 39281.23 33416.95 42759.54 40374.62 34062.93 29180.97 28687.93 26062.83 27971.90 37655.24 34795.01 16592.00 199
test_f64.31 36865.85 35759.67 39366.54 41762.24 27057.76 40970.96 37140.13 41184.36 22482.09 34546.93 35551.67 41761.99 30581.89 37565.12 408
PVSNet_051.08 2256.10 38254.97 38759.48 39475.12 39053.28 35555.16 41161.89 40344.30 40159.16 41162.48 41454.22 32865.91 40235.40 41347.01 41759.25 413
DSMNet-mixed60.98 37761.61 37759.09 39572.88 40345.05 39774.70 33846.61 42126.20 41965.34 39890.32 21855.46 32363.12 40841.72 40281.30 38169.09 404
MVS-HIRNet61.16 37562.92 37255.87 39679.09 35835.34 41771.83 35957.98 41446.56 39459.05 41291.14 18849.95 34876.43 36438.74 40871.92 40655.84 415
MVEpermissive40.22 2351.82 38550.47 38855.87 39662.66 42351.91 36431.61 41739.28 42440.65 41050.76 41974.98 39956.24 31944.67 42033.94 41664.11 41471.04 402
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset60.59 37962.54 37454.72 39877.26 36827.74 42174.05 34361.00 40860.48 32265.62 39767.03 41155.93 32068.23 39332.07 41869.46 41268.17 405
new_pmnet55.69 38357.66 38449.76 39975.47 38730.59 41959.56 40251.45 41843.62 40562.49 40675.48 39740.96 39149.15 41937.39 41272.52 40369.55 403
PMMVS255.64 38459.27 38344.74 40064.30 42212.32 42840.60 41549.79 41953.19 36765.06 40284.81 31553.60 33149.76 41832.68 41789.41 28972.15 399
dongtai41.90 38642.65 38939.67 40170.86 40921.11 42361.01 40121.42 42857.36 34457.97 41650.06 41716.40 42758.73 41421.03 42127.69 42139.17 417
test_method30.46 38829.60 39133.06 40217.99 4273.84 43013.62 41873.92 3462.79 42118.29 42353.41 41628.53 41543.25 42122.56 41935.27 41952.11 416
kuosan30.83 38732.17 39026.83 40353.36 42519.02 42657.90 40820.44 42938.29 41638.01 42037.82 41915.18 42833.45 4227.74 42320.76 42228.03 418
DeepMVS_CXcopyleft24.13 40432.95 42629.49 42021.63 42712.07 42037.95 42145.07 41830.84 41019.21 42317.94 42233.06 42023.69 419
tmp_tt20.25 39024.50 3937.49 4054.47 4288.70 42934.17 41625.16 4261.00 42332.43 42218.49 42039.37 3949.21 42421.64 42043.75 4184.57 420
test1236.27 3938.08 3960.84 4061.11 4300.57 43162.90 3960.82 4300.54 4241.07 4262.75 4251.26 4290.30 4251.04 4241.26 4241.66 421
testmvs5.91 3947.65 3970.72 4071.20 4290.37 43259.14 4040.67 4310.49 4251.11 4252.76 4240.94 4300.24 4261.02 4251.47 4231.55 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k20.81 38927.75 3920.00 4080.00 4310.00 4330.00 41985.44 2530.00 4260.00 42782.82 33881.46 1180.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas6.41 3928.55 3950.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42676.94 1660.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re6.65 3918.87 3940.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42779.80 3660.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS37.39 41452.61 364
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
PC_three_145258.96 33190.06 9791.33 18280.66 12893.03 14375.78 16995.94 12892.48 173
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
eth-test20.00 431
eth-test0.00 431
ZD-MVS92.22 10380.48 7191.85 12271.22 21490.38 9292.98 13186.06 6496.11 781.99 9596.75 92
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3297.60 6692.73 160
IU-MVS94.18 5072.64 14790.82 15256.98 34889.67 10985.78 5297.92 4993.28 139
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 4997.82 5492.04 197
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
9.1489.29 6291.84 11988.80 9395.32 1275.14 15791.07 8192.89 13687.27 4793.78 11083.69 7397.55 69
save fliter93.75 6377.44 10386.31 13589.72 18670.80 218
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2598.21 3292.98 154
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
GSMVS83.88 337
test_part293.86 6177.77 9892.84 51
sam_mvs146.11 36083.88 337
sam_mvs45.92 365
MTGPAbinary91.81 126
test_post178.85 2813.13 42245.19 37580.13 34858.11 330
test_post3.10 42345.43 37177.22 363
patchmatchnet-post81.71 35045.93 36487.01 276
MTMP90.66 4833.14 425
gm-plane-assit75.42 38844.97 39852.17 37372.36 40487.90 26654.10 353
test9_res80.83 10596.45 10390.57 240
TEST992.34 9879.70 7883.94 18090.32 16865.41 27884.49 22090.97 19482.03 10993.63 115
test_892.09 10778.87 8583.82 18590.31 17065.79 26984.36 22490.96 19681.93 11193.44 128
agg_prior279.68 11896.16 11590.22 248
agg_prior91.58 12777.69 10090.30 17184.32 22693.18 136
test_prior478.97 8484.59 166
test_prior283.37 19775.43 15384.58 21891.57 17681.92 11379.54 12196.97 85
旧先验281.73 23956.88 34986.54 18284.90 31372.81 209
新几何281.72 240
旧先验191.97 11171.77 16381.78 29591.84 16773.92 19993.65 20883.61 343
无先验82.81 21585.62 25158.09 33791.41 18767.95 25784.48 328
原ACMM282.26 233
test22293.31 7376.54 11379.38 27077.79 31752.59 37082.36 26490.84 20366.83 25491.69 24881.25 375
testdata286.43 29063.52 294
segment_acmp81.94 110
testdata179.62 26573.95 168
plane_prior793.45 6877.31 106
plane_prior692.61 9076.54 11374.84 187
plane_prior593.61 5995.22 5980.78 10695.83 13494.46 82
plane_prior492.95 134
plane_prior376.85 11177.79 12586.55 177
plane_prior289.45 8279.44 101
plane_prior192.83 88
plane_prior76.42 11687.15 11775.94 14595.03 162
n20.00 432
nn0.00 432
door-mid74.45 343
test1191.46 132
door72.57 358
HQP5-MVS70.66 175
HQP-NCC91.19 13984.77 16073.30 18280.55 294
ACMP_Plane91.19 13984.77 16073.30 18280.55 294
BP-MVS77.30 152
HQP4-MVS80.56 29394.61 7993.56 131
HQP3-MVS92.68 9894.47 183
HQP2-MVS72.10 224
NP-MVS91.95 11274.55 12990.17 225
MDTV_nov1_ep13_2view27.60 42270.76 36946.47 39561.27 40745.20 37449.18 37983.75 342
MDTV_nov1_ep1368.29 34578.03 36343.87 40174.12 34272.22 36152.17 37367.02 39185.54 30045.36 37280.85 34255.73 34084.42 358
ACMMP++_ref95.74 140
ACMMP++97.35 75
Test By Simon79.09 140