This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM95.10 1194.91 1395.68 596.09 10288.34 996.68 3394.37 24095.08 194.68 3697.72 2482.94 8599.64 197.85 198.76 2899.06 7
MVS_030494.60 1894.38 2595.23 1195.41 13687.49 1696.53 3892.75 28393.82 293.07 6997.84 2283.66 7699.59 897.61 298.76 2898.61 22
EPNet91.79 8791.02 9894.10 5490.10 33985.25 7196.03 6892.05 30292.83 387.39 17795.78 10779.39 13399.01 6388.13 13097.48 8398.05 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1795.66 8996.93 5692.34 493.94 4996.58 7687.74 2799.44 2992.83 5298.40 5598.62 21
CS-MVS-test94.02 3994.29 2993.24 7596.69 7883.24 12197.49 596.92 5792.14 592.90 7195.77 10885.02 6098.33 13793.03 4998.62 4598.13 64
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10696.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2598.85 1998.66 20
UA-Net92.83 7392.54 7793.68 6896.10 10184.71 7995.66 8996.39 10291.92 793.22 6496.49 7983.16 8198.87 8284.47 17795.47 12397.45 103
CANet93.54 5193.20 6194.55 4395.65 12585.73 6594.94 12796.69 8491.89 890.69 12295.88 10281.99 10799.54 2093.14 4897.95 7298.39 39
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7596.96 5291.75 994.02 4896.83 6188.12 2499.55 1693.41 4498.94 1698.28 50
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2798.04 6999.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CS-MVS94.12 3794.44 2293.17 7896.55 8583.08 13197.63 396.95 5491.71 1193.50 6096.21 8685.61 4998.24 14293.64 3998.17 6198.19 60
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4297.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3398.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2194.36 17096.97 5091.07 1393.14 6697.56 2784.30 6999.56 1293.43 4298.75 3098.47 33
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1191.45 11
EI-MVSNet-Vis-set93.01 6992.92 6793.29 7395.01 15383.51 11594.48 15595.77 15890.87 1592.52 8696.67 6884.50 6899.00 6891.99 7994.44 14997.36 104
3Dnovator+87.14 492.42 8191.37 9095.55 795.63 12788.73 697.07 1896.77 7490.84 1684.02 26896.62 7475.95 17099.34 3487.77 13497.68 8198.59 24
HQP_MVS90.60 11590.19 10991.82 15294.70 17282.73 14495.85 7796.22 11990.81 1786.91 18494.86 14474.23 19498.12 15088.15 12889.99 21494.63 222
plane_prior295.85 7790.81 17
DVP-MVS++95.98 196.36 194.82 3197.78 5186.00 5098.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
DELS-MVS93.43 5893.25 5993.97 5695.42 13585.04 7293.06 23897.13 4090.74 2191.84 10495.09 13686.32 4299.21 4591.22 9498.45 5397.65 93
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETV-MVS92.74 7692.66 7392.97 9295.20 14684.04 10095.07 12096.51 9490.73 2292.96 7091.19 27684.06 7198.34 13591.72 8796.54 10596.54 149
EI-MVSNet-UG-set92.74 7692.62 7693.12 8094.86 16483.20 12394.40 16395.74 16190.71 2392.05 9596.60 7584.00 7298.99 7091.55 9093.63 15997.17 113
XVS94.45 2294.32 2694.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7397.16 4785.02 6099.49 2691.99 7998.56 4998.47 33
X-MVStestdata88.31 17886.13 22494.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7323.41 40885.02 6099.49 2691.99 7998.56 4998.47 33
EC-MVSNet93.44 5593.71 5192.63 11295.21 14582.43 15497.27 996.71 8290.57 2692.88 7295.80 10683.16 8198.16 14893.68 3898.14 6397.31 105
SD-MVS94.96 1395.33 893.88 5997.25 6986.69 2896.19 5097.11 4390.42 2796.95 1397.27 3889.53 1496.91 25594.38 3198.85 1998.03 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
casdiffmvs_mvgpermissive92.96 7192.83 7093.35 7294.59 17783.40 11895.00 12496.34 10690.30 3092.05 9596.05 9583.43 7798.15 14992.07 7595.67 11798.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 385.93 5597.19 1197.47 1190.27 3197.64 498.13 391.47 8
test_241102_ONE98.77 585.99 5297.44 1590.26 3397.71 197.96 1792.31 499.38 31
plane_prior382.75 14190.26 3386.91 184
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11996.52 8880.00 22294.00 19597.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3598.71 3298.50 27
MSLP-MVS++93.72 4894.08 3892.65 11197.31 6583.43 11695.79 8197.33 2590.03 3693.58 5696.96 5584.87 6497.76 18092.19 7198.66 4196.76 138
sasdasda93.27 6192.75 7194.85 2595.70 12287.66 1296.33 4196.41 10090.00 3794.09 4494.60 15882.33 9598.62 10592.40 6192.86 17898.27 52
canonicalmvs93.27 6192.75 7194.85 2595.70 12287.66 1296.33 4196.41 10090.00 3794.09 4494.60 15882.33 9598.62 10592.40 6192.86 17898.27 52
Vis-MVSNetpermissive91.75 8991.23 9393.29 7395.32 13883.78 10596.14 5795.98 14089.89 3990.45 12596.58 7675.09 18298.31 14084.75 17396.90 9597.78 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet88.84 16387.95 16991.49 16592.68 25483.01 13494.92 12996.31 10889.88 4085.53 21993.85 19076.63 16496.96 25181.91 22079.87 34594.50 234
MGCFI-Net93.03 6892.63 7594.23 5395.62 12885.92 5796.08 6196.33 10789.86 4193.89 5194.66 15582.11 10298.50 11492.33 6792.82 18198.27 52
test_fmvsm_n_192094.71 1795.11 1093.50 7195.79 11784.62 8096.15 5597.64 289.85 4297.19 897.89 1986.28 4398.71 9797.11 798.08 6897.17 113
h-mvs3390.80 10590.15 11192.75 10496.01 10682.66 14895.43 9895.53 17989.80 4393.08 6795.64 11375.77 17199.00 6892.07 7578.05 35496.60 144
hse-mvs289.88 13389.34 13291.51 16494.83 16681.12 18893.94 19893.91 25989.80 4393.08 6793.60 19775.77 17197.66 18792.07 7577.07 36195.74 182
UniMVSNet_NR-MVSNet89.92 13189.29 13491.81 15493.39 23283.72 10694.43 16197.12 4189.80 4386.46 19593.32 20383.16 8197.23 23384.92 16981.02 32894.49 236
FOURS198.86 185.54 6798.29 197.49 689.79 4696.29 18
alignmvs93.08 6792.50 7894.81 3295.62 12887.61 1495.99 7196.07 13389.77 4794.12 4394.87 14380.56 11898.66 10092.42 6093.10 17498.15 63
TSAR-MVS + GP.93.66 4993.41 5694.41 4996.59 8286.78 2694.40 16393.93 25689.77 4794.21 4195.59 11587.35 3498.61 10792.72 5596.15 11397.83 86
IS-MVSNet91.43 9491.09 9792.46 12095.87 11681.38 18196.95 1993.69 26689.72 4989.50 13995.98 9878.57 14497.77 17983.02 19596.50 10798.22 59
plane_prior82.73 14495.21 11289.66 5089.88 219
casdiffmvspermissive92.51 7992.43 7992.74 10594.41 19081.98 16594.54 15396.23 11889.57 5191.96 9996.17 9182.58 9098.01 16790.95 10195.45 12598.23 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DU-MVS89.34 15188.50 15491.85 15193.04 24383.72 10694.47 15896.59 9089.50 5286.46 19593.29 20677.25 15697.23 23384.92 16981.02 32894.59 225
save fliter97.85 4685.63 6695.21 11296.82 6889.44 53
CANet_DTU90.26 11989.41 13092.81 10093.46 23083.01 13493.48 21694.47 23689.43 5487.76 16994.23 17370.54 24699.03 5884.97 16896.39 10996.38 152
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3397.48 6186.78 2695.65 9196.89 6089.40 5592.81 7696.97 5485.37 5499.24 4390.87 10398.69 3698.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf_n94.60 1894.81 1693.98 5594.62 17684.96 7496.15 5597.35 2289.37 5696.03 2398.11 586.36 4199.01 6397.45 397.83 7697.96 75
UGNet89.95 12988.95 14192.95 9494.51 18383.31 12095.70 8595.23 19889.37 5687.58 17193.94 18364.00 31098.78 9183.92 18496.31 11096.74 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test90.27 11890.18 11090.53 20293.71 22179.85 22795.77 8297.59 389.31 5886.27 20294.67 15481.93 11097.01 24884.26 17988.09 25194.71 221
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5992.46 25884.80 7796.18 5296.82 6889.29 5995.68 2898.11 585.10 5798.99 7097.38 497.75 8097.86 83
UniMVSNet (Re)89.80 13489.07 13892.01 13593.60 22684.52 8594.78 13897.47 1189.26 6086.44 19892.32 23782.10 10397.39 22184.81 17280.84 33294.12 249
baseline92.39 8292.29 8192.69 11094.46 18681.77 17094.14 18096.27 11389.22 6191.88 10296.00 9682.35 9497.99 16991.05 9695.27 13198.30 47
3Dnovator86.66 591.73 9090.82 10294.44 4594.59 17786.37 4197.18 1297.02 4789.20 6284.31 26496.66 6973.74 20699.17 4786.74 14997.96 7197.79 88
VNet92.24 8391.91 8493.24 7596.59 8283.43 11694.84 13496.44 9789.19 6394.08 4795.90 10177.85 15498.17 14788.90 12193.38 16898.13 64
FIs90.51 11690.35 10690.99 19093.99 21080.98 19195.73 8397.54 489.15 6486.72 19194.68 15381.83 11197.24 23285.18 16688.31 24894.76 220
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1895.56 9697.51 589.13 6597.14 997.91 1891.64 799.62 294.61 2999.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_fmvsmconf0.01_n93.19 6593.02 6493.71 6789.25 35184.42 9396.06 6596.29 10989.06 6694.68 3698.13 379.22 13598.98 7497.22 597.24 8797.74 90
NR-MVSNet88.58 17387.47 18091.93 14393.04 24384.16 9794.77 13996.25 11689.05 6780.04 32693.29 20679.02 13797.05 24681.71 22780.05 34294.59 225
MP-MVScopyleft94.25 2994.07 3994.77 3598.47 1886.31 4496.71 3196.98 4989.04 6891.98 9797.19 4485.43 5399.56 1292.06 7898.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 6996.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
mvsmamba89.96 12889.50 12691.33 17392.90 25081.82 16896.68 3392.37 29189.03 6987.00 18094.85 14673.05 21497.65 18891.03 9788.63 23994.51 232
DeepC-MVS88.79 393.31 6092.99 6594.26 5296.07 10485.83 6194.89 13096.99 4889.02 7189.56 13797.37 3582.51 9299.38 3192.20 7098.30 5897.57 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmvis_n_192093.44 5593.55 5593.10 8193.67 22484.26 9595.83 7996.14 12589.00 7292.43 8997.50 2883.37 8098.72 9696.61 1297.44 8496.32 153
OPM-MVS90.12 12289.56 12591.82 15293.14 23783.90 10294.16 17995.74 16188.96 7387.86 16495.43 12072.48 22297.91 17588.10 13290.18 21393.65 278
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP-NCC94.17 19994.39 16588.81 7485.43 228
ACMP_Plane94.17 19994.39 16588.81 7485.43 228
HQP-MVS89.80 13489.28 13591.34 17294.17 19981.56 17294.39 16596.04 13688.81 7485.43 22893.97 18273.83 20497.96 17187.11 14689.77 22394.50 234
MVS_111021_HR93.45 5493.31 5793.84 6196.99 7284.84 7593.24 23197.24 3288.76 7791.60 11195.85 10386.07 4698.66 10091.91 8398.16 6298.03 72
SDMVSNet90.19 12089.61 12491.93 14396.00 10783.09 13092.89 24495.98 14088.73 7886.85 18895.20 13072.09 22697.08 24288.90 12189.85 22095.63 187
sd_testset88.59 17287.85 17290.83 19496.00 10780.42 20792.35 26094.71 23088.73 7886.85 18895.20 13067.31 27996.43 28379.64 25789.85 22095.63 187
mPP-MVS93.99 4193.78 4794.63 4098.50 1685.90 6096.87 2696.91 5888.70 8091.83 10697.17 4683.96 7399.55 1691.44 9298.64 4498.43 38
VPNet88.20 18187.47 18090.39 21293.56 22779.46 23394.04 19095.54 17888.67 8186.96 18194.58 16169.33 26097.15 23784.05 18280.53 33794.56 228
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2596.94 2097.34 2388.63 8293.65 5497.21 4286.10 4599.49 2692.35 6498.77 2798.30 47
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2896.94 2097.32 2788.63 8293.53 5997.26 4085.04 5999.54 2092.35 6498.78 2598.50 27
region2R94.43 2494.27 3294.92 2098.65 886.67 3096.92 2497.23 3488.60 8493.58 5697.27 3885.22 5599.54 2092.21 6998.74 3198.56 25
WR-MVS88.38 17587.67 17590.52 20493.30 23480.18 21193.26 22995.96 14388.57 8585.47 22492.81 22376.12 16696.91 25581.24 23282.29 30894.47 239
CP-MVS94.34 2794.21 3494.74 3798.39 2386.64 3297.60 497.24 3288.53 8692.73 8197.23 4185.20 5699.32 3892.15 7298.83 2198.25 57
EIA-MVS91.95 8591.94 8391.98 13995.16 14780.01 22195.36 9996.73 7988.44 8789.34 14192.16 24283.82 7598.45 12589.35 11697.06 9097.48 101
CP-MVSNet87.63 19987.26 18788.74 27393.12 23876.59 29595.29 10696.58 9188.43 8883.49 28292.98 21775.28 18095.83 31078.97 26581.15 32493.79 267
VDD-MVS90.74 10789.92 11993.20 7796.27 9483.02 13395.73 8393.86 26088.42 8992.53 8596.84 6062.09 32198.64 10290.95 10192.62 18397.93 79
dcpmvs_293.49 5294.19 3691.38 17097.69 5476.78 29194.25 17396.29 10988.33 9094.46 3896.88 5888.07 2598.64 10293.62 4098.09 6698.73 17
ACMMPcopyleft93.24 6392.88 6994.30 5198.09 3885.33 7096.86 2797.45 1488.33 9090.15 13297.03 5381.44 11299.51 2490.85 10495.74 11698.04 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
nrg03091.08 10290.39 10593.17 7893.07 24086.91 2296.41 3996.26 11488.30 9288.37 15694.85 14682.19 10197.64 19191.09 9582.95 29994.96 209
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8697.34 2388.28 9395.30 3297.67 2685.90 4799.54 2093.91 3698.95 1598.60 23
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 2096.85 2897.32 2788.24 9493.15 6597.04 5286.17 4499.62 292.40 6198.81 2298.52 26
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2496.54 3797.19 3588.24 9493.26 6296.83 6185.48 5299.59 891.43 9398.40 5598.30 47
PS-CasMVS87.32 21586.88 19388.63 27692.99 24676.33 30095.33 10196.61 8988.22 9683.30 28793.07 21573.03 21695.79 31478.36 26981.00 33093.75 274
SR-MVS94.23 3194.17 3794.43 4798.21 3285.78 6396.40 4096.90 5988.20 9794.33 4097.40 3384.75 6699.03 5893.35 4597.99 7098.48 30
MVS_111021_LR92.47 8092.29 8192.98 9195.99 11084.43 9193.08 23696.09 13188.20 9791.12 11895.72 11181.33 11497.76 18091.74 8697.37 8696.75 139
TSAR-MVS + MP.94.85 1494.94 1294.58 4298.25 2986.33 4296.11 6096.62 8888.14 9996.10 2096.96 5589.09 1898.94 7894.48 3098.68 3898.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9895.62 12883.17 12496.14 5796.12 12888.13 10095.82 2698.04 1683.43 7798.48 11696.97 996.23 11196.92 131
test111189.10 15488.64 14990.48 20795.53 13374.97 31396.08 6184.89 38288.13 10090.16 13196.65 7063.29 31598.10 15286.14 15496.90 9598.39 39
patch_mono-293.74 4794.32 2692.01 13597.54 5778.37 25993.40 21997.19 3588.02 10294.99 3597.21 4288.35 2198.44 12794.07 3498.09 6699.23 1
PEN-MVS86.80 23586.27 22088.40 27992.32 26275.71 30795.18 11496.38 10387.97 10382.82 29193.15 21173.39 21195.92 30576.15 29479.03 35293.59 279
testdata192.15 26887.94 104
VPA-MVSNet89.62 13788.96 14091.60 16193.86 21482.89 13895.46 9797.33 2587.91 10588.43 15593.31 20474.17 19797.40 21887.32 14282.86 30494.52 230
WR-MVS_H87.80 19187.37 18289.10 26293.23 23578.12 26595.61 9397.30 2987.90 10683.72 27492.01 25379.65 13296.01 30276.36 29080.54 33693.16 297
CLD-MVS89.47 14388.90 14491.18 17894.22 19882.07 16292.13 26996.09 13187.90 10685.37 23492.45 23374.38 19297.56 19687.15 14490.43 20993.93 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test250687.21 22286.28 21990.02 22995.62 12873.64 32796.25 4871.38 40687.89 10890.45 12596.65 7055.29 36398.09 16086.03 15896.94 9398.33 43
ECVR-MVScopyleft89.09 15688.53 15290.77 19795.62 12875.89 30496.16 5384.22 38487.89 10890.20 12996.65 7063.19 31798.10 15285.90 15996.94 9398.33 43
MG-MVS91.77 8891.70 8892.00 13897.08 7180.03 22093.60 21395.18 20187.85 11090.89 12096.47 8082.06 10598.36 13285.07 16797.04 9197.62 94
LCM-MVSNet-Re88.30 17988.32 16188.27 28494.71 17172.41 34493.15 23290.98 33287.77 11179.25 33591.96 25478.35 14795.75 31583.04 19495.62 11896.65 143
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11295.71 2797.70 2588.28 2399.35 3393.89 3798.78 2598.48 30
Effi-MVS+-dtu88.65 16988.35 15889.54 25093.33 23376.39 29894.47 15894.36 24187.70 11385.43 22889.56 32173.45 20997.26 23085.57 16491.28 19694.97 206
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9993.75 22083.13 12696.02 6995.74 16187.68 11495.89 2598.17 282.78 8898.46 12196.71 1096.17 11296.98 127
test_prior294.12 18187.67 11592.63 8396.39 8286.62 3891.50 9198.67 40
Vis-MVSNet (Re-imp)89.59 13989.44 12890.03 22795.74 11975.85 30595.61 9390.80 33887.66 11687.83 16695.40 12176.79 16096.46 28178.37 26896.73 10197.80 87
SR-MVS-dyc-post93.82 4493.82 4593.82 6297.92 4384.57 8296.28 4596.76 7587.46 11793.75 5297.43 3184.24 7099.01 6392.73 5397.80 7797.88 81
RE-MVS-def93.68 5297.92 4384.57 8296.28 4596.76 7587.46 11793.75 5297.43 3182.94 8592.73 5397.80 7797.88 81
PGM-MVS93.96 4293.72 5094.68 3898.43 2086.22 4795.30 10497.78 187.45 11993.26 6297.33 3684.62 6799.51 2490.75 10598.57 4898.32 46
DTE-MVSNet86.11 25585.48 24887.98 29291.65 28874.92 31494.93 12895.75 16087.36 12082.26 29693.04 21672.85 21795.82 31174.04 31077.46 35893.20 295
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 9095.02 15283.67 10896.19 5096.10 13087.27 12195.98 2498.05 1383.07 8498.45 12596.68 1195.51 12096.88 134
thres100view90087.63 19986.71 20090.38 21496.12 9878.55 25295.03 12391.58 31687.15 12288.06 16192.29 23968.91 26998.10 15270.13 33591.10 19794.48 237
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1595.00 12497.12 4187.13 12392.51 8796.30 8389.24 1799.34 3493.46 4198.62 4598.73 17
Effi-MVS+91.59 9391.11 9593.01 8994.35 19583.39 11994.60 14995.10 20587.10 12490.57 12493.10 21481.43 11398.07 16389.29 11794.48 14797.59 97
thres600view787.65 19686.67 20290.59 19996.08 10378.72 24894.88 13191.58 31687.06 12588.08 16092.30 23868.91 26998.10 15270.05 33891.10 19794.96 209
diffmvspermissive91.37 9691.23 9391.77 15693.09 23980.27 20992.36 25995.52 18087.03 12691.40 11594.93 14080.08 12297.44 20992.13 7494.56 14497.61 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize93.78 4593.77 4893.80 6497.92 4384.19 9696.30 4396.87 6286.96 12793.92 5097.47 2983.88 7498.96 7792.71 5697.87 7498.26 56
OMC-MVS91.23 9890.62 10493.08 8396.27 9484.07 9893.52 21595.93 14486.95 12889.51 13896.13 9378.50 14598.35 13485.84 16192.90 17796.83 137
iter_conf05_1192.98 7092.96 6693.03 8695.91 11382.49 15296.06 6596.37 10486.94 12994.09 4495.16 13281.94 10998.67 9991.65 8998.56 4997.95 76
tfpn200view987.58 20386.64 20390.41 21195.99 11078.64 25094.58 15091.98 30686.94 12988.09 15891.77 25869.18 26598.10 15270.13 33591.10 19794.48 237
thres40087.62 20186.64 20390.57 20095.99 11078.64 25094.58 15091.98 30686.94 12988.09 15891.77 25869.18 26598.10 15270.13 33591.10 19794.96 209
HPM-MVScopyleft94.02 3993.88 4494.43 4798.39 2385.78 6397.25 1097.07 4586.90 13292.62 8496.80 6584.85 6599.17 4792.43 5998.65 4398.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
LFMVS90.08 12389.13 13792.95 9496.71 7782.32 15996.08 6189.91 35486.79 13392.15 9496.81 6362.60 31998.34 13587.18 14393.90 15598.19 60
fmvsm_s_conf0.1_n_a93.19 6593.26 5892.97 9292.49 25683.62 11196.02 6995.72 16486.78 13496.04 2298.19 182.30 9798.43 12996.38 1395.42 12696.86 135
baseline188.10 18387.28 18590.57 20094.96 15780.07 21694.27 17291.29 32586.74 13587.41 17494.00 18076.77 16196.20 29480.77 24079.31 35095.44 191
LPG-MVS_test89.45 14488.90 14491.12 17994.47 18481.49 17695.30 10496.14 12586.73 13685.45 22595.16 13269.89 25298.10 15287.70 13589.23 23293.77 272
LGP-MVS_train91.12 17994.47 18481.49 17696.14 12586.73 13685.45 22595.16 13269.89 25298.10 15287.70 13589.23 23293.77 272
EPNet_dtu86.49 25085.94 23588.14 28990.24 33772.82 33494.11 18292.20 29886.66 13879.42 33492.36 23673.52 20795.81 31271.26 32393.66 15895.80 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6595.28 14085.43 6895.68 8696.43 9886.56 13996.84 1497.81 2387.56 3298.77 9297.14 696.82 9997.16 117
testing9187.11 22786.18 22289.92 23394.43 18975.38 31291.53 28492.27 29686.48 14086.50 19390.24 30261.19 33297.53 19882.10 21490.88 20596.84 136
ACMP84.23 889.01 16188.35 15890.99 19094.73 16981.27 18295.07 12095.89 15186.48 14083.67 27694.30 16769.33 26097.99 16987.10 14888.55 24093.72 276
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_Test91.31 9791.11 9591.93 14394.37 19180.14 21393.46 21895.80 15686.46 14291.35 11693.77 19382.21 10098.09 16087.57 13794.95 13597.55 100
thres20087.21 22286.24 22190.12 22395.36 13778.53 25393.26 22992.10 30086.42 14388.00 16391.11 28269.24 26498.00 16869.58 33991.04 20393.83 266
PAPM_NR91.22 9990.78 10392.52 11897.60 5681.46 17894.37 16996.24 11786.39 14487.41 17494.80 14982.06 10598.48 11682.80 20195.37 12797.61 95
MVSMamba_pp92.75 7592.66 7393.02 8895.09 15082.85 13994.72 14396.46 9686.35 14593.33 6194.96 13981.98 10898.55 11392.35 6498.70 3497.67 92
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6995.29 13984.98 7395.61 9396.28 11286.31 14696.75 1697.86 2187.40 3398.74 9597.07 897.02 9297.07 119
PS-MVSNAJ91.18 10090.92 9991.96 14195.26 14382.60 15192.09 27195.70 16586.27 14791.84 10492.46 23279.70 12898.99 7089.08 11995.86 11594.29 243
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3194.82 13597.17 3986.26 14892.83 7597.87 2085.57 5199.56 1294.37 3298.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PS-MVSNAJss89.97 12789.62 12391.02 18791.90 27680.85 19695.26 10995.98 14086.26 14886.21 20494.29 16879.70 12897.65 18888.87 12388.10 24994.57 227
test_vis1_n_192089.39 14989.84 12088.04 29192.97 24772.64 33994.71 14496.03 13886.18 15091.94 10196.56 7861.63 32495.74 31693.42 4395.11 13395.74 182
EPP-MVSNet91.70 9191.56 8992.13 13495.88 11480.50 20597.33 795.25 19786.15 15189.76 13695.60 11483.42 7998.32 13987.37 14193.25 17197.56 99
testing9986.72 24085.73 24589.69 24594.23 19774.91 31591.35 28890.97 33386.14 15286.36 19990.22 30359.41 34497.48 20282.24 21190.66 20696.69 142
XVG-OURS89.40 14888.70 14891.52 16394.06 20381.46 17891.27 29196.07 13386.14 15288.89 14895.77 10868.73 27297.26 23087.39 14089.96 21695.83 178
9.1494.47 2097.79 4996.08 6197.44 1586.13 15495.10 3397.40 3388.34 2299.22 4493.25 4698.70 34
xiu_mvs_v2_base91.13 10190.89 10191.86 14994.97 15682.42 15592.24 26595.64 17286.11 15591.74 10993.14 21279.67 13198.89 8189.06 12095.46 12494.28 244
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4797.28 3185.90 15697.67 398.10 788.41 2099.56 1294.66 2899.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Fast-Effi-MVS+-dtu87.44 20986.72 19989.63 24892.04 27077.68 28094.03 19193.94 25585.81 15782.42 29491.32 27370.33 24897.06 24580.33 24990.23 21294.14 248
XVG-OURS-SEG-HR89.95 12989.45 12791.47 16794.00 20981.21 18691.87 27596.06 13585.78 15888.55 15295.73 11074.67 19097.27 22888.71 12489.64 22595.91 173
HPM-MVS_fast93.40 5993.22 6093.94 5898.36 2584.83 7697.15 1396.80 7185.77 15992.47 8897.13 4882.38 9399.07 5390.51 10898.40 5597.92 80
EI-MVSNet89.10 15488.86 14689.80 24091.84 27878.30 26193.70 21095.01 20885.73 16087.15 17895.28 12479.87 12597.21 23583.81 18687.36 26393.88 261
IterMVS-LS88.36 17787.91 17189.70 24493.80 21778.29 26293.73 20795.08 20785.73 16084.75 24691.90 25679.88 12496.92 25483.83 18582.51 30593.89 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
APD-MVScopyleft94.24 3094.07 3994.75 3698.06 3986.90 2395.88 7696.94 5585.68 16295.05 3497.18 4587.31 3599.07 5391.90 8598.61 4798.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_yl90.69 10990.02 11792.71 10795.72 12082.41 15794.11 18295.12 20385.63 16391.49 11294.70 15174.75 18698.42 13086.13 15692.53 18597.31 105
DCV-MVSNet90.69 10990.02 11792.71 10795.72 12082.41 15794.11 18295.12 20385.63 16391.49 11294.70 15174.75 18698.42 13086.13 15692.53 18597.31 105
K. test v381.59 31480.15 31685.91 33389.89 34569.42 36892.57 25387.71 37085.56 16573.44 37189.71 31855.58 35895.52 32277.17 28369.76 37792.78 311
SixPastTwentyTwo83.91 29382.90 29586.92 31890.99 31170.67 36193.48 21691.99 30585.54 16677.62 34792.11 24760.59 33696.87 25776.05 29577.75 35593.20 295
ITE_SJBPF88.24 28691.88 27777.05 28892.92 27785.54 16680.13 32493.30 20557.29 35396.20 29472.46 31984.71 28291.49 341
BH-RMVSNet88.37 17687.48 17991.02 18795.28 14079.45 23492.89 24493.07 27585.45 16886.91 18494.84 14870.35 24797.76 18073.97 31194.59 14395.85 176
IterMVS-SCA-FT85.45 26584.53 27188.18 28891.71 28476.87 29090.19 31692.65 28785.40 16981.44 30690.54 29666.79 28895.00 33581.04 23481.05 32692.66 313
GA-MVS86.61 24285.27 25590.66 19891.33 29978.71 24990.40 30893.81 26385.34 17085.12 23989.57 32061.25 32997.11 24180.99 23789.59 22696.15 160
ACMM84.12 989.14 15388.48 15791.12 17994.65 17581.22 18595.31 10296.12 12885.31 17185.92 20994.34 16470.19 25098.06 16485.65 16288.86 23794.08 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v1_base_debu90.64 11290.05 11492.40 12293.97 21184.46 8893.32 22295.46 18285.17 17292.25 9094.03 17570.59 24298.57 11090.97 9894.67 13994.18 245
xiu_mvs_v1_base90.64 11290.05 11492.40 12293.97 21184.46 8893.32 22295.46 18285.17 17292.25 9094.03 17570.59 24298.57 11090.97 9894.67 13994.18 245
xiu_mvs_v1_base_debi90.64 11290.05 11492.40 12293.97 21184.46 8893.32 22295.46 18285.17 17292.25 9094.03 17570.59 24298.57 11090.97 9894.67 13994.18 245
PHI-MVS93.89 4393.65 5494.62 4196.84 7586.43 3996.69 3297.49 685.15 17593.56 5896.28 8485.60 5099.31 3992.45 5898.79 2398.12 66
mvs_tets88.06 18687.28 18590.38 21490.94 31579.88 22595.22 11195.66 16985.10 17684.21 26693.94 18363.53 31397.40 21888.50 12688.40 24693.87 262
tttt051788.61 17087.78 17391.11 18294.96 15777.81 27495.35 10089.69 35885.09 17788.05 16294.59 16066.93 28598.48 11683.27 19292.13 19097.03 123
XVG-ACMP-BASELINE86.00 25684.84 26589.45 25491.20 30178.00 26791.70 28095.55 17685.05 17882.97 28992.25 24154.49 36697.48 20282.93 19687.45 26292.89 307
jajsoiax88.24 18087.50 17890.48 20790.89 31980.14 21395.31 10295.65 17184.97 17984.24 26594.02 17865.31 30397.42 21188.56 12588.52 24293.89 259
testing22284.84 28083.32 28589.43 25594.15 20275.94 30391.09 29689.41 36284.90 18085.78 21189.44 32252.70 37396.28 29270.80 33091.57 19396.07 167
FA-MVS(test-final)89.66 13688.91 14391.93 14394.57 18080.27 20991.36 28794.74 22984.87 18189.82 13592.61 22974.72 18998.47 12083.97 18393.53 16297.04 122
v2v48287.84 18987.06 18990.17 21990.99 31179.23 24594.00 19595.13 20284.87 18185.53 21992.07 25174.45 19197.45 20684.71 17481.75 31693.85 265
v14887.04 22986.32 21789.21 25890.94 31577.26 28593.71 20994.43 23784.84 18384.36 26090.80 29176.04 16897.05 24682.12 21379.60 34793.31 289
v887.50 20886.71 20089.89 23491.37 29679.40 23594.50 15495.38 19184.81 18483.60 27991.33 27176.05 16797.42 21182.84 19980.51 33992.84 309
testing1186.44 25185.35 25389.69 24594.29 19675.40 31191.30 28990.53 34184.76 18585.06 24090.13 30858.95 34897.45 20682.08 21591.09 20196.21 159
BH-untuned88.60 17188.13 16690.01 23095.24 14478.50 25593.29 22794.15 24984.75 18684.46 25493.40 20075.76 17397.40 21877.59 27894.52 14694.12 249
OurMVSNet-221017-085.35 26984.64 26987.49 30290.77 32372.59 34194.01 19394.40 23984.72 18779.62 33393.17 21061.91 32396.72 26081.99 21881.16 32293.16 297
dmvs_re84.20 28883.22 28987.14 31491.83 28077.81 27490.04 31990.19 34684.70 18881.49 30489.17 32564.37 30991.13 37871.58 32285.65 27692.46 319
MVSFormer91.68 9291.30 9192.80 10193.86 21483.88 10395.96 7395.90 14984.66 18991.76 10794.91 14177.92 15197.30 22489.64 11497.11 8897.24 109
test_djsdf89.03 15988.64 14990.21 21890.74 32579.28 24295.96 7395.90 14984.66 18985.33 23792.94 21874.02 20097.30 22489.64 11488.53 24194.05 255
MVSTER88.84 16388.29 16290.51 20592.95 24880.44 20693.73 20795.01 20884.66 18987.15 17893.12 21372.79 21897.21 23587.86 13387.36 26393.87 262
v7n86.81 23485.76 24289.95 23290.72 32679.25 24495.07 12095.92 14684.45 19282.29 29590.86 28772.60 22197.53 19879.42 26280.52 33893.08 301
iter_conf0592.85 7292.89 6892.73 10696.58 8482.47 15394.20 17796.16 12384.42 19390.65 12395.56 11685.01 6398.69 9894.96 2698.47 5297.03 123
testing380.46 32679.59 32483.06 35593.44 23164.64 38493.33 22185.47 37984.34 19479.93 32890.84 28944.35 38992.39 36657.06 38787.56 25992.16 329
ET-MVSNet_ETH3D87.51 20685.91 23692.32 12793.70 22383.93 10192.33 26290.94 33484.16 19572.09 37592.52 23169.90 25195.85 30989.20 11888.36 24797.17 113
CSCG93.23 6493.05 6393.76 6698.04 4084.07 9896.22 4997.37 2184.15 19690.05 13395.66 11287.77 2699.15 5089.91 11298.27 5998.07 68
Baseline_NR-MVSNet87.07 22886.63 20588.40 27991.44 29177.87 27294.23 17692.57 28884.12 19785.74 21392.08 24977.25 15696.04 29982.29 21079.94 34391.30 345
UniMVSNet_ETH3D87.53 20586.37 21491.00 18992.44 25978.96 24794.74 14095.61 17384.07 19885.36 23594.52 16259.78 34297.34 22382.93 19687.88 25496.71 141
thisisatest053088.67 16887.61 17691.86 14994.87 16380.07 21694.63 14889.90 35584.00 19988.46 15493.78 19266.88 28798.46 12183.30 19192.65 18297.06 120
ab-mvs89.41 14688.35 15892.60 11395.15 14982.65 14992.20 26795.60 17483.97 20088.55 15293.70 19674.16 19898.21 14682.46 20689.37 22896.94 129
GeoE90.05 12489.43 12991.90 14895.16 14780.37 20895.80 8094.65 23383.90 20187.55 17394.75 15078.18 14997.62 19381.28 23193.63 15997.71 91
FMVSNet387.40 21186.11 22691.30 17493.79 21983.64 11094.20 17794.81 22583.89 20284.37 25791.87 25768.45 27596.56 27378.23 27285.36 27793.70 277
pm-mvs186.61 24285.54 24689.82 23791.44 29180.18 21195.28 10894.85 22183.84 20381.66 30392.62 22872.45 22496.48 27879.67 25678.06 35392.82 310
tt080586.92 23285.74 24490.48 20792.22 26379.98 22395.63 9294.88 21983.83 20484.74 24792.80 22457.61 35297.67 18585.48 16584.42 28493.79 267
v1087.25 21886.38 21389.85 23591.19 30279.50 23294.48 15595.45 18583.79 20583.62 27891.19 27675.13 18197.42 21181.94 21980.60 33492.63 314
testgi80.94 32480.20 31583.18 35387.96 36766.29 37791.28 29090.70 34083.70 20678.12 34292.84 22051.37 37590.82 38063.34 37082.46 30692.43 320
V4287.68 19486.86 19490.15 22190.58 33080.14 21394.24 17595.28 19683.66 20785.67 21491.33 27174.73 18897.41 21684.43 17881.83 31492.89 307
ZD-MVS98.15 3486.62 3397.07 4583.63 20894.19 4296.91 5787.57 3199.26 4291.99 7998.44 54
GBi-Net87.26 21685.98 23291.08 18394.01 20683.10 12795.14 11794.94 21183.57 20984.37 25791.64 26166.59 29296.34 28978.23 27285.36 27793.79 267
test187.26 21685.98 23291.08 18394.01 20683.10 12795.14 11794.94 21183.57 20984.37 25791.64 26166.59 29296.34 28978.23 27285.36 27793.79 267
FMVSNet287.19 22485.82 23891.30 17494.01 20683.67 10894.79 13794.94 21183.57 20983.88 27192.05 25266.59 29296.51 27677.56 27985.01 28093.73 275
SCA86.32 25385.18 25689.73 24392.15 26576.60 29491.12 29591.69 31383.53 21285.50 22288.81 33166.79 28896.48 27876.65 28790.35 21196.12 163
PVSNet_BlendedMVS89.98 12689.70 12190.82 19596.12 9881.25 18393.92 20096.83 6683.49 21389.10 14492.26 24081.04 11698.85 8686.72 15187.86 25592.35 324
DPM-MVS92.58 7891.74 8795.08 1596.19 9689.31 592.66 25096.56 9383.44 21491.68 11095.04 13786.60 4098.99 7085.60 16397.92 7396.93 130
test-LLR85.87 25985.41 24987.25 30890.95 31371.67 35089.55 32689.88 35683.41 21584.54 25187.95 34567.25 28195.11 33281.82 22293.37 16994.97 206
test0.0.03 182.41 30581.69 30184.59 34588.23 36372.89 33390.24 31387.83 36983.41 21579.86 32989.78 31767.25 28188.99 38865.18 36383.42 29791.90 333
ETVMVS84.43 28582.92 29488.97 26794.37 19174.67 31691.23 29388.35 36683.37 21786.06 20889.04 32755.38 36195.67 31867.12 35391.34 19596.58 146
v114487.61 20286.79 19890.06 22691.01 31079.34 23893.95 19795.42 19083.36 21885.66 21591.31 27474.98 18497.42 21183.37 19082.06 31093.42 287
PVSNet_Blended_VisFu91.38 9590.91 10092.80 10196.39 9183.17 12494.87 13296.66 8583.29 21989.27 14294.46 16380.29 12099.17 4787.57 13795.37 12796.05 170
IB-MVS80.51 1585.24 27383.26 28791.19 17792.13 26779.86 22691.75 27891.29 32583.28 22080.66 31688.49 33761.28 32898.46 12180.99 23779.46 34895.25 199
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
IterMVS84.88 27883.98 27887.60 29891.44 29176.03 30290.18 31792.41 29083.24 22181.06 31290.42 30066.60 29194.28 34379.46 25880.98 33192.48 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_cas_vis1_n_192088.83 16688.85 14788.78 26991.15 30676.72 29293.85 20394.93 21583.23 22292.81 7696.00 9661.17 33394.45 33791.67 8894.84 13695.17 201
Fast-Effi-MVS+89.41 14688.64 14991.71 15894.74 16880.81 19793.54 21495.10 20583.11 22386.82 19090.67 29579.74 12797.75 18380.51 24693.55 16196.57 147
WTY-MVS89.60 13888.92 14291.67 15995.47 13481.15 18792.38 25894.78 22783.11 22389.06 14694.32 16678.67 14296.61 26881.57 22890.89 20497.24 109
LTVRE_ROB82.13 1386.26 25484.90 26390.34 21694.44 18881.50 17492.31 26494.89 21783.03 22579.63 33292.67 22669.69 25597.79 17871.20 32486.26 27291.72 335
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS87.78 19286.54 20991.48 16694.82 16781.05 18993.91 20293.93 25683.00 22686.93 18293.53 19869.50 25897.67 18586.14 15477.12 36095.73 184
UnsupCasMVSNet_eth80.07 33078.27 33685.46 33785.24 38372.63 34088.45 34694.87 22082.99 22771.64 37888.07 34456.34 35691.75 37373.48 31563.36 39092.01 331
XXY-MVS87.65 19686.85 19590.03 22792.14 26680.60 20393.76 20695.23 19882.94 22884.60 24994.02 17874.27 19395.49 32681.04 23483.68 29294.01 257
mvs_anonymous89.37 15089.32 13389.51 25393.47 22974.22 32291.65 28294.83 22382.91 22985.45 22593.79 19181.23 11596.36 28886.47 15394.09 15297.94 77
BH-w/o87.57 20487.05 19089.12 26194.90 16277.90 27092.41 25693.51 26882.89 23083.70 27591.34 27075.75 17497.07 24475.49 29793.49 16492.39 322
AdaColmapbinary89.89 13289.07 13892.37 12597.41 6283.03 13294.42 16295.92 14682.81 23186.34 20194.65 15673.89 20299.02 6180.69 24295.51 12095.05 204
dmvs_testset74.57 35175.81 35070.86 37687.72 37040.47 41187.05 36277.90 40182.75 23271.15 38085.47 36967.98 27884.12 39845.26 39576.98 36288.00 379
TransMVSNet (Re)84.43 28583.06 29288.54 27791.72 28378.44 25695.18 11492.82 28182.73 23379.67 33192.12 24573.49 20895.96 30471.10 32868.73 38391.21 347
DP-MVS Recon91.95 8591.28 9293.96 5798.33 2785.92 5794.66 14796.66 8582.69 23490.03 13495.82 10582.30 9799.03 5884.57 17596.48 10896.91 132
v119287.25 21886.33 21690.00 23190.76 32479.04 24693.80 20495.48 18182.57 23585.48 22391.18 27873.38 21297.42 21182.30 20982.06 31093.53 281
PC_three_145282.47 23697.09 1097.07 5192.72 198.04 16592.70 5799.02 1298.86 11
API-MVS90.66 11190.07 11392.45 12196.36 9284.57 8296.06 6595.22 20082.39 23789.13 14394.27 17180.32 11998.46 12180.16 25196.71 10294.33 242
tfpnnormal84.72 28283.23 28889.20 25992.79 25280.05 21894.48 15595.81 15582.38 23881.08 31191.21 27569.01 26896.95 25261.69 37580.59 33590.58 360
MAR-MVS90.30 11789.37 13193.07 8596.61 8184.48 8795.68 8695.67 16782.36 23987.85 16592.85 21976.63 16498.80 9080.01 25296.68 10395.91 173
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline286.50 24885.39 25089.84 23691.12 30776.70 29391.88 27488.58 36482.35 24079.95 32790.95 28673.42 21097.63 19280.27 25089.95 21795.19 200
TAMVS89.21 15288.29 16291.96 14193.71 22182.62 15093.30 22694.19 24782.22 24187.78 16893.94 18378.83 13896.95 25277.70 27792.98 17696.32 153
ACMH+81.04 1485.05 27683.46 28489.82 23794.66 17479.37 23694.44 16094.12 25282.19 24278.04 34392.82 22258.23 35097.54 19773.77 31382.90 30392.54 315
ACMH80.38 1785.36 26883.68 28190.39 21294.45 18780.63 20194.73 14194.85 22182.09 24377.24 34892.65 22760.01 34097.58 19472.25 32084.87 28192.96 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
eth_miper_zixun_eth86.50 24885.77 24188.68 27491.94 27375.81 30690.47 30794.89 21782.05 24484.05 26790.46 29875.96 16996.77 25982.76 20279.36 34993.46 286
anonymousdsp87.84 18987.09 18890.12 22389.13 35280.54 20494.67 14695.55 17682.05 24483.82 27292.12 24571.47 23197.15 23787.15 14487.80 25892.67 312
PVSNet_Blended90.73 10890.32 10791.98 13996.12 9881.25 18392.55 25496.83 6682.04 24689.10 14492.56 23081.04 11698.85 8686.72 15195.91 11495.84 177
c3_l87.14 22686.50 21189.04 26492.20 26477.26 28591.22 29494.70 23182.01 24784.34 26190.43 29978.81 13996.61 26883.70 18881.09 32593.25 292
CDS-MVSNet89.45 14488.51 15392.29 13093.62 22583.61 11393.01 23994.68 23281.95 24887.82 16793.24 20878.69 14196.99 24980.34 24893.23 17296.28 156
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v14419287.19 22486.35 21589.74 24190.64 32878.24 26393.92 20095.43 18881.93 24985.51 22191.05 28474.21 19697.45 20682.86 19881.56 31893.53 281
PAPR90.02 12589.27 13692.29 13095.78 11880.95 19392.68 24996.22 11981.91 25086.66 19293.75 19582.23 9998.44 12779.40 26394.79 13797.48 101
v192192086.97 23186.06 22989.69 24590.53 33378.11 26693.80 20495.43 18881.90 25185.33 23791.05 28472.66 21997.41 21682.05 21781.80 31593.53 281
mamv490.92 10391.78 8688.33 28395.67 12470.75 36092.92 24396.02 13981.90 25188.11 15795.34 12285.88 4896.97 25095.22 2495.01 13497.26 108
CPTT-MVS91.99 8491.80 8592.55 11698.24 3181.98 16596.76 3096.49 9581.89 25390.24 12896.44 8178.59 14398.61 10789.68 11397.85 7597.06 120
train_agg93.44 5593.08 6294.52 4497.53 5886.49 3794.07 18796.78 7281.86 25492.77 7896.20 8787.63 2999.12 5192.14 7398.69 3697.94 77
test_897.49 6086.30 4594.02 19296.76 7581.86 25492.70 8296.20 8787.63 2999.02 61
cl____86.52 24785.78 23988.75 27192.03 27176.46 29690.74 30294.30 24381.83 25683.34 28590.78 29275.74 17696.57 27181.74 22581.54 31993.22 294
DIV-MVS_self_test86.53 24685.78 23988.75 27192.02 27276.45 29790.74 30294.30 24381.83 25683.34 28590.82 29075.75 17496.57 27181.73 22681.52 32093.24 293
Syy-MVS80.07 33079.78 31980.94 36291.92 27459.93 39389.75 32487.40 37381.72 25878.82 33787.20 35566.29 29691.29 37647.06 39487.84 25691.60 338
myMVS_eth3d79.67 33578.79 33482.32 36091.92 27464.08 38589.75 32487.40 37381.72 25878.82 33787.20 35545.33 38791.29 37659.09 38387.84 25691.60 338
v124086.78 23685.85 23789.56 24990.45 33477.79 27693.61 21295.37 19381.65 26085.43 22891.15 28071.50 23097.43 21081.47 23082.05 31293.47 285
FMVSNet185.85 26084.11 27491.08 18392.81 25183.10 12795.14 11794.94 21181.64 26182.68 29291.64 26159.01 34796.34 28975.37 29983.78 28993.79 267
PatchmatchNetpermissive85.85 26084.70 26789.29 25791.76 28275.54 30888.49 34491.30 32481.63 26285.05 24188.70 33571.71 22796.24 29374.61 30889.05 23596.08 166
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TEST997.53 5886.49 3794.07 18796.78 7281.61 26392.77 7896.20 8787.71 2899.12 51
sss88.93 16288.26 16490.94 19394.05 20480.78 19891.71 27995.38 19181.55 26488.63 15193.91 18775.04 18395.47 32782.47 20591.61 19296.57 147
HY-MVS83.01 1289.03 15987.94 17092.29 13094.86 16482.77 14092.08 27294.49 23581.52 26586.93 18292.79 22578.32 14898.23 14379.93 25390.55 20795.88 175
CNLPA89.07 15787.98 16892.34 12696.87 7484.78 7894.08 18693.24 27181.41 26684.46 25495.13 13575.57 17896.62 26577.21 28293.84 15795.61 189
EPMVS83.90 29482.70 29887.51 30090.23 33872.67 33788.62 34381.96 39081.37 26785.01 24288.34 33966.31 29594.45 33775.30 30087.12 26695.43 192
cl2286.78 23685.98 23289.18 26092.34 26177.62 28190.84 30194.13 25181.33 26883.97 27090.15 30773.96 20196.60 27084.19 18082.94 30093.33 288
miper_ehance_all_eth87.22 22186.62 20689.02 26592.13 26777.40 28490.91 30094.81 22581.28 26984.32 26290.08 31079.26 13496.62 26583.81 18682.94 30093.04 302
IU-MVS98.77 586.00 5096.84 6581.26 27097.26 795.50 2399.13 399.03 8
CL-MVSNet_self_test81.74 31180.53 30985.36 33885.96 37772.45 34390.25 31193.07 27581.24 27179.85 33087.29 35470.93 23792.52 36566.95 35469.23 37991.11 351
test20.0379.95 33279.08 33182.55 35785.79 37967.74 37491.09 29691.08 32881.23 27274.48 36789.96 31461.63 32490.15 38260.08 37976.38 36389.76 363
miper_lstm_enhance85.27 27284.59 27087.31 30591.28 30074.63 31787.69 35594.09 25381.20 27381.36 30889.85 31674.97 18594.30 34281.03 23679.84 34693.01 303
TR-MVS86.78 23685.76 24289.82 23794.37 19178.41 25792.47 25592.83 28081.11 27486.36 19992.40 23468.73 27297.48 20273.75 31489.85 22093.57 280
VDDNet89.56 14088.49 15692.76 10395.07 15182.09 16196.30 4393.19 27381.05 27591.88 10296.86 5961.16 33498.33 13788.43 12792.49 18797.84 85
tpm84.73 28184.02 27686.87 32190.33 33568.90 36989.06 33789.94 35380.85 27685.75 21289.86 31568.54 27495.97 30377.76 27684.05 28895.75 181
D2MVS85.90 25885.09 25888.35 28190.79 32277.42 28391.83 27695.70 16580.77 27780.08 32590.02 31166.74 29096.37 28681.88 22187.97 25391.26 346
FE-MVS87.40 21186.02 23091.57 16294.56 18179.69 23090.27 30993.72 26580.57 27888.80 14991.62 26565.32 30298.59 10974.97 30594.33 15196.44 150
Anonymous20240521187.68 19486.13 22492.31 12896.66 7980.74 19994.87 13291.49 32080.47 27989.46 14095.44 11854.72 36598.23 14382.19 21289.89 21897.97 74
jason90.80 10590.10 11292.90 9693.04 24383.53 11493.08 23694.15 24980.22 28091.41 11494.91 14176.87 15897.93 17490.28 11196.90 9597.24 109
jason: jason.
thisisatest051587.33 21485.99 23191.37 17193.49 22879.55 23190.63 30489.56 36180.17 28187.56 17290.86 28767.07 28498.28 14181.50 22993.02 17596.29 155
tpmrst85.35 26984.99 25986.43 32690.88 32067.88 37388.71 34191.43 32280.13 28286.08 20788.80 33373.05 21496.02 30182.48 20483.40 29895.40 193
CDPH-MVS92.83 7392.30 8094.44 4597.79 4986.11 4994.06 18996.66 8580.09 28392.77 7896.63 7386.62 3899.04 5787.40 13998.66 4198.17 62
PM-MVS78.11 34376.12 34784.09 35183.54 38770.08 36588.97 33985.27 38179.93 28474.73 36586.43 36134.70 39793.48 35579.43 26172.06 37388.72 374
UWE-MVS83.69 29783.09 29085.48 33693.06 24165.27 38290.92 29986.14 37579.90 28586.26 20390.72 29457.17 35495.81 31271.03 32992.62 18395.35 196
lupinMVS90.92 10390.21 10893.03 8693.86 21483.88 10392.81 24793.86 26079.84 28691.76 10794.29 16877.92 15198.04 16590.48 10997.11 8897.17 113
PatchMatch-RL86.77 23985.54 24690.47 21095.88 11482.71 14690.54 30692.31 29479.82 28784.32 26291.57 26968.77 27196.39 28573.16 31693.48 16692.32 325
PLCcopyleft84.53 789.06 15888.03 16792.15 13397.27 6882.69 14794.29 17195.44 18779.71 28884.01 26994.18 17476.68 16398.75 9377.28 28193.41 16795.02 205
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
F-COLMAP87.95 18786.80 19791.40 16996.35 9380.88 19594.73 14195.45 18579.65 28982.04 30094.61 15771.13 23398.50 11476.24 29391.05 20294.80 219
test_vis1_n86.56 24586.49 21286.78 32388.51 35772.69 33694.68 14593.78 26479.55 29090.70 12195.31 12348.75 38193.28 35893.15 4793.99 15394.38 241
MIMVSNet82.59 30480.53 30988.76 27091.51 28978.32 26086.57 36590.13 34879.32 29180.70 31588.69 33652.98 37293.07 36266.03 36088.86 23794.90 213
KD-MVS_2432*160078.50 34176.02 34885.93 33186.22 37574.47 31984.80 37792.33 29279.29 29276.98 35085.92 36553.81 37093.97 34767.39 35157.42 39589.36 366
miper_refine_blended78.50 34176.02 34885.93 33186.22 37574.47 31984.80 37792.33 29279.29 29276.98 35085.92 36553.81 37093.97 34767.39 35157.42 39589.36 366
test-mter84.54 28483.64 28287.25 30890.95 31371.67 35089.55 32689.88 35679.17 29484.54 25187.95 34555.56 35995.11 33281.82 22293.37 16994.97 206
miper_enhance_ethall86.90 23386.18 22289.06 26391.66 28777.58 28290.22 31594.82 22479.16 29584.48 25389.10 32679.19 13696.66 26384.06 18182.94 30092.94 305
MDA-MVSNet-bldmvs78.85 34076.31 34586.46 32589.76 34673.88 32588.79 34090.42 34279.16 29559.18 39388.33 34060.20 33894.04 34562.00 37468.96 38191.48 342
WB-MVSnew83.77 29583.28 28685.26 34191.48 29071.03 35691.89 27387.98 36778.91 29784.78 24590.22 30369.11 26794.02 34664.70 36690.44 20890.71 355
tpmvs83.35 30082.07 29987.20 31291.07 30971.00 35888.31 34791.70 31278.91 29780.49 31987.18 35769.30 26397.08 24268.12 34983.56 29493.51 284
原ACMM192.01 13597.34 6481.05 18996.81 7078.89 29990.45 12595.92 10082.65 8998.84 8880.68 24398.26 6096.14 161
MSDG84.86 27983.09 29090.14 22293.80 21780.05 21889.18 33593.09 27478.89 29978.19 34191.91 25565.86 30197.27 22868.47 34488.45 24493.11 299
PAPM86.68 24185.39 25090.53 20293.05 24279.33 24189.79 32394.77 22878.82 30181.95 30193.24 20876.81 15997.30 22466.94 35593.16 17394.95 212
PVSNet78.82 1885.55 26484.65 26888.23 28794.72 17071.93 34587.12 36192.75 28378.80 30284.95 24390.53 29764.43 30896.71 26274.74 30693.86 15696.06 169
MVP-Stereo85.97 25784.86 26489.32 25690.92 31782.19 16092.11 27094.19 24778.76 30378.77 34091.63 26468.38 27696.56 27375.01 30493.95 15489.20 370
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
OpenMVScopyleft83.78 1188.74 16787.29 18493.08 8392.70 25385.39 6996.57 3696.43 9878.74 30480.85 31396.07 9469.64 25699.01 6378.01 27596.65 10494.83 217
KD-MVS_self_test80.20 32979.24 32783.07 35485.64 38165.29 38191.01 29893.93 25678.71 30576.32 35486.40 36259.20 34692.93 36372.59 31869.35 37891.00 354
MDTV_nov1_ep1383.56 28391.69 28669.93 36687.75 35491.54 31878.60 30684.86 24488.90 33069.54 25796.03 30070.25 33288.93 236
test_fmvs1_n87.03 23087.04 19186.97 31689.74 34771.86 34694.55 15294.43 23778.47 30791.95 10095.50 11751.16 37693.81 35093.02 5094.56 14495.26 198
Patchmatch-RL test81.67 31279.96 31886.81 32285.42 38271.23 35382.17 38987.50 37278.47 30777.19 34982.50 38370.81 23993.48 35582.66 20372.89 37195.71 185
QAPM89.51 14188.15 16593.59 7094.92 16084.58 8196.82 2996.70 8378.43 30983.41 28396.19 9073.18 21399.30 4077.11 28496.54 10596.89 133
131487.51 20686.57 20890.34 21692.42 26079.74 22992.63 25195.35 19578.35 31080.14 32391.62 26574.05 19997.15 23781.05 23393.53 16294.12 249
test_fmvs187.34 21387.56 17786.68 32490.59 32971.80 34894.01 19394.04 25478.30 31191.97 9895.22 12756.28 35793.71 35292.89 5194.71 13894.52 230
CR-MVSNet85.35 26983.76 28090.12 22390.58 33079.34 23885.24 37491.96 30878.27 31285.55 21787.87 34871.03 23595.61 31973.96 31289.36 22995.40 193
USDC82.76 30181.26 30687.26 30791.17 30374.55 31889.27 33293.39 27078.26 31375.30 36192.08 24954.43 36796.63 26471.64 32185.79 27590.61 357
new-patchmatchnet76.41 34875.17 35180.13 36382.65 39159.61 39487.66 35691.08 32878.23 31469.85 38283.22 37754.76 36491.63 37564.14 36964.89 38889.16 371
1112_ss88.42 17487.33 18391.72 15794.92 16080.98 19192.97 24194.54 23478.16 31583.82 27293.88 18878.78 14097.91 17579.45 25989.41 22796.26 157
MIMVSNet179.38 33777.28 33985.69 33586.35 37473.67 32691.61 28392.75 28378.11 31672.64 37488.12 34348.16 38291.97 37260.32 37877.49 35791.43 343
test_fmvs283.98 29084.03 27583.83 35287.16 37167.53 37693.93 19992.89 27877.62 31786.89 18793.53 19847.18 38592.02 37090.54 10686.51 27091.93 332
MS-PatchMatch85.05 27684.16 27387.73 29691.42 29478.51 25491.25 29293.53 26777.50 31880.15 32291.58 26761.99 32295.51 32375.69 29694.35 15089.16 371
AllTest83.42 29881.39 30489.52 25195.01 15377.79 27693.12 23390.89 33677.41 31976.12 35693.34 20154.08 36897.51 20068.31 34684.27 28693.26 290
TestCases89.52 25195.01 15377.79 27690.89 33677.41 31976.12 35693.34 20154.08 36897.51 20068.31 34684.27 28693.26 290
TESTMET0.1,183.74 29682.85 29686.42 32789.96 34371.21 35489.55 32687.88 36877.41 31983.37 28487.31 35356.71 35593.65 35480.62 24492.85 18094.40 240
gm-plane-assit89.60 35068.00 37177.28 32288.99 32897.57 19579.44 260
EG-PatchMatch MVS82.37 30680.34 31288.46 27890.27 33679.35 23792.80 24894.33 24277.14 32373.26 37290.18 30647.47 38496.72 26070.25 33287.32 26589.30 368
FMVSNet581.52 31679.60 32387.27 30691.17 30377.95 26891.49 28592.26 29776.87 32476.16 35587.91 34751.67 37492.34 36767.74 35081.16 32291.52 340
mvsany_test185.42 26785.30 25485.77 33487.95 36875.41 31087.61 35880.97 39276.82 32588.68 15095.83 10477.44 15590.82 38085.90 15986.51 27091.08 353
our_test_381.93 30880.46 31186.33 32888.46 36073.48 32988.46 34591.11 32776.46 32676.69 35288.25 34166.89 28694.36 34068.75 34279.08 35191.14 349
TDRefinement79.81 33377.34 33887.22 31179.24 39775.48 30993.12 23392.03 30376.45 32775.01 36291.58 26749.19 38096.44 28270.22 33469.18 38089.75 364
LF4IMVS80.37 32879.07 33284.27 34986.64 37369.87 36789.39 33191.05 33076.38 32874.97 36390.00 31247.85 38394.25 34474.55 30980.82 33388.69 375
TAPA-MVS84.62 688.16 18287.01 19291.62 16096.64 8080.65 20094.39 16596.21 12276.38 32886.19 20595.44 11879.75 12698.08 16262.75 37395.29 12996.13 162
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dp81.47 31780.23 31485.17 34289.92 34465.49 38086.74 36390.10 34976.30 33081.10 31087.12 35862.81 31895.92 30568.13 34879.88 34494.09 252
CostFormer85.77 26284.94 26288.26 28591.16 30572.58 34289.47 33091.04 33176.26 33186.45 19789.97 31370.74 24096.86 25882.35 20887.07 26895.34 197
RPSCF85.07 27584.27 27287.48 30392.91 24970.62 36291.69 28192.46 28976.20 33282.67 29395.22 12763.94 31197.29 22777.51 28085.80 27494.53 229
Test_1112_low_res87.65 19686.51 21091.08 18394.94 15979.28 24291.77 27794.30 24376.04 33383.51 28192.37 23577.86 15397.73 18478.69 26789.13 23496.22 158
pmmvs485.43 26683.86 27990.16 22090.02 34282.97 13690.27 30992.67 28675.93 33480.73 31491.74 26071.05 23495.73 31778.85 26683.46 29691.78 334
LS3D87.89 18886.32 21792.59 11496.07 10482.92 13795.23 11094.92 21675.66 33582.89 29095.98 9872.48 22299.21 4568.43 34595.23 13295.64 186
pmmvs584.21 28782.84 29788.34 28288.95 35476.94 28992.41 25691.91 31075.63 33680.28 32091.18 27864.59 30795.57 32077.09 28583.47 29592.53 316
Anonymous2024052180.44 32779.21 32884.11 35085.75 38067.89 37292.86 24693.23 27275.61 33775.59 36087.47 35250.03 37794.33 34171.14 32781.21 32190.12 362
pmmvs-eth3d80.97 32378.72 33587.74 29584.99 38479.97 22490.11 31891.65 31475.36 33873.51 37086.03 36459.45 34393.96 34975.17 30172.21 37289.29 369
ppachtmachnet_test81.84 30980.07 31787.15 31388.46 36074.43 32189.04 33892.16 29975.33 33977.75 34588.99 32866.20 29795.37 32865.12 36477.60 35691.65 336
bld_raw_dy_0_6490.17 12189.64 12291.79 15595.65 12582.00 16390.56 30595.93 14475.32 34085.34 23694.26 17282.58 9098.48 11690.30 11096.78 10094.88 214
test_040281.30 32079.17 33087.67 29793.19 23678.17 26492.98 24091.71 31175.25 34176.02 35890.31 30159.23 34596.37 28650.22 39283.63 29388.47 377
COLMAP_ROBcopyleft80.39 1683.96 29182.04 30089.74 24195.28 14079.75 22894.25 17392.28 29575.17 34278.02 34493.77 19358.60 34997.84 17765.06 36585.92 27391.63 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TinyColmap79.76 33477.69 33785.97 33091.71 28473.12 33189.55 32690.36 34475.03 34372.03 37690.19 30546.22 38696.19 29663.11 37181.03 32788.59 376
DP-MVS87.25 21885.36 25292.90 9697.65 5583.24 12194.81 13692.00 30474.99 34481.92 30295.00 13872.66 21999.05 5566.92 35792.33 18896.40 151
PatchT82.68 30381.27 30586.89 32090.09 34070.94 35984.06 38190.15 34774.91 34585.63 21683.57 37669.37 25994.87 33665.19 36288.50 24394.84 216
CHOSEN 280x42085.15 27483.99 27788.65 27592.47 25778.40 25879.68 39692.76 28274.90 34681.41 30789.59 31969.85 25495.51 32379.92 25495.29 12992.03 330
gg-mvs-nofinetune81.77 31079.37 32588.99 26690.85 32177.73 27986.29 36679.63 39574.88 34783.19 28869.05 39760.34 33796.11 29875.46 29894.64 14293.11 299
pmmvs683.42 29881.60 30288.87 26888.01 36677.87 27294.96 12694.24 24674.67 34878.80 33991.09 28360.17 33996.49 27777.06 28675.40 36792.23 327
CHOSEN 1792x268888.84 16387.69 17492.30 12996.14 9781.42 18090.01 32095.86 15374.52 34987.41 17493.94 18375.46 17998.36 13280.36 24795.53 11997.12 118
MDA-MVSNet_test_wron79.21 33977.19 34185.29 33988.22 36472.77 33585.87 36890.06 35074.34 35062.62 39087.56 35166.14 29891.99 37166.90 35873.01 36991.10 352
YYNet179.22 33877.20 34085.28 34088.20 36572.66 33885.87 36890.05 35274.33 35162.70 38887.61 35066.09 29992.03 36966.94 35572.97 37091.15 348
mvsany_test374.95 35073.26 35480.02 36474.61 40063.16 38985.53 37278.42 39774.16 35274.89 36486.46 36036.02 39689.09 38782.39 20766.91 38487.82 381
Anonymous2024052988.09 18486.59 20792.58 11596.53 8781.92 16795.99 7195.84 15474.11 35389.06 14695.21 12961.44 32798.81 8983.67 18987.47 26097.01 125
test_fmvs377.67 34577.16 34279.22 36579.52 39661.14 39192.34 26191.64 31573.98 35478.86 33686.59 35927.38 40187.03 39088.12 13175.97 36589.50 365
无先验93.28 22896.26 11473.95 35599.05 5580.56 24596.59 145
Anonymous2023121186.59 24485.13 25790.98 19296.52 8881.50 17496.14 5796.16 12373.78 35683.65 27792.15 24363.26 31697.37 22282.82 20081.74 31794.06 254
Anonymous2023120681.03 32279.77 32184.82 34487.85 36970.26 36491.42 28692.08 30173.67 35777.75 34589.25 32462.43 32093.08 36161.50 37682.00 31391.12 350
PCF-MVS84.11 1087.74 19386.08 22892.70 10994.02 20584.43 9189.27 33295.87 15273.62 35884.43 25694.33 16578.48 14698.86 8470.27 33194.45 14894.81 218
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WB-MVS67.92 35867.49 36069.21 38081.09 39241.17 41088.03 34978.00 40073.50 35962.63 38983.11 38063.94 31186.52 39225.66 40651.45 39879.94 391
HyFIR lowres test88.09 18486.81 19691.93 14396.00 10780.63 20190.01 32095.79 15773.42 36087.68 17092.10 24873.86 20397.96 17180.75 24191.70 19197.19 112
MDTV_nov1_ep13_2view55.91 40387.62 35773.32 36184.59 25070.33 24874.65 30795.50 190
JIA-IIPM81.04 32178.98 33387.25 30888.64 35673.48 32981.75 39089.61 36073.19 36282.05 29973.71 39366.07 30095.87 30871.18 32684.60 28392.41 321
cascas86.43 25284.98 26090.80 19692.10 26980.92 19490.24 31395.91 14873.10 36383.57 28088.39 33865.15 30497.46 20584.90 17191.43 19494.03 256
ANet_high58.88 36754.22 37272.86 37356.50 41356.67 39880.75 39286.00 37673.09 36437.39 40564.63 40122.17 40579.49 40343.51 39723.96 40782.43 389
ADS-MVSNet281.66 31379.71 32287.50 30191.35 29774.19 32383.33 38488.48 36572.90 36582.24 29785.77 36764.98 30593.20 36064.57 36783.74 29095.12 202
ADS-MVSNet81.56 31579.78 31986.90 31991.35 29771.82 34783.33 38489.16 36372.90 36582.24 29785.77 36764.98 30593.76 35164.57 36783.74 29095.12 202
PVSNet_073.20 2077.22 34674.83 35284.37 34790.70 32771.10 35583.09 38689.67 35972.81 36773.93 36983.13 37860.79 33593.70 35368.54 34350.84 39988.30 378
testdata90.49 20696.40 9077.89 27195.37 19372.51 36893.63 5596.69 6682.08 10497.65 18883.08 19397.39 8595.94 172
SSC-MVS67.06 35966.56 36168.56 38280.54 39340.06 41287.77 35377.37 40372.38 36961.75 39182.66 38263.37 31486.45 39324.48 40748.69 40179.16 393
PMMVS85.71 26384.96 26187.95 29388.90 35577.09 28788.68 34290.06 35072.32 37086.47 19490.76 29372.15 22594.40 33981.78 22493.49 16492.36 323
Patchmtry82.71 30280.93 30888.06 29090.05 34176.37 29984.74 37991.96 30872.28 37181.32 30987.87 34871.03 23595.50 32568.97 34180.15 34192.32 325
tpm284.08 28982.94 29387.48 30391.39 29571.27 35289.23 33490.37 34371.95 37284.64 24889.33 32367.30 28096.55 27575.17 30187.09 26794.63 222
UnsupCasMVSNet_bld76.23 34973.27 35385.09 34383.79 38672.92 33285.65 37193.47 26971.52 37368.84 38479.08 38849.77 37893.21 35966.81 35960.52 39289.13 373
RPMNet83.95 29281.53 30391.21 17690.58 33079.34 23885.24 37496.76 7571.44 37485.55 21782.97 38170.87 23898.91 8061.01 37789.36 22995.40 193
旧先验293.36 22071.25 37594.37 3997.13 24086.74 149
新几何193.10 8197.30 6684.35 9495.56 17571.09 37691.26 11796.24 8582.87 8798.86 8479.19 26498.10 6596.07 167
test_vis1_rt77.96 34476.46 34482.48 35885.89 37871.74 34990.25 31178.89 39671.03 37771.30 37981.35 38542.49 39191.05 37984.55 17682.37 30784.65 383
Patchmatch-test81.37 31879.30 32687.58 29990.92 31774.16 32480.99 39187.68 37170.52 37876.63 35388.81 33171.21 23292.76 36460.01 38186.93 26995.83 178
114514_t89.51 14188.50 15492.54 11798.11 3681.99 16495.16 11696.36 10570.19 37985.81 21095.25 12676.70 16298.63 10482.07 21696.86 9897.00 126
N_pmnet68.89 35768.44 35970.23 37789.07 35328.79 41688.06 34819.50 41669.47 38071.86 37784.93 37061.24 33091.75 37354.70 38977.15 35990.15 361
OpenMVS_ROBcopyleft74.94 1979.51 33677.03 34386.93 31787.00 37276.23 30192.33 26290.74 33968.93 38174.52 36688.23 34249.58 37996.62 26557.64 38584.29 28587.94 380
test22296.55 8581.70 17192.22 26695.01 20868.36 38290.20 12996.14 9280.26 12197.80 7796.05 170
dongtai58.82 36858.24 36660.56 38583.13 38845.09 40982.32 38848.22 41567.61 38361.70 39269.15 39638.75 39376.05 40432.01 40341.31 40360.55 400
MVS87.44 20986.10 22791.44 16892.61 25583.62 11192.63 25195.66 16967.26 38481.47 30592.15 24377.95 15098.22 14579.71 25595.48 12292.47 318
tpm cat181.96 30780.27 31387.01 31591.09 30871.02 35787.38 35991.53 31966.25 38580.17 32186.35 36368.22 27796.15 29769.16 34082.29 30893.86 264
CVMVSNet84.69 28384.79 26684.37 34791.84 27864.92 38393.70 21091.47 32166.19 38686.16 20695.28 12467.18 28393.33 35780.89 23990.42 21094.88 214
test_f71.95 35470.87 35675.21 37274.21 40259.37 39585.07 37685.82 37765.25 38770.42 38183.13 37823.62 40282.93 40078.32 27071.94 37483.33 385
CMPMVSbinary59.16 2180.52 32579.20 32984.48 34683.98 38567.63 37589.95 32293.84 26264.79 38866.81 38691.14 28157.93 35195.17 33076.25 29288.10 24990.65 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet81.32 31980.95 30782.42 35988.50 35963.67 38793.32 22291.33 32364.02 38980.57 31892.83 22161.21 33192.27 36876.34 29180.38 34091.32 344
test_vis3_rt65.12 36162.60 36372.69 37471.44 40360.71 39287.17 36065.55 40763.80 39053.22 39765.65 40014.54 41189.44 38676.65 28765.38 38667.91 398
new_pmnet72.15 35370.13 35778.20 36882.95 39065.68 37883.91 38282.40 38962.94 39164.47 38779.82 38742.85 39086.26 39457.41 38674.44 36882.65 388
DSMNet-mixed76.94 34776.29 34678.89 36683.10 38956.11 40287.78 35279.77 39460.65 39275.64 35988.71 33461.56 32688.34 38960.07 38089.29 23192.21 328
kuosan53.51 37053.30 37354.13 38976.06 39845.36 40880.11 39548.36 41459.63 39354.84 39563.43 40237.41 39462.07 40920.73 40939.10 40454.96 403
pmmvs371.81 35568.71 35881.11 36175.86 39970.42 36386.74 36383.66 38558.95 39468.64 38580.89 38636.93 39589.52 38563.10 37263.59 38983.39 384
MVS-HIRNet73.70 35272.20 35578.18 36991.81 28156.42 40182.94 38782.58 38855.24 39568.88 38366.48 39855.32 36295.13 33158.12 38488.42 24583.01 386
PMMVS259.60 36456.40 36769.21 38068.83 40746.58 40673.02 40177.48 40255.07 39649.21 39972.95 39517.43 40980.04 40249.32 39344.33 40280.99 390
APD_test169.04 35666.26 36277.36 37180.51 39462.79 39085.46 37383.51 38654.11 39759.14 39484.79 37223.40 40489.61 38455.22 38870.24 37679.68 392
FPMVS64.63 36262.55 36470.88 37570.80 40456.71 39784.42 38084.42 38351.78 39849.57 39881.61 38423.49 40381.48 40140.61 40176.25 36474.46 394
LCM-MVSNet66.00 36062.16 36577.51 37064.51 41058.29 39683.87 38390.90 33548.17 39954.69 39673.31 39416.83 41086.75 39165.47 36161.67 39187.48 382
DeepMVS_CXcopyleft56.31 38874.23 40151.81 40456.67 41244.85 40048.54 40075.16 39127.87 40058.74 41040.92 40052.22 39758.39 402
Gipumacopyleft57.99 36954.91 37167.24 38388.51 35765.59 37952.21 40490.33 34543.58 40142.84 40451.18 40520.29 40785.07 39534.77 40270.45 37551.05 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf159.54 36556.11 36969.85 37869.28 40556.61 39980.37 39376.55 40442.58 40245.68 40175.61 38911.26 41284.18 39643.20 39860.44 39368.75 396
APD_test259.54 36556.11 36969.85 37869.28 40556.61 39980.37 39376.55 40442.58 40245.68 40175.61 38911.26 41284.18 39643.20 39860.44 39368.75 396
PMVScopyleft47.18 2252.22 37148.46 37563.48 38445.72 41546.20 40773.41 40078.31 39841.03 40430.06 40765.68 3996.05 41483.43 39930.04 40465.86 38560.80 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN43.23 37442.29 37646.03 39065.58 40937.41 41373.51 39964.62 40833.99 40528.47 40947.87 40619.90 40867.91 40622.23 40824.45 40632.77 405
EMVS42.07 37541.12 37744.92 39163.45 41135.56 41573.65 39863.48 40933.05 40626.88 41045.45 40721.27 40667.14 40719.80 41023.02 40832.06 406
MVEpermissive39.65 2343.39 37338.59 37957.77 38656.52 41248.77 40555.38 40358.64 41129.33 40728.96 40852.65 4044.68 41564.62 40828.11 40533.07 40559.93 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.52 37248.47 37456.66 38752.26 41418.98 41841.51 40681.40 39110.10 40844.59 40375.01 39228.51 39968.16 40553.54 39049.31 40082.83 387
wuyk23d21.27 37820.48 38123.63 39368.59 40836.41 41449.57 4056.85 4179.37 4097.89 4114.46 4134.03 41631.37 41117.47 41116.07 4103.12 408
tmp_tt35.64 37639.24 37824.84 39214.87 41623.90 41762.71 40251.51 4136.58 41036.66 40662.08 40344.37 38830.34 41252.40 39122.00 40920.27 407
testmvs8.92 37911.52 3821.12 3951.06 4170.46 42086.02 3670.65 4180.62 4112.74 4129.52 4110.31 4180.45 4142.38 4120.39 4112.46 410
test1238.76 38011.22 3831.39 3940.85 4180.97 41985.76 3700.35 4190.54 4122.45 4138.14 4120.60 4170.48 4132.16 4130.17 4122.71 409
EGC-MVSNET61.97 36356.37 36878.77 36789.63 34973.50 32889.12 33682.79 3870.21 4131.24 41484.80 37139.48 39290.04 38344.13 39675.94 36672.79 395
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k22.14 37729.52 3800.00 3960.00 4190.00 4210.00 40795.76 1590.00 4140.00 41594.29 16875.66 1770.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.64 3828.86 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41479.70 1280.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.82 38110.43 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41593.88 1880.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS64.08 38559.14 382
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
eth-test20.00 419
eth-test0.00 419
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6898.99 1498.84 14
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
GSMVS96.12 163
test_part298.55 1287.22 1996.40 17
sam_mvs171.70 22896.12 163
sam_mvs70.60 241
ambc83.06 35579.99 39563.51 38877.47 39792.86 27974.34 36884.45 37328.74 39895.06 33473.06 31768.89 38290.61 357
MTGPAbinary96.97 50
test_post188.00 3509.81 41069.31 26295.53 32176.65 287
test_post10.29 40970.57 24595.91 307
patchmatchnet-post83.76 37571.53 22996.48 278
GG-mvs-BLEND87.94 29489.73 34877.91 26987.80 35178.23 39980.58 31783.86 37459.88 34195.33 32971.20 32492.22 18990.60 359
MTMP96.16 5360.64 410
test9_res91.91 8398.71 3298.07 68
agg_prior290.54 10698.68 3898.27 52
agg_prior97.38 6385.92 5796.72 8192.16 9398.97 75
test_prior485.96 5494.11 182
test_prior93.82 6297.29 6784.49 8696.88 6198.87 8298.11 67
新几何293.11 235
旧先验196.79 7681.81 16995.67 16796.81 6386.69 3797.66 8296.97 128
原ACMM292.94 242
testdata298.75 9378.30 271
segment_acmp87.16 36
test1294.34 5097.13 7086.15 4896.29 10991.04 11985.08 5899.01 6398.13 6497.86 83
plane_prior794.70 17282.74 143
plane_prior694.52 18282.75 14174.23 194
plane_prior596.22 11998.12 15088.15 12889.99 21494.63 222
plane_prior494.86 144
plane_prior194.59 177
n20.00 420
nn0.00 420
door-mid85.49 378
lessismore_v086.04 32988.46 36068.78 37080.59 39373.01 37390.11 30955.39 36096.43 28375.06 30365.06 38792.90 306
test1196.57 92
door85.33 380
HQP5-MVS81.56 172
BP-MVS87.11 146
HQP4-MVS85.43 22897.96 17194.51 232
HQP3-MVS96.04 13689.77 223
HQP2-MVS73.83 204
NP-MVS94.37 19182.42 15593.98 181
ACMMP++_ref87.47 260
ACMMP++88.01 252
Test By Simon80.02 123