This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM99.40 5299.28 5999.74 6199.67 11499.31 11199.52 14898.87 34499.55 199.74 6499.80 10696.47 15799.98 1399.97 199.97 899.94 11
MVS_030499.42 4499.32 4399.72 6599.70 10299.27 11899.52 14897.57 39099.51 299.82 3999.78 12498.09 10199.96 3099.97 199.97 899.94 11
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12399.63 3999.48 399.98 699.83 7198.75 5599.99 499.97 199.96 1499.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12399.63 3999.47 499.98 699.82 7998.75 5599.99 499.97 199.97 899.94 11
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 20199.65 5799.50 16399.61 4899.45 599.87 2799.92 1597.31 12699.97 2199.95 899.99 199.97 4
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17999.64 3699.45 599.92 1799.92 1598.62 7099.99 499.96 799.99 199.96 7
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9799.58 11099.69 1899.43 799.98 699.91 2298.62 70100.00 199.97 199.95 2099.90 17
test_vis1_n_192098.63 16498.40 17099.31 14999.86 2097.94 25099.67 6699.62 4199.43 799.99 299.91 2287.29 368100.00 199.92 1299.92 2999.98 2
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21999.37 10399.58 11099.62 4199.41 999.87 2799.92 1598.81 44100.00 199.97 199.93 2799.94 11
test_fmvsmconf0.01_n99.22 8099.03 9299.79 4998.42 36899.48 9199.55 13599.51 11999.39 1099.78 5199.93 1094.80 21799.95 5999.93 1199.95 2099.94 11
test_cas_vis1_n_192099.16 8899.01 10099.61 8799.81 4698.86 17999.65 7799.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 3499.91 3699.99 1
DeepPCF-MVS98.18 398.81 14699.37 3397.12 34699.60 15091.75 38698.61 37199.44 20899.35 1299.83 3899.85 5698.70 6399.81 18399.02 9099.91 3699.81 61
patch_mono-299.26 7399.62 598.16 29999.81 4694.59 36299.52 14899.64 3699.33 1399.73 6699.90 2999.00 2299.99 499.69 2099.98 499.89 20
test_fmvs1_n98.41 17598.14 18699.21 16999.82 4297.71 26399.74 4699.49 14899.32 1499.99 299.95 385.32 37799.97 2199.82 1699.84 8299.96 7
test_fmvs198.88 13198.79 13399.16 17499.69 10797.61 26699.55 13599.49 14899.32 1499.98 699.91 2291.41 32399.96 3099.82 1699.92 2999.90 17
EPNet98.86 13598.71 13999.30 15497.20 38898.18 23299.62 8998.91 33799.28 1698.63 29899.81 9395.96 17399.99 499.24 7299.72 12399.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UGNet98.87 13298.69 14199.40 13699.22 26098.72 19399.44 19599.68 2099.24 1799.18 21299.42 26692.74 28699.96 3099.34 6099.94 2699.53 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
3Dnovator+97.12 1399.18 8498.97 10699.82 4199.17 27799.68 4899.81 2099.51 11999.20 1898.72 28099.89 3395.68 18799.97 2198.86 11399.86 6799.81 61
CANet_DTU98.97 12598.87 12099.25 16499.33 23198.42 22499.08 30799.30 27999.16 1999.43 14599.75 13995.27 20099.97 2198.56 16199.95 2099.36 211
test_vis1_n97.92 23497.44 26999.34 14299.53 16798.08 23899.74 4699.49 14899.15 20100.00 199.94 679.51 39699.98 1399.88 1499.76 11599.97 4
DELS-MVS99.48 2699.42 2299.65 7499.72 9299.40 10299.05 31399.66 2899.14 2199.57 11899.80 10698.46 8199.94 6999.57 3199.84 8299.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
fmvsm_s_conf0.5_n99.51 1899.40 2799.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1596.60 15299.96 3099.95 899.96 1499.95 9
test250696.81 31796.65 31397.29 34299.74 8092.21 38599.60 9685.06 41699.13 2299.77 5599.93 1087.82 36699.85 15199.38 5399.38 15499.80 70
ECVR-MVScopyleft98.04 21498.05 19998.00 31199.74 8094.37 36599.59 10294.98 40499.13 2299.66 8799.93 1090.67 33399.84 15899.40 5299.38 15499.80 70
test111198.04 21498.11 19097.83 32299.74 8093.82 37099.58 11095.40 40399.12 2599.65 9399.93 1090.73 33299.84 15899.43 5199.38 15499.82 54
SD-MVS99.41 4999.52 1199.05 18799.74 8099.68 4899.46 18899.52 10499.11 2699.88 2299.91 2299.43 197.70 38898.72 13399.93 2799.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1597.35 12599.96 3099.94 1099.92 2999.95 9
mvsany_test199.50 2099.46 2099.62 8699.61 14599.09 14298.94 34199.48 16099.10 2799.96 1499.91 2298.85 3999.96 3099.72 1899.58 14299.82 54
FOURS199.91 199.93 199.87 899.56 7199.10 2799.81 41
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11799.37 24399.10 2799.81 4199.80 10698.94 2999.96 3098.93 9999.86 6799.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.85 2699.89 499.62 8999.50 13999.10 2799.86 3199.82 7998.94 29
3Dnovator97.25 999.24 7899.05 8899.81 4499.12 28599.66 5399.84 1299.74 1099.09 3298.92 25499.90 2995.94 17699.98 1398.95 9699.92 2999.79 74
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9699.48 16099.08 3399.91 1899.81 9399.20 799.96 3098.91 10299.85 7499.79 74
test_241102_TWO99.48 16099.08 3399.88 2299.81 9398.94 2999.96 3098.91 10299.84 8299.88 26
test_241102_ONE99.84 3299.90 299.48 16099.07 3599.91 1899.74 14499.20 799.76 203
dcpmvs_299.23 7999.58 798.16 29999.83 3994.68 36099.76 3799.52 10499.07 3599.98 699.88 3998.56 7499.93 8799.67 2299.98 499.87 31
DeepC-MVS_fast98.69 199.49 2299.39 3099.77 5599.63 13599.59 7199.36 23399.46 18999.07 3599.79 4699.82 7998.85 3999.92 9898.68 14099.87 5999.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 7199.02 3899.88 2299.85 5699.18 1099.96 3099.22 7399.92 2999.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EPNet_dtu98.03 21697.96 20898.23 29598.27 37095.54 34399.23 27898.75 35599.02 3897.82 34499.71 15596.11 16899.48 26593.04 36999.65 13599.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EI-MVSNet-UG-set99.58 999.57 899.64 7999.78 5699.14 13799.60 9699.45 20099.01 4099.90 2099.83 7198.98 2399.93 8799.59 2899.95 2099.86 33
EI-MVSNet-Vis-set99.58 999.56 1099.64 7999.78 5699.15 13699.61 9599.45 20099.01 4099.89 2199.82 7999.01 1899.92 9899.56 3299.95 2099.85 36
VNet99.11 10498.90 11599.73 6499.52 17299.56 7699.41 21099.39 22799.01 4099.74 6499.78 12495.56 19099.92 9899.52 3998.18 23899.72 103
save fliter99.76 6599.59 7199.14 29499.40 22499.00 43
TSAR-MVS + GP.99.36 5899.36 3599.36 14199.67 11498.61 20399.07 30899.33 26199.00 4399.82 3999.81 9399.06 1699.84 15899.09 8499.42 15299.65 129
DVP-MVS++99.59 899.50 1399.88 599.51 17599.88 899.87 899.51 11998.99 4599.88 2299.81 9399.27 599.96 3098.85 11599.80 10299.81 61
test_0728_THIRD98.99 4599.81 4199.80 10699.09 1499.96 3098.85 11599.90 4499.88 26
MG-MVS99.13 9499.02 9699.45 12999.57 15698.63 20099.07 30899.34 25498.99 4599.61 10799.82 7997.98 10899.87 14297.00 29099.80 10299.85 36
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5799.68 2098.98 4899.37 16499.74 14498.81 4499.94 6998.79 12699.86 6799.84 40
X-MVStestdata96.55 32095.45 33899.87 1199.85 2699.83 1699.69 5799.68 2098.98 4899.37 16464.01 41298.81 4499.94 6998.79 12699.86 6799.84 40
MSLP-MVS++99.46 3299.47 1799.44 13399.60 15099.16 13199.41 21099.71 1398.98 4899.45 13999.78 12499.19 999.54 26399.28 6799.84 8299.63 140
test_one_060199.81 4699.88 899.49 14898.97 5199.65 9399.81 9399.09 14
HQP_MVS98.27 18898.22 18198.44 27599.29 24396.97 29899.39 22299.47 18098.97 5199.11 22199.61 20892.71 28999.69 23597.78 22897.63 26198.67 297
plane_prior299.39 22298.97 51
h-mvs3397.70 27197.28 29298.97 19799.70 10297.27 27499.36 23399.45 20098.94 5499.66 8799.64 19394.93 20999.99 499.48 4684.36 39599.65 129
hse-mvs297.50 29097.14 29898.59 25099.49 18697.05 28999.28 25999.22 29598.94 5499.66 8799.42 26694.93 20999.65 24699.48 4683.80 39799.08 236
DeepC-MVS98.35 299.30 6599.19 7299.64 7999.82 4299.23 12499.62 8999.55 7998.94 5499.63 10099.95 395.82 18299.94 6999.37 5599.97 899.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJ99.32 6399.32 4399.30 15499.57 15698.94 16998.97 33599.46 18998.92 5799.71 7299.24 31399.01 1899.98 1399.35 5699.66 13398.97 251
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8499.39 22798.91 5899.78 5199.85 5699.36 299.94 6998.84 11899.88 5699.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CHOSEN 280x42099.12 10099.13 7799.08 18199.66 12497.89 25198.43 38199.71 1398.88 5999.62 10499.76 13696.63 15199.70 23099.46 4999.99 199.66 125
xiu_mvs_v1_base_debu99.29 6799.27 6299.34 14299.63 13598.97 15999.12 29899.51 11998.86 6099.84 3399.47 25698.18 9799.99 499.50 4199.31 16299.08 236
xiu_mvs_v1_base99.29 6799.27 6299.34 14299.63 13598.97 15999.12 29899.51 11998.86 6099.84 3399.47 25698.18 9799.99 499.50 4199.31 16299.08 236
xiu_mvs_v1_base_debi99.29 6799.27 6299.34 14299.63 13598.97 15999.12 29899.51 11998.86 6099.84 3399.47 25698.18 9799.99 499.50 4199.31 16299.08 236
NCCC99.34 6099.19 7299.79 4999.61 14599.65 5799.30 24999.48 16098.86 6099.21 20299.63 19998.72 6199.90 12098.25 18899.63 13899.80 70
test_fmvs297.25 30597.30 28997.09 34799.43 20293.31 37899.73 4998.87 34498.83 6499.28 18399.80 10684.45 38299.66 24197.88 21797.45 27998.30 355
CANet99.25 7799.14 7699.59 9199.41 20999.16 13199.35 23899.57 6698.82 6599.51 13099.61 20896.46 15899.95 5999.59 2899.98 499.65 129
CNVR-MVS99.42 4499.30 5399.78 5299.62 14199.71 4499.26 27399.52 10498.82 6599.39 16099.71 15598.96 2499.85 15198.59 15499.80 10299.77 82
MVS_111021_LR99.41 4999.33 4199.65 7499.77 6299.51 8798.94 34199.85 698.82 6599.65 9399.74 14498.51 7899.80 18998.83 12199.89 5399.64 136
MVS_111021_HR99.41 4999.32 4399.66 7099.72 9299.47 9398.95 33999.85 698.82 6599.54 12499.73 15098.51 7899.74 20898.91 10299.88 5699.77 82
xiu_mvs_v2_base99.26 7399.25 6699.29 15799.53 16798.91 17399.02 32199.45 20098.80 6999.71 7299.26 31198.94 2999.98 1399.34 6099.23 16698.98 250
MTAPA99.52 1799.39 3099.89 499.90 499.86 1399.66 7199.47 18098.79 7099.68 7899.81 9398.43 8399.97 2198.88 10599.90 4499.83 49
UA-Net99.42 4499.29 5799.80 4699.62 14199.55 7899.50 16399.70 1598.79 7099.77 5599.96 197.45 12099.96 3098.92 10199.90 4499.89 20
MCST-MVS99.43 4299.30 5399.82 4199.79 5499.74 4199.29 25499.40 22498.79 7099.52 12899.62 20498.91 3499.90 12098.64 14499.75 11799.82 54
SDMVSNet99.11 10498.90 11599.75 5899.81 4699.59 7199.81 2099.65 3398.78 7399.64 9799.88 3994.56 23599.93 8799.67 2298.26 23199.72 103
sd_testset98.75 15398.57 16099.29 15799.81 4698.26 22999.56 12399.62 4198.78 7399.64 9799.88 3992.02 30799.88 13799.54 3598.26 23199.72 103
fmvsm_s_conf0.1_n99.29 6799.10 8099.86 2199.70 10299.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23999.94 6999.89 1399.96 1499.97 4
DPE-MVScopyleft99.46 3299.32 4399.91 299.78 5699.88 899.36 23399.51 11998.73 7699.88 2299.84 6798.72 6199.96 3098.16 19699.87 5999.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CHOSEN 1792x268899.19 8299.10 8099.45 12999.89 898.52 21299.39 22299.94 198.73 7699.11 22199.89 3395.50 19299.94 6999.50 4199.97 899.89 20
MSP-MVS99.42 4499.27 6299.88 599.89 899.80 2799.67 6699.50 13998.70 7899.77 5599.49 24898.21 9599.95 5998.46 17299.77 11299.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
fmvsm_s_conf0.1_n_a99.26 7399.06 8799.85 2899.52 17299.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 24199.94 6999.88 1499.92 2999.98 2
plane_prior397.00 29598.69 7999.11 221
HPM-MVS++copyleft99.39 5599.23 6999.87 1199.75 7399.84 1599.43 19999.51 11998.68 8199.27 18899.53 23698.64 6999.96 3098.44 17499.80 10299.79 74
sasdasda99.02 11798.86 12399.51 11799.42 20499.32 10799.80 2599.48 16098.63 8299.31 17698.81 35597.09 13499.75 20699.27 6997.90 24999.47 189
canonicalmvs99.02 11798.86 12399.51 11799.42 20499.32 10799.80 2599.48 16098.63 8299.31 17698.81 35597.09 13499.75 20699.27 6997.90 24999.47 189
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10299.51 11998.62 8499.79 4699.83 7199.28 499.97 2198.48 16899.90 4499.84 40
Skip Steuart: Steuart Systems R&D Blog.
alignmvs98.81 14698.56 16299.58 9499.43 20299.42 9999.51 15698.96 32898.61 8599.35 17098.92 35094.78 21999.77 19999.35 5698.11 24399.54 164
MGCFI-Net99.01 12198.85 12599.50 12299.42 20499.26 12099.82 1699.48 16098.60 8699.28 18398.81 35597.04 13899.76 20399.29 6697.87 25299.47 189
CVMVSNet98.57 16698.67 14398.30 28999.35 22695.59 34099.50 16399.55 7998.60 8699.39 16099.83 7194.48 24099.45 26898.75 12998.56 21599.85 36
OPM-MVS98.19 19398.10 19198.45 27298.88 32397.07 28799.28 25999.38 23598.57 8899.22 19999.81 9392.12 30599.66 24198.08 20397.54 27098.61 327
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CS-MVS99.50 2099.48 1599.54 10199.76 6599.42 9999.90 199.55 7998.56 8999.78 5199.70 15998.65 6899.79 19299.65 2499.78 10999.41 203
CS-MVS-test99.49 2299.48 1599.54 10199.78 5699.30 11499.89 299.58 6298.56 8999.73 6699.69 16998.55 7599.82 17899.69 2099.85 7499.48 183
API-MVS99.04 11499.03 9299.06 18599.40 21499.31 11199.55 13599.56 7198.54 9199.33 17499.39 27798.76 5299.78 19796.98 29299.78 10998.07 366
ACMM97.58 598.37 18098.34 17398.48 26599.41 20997.10 28399.56 12399.45 20098.53 9299.04 23799.85 5693.00 27899.71 22498.74 13097.45 27998.64 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS99.26 7399.21 7099.40 13699.46 19599.30 11499.56 12399.52 10498.52 9399.44 14499.27 30998.41 8799.86 14599.10 8399.59 14199.04 243
XVG-OURS98.73 15698.68 14298.88 21699.70 10297.73 25898.92 34399.55 7998.52 9399.45 13999.84 6795.27 20099.91 10998.08 20398.84 19999.00 247
Vis-MVSNetpermissive99.12 10098.97 10699.56 9899.78 5699.10 14199.68 6399.66 2898.49 9599.86 3199.87 4794.77 22299.84 15899.19 7599.41 15399.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+-dtu98.78 15098.89 11898.47 27099.33 23196.91 30299.57 11799.30 27998.47 9699.41 15298.99 34096.78 14699.74 20898.73 13299.38 15498.74 272
diffmvspermissive99.14 9299.02 9699.51 11799.61 14598.96 16399.28 25999.49 14898.46 9799.72 7199.71 15596.50 15699.88 13799.31 6399.11 17699.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
plane_prior96.97 29899.21 28498.45 9897.60 264
CNLPA99.14 9298.99 10299.59 9199.58 15499.41 10199.16 28999.44 20898.45 9899.19 20899.49 24898.08 10499.89 13197.73 23699.75 11799.48 183
LS3D99.27 7199.12 7899.74 6199.18 26999.75 3999.56 12399.57 6698.45 9899.49 13499.85 5697.77 11399.94 6998.33 18399.84 8299.52 172
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21499.71 9797.74 25799.12 29899.54 8898.44 10199.42 14899.71 15594.20 24999.92 9898.54 16598.90 19599.00 247
baseline198.31 18397.95 21099.38 14099.50 18498.74 19199.59 10298.93 33098.41 10299.14 21699.60 21194.59 23399.79 19298.48 16893.29 36699.61 144
ACMH+97.24 1097.92 23497.78 22798.32 28799.46 19596.68 31399.56 12399.54 8898.41 10297.79 34699.87 4790.18 34099.66 24198.05 20797.18 29498.62 318
SR-MVS-dyc-post99.45 3599.31 5199.85 2899.76 6599.82 2299.63 8499.52 10498.38 10499.76 6099.82 7998.53 7699.95 5998.61 14999.81 9899.77 82
RE-MVS-def99.34 3999.76 6599.82 2299.63 8499.52 10498.38 10499.76 6099.82 7998.75 5598.61 14999.81 9899.77 82
VPNet97.84 24697.44 26999.01 19199.21 26198.94 16999.48 17999.57 6698.38 10499.28 18399.73 15088.89 35099.39 28099.19 7593.27 36798.71 277
EC-MVSNet99.44 3999.39 3099.58 9499.56 16099.49 8999.88 399.58 6298.38 10499.73 6699.69 16998.20 9699.70 23099.64 2799.82 9599.54 164
APD-MVS_3200maxsize99.48 2699.35 3799.85 2899.76 6599.83 1699.63 8499.54 8898.36 10899.79 4699.82 7998.86 3899.95 5998.62 14699.81 9899.78 80
baseline99.15 9099.02 9699.53 10999.66 12499.14 13799.72 5199.48 16098.35 10999.42 14899.84 6796.07 16999.79 19299.51 4099.14 17499.67 122
test_prior298.96 33698.34 11099.01 24099.52 23998.68 6497.96 21299.74 120
ITE_SJBPF98.08 30499.29 24396.37 32398.92 33398.34 11098.83 26899.75 13991.09 32899.62 25595.82 32697.40 28598.25 359
casdiffmvspermissive99.13 9498.98 10599.56 9899.65 13099.16 13199.56 12399.50 13998.33 11299.41 15299.86 5195.92 17799.83 17199.45 5099.16 17099.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testdata198.85 35098.32 113
IU-MVS99.84 3299.88 899.32 27198.30 11499.84 3398.86 11399.85 7499.89 20
mvsany_test393.77 35393.45 35794.74 36695.78 39588.01 39299.64 8098.25 37798.28 11594.31 38497.97 38568.89 40098.51 37297.50 25890.37 38497.71 380
FIs98.78 15098.63 14899.23 16899.18 26999.54 8099.83 1599.59 5898.28 11598.79 27499.81 9396.75 14899.37 28499.08 8596.38 30798.78 262
MVSMamba_PlusPlus99.46 3299.41 2699.64 7999.68 11199.50 8899.75 4199.50 13998.27 11799.87 2799.92 1598.09 10199.94 6999.65 2499.95 2099.47 189
iter_conf0599.48 2699.40 2799.71 6799.68 11199.61 6799.49 17499.58 6298.27 11799.95 1599.92 1598.09 10199.94 6999.65 2499.96 1499.58 154
VPA-MVSNet98.29 18697.95 21099.30 15499.16 27999.54 8099.50 16399.58 6298.27 11799.35 17099.37 28292.53 29699.65 24699.35 5694.46 34998.72 275
casdiffmvs_mvgpermissive99.15 9099.02 9699.55 10099.66 12499.09 14299.64 8099.56 7198.26 12099.45 13999.87 4796.03 17199.81 18399.54 3599.15 17399.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_vis1_rt95.81 33595.65 33596.32 36199.67 11491.35 38899.49 17496.74 39798.25 12195.24 37798.10 38274.96 39799.90 12099.53 3798.85 19897.70 382
HQP-NCC99.19 26698.98 33298.24 12298.66 290
ACMP_Plane99.19 26698.98 33298.24 12298.66 290
HQP-MVS98.02 21897.90 21598.37 28399.19 26696.83 30598.98 33299.39 22798.24 12298.66 29099.40 27392.47 29899.64 24997.19 28197.58 26698.64 309
FC-MVSNet-test98.75 15398.62 15399.15 17899.08 29699.45 9699.86 1199.60 5498.23 12598.70 28799.82 7996.80 14599.22 31399.07 8696.38 30798.79 261
test_yl98.86 13598.63 14899.54 10199.49 18699.18 12899.50 16399.07 31698.22 12699.61 10799.51 24295.37 19699.84 15898.60 15298.33 22599.59 150
DCV-MVSNet98.86 13598.63 14899.54 10199.49 18699.18 12899.50 16399.07 31698.22 12699.61 10799.51 24295.37 19699.84 15898.60 15298.33 22599.59 150
tt080597.97 22897.77 22998.57 25499.59 15296.61 31699.45 18999.08 31398.21 12898.88 26099.80 10688.66 35499.70 23098.58 15597.72 25899.39 206
SR-MVS99.43 4299.29 5799.86 2199.75 7399.83 1699.59 10299.62 4198.21 12899.73 6699.79 11898.68 6499.96 3098.44 17499.77 11299.79 74
jajsoiax98.43 17298.28 17898.88 21698.60 36098.43 22299.82 1699.53 9998.19 13098.63 29899.80 10693.22 27599.44 27399.22 7397.50 27498.77 265
mvs_tets98.40 17898.23 18098.91 20998.67 35398.51 21499.66 7199.53 9998.19 13098.65 29699.81 9392.75 28499.44 27399.31 6397.48 27898.77 265
VDD-MVS97.73 26597.35 28198.88 21699.47 19497.12 28299.34 24198.85 34698.19 13099.67 8299.85 5682.98 38799.92 9899.49 4598.32 22999.60 146
PC_three_145298.18 13399.84 3399.70 15999.31 398.52 37198.30 18799.80 10299.81 61
AdaColmapbinary99.01 12198.80 13099.66 7099.56 16099.54 8099.18 28799.70 1598.18 13399.35 17099.63 19996.32 16399.90 12097.48 26099.77 11299.55 162
dmvs_re98.08 20698.16 18397.85 31999.55 16494.67 36199.70 5498.92 33398.15 13599.06 23499.35 28893.67 26999.25 30797.77 23197.25 29099.64 136
HFP-MVS99.49 2299.37 3399.86 2199.87 1599.80 2799.66 7199.67 2398.15 13599.68 7899.69 16999.06 1699.96 3098.69 13899.87 5999.84 40
mamv499.33 6199.42 2299.07 18399.67 11497.73 25899.42 20699.60 5498.15 13599.94 1699.91 2298.42 8599.94 6999.72 1899.96 1499.54 164
ACMMPR99.49 2299.36 3599.86 2199.87 1599.79 3099.66 7199.67 2398.15 13599.67 8299.69 16998.95 2799.96 3098.69 13899.87 5999.84 40
mvsmamba98.92 12898.87 12099.08 18199.07 29799.16 13199.88 399.51 11998.15 13599.40 15799.89 3397.12 13299.33 29499.38 5397.40 28598.73 274
region2R99.48 2699.35 3799.87 1199.88 1199.80 2799.65 7799.66 2898.13 14099.66 8799.68 17598.96 2499.96 3098.62 14699.87 5999.84 40
mPP-MVS99.44 3999.30 5399.86 2199.88 1199.79 3099.69 5799.48 16098.12 14199.50 13199.75 13998.78 4899.97 2198.57 15899.89 5399.83 49
ACMMPcopyleft99.45 3599.32 4399.82 4199.89 899.67 5199.62 8999.69 1898.12 14199.63 10099.84 6798.73 6099.96 3098.55 16499.83 9199.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
iter_conf05_1199.40 5299.32 4399.63 8599.53 16799.47 9399.75 4199.52 10498.11 14399.87 2799.85 5697.72 11599.89 13199.56 3299.97 899.53 170
Fast-Effi-MVS+-dtu98.77 15298.83 12998.60 24999.41 20996.99 29699.52 14899.49 14898.11 14399.24 19499.34 29296.96 14299.79 19297.95 21399.45 15099.02 246
CDS-MVSNet99.09 10999.03 9299.25 16499.42 20498.73 19299.45 18999.46 18998.11 14399.46 13899.77 13298.01 10799.37 28498.70 13598.92 19399.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CSCG99.32 6399.32 4399.32 14899.85 2698.29 22799.71 5399.66 2898.11 14399.41 15299.80 10698.37 8999.96 3098.99 9299.96 1499.72 103
EU-MVSNet97.98 22598.03 20197.81 32598.72 34796.65 31499.66 7199.66 2898.09 14798.35 31799.82 7995.25 20398.01 38197.41 26795.30 33498.78 262
MP-MVScopyleft99.33 6199.15 7599.87 1199.88 1199.82 2299.66 7199.46 18998.09 14799.48 13599.74 14498.29 9299.96 3097.93 21499.87 5999.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TAMVS99.12 10099.08 8599.24 16699.46 19598.55 20699.51 15699.46 18998.09 14799.45 13999.82 7998.34 9099.51 26498.70 13598.93 19199.67 122
ACMH97.28 898.10 20397.99 20598.44 27599.41 20996.96 30099.60 9699.56 7198.09 14798.15 33099.91 2290.87 33199.70 23098.88 10597.45 27998.67 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS99.47 3099.33 4199.87 1199.87 1599.81 2599.64 8099.67 2398.08 15199.55 12399.64 19398.91 3499.96 3098.72 13399.90 4499.82 54
PS-MVSNAJss98.92 12898.92 11298.90 21198.78 33798.53 20899.78 3299.54 8898.07 15299.00 24499.76 13699.01 1899.37 28499.13 8097.23 29198.81 260
CP-MVS99.45 3599.32 4399.85 2899.83 3999.75 3999.69 5799.52 10498.07 15299.53 12699.63 19998.93 3399.97 2198.74 13099.91 3699.83 49
OMC-MVS99.08 11099.04 9099.20 17099.67 11498.22 23199.28 25999.52 10498.07 15299.66 8799.81 9397.79 11299.78 19797.79 22799.81 9899.60 146
LF4IMVS97.52 28797.46 26397.70 33098.98 31495.55 34199.29 25498.82 34998.07 15298.66 29099.64 19389.97 34199.61 25697.01 28996.68 29997.94 376
XVG-ACMP-BASELINE97.83 24897.71 23898.20 29699.11 28796.33 32599.41 21099.52 10498.06 15699.05 23699.50 24589.64 34599.73 21497.73 23697.38 28798.53 335
ACMMP_NAP99.47 3099.34 3999.88 599.87 1599.86 1399.47 18599.48 16098.05 15799.76 6099.86 5198.82 4399.93 8798.82 12599.91 3699.84 40
nrg03098.64 16398.42 16899.28 16199.05 30399.69 4799.81 2099.46 18998.04 15899.01 24099.82 7996.69 15099.38 28199.34 6094.59 34898.78 262
WTY-MVS99.06 11298.88 11999.61 8799.62 14199.16 13199.37 22999.56 7198.04 15899.53 12699.62 20496.84 14499.94 6998.85 11598.49 22099.72 103
jason99.13 9499.03 9299.45 12999.46 19598.87 17699.12 29899.26 28898.03 16099.79 4699.65 18797.02 13999.85 15199.02 9099.90 4499.65 129
jason: jason.
IS-MVSNet99.05 11398.87 12099.57 9699.73 8899.32 10799.75 4199.20 29998.02 16199.56 11999.86 5196.54 15599.67 23898.09 19999.13 17599.73 97
USDC97.34 30197.20 29697.75 32799.07 29795.20 35198.51 37899.04 31997.99 16298.31 31999.86 5189.02 34899.55 26295.67 33397.36 28898.49 338
GST-MVS99.40 5299.24 6799.85 2899.86 2099.79 3099.60 9699.67 2397.97 16399.63 10099.68 17598.52 7799.95 5998.38 17799.86 6799.81 61
UniMVSNet (Re)98.29 18698.00 20499.13 17999.00 30899.36 10599.49 17499.51 11997.95 16498.97 24899.13 32596.30 16499.38 28198.36 18193.34 36598.66 305
thres600view797.86 24297.51 25798.92 20599.72 9297.95 24899.59 10298.74 35897.94 16599.27 18898.62 36391.75 31399.86 14593.73 36198.19 23798.96 253
DPM-MVS98.95 12698.71 13999.66 7099.63 13599.55 7898.64 37099.10 31097.93 16699.42 14899.55 22798.67 6699.80 18995.80 32899.68 13199.61 144
thres100view90097.76 25897.45 26498.69 24499.72 9297.86 25499.59 10298.74 35897.93 16699.26 19298.62 36391.75 31399.83 17193.22 36698.18 23898.37 353
Vis-MVSNet (Re-imp)98.87 13298.72 13799.31 14999.71 9798.88 17599.80 2599.44 20897.91 16899.36 16799.78 12495.49 19399.43 27797.91 21599.11 17699.62 142
testing1197.50 29097.10 30198.71 24299.20 26396.91 30299.29 25498.82 34997.89 16998.21 32798.40 37085.63 37499.83 17198.45 17398.04 24599.37 210
DU-MVS98.08 20697.79 22498.96 19898.87 32698.98 15699.41 21099.45 20097.87 17098.71 28199.50 24594.82 21599.22 31398.57 15892.87 37298.68 290
UWE-MVS97.58 28497.29 29198.48 26599.09 29396.25 32899.01 32696.61 39997.86 17199.19 20899.01 33888.72 35199.90 12097.38 26998.69 20799.28 220
lupinMVS99.13 9499.01 10099.46 12899.51 17598.94 16999.05 31399.16 30497.86 17199.80 4499.56 22497.39 12199.86 14598.94 9799.85 7499.58 154
PVSNet96.02 1798.85 14298.84 12798.89 21499.73 8897.28 27398.32 38799.60 5497.86 17199.50 13199.57 22196.75 14899.86 14598.56 16199.70 12799.54 164
AllTest98.87 13298.72 13799.31 14999.86 2098.48 21899.56 12399.61 4897.85 17499.36 16799.85 5695.95 17499.85 15196.66 31099.83 9199.59 150
TestCases99.31 14999.86 2098.48 21899.61 4897.85 17499.36 16799.85 5695.95 17499.85 15196.66 31099.83 9199.59 150
PGM-MVS99.45 3599.31 5199.86 2199.87 1599.78 3699.58 11099.65 3397.84 17699.71 7299.80 10699.12 1399.97 2198.33 18399.87 5999.83 49
tfpn200view997.72 26797.38 27798.72 24099.69 10797.96 24699.50 16398.73 36397.83 17799.17 21398.45 36891.67 31799.83 17193.22 36698.18 23898.37 353
thres40097.77 25797.38 27798.92 20599.69 10797.96 24699.50 16398.73 36397.83 17799.17 21398.45 36891.67 31799.83 17193.22 36698.18 23898.96 253
sss99.17 8699.05 8899.53 10999.62 14198.97 15999.36 23399.62 4197.83 17799.67 8299.65 18797.37 12499.95 5999.19 7599.19 16999.68 119
CLD-MVS98.16 19798.10 19198.33 28599.29 24396.82 30798.75 36099.44 20897.83 17799.13 21799.55 22792.92 28099.67 23898.32 18597.69 25998.48 339
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SF-MVS99.38 5699.24 6799.79 4999.79 5499.68 4899.57 11799.54 8897.82 18199.71 7299.80 10698.95 2799.93 8798.19 19299.84 8299.74 92
mvs_anonymous99.03 11698.99 10299.16 17499.38 21998.52 21299.51 15699.38 23597.79 18299.38 16299.81 9397.30 12799.45 26899.35 5698.99 18899.51 178
OurMVSNet-221017-097.88 23897.77 22998.19 29798.71 34996.53 31899.88 399.00 32397.79 18298.78 27599.94 691.68 31699.35 29197.21 27796.99 29898.69 285
testing9197.44 29797.02 30498.71 24299.18 26996.89 30499.19 28599.04 31997.78 18498.31 31998.29 37585.41 37699.85 15198.01 20997.95 24799.39 206
ab-mvs98.86 13598.63 14899.54 10199.64 13299.19 12699.44 19599.54 8897.77 18599.30 17999.81 9394.20 24999.93 8799.17 7898.82 20199.49 182
testgi97.65 27997.50 25898.13 30399.36 22596.45 32199.42 20699.48 16097.76 18697.87 34299.45 26191.09 32898.81 36394.53 35198.52 21899.13 230
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19898.92 32098.98 15699.48 17999.53 9997.76 18698.71 28199.46 26096.43 16199.22 31398.57 15892.87 37298.69 285
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23898.78 33798.62 20199.65 7799.49 14897.76 18698.49 31099.60 21194.23 24898.97 35598.00 21092.90 37098.70 281
PatchMatch-RL98.84 14598.62 15399.52 11599.71 9799.28 11699.06 31199.77 997.74 18999.50 13199.53 23695.41 19499.84 15897.17 28499.64 13699.44 199
HPM-MVS_fast99.51 1899.40 2799.85 2899.91 199.79 3099.76 3799.56 7197.72 19099.76 6099.75 13999.13 1299.92 9899.07 8699.92 2999.85 36
testing9997.36 30096.94 30798.63 24799.18 26996.70 31099.30 24998.93 33097.71 19198.23 32498.26 37684.92 37999.84 15898.04 20897.85 25499.35 212
testing22297.16 30896.50 31699.16 17499.16 27998.47 22099.27 26498.66 36797.71 19198.23 32498.15 37882.28 39299.84 15897.36 27097.66 26099.18 227
D2MVS98.41 17598.50 16598.15 30299.26 25096.62 31599.40 21899.61 4897.71 19198.98 24699.36 28596.04 17099.67 23898.70 13597.41 28498.15 363
BH-RMVSNet98.41 17598.08 19599.40 13699.41 20998.83 18499.30 24998.77 35497.70 19498.94 25299.65 18792.91 28299.74 20896.52 31399.55 14599.64 136
PAPM_NR99.04 11498.84 12799.66 7099.74 8099.44 9799.39 22299.38 23597.70 19499.28 18399.28 30698.34 9099.85 15196.96 29499.45 15099.69 115
tttt051798.42 17398.14 18699.28 16199.66 12498.38 22599.74 4696.85 39497.68 19699.79 4699.74 14491.39 32499.89 13198.83 12199.56 14399.57 158
thres20097.61 28297.28 29298.62 24899.64 13298.03 24099.26 27398.74 35897.68 19699.09 22798.32 37491.66 31999.81 18392.88 37198.22 23398.03 369
HyFIR lowres test99.11 10498.92 11299.65 7499.90 499.37 10399.02 32199.91 397.67 19899.59 11399.75 13995.90 17999.73 21499.53 3799.02 18799.86 33
EIA-MVS99.18 8499.09 8399.45 12999.49 18699.18 12899.67 6699.53 9997.66 19999.40 15799.44 26298.10 10099.81 18398.94 9799.62 13999.35 212
PVSNet_Blended_VisFu99.36 5899.28 5999.61 8799.86 2099.07 14799.47 18599.93 297.66 19999.71 7299.86 5197.73 11499.96 3099.47 4899.82 9599.79 74
ET-MVSNet_ETH3D96.49 32295.64 33699.05 18799.53 16798.82 18598.84 35197.51 39197.63 20184.77 39999.21 31892.09 30698.91 35998.98 9392.21 37699.41 203
NR-MVSNet97.97 22897.61 24899.02 19098.87 32699.26 12099.47 18599.42 21697.63 20197.08 36299.50 24595.07 20799.13 32797.86 22093.59 36398.68 290
K. test v397.10 31196.79 31198.01 30998.72 34796.33 32599.87 897.05 39397.59 20396.16 37299.80 10688.71 35299.04 33996.69 30896.55 30498.65 307
HPM-MVScopyleft99.42 4499.28 5999.83 4099.90 499.72 4299.81 2099.54 8897.59 20399.68 7899.63 19998.91 3499.94 6998.58 15599.91 3699.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TinyColmap97.12 31096.89 30997.83 32299.07 29795.52 34498.57 37498.74 35897.58 20597.81 34599.79 11888.16 36199.56 26095.10 34497.21 29298.39 351
SCA98.19 19398.16 18398.27 29499.30 23995.55 34199.07 30898.97 32697.57 20699.43 14599.57 22192.72 28799.74 20897.58 24899.20 16899.52 172
EPMVS97.82 25197.65 24398.35 28498.88 32395.98 33399.49 17494.71 40697.57 20699.26 19299.48 25392.46 30199.71 22497.87 21999.08 18199.35 212
testing397.28 30396.76 31298.82 22999.37 22298.07 23999.45 18999.36 24497.56 20897.89 34198.95 34583.70 38598.82 36296.03 32298.56 21599.58 154
MVSFormer99.17 8699.12 7899.29 15799.51 17598.94 16999.88 399.46 18997.55 20999.80 4499.65 18797.39 12199.28 30299.03 8899.85 7499.65 129
test_djsdf98.67 16098.57 16098.98 19598.70 35098.91 17399.88 399.46 18997.55 20999.22 19999.88 3995.73 18599.28 30299.03 8897.62 26398.75 269
COLMAP_ROBcopyleft97.56 698.86 13598.75 13699.17 17399.88 1198.53 20899.34 24199.59 5897.55 20998.70 28799.89 3395.83 18199.90 12098.10 19899.90 4499.08 236
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMP97.20 1198.06 20897.94 21298.45 27299.37 22297.01 29499.44 19599.49 14897.54 21298.45 31299.79 11891.95 30999.72 21897.91 21597.49 27798.62 318
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
9.1499.10 8099.72 9299.40 21899.51 11997.53 21399.64 9799.78 12498.84 4199.91 10997.63 24499.82 95
thisisatest053098.35 18198.03 20199.31 14999.63 13598.56 20599.54 13996.75 39697.53 21399.73 6699.65 18791.25 32799.89 13198.62 14699.56 14399.48 183
ETVMVS97.50 29096.90 30899.29 15799.23 25698.78 19099.32 24498.90 33997.52 21598.56 30598.09 38384.72 38199.69 23597.86 22097.88 25199.39 206
MDTV_nov1_ep1398.32 17599.11 28794.44 36499.27 26498.74 35897.51 21699.40 15799.62 20494.78 21999.76 20397.59 24798.81 203
Effi-MVS+98.81 14698.59 15999.48 12399.46 19599.12 14098.08 39499.50 13997.50 21799.38 16299.41 27096.37 16299.81 18399.11 8298.54 21799.51 178
dmvs_testset95.02 34296.12 32491.72 37799.10 29080.43 40599.58 11097.87 38597.47 21895.22 37898.82 35493.99 25795.18 40288.09 39294.91 34499.56 160
原ACMM199.65 7499.73 8899.33 10699.47 18097.46 21999.12 21999.66 18698.67 6699.91 10997.70 24199.69 12899.71 112
LPG-MVS_test98.22 18998.13 18898.49 26399.33 23197.05 28999.58 11099.55 7997.46 21999.24 19499.83 7192.58 29499.72 21898.09 19997.51 27298.68 290
LGP-MVS_train98.49 26399.33 23197.05 28999.55 7997.46 21999.24 19499.83 7192.58 29499.72 21898.09 19997.51 27298.68 290
SMA-MVScopyleft99.44 3999.30 5399.85 2899.73 8899.83 1699.56 12399.47 18097.45 22299.78 5199.82 7999.18 1099.91 10998.79 12699.89 5399.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XXY-MVS98.38 17998.09 19499.24 16699.26 25099.32 10799.56 12399.55 7997.45 22298.71 28199.83 7193.23 27399.63 25498.88 10596.32 30998.76 267
AUN-MVS96.88 31596.31 32198.59 25099.48 19397.04 29299.27 26499.22 29597.44 22498.51 30899.41 27091.97 30899.66 24197.71 23983.83 39699.07 241
LCM-MVSNet-Re97.83 24898.15 18596.87 35499.30 23992.25 38499.59 10298.26 37697.43 22596.20 37199.13 32596.27 16598.73 36798.17 19598.99 18899.64 136
EPP-MVSNet99.13 9498.99 10299.53 10999.65 13099.06 14899.81 2099.33 26197.43 22599.60 11099.88 3997.14 13199.84 15899.13 8098.94 19099.69 115
PVSNet_BlendedMVS98.86 13598.80 13099.03 18999.76 6598.79 18899.28 25999.91 397.42 22799.67 8299.37 28297.53 11899.88 13798.98 9397.29 28998.42 347
MS-PatchMatch97.24 30797.32 28796.99 34898.45 36793.51 37798.82 35399.32 27197.41 22898.13 33199.30 30288.99 34999.56 26095.68 33299.80 10297.90 379
MVSTER98.49 16798.32 17599.00 19399.35 22699.02 15299.54 13999.38 23597.41 22899.20 20599.73 15093.86 26399.36 28898.87 10897.56 26898.62 318
HY-MVS97.30 798.85 14298.64 14799.47 12699.42 20499.08 14599.62 8999.36 24497.39 23099.28 18399.68 17596.44 16099.92 9898.37 17998.22 23399.40 205
PatchmatchNetpermissive98.31 18398.36 17198.19 29799.16 27995.32 34999.27 26498.92 33397.37 23199.37 16499.58 21794.90 21299.70 23097.43 26699.21 16799.54 164
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
WB-MVSnew97.65 27997.65 24397.63 33198.78 33797.62 26599.13 29598.33 37597.36 23299.07 22998.94 34695.64 18999.15 32392.95 37098.68 20896.12 397
test-LLR98.06 20897.90 21598.55 25998.79 33497.10 28398.67 36697.75 38697.34 23398.61 30198.85 35294.45 24299.45 26897.25 27599.38 15499.10 231
test0.0.03 197.71 27097.42 27498.56 25798.41 36997.82 25598.78 35798.63 36897.34 23398.05 33698.98 34294.45 24298.98 34895.04 34697.15 29598.89 256
PMMVS98.80 14998.62 15399.34 14299.27 24898.70 19498.76 35999.31 27597.34 23399.21 20299.07 33097.20 13099.82 17898.56 16198.87 19699.52 172
MVS_Test99.10 10898.97 10699.48 12399.49 18699.14 13799.67 6699.34 25497.31 23699.58 11599.76 13697.65 11799.82 17898.87 10899.07 18299.46 194
WR-MVS98.06 20897.73 23699.06 18598.86 32999.25 12299.19 28599.35 25097.30 23798.66 29099.43 26493.94 25999.21 31898.58 15594.28 35398.71 277
F-COLMAP99.19 8299.04 9099.64 7999.78 5699.27 11899.42 20699.54 8897.29 23899.41 15299.59 21398.42 8599.93 8798.19 19299.69 12899.73 97
WR-MVS_H98.13 20097.87 22098.90 21199.02 30698.84 18199.70 5499.59 5897.27 23998.40 31499.19 31995.53 19199.23 31098.34 18293.78 36298.61 327
tpmrst98.33 18298.48 16697.90 31799.16 27994.78 35899.31 24799.11 30997.27 23999.45 13999.59 21395.33 19899.84 15898.48 16898.61 20999.09 235
CP-MVSNet98.09 20497.78 22799.01 19198.97 31699.24 12399.67 6699.46 18997.25 24198.48 31199.64 19393.79 26599.06 33798.63 14594.10 35698.74 272
MSDG98.98 12398.80 13099.53 10999.76 6599.19 12698.75 36099.55 7997.25 24199.47 13699.77 13297.82 11199.87 14296.93 29799.90 4499.54 164
BH-untuned98.42 17398.36 17198.59 25099.49 18696.70 31099.27 26499.13 30897.24 24398.80 27299.38 27995.75 18499.74 20897.07 28899.16 17099.33 216
1112_ss98.98 12398.77 13499.59 9199.68 11199.02 15299.25 27599.48 16097.23 24499.13 21799.58 21796.93 14399.90 12098.87 10898.78 20499.84 40
MVP-Stereo97.81 25397.75 23497.99 31297.53 38196.60 31798.96 33698.85 34697.22 24597.23 35799.36 28595.28 19999.46 26795.51 33599.78 10997.92 378
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS97.83 24897.77 22998.02 30899.58 15496.27 32799.02 32199.48 16097.22 24598.71 28199.70 15992.75 28499.13 32797.46 26396.00 31598.67 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MP-MVS-pluss99.37 5799.20 7199.88 599.90 499.87 1299.30 24999.52 10497.18 24799.60 11099.79 11898.79 4799.95 5998.83 12199.91 3699.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
IterMVS-SCA-FT97.82 25197.75 23498.06 30599.57 15696.36 32499.02 32199.49 14897.18 24798.71 28199.72 15492.72 28799.14 32497.44 26595.86 32198.67 297
APD-MVScopyleft99.27 7199.08 8599.84 3999.75 7399.79 3099.50 16399.50 13997.16 24999.77 5599.82 7998.78 4899.94 6997.56 25399.86 6799.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SixPastTwentyTwo97.50 29097.33 28698.03 30698.65 35496.23 32999.77 3498.68 36697.14 25097.90 34099.93 1090.45 33499.18 32197.00 29096.43 30698.67 297
PS-CasMVS97.93 23197.59 25098.95 20098.99 31199.06 14899.68 6399.52 10497.13 25198.31 31999.68 17592.44 30299.05 33898.51 16694.08 35798.75 269
UnsupCasMVSNet_eth96.44 32396.12 32497.40 33998.65 35495.65 33899.36 23399.51 11997.13 25196.04 37498.99 34088.40 35898.17 37796.71 30690.27 38598.40 350
PHI-MVS99.30 6599.17 7499.70 6899.56 16099.52 8699.58 11099.80 897.12 25399.62 10499.73 15098.58 7299.90 12098.61 14999.91 3699.68 119
PVSNet_094.43 1996.09 33195.47 33797.94 31499.31 23894.34 36797.81 39699.70 1597.12 25397.46 35098.75 36089.71 34399.79 19297.69 24281.69 39999.68 119
LTVRE_ROB97.16 1298.02 21897.90 21598.40 28099.23 25696.80 30899.70 5499.60 5497.12 25398.18 32999.70 15991.73 31599.72 21898.39 17697.45 27998.68 290
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl2297.85 24397.64 24698.48 26599.09 29397.87 25298.60 37399.33 26197.11 25698.87 26399.22 31592.38 30399.17 32298.21 19095.99 31698.42 347
GeoE98.85 14298.62 15399.53 10999.61 14599.08 14599.80 2599.51 11997.10 25799.31 17699.78 12495.23 20499.77 19998.21 19099.03 18599.75 88
LFMVS97.90 23797.35 28199.54 10199.52 17299.01 15499.39 22298.24 37897.10 25799.65 9399.79 11884.79 38099.91 10999.28 6798.38 22299.69 115
anonymousdsp98.44 17198.28 17898.94 20198.50 36598.96 16399.77 3499.50 13997.07 25998.87 26399.77 13294.76 22399.28 30298.66 14297.60 26498.57 333
testdata99.54 10199.75 7398.95 16699.51 11997.07 25999.43 14599.70 15998.87 3799.94 6997.76 23299.64 13699.72 103
Syy-MVS97.09 31297.14 29896.95 35199.00 30892.73 38299.29 25499.39 22797.06 26197.41 35198.15 37893.92 26198.68 36891.71 37898.34 22399.45 197
myMVS_eth3d96.89 31496.37 31998.43 27799.00 30897.16 28099.29 25499.39 22797.06 26197.41 35198.15 37883.46 38698.68 36895.27 34298.34 22399.45 197
PEN-MVS97.76 25897.44 26998.72 24098.77 34298.54 20799.78 3299.51 11997.06 26198.29 32299.64 19392.63 29398.89 36198.09 19993.16 36898.72 275
GA-MVS97.85 24397.47 26199.00 19399.38 21997.99 24398.57 37499.15 30597.04 26498.90 25799.30 30289.83 34299.38 28196.70 30798.33 22599.62 142
CPTT-MVS99.11 10498.90 11599.74 6199.80 5299.46 9599.59 10299.49 14897.03 26599.63 10099.69 16997.27 12999.96 3097.82 22599.84 8299.81 61
DP-MVS99.16 8898.95 11099.78 5299.77 6299.53 8399.41 21099.50 13997.03 26599.04 23799.88 3997.39 12199.92 9898.66 14299.90 4499.87 31
Test_1112_low_res98.89 13098.66 14699.57 9699.69 10798.95 16699.03 31899.47 18096.98 26799.15 21599.23 31496.77 14799.89 13198.83 12198.78 20499.86 33
baseline297.87 24097.55 25198.82 22999.18 26998.02 24199.41 21096.58 40096.97 26896.51 36899.17 32093.43 27099.57 25997.71 23999.03 18598.86 257
TESTMET0.1,197.55 28597.27 29598.40 28098.93 31996.53 31898.67 36697.61 38996.96 26998.64 29799.28 30688.63 35699.45 26897.30 27399.38 15499.21 226
CR-MVSNet98.17 19697.93 21398.87 22099.18 26998.49 21699.22 28299.33 26196.96 26999.56 11999.38 27994.33 24599.00 34694.83 34998.58 21299.14 228
miper_enhance_ethall98.16 19798.08 19598.41 27898.96 31797.72 26098.45 38099.32 27196.95 27198.97 24899.17 32097.06 13799.22 31397.86 22095.99 31698.29 356
thisisatest051598.14 19997.79 22499.19 17199.50 18498.50 21598.61 37196.82 39596.95 27199.54 12499.43 26491.66 31999.86 14598.08 20399.51 14799.22 225
IterMVS-LS98.46 17098.42 16898.58 25399.59 15298.00 24299.37 22999.43 21496.94 27399.07 22999.59 21397.87 10999.03 34198.32 18595.62 32798.71 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet98.67 16098.67 14398.68 24599.35 22697.97 24499.50 16399.38 23596.93 27499.20 20599.83 7197.87 10999.36 28898.38 17797.56 26898.71 277
无先验98.99 32999.51 11996.89 27599.93 8797.53 25699.72 103
131498.68 15998.54 16399.11 18098.89 32298.65 19899.27 26499.49 14896.89 27597.99 33799.56 22497.72 11599.83 17197.74 23599.27 16598.84 259
PLCcopyleft97.94 499.02 11798.85 12599.53 10999.66 12499.01 15499.24 27799.52 10496.85 27799.27 18899.48 25398.25 9499.91 10997.76 23299.62 13999.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ZD-MVS99.71 9799.79 3099.61 4896.84 27899.56 11999.54 23298.58 7299.96 3096.93 29799.75 117
MDTV_nov1_ep13_2view95.18 35399.35 23896.84 27899.58 11595.19 20597.82 22599.46 194
our_test_397.65 27997.68 24097.55 33598.62 35794.97 35698.84 35199.30 27996.83 28098.19 32899.34 29297.01 14099.02 34395.00 34796.01 31498.64 309
新几何199.75 5899.75 7399.59 7199.54 8896.76 28199.29 18299.64 19398.43 8399.94 6996.92 29999.66 13399.72 103
PVSNet_Blended99.08 11098.97 10699.42 13499.76 6598.79 18898.78 35799.91 396.74 28299.67 8299.49 24897.53 11899.88 13798.98 9399.85 7499.60 146
TDRefinement95.42 33994.57 34697.97 31389.83 40996.11 33299.48 17998.75 35596.74 28296.68 36799.88 3988.65 35599.71 22498.37 17982.74 39898.09 365
IB-MVS95.67 1896.22 32695.44 33998.57 25499.21 26196.70 31098.65 36997.74 38896.71 28497.27 35698.54 36686.03 37199.92 9898.47 17186.30 39399.10 231
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
旧先验298.96 33696.70 28599.47 13699.94 6998.19 192
DTE-MVSNet97.51 28997.19 29798.46 27198.63 35698.13 23699.84 1299.48 16096.68 28697.97 33999.67 18192.92 28098.56 37096.88 30192.60 37598.70 281
c3_l98.12 20298.04 20098.38 28299.30 23997.69 26498.81 35499.33 26196.67 28798.83 26899.34 29297.11 13398.99 34797.58 24895.34 33398.48 339
FMVSNet398.03 21697.76 23398.84 22799.39 21798.98 15699.40 21899.38 23596.67 28799.07 22999.28 30692.93 27998.98 34897.10 28596.65 30098.56 334
test_fmvs392.10 35991.77 36293.08 37396.19 39286.25 39399.82 1698.62 36996.65 28995.19 38096.90 39355.05 40895.93 40096.63 31290.92 38397.06 389
eth_miper_zixun_eth98.05 21397.96 20898.33 28599.26 25097.38 27198.56 37699.31 27596.65 28998.88 26099.52 23996.58 15399.12 33197.39 26895.53 33098.47 341
v2v48298.06 20897.77 22998.92 20598.90 32198.82 18599.57 11799.36 24496.65 28999.19 20899.35 28894.20 24999.25 30797.72 23894.97 34198.69 285
test-mter97.49 29597.13 30098.55 25998.79 33497.10 28398.67 36697.75 38696.65 28998.61 30198.85 35288.23 36099.45 26897.25 27599.38 15499.10 231
TR-MVS97.76 25897.41 27598.82 22999.06 30097.87 25298.87 34998.56 37096.63 29398.68 28999.22 31592.49 29799.65 24695.40 33997.79 25698.95 255
RPSCF98.22 18998.62 15396.99 34899.82 4291.58 38799.72 5199.44 20896.61 29499.66 8799.89 3395.92 17799.82 17897.46 26399.10 17999.57 158
MAR-MVS98.86 13598.63 14899.54 10199.37 22299.66 5399.45 18999.54 8896.61 29499.01 24099.40 27397.09 13499.86 14597.68 24399.53 14699.10 231
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
miper_ehance_all_eth98.18 19598.10 19198.41 27899.23 25697.72 26098.72 36399.31 27596.60 29698.88 26099.29 30497.29 12899.13 32797.60 24695.99 31698.38 352
CDPH-MVS99.13 9498.91 11499.80 4699.75 7399.71 4499.15 29299.41 21896.60 29699.60 11099.55 22798.83 4299.90 12097.48 26099.83 9199.78 80
FA-MVS(test-final)98.75 15398.53 16499.41 13599.55 16499.05 15099.80 2599.01 32296.59 29899.58 11599.59 21395.39 19599.90 12097.78 22899.49 14899.28 220
test20.0396.12 33095.96 32996.63 35797.44 38295.45 34699.51 15699.38 23596.55 29996.16 37299.25 31293.76 26796.17 39887.35 39594.22 35498.27 357
V4298.06 20897.79 22498.86 22398.98 31498.84 18199.69 5799.34 25496.53 30099.30 17999.37 28294.67 23099.32 29797.57 25294.66 34698.42 347
DIV-MVS_self_test98.01 22197.85 22198.48 26599.24 25597.95 24898.71 36499.35 25096.50 30198.60 30399.54 23295.72 18699.03 34197.21 27795.77 32298.46 344
GBi-Net97.68 27497.48 25998.29 29099.51 17597.26 27699.43 19999.48 16096.49 30299.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 318
test197.68 27497.48 25998.29 29099.51 17597.26 27699.43 19999.48 16096.49 30299.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 318
FMVSNet297.72 26797.36 27998.80 23499.51 17598.84 18199.45 18999.42 21696.49 30298.86 26799.29 30490.26 33698.98 34896.44 31596.56 30398.58 332
miper_lstm_enhance98.00 22397.91 21498.28 29399.34 23097.43 27098.88 34799.36 24496.48 30598.80 27299.55 22795.98 17298.91 35997.27 27495.50 33198.51 337
dp97.75 26297.80 22397.59 33499.10 29093.71 37399.32 24498.88 34296.48 30599.08 22899.55 22792.67 29299.82 17896.52 31398.58 21299.24 224
cl____98.01 22197.84 22298.55 25999.25 25497.97 24498.71 36499.34 25496.47 30798.59 30499.54 23295.65 18899.21 31897.21 27795.77 32298.46 344
pmmvs498.13 20097.90 21598.81 23298.61 35998.87 17698.99 32999.21 29896.44 30899.06 23499.58 21795.90 17999.11 33297.18 28396.11 31398.46 344
tpm97.67 27797.55 25198.03 30699.02 30695.01 35599.43 19998.54 37296.44 30899.12 21999.34 29291.83 31299.60 25797.75 23496.46 30599.48 183
test22299.75 7399.49 8998.91 34599.49 14896.42 31099.34 17399.65 18798.28 9399.69 12899.72 103
BH-w/o98.00 22397.89 21998.32 28799.35 22696.20 33099.01 32698.90 33996.42 31098.38 31599.00 33995.26 20299.72 21896.06 32198.61 20999.03 244
DP-MVS Recon99.12 10098.95 11099.65 7499.74 8099.70 4699.27 26499.57 6696.40 31299.42 14899.68 17598.75 5599.80 18997.98 21199.72 12399.44 199
PAPR98.63 16498.34 17399.51 11799.40 21499.03 15198.80 35599.36 24496.33 31399.00 24499.12 32898.46 8199.84 15895.23 34399.37 16199.66 125
tfpnnormal97.84 24697.47 26198.98 19599.20 26399.22 12599.64 8099.61 4896.32 31498.27 32399.70 15993.35 27299.44 27395.69 33195.40 33298.27 357
pm-mvs197.68 27497.28 29298.88 21699.06 30098.62 20199.50 16399.45 20096.32 31497.87 34299.79 11892.47 29899.35 29197.54 25593.54 36498.67 297
train_agg99.02 11798.77 13499.77 5599.67 11499.65 5799.05 31399.41 21896.28 31698.95 25099.49 24898.76 5299.91 10997.63 24499.72 12399.75 88
test_899.67 11499.61 6799.03 31899.41 21896.28 31698.93 25399.48 25398.76 5299.91 109
v114497.98 22597.69 23998.85 22698.87 32698.66 19799.54 13999.35 25096.27 31899.23 19899.35 28894.67 23099.23 31096.73 30595.16 33798.68 290
v14897.79 25697.55 25198.50 26298.74 34497.72 26099.54 13999.33 26196.26 31998.90 25799.51 24294.68 22999.14 32497.83 22493.15 36998.63 316
ADS-MVSNet298.02 21898.07 19897.87 31899.33 23195.19 35299.23 27899.08 31396.24 32099.10 22499.67 18194.11 25398.93 35896.81 30299.05 18399.48 183
ADS-MVSNet98.20 19298.08 19598.56 25799.33 23196.48 32099.23 27899.15 30596.24 32099.10 22499.67 18194.11 25399.71 22496.81 30299.05 18399.48 183
TEST999.67 11499.65 5799.05 31399.41 21896.22 32298.95 25099.49 24898.77 5199.91 109
v14419297.92 23497.60 24998.87 22098.83 33298.65 19899.55 13599.34 25496.20 32399.32 17599.40 27394.36 24499.26 30696.37 31895.03 34098.70 281
v7n97.87 24097.52 25598.92 20598.76 34398.58 20499.84 1299.46 18996.20 32398.91 25599.70 15994.89 21399.44 27396.03 32293.89 36098.75 269
v119297.81 25397.44 26998.91 20998.88 32398.68 19599.51 15699.34 25496.18 32599.20 20599.34 29294.03 25699.36 28895.32 34195.18 33698.69 285
Anonymous2023120696.22 32696.03 32796.79 35697.31 38694.14 36899.63 8499.08 31396.17 32697.04 36399.06 33293.94 25997.76 38786.96 39695.06 33998.47 341
Patchmatch-test97.93 23197.65 24398.77 23799.18 26997.07 28799.03 31899.14 30796.16 32798.74 27899.57 22194.56 23599.72 21893.36 36599.11 17699.52 172
EG-PatchMatch MVS95.97 33295.69 33496.81 35597.78 37792.79 38199.16 28998.93 33096.16 32794.08 38599.22 31582.72 38899.47 26695.67 33397.50 27498.17 362
v192192097.80 25597.45 26498.84 22798.80 33398.53 20899.52 14899.34 25496.15 32999.24 19499.47 25693.98 25899.29 30195.40 33995.13 33898.69 285
pmmvs597.52 28797.30 28998.16 29998.57 36296.73 30999.27 26498.90 33996.14 33098.37 31699.53 23691.54 32299.14 32497.51 25795.87 32098.63 316
DSMNet-mixed97.25 30597.35 28196.95 35197.84 37693.61 37699.57 11796.63 39896.13 33198.87 26398.61 36594.59 23397.70 38895.08 34598.86 19799.55 162
ppachtmachnet_test97.49 29597.45 26497.61 33398.62 35795.24 35098.80 35599.46 18996.11 33298.22 32699.62 20496.45 15998.97 35593.77 36095.97 31998.61 327
Fast-Effi-MVS+98.70 15798.43 16799.51 11799.51 17599.28 11699.52 14899.47 18096.11 33299.01 24099.34 29296.20 16799.84 15897.88 21798.82 20199.39 206
v124097.69 27297.32 28798.79 23598.85 33098.43 22299.48 17999.36 24496.11 33299.27 18899.36 28593.76 26799.24 30994.46 35295.23 33598.70 281
MIMVSNet97.73 26597.45 26498.57 25499.45 20097.50 26899.02 32198.98 32596.11 33299.41 15299.14 32490.28 33598.74 36695.74 32998.93 19199.47 189
tpmvs97.98 22598.02 20397.84 32199.04 30494.73 35999.31 24799.20 29996.10 33698.76 27799.42 26694.94 20899.81 18396.97 29398.45 22198.97 251
Anonymous20240521198.30 18597.98 20699.26 16399.57 15698.16 23399.41 21098.55 37196.03 33799.19 20899.74 14491.87 31099.92 9899.16 7998.29 23099.70 113
v897.95 23097.63 24798.93 20398.95 31898.81 18799.80 2599.41 21896.03 33799.10 22499.42 26694.92 21199.30 30096.94 29694.08 35798.66 305
bld_raw_dy_0_6499.22 8099.09 8399.60 9099.74 8099.31 11199.42 20699.55 7996.02 33999.59 11399.94 698.03 10699.92 9899.58 3099.98 499.56 160
APD_test195.87 33396.49 31794.00 36899.53 16784.01 39799.54 13999.32 27195.91 34097.99 33799.85 5685.49 37599.88 13791.96 37798.84 19998.12 364
UniMVSNet_ETH3D97.32 30296.81 31098.87 22099.40 21497.46 26999.51 15699.53 9995.86 34198.54 30799.77 13282.44 39099.66 24198.68 14097.52 27199.50 181
v1097.85 24397.52 25598.86 22398.99 31198.67 19699.75 4199.41 21895.70 34298.98 24699.41 27094.75 22499.23 31096.01 32494.63 34798.67 297
Baseline_NR-MVSNet97.76 25897.45 26498.68 24599.09 29398.29 22799.41 21098.85 34695.65 34398.63 29899.67 18194.82 21599.10 33498.07 20692.89 37198.64 309
FE-MVS98.48 16898.17 18299.40 13699.54 16698.96 16399.68 6398.81 35195.54 34499.62 10499.70 15993.82 26499.93 8797.35 27199.46 14999.32 217
TransMVSNet (Re)97.15 30996.58 31498.86 22399.12 28598.85 18099.49 17498.91 33795.48 34597.16 36099.80 10693.38 27199.11 33294.16 35891.73 37798.62 318
VDDNet97.55 28597.02 30499.16 17499.49 18698.12 23799.38 22799.30 27995.35 34699.68 7899.90 2982.62 38999.93 8799.31 6398.13 24299.42 201
test_f91.90 36091.26 36493.84 36995.52 39985.92 39499.69 5798.53 37395.31 34793.87 38696.37 39655.33 40798.27 37595.70 33090.98 38297.32 388
CL-MVSNet_self_test94.49 34893.97 35296.08 36296.16 39393.67 37598.33 38699.38 23595.13 34897.33 35598.15 37892.69 29196.57 39688.67 38979.87 40197.99 373
pmmvs-eth3d95.34 34194.73 34497.15 34395.53 39895.94 33499.35 23899.10 31095.13 34893.55 38797.54 38788.15 36297.91 38394.58 35089.69 38897.61 383
KD-MVS_self_test95.00 34394.34 34896.96 35097.07 39195.39 34899.56 12399.44 20895.11 35097.13 36197.32 39191.86 31197.27 39290.35 38481.23 40098.23 361
FMVSNet196.84 31696.36 32098.29 29099.32 23797.26 27699.43 19999.48 16095.11 35098.55 30699.32 29983.95 38498.98 34895.81 32796.26 31098.62 318
Patchmatch-RL test95.84 33495.81 33395.95 36395.61 39690.57 38998.24 38998.39 37495.10 35295.20 37998.67 36294.78 21997.77 38696.28 31990.02 38699.51 178
WB-MVS93.10 35694.10 34990.12 38295.51 40081.88 40299.73 4999.27 28795.05 35393.09 39098.91 35194.70 22891.89 40676.62 40494.02 35996.58 392
KD-MVS_2432*160094.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
miper_refine_blended94.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
PAPM97.59 28397.09 30299.07 18399.06 30098.26 22998.30 38899.10 31094.88 35698.08 33299.34 29296.27 16599.64 24989.87 38598.92 19399.31 218
SSC-MVS92.73 35893.73 35389.72 38395.02 40281.38 40399.76 3799.23 29394.87 35792.80 39198.93 34794.71 22791.37 40774.49 40693.80 36196.42 393
Patchmtry97.75 26297.40 27698.81 23299.10 29098.87 17699.11 30499.33 26194.83 35898.81 27099.38 27994.33 24599.02 34396.10 32095.57 32898.53 335
PM-MVS92.96 35792.23 36195.14 36595.61 39689.98 39199.37 22998.21 37994.80 35995.04 38297.69 38665.06 40197.90 38494.30 35389.98 38797.54 386
QAPM98.67 16098.30 17799.80 4699.20 26399.67 5199.77 3499.72 1194.74 36098.73 27999.90 2995.78 18399.98 1396.96 29499.88 5699.76 87
CostFormer97.72 26797.73 23697.71 32999.15 28394.02 36999.54 13999.02 32194.67 36199.04 23799.35 28892.35 30499.77 19998.50 16797.94 24899.34 215
gm-plane-assit98.54 36492.96 38094.65 36299.15 32399.64 24997.56 253
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11599.04 30499.53 8399.82 1699.72 1194.56 36398.08 33299.88 3994.73 22599.98 1397.47 26299.76 11599.06 242
new-patchmatchnet94.48 34994.08 35095.67 36495.08 40192.41 38399.18 28799.28 28594.55 36493.49 38897.37 39087.86 36597.01 39491.57 37988.36 38997.61 383
FMVSNet596.43 32496.19 32397.15 34399.11 28795.89 33599.32 24499.52 10494.47 36598.34 31899.07 33087.54 36797.07 39392.61 37595.72 32598.47 341
Anonymous2023121197.88 23897.54 25498.90 21199.71 9798.53 20899.48 17999.57 6694.16 36698.81 27099.68 17593.23 27399.42 27898.84 11894.42 35198.76 267
new_pmnet96.38 32596.03 32797.41 33898.13 37395.16 35499.05 31399.20 29993.94 36797.39 35498.79 35891.61 32199.04 33990.43 38395.77 32298.05 368
N_pmnet94.95 34595.83 33292.31 37598.47 36679.33 40799.12 29892.81 41393.87 36897.68 34799.13 32593.87 26299.01 34591.38 38096.19 31198.59 331
MDA-MVSNet-bldmvs94.96 34493.98 35197.92 31598.24 37197.27 27499.15 29299.33 26193.80 36980.09 40699.03 33588.31 35997.86 38593.49 36494.36 35298.62 318
Anonymous2024052998.09 20497.68 24099.34 14299.66 12498.44 22199.40 21899.43 21493.67 37099.22 19999.89 3390.23 33999.93 8799.26 7198.33 22599.66 125
MIMVSNet195.51 33795.04 34296.92 35397.38 38395.60 33999.52 14899.50 13993.65 37196.97 36599.17 32085.28 37896.56 39788.36 39195.55 32998.60 330
test_040296.64 31996.24 32297.85 31998.85 33096.43 32299.44 19599.26 28893.52 37296.98 36499.52 23988.52 35799.20 32092.58 37697.50 27497.93 377
MDA-MVSNet_test_wron95.45 33894.60 34598.01 30998.16 37297.21 27999.11 30499.24 29293.49 37380.73 40598.98 34293.02 27798.18 37694.22 35794.45 35098.64 309
pmmvs696.53 32196.09 32697.82 32498.69 35195.47 34599.37 22999.47 18093.46 37497.41 35199.78 12487.06 36999.33 29496.92 29992.70 37498.65 307
tpm297.44 29797.34 28497.74 32899.15 28394.36 36699.45 18998.94 32993.45 37598.90 25799.44 26291.35 32599.59 25897.31 27298.07 24499.29 219
YYNet195.36 34094.51 34797.92 31597.89 37597.10 28399.10 30699.23 29393.26 37680.77 40499.04 33492.81 28398.02 38094.30 35394.18 35598.64 309
Anonymous2024052196.20 32895.89 33197.13 34597.72 38094.96 35799.79 3199.29 28393.01 37797.20 35999.03 33589.69 34498.36 37491.16 38196.13 31298.07 366
cascas97.69 27297.43 27398.48 26598.60 36097.30 27298.18 39299.39 22792.96 37898.41 31398.78 35993.77 26699.27 30598.16 19698.61 20998.86 257
dongtai93.26 35592.93 35994.25 36799.39 21785.68 39597.68 39893.27 40992.87 37996.85 36699.39 27782.33 39197.48 39076.78 40397.80 25599.58 154
test_vis3_rt87.04 36685.81 36990.73 38093.99 40481.96 40199.76 3790.23 41592.81 38081.35 40391.56 40340.06 41299.07 33694.27 35588.23 39091.15 403
114514_t98.93 12798.67 14399.72 6599.85 2699.53 8399.62 8999.59 5892.65 38199.71 7299.78 12498.06 10599.90 12098.84 11899.91 3699.74 92
PatchT97.03 31396.44 31898.79 23598.99 31198.34 22699.16 28999.07 31692.13 38299.52 12897.31 39294.54 23898.98 34888.54 39098.73 20699.03 244
TAPA-MVS97.07 1597.74 26497.34 28498.94 20199.70 10297.53 26799.25 27599.51 11991.90 38399.30 17999.63 19998.78 4899.64 24988.09 39299.87 5999.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
JIA-IIPM97.50 29097.02 30498.93 20398.73 34597.80 25699.30 24998.97 32691.73 38498.91 25594.86 39995.10 20699.71 22497.58 24897.98 24699.28 220
tpm cat197.39 29997.36 27997.50 33799.17 27793.73 37299.43 19999.31 27591.27 38598.71 28199.08 32994.31 24799.77 19996.41 31798.50 21999.00 247
PCF-MVS97.08 1497.66 27897.06 30399.47 12699.61 14599.09 14298.04 39599.25 29091.24 38698.51 30899.70 15994.55 23799.91 10992.76 37499.85 7499.42 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UnsupCasMVSNet_bld93.53 35492.51 36096.58 35997.38 38393.82 37098.24 38999.48 16091.10 38793.10 38996.66 39474.89 39898.37 37394.03 35987.71 39197.56 385
gg-mvs-nofinetune96.17 32995.32 34098.73 23998.79 33498.14 23599.38 22794.09 40791.07 38898.07 33591.04 40589.62 34699.35 29196.75 30499.09 18098.68 290
pmmvs394.09 35293.25 35896.60 35894.76 40394.49 36398.92 34398.18 38189.66 38996.48 36998.06 38486.28 37097.33 39189.68 38687.20 39297.97 375
testf190.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
APD_test290.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
kuosan90.92 36390.11 36893.34 37198.78 33785.59 39698.15 39393.16 41189.37 39292.07 39398.38 37181.48 39495.19 40162.54 41097.04 29699.25 223
CMPMVSbinary69.68 2394.13 35194.90 34391.84 37697.24 38780.01 40698.52 37799.48 16089.01 39391.99 39499.67 18185.67 37399.13 32795.44 33797.03 29796.39 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ANet_high77.30 37474.86 37884.62 38875.88 41477.61 40897.63 39993.15 41288.81 39464.27 40989.29 40636.51 41383.93 41175.89 40552.31 40892.33 402
RPMNet96.72 31895.90 33099.19 17199.18 26998.49 21699.22 28299.52 10488.72 39599.56 11997.38 38994.08 25599.95 5986.87 39798.58 21299.14 228
OpenMVS_ROBcopyleft92.34 2094.38 35093.70 35696.41 36097.38 38393.17 37999.06 31198.75 35586.58 39694.84 38398.26 37681.53 39399.32 29789.01 38897.87 25296.76 390
DeepMVS_CXcopyleft93.34 37199.29 24382.27 40099.22 29585.15 39796.33 37099.05 33390.97 33099.73 21493.57 36397.77 25798.01 370
MVS-HIRNet95.75 33695.16 34197.51 33699.30 23993.69 37498.88 34795.78 40185.09 39898.78 27592.65 40191.29 32699.37 28494.85 34899.85 7499.46 194
MVS97.28 30396.55 31599.48 12398.78 33798.95 16699.27 26499.39 22783.53 39998.08 33299.54 23296.97 14199.87 14294.23 35699.16 17099.63 140
PMMVS286.87 36785.37 37191.35 37990.21 40883.80 39898.89 34697.45 39283.13 40091.67 39795.03 39748.49 41094.70 40385.86 40077.62 40295.54 398
Gipumacopyleft90.99 36290.15 36793.51 37098.73 34590.12 39093.98 40399.45 20079.32 40192.28 39294.91 39869.61 39997.98 38287.42 39495.67 32692.45 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FPMVS84.93 36985.65 37082.75 39086.77 41163.39 41698.35 38398.92 33374.11 40283.39 40198.98 34250.85 40992.40 40584.54 40194.97 34192.46 400
LCM-MVSNet86.80 36885.22 37291.53 37887.81 41080.96 40498.23 39198.99 32471.05 40390.13 39896.51 39548.45 41196.88 39590.51 38285.30 39496.76 390
tmp_tt82.80 37081.52 37386.66 38666.61 41668.44 41592.79 40597.92 38368.96 40480.04 40799.85 5685.77 37296.15 39997.86 22043.89 40995.39 399
test_method91.10 36191.36 36390.31 38195.85 39473.72 41494.89 40299.25 29068.39 40595.82 37599.02 33780.50 39598.95 35793.64 36294.89 34598.25 359
MVEpermissive76.82 2176.91 37574.31 37984.70 38785.38 41376.05 41196.88 40193.17 41067.39 40671.28 40889.01 40721.66 41887.69 40871.74 40772.29 40590.35 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 37279.88 37482.81 38990.75 40776.38 41097.69 39795.76 40266.44 40783.52 40092.25 40262.54 40387.16 40968.53 40861.40 40684.89 407
EMVS80.02 37379.22 37582.43 39191.19 40676.40 40997.55 40092.49 41466.36 40883.01 40291.27 40464.63 40285.79 41065.82 40960.65 40785.08 406
PMVScopyleft70.75 2275.98 37674.97 37779.01 39270.98 41555.18 41793.37 40498.21 37965.08 40961.78 41093.83 40021.74 41792.53 40478.59 40291.12 38189.34 405
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 37741.29 38236.84 39386.18 41249.12 41879.73 40622.81 41827.64 41025.46 41328.45 41321.98 41648.89 41255.80 41123.56 41212.51 410
testmvs39.17 37843.78 38025.37 39536.04 41816.84 42098.36 38226.56 41720.06 41138.51 41267.32 40829.64 41515.30 41437.59 41239.90 41043.98 409
test12339.01 37942.50 38128.53 39439.17 41720.91 41998.75 36019.17 41919.83 41238.57 41166.67 40933.16 41415.42 41337.50 41329.66 41149.26 408
EGC-MVSNET82.80 37077.86 37697.62 33297.91 37496.12 33199.33 24399.28 2858.40 41325.05 41499.27 30984.11 38399.33 29489.20 38798.22 23397.42 387
test_blank0.13 3830.17 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4151.57 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k24.64 38032.85 3830.00 3960.00 4190.00 4210.00 40799.51 1190.00 4140.00 41599.56 22496.58 1530.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.27 38211.03 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 41599.01 180.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.30 38111.06 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.58 2170.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS97.16 28095.47 336
MSC_two_6792asdad99.87 1199.51 17599.76 3799.33 26199.96 3098.87 10899.84 8299.89 20
No_MVS99.87 1199.51 17599.76 3799.33 26199.96 3098.87 10899.84 8299.89 20
eth-test20.00 419
eth-test0.00 419
OPU-MVS99.64 7999.56 16099.72 4299.60 9699.70 15999.27 599.42 27898.24 18999.80 10299.79 74
test_0728_SECOND99.91 299.84 3299.89 499.57 11799.51 11999.96 3098.93 9999.86 6799.88 26
GSMVS99.52 172
test_part299.81 4699.83 1699.77 55
sam_mvs194.86 21499.52 172
sam_mvs94.72 226
ambc93.06 37492.68 40582.36 39998.47 37998.73 36395.09 38197.41 38855.55 40699.10 33496.42 31691.32 37897.71 380
MTGPAbinary99.47 180
test_post199.23 27865.14 41194.18 25299.71 22497.58 248
test_post65.99 41094.65 23299.73 214
patchmatchnet-post98.70 36194.79 21899.74 208
GG-mvs-BLEND98.45 27298.55 36398.16 23399.43 19993.68 40897.23 35798.46 36789.30 34799.22 31395.43 33898.22 23397.98 374
MTMP99.54 13998.88 342
test9_res97.49 25999.72 12399.75 88
agg_prior297.21 27799.73 12299.75 88
agg_prior99.67 11499.62 6599.40 22498.87 26399.91 109
test_prior499.56 7698.99 329
test_prior99.68 6999.67 11499.48 9199.56 7199.83 17199.74 92
新几何299.01 326
旧先验199.74 8099.59 7199.54 8899.69 16998.47 8099.68 13199.73 97
原ACMM298.95 339
testdata299.95 5996.67 309
segment_acmp98.96 24
test1299.75 5899.64 13299.61 6799.29 28399.21 20298.38 8899.89 13199.74 12099.74 92
plane_prior799.29 24397.03 293
plane_prior699.27 24896.98 29792.71 289
plane_prior599.47 18099.69 23597.78 22897.63 26198.67 297
plane_prior499.61 208
plane_prior199.26 250
n20.00 420
nn0.00 420
door-mid98.05 382
lessismore_v097.79 32698.69 35195.44 34794.75 40595.71 37699.87 4788.69 35399.32 29795.89 32594.93 34398.62 318
test1199.35 250
door97.92 383
HQP5-MVS96.83 305
BP-MVS97.19 281
HQP4-MVS98.66 29099.64 24998.64 309
HQP3-MVS99.39 22797.58 266
HQP2-MVS92.47 298
NP-MVS99.23 25696.92 30199.40 273
ACMMP++_ref97.19 293
ACMMP++97.43 283
Test By Simon98.75 55