This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MVS_030499.42 3699.32 3499.72 5599.70 9699.27 10399.52 14197.57 36699.51 199.82 2799.78 11198.09 9799.96 2599.97 199.97 599.94 5
test_fmvsm_n_192099.69 199.66 199.78 4399.84 3199.44 8599.58 10799.69 1899.43 299.98 499.91 1398.62 68100.00 199.97 199.95 999.90 7
test_vis1_n_192098.63 15098.40 15799.31 13399.86 2097.94 23599.67 6299.62 3699.43 299.99 299.91 1387.29 350100.00 199.92 499.92 1699.98 2
test_fmvsmvis_n_192099.65 399.61 399.77 4699.38 20399.37 9199.58 10799.62 3699.41 499.87 1899.92 1198.81 44100.00 199.97 199.93 1499.94 5
test_cas_vis1_n_192099.16 7399.01 8599.61 7499.81 4298.86 16599.65 7399.64 3499.39 599.97 799.94 493.20 25999.98 1099.55 1999.91 2199.99 1
DeepPCF-MVS98.18 398.81 12999.37 2497.12 32499.60 13991.75 36298.61 34699.44 19299.35 699.83 2699.85 4798.70 6199.81 16399.02 7799.91 2199.81 51
patch_mono-299.26 6199.62 298.16 27899.81 4294.59 33999.52 14199.64 3499.33 799.73 5299.90 1999.00 2299.99 499.69 999.98 299.89 10
test_fmvs1_n98.41 16298.14 17399.21 15299.82 3897.71 24799.74 4399.49 13499.32 899.99 299.95 285.32 35799.97 1799.82 699.84 6799.96 4
test_fmvs198.88 11498.79 11699.16 15799.69 10097.61 24999.55 13099.49 13499.32 899.98 499.91 1391.41 30699.96 2599.82 699.92 1699.90 7
EPNet98.86 11898.71 12299.30 13897.20 36398.18 21899.62 8698.91 31899.28 1098.63 28399.81 8195.96 16099.99 499.24 5899.72 10899.73 87
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UGNet98.87 11598.69 12499.40 12099.22 24398.72 17899.44 18199.68 2099.24 1199.18 19799.42 25592.74 26999.96 2599.34 4599.94 1399.53 155
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
3Dnovator+97.12 1399.18 6998.97 9199.82 3399.17 25799.68 4899.81 2099.51 10799.20 1298.72 26599.89 2395.68 17599.97 1798.86 10099.86 5299.81 51
CANet_DTU98.97 10898.87 10599.25 14799.33 21598.42 21099.08 28399.30 26399.16 1399.43 13099.75 12895.27 18799.97 1798.56 14899.95 999.36 187
test_vis1_n97.92 22197.44 25599.34 12699.53 15698.08 22499.74 4399.49 13499.15 14100.00 199.94 479.51 36999.98 1099.88 599.76 10099.97 3
DELS-MVS99.48 2099.42 1799.65 6399.72 8699.40 9099.05 28999.66 2799.14 1599.57 10399.80 9498.46 7899.94 6199.57 1799.84 6799.60 136
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test250696.81 29496.65 29297.29 32099.74 7592.21 36199.60 9385.06 38999.13 1699.77 4299.93 787.82 34899.85 13599.38 3899.38 13999.80 60
ECVR-MVScopyleft98.04 20198.05 18698.00 29099.74 7594.37 34299.59 9994.98 37999.13 1699.66 7399.93 790.67 31699.84 14199.40 3799.38 13999.80 60
test111198.04 20198.11 17797.83 30199.74 7593.82 34799.58 10795.40 37899.12 1899.65 7999.93 790.73 31599.84 14199.43 3699.38 13999.82 44
SD-MVS99.41 4199.52 899.05 16899.74 7599.68 4899.46 17599.52 9399.11 1999.88 1399.91 1399.43 197.70 36598.72 12099.93 1499.77 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
mvsany_test199.50 1499.46 1699.62 7399.61 13499.09 12698.94 31699.48 14699.10 2099.96 899.91 1398.85 3999.96 2599.72 899.58 12799.82 44
FOURS199.91 199.93 199.87 999.56 6199.10 2099.81 29
DVP-MVScopyleft99.57 999.47 1499.88 599.85 2599.89 499.57 11499.37 22899.10 2099.81 2999.80 9498.94 2999.96 2598.93 8699.86 5299.81 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.85 2599.89 499.62 8699.50 12699.10 2099.86 1999.82 6898.94 29
3Dnovator97.25 999.24 6599.05 7499.81 3699.12 26499.66 5399.84 1399.74 1099.09 2498.92 23999.90 1995.94 16399.98 1098.95 8399.92 1699.79 64
SED-MVS99.61 499.52 899.88 599.84 3199.90 299.60 9399.48 14699.08 2599.91 999.81 8199.20 799.96 2598.91 8999.85 5999.79 64
test_241102_TWO99.48 14699.08 2599.88 1399.81 8198.94 2999.96 2598.91 8999.84 6799.88 16
test_241102_ONE99.84 3199.90 299.48 14699.07 2799.91 999.74 13399.20 799.76 183
dcpmvs_299.23 6699.58 498.16 27899.83 3694.68 33799.76 3799.52 9399.07 2799.98 499.88 2998.56 7199.93 7499.67 1199.98 299.87 21
DeepC-MVS_fast98.69 199.49 1699.39 2199.77 4699.63 12499.59 6299.36 21799.46 17399.07 2799.79 3499.82 6898.85 3999.92 8598.68 12799.87 4499.82 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVS99.66 299.57 599.92 199.77 5799.89 499.75 4099.56 6199.02 3099.88 1399.85 4799.18 1099.96 2599.22 5999.92 1699.90 7
EPNet_dtu98.03 20397.96 19598.23 27498.27 34595.54 32099.23 25698.75 33399.02 3097.82 32399.71 14496.11 15599.48 24293.04 34799.65 12099.69 105
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EI-MVSNet-UG-set99.58 699.57 599.64 6899.78 5199.14 12199.60 9399.45 18499.01 3299.90 1199.83 6198.98 2399.93 7499.59 1599.95 999.86 23
EI-MVSNet-Vis-set99.58 699.56 799.64 6899.78 5199.15 12099.61 9299.45 18499.01 3299.89 1299.82 6899.01 1899.92 8599.56 1899.95 999.85 26
VNet99.11 8998.90 10099.73 5499.52 16099.56 6799.41 19499.39 21499.01 3299.74 5199.78 11195.56 17799.92 8599.52 2498.18 21899.72 93
save fliter99.76 6099.59 6299.14 27199.40 21199.00 35
TSAR-MVS + GP.99.36 4899.36 2699.36 12599.67 10598.61 18899.07 28499.33 24599.00 3599.82 2799.81 8199.06 1699.84 14199.09 7099.42 13799.65 119
DVP-MVS++99.59 599.50 1099.88 599.51 16299.88 899.87 999.51 10798.99 3799.88 1399.81 8199.27 599.96 2598.85 10299.80 8799.81 51
test_0728_THIRD98.99 3799.81 2999.80 9499.09 1499.96 2598.85 10299.90 2999.88 16
MG-MVS99.13 7999.02 8199.45 11399.57 14598.63 18599.07 28499.34 23898.99 3799.61 9399.82 6897.98 10199.87 12697.00 27199.80 8799.85 26
XVS99.53 1199.42 1799.87 1199.85 2599.83 1699.69 5399.68 2098.98 4099.37 15099.74 13398.81 4499.94 6198.79 11399.86 5299.84 30
X-MVStestdata96.55 29795.45 31599.87 1199.85 2599.83 1699.69 5399.68 2098.98 4099.37 15064.01 38598.81 4499.94 6198.79 11399.86 5299.84 30
MSLP-MVS++99.46 2599.47 1499.44 11799.60 13999.16 11599.41 19499.71 1398.98 4099.45 12499.78 11199.19 999.54 24099.28 5399.84 6799.63 130
test_one_060199.81 4299.88 899.49 13498.97 4399.65 7999.81 8199.09 14
HQP_MVS98.27 17598.22 16898.44 25599.29 22796.97 27999.39 20699.47 16498.97 4399.11 20699.61 19792.71 27299.69 21397.78 21197.63 23398.67 271
plane_prior299.39 20698.97 43
h-mvs3397.70 25897.28 27798.97 18099.70 9697.27 25799.36 21799.45 18498.94 4699.66 7399.64 18294.93 19699.99 499.48 3184.36 36899.65 119
hse-mvs297.50 27597.14 28398.59 23199.49 17397.05 27099.28 23899.22 27898.94 4699.66 7399.42 25594.93 19699.65 22399.48 3183.80 37099.08 208
DeepC-MVS98.35 299.30 5499.19 6199.64 6899.82 3899.23 10899.62 8699.55 6998.94 4699.63 8699.95 295.82 16999.94 6199.37 4099.97 599.73 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJ99.32 5299.32 3499.30 13899.57 14598.94 15598.97 31099.46 17398.92 4999.71 5899.24 30199.01 1899.98 1099.35 4199.66 11898.97 223
TSAR-MVS + MP.99.58 699.50 1099.81 3699.91 199.66 5399.63 8099.39 21498.91 5099.78 3999.85 4799.36 299.94 6198.84 10599.88 4199.82 44
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CHOSEN 280x42099.12 8599.13 6699.08 16399.66 11397.89 23698.43 35699.71 1398.88 5199.62 9099.76 12596.63 14099.70 20899.46 3499.99 199.66 115
xiu_mvs_v1_base_debu99.29 5699.27 5199.34 12699.63 12498.97 14399.12 27499.51 10798.86 5299.84 2199.47 24598.18 9399.99 499.50 2699.31 14799.08 208
xiu_mvs_v1_base99.29 5699.27 5199.34 12699.63 12498.97 14399.12 27499.51 10798.86 5299.84 2199.47 24598.18 9399.99 499.50 2699.31 14799.08 208
xiu_mvs_v1_base_debi99.29 5699.27 5199.34 12699.63 12498.97 14399.12 27499.51 10798.86 5299.84 2199.47 24598.18 9399.99 499.50 2699.31 14799.08 208
NCCC99.34 5099.19 6199.79 4199.61 13499.65 5699.30 23299.48 14698.86 5299.21 18899.63 18898.72 5999.90 10698.25 17499.63 12399.80 60
test_fmvs297.25 28597.30 27597.09 32599.43 18993.31 35599.73 4698.87 32498.83 5699.28 17099.80 9484.45 36099.66 21897.88 20197.45 25398.30 331
CANet99.25 6499.14 6599.59 7799.41 19499.16 11599.35 22299.57 5698.82 5799.51 11599.61 19796.46 14599.95 5299.59 1599.98 299.65 119
CNVR-MVS99.42 3699.30 4399.78 4399.62 13099.71 4499.26 25199.52 9398.82 5799.39 14599.71 14498.96 2499.85 13598.59 14199.80 8799.77 72
MVS_111021_LR99.41 4199.33 3299.65 6399.77 5799.51 7898.94 31699.85 698.82 5799.65 7999.74 13398.51 7599.80 16998.83 10899.89 3899.64 126
MVS_111021_HR99.41 4199.32 3499.66 5999.72 8699.47 8298.95 31499.85 698.82 5799.54 10999.73 13998.51 7599.74 18698.91 8999.88 4199.77 72
xiu_mvs_v2_base99.26 6199.25 5599.29 14199.53 15698.91 15999.02 29799.45 18498.80 6199.71 5899.26 29998.94 2999.98 1099.34 4599.23 15198.98 222
MTAPA99.52 1299.39 2199.89 499.90 499.86 1399.66 6799.47 16498.79 6299.68 6499.81 8198.43 8099.97 1798.88 9299.90 2999.83 39
UA-Net99.42 3699.29 4799.80 3899.62 13099.55 6999.50 15399.70 1598.79 6299.77 4299.96 197.45 11299.96 2598.92 8899.90 2999.89 10
MCST-MVS99.43 3499.30 4399.82 3399.79 4999.74 4199.29 23699.40 21198.79 6299.52 11399.62 19398.91 3499.90 10698.64 13199.75 10299.82 44
SDMVSNet99.11 8998.90 10099.75 4999.81 4299.59 6299.81 2099.65 3298.78 6599.64 8399.88 2994.56 22099.93 7499.67 1198.26 21199.72 93
sd_testset98.75 13698.57 14699.29 14199.81 4298.26 21599.56 12099.62 3698.78 6599.64 8399.88 2992.02 29099.88 12199.54 2098.26 21199.72 93
DPE-MVScopyleft99.46 2599.32 3499.91 299.78 5199.88 899.36 21799.51 10798.73 6799.88 1399.84 5798.72 5999.96 2598.16 18299.87 4499.88 16
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CHOSEN 1792x268899.19 6799.10 6999.45 11399.89 898.52 19899.39 20699.94 198.73 6799.11 20699.89 2395.50 17999.94 6199.50 2699.97 599.89 10
MSP-MVS99.42 3699.27 5199.88 599.89 899.80 2799.67 6299.50 12698.70 6999.77 4299.49 23798.21 9199.95 5298.46 15999.77 9799.88 16
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
plane_prior397.00 27698.69 7099.11 206
HPM-MVS++copyleft99.39 4599.23 5899.87 1199.75 6899.84 1599.43 18599.51 10798.68 7199.27 17499.53 22598.64 6799.96 2598.44 16099.80 8799.79 64
canonicalmvs99.02 10298.86 10899.51 10399.42 19199.32 9599.80 2599.48 14698.63 7299.31 16498.81 33897.09 12499.75 18599.27 5697.90 22799.47 173
SteuartSystems-ACMMP99.54 1099.42 1799.87 1199.82 3899.81 2599.59 9999.51 10798.62 7399.79 3499.83 6199.28 499.97 1798.48 15599.90 2999.84 30
Skip Steuart: Steuart Systems R&D Blog.
alignmvs98.81 12998.56 14899.58 8099.43 18999.42 8799.51 14798.96 31098.61 7499.35 15798.92 33494.78 20699.77 17999.35 4198.11 22399.54 150
CVMVSNet98.57 15298.67 12698.30 26899.35 20995.59 31799.50 15399.55 6998.60 7599.39 14599.83 6194.48 22499.45 24598.75 11698.56 19899.85 26
OPM-MVS98.19 18098.10 17898.45 25298.88 30097.07 26899.28 23899.38 22098.57 7699.22 18599.81 8192.12 28899.66 21898.08 18997.54 24298.61 303
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CS-MVS99.50 1499.48 1299.54 8799.76 6099.42 8799.90 199.55 6998.56 7799.78 3999.70 14898.65 6699.79 17299.65 1399.78 9499.41 182
CS-MVS-test99.49 1699.48 1299.54 8799.78 5199.30 9999.89 299.58 5398.56 7799.73 5299.69 15898.55 7299.82 15899.69 999.85 5999.48 167
API-MVS99.04 9999.03 7899.06 16699.40 19999.31 9899.55 13099.56 6198.54 7999.33 16199.39 26698.76 5299.78 17796.98 27399.78 9498.07 342
ACMM97.58 598.37 16798.34 16098.48 24699.41 19497.10 26499.56 12099.45 18498.53 8099.04 22199.85 4793.00 26199.71 20298.74 11797.45 25398.64 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETV-MVS99.26 6199.21 5999.40 12099.46 18399.30 9999.56 12099.52 9398.52 8199.44 12999.27 29798.41 8399.86 12999.10 6999.59 12699.04 215
XVG-OURS98.73 13998.68 12598.88 19999.70 9697.73 24398.92 31899.55 6998.52 8199.45 12499.84 5795.27 18799.91 9598.08 18998.84 18499.00 219
Vis-MVSNetpermissive99.12 8598.97 9199.56 8499.78 5199.10 12599.68 5999.66 2798.49 8399.86 1999.87 3794.77 20999.84 14199.19 6199.41 13899.74 82
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+-dtu98.78 13398.89 10398.47 25099.33 21596.91 28399.57 11499.30 26398.47 8499.41 13798.99 32796.78 13599.74 18698.73 11999.38 13998.74 245
diffmvspermissive99.14 7799.02 8199.51 10399.61 13498.96 14799.28 23899.49 13498.46 8599.72 5799.71 14496.50 14499.88 12199.31 4899.11 16199.67 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
plane_prior96.97 27999.21 26298.45 8697.60 236
CNLPA99.14 7798.99 8799.59 7799.58 14399.41 8999.16 26699.44 19298.45 8699.19 19499.49 23798.08 9899.89 11697.73 21999.75 10299.48 167
LS3D99.27 5999.12 6799.74 5299.18 25199.75 3999.56 12099.57 5698.45 8699.49 11999.85 4797.77 10699.94 6198.33 16999.84 6799.52 156
XVG-OURS-SEG-HR98.69 14398.62 13798.89 19799.71 9197.74 24299.12 27499.54 7798.44 8999.42 13399.71 14494.20 23299.92 8598.54 15298.90 18099.00 219
baseline198.31 17097.95 19799.38 12499.50 17198.74 17699.59 9998.93 31298.41 9099.14 20199.60 20094.59 21899.79 17298.48 15593.29 33999.61 134
ACMH+97.24 1097.92 22197.78 21498.32 26699.46 18396.68 29199.56 12099.54 7798.41 9097.79 32599.87 3790.18 32399.66 21898.05 19397.18 26998.62 294
SR-MVS-dyc-post99.45 2799.31 4199.85 2599.76 6099.82 2299.63 8099.52 9398.38 9299.76 4799.82 6898.53 7399.95 5298.61 13699.81 8399.77 72
RE-MVS-def99.34 3099.76 6099.82 2299.63 8099.52 9398.38 9299.76 4799.82 6898.75 5598.61 13699.81 8399.77 72
VPNet97.84 23397.44 25599.01 17299.21 24498.94 15599.48 16799.57 5698.38 9299.28 17099.73 13988.89 33399.39 25799.19 6193.27 34098.71 250
EC-MVSNet99.44 3199.39 2199.58 8099.56 14999.49 7999.88 499.58 5398.38 9299.73 5299.69 15898.20 9299.70 20899.64 1499.82 8099.54 150
APD-MVS_3200maxsize99.48 2099.35 2899.85 2599.76 6099.83 1699.63 8099.54 7798.36 9699.79 3499.82 6898.86 3899.95 5298.62 13399.81 8399.78 70
baseline99.15 7599.02 8199.53 9599.66 11399.14 12199.72 4799.48 14698.35 9799.42 13399.84 5796.07 15699.79 17299.51 2599.14 15999.67 112
test_prior298.96 31198.34 9899.01 22499.52 22898.68 6297.96 19699.74 105
ITE_SJBPF98.08 28399.29 22796.37 30198.92 31498.34 9898.83 25399.75 12891.09 31199.62 23295.82 30697.40 25998.25 335
casdiffmvspermissive99.13 7998.98 9099.56 8499.65 11999.16 11599.56 12099.50 12698.33 10099.41 13799.86 4295.92 16499.83 15299.45 3599.16 15599.70 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testdata198.85 32598.32 101
IU-MVS99.84 3199.88 899.32 25598.30 10299.84 2198.86 10099.85 5999.89 10
mvsany_test393.77 33093.45 33294.74 34395.78 37088.01 36899.64 7698.25 35398.28 10394.31 36097.97 35868.89 37398.51 34997.50 24190.37 35797.71 356
FIs98.78 13398.63 13299.23 15199.18 25199.54 7199.83 1699.59 4998.28 10398.79 25999.81 8196.75 13799.37 26399.08 7296.38 28298.78 235
VPA-MVSNet98.29 17397.95 19799.30 13899.16 25999.54 7199.50 15399.58 5398.27 10599.35 15799.37 27092.53 27999.65 22399.35 4194.46 32498.72 248
casdiffmvs_mvgpermissive99.15 7599.02 8199.55 8699.66 11399.09 12699.64 7699.56 6198.26 10699.45 12499.87 3796.03 15899.81 16399.54 2099.15 15899.73 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_vis1_rt95.81 31295.65 31296.32 33899.67 10591.35 36499.49 16396.74 37398.25 10795.24 35398.10 35674.96 37099.90 10699.53 2298.85 18397.70 358
HQP-NCC99.19 24898.98 30798.24 10898.66 275
ACMP_Plane99.19 24898.98 30798.24 10898.66 275
HQP-MVS98.02 20597.90 20298.37 26299.19 24896.83 28498.98 30799.39 21498.24 10898.66 27599.40 26292.47 28199.64 22697.19 26297.58 23898.64 283
FC-MVSNet-test98.75 13698.62 13799.15 16099.08 27499.45 8499.86 1299.60 4698.23 11198.70 27299.82 6896.80 13499.22 29499.07 7396.38 28298.79 234
test_yl98.86 11898.63 13299.54 8799.49 17399.18 11299.50 15399.07 29998.22 11299.61 9399.51 23195.37 18399.84 14198.60 13998.33 20599.59 140
DCV-MVSNet98.86 11898.63 13299.54 8799.49 17399.18 11299.50 15399.07 29998.22 11299.61 9399.51 23195.37 18399.84 14198.60 13998.33 20599.59 140
tt080597.97 21597.77 21698.57 23599.59 14196.61 29499.45 17699.08 29698.21 11498.88 24599.80 9488.66 33699.70 20898.58 14297.72 23199.39 185
SR-MVS99.43 3499.29 4799.86 2099.75 6899.83 1699.59 9999.62 3698.21 11499.73 5299.79 10598.68 6299.96 2598.44 16099.77 9799.79 64
iter_conf0598.55 15398.44 15398.87 20399.34 21398.60 18999.55 13099.42 20098.21 11499.37 15099.77 11993.55 25299.38 25899.30 5197.48 25198.63 291
iter_conf_final98.71 14098.61 14398.99 17699.49 17398.96 14799.63 8099.41 20398.19 11799.39 14599.77 11994.82 20299.38 25899.30 5197.52 24398.64 283
jajsoiax98.43 15998.28 16598.88 19998.60 33698.43 20899.82 1799.53 8898.19 11798.63 28399.80 9493.22 25899.44 25099.22 5997.50 24798.77 238
mvs_tets98.40 16598.23 16798.91 19298.67 32998.51 20099.66 6799.53 8898.19 11798.65 28199.81 8192.75 26799.44 25099.31 4897.48 25198.77 238
VDD-MVS97.73 25297.35 26798.88 19999.47 18297.12 26399.34 22598.85 32598.19 11799.67 6899.85 4782.98 36399.92 8599.49 3098.32 20999.60 136
PC_three_145298.18 12199.84 2199.70 14899.31 398.52 34898.30 17399.80 8799.81 51
AdaColmapbinary99.01 10598.80 11399.66 5999.56 14999.54 7199.18 26499.70 1598.18 12199.35 15799.63 18896.32 15099.90 10697.48 24399.77 9799.55 148
dmvs_re98.08 19398.16 17097.85 29899.55 15394.67 33899.70 5098.92 31498.15 12399.06 21899.35 27693.67 25199.25 28797.77 21497.25 26599.64 126
HFP-MVS99.49 1699.37 2499.86 2099.87 1599.80 2799.66 6799.67 2398.15 12399.68 6499.69 15899.06 1699.96 2598.69 12599.87 4499.84 30
ACMMPR99.49 1699.36 2699.86 2099.87 1599.79 3099.66 6799.67 2398.15 12399.67 6899.69 15898.95 2799.96 2598.69 12599.87 4499.84 30
mvsmamba98.92 11198.87 10599.08 16399.07 27599.16 11599.88 499.51 10798.15 12399.40 14299.89 2397.12 12299.33 27399.38 3897.40 25998.73 247
region2R99.48 2099.35 2899.87 1199.88 1199.80 2799.65 7399.66 2798.13 12799.66 7399.68 16498.96 2499.96 2598.62 13399.87 4499.84 30
mPP-MVS99.44 3199.30 4399.86 2099.88 1199.79 3099.69 5399.48 14698.12 12899.50 11699.75 12898.78 4899.97 1798.57 14599.89 3899.83 39
ACMMPcopyleft99.45 2799.32 3499.82 3399.89 899.67 5199.62 8699.69 1898.12 12899.63 8699.84 5798.73 5899.96 2598.55 15199.83 7699.81 51
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Fast-Effi-MVS+-dtu98.77 13598.83 11298.60 23099.41 19496.99 27799.52 14199.49 13498.11 13099.24 18099.34 28096.96 13199.79 17297.95 19799.45 13599.02 218
CDS-MVSNet99.09 9499.03 7899.25 14799.42 19198.73 17799.45 17699.46 17398.11 13099.46 12399.77 11998.01 10099.37 26398.70 12298.92 17899.66 115
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CSCG99.32 5299.32 3499.32 13299.85 2598.29 21399.71 4999.66 2798.11 13099.41 13799.80 9498.37 8599.96 2598.99 7999.96 899.72 93
EU-MVSNet97.98 21298.03 18897.81 30498.72 32396.65 29299.66 6799.66 2798.09 13398.35 30199.82 6895.25 19098.01 35897.41 25095.30 30998.78 235
MP-MVScopyleft99.33 5199.15 6499.87 1199.88 1199.82 2299.66 6799.46 17398.09 13399.48 12099.74 13398.29 8899.96 2597.93 19899.87 4499.82 44
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TAMVS99.12 8599.08 7299.24 14999.46 18398.55 19299.51 14799.46 17398.09 13399.45 12499.82 6898.34 8699.51 24198.70 12298.93 17699.67 112
ACMH97.28 898.10 19097.99 19298.44 25599.41 19496.96 28199.60 9399.56 6198.09 13398.15 31099.91 1390.87 31499.70 20898.88 9297.45 25398.67 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS99.47 2399.33 3299.87 1199.87 1599.81 2599.64 7699.67 2398.08 13799.55 10899.64 18298.91 3499.96 2598.72 12099.90 2999.82 44
PS-MVSNAJss98.92 11198.92 9798.90 19498.78 31598.53 19499.78 3299.54 7798.07 13899.00 22899.76 12599.01 1899.37 26399.13 6697.23 26698.81 232
CP-MVS99.45 2799.32 3499.85 2599.83 3699.75 3999.69 5399.52 9398.07 13899.53 11199.63 18898.93 3399.97 1798.74 11799.91 2199.83 39
OMC-MVS99.08 9599.04 7699.20 15399.67 10598.22 21799.28 23899.52 9398.07 13899.66 7399.81 8197.79 10599.78 17797.79 21099.81 8399.60 136
LF4IMVS97.52 27297.46 24997.70 30998.98 29095.55 31899.29 23698.82 32898.07 13898.66 27599.64 18289.97 32499.61 23397.01 27096.68 27497.94 352
XVG-ACMP-BASELINE97.83 23597.71 22598.20 27599.11 26696.33 30399.41 19499.52 9398.06 14299.05 22099.50 23489.64 32899.73 19297.73 21997.38 26198.53 311
ACMMP_NAP99.47 2399.34 3099.88 599.87 1599.86 1399.47 17299.48 14698.05 14399.76 4799.86 4298.82 4399.93 7498.82 11299.91 2199.84 30
nrg03098.64 14998.42 15599.28 14499.05 28199.69 4799.81 2099.46 17398.04 14499.01 22499.82 6896.69 13999.38 25899.34 4594.59 32398.78 235
WTY-MVS99.06 9798.88 10499.61 7499.62 13099.16 11599.37 21399.56 6198.04 14499.53 11199.62 19396.84 13399.94 6198.85 10298.49 20299.72 93
jason99.13 7999.03 7899.45 11399.46 18398.87 16299.12 27499.26 27298.03 14699.79 3499.65 17697.02 12799.85 13599.02 7799.90 2999.65 119
jason: jason.
IS-MVSNet99.05 9898.87 10599.57 8299.73 8299.32 9599.75 4099.20 28298.02 14799.56 10499.86 4296.54 14399.67 21598.09 18599.13 16099.73 87
USDC97.34 28297.20 28197.75 30699.07 27595.20 32898.51 35399.04 30297.99 14898.31 30399.86 4289.02 33199.55 23995.67 31397.36 26298.49 314
GST-MVS99.40 4499.24 5699.85 2599.86 2099.79 3099.60 9399.67 2397.97 14999.63 8699.68 16498.52 7499.95 5298.38 16399.86 5299.81 51
UniMVSNet (Re)98.29 17398.00 19199.13 16199.00 28699.36 9399.49 16399.51 10797.95 15098.97 23299.13 31396.30 15199.38 25898.36 16793.34 33898.66 279
thres600view797.86 22997.51 24398.92 18899.72 8697.95 23399.59 9998.74 33697.94 15199.27 17498.62 34491.75 29699.86 12993.73 33998.19 21798.96 225
DPM-MVS98.95 10998.71 12299.66 5999.63 12499.55 6998.64 34599.10 29397.93 15299.42 13399.55 21698.67 6499.80 16995.80 30899.68 11699.61 134
thres100view90097.76 24597.45 25098.69 22699.72 8697.86 23999.59 9998.74 33697.93 15299.26 17898.62 34491.75 29699.83 15293.22 34498.18 21898.37 329
bld_raw_dy_0_6498.69 14398.58 14598.99 17698.88 30098.96 14799.80 2599.41 20397.91 15499.32 16299.87 3795.70 17499.31 27999.09 7097.27 26498.71 250
Vis-MVSNet (Re-imp)98.87 11598.72 12099.31 13399.71 9198.88 16199.80 2599.44 19297.91 15499.36 15499.78 11195.49 18099.43 25497.91 19999.11 16199.62 132
DU-MVS98.08 19397.79 21198.96 18198.87 30498.98 14099.41 19499.45 18497.87 15698.71 26699.50 23494.82 20299.22 29498.57 14592.87 34598.68 264
lupinMVS99.13 7999.01 8599.46 11299.51 16298.94 15599.05 28999.16 28797.86 15799.80 3299.56 21397.39 11399.86 12998.94 8499.85 5999.58 144
PVSNet96.02 1798.85 12598.84 11098.89 19799.73 8297.28 25698.32 36299.60 4697.86 15799.50 11699.57 21096.75 13799.86 12998.56 14899.70 11299.54 150
AllTest98.87 11598.72 12099.31 13399.86 2098.48 20499.56 12099.61 4197.85 15999.36 15499.85 4795.95 16199.85 13596.66 29199.83 7699.59 140
TestCases99.31 13399.86 2098.48 20499.61 4197.85 15999.36 15499.85 4795.95 16199.85 13596.66 29199.83 7699.59 140
PGM-MVS99.45 2799.31 4199.86 2099.87 1599.78 3699.58 10799.65 3297.84 16199.71 5899.80 9499.12 1399.97 1798.33 16999.87 4499.83 39
tfpn200view997.72 25497.38 26398.72 22499.69 10097.96 23199.50 15398.73 34197.83 16299.17 19898.45 34991.67 30099.83 15293.22 34498.18 21898.37 329
thres40097.77 24497.38 26398.92 18899.69 10097.96 23199.50 15398.73 34197.83 16299.17 19898.45 34991.67 30099.83 15293.22 34498.18 21898.96 225
sss99.17 7199.05 7499.53 9599.62 13098.97 14399.36 21799.62 3697.83 16299.67 6899.65 17697.37 11699.95 5299.19 6199.19 15499.68 109
CLD-MVS98.16 18498.10 17898.33 26499.29 22796.82 28698.75 33599.44 19297.83 16299.13 20299.55 21692.92 26399.67 21598.32 17197.69 23298.48 315
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SF-MVS99.38 4699.24 5699.79 4199.79 4999.68 4899.57 11499.54 7797.82 16699.71 5899.80 9498.95 2799.93 7498.19 17899.84 6799.74 82
mvs_anonymous99.03 10198.99 8799.16 15799.38 20398.52 19899.51 14799.38 22097.79 16799.38 14899.81 8197.30 11799.45 24599.35 4198.99 17399.51 162
OurMVSNet-221017-097.88 22597.77 21698.19 27698.71 32596.53 29699.88 499.00 30597.79 16798.78 26099.94 491.68 29999.35 27097.21 25896.99 27398.69 259
ab-mvs98.86 11898.63 13299.54 8799.64 12199.19 11099.44 18199.54 7797.77 16999.30 16699.81 8194.20 23299.93 7499.17 6498.82 18699.49 166
RRT_MVS98.70 14198.66 12998.83 21398.90 29798.45 20699.89 299.28 26997.76 17098.94 23699.92 1196.98 12999.25 28799.28 5397.00 27298.80 233
testgi97.65 26697.50 24498.13 28299.36 20896.45 29999.42 19299.48 14697.76 17097.87 32199.45 25091.09 31198.81 34294.53 32998.52 20099.13 202
UniMVSNet_NR-MVSNet98.22 17697.97 19498.96 18198.92 29698.98 14099.48 16799.53 8897.76 17098.71 26699.46 24996.43 14899.22 29498.57 14592.87 34598.69 259
TranMVSNet+NR-MVSNet97.93 21897.66 22998.76 22298.78 31598.62 18699.65 7399.49 13497.76 17098.49 29499.60 20094.23 23198.97 33598.00 19492.90 34398.70 255
PatchMatch-RL98.84 12898.62 13799.52 10199.71 9199.28 10199.06 28799.77 997.74 17499.50 11699.53 22595.41 18199.84 14197.17 26599.64 12199.44 178
HPM-MVS_fast99.51 1399.40 2099.85 2599.91 199.79 3099.76 3799.56 6197.72 17599.76 4799.75 12899.13 1299.92 8599.07 7399.92 1699.85 26
D2MVS98.41 16298.50 15198.15 28199.26 23496.62 29399.40 20299.61 4197.71 17698.98 23099.36 27396.04 15799.67 21598.70 12297.41 25898.15 339
BH-RMVSNet98.41 16298.08 18299.40 12099.41 19498.83 17099.30 23298.77 33297.70 17798.94 23699.65 17692.91 26599.74 18696.52 29499.55 13099.64 126
PAPM_NR99.04 9998.84 11099.66 5999.74 7599.44 8599.39 20699.38 22097.70 17799.28 17099.28 29498.34 8699.85 13596.96 27599.45 13599.69 105
tttt051798.42 16098.14 17399.28 14499.66 11398.38 21199.74 4396.85 37097.68 17999.79 3499.74 13391.39 30799.89 11698.83 10899.56 12899.57 145
thres20097.61 26897.28 27798.62 22999.64 12198.03 22599.26 25198.74 33697.68 17999.09 21298.32 35391.66 30299.81 16392.88 34898.22 21398.03 345
HyFIR lowres test99.11 8998.92 9799.65 6399.90 499.37 9199.02 29799.91 397.67 18199.59 9999.75 12895.90 16699.73 19299.53 2299.02 17299.86 23
EIA-MVS99.18 6999.09 7199.45 11399.49 17399.18 11299.67 6299.53 8897.66 18299.40 14299.44 25198.10 9699.81 16398.94 8499.62 12499.35 188
PVSNet_Blended_VisFu99.36 4899.28 4999.61 7499.86 2099.07 13199.47 17299.93 297.66 18299.71 5899.86 4297.73 10799.96 2599.47 3399.82 8099.79 64
ET-MVSNet_ETH3D96.49 29995.64 31399.05 16899.53 15698.82 17198.84 32697.51 36797.63 18484.77 37299.21 30692.09 28998.91 33998.98 8092.21 34999.41 182
NR-MVSNet97.97 21597.61 23499.02 17198.87 30499.26 10599.47 17299.42 20097.63 18497.08 33999.50 23495.07 19499.13 30797.86 20493.59 33698.68 264
K. test v397.10 29096.79 29198.01 28898.72 32396.33 30399.87 997.05 36997.59 18696.16 34899.80 9488.71 33499.04 31996.69 28996.55 27998.65 281
HPM-MVScopyleft99.42 3699.28 4999.83 3299.90 499.72 4299.81 2099.54 7797.59 18699.68 6499.63 18898.91 3499.94 6198.58 14299.91 2199.84 30
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TinyColmap97.12 28996.89 28997.83 30199.07 27595.52 32198.57 34998.74 33697.58 18897.81 32499.79 10588.16 34399.56 23795.10 32297.21 26798.39 327
SCA98.19 18098.16 17098.27 27399.30 22395.55 31899.07 28498.97 30897.57 18999.43 13099.57 21092.72 27099.74 18697.58 23199.20 15399.52 156
EPMVS97.82 23897.65 23098.35 26398.88 30095.98 31099.49 16394.71 38197.57 18999.26 17899.48 24292.46 28499.71 20297.87 20399.08 16699.35 188
MVSFormer99.17 7199.12 6799.29 14199.51 16298.94 15599.88 499.46 17397.55 19199.80 3299.65 17697.39 11399.28 28299.03 7599.85 5999.65 119
test_djsdf98.67 14698.57 14698.98 17898.70 32698.91 15999.88 499.46 17397.55 19199.22 18599.88 2995.73 17299.28 28299.03 7597.62 23598.75 242
COLMAP_ROBcopyleft97.56 698.86 11898.75 11999.17 15699.88 1198.53 19499.34 22599.59 4997.55 19198.70 27299.89 2395.83 16899.90 10698.10 18499.90 2999.08 208
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMP97.20 1198.06 19597.94 19998.45 25299.37 20697.01 27599.44 18199.49 13497.54 19498.45 29699.79 10591.95 29299.72 19697.91 19997.49 25098.62 294
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
9.1499.10 6999.72 8699.40 20299.51 10797.53 19599.64 8399.78 11198.84 4199.91 9597.63 22799.82 80
thisisatest053098.35 16898.03 18899.31 13399.63 12498.56 19199.54 13496.75 37297.53 19599.73 5299.65 17691.25 31099.89 11698.62 13399.56 12899.48 167
MDTV_nov1_ep1398.32 16299.11 26694.44 34199.27 24398.74 33697.51 19799.40 14299.62 19394.78 20699.76 18397.59 23098.81 188
Effi-MVS+98.81 12998.59 14499.48 10799.46 18399.12 12498.08 36899.50 12697.50 19899.38 14899.41 25996.37 14999.81 16399.11 6898.54 19999.51 162
dmvs_testset95.02 31996.12 30191.72 35299.10 26980.43 37799.58 10797.87 36197.47 19995.22 35498.82 33793.99 24095.18 37788.09 36894.91 31999.56 147
原ACMM199.65 6399.73 8299.33 9499.47 16497.46 20099.12 20499.66 17598.67 6499.91 9597.70 22499.69 11399.71 102
LPG-MVS_test98.22 17698.13 17598.49 24499.33 21597.05 27099.58 10799.55 6997.46 20099.24 18099.83 6192.58 27799.72 19698.09 18597.51 24598.68 264
LGP-MVS_train98.49 24499.33 21597.05 27099.55 6997.46 20099.24 18099.83 6192.58 27799.72 19698.09 18597.51 24598.68 264
SMA-MVScopyleft99.44 3199.30 4399.85 2599.73 8299.83 1699.56 12099.47 16497.45 20399.78 3999.82 6899.18 1099.91 9598.79 11399.89 3899.81 51
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XXY-MVS98.38 16698.09 18199.24 14999.26 23499.32 9599.56 12099.55 6997.45 20398.71 26699.83 6193.23 25699.63 23198.88 9296.32 28498.76 240
AUN-MVS96.88 29296.31 29898.59 23199.48 18197.04 27399.27 24399.22 27897.44 20598.51 29299.41 25991.97 29199.66 21897.71 22283.83 36999.07 213
LCM-MVSNet-Re97.83 23598.15 17296.87 33199.30 22392.25 36099.59 9998.26 35297.43 20696.20 34799.13 31396.27 15298.73 34698.17 18198.99 17399.64 126
EPP-MVSNet99.13 7998.99 8799.53 9599.65 11999.06 13299.81 2099.33 24597.43 20699.60 9699.88 2997.14 12199.84 14199.13 6698.94 17599.69 105
PVSNet_BlendedMVS98.86 11898.80 11399.03 17099.76 6098.79 17499.28 23899.91 397.42 20899.67 6899.37 27097.53 11099.88 12198.98 8097.29 26398.42 323
MS-PatchMatch97.24 28797.32 27396.99 32698.45 34393.51 35498.82 32899.32 25597.41 20998.13 31199.30 29088.99 33299.56 23795.68 31299.80 8797.90 355
MVSTER98.49 15498.32 16299.00 17499.35 20999.02 13699.54 13499.38 22097.41 20999.20 19199.73 13993.86 24599.36 26798.87 9597.56 24098.62 294
HY-MVS97.30 798.85 12598.64 13199.47 11099.42 19199.08 12999.62 8699.36 22997.39 21199.28 17099.68 16496.44 14799.92 8598.37 16598.22 21399.40 184
PatchmatchNetpermissive98.31 17098.36 15898.19 27699.16 25995.32 32699.27 24398.92 31497.37 21299.37 15099.58 20694.90 19999.70 20897.43 24999.21 15299.54 150
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test-LLR98.06 19597.90 20298.55 24098.79 31297.10 26498.67 34197.75 36297.34 21398.61 28698.85 33594.45 22599.45 24597.25 25699.38 13999.10 203
test0.0.03 197.71 25797.42 26098.56 23898.41 34497.82 24098.78 33298.63 34597.34 21398.05 31698.98 32994.45 22598.98 32895.04 32497.15 27098.89 228
PMMVS98.80 13298.62 13799.34 12699.27 23298.70 17998.76 33499.31 25997.34 21399.21 18899.07 31897.20 12099.82 15898.56 14898.87 18199.52 156
MVS_Test99.10 9398.97 9199.48 10799.49 17399.14 12199.67 6299.34 23897.31 21699.58 10099.76 12597.65 10999.82 15898.87 9599.07 16799.46 175
WR-MVS98.06 19597.73 22399.06 16698.86 30799.25 10699.19 26399.35 23497.30 21798.66 27599.43 25393.94 24299.21 29998.58 14294.28 32898.71 250
F-COLMAP99.19 6799.04 7699.64 6899.78 5199.27 10399.42 19299.54 7797.29 21899.41 13799.59 20298.42 8299.93 7498.19 17899.69 11399.73 87
WR-MVS_H98.13 18797.87 20798.90 19499.02 28498.84 16799.70 5099.59 4997.27 21998.40 29899.19 30795.53 17899.23 29198.34 16893.78 33598.61 303
tpmrst98.33 16998.48 15297.90 29699.16 25994.78 33599.31 23099.11 29297.27 21999.45 12499.59 20295.33 18599.84 14198.48 15598.61 19299.09 207
CP-MVSNet98.09 19197.78 21499.01 17298.97 29299.24 10799.67 6299.46 17397.25 22198.48 29599.64 18293.79 24799.06 31798.63 13294.10 33198.74 245
MSDG98.98 10698.80 11399.53 9599.76 6099.19 11098.75 33599.55 6997.25 22199.47 12199.77 11997.82 10499.87 12696.93 27899.90 2999.54 150
BH-untuned98.42 16098.36 15898.59 23199.49 17396.70 28999.27 24399.13 29197.24 22398.80 25799.38 26795.75 17199.74 18697.07 26999.16 15599.33 191
1112_ss98.98 10698.77 11799.59 7799.68 10499.02 13699.25 25399.48 14697.23 22499.13 20299.58 20696.93 13299.90 10698.87 9598.78 18999.84 30
MVP-Stereo97.81 24097.75 22197.99 29197.53 35696.60 29598.96 31198.85 32597.22 22597.23 33499.36 27395.28 18699.46 24495.51 31599.78 9497.92 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS97.83 23597.77 21698.02 28799.58 14396.27 30599.02 29799.48 14697.22 22598.71 26699.70 14892.75 26799.13 30797.46 24696.00 29098.67 271
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MP-MVS-pluss99.37 4799.20 6099.88 599.90 499.87 1299.30 23299.52 9397.18 22799.60 9699.79 10598.79 4799.95 5298.83 10899.91 2199.83 39
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
IterMVS-SCA-FT97.82 23897.75 22198.06 28499.57 14596.36 30299.02 29799.49 13497.18 22798.71 26699.72 14392.72 27099.14 30497.44 24895.86 29698.67 271
APD-MVScopyleft99.27 5999.08 7299.84 3199.75 6899.79 3099.50 15399.50 12697.16 22999.77 4299.82 6898.78 4899.94 6197.56 23699.86 5299.80 60
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SixPastTwentyTwo97.50 27597.33 27298.03 28598.65 33096.23 30699.77 3498.68 34497.14 23097.90 32099.93 790.45 31799.18 30297.00 27196.43 28198.67 271
PS-CasMVS97.93 21897.59 23698.95 18398.99 28799.06 13299.68 5999.52 9397.13 23198.31 30399.68 16492.44 28599.05 31898.51 15394.08 33298.75 242
UnsupCasMVSNet_eth96.44 30096.12 30197.40 31798.65 33095.65 31599.36 21799.51 10797.13 23196.04 35098.99 32788.40 34098.17 35496.71 28790.27 35898.40 326
PHI-MVS99.30 5499.17 6399.70 5799.56 14999.52 7799.58 10799.80 897.12 23399.62 9099.73 13998.58 6999.90 10698.61 13699.91 2199.68 109
PVSNet_094.43 1996.09 30895.47 31497.94 29399.31 22294.34 34497.81 37099.70 1597.12 23397.46 32998.75 34189.71 32699.79 17297.69 22581.69 37299.68 109
LTVRE_ROB97.16 1298.02 20597.90 20298.40 25999.23 24096.80 28799.70 5099.60 4697.12 23398.18 30999.70 14891.73 29899.72 19698.39 16297.45 25398.68 264
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
cl2297.85 23097.64 23298.48 24699.09 27297.87 23798.60 34899.33 24597.11 23698.87 24899.22 30392.38 28699.17 30398.21 17695.99 29198.42 323
GeoE98.85 12598.62 13799.53 9599.61 13499.08 12999.80 2599.51 10797.10 23799.31 16499.78 11195.23 19199.77 17998.21 17699.03 17099.75 78
LFMVS97.90 22497.35 26799.54 8799.52 16099.01 13899.39 20698.24 35497.10 23799.65 7999.79 10584.79 35999.91 9599.28 5398.38 20499.69 105
anonymousdsp98.44 15898.28 16598.94 18498.50 34198.96 14799.77 3499.50 12697.07 23998.87 24899.77 11994.76 21099.28 28298.66 12997.60 23698.57 309
testdata99.54 8799.75 6898.95 15299.51 10797.07 23999.43 13099.70 14898.87 3799.94 6197.76 21599.64 12199.72 93
PEN-MVS97.76 24597.44 25598.72 22498.77 31898.54 19399.78 3299.51 10797.06 24198.29 30599.64 18292.63 27698.89 34198.09 18593.16 34198.72 248
GA-MVS97.85 23097.47 24799.00 17499.38 20397.99 22898.57 34999.15 28897.04 24298.90 24299.30 29089.83 32599.38 25896.70 28898.33 20599.62 132
CPTT-MVS99.11 8998.90 10099.74 5299.80 4899.46 8399.59 9999.49 13497.03 24399.63 8699.69 15897.27 11999.96 2597.82 20899.84 6799.81 51
DP-MVS99.16 7398.95 9599.78 4399.77 5799.53 7499.41 19499.50 12697.03 24399.04 22199.88 2997.39 11399.92 8598.66 12999.90 2999.87 21
Test_1112_low_res98.89 11398.66 12999.57 8299.69 10098.95 15299.03 29499.47 16496.98 24599.15 20099.23 30296.77 13699.89 11698.83 10898.78 18999.86 23
baseline297.87 22797.55 23798.82 21499.18 25198.02 22699.41 19496.58 37596.97 24696.51 34499.17 30893.43 25399.57 23697.71 22299.03 17098.86 229
TESTMET0.1,197.55 27097.27 28098.40 25998.93 29596.53 29698.67 34197.61 36596.96 24798.64 28299.28 29488.63 33899.45 24597.30 25499.38 13999.21 199
CR-MVSNet98.17 18397.93 20098.87 20399.18 25198.49 20299.22 26099.33 24596.96 24799.56 10499.38 26794.33 22899.00 32694.83 32798.58 19599.14 200
miper_enhance_ethall98.16 18498.08 18298.41 25798.96 29397.72 24498.45 35599.32 25596.95 24998.97 23299.17 30897.06 12699.22 29497.86 20495.99 29198.29 332
thisisatest051598.14 18697.79 21199.19 15499.50 17198.50 20198.61 34696.82 37196.95 24999.54 10999.43 25391.66 30299.86 12998.08 18999.51 13299.22 198
IterMVS-LS98.46 15798.42 15598.58 23499.59 14198.00 22799.37 21399.43 19896.94 25199.07 21499.59 20297.87 10299.03 32198.32 17195.62 30298.71 250
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet98.67 14698.67 12698.68 22799.35 20997.97 22999.50 15399.38 22096.93 25299.20 19199.83 6197.87 10299.36 26798.38 16397.56 24098.71 250
无先验98.99 30499.51 10796.89 25399.93 7497.53 23999.72 93
131498.68 14598.54 14999.11 16298.89 29998.65 18399.27 24399.49 13496.89 25397.99 31799.56 21397.72 10899.83 15297.74 21899.27 15098.84 231
PLCcopyleft97.94 499.02 10298.85 10999.53 9599.66 11399.01 13899.24 25599.52 9396.85 25599.27 17499.48 24298.25 9099.91 9597.76 21599.62 12499.65 119
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ZD-MVS99.71 9199.79 3099.61 4196.84 25699.56 10499.54 22198.58 6999.96 2596.93 27899.75 102
MDTV_nov1_ep13_2view95.18 33099.35 22296.84 25699.58 10095.19 19297.82 20899.46 175
our_test_397.65 26697.68 22797.55 31398.62 33394.97 33398.84 32699.30 26396.83 25898.19 30899.34 28097.01 12899.02 32395.00 32596.01 28998.64 283
新几何199.75 4999.75 6899.59 6299.54 7796.76 25999.29 16999.64 18298.43 8099.94 6196.92 28099.66 11899.72 93
PVSNet_Blended99.08 9598.97 9199.42 11899.76 6098.79 17498.78 33299.91 396.74 26099.67 6899.49 23797.53 11099.88 12198.98 8099.85 5999.60 136
TDRefinement95.42 31694.57 32397.97 29289.83 38296.11 30999.48 16798.75 33396.74 26096.68 34399.88 2988.65 33799.71 20298.37 16582.74 37198.09 341
IB-MVS95.67 1896.22 30395.44 31698.57 23599.21 24496.70 28998.65 34497.74 36496.71 26297.27 33398.54 34786.03 35399.92 8598.47 15886.30 36699.10 203
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
旧先验298.96 31196.70 26399.47 12199.94 6198.19 178
DTE-MVSNet97.51 27497.19 28298.46 25198.63 33298.13 22299.84 1399.48 14696.68 26497.97 31999.67 17092.92 26398.56 34796.88 28292.60 34898.70 255
c3_l98.12 18998.04 18798.38 26199.30 22397.69 24898.81 32999.33 24596.67 26598.83 25399.34 28097.11 12398.99 32797.58 23195.34 30898.48 315
FMVSNet398.03 20397.76 22098.84 21199.39 20298.98 14099.40 20299.38 22096.67 26599.07 21499.28 29492.93 26298.98 32897.10 26696.65 27598.56 310
test_fmvs392.10 33391.77 33693.08 34896.19 36786.25 36999.82 1798.62 34696.65 26795.19 35696.90 36655.05 38195.93 37696.63 29390.92 35697.06 365
eth_miper_zixun_eth98.05 20097.96 19598.33 26499.26 23497.38 25498.56 35199.31 25996.65 26798.88 24599.52 22896.58 14199.12 31197.39 25195.53 30598.47 317
v2v48298.06 19597.77 21698.92 18898.90 29798.82 17199.57 11499.36 22996.65 26799.19 19499.35 27694.20 23299.25 28797.72 22194.97 31698.69 259
test-mter97.49 27897.13 28498.55 24098.79 31297.10 26498.67 34197.75 36296.65 26798.61 28698.85 33588.23 34299.45 24597.25 25699.38 13999.10 203
TR-MVS97.76 24597.41 26198.82 21499.06 27897.87 23798.87 32498.56 34796.63 27198.68 27499.22 30392.49 28099.65 22395.40 31897.79 22998.95 227
RPSCF98.22 17698.62 13796.99 32699.82 3891.58 36399.72 4799.44 19296.61 27299.66 7399.89 2395.92 16499.82 15897.46 24699.10 16499.57 145
MAR-MVS98.86 11898.63 13299.54 8799.37 20699.66 5399.45 17699.54 7796.61 27299.01 22499.40 26297.09 12499.86 12997.68 22699.53 13199.10 203
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
miper_ehance_all_eth98.18 18298.10 17898.41 25799.23 24097.72 24498.72 33899.31 25996.60 27498.88 24599.29 29297.29 11899.13 30797.60 22995.99 29198.38 328
CDPH-MVS99.13 7998.91 9999.80 3899.75 6899.71 4499.15 26999.41 20396.60 27499.60 9699.55 21698.83 4299.90 10697.48 24399.83 7699.78 70
FA-MVS(test-final)98.75 13698.53 15099.41 11999.55 15399.05 13499.80 2599.01 30496.59 27699.58 10099.59 20295.39 18299.90 10697.78 21199.49 13399.28 195
test20.0396.12 30795.96 30696.63 33497.44 35795.45 32399.51 14799.38 22096.55 27796.16 34899.25 30093.76 24996.17 37487.35 37194.22 32998.27 333
V4298.06 19597.79 21198.86 20798.98 29098.84 16799.69 5399.34 23896.53 27899.30 16699.37 27094.67 21599.32 27697.57 23594.66 32198.42 323
DIV-MVS_self_test98.01 20897.85 20898.48 24699.24 23997.95 23398.71 33999.35 23496.50 27998.60 28899.54 22195.72 17399.03 32197.21 25895.77 29798.46 320
GBi-Net97.68 26197.48 24598.29 26999.51 16297.26 25999.43 18599.48 14696.49 28099.07 21499.32 28790.26 31998.98 32897.10 26696.65 27598.62 294
test197.68 26197.48 24598.29 26999.51 16297.26 25999.43 18599.48 14696.49 28099.07 21499.32 28790.26 31998.98 32897.10 26696.65 27598.62 294
FMVSNet297.72 25497.36 26598.80 21899.51 16298.84 16799.45 17699.42 20096.49 28098.86 25299.29 29290.26 31998.98 32896.44 29696.56 27898.58 308
miper_lstm_enhance98.00 21097.91 20198.28 27299.34 21397.43 25398.88 32299.36 22996.48 28398.80 25799.55 21695.98 15998.91 33997.27 25595.50 30698.51 313
dp97.75 24997.80 21097.59 31299.10 26993.71 35099.32 22898.88 32296.48 28399.08 21399.55 21692.67 27599.82 15896.52 29498.58 19599.24 197
cl____98.01 20897.84 20998.55 24099.25 23897.97 22998.71 33999.34 23896.47 28598.59 28999.54 22195.65 17699.21 29997.21 25895.77 29798.46 320
pmmvs498.13 18797.90 20298.81 21698.61 33598.87 16298.99 30499.21 28196.44 28699.06 21899.58 20695.90 16699.11 31297.18 26496.11 28898.46 320
tpm97.67 26497.55 23798.03 28599.02 28495.01 33299.43 18598.54 34996.44 28699.12 20499.34 28091.83 29599.60 23497.75 21796.46 28099.48 167
test22299.75 6899.49 7998.91 32099.49 13496.42 28899.34 16099.65 17698.28 8999.69 11399.72 93
BH-w/o98.00 21097.89 20698.32 26699.35 20996.20 30799.01 30298.90 32096.42 28898.38 29999.00 32695.26 18999.72 19696.06 30298.61 19299.03 216
DP-MVS Recon99.12 8598.95 9599.65 6399.74 7599.70 4699.27 24399.57 5696.40 29099.42 13399.68 16498.75 5599.80 16997.98 19599.72 10899.44 178
PAPR98.63 15098.34 16099.51 10399.40 19999.03 13598.80 33099.36 22996.33 29199.00 22899.12 31698.46 7899.84 14195.23 32199.37 14699.66 115
tfpnnormal97.84 23397.47 24798.98 17899.20 24699.22 10999.64 7699.61 4196.32 29298.27 30699.70 14893.35 25599.44 25095.69 31195.40 30798.27 333
pm-mvs197.68 26197.28 27798.88 19999.06 27898.62 18699.50 15399.45 18496.32 29297.87 32199.79 10592.47 28199.35 27097.54 23893.54 33798.67 271
train_agg99.02 10298.77 11799.77 4699.67 10599.65 5699.05 28999.41 20396.28 29498.95 23499.49 23798.76 5299.91 9597.63 22799.72 10899.75 78
test_899.67 10599.61 6099.03 29499.41 20396.28 29498.93 23899.48 24298.76 5299.91 95
v114497.98 21297.69 22698.85 21098.87 30498.66 18299.54 13499.35 23496.27 29699.23 18499.35 27694.67 21599.23 29196.73 28695.16 31298.68 264
v14897.79 24397.55 23798.50 24398.74 32097.72 24499.54 13499.33 24596.26 29798.90 24299.51 23194.68 21499.14 30497.83 20793.15 34298.63 291
ADS-MVSNet298.02 20598.07 18597.87 29799.33 21595.19 32999.23 25699.08 29696.24 29899.10 20999.67 17094.11 23698.93 33896.81 28399.05 16899.48 167
ADS-MVSNet98.20 17998.08 18298.56 23899.33 21596.48 29899.23 25699.15 28896.24 29899.10 20999.67 17094.11 23699.71 20296.81 28399.05 16899.48 167
TEST999.67 10599.65 5699.05 28999.41 20396.22 30098.95 23499.49 23798.77 5199.91 95
v14419297.92 22197.60 23598.87 20398.83 31098.65 18399.55 13099.34 23896.20 30199.32 16299.40 26294.36 22799.26 28696.37 29995.03 31598.70 255
v7n97.87 22797.52 24198.92 18898.76 31998.58 19099.84 1399.46 17396.20 30198.91 24099.70 14894.89 20099.44 25096.03 30393.89 33498.75 242
v119297.81 24097.44 25598.91 19298.88 30098.68 18099.51 14799.34 23896.18 30399.20 19199.34 28094.03 23999.36 26795.32 32095.18 31198.69 259
Anonymous2023120696.22 30396.03 30496.79 33397.31 36194.14 34599.63 8099.08 29696.17 30497.04 34099.06 32093.94 24297.76 36486.96 37295.06 31498.47 317
Patchmatch-test97.93 21897.65 23098.77 22199.18 25197.07 26899.03 29499.14 29096.16 30598.74 26399.57 21094.56 22099.72 19693.36 34399.11 16199.52 156
EG-PatchMatch MVS95.97 30995.69 31196.81 33297.78 35292.79 35899.16 26698.93 31296.16 30594.08 36199.22 30382.72 36499.47 24395.67 31397.50 24798.17 338
v192192097.80 24297.45 25098.84 21198.80 31198.53 19499.52 14199.34 23896.15 30799.24 18099.47 24593.98 24199.29 28195.40 31895.13 31398.69 259
pmmvs597.52 27297.30 27598.16 27898.57 33896.73 28899.27 24398.90 32096.14 30898.37 30099.53 22591.54 30599.14 30497.51 24095.87 29598.63 291
DSMNet-mixed97.25 28597.35 26796.95 32997.84 35193.61 35399.57 11496.63 37496.13 30998.87 24898.61 34694.59 21897.70 36595.08 32398.86 18299.55 148
ppachtmachnet_test97.49 27897.45 25097.61 31198.62 33395.24 32798.80 33099.46 17396.11 31098.22 30799.62 19396.45 14698.97 33593.77 33895.97 29498.61 303
Fast-Effi-MVS+98.70 14198.43 15499.51 10399.51 16299.28 10199.52 14199.47 16496.11 31099.01 22499.34 28096.20 15499.84 14197.88 20198.82 18699.39 185
v124097.69 25997.32 27398.79 21998.85 30898.43 20899.48 16799.36 22996.11 31099.27 17499.36 27393.76 24999.24 29094.46 33095.23 31098.70 255
MIMVSNet97.73 25297.45 25098.57 23599.45 18897.50 25199.02 29798.98 30796.11 31099.41 13799.14 31290.28 31898.74 34595.74 30998.93 17699.47 173
tpmvs97.98 21298.02 19097.84 30099.04 28294.73 33699.31 23099.20 28296.10 31498.76 26299.42 25594.94 19599.81 16396.97 27498.45 20398.97 223
Anonymous20240521198.30 17297.98 19399.26 14699.57 14598.16 21999.41 19498.55 34896.03 31599.19 19499.74 13391.87 29399.92 8599.16 6598.29 21099.70 103
v897.95 21797.63 23398.93 18698.95 29498.81 17399.80 2599.41 20396.03 31599.10 20999.42 25594.92 19899.30 28096.94 27794.08 33298.66 279
APD_test195.87 31096.49 29594.00 34499.53 15684.01 37199.54 13499.32 25595.91 31797.99 31799.85 4785.49 35699.88 12191.96 35498.84 18498.12 340
UniMVSNet_ETH3D97.32 28396.81 29098.87 20399.40 19997.46 25299.51 14799.53 8895.86 31898.54 29199.77 11982.44 36699.66 21898.68 12797.52 24399.50 165
v1097.85 23097.52 24198.86 20798.99 28798.67 18199.75 4099.41 20395.70 31998.98 23099.41 25994.75 21199.23 29196.01 30494.63 32298.67 271
Baseline_NR-MVSNet97.76 24597.45 25098.68 22799.09 27298.29 21399.41 19498.85 32595.65 32098.63 28399.67 17094.82 20299.10 31498.07 19292.89 34498.64 283
FE-MVS98.48 15598.17 16999.40 12099.54 15598.96 14799.68 5998.81 32995.54 32199.62 9099.70 14893.82 24699.93 7497.35 25299.46 13499.32 192
TransMVSNet (Re)97.15 28896.58 29398.86 20799.12 26498.85 16699.49 16398.91 31895.48 32297.16 33799.80 9493.38 25499.11 31294.16 33691.73 35098.62 294
VDDNet97.55 27097.02 28799.16 15799.49 17398.12 22399.38 21199.30 26395.35 32399.68 6499.90 1982.62 36599.93 7499.31 4898.13 22299.42 180
test_f91.90 33491.26 33893.84 34595.52 37485.92 37099.69 5398.53 35095.31 32493.87 36296.37 36955.33 38098.27 35295.70 31090.98 35597.32 364
CL-MVSNet_self_test94.49 32593.97 32896.08 33996.16 36893.67 35298.33 36199.38 22095.13 32597.33 33298.15 35592.69 27496.57 37288.67 36579.87 37497.99 349
pmmvs-eth3d95.34 31894.73 32197.15 32195.53 37395.94 31199.35 22299.10 29395.13 32593.55 36397.54 36088.15 34497.91 36094.58 32889.69 36197.61 359
KD-MVS_self_test95.00 32094.34 32596.96 32897.07 36695.39 32599.56 12099.44 19295.11 32797.13 33897.32 36491.86 29497.27 36890.35 36081.23 37398.23 337
FMVSNet196.84 29396.36 29798.29 26999.32 22197.26 25999.43 18599.48 14695.11 32798.55 29099.32 28783.95 36298.98 32895.81 30796.26 28598.62 294
Patchmatch-RL test95.84 31195.81 31095.95 34095.61 37190.57 36598.24 36498.39 35195.10 32995.20 35598.67 34394.78 20697.77 36396.28 30090.02 35999.51 162
KD-MVS_2432*160094.62 32393.72 32997.31 31897.19 36495.82 31398.34 35999.20 28295.00 33097.57 32798.35 35187.95 34598.10 35592.87 34977.00 37698.01 346
miper_refine_blended94.62 32393.72 32997.31 31897.19 36495.82 31398.34 35999.20 28295.00 33097.57 32798.35 35187.95 34598.10 35592.87 34977.00 37698.01 346
PAPM97.59 26997.09 28599.07 16599.06 27898.26 21598.30 36399.10 29394.88 33298.08 31299.34 28096.27 15299.64 22689.87 36198.92 17899.31 193
Patchmtry97.75 24997.40 26298.81 21699.10 26998.87 16299.11 28099.33 24594.83 33398.81 25599.38 26794.33 22899.02 32396.10 30195.57 30398.53 311
PM-MVS92.96 33292.23 33595.14 34295.61 37189.98 36799.37 21398.21 35594.80 33495.04 35897.69 35965.06 37497.90 36194.30 33189.98 36097.54 362
QAPM98.67 14698.30 16499.80 3899.20 24699.67 5199.77 3499.72 1194.74 33598.73 26499.90 1995.78 17099.98 1096.96 27599.88 4199.76 77
CostFormer97.72 25497.73 22397.71 30899.15 26294.02 34699.54 13499.02 30394.67 33699.04 22199.35 27692.35 28799.77 17998.50 15497.94 22699.34 190
gm-plane-assit98.54 34092.96 35794.65 33799.15 31199.64 22697.56 236
OpenMVScopyleft96.50 1698.47 15698.12 17699.52 10199.04 28299.53 7499.82 1799.72 1194.56 33898.08 31299.88 2994.73 21299.98 1097.47 24599.76 10099.06 214
new-patchmatchnet94.48 32694.08 32695.67 34195.08 37592.41 35999.18 26499.28 26994.55 33993.49 36497.37 36387.86 34797.01 37091.57 35588.36 36297.61 359
FMVSNet596.43 30196.19 30097.15 32199.11 26695.89 31299.32 22899.52 9394.47 34098.34 30299.07 31887.54 34997.07 36992.61 35295.72 30098.47 317
Anonymous2023121197.88 22597.54 24098.90 19499.71 9198.53 19499.48 16799.57 5694.16 34198.81 25599.68 16493.23 25699.42 25598.84 10594.42 32698.76 240
new_pmnet96.38 30296.03 30497.41 31698.13 34895.16 33199.05 28999.20 28293.94 34297.39 33198.79 33991.61 30499.04 31990.43 35995.77 29798.05 344
N_pmnet94.95 32295.83 30992.31 35098.47 34279.33 37999.12 27492.81 38693.87 34397.68 32699.13 31393.87 24499.01 32591.38 35696.19 28698.59 307
MDA-MVSNet-bldmvs94.96 32193.98 32797.92 29498.24 34697.27 25799.15 26999.33 24593.80 34480.09 37999.03 32388.31 34197.86 36293.49 34294.36 32798.62 294
Anonymous2024052998.09 19197.68 22799.34 12699.66 11398.44 20799.40 20299.43 19893.67 34599.22 18599.89 2390.23 32299.93 7499.26 5798.33 20599.66 115
MIMVSNet195.51 31495.04 31996.92 33097.38 35895.60 31699.52 14199.50 12693.65 34696.97 34299.17 30885.28 35896.56 37388.36 36795.55 30498.60 306
test_040296.64 29696.24 29997.85 29898.85 30896.43 30099.44 18199.26 27293.52 34796.98 34199.52 22888.52 33999.20 30192.58 35397.50 24797.93 353
MDA-MVSNet_test_wron95.45 31594.60 32298.01 28898.16 34797.21 26299.11 28099.24 27693.49 34880.73 37898.98 32993.02 26098.18 35394.22 33594.45 32598.64 283
pmmvs696.53 29896.09 30397.82 30398.69 32795.47 32299.37 21399.47 16493.46 34997.41 33099.78 11187.06 35199.33 27396.92 28092.70 34798.65 281
tpm297.44 28097.34 27097.74 30799.15 26294.36 34399.45 17698.94 31193.45 35098.90 24299.44 25191.35 30899.59 23597.31 25398.07 22499.29 194
YYNet195.36 31794.51 32497.92 29497.89 35097.10 26499.10 28299.23 27793.26 35180.77 37799.04 32292.81 26698.02 35794.30 33194.18 33098.64 283
Anonymous2024052196.20 30595.89 30897.13 32397.72 35594.96 33499.79 3199.29 26793.01 35297.20 33699.03 32389.69 32798.36 35191.16 35796.13 28798.07 342
cascas97.69 25997.43 25998.48 24698.60 33697.30 25598.18 36799.39 21492.96 35398.41 29798.78 34093.77 24899.27 28598.16 18298.61 19298.86 229
test_vis3_rt87.04 33985.81 34290.73 35593.99 37781.96 37599.76 3790.23 38892.81 35481.35 37691.56 37640.06 38599.07 31694.27 33388.23 36391.15 376
114514_t98.93 11098.67 12699.72 5599.85 2599.53 7499.62 8699.59 4992.65 35599.71 5899.78 11198.06 9999.90 10698.84 10599.91 2199.74 82
PatchT97.03 29196.44 29698.79 21998.99 28798.34 21299.16 26699.07 29992.13 35699.52 11397.31 36594.54 22398.98 32888.54 36698.73 19199.03 216
TAPA-MVS97.07 1597.74 25197.34 27098.94 18499.70 9697.53 25099.25 25399.51 10791.90 35799.30 16699.63 18898.78 4899.64 22688.09 36899.87 4499.65 119
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
JIA-IIPM97.50 27597.02 28798.93 18698.73 32197.80 24199.30 23298.97 30891.73 35898.91 24094.86 37295.10 19399.71 20297.58 23197.98 22599.28 195
tpm cat197.39 28197.36 26597.50 31599.17 25793.73 34999.43 18599.31 25991.27 35998.71 26699.08 31794.31 23099.77 17996.41 29898.50 20199.00 219
PCF-MVS97.08 1497.66 26597.06 28699.47 11099.61 13499.09 12698.04 36999.25 27491.24 36098.51 29299.70 14894.55 22299.91 9592.76 35199.85 5999.42 180
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UnsupCasMVSNet_bld93.53 33192.51 33496.58 33697.38 35893.82 34798.24 36499.48 14691.10 36193.10 36596.66 36774.89 37198.37 35094.03 33787.71 36497.56 361
gg-mvs-nofinetune96.17 30695.32 31798.73 22398.79 31298.14 22199.38 21194.09 38291.07 36298.07 31591.04 37889.62 32999.35 27096.75 28599.09 16598.68 264
pmmvs394.09 32993.25 33396.60 33594.76 37694.49 34098.92 31898.18 35789.66 36396.48 34598.06 35786.28 35297.33 36789.68 36287.20 36597.97 351
testf190.42 33790.68 33989.65 35797.78 35273.97 38499.13 27298.81 32989.62 36491.80 36898.93 33262.23 37798.80 34386.61 37491.17 35296.19 369
APD_test290.42 33790.68 33989.65 35797.78 35273.97 38499.13 27298.81 32989.62 36491.80 36898.93 33262.23 37798.80 34386.61 37491.17 35296.19 369
CMPMVSbinary69.68 2394.13 32894.90 32091.84 35197.24 36280.01 37898.52 35299.48 14689.01 36691.99 36799.67 17085.67 35599.13 30795.44 31697.03 27196.39 368
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ANet_high77.30 34774.86 35184.62 36175.88 38777.61 38097.63 37293.15 38588.81 36764.27 38289.29 37936.51 38683.93 38475.89 37952.31 38192.33 375
RPMNet96.72 29595.90 30799.19 15499.18 25198.49 20299.22 26099.52 9388.72 36899.56 10497.38 36294.08 23899.95 5286.87 37398.58 19599.14 200
OpenMVS_ROBcopyleft92.34 2094.38 32793.70 33196.41 33797.38 35893.17 35699.06 28798.75 33386.58 36994.84 35998.26 35481.53 36799.32 27689.01 36497.87 22896.76 366
DeepMVS_CXcopyleft93.34 34799.29 22782.27 37499.22 27885.15 37096.33 34699.05 32190.97 31399.73 19293.57 34197.77 23098.01 346
MVS-HIRNet95.75 31395.16 31897.51 31499.30 22393.69 35198.88 32295.78 37685.09 37198.78 26092.65 37491.29 30999.37 26394.85 32699.85 5999.46 175
MVS97.28 28496.55 29499.48 10798.78 31598.95 15299.27 24399.39 21483.53 37298.08 31299.54 22196.97 13099.87 12694.23 33499.16 15599.63 130
PMMVS286.87 34085.37 34491.35 35490.21 38183.80 37298.89 32197.45 36883.13 37391.67 37095.03 37048.49 38394.70 37885.86 37677.62 37595.54 371
Gipumacopyleft90.99 33690.15 34193.51 34698.73 32190.12 36693.98 37699.45 18479.32 37492.28 36694.91 37169.61 37297.98 35987.42 37095.67 30192.45 374
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FPMVS84.93 34285.65 34382.75 36386.77 38463.39 38898.35 35898.92 31474.11 37583.39 37498.98 32950.85 38292.40 38084.54 37794.97 31692.46 373
LCM-MVSNet86.80 34185.22 34591.53 35387.81 38380.96 37698.23 36698.99 30671.05 37690.13 37196.51 36848.45 38496.88 37190.51 35885.30 36796.76 366
tmp_tt82.80 34381.52 34686.66 35966.61 38968.44 38792.79 37897.92 35968.96 37780.04 38099.85 4785.77 35496.15 37597.86 20443.89 38295.39 372
test_method91.10 33591.36 33790.31 35695.85 36973.72 38694.89 37599.25 27468.39 37895.82 35199.02 32580.50 36898.95 33793.64 34094.89 32098.25 335
MVEpermissive76.82 2176.91 34874.31 35284.70 36085.38 38676.05 38396.88 37493.17 38467.39 37971.28 38189.01 38021.66 39187.69 38171.74 38072.29 37890.35 377
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 34579.88 34782.81 36290.75 38076.38 38297.69 37195.76 37766.44 38083.52 37392.25 37562.54 37687.16 38268.53 38161.40 37984.89 380
EMVS80.02 34679.22 34882.43 36491.19 37976.40 38197.55 37392.49 38766.36 38183.01 37591.27 37764.63 37585.79 38365.82 38260.65 38085.08 379
PMVScopyleft70.75 2275.98 34974.97 35079.01 36570.98 38855.18 38993.37 37798.21 35565.08 38261.78 38393.83 37321.74 39092.53 37978.59 37891.12 35489.34 378
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 35041.29 35536.84 36686.18 38549.12 39079.73 37922.81 39127.64 38325.46 38628.45 38621.98 38948.89 38555.80 38323.56 38512.51 383
testmvs39.17 35143.78 35325.37 36836.04 39116.84 39298.36 35726.56 39020.06 38438.51 38567.32 38129.64 38815.30 38737.59 38439.90 38343.98 382
test12339.01 35242.50 35428.53 36739.17 39020.91 39198.75 33519.17 39219.83 38538.57 38466.67 38233.16 38715.42 38637.50 38529.66 38449.26 381
EGC-MVSNET82.80 34377.86 34997.62 31097.91 34996.12 30899.33 22799.28 2698.40 38625.05 38799.27 29784.11 36199.33 27389.20 36398.22 21397.42 363
test_blank0.13 3560.17 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3881.57 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k24.64 35332.85 3560.00 3690.00 3920.00 3930.00 38099.51 1070.00 3870.00 38899.56 21396.58 1410.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas8.27 35511.03 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 38899.01 180.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.30 35411.06 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38899.58 2060.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.02 3570.03 3600.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.27 3880.00 3920.00 3880.00 3860.00 3860.00 384
MSC_two_6792asdad99.87 1199.51 16299.76 3799.33 24599.96 2598.87 9599.84 6799.89 10
No_MVS99.87 1199.51 16299.76 3799.33 24599.96 2598.87 9599.84 6799.89 10
eth-test20.00 392
eth-test0.00 392
OPU-MVS99.64 6899.56 14999.72 4299.60 9399.70 14899.27 599.42 25598.24 17599.80 8799.79 64
test_0728_SECOND99.91 299.84 3199.89 499.57 11499.51 10799.96 2598.93 8699.86 5299.88 16
GSMVS99.52 156
test_part299.81 4299.83 1699.77 42
sam_mvs194.86 20199.52 156
sam_mvs94.72 213
ambc93.06 34992.68 37882.36 37398.47 35498.73 34195.09 35797.41 36155.55 37999.10 31496.42 29791.32 35197.71 356
MTGPAbinary99.47 164
test_post199.23 25665.14 38494.18 23599.71 20297.58 231
test_post65.99 38394.65 21799.73 192
patchmatchnet-post98.70 34294.79 20599.74 186
GG-mvs-BLEND98.45 25298.55 33998.16 21999.43 18593.68 38397.23 33498.46 34889.30 33099.22 29495.43 31798.22 21397.98 350
MTMP99.54 13498.88 322
test9_res97.49 24299.72 10899.75 78
agg_prior297.21 25899.73 10799.75 78
agg_prior99.67 10599.62 5999.40 21198.87 24899.91 95
test_prior499.56 6798.99 304
test_prior99.68 5899.67 10599.48 8199.56 6199.83 15299.74 82
新几何299.01 302
旧先验199.74 7599.59 6299.54 7799.69 15898.47 7799.68 11699.73 87
原ACMM298.95 314
testdata299.95 5296.67 290
segment_acmp98.96 24
test1299.75 4999.64 12199.61 6099.29 26799.21 18898.38 8499.89 11699.74 10599.74 82
plane_prior799.29 22797.03 274
plane_prior699.27 23296.98 27892.71 272
plane_prior599.47 16499.69 21397.78 21197.63 23398.67 271
plane_prior499.61 197
plane_prior199.26 234
n20.00 393
nn0.00 393
door-mid98.05 358
lessismore_v097.79 30598.69 32795.44 32494.75 38095.71 35299.87 3788.69 33599.32 27695.89 30594.93 31898.62 294
test1199.35 234
door97.92 359
HQP5-MVS96.83 284
BP-MVS97.19 262
HQP4-MVS98.66 27599.64 22698.64 283
HQP3-MVS99.39 21497.58 238
HQP2-MVS92.47 281
NP-MVS99.23 24096.92 28299.40 262
ACMMP++_ref97.19 268
ACMMP++97.43 257
Test By Simon98.75 55