This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
MM98.51 3398.24 4699.33 2699.12 10298.14 5498.93 9597.02 33798.96 199.17 4199.47 2091.97 12999.94 899.85 499.69 5699.91 2
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6798.88 10895.32 37498.86 298.53 8499.44 2794.38 8799.94 899.86 199.70 5499.90 3
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23297.15 9398.84 12298.97 4298.75 399.43 2799.54 893.29 10299.93 2599.64 999.79 2599.89 5
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12697.25 8898.82 12699.34 1098.75 399.80 599.61 495.16 6899.95 799.70 699.80 1999.93 1
test_fmvsm_n_192098.87 1099.01 398.45 9399.42 5596.43 12698.96 8999.36 998.63 599.86 299.51 1395.91 3999.97 199.72 599.75 4198.94 174
test_fmvsmconf0.01_n97.86 6997.54 7898.83 6795.48 35696.83 10498.95 9098.60 14198.58 698.93 5799.55 688.57 20699.91 3999.54 1199.61 7299.77 27
test_fmvsmvis_n_192098.44 4198.51 1898.23 11398.33 17896.15 14198.97 8499.15 2898.55 798.45 8999.55 694.26 9199.97 199.65 799.66 6198.57 208
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7498.89 10399.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 4599.90 3
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7698.88 10899.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 1999.89 5
EPNet97.28 10596.87 10998.51 8694.98 36496.14 14298.90 9997.02 33798.28 1095.99 20299.11 8491.36 14399.89 4796.98 11599.19 11999.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS96.37 297.93 6798.48 2396.30 26799.00 11489.54 34297.43 30498.87 6998.16 1199.26 3699.38 3796.12 3199.64 13198.30 4999.77 3199.72 45
test_vis1_n_192096.71 12996.84 11096.31 26699.11 10489.74 33799.05 6598.58 14998.08 1299.87 199.37 3878.48 34399.93 2599.29 1499.69 5699.27 129
save fliter99.46 4998.38 3598.21 22498.71 11697.95 13
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12299.30 6895.25 18898.85 11899.39 797.94 1499.74 999.62 392.59 11099.91 3999.65 799.52 9299.25 133
patch_mono-298.36 5098.87 696.82 21799.53 3690.68 32398.64 16999.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1699.86 199.82 16
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19698.76 10497.82 1698.45 8998.93 11496.65 1999.83 6997.38 10499.41 10699.71 49
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19598.81 8697.72 1798.76 6899.16 7797.05 1399.78 10198.06 5799.66 6199.69 56
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5798.50 19298.78 10097.72 1798.92 5999.28 5495.27 6299.82 7697.55 9599.77 3199.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 6897.75 28298.89 5997.71 1998.33 9798.97 10594.97 7499.88 5698.42 4499.76 3799.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_cas_vis1_n_192097.38 10197.36 8997.45 17198.95 12193.25 27799.00 7898.53 15997.70 2099.77 799.35 4484.71 28999.85 6398.57 2799.66 6199.26 131
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 10799.09 10695.41 17898.86 11699.37 897.69 2199.78 699.61 492.38 11399.91 3999.58 1099.43 10499.49 96
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7498.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4299.81 1299.70 53
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4299.80 1999.83 13
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8498.58 14997.62 2499.45 2599.46 2497.42 999.94 898.47 3899.81 1299.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20398.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 8799.84 1099.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4699.26 2798.88 6297.52 2999.41 2898.78 13096.00 3599.79 9897.79 7699.59 7699.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15498.66 13197.51 3098.15 10098.83 12595.70 4599.92 3197.53 9799.67 5999.66 68
fmvsm_s_conf0.1_n98.18 5998.21 5198.11 12698.54 15895.24 18998.87 11399.24 1797.50 3199.70 1399.67 191.33 14599.89 4799.47 1299.54 8999.21 138
h-mvs3396.17 15395.62 16897.81 14499.03 11094.45 22898.64 16998.75 10697.48 3298.67 7398.72 13989.76 17499.86 6297.95 6281.59 37799.11 155
hse-mvs295.71 17895.30 18396.93 20998.50 16093.53 26398.36 20598.10 24597.48 3298.67 7397.99 21289.76 17499.02 21797.95 6280.91 38198.22 223
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
CS-MVS-test98.49 3598.50 2098.46 9299.20 9297.05 9599.64 498.50 16997.45 3598.88 6099.14 8195.25 6499.15 19598.83 2299.56 8699.20 139
XVS98.70 1498.49 2199.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8699.20 6795.90 4199.89 4797.85 7199.74 4599.78 21
X-MVStestdata94.06 28992.30 31299.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8643.50 40395.90 4199.89 4797.85 7199.74 4599.78 21
UGNet96.78 12796.30 13598.19 11898.24 18495.89 16198.88 10898.93 5097.39 3896.81 17197.84 22682.60 31699.90 4596.53 14099.49 9698.79 184
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1298.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2199.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5898.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 7799.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
CANet98.05 6297.76 6798.90 6598.73 13897.27 8398.35 20698.78 10097.37 4197.72 13398.96 11091.53 14199.92 3198.79 2399.65 6499.51 89
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 3899.72 5199.74 37
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 3899.86 199.85 10
PS-MVSNAJ97.73 7597.77 6697.62 16498.68 14695.58 17097.34 31398.51 16497.29 4498.66 7797.88 22294.51 8199.90 4597.87 7099.17 12097.39 248
SD-MVS98.64 1698.68 1198.53 8599.33 5998.36 4098.90 9998.85 7897.28 4599.72 1299.39 3296.63 2097.60 35098.17 5299.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++98.56 2998.57 1598.55 8199.26 8096.80 10598.71 15599.05 3697.28 4598.84 6299.28 5496.47 2399.40 16998.52 3699.70 5499.47 100
HQP_MVS96.14 15595.90 15196.85 21597.42 25994.60 22498.80 13598.56 15397.28 4595.34 21498.28 18787.09 24199.03 21496.07 15294.27 24796.92 266
plane_prior298.80 13597.28 45
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 9998.74 10897.27 4998.02 11199.39 3294.81 7799.96 497.91 6699.79 2599.77 27
fmvsm_s_conf0.1_n_a98.08 6098.04 6098.21 11497.66 23895.39 17998.89 10399.17 2697.24 5099.76 899.67 191.13 15099.88 5699.39 1399.41 10699.35 115
CANet_DTU96.96 11996.55 12598.21 11498.17 19796.07 14497.98 25698.21 22097.24 5097.13 15398.93 11486.88 24699.91 3995.00 19199.37 11298.66 199
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7299.46 4996.49 12398.30 21598.69 12097.21 5298.84 6299.36 4295.41 5399.78 10198.62 2699.65 6499.80 18
MVS_111021_HR98.47 3898.34 3598.88 6699.22 8997.32 8197.91 26399.58 397.20 5398.33 9799.00 10395.99 3699.64 13198.05 5999.76 3799.69 56
TSAR-MVS + GP.98.38 4798.24 4698.81 6899.22 8997.25 8898.11 24198.29 21197.19 5498.99 5299.02 9896.22 2699.67 12698.52 3698.56 14999.51 89
CS-MVS98.44 4198.49 2198.31 10599.08 10796.73 10999.67 398.47 17597.17 5598.94 5399.10 8695.73 4499.13 19898.71 2499.49 9699.09 157
EI-MVSNet-UG-set98.41 4598.34 3598.61 7799.45 5296.32 13498.28 21898.68 12397.17 5598.74 6999.37 3895.25 6499.79 9898.57 2799.54 8999.73 42
xiu_mvs_v2_base97.66 8197.70 6997.56 16898.61 15395.46 17697.44 30298.46 17697.15 5798.65 7898.15 19994.33 8899.80 8897.84 7398.66 14497.41 246
MVS_111021_LR98.34 5398.23 4898.67 7499.27 7896.90 10197.95 25899.58 397.14 5898.44 9199.01 10295.03 7399.62 13797.91 6699.75 4199.50 91
xiu_mvs_v1_base_debu97.60 8497.56 7597.72 15298.35 17195.98 14697.86 27298.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 250
xiu_mvs_v1_base97.60 8497.56 7597.72 15298.35 17195.98 14697.86 27298.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 250
xiu_mvs_v1_base_debi97.60 8497.56 7597.72 15298.35 17195.98 14697.86 27298.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 250
3Dnovator+94.38 697.43 9796.78 11499.38 1897.83 22398.52 2899.37 1498.71 11697.09 6292.99 30699.13 8289.36 18399.89 4796.97 11699.57 8099.71 49
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20498.68 12397.04 6398.52 8598.80 12896.78 1699.83 6997.93 6499.61 7299.74 37
plane_prior394.61 22297.02 6495.34 214
3Dnovator94.51 597.46 9296.93 10699.07 5397.78 22697.64 6999.35 1799.06 3497.02 6493.75 27999.16 7789.25 18799.92 3197.22 10999.75 4199.64 71
test111195.94 16595.78 15596.41 25998.99 11890.12 33299.04 6892.45 39696.99 6698.03 10999.27 5681.40 32199.48 16296.87 12899.04 12399.63 73
test250694.44 26193.91 25896.04 27599.02 11188.99 35299.06 6379.47 41096.96 6798.36 9499.26 5777.21 35599.52 15696.78 13499.04 12399.59 79
ECVR-MVScopyleft95.95 16395.71 16296.65 22799.02 11190.86 31899.03 7191.80 39796.96 6798.10 10399.26 5781.31 32299.51 15796.90 12299.04 12399.59 79
DeepC-MVS95.98 397.88 6897.58 7398.77 6999.25 8196.93 9998.83 12498.75 10696.96 6796.89 16799.50 1590.46 16499.87 5897.84 7399.76 3799.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS97.81 7297.60 7298.44 9599.12 10295.97 15197.75 28298.78 10096.89 7098.46 8699.22 6493.90 9799.68 12594.81 19799.52 9299.67 65
ETV-MVS97.96 6497.81 6598.40 10098.42 16597.27 8398.73 15098.55 15596.84 7198.38 9397.44 26195.39 5499.35 17497.62 8898.89 13198.58 207
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4599.14 4998.66 13196.84 7199.56 2099.31 5196.34 2599.70 11998.32 4899.73 4899.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
dcpmvs_298.08 6098.59 1496.56 24199.57 3390.34 33099.15 4798.38 19396.82 7399.29 3499.49 1795.78 4399.57 14298.94 1999.86 199.77 27
EC-MVSNet98.21 5898.11 5698.49 8998.34 17697.26 8799.61 598.43 18496.78 7498.87 6198.84 12393.72 9899.01 21998.91 2099.50 9499.19 143
EPNet_dtu95.21 20994.95 20095.99 27796.17 33290.45 32798.16 23597.27 32096.77 7593.14 30298.33 18390.34 16698.42 28785.57 36098.81 13899.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
canonicalmvs97.67 8097.23 9498.98 5998.70 14398.38 3599.34 1898.39 19096.76 7697.67 13697.40 26492.26 11799.49 15898.28 5096.28 22699.08 161
alignmvs97.56 8997.07 10199.01 5698.66 14898.37 3998.83 12498.06 25796.74 7798.00 11597.65 24490.80 15899.48 16298.37 4696.56 21299.19 143
VNet97.79 7397.40 8798.96 6198.88 12697.55 7398.63 17298.93 5096.74 7799.02 4898.84 12390.33 16799.83 6998.53 3096.66 20899.50 91
plane_prior94.60 22498.44 19996.74 7794.22 249
UA-Net97.96 6497.62 7198.98 5998.86 12997.47 7898.89 10399.08 3296.67 8098.72 7299.54 893.15 10499.81 8194.87 19398.83 13699.65 69
OPM-MVS95.69 18195.33 17996.76 22096.16 33494.63 21998.43 20198.39 19096.64 8195.02 22398.78 13085.15 27999.05 21095.21 18794.20 25096.60 309
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive97.42 9897.11 9898.34 10398.66 14896.23 13799.22 3599.00 3996.63 8298.04 10899.21 6588.05 22299.35 17496.01 15899.21 11799.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_vis1_n95.47 18995.13 18996.49 25097.77 22790.41 32899.27 2698.11 24296.58 8399.66 1599.18 7367.00 38799.62 13799.21 1599.40 10999.44 107
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 4999.09 5998.82 8196.58 8399.10 4699.32 4995.39 5499.82 7697.70 8499.63 6999.72 45
Effi-MVS+-dtu96.29 14896.56 12495.51 29797.89 22190.22 33198.80 13598.10 24596.57 8596.45 19096.66 32190.81 15798.91 23495.72 16897.99 17197.40 247
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.34 5899.82 7697.72 8099.65 6499.71 49
RE-MVS-def98.34 3599.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.29 6197.72 8099.65 6499.71 49
mvsmamba96.57 13696.32 13497.32 18296.60 31196.43 12699.54 797.98 26396.49 8695.20 21998.64 14690.82 15698.55 27197.97 6193.65 26996.98 261
HQP-NCC97.20 27498.05 24896.43 8994.45 239
ACMP_Plane97.20 27498.05 24896.43 8994.45 239
HQP-MVS95.72 17795.40 17196.69 22597.20 27494.25 23998.05 24898.46 17696.43 8994.45 23997.73 23586.75 24798.96 22595.30 18194.18 25196.86 280
test_fmvs1_n95.90 16895.99 14895.63 29398.67 14788.32 36499.26 2798.22 21996.40 9299.67 1499.26 5773.91 37499.70 11999.02 1899.50 9498.87 178
test_fmvs196.42 14196.67 12195.66 29298.82 13388.53 36098.80 13598.20 22296.39 9399.64 1799.20 6780.35 33299.67 12699.04 1799.57 8098.78 187
casdiffmvspermissive97.63 8397.41 8698.28 10698.33 17896.14 14298.82 12698.32 20196.38 9497.95 11799.21 6591.23 14999.23 18598.12 5498.37 15999.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testdata197.32 31596.34 95
baseline97.64 8297.44 8598.25 11198.35 17196.20 13899.00 7898.32 20196.33 9698.03 10999.17 7491.35 14499.16 19298.10 5598.29 16599.39 112
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6199.15 4798.81 8696.24 9799.20 3899.37 3895.30 6099.80 8897.73 7999.67 5999.72 45
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5799.28 2498.81 8696.24 9798.35 9699.23 6295.46 5199.94 897.42 10299.81 1299.77 27
diffmvspermissive97.58 8797.40 8798.13 12298.32 18195.81 16498.06 24798.37 19496.20 9998.74 6998.89 11891.31 14799.25 18298.16 5398.52 15099.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive97.72 7697.48 8298.44 9598.42 16596.59 11798.92 9798.44 18096.20 9997.76 12799.20 6791.66 13599.23 18598.27 5198.41 15899.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
region2R98.61 1898.38 2899.29 2999.74 798.16 5199.23 3198.93 5096.15 10198.94 5399.17 7495.91 3999.94 897.55 9599.79 2599.78 21
MP-MVScopyleft98.33 5598.01 6199.28 3299.75 398.18 4999.22 3598.79 9896.13 10297.92 12299.23 6294.54 8099.94 896.74 13699.78 2999.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_prior297.80 27896.12 10397.89 12498.69 14195.96 3796.89 12399.60 74
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4499.23 3198.96 4596.10 10498.94 5399.17 7496.06 3299.92 3197.62 8899.78 2999.75 35
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5299.23 3198.95 4696.10 10498.93 5799.19 7295.70 4599.94 897.62 8899.79 2599.78 21
iter_conf_final96.42 14196.12 14197.34 18198.46 16396.55 12199.08 6198.06 25796.03 10695.63 21098.46 16687.72 22998.59 26797.84 7393.80 26496.87 277
ACMMPcopyleft98.23 5797.95 6399.09 5299.74 797.62 7199.03 7199.41 695.98 10797.60 14399.36 4294.45 8599.93 2597.14 11098.85 13599.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
bld_raw_dy_0_6495.74 17695.31 18297.03 20196.35 32595.76 16599.12 5397.37 31595.97 10894.70 23298.48 16285.80 26598.49 27796.55 13993.48 27396.84 282
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6299.34 1898.87 6995.96 10998.60 8199.13 8296.05 3399.94 897.77 7799.86 199.77 27
SDMVSNet96.85 12496.42 12998.14 11999.30 6896.38 13099.21 3899.23 2095.92 11095.96 20498.76 13685.88 26399.44 16797.93 6495.59 23998.60 203
sd_testset96.17 15395.76 15797.42 17499.30 6894.34 23598.82 12699.08 3295.92 11095.96 20498.76 13682.83 31599.32 17795.56 17495.59 23998.60 203
iter_conf0596.13 15695.79 15497.15 19298.16 19895.99 14598.88 10897.98 26395.91 11295.58 21198.46 16685.53 27098.59 26797.88 6993.75 26596.86 280
FIs96.51 13896.12 14197.67 15997.13 28197.54 7499.36 1599.22 2395.89 11394.03 26598.35 17891.98 12798.44 28596.40 14592.76 28897.01 259
RRT_MVS95.98 16195.78 15596.56 24196.48 31994.22 24199.57 697.92 27095.89 11393.95 26898.70 14089.27 18698.42 28797.23 10893.02 28397.04 257
EIA-MVS97.75 7497.58 7398.27 10798.38 16896.44 12599.01 7698.60 14195.88 11597.26 14997.53 25594.97 7499.33 17697.38 10499.20 11899.05 163
PS-MVSNAJss96.43 14096.26 13796.92 21295.84 34695.08 19799.16 4698.50 16995.87 11693.84 27598.34 18294.51 8198.61 26496.88 12593.45 27697.06 256
FC-MVSNet-test96.42 14196.05 14497.53 16996.95 29097.27 8399.36 1599.23 2095.83 11793.93 26998.37 17692.00 12698.32 30496.02 15792.72 28997.00 260
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12698.81 8695.80 11899.16 4499.47 2095.37 5699.92 3197.89 6899.75 4199.79 19
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4298.86 7595.77 11998.31 9999.10 8695.46 5199.93 2597.57 9499.81 1299.74 37
test_fmvs293.43 29893.58 28192.95 35396.97 28983.91 38099.19 4297.24 32295.74 12095.20 21998.27 19069.65 38098.72 25696.26 14893.73 26696.24 341
jajsoiax95.45 19295.03 19596.73 22195.42 36094.63 21999.14 4998.52 16295.74 12093.22 29798.36 17783.87 30998.65 26296.95 11894.04 25696.91 271
mvs_tets95.41 19695.00 19696.65 22795.58 35294.42 23099.00 7898.55 15595.73 12293.21 29898.38 17583.45 31398.63 26397.09 11294.00 25896.91 271
GST-MVS98.43 4398.12 5599.34 2399.72 1298.38 3599.09 5998.82 8195.71 12398.73 7199.06 9695.27 6299.93 2597.07 11399.63 6999.72 45
CVMVSNet95.43 19396.04 14593.57 34397.93 21883.62 38198.12 23998.59 14495.68 12496.56 18199.02 9887.51 23497.51 35593.56 24097.44 19099.60 77
VPNet94.99 22294.19 23697.40 17797.16 27996.57 11898.71 15598.97 4295.67 12594.84 22698.24 19480.36 33198.67 26196.46 14287.32 35496.96 263
XVG-OURS96.55 13796.41 13096.99 20398.75 13793.76 25297.50 30198.52 16295.67 12596.83 16899.30 5288.95 20099.53 15395.88 16196.26 22797.69 239
testgi93.06 31092.45 31094.88 31996.43 32289.90 33498.75 14397.54 29795.60 12791.63 33697.91 21874.46 37297.02 36286.10 35693.67 26797.72 238
UniMVSNet (Re)95.78 17495.19 18797.58 16696.99 28897.47 7898.79 14099.18 2595.60 12793.92 27097.04 29491.68 13398.48 27895.80 16587.66 34996.79 286
Fast-Effi-MVS+-dtu95.87 16995.85 15295.91 28297.74 23191.74 30398.69 16198.15 23595.56 12994.92 22497.68 24388.98 19898.79 25193.19 24897.78 18097.20 254
CLD-MVS95.62 18495.34 17796.46 25697.52 25193.75 25497.27 31998.46 17695.53 13094.42 24498.00 21186.21 25798.97 22196.25 15094.37 24596.66 304
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
mvsany_test197.69 7997.70 6997.66 16298.24 18494.18 24297.53 29897.53 29895.52 13199.66 1599.51 1394.30 8999.56 14598.38 4598.62 14599.23 135
OMC-MVS97.55 9097.34 9098.20 11699.33 5995.92 15898.28 21898.59 14495.52 13197.97 11699.10 8693.28 10399.49 15895.09 18898.88 13299.19 143
nrg03096.28 15095.72 15997.96 13696.90 29598.15 5299.39 1298.31 20395.47 13394.42 24498.35 17892.09 12498.69 25797.50 9989.05 33497.04 257
XVG-OURS-SEG-HR96.51 13896.34 13297.02 20298.77 13693.76 25297.79 28098.50 16995.45 13496.94 16299.09 9287.87 22799.55 15296.76 13595.83 23897.74 236
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5698.99 8199.49 595.43 13599.03 4799.32 4995.56 4899.94 896.80 13399.77 3199.78 21
DU-MVS95.42 19494.76 20797.40 17796.53 31596.97 9798.66 16798.99 4195.43 13593.88 27297.69 24088.57 20698.31 30695.81 16387.25 35596.92 266
IS-MVSNet97.22 10796.88 10898.25 11198.85 13196.36 13299.19 4297.97 26595.39 13797.23 15098.99 10491.11 15298.93 23194.60 20498.59 14799.47 100
thres100view90095.38 19794.70 21097.41 17598.98 11994.92 20698.87 11396.90 34495.38 13896.61 17996.88 31084.29 29699.56 14588.11 34396.29 22397.76 234
thres600view795.49 18894.77 20697.67 15998.98 11995.02 19898.85 11896.90 34495.38 13896.63 17796.90 30984.29 29699.59 14088.65 34096.33 21998.40 214
baseline195.84 17195.12 19198.01 13298.49 16295.98 14698.73 15097.03 33595.37 14096.22 19598.19 19789.96 17299.16 19294.60 20487.48 35098.90 177
tfpn200view995.32 20494.62 21397.43 17398.94 12294.98 20298.68 16296.93 34295.33 14196.55 18396.53 32784.23 30099.56 14588.11 34396.29 22397.76 234
thres40095.38 19794.62 21397.65 16398.94 12294.98 20298.68 16296.93 34295.33 14196.55 18396.53 32784.23 30099.56 14588.11 34396.29 22398.40 214
CNLPA97.45 9597.03 10298.73 7099.05 10897.44 8098.07 24698.53 15995.32 14396.80 17298.53 15793.32 10199.72 11394.31 21599.31 11599.02 165
OurMVSNet-221017-094.21 27494.00 25194.85 32095.60 35189.22 34798.89 10397.43 31095.29 14492.18 32898.52 16082.86 31498.59 26793.46 24191.76 29796.74 291
IU-MVS99.71 1999.23 798.64 13695.28 14599.63 1898.35 4799.81 1299.83 13
WTY-MVS97.37 10396.92 10798.72 7198.86 12996.89 10398.31 21398.71 11695.26 14697.67 13698.56 15692.21 12099.78 10195.89 16096.85 20399.48 98
CHOSEN 280x42097.18 11197.18 9697.20 18698.81 13493.27 27595.78 37399.15 2895.25 14796.79 17398.11 20292.29 11699.07 20998.56 2999.85 599.25 133
ACMM93.85 995.69 18195.38 17596.61 23497.61 24193.84 25098.91 9898.44 18095.25 14794.28 25198.47 16486.04 26299.12 20095.50 17793.95 26096.87 277
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres20095.25 20694.57 21597.28 18398.81 13494.92 20698.20 22697.11 32795.24 14996.54 18596.22 33884.58 29399.53 15387.93 34796.50 21597.39 248
PAPM_NR97.46 9297.11 9898.50 8799.50 4196.41 12998.63 17298.60 14195.18 15097.06 15898.06 20594.26 9199.57 14293.80 23298.87 13499.52 86
UniMVSNet_NR-MVSNet95.71 17895.15 18897.40 17796.84 29896.97 9798.74 14699.24 1795.16 15193.88 27297.72 23791.68 13398.31 30695.81 16387.25 35596.92 266
VPA-MVSNet95.75 17595.11 19297.69 15697.24 27097.27 8398.94 9399.23 2095.13 15295.51 21297.32 26785.73 26698.91 23497.33 10689.55 32696.89 274
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15399.32 3399.39 3296.22 2699.84 6797.72 8099.73 4899.67 65
test-LLR95.10 21594.87 20495.80 28796.77 30189.70 33896.91 34395.21 37595.11 15494.83 22895.72 35487.71 23098.97 22193.06 25198.50 15298.72 190
test0.0.03 194.08 28793.51 28595.80 28795.53 35492.89 28797.38 30795.97 36695.11 15492.51 32196.66 32187.71 23096.94 36487.03 35193.67 26797.57 244
LCM-MVSNet-Re95.22 20895.32 18094.91 31698.18 19487.85 37098.75 14395.66 37195.11 15488.96 35796.85 31390.26 16997.65 34895.65 17298.44 15599.22 137
ITE_SJBPF95.44 30197.42 25991.32 31097.50 30195.09 15793.59 28198.35 17881.70 31998.88 24089.71 32493.39 27896.12 345
PC_three_145295.08 15899.60 1999.16 7797.86 298.47 28197.52 9899.72 5199.74 37
TranMVSNet+NR-MVSNet95.14 21394.48 22097.11 19696.45 32196.36 13299.03 7199.03 3795.04 15993.58 28297.93 21788.27 21498.03 32894.13 22086.90 36096.95 265
VDD-MVS95.82 17395.23 18597.61 16598.84 13293.98 24698.68 16297.40 31295.02 16097.95 11799.34 4874.37 37399.78 10198.64 2596.80 20499.08 161
testing9194.98 22494.25 23397.20 18697.94 21693.41 26898.00 25497.58 28894.99 16195.45 21396.04 34377.20 35699.42 16894.97 19296.02 23498.78 187
MVSFormer97.57 8897.49 8097.84 14098.07 20395.76 16599.47 998.40 18894.98 16298.79 6598.83 12592.34 11498.41 29596.91 11999.59 7699.34 116
test_djsdf96.00 16095.69 16596.93 20995.72 34895.49 17599.47 998.40 18894.98 16294.58 23497.86 22389.16 19098.41 29596.91 11994.12 25596.88 275
NR-MVSNet94.98 22494.16 23997.44 17296.53 31597.22 9098.74 14698.95 4694.96 16489.25 35697.69 24089.32 18498.18 31694.59 20687.40 35296.92 266
XVG-ACMP-BASELINE94.54 25094.14 24195.75 29096.55 31491.65 30598.11 24198.44 18094.96 16494.22 25597.90 21979.18 33999.11 20294.05 22593.85 26296.48 331
Vis-MVSNet (Re-imp)96.87 12396.55 12597.83 14198.73 13895.46 17699.20 4098.30 20994.96 16496.60 18098.87 12090.05 17098.59 26793.67 23698.60 14699.46 104
testing1195.00 22094.28 23197.16 19197.96 21593.36 27398.09 24497.06 33394.94 16795.33 21796.15 34076.89 35999.40 16995.77 16796.30 22298.72 190
ACMP93.49 1095.34 20294.98 19896.43 25897.67 23693.48 26598.73 15098.44 18094.94 16792.53 31998.53 15784.50 29599.14 19795.48 17894.00 25896.66 304
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testing9994.83 23294.08 24497.07 19997.94 21693.13 28198.10 24397.17 32594.86 16995.34 21496.00 34676.31 36299.40 16995.08 18995.90 23598.68 195
MVSTER96.06 15895.72 15997.08 19898.23 18695.93 15798.73 15098.27 21294.86 16995.07 22198.09 20388.21 21598.54 27396.59 13793.46 27496.79 286
DPM-MVS97.55 9096.99 10499.23 3899.04 10998.55 2797.17 32898.35 19794.85 17197.93 12198.58 15395.07 7299.71 11892.60 26499.34 11399.43 109
jason97.32 10497.08 10098.06 13097.45 25795.59 16997.87 27197.91 27294.79 17298.55 8398.83 12591.12 15199.23 18597.58 9199.60 7499.34 116
jason: jason.
test_yl97.22 10796.78 11498.54 8398.73 13896.60 11598.45 19698.31 20394.70 17398.02 11198.42 17090.80 15899.70 11996.81 13196.79 20599.34 116
DCV-MVSNet97.22 10796.78 11498.54 8398.73 13896.60 11598.45 19698.31 20394.70 17398.02 11198.42 17090.80 15899.70 11996.81 13196.79 20599.34 116
EU-MVSNet93.66 29494.14 24192.25 35995.96 34283.38 38398.52 18798.12 23994.69 17592.61 31698.13 20187.36 23996.39 37591.82 28790.00 31996.98 261
SCA95.46 19095.13 18996.46 25697.67 23691.29 31197.33 31497.60 28794.68 17696.92 16597.10 28083.97 30698.89 23892.59 26698.32 16499.20 139
LPG-MVS_test95.62 18495.34 17796.47 25397.46 25493.54 26198.99 8198.54 15794.67 17794.36 24798.77 13285.39 27299.11 20295.71 16994.15 25396.76 289
LGP-MVS_train96.47 25397.46 25493.54 26198.54 15794.67 17794.36 24798.77 13285.39 27299.11 20295.71 16994.15 25396.76 289
testing22294.12 28393.03 29797.37 18098.02 20894.66 21697.94 26096.65 35794.63 17995.78 20795.76 34971.49 37898.92 23291.17 29895.88 23698.52 209
HPM-MVScopyleft98.36 5098.10 5799.13 4899.74 797.82 6699.53 898.80 9394.63 17998.61 8098.97 10595.13 7099.77 10697.65 8699.83 1199.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
dmvs_re94.48 25894.18 23895.37 30397.68 23590.11 33398.54 18697.08 32994.56 18194.42 24497.24 27384.25 29897.76 34691.02 30592.83 28798.24 221
BH-RMVSNet95.92 16795.32 18097.69 15698.32 18194.64 21898.19 22997.45 30894.56 18196.03 20098.61 14885.02 28099.12 20090.68 30999.06 12299.30 125
ET-MVSNet_ETH3D94.13 28192.98 29897.58 16698.22 18796.20 13897.31 31695.37 37394.53 18379.56 38997.63 24886.51 25097.53 35496.91 11990.74 31099.02 165
API-MVS97.41 9997.25 9397.91 13798.70 14396.80 10598.82 12698.69 12094.53 18398.11 10298.28 18794.50 8499.57 14294.12 22199.49 9697.37 250
APD-MVScopyleft98.35 5298.00 6299.42 1699.51 3998.72 2198.80 13598.82 8194.52 18599.23 3799.25 6195.54 5099.80 8896.52 14199.77 3199.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
lupinMVS97.44 9697.22 9598.12 12598.07 20395.76 16597.68 28797.76 27894.50 18698.79 6598.61 14892.34 11499.30 17897.58 9199.59 7699.31 122
PVSNet_Blended_VisFu97.70 7897.46 8398.44 9599.27 7895.91 15998.63 17299.16 2794.48 18797.67 13698.88 11992.80 10799.91 3997.11 11199.12 12199.50 91
HPM-MVS_fast98.38 4798.13 5499.12 5099.75 397.86 6299.44 1198.82 8194.46 18898.94 5399.20 6795.16 6899.74 11197.58 9199.85 599.77 27
UWE-MVS94.30 26893.89 26195.53 29697.83 22388.95 35397.52 30093.25 39194.44 18996.63 17797.07 28778.70 34199.28 18091.99 28397.56 18998.36 217
AdaColmapbinary97.15 11396.70 11898.48 9099.16 9896.69 11198.01 25298.89 5994.44 18996.83 16898.68 14290.69 16199.76 10794.36 21199.29 11698.98 169
9.1498.06 5899.47 4798.71 15598.82 8194.36 19199.16 4499.29 5396.05 3399.81 8197.00 11499.71 53
PVSNet_BlendedMVS96.73 12896.60 12397.12 19599.25 8195.35 18398.26 22199.26 1594.28 19297.94 11997.46 25892.74 10899.81 8196.88 12593.32 27996.20 343
MVS_Test97.28 10597.00 10398.13 12298.33 17895.97 15198.74 14698.07 25294.27 19398.44 9198.07 20492.48 11199.26 18196.43 14498.19 16699.16 149
tttt051796.07 15795.51 17097.78 14698.41 16794.84 20999.28 2494.33 38594.26 19497.64 14098.64 14684.05 30499.47 16495.34 17997.60 18799.03 164
WR-MVS95.15 21294.46 22297.22 18596.67 30996.45 12498.21 22498.81 8694.15 19593.16 29997.69 24087.51 23498.30 30895.29 18388.62 34096.90 273
EPMVS94.99 22294.48 22096.52 24897.22 27291.75 30297.23 32091.66 39894.11 19697.28 14896.81 31585.70 26798.84 24493.04 25397.28 19398.97 170
MP-MVS-pluss98.31 5697.92 6499.49 1299.72 1298.88 1898.43 20198.78 10094.10 19797.69 13599.42 2995.25 6499.92 3198.09 5699.80 1999.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PatchmatchNetpermissive95.71 17895.52 16996.29 26897.58 24390.72 32296.84 35297.52 29994.06 19897.08 15596.96 30489.24 18898.90 23792.03 28298.37 15999.26 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest053096.01 15995.36 17697.97 13498.38 16895.52 17498.88 10894.19 38794.04 19997.64 14098.31 18583.82 31199.46 16595.29 18397.70 18498.93 175
K. test v392.55 31591.91 31894.48 33395.64 35089.24 34699.07 6294.88 37994.04 19986.78 37097.59 25077.64 35397.64 34992.08 27889.43 32996.57 313
D2MVS95.18 21195.08 19395.48 29897.10 28392.07 29698.30 21599.13 3094.02 20192.90 30796.73 31889.48 17998.73 25594.48 20993.60 27295.65 356
mvs_anonymous96.70 13096.53 12797.18 18998.19 19293.78 25198.31 21398.19 22494.01 20294.47 23898.27 19092.08 12598.46 28297.39 10397.91 17499.31 122
GA-MVS94.81 23394.03 24797.14 19397.15 28093.86 24996.76 35597.58 28894.00 20394.76 23197.04 29480.91 32698.48 27891.79 28896.25 22899.09 157
ACMH+92.99 1494.30 26893.77 27095.88 28597.81 22592.04 29898.71 15598.37 19493.99 20490.60 34598.47 16480.86 32899.05 21092.75 26292.40 29196.55 317
sss97.39 10096.98 10598.61 7798.60 15496.61 11498.22 22398.93 5093.97 20598.01 11498.48 16291.98 12799.85 6396.45 14398.15 16799.39 112
HY-MVS93.96 896.82 12696.23 13998.57 7998.46 16397.00 9698.14 23698.21 22093.95 20696.72 17497.99 21291.58 13699.76 10794.51 20896.54 21398.95 173
TAMVS97.02 11796.79 11397.70 15598.06 20695.31 18698.52 18798.31 20393.95 20697.05 15998.61 14893.49 10098.52 27595.33 18097.81 17899.29 127
testing393.19 30792.48 30995.30 30698.07 20392.27 29198.64 16997.17 32593.94 20893.98 26797.04 29467.97 38496.01 37988.40 34197.14 19597.63 241
CP-MVSNet94.94 22994.30 23096.83 21696.72 30695.56 17199.11 5598.95 4693.89 20992.42 32497.90 21987.19 24098.12 32194.32 21488.21 34396.82 285
SixPastTwentyTwo93.34 30192.86 30094.75 32495.67 34989.41 34598.75 14396.67 35593.89 20990.15 34998.25 19380.87 32798.27 31390.90 30690.64 31196.57 313
WR-MVS_H95.05 21894.46 22296.81 21896.86 29795.82 16399.24 3099.24 1793.87 21192.53 31996.84 31490.37 16598.24 31493.24 24687.93 34696.38 336
ab-mvs96.42 14195.71 16298.55 8198.63 15196.75 10897.88 27098.74 10893.84 21296.54 18598.18 19885.34 27599.75 10995.93 15996.35 21899.15 150
USDC93.33 30292.71 30395.21 30796.83 29990.83 32096.91 34397.50 30193.84 21290.72 34398.14 20077.69 35098.82 24889.51 32993.21 28295.97 349
AUN-MVS94.53 25293.73 27496.92 21298.50 16093.52 26498.34 20798.10 24593.83 21495.94 20697.98 21485.59 26999.03 21494.35 21280.94 38098.22 223
mvsany_test388.80 34588.04 34691.09 36389.78 39181.57 38897.83 27795.49 37293.81 21587.53 36693.95 37656.14 39497.43 35694.68 19983.13 37194.26 372
LF4IMVS93.14 30992.79 30294.20 33895.88 34488.67 35797.66 28997.07 33193.81 21591.71 33497.65 24477.96 34998.81 24991.47 29491.92 29695.12 363
IterMVS-SCA-FT94.11 28493.87 26294.85 32097.98 21390.56 32697.18 32698.11 24293.75 21792.58 31797.48 25783.97 30697.41 35792.48 27391.30 30396.58 311
anonymousdsp95.42 19494.91 20196.94 20895.10 36395.90 16099.14 4998.41 18693.75 21793.16 29997.46 25887.50 23698.41 29595.63 17394.03 25796.50 328
MDTV_nov1_ep1395.40 17197.48 25288.34 36396.85 35197.29 31893.74 21997.48 14697.26 27089.18 18999.05 21091.92 28697.43 191
ETVMVS94.50 25593.44 28897.68 15898.18 19495.35 18398.19 22997.11 32793.73 22096.40 19195.39 35974.53 37098.84 24491.10 29996.31 22198.84 181
BH-untuned95.95 16395.72 15996.65 22798.55 15792.26 29298.23 22297.79 27793.73 22094.62 23398.01 21088.97 19999.00 22093.04 25398.51 15198.68 195
PatchMatch-RL96.59 13396.03 14698.27 10799.31 6496.51 12297.91 26399.06 3493.72 22296.92 16598.06 20588.50 21199.65 12991.77 28999.00 12798.66 199
Effi-MVS+97.12 11496.69 11998.39 10198.19 19296.72 11097.37 30998.43 18493.71 22397.65 13998.02 20892.20 12199.25 18296.87 12897.79 17999.19 143
IterMVS-LS95.46 19095.21 18696.22 27098.12 20093.72 25798.32 21298.13 23893.71 22394.26 25297.31 26892.24 11898.10 32294.63 20190.12 31796.84 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet95.96 16295.83 15396.36 26297.93 21893.70 25898.12 23998.27 21293.70 22595.07 22199.02 9892.23 11998.54 27394.68 19993.46 27496.84 282
UnsupCasMVSNet_eth90.99 33089.92 33394.19 33994.08 37489.83 33597.13 33298.67 12893.69 22685.83 37696.19 33975.15 36796.74 36789.14 33479.41 38596.00 348
PVSNet91.96 1896.35 14696.15 14096.96 20799.17 9492.05 29796.08 36698.68 12393.69 22697.75 12997.80 23288.86 20199.69 12494.26 21799.01 12699.15 150
PS-CasMVS94.67 24293.99 25396.71 22296.68 30895.26 18799.13 5299.03 3793.68 22892.33 32597.95 21685.35 27498.10 32293.59 23888.16 34596.79 286
IterMVS94.09 28693.85 26494.80 32397.99 21190.35 32997.18 32698.12 23993.68 22892.46 32397.34 26584.05 30497.41 35792.51 27191.33 30296.62 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tt080594.54 25093.85 26496.63 23197.98 21393.06 28598.77 14297.84 27593.67 23093.80 27798.04 20776.88 36098.96 22594.79 19892.86 28697.86 233
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9098.80 9393.67 23099.37 3199.52 1196.52 2299.89 4798.06 5799.81 1299.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
FMVSNet394.97 22694.26 23297.11 19698.18 19496.62 11298.56 18498.26 21693.67 23094.09 26197.10 28084.25 29898.01 32992.08 27892.14 29296.70 298
CDS-MVSNet96.99 11896.69 11997.90 13898.05 20795.98 14698.20 22698.33 20093.67 23096.95 16198.49 16193.54 9998.42 28795.24 18697.74 18299.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EPP-MVSNet97.46 9297.28 9297.99 13398.64 15095.38 18099.33 2198.31 20393.61 23497.19 15199.07 9594.05 9499.23 18596.89 12398.43 15799.37 114
CHOSEN 1792x268897.12 11496.80 11198.08 12899.30 6894.56 22698.05 24899.71 193.57 23597.09 15498.91 11788.17 21699.89 4796.87 12899.56 8699.81 17
PEN-MVS94.42 26293.73 27496.49 25096.28 32894.84 20999.17 4599.00 3993.51 23692.23 32797.83 22986.10 25997.90 33892.55 26986.92 35996.74 291
WB-MVSnew94.19 27694.04 24694.66 32796.82 30092.14 29397.86 27295.96 36793.50 23795.64 20996.77 31788.06 22197.99 33284.87 36596.86 20293.85 382
tpmrst95.63 18395.69 16595.44 30197.54 24888.54 35996.97 33897.56 29193.50 23797.52 14596.93 30889.49 17899.16 19295.25 18596.42 21798.64 201
131496.25 15295.73 15897.79 14597.13 28195.55 17398.19 22998.59 14493.47 23992.03 33197.82 23091.33 14599.49 15894.62 20398.44 15598.32 220
baseline295.11 21494.52 21896.87 21496.65 31093.56 26098.27 22094.10 38993.45 24092.02 33297.43 26287.45 23899.19 19093.88 22997.41 19297.87 232
ACMH92.88 1694.55 24993.95 25596.34 26497.63 24093.26 27698.81 13498.49 17493.43 24189.74 35198.53 15781.91 31899.08 20893.69 23393.30 28096.70 298
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LFMVS95.86 17094.98 19898.47 9198.87 12896.32 13498.84 12296.02 36493.40 24298.62 7999.20 6774.99 36899.63 13497.72 8097.20 19499.46 104
test20.0390.89 33190.38 32992.43 35593.48 37988.14 36798.33 20897.56 29193.40 24287.96 36496.71 32080.69 33094.13 39079.15 38586.17 36495.01 368
PAPR96.84 12596.24 13898.65 7598.72 14296.92 10097.36 31198.57 15193.33 24496.67 17597.57 25294.30 8999.56 14591.05 30498.59 14799.47 100
IB-MVS91.98 1793.27 30391.97 31697.19 18897.47 25393.41 26897.09 33395.99 36593.32 24592.47 32295.73 35278.06 34899.53 15394.59 20682.98 37298.62 202
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PHI-MVS98.34 5398.06 5899.18 4299.15 10098.12 5599.04 6899.09 3193.32 24598.83 6499.10 8696.54 2199.83 6997.70 8499.76 3799.59 79
test_vis1_rt91.29 32590.65 32593.19 35197.45 25786.25 37698.57 18390.90 40193.30 24786.94 36993.59 37862.07 39199.11 20297.48 10095.58 24194.22 374
XXY-MVS95.20 21094.45 22497.46 17096.75 30496.56 11998.86 11698.65 13593.30 24793.27 29698.27 19084.85 28498.87 24194.82 19691.26 30596.96 263
原ACMM198.65 7599.32 6296.62 11298.67 12893.27 24997.81 12598.97 10595.18 6799.83 6993.84 23099.46 10299.50 91
FA-MVS(test-final)96.41 14595.94 14997.82 14398.21 18895.20 19197.80 27897.58 28893.21 25097.36 14797.70 23889.47 18099.56 14594.12 22197.99 17198.71 193
ZD-MVS99.46 4998.70 2398.79 9893.21 25098.67 7398.97 10595.70 4599.83 6996.07 15299.58 79
TESTMET0.1,194.18 27993.69 27795.63 29396.92 29289.12 34896.91 34394.78 38093.17 25294.88 22596.45 33078.52 34298.92 23293.09 25098.50 15298.85 179
Syy-MVS92.55 31592.61 30692.38 35697.39 26383.41 38297.91 26397.46 30493.16 25393.42 29195.37 36084.75 28796.12 37777.00 39096.99 19897.60 242
myMVS_eth3d92.73 31392.01 31594.89 31897.39 26390.94 31697.91 26397.46 30493.16 25393.42 29195.37 36068.09 38396.12 37788.34 34296.99 19897.60 242
PVSNet_Blended97.38 10197.12 9798.14 11999.25 8195.35 18397.28 31899.26 1593.13 25597.94 11998.21 19592.74 10899.81 8196.88 12599.40 10999.27 129
GeoE96.58 13596.07 14398.10 12798.35 17195.89 16199.34 1898.12 23993.12 25696.09 19898.87 12089.71 17698.97 22192.95 25698.08 17099.43 109
dmvs_testset87.64 34988.93 34283.79 37495.25 36163.36 40597.20 32391.17 39993.07 25785.64 37895.98 34785.30 27891.52 39769.42 39687.33 35396.49 329
DTE-MVSNet93.98 29193.26 29496.14 27296.06 33794.39 23299.20 4098.86 7593.06 25891.78 33397.81 23185.87 26497.58 35290.53 31086.17 36496.46 333
CSCG97.85 7197.74 6898.20 11699.67 2595.16 19299.22 3599.32 1193.04 25997.02 16098.92 11695.36 5799.91 3997.43 10199.64 6899.52 86
F-COLMAP97.09 11696.80 11197.97 13499.45 5294.95 20598.55 18598.62 14093.02 26096.17 19798.58 15394.01 9599.81 8193.95 22698.90 13099.14 152
train_agg97.97 6397.52 7999.33 2699.31 6498.50 2997.92 26198.73 11192.98 26197.74 13098.68 14296.20 2899.80 8896.59 13799.57 8099.68 61
test_899.29 7398.44 3197.89 26998.72 11392.98 26197.70 13498.66 14596.20 2899.80 88
thisisatest051595.61 18794.89 20397.76 14998.15 19995.15 19496.77 35494.41 38392.95 26397.18 15297.43 26284.78 28699.45 16694.63 20197.73 18398.68 195
1112_ss96.63 13196.00 14798.50 8798.56 15596.37 13198.18 23498.10 24592.92 26494.84 22698.43 16892.14 12299.58 14194.35 21296.51 21499.56 85
test-mter94.08 28793.51 28595.80 28796.77 30189.70 33896.91 34395.21 37592.89 26594.83 22895.72 35477.69 35098.97 22193.06 25198.50 15298.72 190
BH-w/o95.38 19795.08 19396.26 26998.34 17691.79 30097.70 28697.43 31092.87 26694.24 25497.22 27588.66 20498.84 24491.55 29397.70 18498.16 226
PMMVS96.60 13296.33 13397.41 17597.90 22093.93 24797.35 31298.41 18692.84 26797.76 12797.45 26091.10 15399.20 18996.26 14897.91 17499.11 155
LS3D97.16 11296.66 12298.68 7398.53 15997.19 9198.93 9598.90 5792.83 26895.99 20299.37 3892.12 12399.87 5893.67 23699.57 8098.97 170
test_fmvs387.17 35087.06 35387.50 36891.21 38775.66 39299.05 6596.61 35892.79 26988.85 36092.78 38343.72 39893.49 39193.95 22684.56 36893.34 385
v2v48294.69 23794.03 24796.65 22796.17 33294.79 21498.67 16598.08 25092.72 27094.00 26697.16 27887.69 23398.45 28392.91 25788.87 33896.72 294
eth_miper_zixun_eth94.68 23994.41 22795.47 29997.64 23991.71 30496.73 35798.07 25292.71 27193.64 28097.21 27690.54 16398.17 31793.38 24289.76 32196.54 318
TEST999.31 6498.50 2997.92 26198.73 11192.63 27297.74 13098.68 14296.20 2899.80 88
tpm94.13 28193.80 26795.12 31096.50 31787.91 36997.44 30295.89 37092.62 27396.37 19396.30 33384.13 30398.30 30893.24 24691.66 30099.14 152
DP-MVS Recon97.86 6997.46 8399.06 5499.53 3698.35 4198.33 20898.89 5992.62 27398.05 10698.94 11395.34 5899.65 12996.04 15699.42 10599.19 143
v14894.29 27093.76 27295.91 28296.10 33592.93 28698.58 17897.97 26592.59 27593.47 28996.95 30688.53 21098.32 30492.56 26887.06 35796.49 329
CDPH-MVS97.94 6697.49 8099.28 3299.47 4798.44 3197.91 26398.67 12892.57 27698.77 6798.85 12295.93 3899.72 11395.56 17499.69 5699.68 61
CR-MVSNet94.76 23694.15 24096.59 23797.00 28693.43 26694.96 37997.56 29192.46 27796.93 16396.24 33488.15 21797.88 34287.38 34996.65 20998.46 212
GBi-Net94.49 25693.80 26796.56 24198.21 18895.00 19998.82 12698.18 22792.46 27794.09 26197.07 28781.16 32397.95 33492.08 27892.14 29296.72 294
test194.49 25693.80 26796.56 24198.21 18895.00 19998.82 12698.18 22792.46 27794.09 26197.07 28781.16 32397.95 33492.08 27892.14 29296.72 294
FMVSNet294.47 25993.61 28097.04 20098.21 18896.43 12698.79 14098.27 21292.46 27793.50 28897.09 28481.16 32398.00 33191.09 30091.93 29596.70 298
cl2294.68 23994.19 23696.13 27398.11 20193.60 25996.94 34098.31 20392.43 28193.32 29596.87 31286.51 25098.28 31294.10 22391.16 30696.51 326
PLCcopyleft95.07 497.20 11096.78 11498.44 9599.29 7396.31 13698.14 23698.76 10492.41 28296.39 19298.31 18594.92 7699.78 10194.06 22498.77 13999.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MAR-MVS96.91 12196.40 13198.45 9398.69 14596.90 10198.66 16798.68 12392.40 28397.07 15797.96 21591.54 14099.75 10993.68 23498.92 12998.69 194
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CPTT-MVS97.72 7697.32 9198.92 6399.64 2897.10 9499.12 5398.81 8692.34 28498.09 10499.08 9493.01 10599.92 3196.06 15599.77 3199.75 35
HyFIR lowres test96.90 12296.49 12898.14 11999.33 5995.56 17197.38 30799.65 292.34 28497.61 14298.20 19689.29 18599.10 20696.97 11697.60 18799.77 27
pm-mvs193.94 29293.06 29696.59 23796.49 31895.16 19298.95 9098.03 26092.32 28691.08 34097.84 22684.54 29498.41 29592.16 27686.13 36696.19 344
V4294.78 23594.14 24196.70 22496.33 32795.22 19098.97 8498.09 24992.32 28694.31 25097.06 29188.39 21298.55 27192.90 25888.87 33896.34 337
TR-MVS94.94 22994.20 23597.17 19097.75 22894.14 24397.59 29597.02 33792.28 28895.75 20897.64 24683.88 30898.96 22589.77 32296.15 23198.40 214
miper_ehance_all_eth95.01 21994.69 21195.97 27997.70 23493.31 27497.02 33698.07 25292.23 28993.51 28796.96 30491.85 13098.15 31893.68 23491.16 30696.44 334
c3_l94.79 23494.43 22695.89 28497.75 22893.12 28397.16 33098.03 26092.23 28993.46 29097.05 29391.39 14298.01 32993.58 23989.21 33296.53 320
MS-PatchMatch93.84 29393.63 27994.46 33596.18 33189.45 34397.76 28198.27 21292.23 28992.13 32997.49 25679.50 33698.69 25789.75 32399.38 11195.25 360
miper_enhance_ethall95.10 21594.75 20896.12 27497.53 25093.73 25696.61 36098.08 25092.20 29293.89 27196.65 32392.44 11298.30 30894.21 21891.16 30696.34 337
Test_1112_low_res96.34 14795.66 16798.36 10298.56 15595.94 15497.71 28598.07 25292.10 29394.79 23097.29 26991.75 13299.56 14594.17 21996.50 21599.58 83
PVSNet_088.72 1991.28 32690.03 33295.00 31497.99 21187.29 37394.84 38298.50 16992.06 29489.86 35095.19 36279.81 33599.39 17292.27 27569.79 39698.33 219
v7n94.19 27693.43 28996.47 25395.90 34394.38 23399.26 2798.34 19991.99 29592.76 31197.13 27988.31 21398.52 27589.48 33087.70 34896.52 323
our_test_393.65 29693.30 29294.69 32595.45 35889.68 34096.91 34397.65 28391.97 29691.66 33596.88 31089.67 17797.93 33788.02 34691.49 30196.48 331
v894.47 25993.77 27096.57 24096.36 32494.83 21199.05 6598.19 22491.92 29793.16 29996.97 30288.82 20398.48 27891.69 29187.79 34796.39 335
testdata98.26 11099.20 9295.36 18198.68 12391.89 29898.60 8199.10 8694.44 8699.82 7694.27 21699.44 10399.58 83
Patchmatch-RL test91.49 32390.85 32493.41 34591.37 38684.40 37892.81 39195.93 36991.87 29987.25 36794.87 36688.99 19596.53 37392.54 27082.00 37499.30 125
v114494.59 24793.92 25696.60 23696.21 32994.78 21598.59 17698.14 23791.86 30094.21 25697.02 29787.97 22398.41 29591.72 29089.57 32496.61 308
DIV-MVS_self_test94.52 25394.03 24795.99 27797.57 24793.38 27197.05 33497.94 26891.74 30192.81 30997.10 28089.12 19198.07 32692.60 26490.30 31496.53 320
Fast-Effi-MVS+96.28 15095.70 16498.03 13198.29 18395.97 15198.58 17898.25 21791.74 30195.29 21897.23 27491.03 15599.15 19592.90 25897.96 17398.97 170
cl____94.51 25494.01 25096.02 27697.58 24393.40 27097.05 33497.96 26791.73 30392.76 31197.08 28689.06 19498.13 32092.61 26390.29 31596.52 323
LTVRE_ROB92.95 1594.60 24593.90 25996.68 22697.41 26294.42 23098.52 18798.59 14491.69 30491.21 33898.35 17884.87 28399.04 21391.06 30293.44 27796.60 309
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
miper_lstm_enhance94.33 26694.07 24595.11 31197.75 22890.97 31597.22 32198.03 26091.67 30592.76 31196.97 30290.03 17197.78 34592.51 27189.64 32396.56 315
MVP-Stereo94.28 27293.92 25695.35 30494.95 36592.60 28997.97 25797.65 28391.61 30690.68 34497.09 28486.32 25698.42 28789.70 32599.34 11395.02 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v119294.32 26793.58 28196.53 24796.10 33594.45 22898.50 19298.17 23291.54 30794.19 25797.06 29186.95 24598.43 28690.14 31489.57 32496.70 298
TDRefinement91.06 32989.68 33495.21 30785.35 40191.49 30898.51 19197.07 33191.47 30888.83 36197.84 22677.31 35499.09 20792.79 26177.98 38995.04 366
v14419294.39 26493.70 27696.48 25296.06 33794.35 23498.58 17898.16 23491.45 30994.33 24997.02 29787.50 23698.45 28391.08 30189.11 33396.63 306
Baseline_NR-MVSNet94.35 26593.81 26695.96 28096.20 33094.05 24598.61 17596.67 35591.44 31093.85 27497.60 24988.57 20698.14 31994.39 21086.93 35895.68 355
无先验97.58 29698.72 11391.38 31199.87 5893.36 24499.60 77
AllTest95.24 20794.65 21296.99 20399.25 8193.21 27998.59 17698.18 22791.36 31293.52 28598.77 13284.67 29099.72 11389.70 32597.87 17698.02 229
TestCases96.99 20399.25 8193.21 27998.18 22791.36 31293.52 28598.77 13284.67 29099.72 11389.70 32597.87 17698.02 229
v1094.29 27093.55 28396.51 24996.39 32394.80 21398.99 8198.19 22491.35 31493.02 30596.99 30088.09 21998.41 29590.50 31188.41 34296.33 339
v192192094.20 27593.47 28796.40 26195.98 34094.08 24498.52 18798.15 23591.33 31594.25 25397.20 27786.41 25498.42 28790.04 31989.39 33096.69 303
MSDG95.93 16695.30 18397.83 14198.90 12495.36 18196.83 35398.37 19491.32 31694.43 24398.73 13890.27 16899.60 13990.05 31898.82 13798.52 209
旧先验297.57 29791.30 31798.67 7399.80 8895.70 171
tpmvs94.60 24594.36 22995.33 30597.46 25488.60 35896.88 34997.68 28191.29 31893.80 27796.42 33188.58 20599.24 18491.06 30296.04 23398.17 225
PM-MVS87.77 34886.55 35491.40 36291.03 38983.36 38496.92 34195.18 37791.28 31986.48 37493.42 37953.27 39596.74 36789.43 33181.97 37594.11 376
MIMVSNet93.26 30492.21 31396.41 25997.73 23293.13 28195.65 37497.03 33591.27 32094.04 26496.06 34275.33 36697.19 36086.56 35396.23 22998.92 176
PAPM94.95 22794.00 25197.78 14697.04 28595.65 16896.03 36998.25 21791.23 32194.19 25797.80 23291.27 14898.86 24382.61 37697.61 18698.84 181
dp94.15 28093.90 25994.90 31797.31 26786.82 37596.97 33897.19 32491.22 32296.02 20196.61 32685.51 27199.02 21790.00 32094.30 24698.85 179
UniMVSNet_ETH3D94.24 27393.33 29196.97 20697.19 27793.38 27198.74 14698.57 15191.21 32393.81 27698.58 15372.85 37798.77 25395.05 19093.93 26198.77 189
v124094.06 28993.29 29396.34 26496.03 33993.90 24898.44 19998.17 23291.18 32494.13 26097.01 29986.05 26098.42 28789.13 33589.50 32896.70 298
tfpnnormal93.66 29492.70 30496.55 24696.94 29195.94 15498.97 8499.19 2491.04 32591.38 33797.34 26584.94 28298.61 26485.45 36289.02 33695.11 364
MDTV_nov1_ep13_2view84.26 37996.89 34890.97 32697.90 12389.89 17393.91 22899.18 148
FE-MVS95.62 18494.90 20297.78 14698.37 17094.92 20697.17 32897.38 31490.95 32797.73 13297.70 23885.32 27799.63 13491.18 29798.33 16298.79 184
TransMVSNet (Re)92.67 31491.51 32096.15 27196.58 31394.65 21798.90 9996.73 35190.86 32889.46 35597.86 22385.62 26898.09 32486.45 35481.12 37895.71 354
Anonymous20240521195.28 20594.49 21997.67 15999.00 11493.75 25498.70 15997.04 33490.66 32996.49 18798.80 12878.13 34799.83 6996.21 15195.36 24399.44 107
ppachtmachnet_test93.22 30592.63 30594.97 31595.45 35890.84 31996.88 34997.88 27390.60 33092.08 33097.26 27088.08 22097.86 34385.12 36490.33 31396.22 342
CL-MVSNet_self_test90.11 33689.14 33993.02 35291.86 38588.23 36696.51 36398.07 25290.49 33190.49 34694.41 37084.75 28795.34 38480.79 38074.95 39395.50 357
Anonymous2023120691.66 32291.10 32293.33 34794.02 37787.35 37298.58 17897.26 32190.48 33290.16 34896.31 33283.83 31096.53 37379.36 38489.90 32096.12 345
VDDNet95.36 20094.53 21797.86 13998.10 20295.13 19598.85 11897.75 27990.46 33398.36 9499.39 3273.27 37699.64 13197.98 6096.58 21198.81 183
TinyColmap92.31 31891.53 31994.65 32896.92 29289.75 33696.92 34196.68 35490.45 33489.62 35297.85 22576.06 36498.81 24986.74 35292.51 29095.41 358
pmmvs494.69 23793.99 25396.81 21895.74 34795.94 15497.40 30597.67 28290.42 33593.37 29397.59 25089.08 19398.20 31592.97 25591.67 29996.30 340
FMVSNet193.19 30792.07 31496.56 24197.54 24895.00 19998.82 12698.18 22790.38 33692.27 32697.07 28773.68 37597.95 33489.36 33291.30 30396.72 294
KD-MVS_self_test90.38 33489.38 33793.40 34692.85 38288.94 35497.95 25897.94 26890.35 33790.25 34793.96 37579.82 33495.94 38084.62 37076.69 39195.33 359
RPSCF94.87 23195.40 17193.26 34998.89 12582.06 38798.33 20898.06 25790.30 33896.56 18199.26 5787.09 24199.49 15893.82 23196.32 22098.24 221
ADS-MVSNet294.58 24894.40 22895.11 31198.00 20988.74 35696.04 36797.30 31790.15 33996.47 18896.64 32487.89 22597.56 35390.08 31697.06 19699.02 165
ADS-MVSNet95.00 22094.45 22496.63 23198.00 20991.91 29996.04 36797.74 28090.15 33996.47 18896.64 32487.89 22598.96 22590.08 31697.06 19699.02 165
新几何199.16 4599.34 5798.01 5998.69 12090.06 34198.13 10198.95 11294.60 7999.89 4791.97 28599.47 9999.59 79
OpenMVScopyleft93.04 1395.83 17295.00 19698.32 10497.18 27897.32 8199.21 3898.97 4289.96 34291.14 33999.05 9786.64 24999.92 3193.38 24299.47 9997.73 237
COLMAP_ROBcopyleft93.27 1295.33 20394.87 20496.71 22299.29 7393.24 27898.58 17898.11 24289.92 34393.57 28399.10 8686.37 25599.79 9890.78 30798.10 16997.09 255
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
KD-MVS_2432*160089.61 34187.96 34894.54 33094.06 37591.59 30695.59 37597.63 28589.87 34488.95 35894.38 37278.28 34596.82 36584.83 36668.05 39795.21 361
miper_refine_blended89.61 34187.96 34894.54 33094.06 37591.59 30695.59 37597.63 28589.87 34488.95 35894.38 37278.28 34596.82 36584.83 36668.05 39795.21 361
QAPM96.29 14895.40 17198.96 6197.85 22297.60 7299.23 3198.93 5089.76 34693.11 30399.02 9889.11 19299.93 2591.99 28399.62 7199.34 116
gm-plane-assit95.88 34487.47 37189.74 34796.94 30799.19 19093.32 245
pmmvs593.65 29692.97 29995.68 29195.49 35592.37 29098.20 22697.28 31989.66 34892.58 31797.26 27082.14 31798.09 32493.18 24990.95 30996.58 311
CostFormer94.95 22794.73 20995.60 29597.28 26889.06 34997.53 29896.89 34689.66 34896.82 17096.72 31986.05 26098.95 23095.53 17696.13 23298.79 184
WB-MVS84.86 35585.33 35683.46 37589.48 39269.56 40098.19 22996.42 36189.55 35081.79 38594.67 36884.80 28590.12 39852.44 40180.64 38290.69 389
new-patchmatchnet88.50 34687.45 35191.67 36190.31 39085.89 37797.16 33097.33 31689.47 35183.63 38392.77 38476.38 36195.06 38782.70 37577.29 39094.06 379
Patchmatch-test94.42 26293.68 27896.63 23197.60 24291.76 30194.83 38397.49 30389.45 35294.14 25997.10 28088.99 19598.83 24785.37 36398.13 16899.29 127
DP-MVS96.59 13395.93 15098.57 7999.34 5796.19 14098.70 15998.39 19089.45 35294.52 23699.35 4491.85 13099.85 6392.89 26098.88 13299.68 61
test_f86.07 35485.39 35588.10 36789.28 39375.57 39397.73 28496.33 36289.41 35485.35 37991.56 38943.31 40095.53 38291.32 29684.23 37093.21 386
FMVSNet591.81 32090.92 32394.49 33297.21 27392.09 29598.00 25497.55 29689.31 35590.86 34295.61 35774.48 37195.32 38585.57 36089.70 32296.07 347
EG-PatchMatch MVS91.13 32890.12 33194.17 34094.73 37089.00 35198.13 23897.81 27689.22 35685.32 38096.46 32967.71 38598.42 28787.89 34893.82 26395.08 365
DSMNet-mixed92.52 31792.58 30792.33 35794.15 37382.65 38598.30 21594.26 38689.08 35792.65 31595.73 35285.01 28195.76 38186.24 35597.76 18198.59 205
SSC-MVS84.27 35684.71 35982.96 37989.19 39468.83 40198.08 24596.30 36389.04 35881.37 38794.47 36984.60 29289.89 39949.80 40379.52 38490.15 390
pmmvs-eth3d90.36 33589.05 34094.32 33791.10 38892.12 29497.63 29496.95 34188.86 35984.91 38193.13 38278.32 34496.74 36788.70 33881.81 37694.09 377
test22299.23 8897.17 9297.40 30598.66 13188.68 36098.05 10698.96 11094.14 9399.53 9199.61 75
Anonymous2024052191.18 32790.44 32893.42 34493.70 37888.47 36198.94 9397.56 29188.46 36189.56 35495.08 36577.15 35896.97 36383.92 37189.55 32694.82 369
MDA-MVSNet-bldmvs89.97 33888.35 34494.83 32295.21 36291.34 30997.64 29197.51 30088.36 36271.17 39796.13 34179.22 33896.63 37283.65 37286.27 36396.52 323
MIMVSNet189.67 34088.28 34593.82 34192.81 38391.08 31498.01 25297.45 30887.95 36387.90 36595.87 34867.63 38694.56 38978.73 38788.18 34495.83 352
MDA-MVSNet_test_wron90.71 33289.38 33794.68 32694.83 36790.78 32197.19 32597.46 30487.60 36472.41 39695.72 35486.51 25096.71 37085.92 35886.80 36196.56 315
YYNet190.70 33389.39 33694.62 32994.79 36990.65 32497.20 32397.46 30487.54 36572.54 39595.74 35086.51 25096.66 37186.00 35786.76 36296.54 318
Patchmtry93.22 30592.35 31195.84 28696.77 30193.09 28494.66 38697.56 29187.37 36692.90 30796.24 33488.15 21797.90 33887.37 35090.10 31896.53 320
tpm294.19 27693.76 27295.46 30097.23 27189.04 35097.31 31696.85 35087.08 36796.21 19696.79 31683.75 31298.74 25492.43 27496.23 22998.59 205
PatchT93.06 31091.97 31696.35 26396.69 30792.67 28894.48 38797.08 32986.62 36897.08 15592.23 38787.94 22497.90 33878.89 38696.69 20798.49 211
TAPA-MVS93.98 795.35 20194.56 21697.74 15199.13 10194.83 21198.33 20898.64 13686.62 36896.29 19498.61 14894.00 9699.29 17980.00 38299.41 10699.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Anonymous2023121194.10 28593.26 29496.61 23499.11 10494.28 23699.01 7698.88 6286.43 37092.81 30997.57 25281.66 32098.68 26094.83 19589.02 33696.88 275
new_pmnet90.06 33789.00 34193.22 35094.18 37288.32 36496.42 36596.89 34686.19 37185.67 37793.62 37777.18 35797.10 36181.61 37889.29 33194.23 373
pmmvs691.77 32190.63 32695.17 30994.69 37191.24 31298.67 16597.92 27086.14 37289.62 35297.56 25475.79 36598.34 30290.75 30884.56 36895.94 350
test_040291.32 32490.27 33094.48 33396.60 31191.12 31398.50 19297.22 32386.10 37388.30 36396.98 30177.65 35297.99 33278.13 38892.94 28594.34 371
JIA-IIPM93.35 30092.49 30895.92 28196.48 31990.65 32495.01 37896.96 34085.93 37496.08 19987.33 39387.70 23298.78 25291.35 29595.58 24198.34 218
N_pmnet87.12 35287.77 35085.17 37295.46 35761.92 40697.37 30970.66 41185.83 37588.73 36296.04 34385.33 27697.76 34680.02 38190.48 31295.84 351
Anonymous2024052995.10 21594.22 23497.75 15099.01 11394.26 23898.87 11398.83 8085.79 37696.64 17698.97 10578.73 34099.85 6396.27 14794.89 24499.12 154
cascas94.63 24493.86 26396.93 20996.91 29494.27 23796.00 37098.51 16485.55 37794.54 23596.23 33684.20 30298.87 24195.80 16596.98 20197.66 240
gg-mvs-nofinetune92.21 31990.58 32797.13 19496.75 30495.09 19695.85 37189.40 40385.43 37894.50 23781.98 39680.80 32998.40 30192.16 27698.33 16297.88 231
test_vis3_rt79.22 35777.40 36384.67 37386.44 39974.85 39597.66 28981.43 40884.98 37967.12 39981.91 39728.09 40897.60 35088.96 33680.04 38381.55 397
114514_t96.93 12096.27 13698.92 6399.50 4197.63 7098.85 11898.90 5784.80 38097.77 12699.11 8492.84 10699.66 12894.85 19499.77 3199.47 100
PCF-MVS93.45 1194.68 23993.43 28998.42 9998.62 15296.77 10795.48 37798.20 22284.63 38193.34 29498.32 18488.55 20999.81 8184.80 36898.96 12898.68 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UnsupCasMVSNet_bld87.17 35085.12 35793.31 34891.94 38488.77 35594.92 38198.30 20984.30 38282.30 38490.04 39063.96 39097.25 35985.85 35974.47 39593.93 381
APD_test188.22 34788.01 34788.86 36695.98 34074.66 39697.21 32296.44 36083.96 38386.66 37297.90 21960.95 39297.84 34482.73 37490.23 31694.09 377
ANet_high69.08 36665.37 37080.22 38165.99 40971.96 39990.91 39590.09 40282.62 38449.93 40478.39 39929.36 40781.75 40262.49 39938.52 40386.95 396
RPMNet92.81 31291.34 32197.24 18497.00 28693.43 26694.96 37998.80 9382.27 38596.93 16392.12 38886.98 24499.82 7676.32 39196.65 20998.46 212
tpm cat193.36 29992.80 30195.07 31397.58 24387.97 36896.76 35597.86 27482.17 38693.53 28496.04 34386.13 25899.13 19889.24 33395.87 23798.10 227
CMPMVSbinary66.06 2189.70 33989.67 33589.78 36493.19 38076.56 39097.00 33798.35 19780.97 38781.57 38697.75 23474.75 36998.61 26489.85 32193.63 27094.17 375
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs386.67 35384.86 35892.11 36088.16 39587.19 37496.63 35994.75 38179.88 38887.22 36892.75 38566.56 38895.20 38681.24 37976.56 39293.96 380
OpenMVS_ROBcopyleft86.42 2089.00 34487.43 35293.69 34293.08 38189.42 34497.91 26396.89 34678.58 38985.86 37594.69 36769.48 38198.29 31177.13 38993.29 28193.36 384
MVS94.67 24293.54 28498.08 12896.88 29696.56 11998.19 22998.50 16978.05 39092.69 31498.02 20891.07 15499.63 13490.09 31598.36 16198.04 228
DeepMVS_CXcopyleft86.78 36997.09 28472.30 39795.17 37875.92 39184.34 38295.19 36270.58 37995.35 38379.98 38389.04 33592.68 387
MVS-HIRNet89.46 34388.40 34392.64 35497.58 24382.15 38694.16 39093.05 39575.73 39290.90 34182.52 39579.42 33798.33 30383.53 37398.68 14097.43 245
PMMVS277.95 36375.44 36785.46 37182.54 40274.95 39494.23 38993.08 39472.80 39374.68 39187.38 39236.36 40391.56 39673.95 39263.94 39989.87 391
testf179.02 35977.70 36182.99 37788.10 39666.90 40294.67 38493.11 39271.08 39474.02 39293.41 38034.15 40493.25 39272.25 39478.50 38788.82 392
APD_test279.02 35977.70 36182.99 37788.10 39666.90 40294.67 38493.11 39271.08 39474.02 39293.41 38034.15 40493.25 39272.25 39478.50 38788.82 392
FPMVS77.62 36477.14 36479.05 38279.25 40560.97 40795.79 37295.94 36865.96 39667.93 39894.40 37137.73 40288.88 40168.83 39788.46 34187.29 394
Gipumacopyleft78.40 36276.75 36583.38 37695.54 35380.43 38979.42 40097.40 31264.67 39773.46 39480.82 39845.65 39793.14 39466.32 39887.43 35176.56 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet78.70 36176.24 36686.08 37077.26 40771.99 39894.34 38896.72 35261.62 39876.53 39089.33 39133.91 40692.78 39581.85 37774.60 39493.46 383
PMVScopyleft61.03 2365.95 36863.57 37273.09 38557.90 41051.22 41285.05 39893.93 39054.45 39944.32 40583.57 39413.22 40989.15 40058.68 40081.00 37978.91 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN64.94 36964.25 37167.02 38682.28 40359.36 40991.83 39485.63 40552.69 40060.22 40177.28 40041.06 40180.12 40446.15 40441.14 40161.57 402
MVEpermissive62.14 2263.28 37159.38 37474.99 38374.33 40865.47 40485.55 39780.50 40952.02 40151.10 40375.00 40210.91 41280.50 40351.60 40253.40 40078.99 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS64.07 37063.26 37366.53 38781.73 40458.81 41091.85 39384.75 40651.93 40259.09 40275.13 40143.32 39979.09 40542.03 40539.47 40261.69 401
test_method79.03 35878.17 36081.63 38086.06 40054.40 41182.75 39996.89 34639.54 40380.98 38895.57 35858.37 39394.73 38884.74 36978.61 38695.75 353
tmp_tt68.90 36766.97 36974.68 38450.78 41159.95 40887.13 39683.47 40738.80 40462.21 40096.23 33664.70 38976.91 40688.91 33730.49 40487.19 395
wuyk23d30.17 37230.18 37630.16 38878.61 40643.29 41366.79 40114.21 41217.31 40514.82 40811.93 40811.55 41141.43 40737.08 40619.30 4055.76 405
testmvs21.48 37424.95 37711.09 39014.89 4126.47 41596.56 3619.87 4137.55 40617.93 40639.02 4049.43 4135.90 40916.56 40812.72 40620.91 404
test12320.95 37523.72 37812.64 38913.54 4138.19 41496.55 3626.13 4147.48 40716.74 40737.98 40512.97 4106.05 40816.69 4075.43 40723.68 403
EGC-MVSNET75.22 36569.54 36892.28 35894.81 36889.58 34197.64 29196.50 3591.82 4085.57 40995.74 35068.21 38296.26 37673.80 39391.71 29890.99 388
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k23.98 37331.98 3750.00 3910.00 4140.00 4160.00 40298.59 1440.00 4090.00 41098.61 14890.60 1620.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.88 37710.50 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40994.51 810.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.20 37610.94 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41098.43 1680.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS90.94 31688.66 339
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
No_MVS99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
eth-test20.00 414
eth-test0.00 414
OPU-MVS99.37 2099.24 8799.05 1499.02 7499.16 7797.81 399.37 17397.24 10799.73 4899.70 53
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 6299.94 898.47 3899.81 1299.84 12
GSMVS99.20 139
test_part299.63 2999.18 1099.27 35
sam_mvs189.45 18199.20 139
sam_mvs88.99 195
ambc89.49 36586.66 39875.78 39192.66 39296.72 35286.55 37392.50 38646.01 39697.90 33890.32 31282.09 37394.80 370
MTGPAbinary98.74 108
test_post196.68 35830.43 40787.85 22898.69 25792.59 266
test_post31.83 40688.83 20298.91 234
patchmatchnet-post95.10 36489.42 18298.89 238
GG-mvs-BLEND96.59 23796.34 32694.98 20296.51 36388.58 40493.10 30494.34 37480.34 33398.05 32789.53 32896.99 19896.74 291
MTMP98.89 10394.14 388
test9_res96.39 14699.57 8099.69 56
agg_prior295.87 16299.57 8099.68 61
agg_prior99.30 6898.38 3598.72 11397.57 14499.81 81
test_prior498.01 5997.86 272
test_prior99.19 4099.31 6498.22 4798.84 7999.70 11999.65 69
新几何297.64 291
旧先验199.29 7397.48 7698.70 11999.09 9295.56 4899.47 9999.61 75
原ACMM297.67 288
testdata299.89 4791.65 292
segment_acmp96.85 14
test1299.18 4299.16 9898.19 4898.53 15998.07 10595.13 7099.72 11399.56 8699.63 73
plane_prior797.42 25994.63 219
plane_prior697.35 26694.61 22287.09 241
plane_prior598.56 15399.03 21496.07 15294.27 24796.92 266
plane_prior498.28 187
plane_prior197.37 265
n20.00 415
nn0.00 415
door-mid94.37 384
lessismore_v094.45 33694.93 36688.44 36291.03 40086.77 37197.64 24676.23 36398.42 28790.31 31385.64 36796.51 326
test1198.66 131
door94.64 382
HQP5-MVS94.25 239
BP-MVS95.30 181
HQP4-MVS94.45 23998.96 22596.87 277
HQP3-MVS98.46 17694.18 251
HQP2-MVS86.75 247
NP-MVS97.28 26894.51 22797.73 235
ACMMP++_ref92.97 284
ACMMP++93.61 271
Test By Simon94.64 78