EPNet | | | 97.28 100 | 96.87 103 | 98.51 92 | 94.98 329 | 96.14 140 | 98.90 80 | 97.02 312 | 98.28 1 | 95.99 184 | 99.11 67 | 91.36 140 | 99.89 35 | 96.98 89 | 99.19 109 | 99.50 91 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DeepPCF-MVS | | 96.37 2 | 97.93 64 | 98.48 17 | 96.30 245 | 99.00 110 | 89.54 315 | 97.43 268 | 98.87 55 | 98.16 2 | 99.26 18 | 99.38 21 | 96.12 28 | 99.64 126 | 98.30 27 | 99.77 26 | 99.72 40 |
|
xxxxxxxxxxxxxcwj | | | 98.70 9 | 98.50 14 | 99.30 30 | 99.46 51 | 98.38 35 | 98.21 199 | 98.52 158 | 97.95 3 | 99.32 15 | 99.39 14 | 96.22 20 | 99.84 53 | 97.72 55 | 99.73 43 | 99.67 61 |
|
save fliter | | | | | | 99.46 51 | 98.38 35 | 98.21 199 | 98.71 114 | 97.95 3 | | | | | | | |
|
NCCC | | | 98.61 17 | 98.35 24 | 99.38 17 | 99.28 82 | 98.61 24 | 98.45 165 | 98.76 99 | 97.82 5 | 98.45 74 | 98.93 97 | 96.65 14 | 99.83 56 | 97.38 78 | 99.41 98 | 99.71 44 |
|
CNVR-MVS | | | 98.78 6 | 98.56 9 | 99.45 14 | 99.32 68 | 98.87 15 | 98.47 164 | 98.81 76 | 97.72 6 | 98.76 52 | 99.16 61 | 97.05 10 | 99.78 96 | 98.06 34 | 99.66 57 | 99.69 51 |
|
DeepC-MVS_fast | | 96.70 1 | 98.55 30 | 98.34 28 | 99.18 47 | 99.25 86 | 98.04 60 | 98.50 161 | 98.78 95 | 97.72 6 | 98.92 44 | 99.28 40 | 95.27 64 | 99.82 64 | 97.55 71 | 99.77 26 | 99.69 51 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DELS-MVS | | | 98.40 42 | 98.20 44 | 98.99 63 | 99.00 110 | 97.66 76 | 97.75 251 | 98.89 46 | 97.71 8 | 98.33 81 | 98.97 87 | 94.97 74 | 99.88 43 | 98.42 21 | 99.76 32 | 99.42 108 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
SED-MVS | | | 99.09 1 | 98.91 1 | 99.63 3 | 99.71 20 | 99.24 4 | 99.02 59 | 98.87 55 | 97.65 9 | 99.73 1 | 99.48 6 | 97.53 4 | 99.94 3 | 98.43 19 | 99.81 10 | 99.70 48 |
|
test_241102_TWO | | | | | | | | | 98.87 55 | 97.65 9 | 99.53 8 | 99.48 6 | 97.34 8 | 99.94 3 | 98.43 19 | 99.80 17 | 99.83 5 |
|
test_241102_ONE | | | | | | 99.71 20 | 99.24 4 | | 98.87 55 | 97.62 11 | 99.73 1 | 99.39 14 | 97.53 4 | 99.74 107 | | | |
|
DVP-MVS | | | 99.03 2 | 98.83 3 | 99.63 3 | 99.72 12 | 99.25 2 | 98.97 69 | 98.58 147 | 97.62 11 | 99.45 9 | 99.46 9 | 97.42 6 | 99.94 3 | 98.47 16 | 99.81 10 | 99.69 51 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 99.72 12 | 99.25 2 | 99.06 52 | 98.88 49 | 97.62 11 | 99.56 5 | 99.50 4 | 97.42 6 | | | | |
|
DPE-MVS |  | | 98.92 4 | 98.67 6 | 99.65 2 | 99.58 32 | 99.20 7 | 98.42 172 | 98.91 43 | 97.58 14 | 99.54 7 | 99.46 9 | 97.10 9 | 99.94 3 | 97.64 63 | 99.84 8 | 99.83 5 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MSP-MVS | | | 98.74 8 | 98.55 10 | 99.29 31 | 99.75 3 | 98.23 49 | 99.26 20 | 98.88 49 | 97.52 15 | 99.41 11 | 98.78 113 | 96.00 34 | 99.79 92 | 97.79 51 | 99.59 71 | 99.85 2 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
HPM-MVS++ |  | | 98.58 23 | 98.25 38 | 99.55 6 | 99.50 41 | 99.08 9 | 98.72 123 | 98.66 132 | 97.51 16 | 98.15 84 | 98.83 108 | 95.70 44 | 99.92 21 | 97.53 73 | 99.67 54 | 99.66 65 |
|
Regformer-1 | | | 98.66 12 | 98.51 13 | 99.12 57 | 99.35 60 | 97.81 74 | 98.37 176 | 98.76 99 | 97.49 17 | 99.20 22 | 99.21 48 | 96.08 29 | 99.79 92 | 98.42 21 | 99.73 43 | 99.75 28 |
|
hse-mvs3 | | | 96.17 143 | 95.62 152 | 97.81 140 | 99.03 108 | 94.45 217 | 98.64 139 | 98.75 102 | 97.48 18 | 98.67 58 | 98.72 120 | 89.76 169 | 99.86 49 | 97.95 38 | 81.59 340 | 99.11 144 |
|
hse-mvs2 | | | 95.71 162 | 95.30 167 | 96.93 193 | 98.50 150 | 93.53 249 | 98.36 178 | 98.10 236 | 97.48 18 | 98.67 58 | 97.99 190 | 89.76 169 | 99.02 197 | 97.95 38 | 80.91 344 | 98.22 198 |
|
Regformer-2 | | | 98.69 11 | 98.52 12 | 99.19 43 | 99.35 60 | 98.01 62 | 98.37 176 | 98.81 76 | 97.48 18 | 99.21 21 | 99.21 48 | 96.13 27 | 99.80 80 | 98.40 23 | 99.73 43 | 99.75 28 |
|
Regformer-4 | | | 98.64 14 | 98.53 11 | 98.99 63 | 99.43 57 | 97.37 87 | 98.40 174 | 98.79 92 | 97.46 21 | 99.09 30 | 99.31 35 | 95.86 42 | 99.80 80 | 98.64 4 | 99.76 32 | 99.79 10 |
|
Regformer-3 | | | 98.59 20 | 98.50 14 | 98.86 73 | 99.43 57 | 97.05 101 | 98.40 174 | 98.68 121 | 97.43 22 | 99.06 31 | 99.31 35 | 95.80 43 | 99.77 101 | 98.62 6 | 99.76 32 | 99.78 13 |
|
XVS | | | 98.70 9 | 98.49 16 | 99.34 23 | 99.70 23 | 98.35 43 | 99.29 16 | 98.88 49 | 97.40 23 | 98.46 71 | 99.20 52 | 95.90 40 | 99.89 35 | 97.85 47 | 99.74 41 | 99.78 13 |
|
X-MVStestdata | | | 94.06 265 | 92.30 285 | 99.34 23 | 99.70 23 | 98.35 43 | 99.29 16 | 98.88 49 | 97.40 23 | 98.46 71 | 43.50 362 | 95.90 40 | 99.89 35 | 97.85 47 | 99.74 41 | 99.78 13 |
|
UGNet | | | 96.78 121 | 96.30 127 | 98.19 117 | 98.24 169 | 95.89 158 | 98.88 87 | 98.93 37 | 97.39 25 | 96.81 154 | 97.84 206 | 82.60 297 | 99.90 33 | 96.53 116 | 99.49 88 | 98.79 169 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
APDe-MVS | | | 99.02 3 | 98.84 2 | 99.55 6 | 99.57 33 | 98.96 12 | 99.39 5 | 98.93 37 | 97.38 26 | 99.41 11 | 99.54 1 | 96.66 13 | 99.84 53 | 98.86 1 | 99.85 3 | 99.87 1 |
|
SteuartSystems-ACMMP | | | 98.90 5 | 98.75 4 | 99.36 21 | 99.22 94 | 98.43 33 | 99.10 47 | 98.87 55 | 97.38 26 | 99.35 14 | 99.40 13 | 97.78 3 | 99.87 44 | 97.77 52 | 99.85 3 | 99.78 13 |
Skip Steuart: Steuart Systems R&D Blog. |
CANet | | | 98.05 56 | 97.76 62 | 98.90 71 | 98.73 130 | 97.27 91 | 98.35 179 | 98.78 95 | 97.37 28 | 97.72 116 | 98.96 93 | 91.53 138 | 99.92 21 | 98.79 2 | 99.65 58 | 99.51 89 |
|
test_0728_THIRD | | | | | | | | | | 97.32 29 | 99.45 9 | 99.46 9 | 97.88 1 | 99.94 3 | 98.47 16 | 99.86 1 | 99.85 2 |
|
PS-MVSNAJ | | | 97.73 71 | 97.77 61 | 97.62 157 | 98.68 138 | 95.58 166 | 97.34 277 | 98.51 161 | 97.29 30 | 98.66 62 | 97.88 201 | 94.51 84 | 99.90 33 | 97.87 45 | 99.17 110 | 97.39 220 |
|
SD-MVS | | | 98.64 14 | 98.68 5 | 98.53 91 | 99.33 65 | 98.36 42 | 98.90 80 | 98.85 64 | 97.28 31 | 99.72 3 | 99.39 14 | 96.63 15 | 97.60 321 | 98.17 29 | 99.85 3 | 99.64 70 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MSLP-MVS++ | | | 98.56 28 | 98.57 8 | 98.55 87 | 99.26 85 | 96.80 110 | 98.71 124 | 99.05 24 | 97.28 31 | 98.84 46 | 99.28 40 | 96.47 18 | 99.40 155 | 98.52 14 | 99.70 51 | 99.47 98 |
|
HQP_MVS | | | 96.14 144 | 95.90 140 | 96.85 199 | 97.42 232 | 94.60 213 | 98.80 106 | 98.56 150 | 97.28 31 | 95.34 189 | 98.28 167 | 87.09 233 | 99.03 193 | 96.07 129 | 94.27 220 | 96.92 238 |
|
plane_prior2 | | | | | | | | 98.80 106 | | 97.28 31 | | | | | | | |
|
zzz-MVS | | | 98.55 30 | 98.25 38 | 99.46 12 | 99.76 1 | 98.64 22 | 98.55 154 | 98.74 104 | 97.27 35 | 98.02 93 | 99.39 14 | 94.81 77 | 99.96 1 | 97.91 41 | 99.79 19 | 99.77 20 |
|
MTAPA | | | 98.58 23 | 98.29 35 | 99.46 12 | 99.76 1 | 98.64 22 | 98.90 80 | 98.74 104 | 97.27 35 | 98.02 93 | 99.39 14 | 94.81 77 | 99.96 1 | 97.91 41 | 99.79 19 | 99.77 20 |
|
CANet_DTU | | | 96.96 114 | 96.55 119 | 98.21 114 | 98.17 179 | 96.07 142 | 97.98 229 | 98.21 213 | 97.24 37 | 97.13 136 | 98.93 97 | 86.88 238 | 99.91 30 | 95.00 167 | 99.37 102 | 98.66 180 |
|
EI-MVSNet-Vis-set | | | 98.47 38 | 98.39 19 | 98.69 78 | 99.46 51 | 96.49 125 | 98.30 190 | 98.69 118 | 97.21 38 | 98.84 46 | 99.36 26 | 95.41 54 | 99.78 96 | 98.62 6 | 99.65 58 | 99.80 9 |
|
MVS_111021_HR | | | 98.47 38 | 98.34 28 | 98.88 72 | 99.22 94 | 97.32 88 | 97.91 235 | 99.58 3 | 97.20 39 | 98.33 81 | 99.00 85 | 95.99 35 | 99.64 126 | 98.05 36 | 99.76 32 | 99.69 51 |
|
TSAR-MVS + GP. | | | 98.38 43 | 98.24 41 | 98.81 74 | 99.22 94 | 97.25 95 | 98.11 218 | 98.29 205 | 97.19 40 | 98.99 38 | 99.02 80 | 96.22 20 | 99.67 122 | 98.52 14 | 98.56 135 | 99.51 89 |
|
EI-MVSNet-UG-set | | | 98.41 41 | 98.34 28 | 98.61 83 | 99.45 55 | 96.32 133 | 98.28 193 | 98.68 121 | 97.17 41 | 98.74 53 | 99.37 22 | 95.25 66 | 99.79 92 | 98.57 8 | 99.54 84 | 99.73 36 |
|
xiu_mvs_v2_base | | | 97.66 75 | 97.70 64 | 97.56 161 | 98.61 144 | 95.46 172 | 97.44 266 | 98.46 171 | 97.15 42 | 98.65 63 | 98.15 178 | 94.33 90 | 99.80 80 | 97.84 49 | 98.66 131 | 97.41 218 |
|
MVS_111021_LR | | | 98.34 48 | 98.23 42 | 98.67 80 | 99.27 83 | 96.90 107 | 97.95 231 | 99.58 3 | 97.14 43 | 98.44 75 | 99.01 84 | 95.03 73 | 99.62 131 | 97.91 41 | 99.75 38 | 99.50 91 |
|
xiu_mvs_v1_base_debu | | | 97.60 78 | 97.56 69 | 97.72 147 | 98.35 158 | 95.98 143 | 97.86 242 | 98.51 161 | 97.13 44 | 99.01 35 | 98.40 152 | 91.56 134 | 99.80 80 | 98.53 10 | 98.68 127 | 97.37 222 |
|
xiu_mvs_v1_base | | | 97.60 78 | 97.56 69 | 97.72 147 | 98.35 158 | 95.98 143 | 97.86 242 | 98.51 161 | 97.13 44 | 99.01 35 | 98.40 152 | 91.56 134 | 99.80 80 | 98.53 10 | 98.68 127 | 97.37 222 |
|
xiu_mvs_v1_base_debi | | | 97.60 78 | 97.56 69 | 97.72 147 | 98.35 158 | 95.98 143 | 97.86 242 | 98.51 161 | 97.13 44 | 99.01 35 | 98.40 152 | 91.56 134 | 99.80 80 | 98.53 10 | 98.68 127 | 97.37 222 |
|
3Dnovator+ | | 94.38 6 | 97.43 92 | 96.78 107 | 99.38 17 | 97.83 200 | 98.52 27 | 99.37 8 | 98.71 114 | 97.09 47 | 92.99 275 | 99.13 64 | 89.36 177 | 99.89 35 | 96.97 90 | 99.57 75 | 99.71 44 |
|
MCST-MVS | | | 98.65 13 | 98.37 21 | 99.48 10 | 99.60 31 | 98.87 15 | 98.41 173 | 98.68 121 | 97.04 48 | 98.52 70 | 98.80 111 | 96.78 12 | 99.83 56 | 97.93 40 | 99.61 67 | 99.74 33 |
|
plane_prior3 | | | | | | | 94.61 211 | | | 97.02 49 | 95.34 189 | | | | | | |
|
3Dnovator | | 94.51 5 | 97.46 87 | 96.93 100 | 99.07 60 | 97.78 202 | 97.64 77 | 99.35 11 | 99.06 22 | 97.02 49 | 93.75 249 | 99.16 61 | 89.25 180 | 99.92 21 | 97.22 82 | 99.75 38 | 99.64 70 |
|
DeepC-MVS | | 95.98 3 | 97.88 65 | 97.58 67 | 98.77 75 | 99.25 86 | 96.93 105 | 98.83 96 | 98.75 102 | 96.96 51 | 96.89 150 | 99.50 4 | 90.46 159 | 99.87 44 | 97.84 49 | 99.76 32 | 99.52 85 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MG-MVS | | | 97.81 68 | 97.60 66 | 98.44 98 | 99.12 103 | 95.97 148 | 97.75 251 | 98.78 95 | 96.89 52 | 98.46 71 | 99.22 47 | 93.90 98 | 99.68 121 | 94.81 172 | 99.52 87 | 99.67 61 |
|
ETV-MVS | | | 97.96 59 | 97.81 60 | 98.40 102 | 98.42 154 | 97.27 91 | 98.73 119 | 98.55 152 | 96.84 53 | 98.38 78 | 97.44 240 | 95.39 55 | 99.35 158 | 97.62 64 | 98.89 118 | 98.58 186 |
|
TSAR-MVS + MP. | | | 98.78 6 | 98.62 7 | 99.24 40 | 99.69 25 | 98.28 48 | 99.14 38 | 98.66 132 | 96.84 53 | 99.56 5 | 99.31 35 | 96.34 19 | 99.70 115 | 98.32 26 | 99.73 43 | 99.73 36 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
EPNet_dtu | | | 95.21 191 | 94.95 183 | 95.99 255 | 96.17 300 | 90.45 306 | 98.16 212 | 97.27 301 | 96.77 55 | 93.14 271 | 98.33 163 | 90.34 161 | 98.42 260 | 85.57 326 | 98.81 125 | 99.09 146 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
canonicalmvs | | | 97.67 74 | 97.23 87 | 98.98 65 | 98.70 135 | 98.38 35 | 99.34 12 | 98.39 185 | 96.76 56 | 97.67 119 | 97.40 243 | 92.26 116 | 99.49 146 | 98.28 28 | 96.28 203 | 99.08 149 |
|
alignmvs | | | 97.56 84 | 97.07 94 | 99.01 62 | 98.66 139 | 98.37 41 | 98.83 96 | 98.06 250 | 96.74 57 | 98.00 99 | 97.65 222 | 90.80 153 | 99.48 150 | 98.37 24 | 96.56 191 | 99.19 133 |
|
VNet | | | 97.79 69 | 97.40 81 | 98.96 67 | 98.88 119 | 97.55 81 | 98.63 140 | 98.93 37 | 96.74 57 | 99.02 34 | 98.84 107 | 90.33 162 | 99.83 56 | 98.53 10 | 96.66 187 | 99.50 91 |
|
plane_prior | | | | | | | 94.60 213 | 98.44 168 | | 96.74 57 | | | | | | 94.22 222 | |
|
UA-Net | | | 97.96 59 | 97.62 65 | 98.98 65 | 98.86 121 | 97.47 84 | 98.89 84 | 99.08 21 | 96.67 60 | 98.72 56 | 99.54 1 | 93.15 105 | 99.81 71 | 94.87 168 | 98.83 123 | 99.65 67 |
|
OPM-MVS | | | 95.69 165 | 95.33 164 | 96.76 203 | 96.16 302 | 94.63 208 | 98.43 170 | 98.39 185 | 96.64 61 | 95.02 195 | 98.78 113 | 85.15 266 | 99.05 189 | 95.21 164 | 94.20 223 | 96.60 280 |
|
Vis-MVSNet |  | | 97.42 93 | 97.11 91 | 98.34 105 | 98.66 139 | 96.23 136 | 99.22 27 | 99.00 27 | 96.63 62 | 98.04 91 | 99.21 48 | 88.05 214 | 99.35 158 | 96.01 135 | 99.21 107 | 99.45 104 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
SR-MVS | | | 98.57 26 | 98.35 24 | 99.24 40 | 99.53 36 | 98.18 53 | 99.09 48 | 98.82 70 | 96.58 63 | 99.10 29 | 99.32 33 | 95.39 55 | 99.82 64 | 97.70 60 | 99.63 64 | 99.72 40 |
|
Effi-MVS+-dtu | | | 96.29 138 | 96.56 118 | 95.51 273 | 97.89 197 | 90.22 308 | 98.80 106 | 98.10 236 | 96.57 64 | 96.45 173 | 96.66 296 | 90.81 151 | 98.91 211 | 95.72 145 | 97.99 156 | 97.40 219 |
|
mvs-test1 | | | 96.60 125 | 96.68 115 | 96.37 240 | 97.89 197 | 91.81 279 | 98.56 152 | 98.10 236 | 96.57 64 | 96.52 169 | 97.94 195 | 90.81 151 | 99.45 153 | 95.72 145 | 98.01 155 | 97.86 208 |
|
test1172 | | | 98.56 28 | 98.35 24 | 99.16 50 | 99.53 36 | 97.94 66 | 99.09 48 | 98.83 68 | 96.52 66 | 99.05 32 | 99.34 31 | 95.34 59 | 99.82 64 | 97.86 46 | 99.64 62 | 99.73 36 |
|
CS-MVS | | | 98.04 57 | 97.95 55 | 98.32 106 | 98.14 181 | 97.15 99 | 99.39 5 | 98.41 180 | 96.51 67 | 98.59 68 | 98.51 142 | 93.89 99 | 99.03 193 | 98.66 3 | 99.43 96 | 98.77 171 |
|
SR-MVS-dyc-post | | | 98.54 32 | 98.35 24 | 99.13 54 | 99.49 45 | 97.86 68 | 99.11 44 | 98.80 87 | 96.49 68 | 99.17 24 | 99.35 28 | 95.34 59 | 99.82 64 | 97.72 55 | 99.65 58 | 99.71 44 |
|
RE-MVS-def | | | | 98.34 28 | | 99.49 45 | 97.86 68 | 99.11 44 | 98.80 87 | 96.49 68 | 99.17 24 | 99.35 28 | 95.29 63 | | 97.72 55 | 99.65 58 | 99.71 44 |
|
HQP-NCC | | | | | | 97.20 246 | | 98.05 222 | | 96.43 70 | 94.45 212 | | | | | | |
|
ACMP_Plane | | | | | | 97.20 246 | | 98.05 222 | | 96.43 70 | 94.45 212 | | | | | | |
|
HQP-MVS | | | 95.72 161 | 95.40 156 | 96.69 209 | 97.20 246 | 94.25 227 | 98.05 222 | 98.46 171 | 96.43 70 | 94.45 212 | 97.73 215 | 86.75 239 | 98.96 204 | 95.30 158 | 94.18 224 | 96.86 251 |
|
casdiffmvs | | | 97.63 77 | 97.41 80 | 98.28 108 | 98.33 164 | 96.14 140 | 98.82 99 | 98.32 195 | 96.38 73 | 97.95 101 | 99.21 48 | 91.23 145 | 99.23 167 | 98.12 31 | 98.37 144 | 99.48 96 |
|
testdata1 | | | | | | | | 97.32 279 | | 96.34 74 | | | | | | | |
|
baseline | | | 97.64 76 | 97.44 79 | 98.25 112 | 98.35 158 | 96.20 137 | 99.00 63 | 98.32 195 | 96.33 75 | 98.03 92 | 99.17 56 | 91.35 141 | 99.16 173 | 98.10 32 | 98.29 149 | 99.39 109 |
|
APD-MVS_3200maxsize | | | 98.53 34 | 98.33 32 | 99.15 53 | 99.50 41 | 97.92 67 | 99.15 37 | 98.81 76 | 96.24 76 | 99.20 22 | 99.37 22 | 95.30 62 | 99.80 80 | 97.73 54 | 99.67 54 | 99.72 40 |
|
mPP-MVS | | | 98.51 35 | 98.26 37 | 99.25 39 | 99.75 3 | 98.04 60 | 99.28 18 | 98.81 76 | 96.24 76 | 98.35 80 | 99.23 45 | 95.46 51 | 99.94 3 | 97.42 76 | 99.81 10 | 99.77 20 |
|
diffmvs | | | 97.58 82 | 97.40 81 | 98.13 120 | 98.32 166 | 95.81 161 | 98.06 221 | 98.37 188 | 96.20 78 | 98.74 53 | 98.89 101 | 91.31 143 | 99.25 164 | 98.16 30 | 98.52 136 | 99.34 112 |
|
region2R | | | 98.61 17 | 98.38 20 | 99.29 31 | 99.74 7 | 98.16 55 | 99.23 23 | 98.93 37 | 96.15 79 | 98.94 39 | 99.17 56 | 95.91 39 | 99.94 3 | 97.55 71 | 99.79 19 | 99.78 13 |
|
abl_6 | | | 98.30 53 | 98.03 51 | 99.13 54 | 99.56 34 | 97.76 75 | 99.13 41 | 98.82 70 | 96.14 80 | 99.26 18 | 99.37 22 | 93.33 102 | 99.93 15 | 96.96 92 | 99.67 54 | 99.69 51 |
|
MP-MVS |  | | 98.33 50 | 98.01 52 | 99.28 35 | 99.75 3 | 98.18 53 | 99.22 27 | 98.79 92 | 96.13 81 | 97.92 106 | 99.23 45 | 94.54 83 | 99.94 3 | 96.74 111 | 99.78 23 | 99.73 36 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
test_prior3 | | | 98.22 55 | 97.90 59 | 99.19 43 | 99.31 70 | 98.22 50 | 97.80 247 | 98.84 65 | 96.12 82 | 97.89 108 | 98.69 121 | 95.96 36 | 99.70 115 | 96.89 97 | 99.60 68 | 99.65 67 |
|
test_prior2 | | | | | | | | 97.80 247 | | 96.12 82 | 97.89 108 | 98.69 121 | 95.96 36 | | 96.89 97 | 99.60 68 | |
|
HFP-MVS | | | 98.63 16 | 98.40 18 | 99.32 28 | 99.72 12 | 98.29 46 | 99.23 23 | 98.96 32 | 96.10 84 | 98.94 39 | 99.17 56 | 96.06 30 | 99.92 21 | 97.62 64 | 99.78 23 | 99.75 28 |
|
ACMMPR | | | 98.59 20 | 98.36 22 | 99.29 31 | 99.74 7 | 98.15 56 | 99.23 23 | 98.95 34 | 96.10 84 | 98.93 43 | 99.19 55 | 95.70 44 | 99.94 3 | 97.62 64 | 99.79 19 | 99.78 13 |
|
ACMMP |  | | 98.23 54 | 97.95 55 | 99.09 59 | 99.74 7 | 97.62 79 | 99.03 56 | 99.41 6 | 95.98 86 | 97.60 126 | 99.36 26 | 94.45 88 | 99.93 15 | 97.14 84 | 98.85 122 | 99.70 48 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CP-MVS | | | 98.57 26 | 98.36 22 | 99.19 43 | 99.66 27 | 97.86 68 | 99.34 12 | 98.87 55 | 95.96 87 | 98.60 66 | 99.13 64 | 96.05 32 | 99.94 3 | 97.77 52 | 99.86 1 | 99.77 20 |
|
FIs | | | 96.51 131 | 96.12 133 | 97.67 153 | 97.13 253 | 97.54 82 | 99.36 9 | 99.22 14 | 95.89 88 | 94.03 237 | 98.35 158 | 91.98 126 | 98.44 258 | 96.40 122 | 92.76 254 | 97.01 231 |
|
EIA-MVS | | | 97.75 70 | 97.58 67 | 98.27 109 | 98.38 156 | 96.44 127 | 99.01 61 | 98.60 140 | 95.88 89 | 97.26 132 | 97.53 233 | 94.97 74 | 99.33 160 | 97.38 78 | 99.20 108 | 99.05 151 |
|
PS-MVSNAJss | | | 96.43 133 | 96.26 129 | 96.92 196 | 95.84 313 | 95.08 188 | 99.16 36 | 98.50 166 | 95.87 90 | 93.84 245 | 98.34 162 | 94.51 84 | 98.61 240 | 96.88 100 | 93.45 244 | 97.06 229 |
|
FC-MVSNet-test | | | 96.42 134 | 96.05 135 | 97.53 163 | 96.95 262 | 97.27 91 | 99.36 9 | 99.23 12 | 95.83 91 | 93.93 239 | 98.37 156 | 92.00 125 | 98.32 276 | 96.02 134 | 92.72 255 | 97.00 232 |
|
ACMMP_NAP | | | 98.61 17 | 98.30 34 | 99.55 6 | 99.62 30 | 98.95 13 | 98.82 99 | 98.81 76 | 95.80 92 | 99.16 26 | 99.47 8 | 95.37 57 | 99.92 21 | 97.89 44 | 99.75 38 | 99.79 10 |
|
ZNCC-MVS | | | 98.49 36 | 98.20 44 | 99.35 22 | 99.73 11 | 98.39 34 | 99.19 33 | 98.86 61 | 95.77 93 | 98.31 83 | 99.10 69 | 95.46 51 | 99.93 15 | 97.57 70 | 99.81 10 | 99.74 33 |
|
jajsoiax | | | 95.45 174 | 95.03 178 | 96.73 205 | 95.42 326 | 94.63 208 | 99.14 38 | 98.52 158 | 95.74 94 | 93.22 266 | 98.36 157 | 83.87 291 | 98.65 238 | 96.95 93 | 94.04 229 | 96.91 243 |
|
mvs_tets | | | 95.41 178 | 95.00 179 | 96.65 211 | 95.58 319 | 94.42 219 | 99.00 63 | 98.55 152 | 95.73 95 | 93.21 267 | 98.38 155 | 83.45 295 | 98.63 239 | 97.09 86 | 94.00 231 | 96.91 243 |
|
GST-MVS | | | 98.43 40 | 98.12 47 | 99.34 23 | 99.72 12 | 98.38 35 | 99.09 48 | 98.82 70 | 95.71 96 | 98.73 55 | 99.06 78 | 95.27 64 | 99.93 15 | 97.07 87 | 99.63 64 | 99.72 40 |
|
CVMVSNet | | | 95.43 175 | 96.04 136 | 93.57 316 | 97.93 194 | 83.62 348 | 98.12 216 | 98.59 142 | 95.68 97 | 96.56 163 | 99.02 80 | 87.51 225 | 97.51 325 | 93.56 214 | 97.44 173 | 99.60 78 |
|
VPNet | | | 94.99 203 | 94.19 218 | 97.40 169 | 97.16 251 | 96.57 121 | 98.71 124 | 98.97 30 | 95.67 98 | 94.84 199 | 98.24 173 | 80.36 312 | 98.67 236 | 96.46 118 | 87.32 320 | 96.96 235 |
|
XVG-OURS | | | 96.55 130 | 96.41 123 | 96.99 187 | 98.75 129 | 93.76 238 | 97.50 265 | 98.52 158 | 95.67 98 | 96.83 151 | 99.30 38 | 88.95 193 | 99.53 143 | 95.88 138 | 96.26 204 | 97.69 214 |
|
#test# | | | 98.54 32 | 98.27 36 | 99.32 28 | 99.72 12 | 98.29 46 | 98.98 68 | 98.96 32 | 95.65 100 | 98.94 39 | 99.17 56 | 96.06 30 | 99.92 21 | 97.21 83 | 99.78 23 | 99.75 28 |
|
testgi | | | 93.06 284 | 92.45 283 | 94.88 293 | 96.43 291 | 89.90 309 | 98.75 112 | 97.54 283 | 95.60 101 | 91.63 306 | 97.91 197 | 74.46 345 | 97.02 331 | 86.10 322 | 93.67 237 | 97.72 213 |
|
UniMVSNet (Re) | | | 95.78 159 | 95.19 171 | 97.58 159 | 96.99 261 | 97.47 84 | 98.79 110 | 99.18 16 | 95.60 101 | 93.92 240 | 97.04 271 | 91.68 131 | 98.48 252 | 95.80 142 | 87.66 316 | 96.79 256 |
|
Fast-Effi-MVS+-dtu | | | 95.87 154 | 95.85 141 | 95.91 260 | 97.74 206 | 91.74 283 | 98.69 130 | 98.15 227 | 95.56 103 | 94.92 197 | 97.68 221 | 88.98 191 | 98.79 227 | 93.19 223 | 97.78 164 | 97.20 226 |
|
bset_n11_16_dypcd | | | 94.89 211 | 94.27 214 | 96.76 203 | 94.41 336 | 95.15 184 | 95.67 335 | 95.64 339 | 95.53 104 | 94.65 205 | 97.52 234 | 87.10 232 | 98.29 283 | 96.58 115 | 91.35 267 | 96.83 254 |
|
CLD-MVS | | | 95.62 168 | 95.34 162 | 96.46 235 | 97.52 224 | 93.75 240 | 97.27 283 | 98.46 171 | 95.53 104 | 94.42 217 | 98.00 189 | 86.21 249 | 98.97 200 | 96.25 126 | 94.37 218 | 96.66 275 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
OMC-MVS | | | 97.55 85 | 97.34 83 | 98.20 115 | 99.33 65 | 95.92 155 | 98.28 193 | 98.59 142 | 95.52 106 | 97.97 100 | 99.10 69 | 93.28 104 | 99.49 146 | 95.09 165 | 98.88 119 | 99.19 133 |
|
testtj | | | 98.33 50 | 97.95 55 | 99.47 11 | 99.49 45 | 98.70 19 | 98.83 96 | 98.86 61 | 95.48 107 | 98.91 45 | 99.17 56 | 95.48 50 | 99.93 15 | 95.80 142 | 99.53 85 | 99.76 26 |
|
nrg030 | | | 96.28 140 | 95.72 144 | 97.96 132 | 96.90 267 | 98.15 56 | 99.39 5 | 98.31 197 | 95.47 108 | 94.42 217 | 98.35 158 | 92.09 123 | 98.69 232 | 97.50 74 | 89.05 300 | 97.04 230 |
|
XVG-OURS-SEG-HR | | | 96.51 131 | 96.34 125 | 97.02 186 | 98.77 128 | 93.76 238 | 97.79 249 | 98.50 166 | 95.45 109 | 96.94 145 | 99.09 74 | 87.87 219 | 99.55 142 | 96.76 110 | 95.83 213 | 97.74 211 |
|
PGM-MVS | | | 98.49 36 | 98.23 42 | 99.27 38 | 99.72 12 | 98.08 59 | 98.99 65 | 99.49 5 | 95.43 110 | 99.03 33 | 99.32 33 | 95.56 47 | 99.94 3 | 96.80 107 | 99.77 26 | 99.78 13 |
|
DU-MVS | | | 95.42 176 | 94.76 189 | 97.40 169 | 96.53 285 | 96.97 103 | 98.66 137 | 98.99 29 | 95.43 110 | 93.88 242 | 97.69 218 | 88.57 199 | 98.31 278 | 95.81 140 | 87.25 321 | 96.92 238 |
|
IS-MVSNet | | | 97.22 102 | 96.88 102 | 98.25 112 | 98.85 123 | 96.36 131 | 99.19 33 | 97.97 255 | 95.39 112 | 97.23 133 | 98.99 86 | 91.11 147 | 98.93 209 | 94.60 178 | 98.59 133 | 99.47 98 |
|
thres100view900 | | | 95.38 179 | 94.70 192 | 97.41 167 | 98.98 113 | 94.92 197 | 98.87 89 | 96.90 318 | 95.38 113 | 96.61 161 | 96.88 286 | 84.29 279 | 99.56 137 | 88.11 309 | 96.29 200 | 97.76 209 |
|
thres600view7 | | | 95.49 171 | 94.77 188 | 97.67 153 | 98.98 113 | 95.02 189 | 98.85 92 | 96.90 318 | 95.38 113 | 96.63 160 | 96.90 285 | 84.29 279 | 99.59 133 | 88.65 308 | 96.33 198 | 98.40 191 |
|
baseline1 | | | 95.84 156 | 95.12 174 | 98.01 128 | 98.49 152 | 95.98 143 | 98.73 119 | 97.03 310 | 95.37 115 | 96.22 177 | 98.19 176 | 89.96 167 | 99.16 173 | 94.60 178 | 87.48 317 | 98.90 164 |
|
tfpn200view9 | | | 95.32 186 | 94.62 195 | 97.43 166 | 98.94 115 | 94.98 193 | 98.68 131 | 96.93 316 | 95.33 116 | 96.55 165 | 96.53 302 | 84.23 282 | 99.56 137 | 88.11 309 | 96.29 200 | 97.76 209 |
|
thres400 | | | 95.38 179 | 94.62 195 | 97.65 156 | 98.94 115 | 94.98 193 | 98.68 131 | 96.93 316 | 95.33 116 | 96.55 165 | 96.53 302 | 84.23 282 | 99.56 137 | 88.11 309 | 96.29 200 | 98.40 191 |
|
CNLPA | | | 97.45 90 | 97.03 95 | 98.73 76 | 99.05 105 | 97.44 86 | 98.07 220 | 98.53 156 | 95.32 118 | 96.80 155 | 98.53 138 | 93.32 103 | 99.72 109 | 94.31 190 | 99.31 105 | 99.02 153 |
|
OurMVSNet-221017-0 | | | 94.21 252 | 94.00 231 | 94.85 294 | 95.60 318 | 89.22 320 | 98.89 84 | 97.43 293 | 95.29 119 | 92.18 298 | 98.52 141 | 82.86 296 | 98.59 244 | 93.46 215 | 91.76 263 | 96.74 262 |
|
IU-MVS | | | | | | 99.71 20 | 99.23 6 | | 98.64 137 | 95.28 120 | 99.63 4 | | | | 98.35 25 | 99.81 10 | 99.83 5 |
|
WTY-MVS | | | 97.37 97 | 96.92 101 | 98.72 77 | 98.86 121 | 96.89 109 | 98.31 188 | 98.71 114 | 95.26 121 | 97.67 119 | 98.56 137 | 92.21 119 | 99.78 96 | 95.89 137 | 96.85 182 | 99.48 96 |
|
CHOSEN 280x420 | | | 97.18 106 | 97.18 89 | 97.20 175 | 98.81 126 | 93.27 259 | 95.78 334 | 99.15 18 | 95.25 122 | 96.79 156 | 98.11 181 | 92.29 115 | 99.07 188 | 98.56 9 | 99.85 3 | 99.25 127 |
|
ACMM | | 93.85 9 | 95.69 165 | 95.38 160 | 96.61 216 | 97.61 213 | 93.84 236 | 98.91 79 | 98.44 175 | 95.25 122 | 94.28 223 | 98.47 145 | 86.04 254 | 99.12 179 | 95.50 154 | 93.95 233 | 96.87 249 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
thres200 | | | 95.25 188 | 94.57 197 | 97.28 172 | 98.81 126 | 94.92 197 | 98.20 202 | 97.11 305 | 95.24 124 | 96.54 167 | 96.22 314 | 84.58 276 | 99.53 143 | 87.93 313 | 96.50 194 | 97.39 220 |
|
PAPM_NR | | | 97.46 87 | 97.11 91 | 98.50 93 | 99.50 41 | 96.41 129 | 98.63 140 | 98.60 140 | 95.18 125 | 97.06 141 | 98.06 184 | 94.26 92 | 99.57 135 | 93.80 206 | 98.87 121 | 99.52 85 |
|
UniMVSNet_NR-MVSNet | | | 95.71 162 | 95.15 172 | 97.40 169 | 96.84 270 | 96.97 103 | 98.74 115 | 99.24 10 | 95.16 126 | 93.88 242 | 97.72 217 | 91.68 131 | 98.31 278 | 95.81 140 | 87.25 321 | 96.92 238 |
|
RRT_MVS | | | 96.04 147 | 95.53 153 | 97.56 161 | 97.07 257 | 97.32 88 | 98.57 151 | 98.09 241 | 95.15 127 | 95.02 195 | 98.44 147 | 88.20 208 | 98.58 246 | 96.17 128 | 93.09 251 | 96.79 256 |
|
VPA-MVSNet | | | 95.75 160 | 95.11 175 | 97.69 151 | 97.24 242 | 97.27 91 | 98.94 75 | 99.23 12 | 95.13 128 | 95.51 188 | 97.32 246 | 85.73 256 | 98.91 211 | 97.33 80 | 89.55 292 | 96.89 246 |
|
SF-MVS | | | 98.59 20 | 98.32 33 | 99.41 16 | 99.54 35 | 98.71 18 | 99.04 54 | 98.81 76 | 95.12 129 | 99.32 15 | 99.39 14 | 96.22 20 | 99.84 53 | 97.72 55 | 99.73 43 | 99.67 61 |
|
test-LLR | | | 95.10 197 | 94.87 186 | 95.80 265 | 96.77 272 | 89.70 312 | 96.91 304 | 95.21 341 | 95.11 130 | 94.83 201 | 95.72 324 | 87.71 221 | 98.97 200 | 93.06 226 | 98.50 138 | 98.72 173 |
|
test0.0.03 1 | | | 94.08 263 | 93.51 262 | 95.80 265 | 95.53 321 | 92.89 268 | 97.38 271 | 95.97 334 | 95.11 130 | 92.51 290 | 96.66 296 | 87.71 221 | 96.94 333 | 87.03 317 | 93.67 237 | 97.57 216 |
|
LCM-MVSNet-Re | | | 95.22 190 | 95.32 165 | 94.91 291 | 98.18 177 | 87.85 339 | 98.75 112 | 95.66 338 | 95.11 130 | 88.96 327 | 96.85 289 | 90.26 164 | 97.65 319 | 95.65 150 | 98.44 141 | 99.22 129 |
|
ITE_SJBPF | | | | | 95.44 277 | 97.42 232 | 91.32 292 | | 97.50 286 | 95.09 133 | 93.59 251 | 98.35 158 | 81.70 302 | 98.88 217 | 89.71 294 | 93.39 246 | 96.12 315 |
|
TranMVSNet+NR-MVSNet | | | 95.14 195 | 94.48 202 | 97.11 182 | 96.45 290 | 96.36 131 | 99.03 56 | 99.03 25 | 95.04 134 | 93.58 252 | 97.93 196 | 88.27 206 | 98.03 302 | 94.13 195 | 86.90 326 | 96.95 237 |
|
VDD-MVS | | | 95.82 158 | 95.23 169 | 97.61 158 | 98.84 124 | 93.98 232 | 98.68 131 | 97.40 295 | 95.02 135 | 97.95 101 | 99.34 31 | 74.37 346 | 99.78 96 | 98.64 4 | 96.80 183 | 99.08 149 |
|
MVSFormer | | | 97.57 83 | 97.49 75 | 97.84 136 | 98.07 185 | 95.76 162 | 99.47 2 | 98.40 183 | 94.98 136 | 98.79 49 | 98.83 108 | 92.34 113 | 98.41 267 | 96.91 94 | 99.59 71 | 99.34 112 |
|
test_djsdf | | | 96.00 149 | 95.69 149 | 96.93 193 | 95.72 315 | 95.49 171 | 99.47 2 | 98.40 183 | 94.98 136 | 94.58 207 | 97.86 203 | 89.16 183 | 98.41 267 | 96.91 94 | 94.12 228 | 96.88 247 |
|
NR-MVSNet | | | 94.98 205 | 94.16 221 | 97.44 165 | 96.53 285 | 97.22 96 | 98.74 115 | 98.95 34 | 94.96 138 | 89.25 326 | 97.69 218 | 89.32 178 | 98.18 289 | 94.59 180 | 87.40 319 | 96.92 238 |
|
XVG-ACMP-BASELINE | | | 94.54 233 | 94.14 223 | 95.75 268 | 96.55 284 | 91.65 285 | 98.11 218 | 98.44 175 | 94.96 138 | 94.22 227 | 97.90 198 | 79.18 319 | 99.11 182 | 94.05 200 | 93.85 235 | 96.48 301 |
|
Vis-MVSNet (Re-imp) | | | 96.87 118 | 96.55 119 | 97.83 137 | 98.73 130 | 95.46 172 | 99.20 31 | 98.30 203 | 94.96 138 | 96.60 162 | 98.87 103 | 90.05 165 | 98.59 244 | 93.67 210 | 98.60 132 | 99.46 102 |
|
ACMP | | 93.49 10 | 95.34 184 | 94.98 181 | 96.43 237 | 97.67 209 | 93.48 251 | 98.73 119 | 98.44 175 | 94.94 141 | 92.53 288 | 98.53 138 | 84.50 278 | 99.14 177 | 95.48 155 | 94.00 231 | 96.66 275 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MVSTER | | | 96.06 146 | 95.72 144 | 97.08 184 | 98.23 170 | 95.93 154 | 98.73 119 | 98.27 206 | 94.86 142 | 95.07 193 | 98.09 182 | 88.21 207 | 98.54 248 | 96.59 113 | 93.46 242 | 96.79 256 |
|
DPM-MVS | | | 97.55 85 | 96.99 98 | 99.23 42 | 99.04 107 | 98.55 26 | 97.17 290 | 98.35 191 | 94.85 143 | 97.93 105 | 98.58 134 | 95.07 72 | 99.71 114 | 92.60 239 | 99.34 103 | 99.43 106 |
|
jason | | | 97.32 99 | 97.08 93 | 98.06 126 | 97.45 231 | 95.59 165 | 97.87 241 | 97.91 261 | 94.79 144 | 98.55 69 | 98.83 108 | 91.12 146 | 99.23 167 | 97.58 67 | 99.60 68 | 99.34 112 |
jason: jason. |
RRT_test8_iter05 | | | 94.56 231 | 94.19 218 | 95.67 270 | 97.60 214 | 91.34 289 | 98.93 77 | 98.42 179 | 94.75 145 | 93.39 261 | 97.87 202 | 79.00 320 | 98.61 240 | 96.78 109 | 90.99 275 | 97.07 228 |
|
test_yl | | | 97.22 102 | 96.78 107 | 98.54 89 | 98.73 130 | 96.60 119 | 98.45 165 | 98.31 197 | 94.70 146 | 98.02 93 | 98.42 150 | 90.80 153 | 99.70 115 | 96.81 105 | 96.79 184 | 99.34 112 |
|
DCV-MVSNet | | | 97.22 102 | 96.78 107 | 98.54 89 | 98.73 130 | 96.60 119 | 98.45 165 | 98.31 197 | 94.70 146 | 98.02 93 | 98.42 150 | 90.80 153 | 99.70 115 | 96.81 105 | 96.79 184 | 99.34 112 |
|
EU-MVSNet | | | 93.66 270 | 94.14 223 | 92.25 328 | 95.96 309 | 83.38 349 | 98.52 156 | 98.12 231 | 94.69 148 | 92.61 285 | 98.13 180 | 87.36 230 | 96.39 344 | 91.82 261 | 90.00 285 | 96.98 233 |
|
SCA | | | 95.46 172 | 95.13 173 | 96.46 235 | 97.67 209 | 91.29 293 | 97.33 278 | 97.60 275 | 94.68 149 | 96.92 148 | 97.10 258 | 83.97 288 | 98.89 215 | 92.59 241 | 98.32 148 | 99.20 130 |
|
LPG-MVS_test | | | 95.62 168 | 95.34 162 | 96.47 232 | 97.46 227 | 93.54 247 | 98.99 65 | 98.54 154 | 94.67 150 | 94.36 219 | 98.77 115 | 85.39 261 | 99.11 182 | 95.71 147 | 94.15 226 | 96.76 260 |
|
LGP-MVS_train | | | | | 96.47 232 | 97.46 227 | 93.54 247 | | 98.54 154 | 94.67 150 | 94.36 219 | 98.77 115 | 85.39 261 | 99.11 182 | 95.71 147 | 94.15 226 | 96.76 260 |
|
ETH3D-3000-0.1 | | | 98.35 46 | 98.00 53 | 99.38 17 | 99.47 48 | 98.68 21 | 98.67 134 | 98.84 65 | 94.66 152 | 99.11 28 | 99.25 43 | 95.46 51 | 99.81 71 | 96.80 107 | 99.73 43 | 99.63 73 |
|
HPM-MVS |  | | 98.36 45 | 98.10 48 | 99.13 54 | 99.74 7 | 97.82 72 | 99.53 1 | 98.80 87 | 94.63 153 | 98.61 65 | 98.97 87 | 95.13 70 | 99.77 101 | 97.65 62 | 99.83 9 | 99.79 10 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
BH-RMVSNet | | | 95.92 153 | 95.32 165 | 97.69 151 | 98.32 166 | 94.64 207 | 98.19 206 | 97.45 291 | 94.56 154 | 96.03 182 | 98.61 129 | 85.02 267 | 99.12 179 | 90.68 279 | 99.06 112 | 99.30 121 |
|
ET-MVSNet_ETH3D | | | 94.13 258 | 92.98 273 | 97.58 159 | 98.22 171 | 96.20 137 | 97.31 280 | 95.37 340 | 94.53 155 | 79.56 351 | 97.63 226 | 86.51 242 | 97.53 324 | 96.91 94 | 90.74 277 | 99.02 153 |
|
API-MVS | | | 97.41 94 | 97.25 86 | 97.91 133 | 98.70 135 | 96.80 110 | 98.82 99 | 98.69 118 | 94.53 155 | 98.11 86 | 98.28 167 | 94.50 87 | 99.57 135 | 94.12 196 | 99.49 88 | 97.37 222 |
|
APD-MVS |  | | 98.35 46 | 98.00 53 | 99.42 15 | 99.51 39 | 98.72 17 | 98.80 106 | 98.82 70 | 94.52 157 | 99.23 20 | 99.25 43 | 95.54 49 | 99.80 80 | 96.52 117 | 99.77 26 | 99.74 33 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
lupinMVS | | | 97.44 91 | 97.22 88 | 98.12 122 | 98.07 185 | 95.76 162 | 97.68 255 | 97.76 266 | 94.50 158 | 98.79 49 | 98.61 129 | 92.34 113 | 99.30 161 | 97.58 67 | 99.59 71 | 99.31 118 |
|
PVSNet_Blended_VisFu | | | 97.70 73 | 97.46 77 | 98.44 98 | 99.27 83 | 95.91 156 | 98.63 140 | 99.16 17 | 94.48 159 | 97.67 119 | 98.88 102 | 92.80 108 | 99.91 30 | 97.11 85 | 99.12 111 | 99.50 91 |
|
HPM-MVS_fast | | | 98.38 43 | 98.13 46 | 99.12 57 | 99.75 3 | 97.86 68 | 99.44 4 | 98.82 70 | 94.46 160 | 98.94 39 | 99.20 52 | 95.16 69 | 99.74 107 | 97.58 67 | 99.85 3 | 99.77 20 |
|
AdaColmap |  | | 97.15 108 | 96.70 112 | 98.48 95 | 99.16 99 | 96.69 115 | 98.01 226 | 98.89 46 | 94.44 161 | 96.83 151 | 98.68 123 | 90.69 156 | 99.76 103 | 94.36 186 | 99.29 106 | 98.98 157 |
|
9.14 | | | | 98.06 49 | | 99.47 48 | | 98.71 124 | 98.82 70 | 94.36 162 | 99.16 26 | 99.29 39 | 96.05 32 | 99.81 71 | 97.00 88 | 99.71 50 | |
|
PVSNet_BlendedMVS | | | 96.73 122 | 96.60 117 | 97.12 181 | 99.25 86 | 95.35 177 | 98.26 196 | 99.26 8 | 94.28 163 | 97.94 103 | 97.46 237 | 92.74 109 | 99.81 71 | 96.88 100 | 93.32 247 | 96.20 313 |
|
MVS_Test | | | 97.28 100 | 97.00 97 | 98.13 120 | 98.33 164 | 95.97 148 | 98.74 115 | 98.07 245 | 94.27 164 | 98.44 75 | 98.07 183 | 92.48 111 | 99.26 163 | 96.43 121 | 98.19 150 | 99.16 138 |
|
tttt0517 | | | 96.07 145 | 95.51 155 | 97.78 142 | 98.41 155 | 94.84 199 | 99.28 18 | 94.33 351 | 94.26 165 | 97.64 123 | 98.64 128 | 84.05 286 | 99.47 151 | 95.34 156 | 97.60 171 | 99.03 152 |
|
WR-MVS | | | 95.15 194 | 94.46 204 | 97.22 174 | 96.67 280 | 96.45 126 | 98.21 199 | 98.81 76 | 94.15 166 | 93.16 268 | 97.69 218 | 87.51 225 | 98.30 280 | 95.29 160 | 88.62 306 | 96.90 245 |
|
EPMVS | | | 94.99 203 | 94.48 202 | 96.52 228 | 97.22 244 | 91.75 282 | 97.23 284 | 91.66 359 | 94.11 167 | 97.28 131 | 96.81 291 | 85.70 257 | 98.84 221 | 93.04 228 | 97.28 176 | 98.97 158 |
|
MP-MVS-pluss | | | 98.31 52 | 97.92 58 | 99.49 9 | 99.72 12 | 98.88 14 | 98.43 170 | 98.78 95 | 94.10 168 | 97.69 118 | 99.42 12 | 95.25 66 | 99.92 21 | 98.09 33 | 99.80 17 | 99.67 61 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
PatchmatchNet |  | | 95.71 162 | 95.52 154 | 96.29 246 | 97.58 216 | 90.72 302 | 96.84 313 | 97.52 284 | 94.06 169 | 97.08 138 | 96.96 280 | 89.24 181 | 98.90 214 | 92.03 257 | 98.37 144 | 99.26 126 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
thisisatest0530 | | | 96.01 148 | 95.36 161 | 97.97 130 | 98.38 156 | 95.52 170 | 98.88 87 | 94.19 353 | 94.04 170 | 97.64 123 | 98.31 165 | 83.82 293 | 99.46 152 | 95.29 160 | 97.70 168 | 98.93 162 |
|
K. test v3 | | | 92.55 289 | 91.91 291 | 94.48 306 | 95.64 317 | 89.24 319 | 99.07 51 | 94.88 345 | 94.04 170 | 86.78 337 | 97.59 228 | 77.64 332 | 97.64 320 | 92.08 253 | 89.43 295 | 96.57 284 |
|
D2MVS | | | 95.18 193 | 95.08 176 | 95.48 274 | 97.10 255 | 92.07 275 | 98.30 190 | 99.13 19 | 94.02 172 | 92.90 276 | 96.73 293 | 89.48 174 | 98.73 231 | 94.48 184 | 93.60 241 | 95.65 326 |
|
mvs_anonymous | | | 96.70 123 | 96.53 121 | 97.18 177 | 98.19 175 | 93.78 237 | 98.31 188 | 98.19 216 | 94.01 173 | 94.47 211 | 98.27 170 | 92.08 124 | 98.46 255 | 97.39 77 | 97.91 158 | 99.31 118 |
|
GA-MVS | | | 94.81 215 | 94.03 227 | 97.14 179 | 97.15 252 | 93.86 235 | 96.76 316 | 97.58 276 | 94.00 174 | 94.76 204 | 97.04 271 | 80.91 307 | 98.48 252 | 91.79 262 | 96.25 205 | 99.09 146 |
|
ACMH+ | | 92.99 14 | 94.30 247 | 93.77 248 | 95.88 263 | 97.81 201 | 92.04 277 | 98.71 124 | 98.37 188 | 93.99 175 | 90.60 315 | 98.47 145 | 80.86 309 | 99.05 189 | 92.75 237 | 92.40 257 | 96.55 288 |
|
sss | | | 97.39 95 | 96.98 99 | 98.61 83 | 98.60 145 | 96.61 118 | 98.22 198 | 98.93 37 | 93.97 176 | 98.01 97 | 98.48 144 | 91.98 126 | 99.85 50 | 96.45 119 | 98.15 151 | 99.39 109 |
|
HY-MVS | | 93.96 8 | 96.82 120 | 96.23 131 | 98.57 85 | 98.46 153 | 97.00 102 | 98.14 213 | 98.21 213 | 93.95 177 | 96.72 157 | 97.99 190 | 91.58 133 | 99.76 103 | 94.51 183 | 96.54 192 | 98.95 161 |
|
TAMVS | | | 97.02 112 | 96.79 106 | 97.70 150 | 98.06 187 | 95.31 179 | 98.52 156 | 98.31 197 | 93.95 177 | 97.05 142 | 98.61 129 | 93.49 101 | 98.52 250 | 95.33 157 | 97.81 162 | 99.29 123 |
|
CP-MVSNet | | | 94.94 209 | 94.30 213 | 96.83 200 | 96.72 277 | 95.56 167 | 99.11 44 | 98.95 34 | 93.89 179 | 92.42 294 | 97.90 198 | 87.19 231 | 98.12 294 | 94.32 189 | 88.21 310 | 96.82 255 |
|
SixPastTwentyTwo | | | 93.34 276 | 92.86 275 | 94.75 298 | 95.67 316 | 89.41 318 | 98.75 112 | 96.67 329 | 93.89 179 | 90.15 319 | 98.25 172 | 80.87 308 | 98.27 286 | 90.90 275 | 90.64 278 | 96.57 284 |
|
WR-MVS_H | | | 95.05 200 | 94.46 204 | 96.81 201 | 96.86 269 | 95.82 160 | 99.24 22 | 99.24 10 | 93.87 181 | 92.53 288 | 96.84 290 | 90.37 160 | 98.24 287 | 93.24 221 | 87.93 313 | 96.38 306 |
|
ab-mvs | | | 96.42 134 | 95.71 147 | 98.55 87 | 98.63 142 | 96.75 113 | 97.88 240 | 98.74 104 | 93.84 182 | 96.54 167 | 98.18 177 | 85.34 264 | 99.75 105 | 95.93 136 | 96.35 197 | 99.15 139 |
|
USDC | | | 93.33 277 | 92.71 278 | 95.21 282 | 96.83 271 | 90.83 299 | 96.91 304 | 97.50 286 | 93.84 182 | 90.72 313 | 98.14 179 | 77.69 329 | 98.82 224 | 89.51 299 | 93.21 250 | 95.97 319 |
|
AUN-MVS | | | 94.53 234 | 93.73 252 | 96.92 196 | 98.50 150 | 93.52 250 | 98.34 180 | 98.10 236 | 93.83 184 | 95.94 186 | 97.98 192 | 85.59 259 | 99.03 193 | 94.35 187 | 80.94 343 | 98.22 198 |
|
LF4IMVS | | | 93.14 283 | 92.79 277 | 94.20 311 | 95.88 311 | 88.67 328 | 97.66 257 | 97.07 307 | 93.81 185 | 91.71 304 | 97.65 222 | 77.96 328 | 98.81 225 | 91.47 268 | 91.92 262 | 95.12 333 |
|
IterMVS-SCA-FT | | | 94.11 260 | 93.87 240 | 94.85 294 | 97.98 193 | 90.56 305 | 97.18 288 | 98.11 234 | 93.75 186 | 92.58 286 | 97.48 236 | 83.97 288 | 97.41 326 | 92.48 248 | 91.30 269 | 96.58 282 |
|
anonymousdsp | | | 95.42 176 | 94.91 184 | 96.94 192 | 95.10 328 | 95.90 157 | 99.14 38 | 98.41 180 | 93.75 186 | 93.16 268 | 97.46 237 | 87.50 227 | 98.41 267 | 95.63 151 | 94.03 230 | 96.50 299 |
|
MDTV_nov1_ep13 | | | | 95.40 156 | | 97.48 225 | 88.34 333 | 96.85 312 | 97.29 299 | 93.74 188 | 97.48 130 | 97.26 249 | 89.18 182 | 99.05 189 | 91.92 260 | 97.43 174 | |
|
BH-untuned | | | 95.95 151 | 95.72 144 | 96.65 211 | 98.55 148 | 92.26 272 | 98.23 197 | 97.79 265 | 93.73 189 | 94.62 206 | 98.01 188 | 88.97 192 | 99.00 199 | 93.04 228 | 98.51 137 | 98.68 177 |
|
PatchMatch-RL | | | 96.59 127 | 96.03 137 | 98.27 109 | 99.31 70 | 96.51 124 | 97.91 235 | 99.06 22 | 93.72 190 | 96.92 148 | 98.06 184 | 88.50 203 | 99.65 124 | 91.77 263 | 99.00 114 | 98.66 180 |
|
Effi-MVS+ | | | 97.12 109 | 96.69 113 | 98.39 103 | 98.19 175 | 96.72 114 | 97.37 273 | 98.43 178 | 93.71 191 | 97.65 122 | 98.02 186 | 92.20 120 | 99.25 164 | 96.87 103 | 97.79 163 | 99.19 133 |
|
IterMVS-LS | | | 95.46 172 | 95.21 170 | 96.22 248 | 98.12 182 | 93.72 243 | 98.32 187 | 98.13 230 | 93.71 191 | 94.26 224 | 97.31 247 | 92.24 117 | 98.10 295 | 94.63 175 | 90.12 283 | 96.84 252 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 95.96 150 | 95.83 142 | 96.36 241 | 97.93 194 | 93.70 244 | 98.12 216 | 98.27 206 | 93.70 193 | 95.07 193 | 99.02 80 | 92.23 118 | 98.54 248 | 94.68 174 | 93.46 242 | 96.84 252 |
|
UnsupCasMVSNet_eth | | | 90.99 302 | 89.92 305 | 94.19 312 | 94.08 339 | 89.83 310 | 97.13 293 | 98.67 129 | 93.69 194 | 85.83 342 | 96.19 315 | 75.15 341 | 96.74 336 | 89.14 304 | 79.41 345 | 96.00 318 |
|
PVSNet | | 91.96 18 | 96.35 136 | 96.15 132 | 96.96 191 | 99.17 98 | 92.05 276 | 96.08 327 | 98.68 121 | 93.69 194 | 97.75 113 | 97.80 212 | 88.86 194 | 99.69 120 | 94.26 192 | 99.01 113 | 99.15 139 |
|
PS-CasMVS | | | 94.67 224 | 93.99 233 | 96.71 206 | 96.68 279 | 95.26 180 | 99.13 41 | 99.03 25 | 93.68 196 | 92.33 295 | 97.95 194 | 85.35 263 | 98.10 295 | 93.59 212 | 88.16 312 | 96.79 256 |
|
IterMVS | | | 94.09 262 | 93.85 242 | 94.80 297 | 97.99 191 | 90.35 307 | 97.18 288 | 98.12 231 | 93.68 196 | 92.46 293 | 97.34 244 | 84.05 286 | 97.41 326 | 92.51 246 | 91.33 268 | 96.62 278 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
SMA-MVS |  | | 98.58 23 | 98.25 38 | 99.56 5 | 99.51 39 | 99.04 11 | 98.95 73 | 98.80 87 | 93.67 198 | 99.37 13 | 99.52 3 | 96.52 17 | 99.89 35 | 98.06 34 | 99.81 10 | 99.76 26 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
FMVSNet3 | | | 94.97 206 | 94.26 215 | 97.11 182 | 98.18 177 | 96.62 116 | 98.56 152 | 98.26 210 | 93.67 198 | 94.09 233 | 97.10 258 | 84.25 281 | 98.01 303 | 92.08 253 | 92.14 258 | 96.70 269 |
|
CDS-MVSNet | | | 96.99 113 | 96.69 113 | 97.90 134 | 98.05 188 | 95.98 143 | 98.20 202 | 98.33 194 | 93.67 198 | 96.95 144 | 98.49 143 | 93.54 100 | 98.42 260 | 95.24 163 | 97.74 166 | 99.31 118 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
EPP-MVSNet | | | 97.46 87 | 97.28 85 | 97.99 129 | 98.64 141 | 95.38 174 | 99.33 15 | 98.31 197 | 93.61 201 | 97.19 134 | 99.07 77 | 94.05 94 | 99.23 167 | 96.89 97 | 98.43 143 | 99.37 111 |
|
CHOSEN 1792x2688 | | | 97.12 109 | 96.80 104 | 98.08 124 | 99.30 75 | 94.56 215 | 98.05 222 | 99.71 1 | 93.57 202 | 97.09 137 | 98.91 100 | 88.17 209 | 99.89 35 | 96.87 103 | 99.56 80 | 99.81 8 |
|
PEN-MVS | | | 94.42 241 | 93.73 252 | 96.49 230 | 96.28 296 | 94.84 199 | 99.17 35 | 99.00 27 | 93.51 203 | 92.23 297 | 97.83 209 | 86.10 251 | 97.90 311 | 92.55 244 | 86.92 325 | 96.74 262 |
|
tpmrst | | | 95.63 167 | 95.69 149 | 95.44 277 | 97.54 221 | 88.54 330 | 96.97 299 | 97.56 277 | 93.50 204 | 97.52 129 | 96.93 284 | 89.49 173 | 99.16 173 | 95.25 162 | 96.42 196 | 98.64 182 |
|
1314 | | | 96.25 142 | 95.73 143 | 97.79 141 | 97.13 253 | 95.55 169 | 98.19 206 | 98.59 142 | 93.47 205 | 92.03 301 | 97.82 210 | 91.33 142 | 99.49 146 | 94.62 177 | 98.44 141 | 98.32 196 |
|
baseline2 | | | 95.11 196 | 94.52 200 | 96.87 198 | 96.65 281 | 93.56 246 | 98.27 195 | 94.10 355 | 93.45 206 | 92.02 302 | 97.43 241 | 87.45 229 | 99.19 171 | 93.88 203 | 97.41 175 | 97.87 207 |
|
ACMH | | 92.88 16 | 94.55 232 | 93.95 235 | 96.34 243 | 97.63 212 | 93.26 260 | 98.81 105 | 98.49 170 | 93.43 207 | 89.74 321 | 98.53 138 | 81.91 301 | 99.08 187 | 93.69 207 | 93.30 248 | 96.70 269 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
LFMVS | | | 95.86 155 | 94.98 181 | 98.47 96 | 98.87 120 | 96.32 133 | 98.84 95 | 96.02 332 | 93.40 208 | 98.62 64 | 99.20 52 | 74.99 342 | 99.63 129 | 97.72 55 | 97.20 177 | 99.46 102 |
|
test20.03 | | | 90.89 303 | 90.38 301 | 92.43 326 | 93.48 344 | 88.14 336 | 98.33 182 | 97.56 277 | 93.40 208 | 87.96 333 | 96.71 295 | 80.69 311 | 94.13 354 | 79.15 349 | 86.17 330 | 95.01 338 |
|
PAPR | | | 96.84 119 | 96.24 130 | 98.65 81 | 98.72 134 | 96.92 106 | 97.36 275 | 98.57 148 | 93.33 210 | 96.67 158 | 97.57 230 | 94.30 91 | 99.56 137 | 91.05 274 | 98.59 133 | 99.47 98 |
|
IB-MVS | | 91.98 17 | 93.27 278 | 91.97 289 | 97.19 176 | 97.47 226 | 93.41 254 | 97.09 294 | 95.99 333 | 93.32 211 | 92.47 292 | 95.73 322 | 78.06 327 | 99.53 143 | 94.59 180 | 82.98 335 | 98.62 183 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PHI-MVS | | | 98.34 48 | 98.06 49 | 99.18 47 | 99.15 101 | 98.12 58 | 99.04 54 | 99.09 20 | 93.32 211 | 98.83 48 | 99.10 69 | 96.54 16 | 99.83 56 | 97.70 60 | 99.76 32 | 99.59 80 |
|
XXY-MVS | | | 95.20 192 | 94.45 206 | 97.46 164 | 96.75 275 | 96.56 122 | 98.86 91 | 98.65 136 | 93.30 213 | 93.27 265 | 98.27 170 | 84.85 271 | 98.87 218 | 94.82 171 | 91.26 271 | 96.96 235 |
|
原ACMM1 | | | | | 98.65 81 | 99.32 68 | 96.62 116 | | 98.67 129 | 93.27 214 | 97.81 110 | 98.97 87 | 95.18 68 | 99.83 56 | 93.84 204 | 99.46 93 | 99.50 91 |
|
ZD-MVS | | | | | | 99.46 51 | 98.70 19 | | 98.79 92 | 93.21 215 | 98.67 58 | 98.97 87 | 95.70 44 | 99.83 56 | 96.07 129 | 99.58 74 | |
|
ETH3D cwj APD-0.16 | | | 97.96 59 | 97.52 72 | 99.29 31 | 99.05 105 | 98.52 27 | 98.33 182 | 98.68 121 | 93.18 216 | 98.68 57 | 99.13 64 | 94.62 81 | 99.83 56 | 96.45 119 | 99.55 83 | 99.52 85 |
|
TESTMET0.1,1 | | | 94.18 256 | 93.69 255 | 95.63 271 | 96.92 264 | 89.12 321 | 96.91 304 | 94.78 346 | 93.17 217 | 94.88 198 | 96.45 305 | 78.52 322 | 98.92 210 | 93.09 225 | 98.50 138 | 98.85 165 |
|
agg_prior1 | | | 97.95 62 | 97.51 74 | 99.28 35 | 99.30 75 | 98.38 35 | 97.81 246 | 98.72 110 | 93.16 218 | 97.57 127 | 98.66 126 | 96.14 26 | 99.81 71 | 96.63 112 | 99.56 80 | 99.66 65 |
|
PVSNet_Blended | | | 97.38 96 | 97.12 90 | 98.14 118 | 99.25 86 | 95.35 177 | 97.28 282 | 99.26 8 | 93.13 219 | 97.94 103 | 98.21 174 | 92.74 109 | 99.81 71 | 96.88 100 | 99.40 100 | 99.27 125 |
|
GeoE | | | 96.58 129 | 96.07 134 | 98.10 123 | 98.35 158 | 95.89 158 | 99.34 12 | 98.12 231 | 93.12 220 | 96.09 180 | 98.87 103 | 89.71 171 | 98.97 200 | 92.95 231 | 98.08 154 | 99.43 106 |
|
DTE-MVSNet | | | 93.98 267 | 93.26 270 | 96.14 251 | 96.06 305 | 94.39 221 | 99.20 31 | 98.86 61 | 93.06 221 | 91.78 303 | 97.81 211 | 85.87 255 | 97.58 322 | 90.53 280 | 86.17 330 | 96.46 303 |
|
CSCG | | | 97.85 67 | 97.74 63 | 98.20 115 | 99.67 26 | 95.16 182 | 99.22 27 | 99.32 7 | 93.04 222 | 97.02 143 | 98.92 99 | 95.36 58 | 99.91 30 | 97.43 75 | 99.64 62 | 99.52 85 |
|
F-COLMAP | | | 97.09 111 | 96.80 104 | 97.97 130 | 99.45 55 | 94.95 196 | 98.55 154 | 98.62 139 | 93.02 223 | 96.17 179 | 98.58 134 | 94.01 95 | 99.81 71 | 93.95 201 | 98.90 117 | 99.14 141 |
|
train_agg | | | 97.97 58 | 97.52 72 | 99.33 27 | 99.31 70 | 98.50 29 | 97.92 233 | 98.73 108 | 92.98 224 | 97.74 114 | 98.68 123 | 96.20 23 | 99.80 80 | 96.59 113 | 99.57 75 | 99.68 57 |
|
test_8 | | | | | | 99.29 78 | 98.44 31 | 97.89 239 | 98.72 110 | 92.98 224 | 97.70 117 | 98.66 126 | 96.20 23 | 99.80 80 | | | |
|
thisisatest0515 | | | 95.61 170 | 94.89 185 | 97.76 144 | 98.15 180 | 95.15 184 | 96.77 315 | 94.41 349 | 92.95 226 | 97.18 135 | 97.43 241 | 84.78 272 | 99.45 153 | 94.63 175 | 97.73 167 | 98.68 177 |
|
1112_ss | | | 96.63 124 | 96.00 138 | 98.50 93 | 98.56 146 | 96.37 130 | 98.18 210 | 98.10 236 | 92.92 227 | 94.84 199 | 98.43 148 | 92.14 121 | 99.58 134 | 94.35 187 | 96.51 193 | 99.56 84 |
|
DWT-MVSNet_test | | | 94.82 213 | 94.36 211 | 96.20 249 | 97.35 237 | 90.79 300 | 98.34 180 | 96.57 331 | 92.91 228 | 95.33 191 | 96.44 306 | 82.00 299 | 99.12 179 | 94.52 182 | 95.78 214 | 98.70 175 |
|
test-mter | | | 94.08 263 | 93.51 262 | 95.80 265 | 96.77 272 | 89.70 312 | 96.91 304 | 95.21 341 | 92.89 229 | 94.83 201 | 95.72 324 | 77.69 329 | 98.97 200 | 93.06 226 | 98.50 138 | 98.72 173 |
|
BH-w/o | | | 95.38 179 | 95.08 176 | 96.26 247 | 98.34 163 | 91.79 280 | 97.70 254 | 97.43 293 | 92.87 230 | 94.24 226 | 97.22 253 | 88.66 197 | 98.84 221 | 91.55 267 | 97.70 168 | 98.16 201 |
|
PMMVS | | | 96.60 125 | 96.33 126 | 97.41 167 | 97.90 196 | 93.93 233 | 97.35 276 | 98.41 180 | 92.84 231 | 97.76 112 | 97.45 239 | 91.10 148 | 99.20 170 | 96.26 125 | 97.91 158 | 99.11 144 |
|
LS3D | | | 97.16 107 | 96.66 116 | 98.68 79 | 98.53 149 | 97.19 97 | 98.93 77 | 98.90 44 | 92.83 232 | 95.99 184 | 99.37 22 | 92.12 122 | 99.87 44 | 93.67 210 | 99.57 75 | 98.97 158 |
|
v2v482 | | | 94.69 219 | 94.03 227 | 96.65 211 | 96.17 300 | 94.79 204 | 98.67 134 | 98.08 243 | 92.72 233 | 94.00 238 | 97.16 256 | 87.69 224 | 98.45 256 | 92.91 232 | 88.87 304 | 96.72 265 |
|
eth_miper_zixun_eth | | | 94.68 221 | 94.41 209 | 95.47 275 | 97.64 211 | 91.71 284 | 96.73 318 | 98.07 245 | 92.71 234 | 93.64 250 | 97.21 254 | 90.54 158 | 98.17 290 | 93.38 216 | 89.76 287 | 96.54 289 |
|
TEST9 | | | | | | 99.31 70 | 98.50 29 | 97.92 233 | 98.73 108 | 92.63 235 | 97.74 114 | 98.68 123 | 96.20 23 | 99.80 80 | | | |
|
tpm | | | 94.13 258 | 93.80 245 | 95.12 285 | 96.50 287 | 87.91 338 | 97.44 266 | 95.89 337 | 92.62 236 | 96.37 175 | 96.30 309 | 84.13 285 | 98.30 280 | 93.24 221 | 91.66 265 | 99.14 141 |
|
DP-MVS Recon | | | 97.86 66 | 97.46 77 | 99.06 61 | 99.53 36 | 98.35 43 | 98.33 182 | 98.89 46 | 92.62 236 | 98.05 89 | 98.94 96 | 95.34 59 | 99.65 124 | 96.04 133 | 99.42 97 | 99.19 133 |
|
v148 | | | 94.29 248 | 93.76 250 | 95.91 260 | 96.10 303 | 92.93 267 | 98.58 146 | 97.97 255 | 92.59 238 | 93.47 259 | 96.95 282 | 88.53 202 | 98.32 276 | 92.56 243 | 87.06 323 | 96.49 300 |
|
CDPH-MVS | | | 97.94 63 | 97.49 75 | 99.28 35 | 99.47 48 | 98.44 31 | 97.91 235 | 98.67 129 | 92.57 239 | 98.77 51 | 98.85 105 | 95.93 38 | 99.72 109 | 95.56 152 | 99.69 52 | 99.68 57 |
|
CR-MVSNet | | | 94.76 218 | 94.15 222 | 96.59 219 | 97.00 259 | 93.43 252 | 94.96 341 | 97.56 277 | 92.46 240 | 96.93 146 | 96.24 310 | 88.15 210 | 97.88 315 | 87.38 315 | 96.65 188 | 98.46 189 |
|
GBi-Net | | | 94.49 237 | 93.80 245 | 96.56 223 | 98.21 172 | 95.00 190 | 98.82 99 | 98.18 219 | 92.46 240 | 94.09 233 | 97.07 265 | 81.16 304 | 97.95 307 | 92.08 253 | 92.14 258 | 96.72 265 |
|
test1 | | | 94.49 237 | 93.80 245 | 96.56 223 | 98.21 172 | 95.00 190 | 98.82 99 | 98.18 219 | 92.46 240 | 94.09 233 | 97.07 265 | 81.16 304 | 97.95 307 | 92.08 253 | 92.14 258 | 96.72 265 |
|
FMVSNet2 | | | 94.47 239 | 93.61 258 | 97.04 185 | 98.21 172 | 96.43 128 | 98.79 110 | 98.27 206 | 92.46 240 | 93.50 258 | 97.09 262 | 81.16 304 | 98.00 305 | 91.09 270 | 91.93 261 | 96.70 269 |
|
cl-mvsnet2 | | | 94.68 221 | 94.19 218 | 96.13 252 | 98.11 183 | 93.60 245 | 96.94 301 | 98.31 197 | 92.43 244 | 93.32 264 | 96.87 288 | 86.51 242 | 98.28 285 | 94.10 198 | 91.16 272 | 96.51 297 |
|
PLC |  | 95.07 4 | 97.20 105 | 96.78 107 | 98.44 98 | 99.29 78 | 96.31 135 | 98.14 213 | 98.76 99 | 92.41 245 | 96.39 174 | 98.31 165 | 94.92 76 | 99.78 96 | 94.06 199 | 98.77 126 | 99.23 128 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MAR-MVS | | | 96.91 116 | 96.40 124 | 98.45 97 | 98.69 137 | 96.90 107 | 98.66 137 | 98.68 121 | 92.40 246 | 97.07 140 | 97.96 193 | 91.54 137 | 99.75 105 | 93.68 208 | 98.92 116 | 98.69 176 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
CPTT-MVS | | | 97.72 72 | 97.32 84 | 98.92 69 | 99.64 28 | 97.10 100 | 99.12 43 | 98.81 76 | 92.34 247 | 98.09 87 | 99.08 76 | 93.01 106 | 99.92 21 | 96.06 132 | 99.77 26 | 99.75 28 |
|
HyFIR lowres test | | | 96.90 117 | 96.49 122 | 98.14 118 | 99.33 65 | 95.56 167 | 97.38 271 | 99.65 2 | 92.34 247 | 97.61 125 | 98.20 175 | 89.29 179 | 99.10 185 | 96.97 90 | 97.60 171 | 99.77 20 |
|
pm-mvs1 | | | 93.94 268 | 93.06 272 | 96.59 219 | 96.49 288 | 95.16 182 | 98.95 73 | 98.03 252 | 92.32 249 | 91.08 310 | 97.84 206 | 84.54 277 | 98.41 267 | 92.16 251 | 86.13 332 | 96.19 314 |
|
V42 | | | 94.78 217 | 94.14 223 | 96.70 208 | 96.33 295 | 95.22 181 | 98.97 69 | 98.09 241 | 92.32 249 | 94.31 222 | 97.06 268 | 88.39 204 | 98.55 247 | 92.90 233 | 88.87 304 | 96.34 307 |
|
test_part1 | | | 94.82 213 | 93.82 243 | 97.82 139 | 98.84 124 | 97.82 72 | 99.03 56 | 98.81 76 | 92.31 251 | 92.51 290 | 97.89 200 | 81.96 300 | 98.67 236 | 94.80 173 | 88.24 309 | 96.98 233 |
|
TR-MVS | | | 94.94 209 | 94.20 217 | 97.17 178 | 97.75 203 | 94.14 229 | 97.59 261 | 97.02 312 | 92.28 252 | 95.75 187 | 97.64 224 | 83.88 290 | 98.96 204 | 89.77 292 | 96.15 208 | 98.40 191 |
|
miper_ehance_all_eth | | | 95.01 201 | 94.69 193 | 95.97 257 | 97.70 208 | 93.31 258 | 97.02 297 | 98.07 245 | 92.23 253 | 93.51 257 | 96.96 280 | 91.85 128 | 98.15 291 | 93.68 208 | 91.16 272 | 96.44 304 |
|
cl_fuxian | | | 94.79 216 | 94.43 208 | 95.89 262 | 97.75 203 | 93.12 265 | 97.16 291 | 98.03 252 | 92.23 253 | 93.46 260 | 97.05 270 | 91.39 139 | 98.01 303 | 93.58 213 | 89.21 298 | 96.53 291 |
|
MS-PatchMatch | | | 93.84 269 | 93.63 257 | 94.46 308 | 96.18 299 | 89.45 316 | 97.76 250 | 98.27 206 | 92.23 253 | 92.13 299 | 97.49 235 | 79.50 316 | 98.69 232 | 89.75 293 | 99.38 101 | 95.25 330 |
|
miper_enhance_ethall | | | 95.10 197 | 94.75 190 | 96.12 253 | 97.53 223 | 93.73 242 | 96.61 321 | 98.08 243 | 92.20 256 | 93.89 241 | 96.65 298 | 92.44 112 | 98.30 280 | 94.21 193 | 91.16 272 | 96.34 307 |
|
Test_1112_low_res | | | 96.34 137 | 95.66 151 | 98.36 104 | 98.56 146 | 95.94 151 | 97.71 253 | 98.07 245 | 92.10 257 | 94.79 203 | 97.29 248 | 91.75 130 | 99.56 137 | 94.17 194 | 96.50 194 | 99.58 82 |
|
PVSNet_0 | | 88.72 19 | 91.28 298 | 90.03 304 | 95.00 289 | 97.99 191 | 87.29 342 | 94.84 344 | 98.50 166 | 92.06 258 | 89.86 320 | 95.19 330 | 79.81 315 | 99.39 156 | 92.27 250 | 69.79 354 | 98.33 195 |
|
v7n | | | 94.19 254 | 93.43 265 | 96.47 232 | 95.90 310 | 94.38 222 | 99.26 20 | 98.34 193 | 91.99 259 | 92.76 280 | 97.13 257 | 88.31 205 | 98.52 250 | 89.48 300 | 87.70 315 | 96.52 294 |
|
our_test_3 | | | 93.65 272 | 93.30 268 | 94.69 299 | 95.45 324 | 89.68 314 | 96.91 304 | 97.65 271 | 91.97 260 | 91.66 305 | 96.88 286 | 89.67 172 | 97.93 310 | 88.02 312 | 91.49 266 | 96.48 301 |
|
v8 | | | 94.47 239 | 93.77 248 | 96.57 222 | 96.36 293 | 94.83 201 | 99.05 53 | 98.19 216 | 91.92 261 | 93.16 268 | 96.97 278 | 88.82 196 | 98.48 252 | 91.69 265 | 87.79 314 | 96.39 305 |
|
testdata | | | | | 98.26 111 | 99.20 97 | 95.36 175 | | 98.68 121 | 91.89 262 | 98.60 66 | 99.10 69 | 94.44 89 | 99.82 64 | 94.27 191 | 99.44 95 | 99.58 82 |
|
Patchmatch-RL test | | | 91.49 296 | 90.85 297 | 93.41 318 | 91.37 351 | 84.40 346 | 92.81 351 | 95.93 336 | 91.87 263 | 87.25 335 | 94.87 334 | 88.99 188 | 96.53 342 | 92.54 245 | 82.00 337 | 99.30 121 |
|
v1144 | | | 94.59 229 | 93.92 236 | 96.60 218 | 96.21 297 | 94.78 205 | 98.59 144 | 98.14 229 | 91.86 264 | 94.21 228 | 97.02 273 | 87.97 215 | 98.41 267 | 91.72 264 | 89.57 290 | 96.61 279 |
|
cl-mvsnet1 | | | 94.52 235 | 94.03 227 | 95.99 255 | 97.57 220 | 93.38 256 | 97.05 295 | 97.94 258 | 91.74 265 | 92.81 278 | 97.10 258 | 89.12 184 | 98.07 299 | 92.60 239 | 90.30 281 | 96.53 291 |
|
Fast-Effi-MVS+ | | | 96.28 140 | 95.70 148 | 98.03 127 | 98.29 168 | 95.97 148 | 98.58 146 | 98.25 211 | 91.74 265 | 95.29 192 | 97.23 252 | 91.03 150 | 99.15 176 | 92.90 233 | 97.96 157 | 98.97 158 |
|
cl-mvsnet____ | | | 94.51 236 | 94.01 230 | 96.02 254 | 97.58 216 | 93.40 255 | 97.05 295 | 97.96 257 | 91.73 267 | 92.76 280 | 97.08 264 | 89.06 187 | 98.13 293 | 92.61 238 | 90.29 282 | 96.52 294 |
|
LTVRE_ROB | | 92.95 15 | 94.60 227 | 93.90 238 | 96.68 210 | 97.41 235 | 94.42 219 | 98.52 156 | 98.59 142 | 91.69 268 | 91.21 308 | 98.35 158 | 84.87 270 | 99.04 192 | 91.06 272 | 93.44 245 | 96.60 280 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
miper_lstm_enhance | | | 94.33 245 | 94.07 226 | 95.11 286 | 97.75 203 | 90.97 297 | 97.22 285 | 98.03 252 | 91.67 269 | 92.76 280 | 96.97 278 | 90.03 166 | 97.78 317 | 92.51 246 | 89.64 289 | 96.56 286 |
|
ETH3 D test6400 | | | 97.59 81 | 97.01 96 | 99.34 23 | 99.40 59 | 98.56 25 | 98.20 202 | 98.81 76 | 91.63 270 | 98.44 75 | 98.85 105 | 93.98 97 | 99.82 64 | 94.11 197 | 99.69 52 | 99.64 70 |
|
MVP-Stereo | | | 94.28 250 | 93.92 236 | 95.35 279 | 94.95 330 | 92.60 270 | 97.97 230 | 97.65 271 | 91.61 271 | 90.68 314 | 97.09 262 | 86.32 248 | 98.42 260 | 89.70 295 | 99.34 103 | 95.02 337 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
v1192 | | | 94.32 246 | 93.58 259 | 96.53 227 | 96.10 303 | 94.45 217 | 98.50 161 | 98.17 224 | 91.54 272 | 94.19 229 | 97.06 268 | 86.95 237 | 98.43 259 | 90.14 284 | 89.57 290 | 96.70 269 |
|
TDRefinement | | | 91.06 301 | 89.68 306 | 95.21 282 | 85.35 358 | 91.49 288 | 98.51 160 | 97.07 307 | 91.47 273 | 88.83 330 | 97.84 206 | 77.31 333 | 99.09 186 | 92.79 236 | 77.98 347 | 95.04 336 |
|
v144192 | | | 94.39 243 | 93.70 254 | 96.48 231 | 96.06 305 | 94.35 223 | 98.58 146 | 98.16 226 | 91.45 274 | 94.33 221 | 97.02 273 | 87.50 227 | 98.45 256 | 91.08 271 | 89.11 299 | 96.63 277 |
|
Baseline_NR-MVSNet | | | 94.35 244 | 93.81 244 | 95.96 258 | 96.20 298 | 94.05 231 | 98.61 143 | 96.67 329 | 91.44 275 | 93.85 244 | 97.60 227 | 88.57 199 | 98.14 292 | 94.39 185 | 86.93 324 | 95.68 325 |
|
无先验 | | | | | | | | 97.58 262 | 98.72 110 | 91.38 276 | | | | 99.87 44 | 93.36 218 | | 99.60 78 |
|
AllTest | | | 95.24 189 | 94.65 194 | 96.99 187 | 99.25 86 | 93.21 262 | 98.59 144 | 98.18 219 | 91.36 277 | 93.52 255 | 98.77 115 | 84.67 274 | 99.72 109 | 89.70 295 | 97.87 160 | 98.02 204 |
|
TestCases | | | | | 96.99 187 | 99.25 86 | 93.21 262 | | 98.18 219 | 91.36 277 | 93.52 255 | 98.77 115 | 84.67 274 | 99.72 109 | 89.70 295 | 97.87 160 | 98.02 204 |
|
v10 | | | 94.29 248 | 93.55 260 | 96.51 229 | 96.39 292 | 94.80 203 | 98.99 65 | 98.19 216 | 91.35 279 | 93.02 274 | 96.99 276 | 88.09 212 | 98.41 267 | 90.50 281 | 88.41 308 | 96.33 309 |
|
v1921920 | | | 94.20 253 | 93.47 264 | 96.40 239 | 95.98 308 | 94.08 230 | 98.52 156 | 98.15 227 | 91.33 280 | 94.25 225 | 97.20 255 | 86.41 246 | 98.42 260 | 90.04 289 | 89.39 296 | 96.69 274 |
|
MSDG | | | 95.93 152 | 95.30 167 | 97.83 137 | 98.90 117 | 95.36 175 | 96.83 314 | 98.37 188 | 91.32 281 | 94.43 216 | 98.73 119 | 90.27 163 | 99.60 132 | 90.05 288 | 98.82 124 | 98.52 187 |
|
旧先验2 | | | | | | | | 97.57 263 | | 91.30 282 | 98.67 58 | | | 99.80 80 | 95.70 149 | | |
|
tpmvs | | | 94.60 227 | 94.36 211 | 95.33 280 | 97.46 227 | 88.60 329 | 96.88 310 | 97.68 269 | 91.29 283 | 93.80 247 | 96.42 307 | 88.58 198 | 99.24 166 | 91.06 272 | 96.04 211 | 98.17 200 |
|
PM-MVS | | | 87.77 318 | 86.55 322 | 91.40 331 | 91.03 353 | 83.36 350 | 96.92 302 | 95.18 343 | 91.28 284 | 86.48 340 | 93.42 343 | 53.27 359 | 96.74 336 | 89.43 301 | 81.97 338 | 94.11 344 |
|
MIMVSNet | | | 93.26 279 | 92.21 286 | 96.41 238 | 97.73 207 | 93.13 264 | 95.65 336 | 97.03 310 | 91.27 285 | 94.04 236 | 96.06 317 | 75.33 340 | 97.19 329 | 86.56 319 | 96.23 206 | 98.92 163 |
|
PAPM | | | 94.95 207 | 94.00 231 | 97.78 142 | 97.04 258 | 95.65 164 | 96.03 330 | 98.25 211 | 91.23 286 | 94.19 229 | 97.80 212 | 91.27 144 | 98.86 220 | 82.61 340 | 97.61 170 | 98.84 167 |
|
dp | | | 94.15 257 | 93.90 238 | 94.90 292 | 97.31 239 | 86.82 344 | 96.97 299 | 97.19 304 | 91.22 287 | 96.02 183 | 96.61 301 | 85.51 260 | 99.02 197 | 90.00 290 | 94.30 219 | 98.85 165 |
|
UniMVSNet_ETH3D | | | 94.24 251 | 93.33 267 | 96.97 190 | 97.19 249 | 93.38 256 | 98.74 115 | 98.57 148 | 91.21 288 | 93.81 246 | 98.58 134 | 72.85 349 | 98.77 229 | 95.05 166 | 93.93 234 | 98.77 171 |
|
v1240 | | | 94.06 265 | 93.29 269 | 96.34 243 | 96.03 307 | 93.90 234 | 98.44 168 | 98.17 224 | 91.18 289 | 94.13 232 | 97.01 275 | 86.05 252 | 98.42 260 | 89.13 305 | 89.50 294 | 96.70 269 |
|
MVS_0304 | | | 92.81 286 | 92.01 288 | 95.23 281 | 97.46 227 | 91.33 291 | 98.17 211 | 98.81 76 | 91.13 290 | 93.80 247 | 95.68 327 | 66.08 355 | 98.06 300 | 90.79 276 | 96.13 209 | 96.32 310 |
|
tfpnnormal | | | 93.66 270 | 92.70 279 | 96.55 226 | 96.94 263 | 95.94 151 | 98.97 69 | 99.19 15 | 91.04 291 | 91.38 307 | 97.34 244 | 84.94 269 | 98.61 240 | 85.45 328 | 89.02 302 | 95.11 334 |
|
MDTV_nov1_ep13_2view | | | | | | | 84.26 347 | 96.89 309 | | 90.97 292 | 97.90 107 | | 89.89 168 | | 93.91 202 | | 99.18 137 |
|
TransMVSNet (Re) | | | 92.67 288 | 91.51 293 | 96.15 250 | 96.58 283 | 94.65 206 | 98.90 80 | 96.73 325 | 90.86 293 | 89.46 325 | 97.86 203 | 85.62 258 | 98.09 297 | 86.45 320 | 81.12 341 | 95.71 324 |
|
Anonymous202405211 | | | 95.28 187 | 94.49 201 | 97.67 153 | 99.00 110 | 93.75 240 | 98.70 128 | 97.04 309 | 90.66 294 | 96.49 170 | 98.80 111 | 78.13 326 | 99.83 56 | 96.21 127 | 95.36 216 | 99.44 105 |
|
ppachtmachnet_test | | | 93.22 280 | 92.63 280 | 94.97 290 | 95.45 324 | 90.84 298 | 96.88 310 | 97.88 262 | 90.60 295 | 92.08 300 | 97.26 249 | 88.08 213 | 97.86 316 | 85.12 330 | 90.33 280 | 96.22 312 |
|
CL-MVSNet_2432*1600 | | | 90.11 308 | 89.14 311 | 93.02 324 | 91.86 350 | 88.23 335 | 96.51 324 | 98.07 245 | 90.49 296 | 90.49 316 | 94.41 336 | 84.75 273 | 95.34 348 | 80.79 344 | 74.95 351 | 95.50 327 |
|
Anonymous20231206 | | | 91.66 295 | 91.10 295 | 93.33 320 | 94.02 342 | 87.35 341 | 98.58 146 | 97.26 302 | 90.48 297 | 90.16 318 | 96.31 308 | 83.83 292 | 96.53 342 | 79.36 348 | 89.90 286 | 96.12 315 |
|
VDDNet | | | 95.36 182 | 94.53 199 | 97.86 135 | 98.10 184 | 95.13 186 | 98.85 92 | 97.75 267 | 90.46 298 | 98.36 79 | 99.39 14 | 73.27 348 | 99.64 126 | 97.98 37 | 96.58 190 | 98.81 168 |
|
TinyColmap | | | 92.31 291 | 91.53 292 | 94.65 301 | 96.92 264 | 89.75 311 | 96.92 302 | 96.68 328 | 90.45 299 | 89.62 322 | 97.85 205 | 76.06 338 | 98.81 225 | 86.74 318 | 92.51 256 | 95.41 328 |
|
pmmvs4 | | | 94.69 219 | 93.99 233 | 96.81 201 | 95.74 314 | 95.94 151 | 97.40 269 | 97.67 270 | 90.42 300 | 93.37 262 | 97.59 228 | 89.08 186 | 98.20 288 | 92.97 230 | 91.67 264 | 96.30 311 |
|
FMVSNet1 | | | 93.19 282 | 92.07 287 | 96.56 223 | 97.54 221 | 95.00 190 | 98.82 99 | 98.18 219 | 90.38 301 | 92.27 296 | 97.07 265 | 73.68 347 | 97.95 307 | 89.36 302 | 91.30 269 | 96.72 265 |
|
DIV-MVS_2432*1600 | | | 90.38 306 | 89.38 309 | 93.40 319 | 92.85 347 | 88.94 325 | 97.95 231 | 97.94 258 | 90.35 302 | 90.25 317 | 93.96 341 | 79.82 314 | 95.94 345 | 84.62 335 | 76.69 349 | 95.33 329 |
|
RPSCF | | | 94.87 212 | 95.40 156 | 93.26 322 | 98.89 118 | 82.06 353 | 98.33 182 | 98.06 250 | 90.30 303 | 96.56 163 | 99.26 42 | 87.09 233 | 99.49 146 | 93.82 205 | 96.32 199 | 98.24 197 |
|
ADS-MVSNet2 | | | 94.58 230 | 94.40 210 | 95.11 286 | 98.00 189 | 88.74 327 | 96.04 328 | 97.30 298 | 90.15 304 | 96.47 171 | 96.64 299 | 87.89 217 | 97.56 323 | 90.08 286 | 97.06 178 | 99.02 153 |
|
ADS-MVSNet | | | 95.00 202 | 94.45 206 | 96.63 214 | 98.00 189 | 91.91 278 | 96.04 328 | 97.74 268 | 90.15 304 | 96.47 171 | 96.64 299 | 87.89 217 | 98.96 204 | 90.08 286 | 97.06 178 | 99.02 153 |
|
1121 | | | 97.37 97 | 96.77 111 | 99.16 50 | 99.34 62 | 97.99 65 | 98.19 206 | 98.68 121 | 90.14 306 | 98.01 97 | 98.97 87 | 94.80 79 | 99.87 44 | 93.36 218 | 99.46 93 | 99.61 75 |
|
新几何1 | | | | | 99.16 50 | 99.34 62 | 98.01 62 | | 98.69 118 | 90.06 307 | 98.13 85 | 98.95 95 | 94.60 82 | 99.89 35 | 91.97 259 | 99.47 90 | 99.59 80 |
|
OpenMVS |  | 93.04 13 | 95.83 157 | 95.00 179 | 98.32 106 | 97.18 250 | 97.32 88 | 99.21 30 | 98.97 30 | 89.96 308 | 91.14 309 | 99.05 79 | 86.64 241 | 99.92 21 | 93.38 216 | 99.47 90 | 97.73 212 |
|
COLMAP_ROB |  | 93.27 12 | 95.33 185 | 94.87 186 | 96.71 206 | 99.29 78 | 93.24 261 | 98.58 146 | 98.11 234 | 89.92 309 | 93.57 253 | 99.10 69 | 86.37 247 | 99.79 92 | 90.78 277 | 98.10 153 | 97.09 227 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
KD-MVS_2432*1600 | | | 89.61 313 | 87.96 317 | 94.54 303 | 94.06 340 | 91.59 286 | 95.59 337 | 97.63 273 | 89.87 310 | 88.95 328 | 94.38 338 | 78.28 324 | 96.82 334 | 84.83 331 | 68.05 355 | 95.21 331 |
|
miper_refine_blended | | | 89.61 313 | 87.96 317 | 94.54 303 | 94.06 340 | 91.59 286 | 95.59 337 | 97.63 273 | 89.87 310 | 88.95 328 | 94.38 338 | 78.28 324 | 96.82 334 | 84.83 331 | 68.05 355 | 95.21 331 |
|
QAPM | | | 96.29 138 | 95.40 156 | 98.96 67 | 97.85 199 | 97.60 80 | 99.23 23 | 98.93 37 | 89.76 312 | 93.11 272 | 99.02 80 | 89.11 185 | 99.93 15 | 91.99 258 | 99.62 66 | 99.34 112 |
|
gm-plane-assit | | | | | | 95.88 311 | 87.47 340 | | | 89.74 313 | | 96.94 283 | | 99.19 171 | 93.32 220 | | |
|
pmmvs5 | | | 93.65 272 | 92.97 274 | 95.68 269 | 95.49 322 | 92.37 271 | 98.20 202 | 97.28 300 | 89.66 314 | 92.58 286 | 97.26 249 | 82.14 298 | 98.09 297 | 93.18 224 | 90.95 276 | 96.58 282 |
|
CostFormer | | | 94.95 207 | 94.73 191 | 95.60 272 | 97.28 240 | 89.06 322 | 97.53 264 | 96.89 320 | 89.66 314 | 96.82 153 | 96.72 294 | 86.05 252 | 98.95 208 | 95.53 153 | 96.13 209 | 98.79 169 |
|
new-patchmatchnet | | | 88.50 317 | 87.45 320 | 91.67 330 | 90.31 354 | 85.89 345 | 97.16 291 | 97.33 297 | 89.47 316 | 83.63 347 | 92.77 345 | 76.38 336 | 95.06 351 | 82.70 339 | 77.29 348 | 94.06 346 |
|
Patchmatch-test | | | 94.42 241 | 93.68 256 | 96.63 214 | 97.60 214 | 91.76 281 | 94.83 345 | 97.49 288 | 89.45 317 | 94.14 231 | 97.10 258 | 88.99 188 | 98.83 223 | 85.37 329 | 98.13 152 | 99.29 123 |
|
DP-MVS | | | 96.59 127 | 95.93 139 | 98.57 85 | 99.34 62 | 96.19 139 | 98.70 128 | 98.39 185 | 89.45 317 | 94.52 209 | 99.35 28 | 91.85 128 | 99.85 50 | 92.89 235 | 98.88 119 | 99.68 57 |
|
FMVSNet5 | | | 91.81 293 | 90.92 296 | 94.49 305 | 97.21 245 | 92.09 274 | 98.00 228 | 97.55 282 | 89.31 319 | 90.86 312 | 95.61 328 | 74.48 344 | 95.32 349 | 85.57 326 | 89.70 288 | 96.07 317 |
|
EG-PatchMatch MVS | | | 91.13 300 | 90.12 303 | 94.17 313 | 94.73 334 | 89.00 324 | 98.13 215 | 97.81 264 | 89.22 320 | 85.32 344 | 96.46 304 | 67.71 352 | 98.42 260 | 87.89 314 | 93.82 236 | 95.08 335 |
|
DSMNet-mixed | | | 92.52 290 | 92.58 281 | 92.33 327 | 94.15 338 | 82.65 351 | 98.30 190 | 94.26 352 | 89.08 321 | 92.65 284 | 95.73 322 | 85.01 268 | 95.76 346 | 86.24 321 | 97.76 165 | 98.59 184 |
|
pmmvs-eth3d | | | 90.36 307 | 89.05 312 | 94.32 310 | 91.10 352 | 92.12 273 | 97.63 260 | 96.95 315 | 88.86 322 | 84.91 345 | 93.13 344 | 78.32 323 | 96.74 336 | 88.70 307 | 81.81 339 | 94.09 345 |
|
test222 | | | | | | 99.23 93 | 97.17 98 | 97.40 269 | 98.66 132 | 88.68 323 | 98.05 89 | 98.96 93 | 94.14 93 | | | 99.53 85 | 99.61 75 |
|
Anonymous20240521 | | | 91.18 299 | 90.44 300 | 93.42 317 | 93.70 343 | 88.47 331 | 98.94 75 | 97.56 277 | 88.46 324 | 89.56 324 | 95.08 333 | 77.15 335 | 96.97 332 | 83.92 336 | 89.55 292 | 94.82 339 |
|
MDA-MVSNet-bldmvs | | | 89.97 310 | 88.35 315 | 94.83 296 | 95.21 327 | 91.34 289 | 97.64 258 | 97.51 285 | 88.36 325 | 71.17 357 | 96.13 316 | 79.22 318 | 96.63 341 | 83.65 337 | 86.27 329 | 96.52 294 |
|
MIMVSNet1 | | | 89.67 312 | 88.28 316 | 93.82 314 | 92.81 348 | 91.08 296 | 98.01 226 | 97.45 291 | 87.95 326 | 87.90 334 | 95.87 320 | 67.63 353 | 94.56 353 | 78.73 351 | 88.18 311 | 95.83 322 |
|
MDA-MVSNet_test_wron | | | 90.71 304 | 89.38 309 | 94.68 300 | 94.83 332 | 90.78 301 | 97.19 287 | 97.46 289 | 87.60 327 | 72.41 356 | 95.72 324 | 86.51 242 | 96.71 339 | 85.92 324 | 86.80 327 | 96.56 286 |
|
YYNet1 | | | 90.70 305 | 89.39 308 | 94.62 302 | 94.79 333 | 90.65 303 | 97.20 286 | 97.46 289 | 87.54 328 | 72.54 355 | 95.74 321 | 86.51 242 | 96.66 340 | 86.00 323 | 86.76 328 | 96.54 289 |
|
Patchmtry | | | 93.22 280 | 92.35 284 | 95.84 264 | 96.77 272 | 93.09 266 | 94.66 346 | 97.56 277 | 87.37 329 | 92.90 276 | 96.24 310 | 88.15 210 | 97.90 311 | 87.37 316 | 90.10 284 | 96.53 291 |
|
tpm2 | | | 94.19 254 | 93.76 250 | 95.46 276 | 97.23 243 | 89.04 323 | 97.31 280 | 96.85 324 | 87.08 330 | 96.21 178 | 96.79 292 | 83.75 294 | 98.74 230 | 92.43 249 | 96.23 206 | 98.59 184 |
|
PatchT | | | 93.06 284 | 91.97 289 | 96.35 242 | 96.69 278 | 92.67 269 | 94.48 347 | 97.08 306 | 86.62 331 | 97.08 138 | 92.23 348 | 87.94 216 | 97.90 311 | 78.89 350 | 96.69 186 | 98.49 188 |
|
TAPA-MVS | | 93.98 7 | 95.35 183 | 94.56 198 | 97.74 146 | 99.13 102 | 94.83 201 | 98.33 182 | 98.64 137 | 86.62 331 | 96.29 176 | 98.61 129 | 94.00 96 | 99.29 162 | 80.00 346 | 99.41 98 | 99.09 146 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
Anonymous20231211 | | | 94.10 261 | 93.26 270 | 96.61 216 | 99.11 104 | 94.28 224 | 99.01 61 | 98.88 49 | 86.43 333 | 92.81 278 | 97.57 230 | 81.66 303 | 98.68 235 | 94.83 170 | 89.02 302 | 96.88 247 |
|
new_pmnet | | | 90.06 309 | 89.00 313 | 93.22 323 | 94.18 337 | 88.32 334 | 96.42 326 | 96.89 320 | 86.19 334 | 85.67 343 | 93.62 342 | 77.18 334 | 97.10 330 | 81.61 342 | 89.29 297 | 94.23 342 |
|
pmmvs6 | | | 91.77 294 | 90.63 298 | 95.17 284 | 94.69 335 | 91.24 294 | 98.67 134 | 97.92 260 | 86.14 335 | 89.62 322 | 97.56 232 | 75.79 339 | 98.34 274 | 90.75 278 | 84.56 334 | 95.94 320 |
|
test_0402 | | | 91.32 297 | 90.27 302 | 94.48 306 | 96.60 282 | 91.12 295 | 98.50 161 | 97.22 303 | 86.10 336 | 88.30 332 | 96.98 277 | 77.65 331 | 97.99 306 | 78.13 352 | 92.94 253 | 94.34 341 |
|
JIA-IIPM | | | 93.35 275 | 92.49 282 | 95.92 259 | 96.48 289 | 90.65 303 | 95.01 340 | 96.96 314 | 85.93 337 | 96.08 181 | 87.33 353 | 87.70 223 | 98.78 228 | 91.35 269 | 95.58 215 | 98.34 194 |
|
N_pmnet | | | 87.12 320 | 87.77 319 | 85.17 337 | 95.46 323 | 61.92 362 | 97.37 273 | 70.66 368 | 85.83 338 | 88.73 331 | 96.04 318 | 85.33 265 | 97.76 318 | 80.02 345 | 90.48 279 | 95.84 321 |
|
Anonymous20240529 | | | 95.10 197 | 94.22 216 | 97.75 145 | 99.01 109 | 94.26 226 | 98.87 89 | 98.83 68 | 85.79 339 | 96.64 159 | 98.97 87 | 78.73 321 | 99.85 50 | 96.27 124 | 94.89 217 | 99.12 143 |
|
cascas | | | 94.63 226 | 93.86 241 | 96.93 193 | 96.91 266 | 94.27 225 | 96.00 331 | 98.51 161 | 85.55 340 | 94.54 208 | 96.23 312 | 84.20 284 | 98.87 218 | 95.80 142 | 96.98 181 | 97.66 215 |
|
gg-mvs-nofinetune | | | 92.21 292 | 90.58 299 | 97.13 180 | 96.75 275 | 95.09 187 | 95.85 332 | 89.40 362 | 85.43 341 | 94.50 210 | 81.98 356 | 80.80 310 | 98.40 273 | 92.16 251 | 98.33 147 | 97.88 206 |
|
114514_t | | | 96.93 115 | 96.27 128 | 98.92 69 | 99.50 41 | 97.63 78 | 98.85 92 | 98.90 44 | 84.80 342 | 97.77 111 | 99.11 67 | 92.84 107 | 99.66 123 | 94.85 169 | 99.77 26 | 99.47 98 |
|
PCF-MVS | | 93.45 11 | 94.68 221 | 93.43 265 | 98.42 101 | 98.62 143 | 96.77 112 | 95.48 339 | 98.20 215 | 84.63 343 | 93.34 263 | 98.32 164 | 88.55 201 | 99.81 71 | 84.80 333 | 98.96 115 | 98.68 177 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
UnsupCasMVSNet_bld | | | 87.17 319 | 85.12 323 | 93.31 321 | 91.94 349 | 88.77 326 | 94.92 343 | 98.30 203 | 84.30 344 | 82.30 348 | 90.04 350 | 63.96 357 | 97.25 328 | 85.85 325 | 74.47 353 | 93.93 348 |
|
ANet_high | | | 69.08 327 | 65.37 331 | 80.22 340 | 65.99 366 | 71.96 360 | 90.91 355 | 90.09 361 | 82.62 345 | 49.93 363 | 78.39 358 | 29.36 367 | 81.75 360 | 62.49 358 | 38.52 361 | 86.95 355 |
|
RPMNet | | | 92.81 286 | 91.34 294 | 97.24 173 | 97.00 259 | 93.43 252 | 94.96 341 | 98.80 87 | 82.27 346 | 96.93 146 | 92.12 349 | 86.98 236 | 99.82 64 | 76.32 354 | 96.65 188 | 98.46 189 |
|
tpm cat1 | | | 93.36 274 | 92.80 276 | 95.07 288 | 97.58 216 | 87.97 337 | 96.76 316 | 97.86 263 | 82.17 347 | 93.53 254 | 96.04 318 | 86.13 250 | 99.13 178 | 89.24 303 | 95.87 212 | 98.10 202 |
|
CMPMVS |  | 66.06 21 | 89.70 311 | 89.67 307 | 89.78 332 | 93.19 345 | 76.56 355 | 97.00 298 | 98.35 191 | 80.97 348 | 81.57 349 | 97.75 214 | 74.75 343 | 98.61 240 | 89.85 291 | 93.63 239 | 94.17 343 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
pmmvs3 | | | 86.67 321 | 84.86 324 | 92.11 329 | 88.16 355 | 87.19 343 | 96.63 320 | 94.75 347 | 79.88 349 | 87.22 336 | 92.75 346 | 66.56 354 | 95.20 350 | 81.24 343 | 76.56 350 | 93.96 347 |
|
OpenMVS_ROB |  | 86.42 20 | 89.00 316 | 87.43 321 | 93.69 315 | 93.08 346 | 89.42 317 | 97.91 235 | 96.89 320 | 78.58 350 | 85.86 341 | 94.69 335 | 69.48 351 | 98.29 283 | 77.13 353 | 93.29 249 | 93.36 350 |
|
MVS | | | 94.67 224 | 93.54 261 | 98.08 124 | 96.88 268 | 96.56 122 | 98.19 206 | 98.50 166 | 78.05 351 | 92.69 283 | 98.02 186 | 91.07 149 | 99.63 129 | 90.09 285 | 98.36 146 | 98.04 203 |
|
DeepMVS_CX |  | | | | 86.78 334 | 97.09 256 | 72.30 358 | | 95.17 344 | 75.92 352 | 84.34 346 | 95.19 330 | 70.58 350 | 95.35 347 | 79.98 347 | 89.04 301 | 92.68 351 |
|
MVS-HIRNet | | | 89.46 315 | 88.40 314 | 92.64 325 | 97.58 216 | 82.15 352 | 94.16 350 | 93.05 358 | 75.73 353 | 90.90 311 | 82.52 355 | 79.42 317 | 98.33 275 | 83.53 338 | 98.68 127 | 97.43 217 |
|
PMMVS2 | | | 77.95 325 | 75.44 329 | 85.46 336 | 82.54 359 | 74.95 357 | 94.23 349 | 93.08 357 | 72.80 354 | 74.68 353 | 87.38 352 | 36.36 365 | 91.56 357 | 73.95 355 | 63.94 357 | 89.87 352 |
|
FPMVS | | | 77.62 326 | 77.14 326 | 79.05 341 | 79.25 362 | 60.97 363 | 95.79 333 | 95.94 335 | 65.96 355 | 67.93 358 | 94.40 337 | 37.73 364 | 88.88 359 | 68.83 356 | 88.46 307 | 87.29 353 |
|
Gipuma |  | | 78.40 324 | 76.75 327 | 83.38 338 | 95.54 320 | 80.43 354 | 79.42 360 | 97.40 295 | 64.67 356 | 73.46 354 | 80.82 357 | 45.65 361 | 93.14 355 | 66.32 357 | 87.43 318 | 76.56 358 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
LCM-MVSNet | | | 78.70 323 | 76.24 328 | 86.08 335 | 77.26 364 | 71.99 359 | 94.34 348 | 96.72 326 | 61.62 357 | 76.53 352 | 89.33 351 | 33.91 366 | 92.78 356 | 81.85 341 | 74.60 352 | 93.46 349 |
|
PMVS |  | 61.03 23 | 65.95 329 | 63.57 333 | 73.09 344 | 57.90 367 | 51.22 368 | 85.05 358 | 93.93 356 | 54.45 358 | 44.32 364 | 83.57 354 | 13.22 368 | 89.15 358 | 58.68 359 | 81.00 342 | 78.91 357 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 64.94 330 | 64.25 332 | 67.02 345 | 82.28 360 | 59.36 365 | 91.83 354 | 85.63 364 | 52.69 359 | 60.22 360 | 77.28 359 | 41.06 363 | 80.12 362 | 46.15 361 | 41.14 359 | 61.57 360 |
|
MVE |  | 62.14 22 | 63.28 332 | 59.38 335 | 74.99 342 | 74.33 365 | 65.47 361 | 85.55 357 | 80.50 367 | 52.02 360 | 51.10 362 | 75.00 361 | 10.91 371 | 80.50 361 | 51.60 360 | 53.40 358 | 78.99 356 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 64.07 331 | 63.26 334 | 66.53 346 | 81.73 361 | 58.81 366 | 91.85 353 | 84.75 365 | 51.93 361 | 59.09 361 | 75.13 360 | 43.32 362 | 79.09 363 | 42.03 362 | 39.47 360 | 61.69 359 |
|
test_method | | | 79.03 322 | 78.17 325 | 81.63 339 | 86.06 357 | 54.40 367 | 82.75 359 | 96.89 320 | 39.54 362 | 80.98 350 | 95.57 329 | 58.37 358 | 94.73 352 | 84.74 334 | 78.61 346 | 95.75 323 |
|
tmp_tt | | | 68.90 328 | 66.97 330 | 74.68 343 | 50.78 368 | 59.95 364 | 87.13 356 | 83.47 366 | 38.80 363 | 62.21 359 | 96.23 312 | 64.70 356 | 76.91 364 | 88.91 306 | 30.49 362 | 87.19 354 |
|
wuyk23d | | | 30.17 333 | 30.18 337 | 30.16 347 | 78.61 363 | 43.29 369 | 66.79 361 | 14.21 369 | 17.31 364 | 14.82 367 | 11.93 367 | 11.55 370 | 41.43 365 | 37.08 363 | 19.30 363 | 5.76 363 |
|
testmvs | | | 21.48 335 | 24.95 338 | 11.09 349 | 14.89 369 | 6.47 371 | 96.56 322 | 9.87 370 | 7.55 365 | 17.93 365 | 39.02 363 | 9.43 372 | 5.90 367 | 16.56 365 | 12.72 364 | 20.91 362 |
|
test123 | | | 20.95 336 | 23.72 339 | 12.64 348 | 13.54 370 | 8.19 370 | 96.55 323 | 6.13 371 | 7.48 366 | 16.74 366 | 37.98 364 | 12.97 369 | 6.05 366 | 16.69 364 | 5.43 365 | 23.68 361 |
|
uanet_test | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
cdsmvs_eth3d_5k | | | 23.98 334 | 31.98 336 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 98.59 142 | 0.00 367 | 0.00 368 | 98.61 129 | 90.60 157 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
pcd_1.5k_mvsjas | | | 7.88 338 | 10.50 341 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 94.51 84 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
sosnet-low-res | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
sosnet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uncertanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
Regformer | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
ab-mvs-re | | | 8.20 337 | 10.94 340 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 98.43 148 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
OPU-MVS | | | | | 99.37 20 | 99.24 92 | 99.05 10 | 99.02 59 | | | | 99.16 61 | 97.81 2 | 99.37 157 | 97.24 81 | 99.73 43 | 99.70 48 |
|
test_0728_SECOND | | | | | 99.71 1 | 99.72 12 | 99.35 1 | 98.97 69 | 98.88 49 | | | | | 99.94 3 | 98.47 16 | 99.81 10 | 99.84 4 |
|
GSMVS | | | | | | | | | | | | | | | | | 99.20 130 |
|
test_part2 | | | | | | 99.63 29 | 99.18 8 | | | | 99.27 17 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 89.45 175 | | | | 99.20 130 |
|
sam_mvs | | | | | | | | | | | | | 88.99 188 | | | | |
|
ambc | | | | | 89.49 333 | 86.66 356 | 75.78 356 | 92.66 352 | 96.72 326 | | 86.55 339 | 92.50 347 | 46.01 360 | 97.90 311 | 90.32 282 | 82.09 336 | 94.80 340 |
|
MTGPA |  | | | | | | | | 98.74 104 | | | | | | | | |
|
test_post1 | | | | | | | | 96.68 319 | | | | 30.43 366 | 87.85 220 | 98.69 232 | 92.59 241 | | |
|
test_post | | | | | | | | | | | | 31.83 365 | 88.83 195 | 98.91 211 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 95.10 332 | 89.42 176 | 98.89 215 | | | |
|
GG-mvs-BLEND | | | | | 96.59 219 | 96.34 294 | 94.98 193 | 96.51 324 | 88.58 363 | | 93.10 273 | 94.34 340 | 80.34 313 | 98.05 301 | 89.53 298 | 96.99 180 | 96.74 262 |
|
MTMP | | | | | | | | 98.89 84 | 94.14 354 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 96.39 123 | 99.57 75 | 99.69 51 |
|
agg_prior2 | | | | | | | | | | | | | | | 95.87 139 | 99.57 75 | 99.68 57 |
|
agg_prior | | | | | | 99.30 75 | 98.38 35 | | 98.72 110 | | 97.57 127 | | | 99.81 71 | | | |
|
test_prior4 | | | | | | | 98.01 62 | 97.86 242 | | | | | | | | | |
|
test_prior | | | | | 99.19 43 | 99.31 70 | 98.22 50 | | 98.84 65 | | | | | 99.70 115 | | | 99.65 67 |
|
新几何2 | | | | | | | | 97.64 258 | | | | | | | | | |
|
旧先验1 | | | | | | 99.29 78 | 97.48 83 | | 98.70 117 | | | 99.09 74 | 95.56 47 | | | 99.47 90 | 99.61 75 |
|
原ACMM2 | | | | | | | | 97.67 256 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.89 35 | 91.65 266 | | |
|
segment_acmp | | | | | | | | | | | | | 96.85 11 | | | | |
|
test12 | | | | | 99.18 47 | 99.16 99 | 98.19 52 | | 98.53 156 | | 98.07 88 | | 95.13 70 | 99.72 109 | | 99.56 80 | 99.63 73 |
|
plane_prior7 | | | | | | 97.42 232 | 94.63 208 | | | | | | | | | | |
|
plane_prior6 | | | | | | 97.35 237 | 94.61 211 | | | | | | 87.09 233 | | | | |
|
plane_prior5 | | | | | | | | | 98.56 150 | | | | | 99.03 193 | 96.07 129 | 94.27 220 | 96.92 238 |
|
plane_prior4 | | | | | | | | | | | | 98.28 167 | | | | | |
|
plane_prior1 | | | | | | 97.37 236 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 372 | | | | | | | | |
|
nn | | | | | | | | | 0.00 372 | | | | | | | | |
|
door-mid | | | | | | | | | 94.37 350 | | | | | | | | |
|
lessismore_v0 | | | | | 94.45 309 | 94.93 331 | 88.44 332 | | 91.03 360 | | 86.77 338 | 97.64 224 | 76.23 337 | 98.42 260 | 90.31 283 | 85.64 333 | 96.51 297 |
|
test11 | | | | | | | | | 98.66 132 | | | | | | | | |
|
door | | | | | | | | | 94.64 348 | | | | | | | | |
|
HQP5-MVS | | | | | | | 94.25 227 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 95.30 158 | | |
|
HQP4-MVS | | | | | | | | | | | 94.45 212 | | | 98.96 204 | | | 96.87 249 |
|
HQP3-MVS | | | | | | | | | 98.46 171 | | | | | | | 94.18 224 | |
|
HQP2-MVS | | | | | | | | | | | | | 86.75 239 | | | | |
|
NP-MVS | | | | | | 97.28 240 | 94.51 216 | | | | | 97.73 215 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 92.97 252 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 93.61 240 | |
|
Test By Simon | | | | | | | | | | | | | 94.64 80 | | | | |
|