This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15599.08 3399.91 1699.81 9099.20 799.96 3098.91 9999.85 6999.79 74
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14399.20 799.76 198
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 23999.10 2799.81 3799.80 10398.94 2999.96 3098.93 9699.86 6299.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11599.96 3098.93 9699.86 6299.88 26
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7698.94 29
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5499.18 1099.96 3099.22 6999.92 2499.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 999.51 11598.99 4599.88 2099.81 9099.27 599.96 3098.85 11299.80 9799.81 61
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 9099.09 14
IU-MVS99.84 3299.88 899.32 26798.30 11299.84 2998.86 11099.85 6999.89 20
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23099.51 11598.73 7699.88 2099.84 6498.72 6199.96 3098.16 19399.87 5499.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss99.37 5499.20 6799.88 599.90 499.87 1299.30 24699.52 10197.18 24599.60 10699.79 11598.79 4799.95 5998.83 11899.91 3199.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18499.48 15598.05 15399.76 5699.86 4998.82 4399.93 8498.82 12299.91 3199.84 40
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17398.79 7099.68 7499.81 9098.43 8399.97 2198.88 10299.90 3999.83 49
HPM-MVS++copyleft99.39 5299.23 6599.87 1199.75 7399.84 1599.43 19899.51 11598.68 8199.27 18499.53 23598.64 6999.96 3098.44 17199.80 9799.79 74
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10199.62 4198.21 12499.73 6299.79 11598.68 6499.96 3098.44 17199.77 10799.79 74
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12299.47 17397.45 22099.78 4799.82 7699.18 1099.91 10598.79 12399.89 4899.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_part299.81 4699.83 1699.77 51
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16099.74 14398.81 4499.94 6998.79 12399.86 6299.84 40
X-MVStestdata96.55 31795.45 33599.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16064.01 40798.81 4499.94 6998.79 12399.86 6299.84 40
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 10699.79 4299.82 7698.86 3899.95 5998.62 14399.81 9399.78 80
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.53 7699.95 5998.61 14699.81 9399.77 82
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.75 5598.61 14699.81 9399.77 82
MP-MVScopyleft99.33 5899.15 7199.87 1199.88 1199.82 2299.66 6999.46 18298.09 14399.48 13099.74 14398.29 9199.96 3097.93 21199.87 5499.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 14799.55 11899.64 19298.91 3499.96 3098.72 13099.90 3999.82 54
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11598.62 8399.79 4299.83 6899.28 499.97 2198.48 16599.90 3999.84 40
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS99.42 4299.27 5899.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 16999.77 10799.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13399.68 7499.69 16899.06 1699.96 3098.69 13599.87 5499.84 40
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 13799.66 8399.68 17498.96 2499.96 3098.62 14399.87 5499.84 40
ZD-MVS99.71 9699.79 3099.61 4896.84 27699.56 11499.54 23198.58 7299.96 3096.93 29499.75 112
GST-MVS99.40 5099.24 6399.85 2899.86 2099.79 3099.60 9599.67 2397.97 15999.63 9699.68 17498.52 7799.95 5998.38 17499.86 6299.81 61
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13399.67 7899.69 16898.95 2799.96 3098.69 13599.87 5499.84 40
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15598.12 13899.50 12699.75 13898.78 4899.97 2198.57 15599.89 4899.83 49
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 18899.76 5699.75 13899.13 1299.92 9599.07 8399.92 2499.85 36
APD-MVScopyleft99.27 6799.08 8099.84 3999.75 7399.79 3099.50 16399.50 13597.16 24799.77 5199.82 7698.78 4899.94 6997.56 25099.86 6299.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10999.65 3397.84 17399.71 6899.80 10399.12 1399.97 2198.33 18099.87 5499.83 49
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
No_MVS99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 14899.53 12199.63 19898.93 3399.97 2198.74 12799.91 3199.83 49
LS3D99.27 6799.12 7499.74 6199.18 26399.75 3999.56 12299.57 6498.45 9699.49 12999.85 5497.77 10999.94 6998.33 18099.84 7799.52 167
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25199.40 22098.79 7099.52 12399.62 20398.91 3499.90 11698.64 14199.75 11299.82 54
OPU-MVS99.64 7899.56 15699.72 4299.60 9599.70 15899.27 599.42 27198.24 18699.80 9799.79 74
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 20199.68 7499.63 19898.91 3499.94 6998.58 15299.91 3199.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CDPH-MVS99.13 8998.91 10999.80 4699.75 7399.71 4499.15 28999.41 21296.60 29499.60 10699.55 22698.83 4299.90 11697.48 25799.83 8699.78 80
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 27099.52 10198.82 6599.39 15599.71 15498.96 2499.85 14698.59 15199.80 9799.77 82
DP-MVS Recon99.12 9598.95 10599.65 7399.74 8099.70 4699.27 26199.57 6496.40 31099.42 14399.68 17498.75 5599.80 18497.98 20899.72 11899.44 191
nrg03098.64 15998.42 16599.28 15599.05 29799.69 4799.81 2099.46 18298.04 15499.01 23699.82 7696.69 14499.38 27499.34 5594.59 34398.78 254
SF-MVS99.38 5399.24 6399.79 4999.79 5499.68 4899.57 11699.54 8597.82 17899.71 6899.80 10398.95 2799.93 8498.19 18999.84 7799.74 92
SD-MVS99.41 4799.52 1199.05 18099.74 8099.68 4899.46 18799.52 10199.11 2699.88 2099.91 2099.43 197.70 38598.72 13099.93 2299.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator+97.12 1399.18 7998.97 10199.82 4199.17 27199.68 4899.81 2099.51 11599.20 1898.72 27799.89 3095.68 18299.97 2198.86 11099.86 6299.81 61
QAPM98.67 15698.30 17499.80 4699.20 25799.67 5199.77 3499.72 1194.74 35798.73 27699.90 2695.78 17799.98 1396.96 29199.88 5199.76 87
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 13899.63 9699.84 6498.73 6099.96 3098.55 16199.83 8699.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17899.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22398.91 5899.78 4799.85 5499.36 299.94 6998.84 11599.88 5199.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MAR-MVS98.86 12898.63 14299.54 9799.37 21599.66 5399.45 18899.54 8596.61 29299.01 23699.40 27297.09 12999.86 14097.68 24099.53 14199.10 222
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
3Dnovator97.25 999.24 7499.05 8399.81 4499.12 27999.66 5399.84 1399.74 1099.09 3298.92 25199.90 2695.94 17099.98 1398.95 9399.92 2499.79 74
fmvsm_s_conf0.1_n99.29 6399.10 7699.86 2199.70 10199.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23599.94 6999.89 1399.96 1299.97 4
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1496.60 14699.96 3099.95 899.96 1299.95 9
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19799.65 5799.50 16399.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
TEST999.67 11199.65 5799.05 31099.41 21296.22 32098.95 24699.49 24798.77 5199.91 105
train_agg99.02 11298.77 12799.77 5599.67 11199.65 5799.05 31099.41 21296.28 31498.95 24699.49 24798.76 5299.91 10597.63 24199.72 11899.75 88
NCCC99.34 5799.19 6899.79 4999.61 14199.65 5799.30 24699.48 15598.86 6099.21 19899.63 19898.72 6199.90 11698.25 18599.63 13399.80 70
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2499.95 9
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7698.75 5599.99 499.97 199.97 799.94 11
fmvsm_s_conf0.1_n_a99.26 6999.06 8299.85 2899.52 16799.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 23799.94 6999.88 1499.92 2499.98 2
agg_prior99.67 11199.62 6599.40 22098.87 26099.91 105
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6898.75 5599.99 499.97 199.96 1299.94 11
test_899.67 11199.61 6799.03 31599.41 21296.28 31498.93 25099.48 25298.76 5299.91 105
test1299.75 5899.64 12899.61 6799.29 27999.21 19898.38 8799.89 12799.74 11599.74 92
SDMVSNet99.11 9998.90 11099.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9399.88 3694.56 23199.93 8499.67 2198.26 22699.72 103
save fliter99.76 6599.59 7099.14 29199.40 22099.00 43
新几何199.75 5899.75 7399.59 7099.54 8596.76 27999.29 17999.64 19298.43 8399.94 6996.92 29699.66 12899.72 103
旧先验199.74 8099.59 7099.54 8599.69 16898.47 8099.68 12699.73 97
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23099.46 18299.07 3599.79 4299.82 7698.85 3999.92 9598.68 13799.87 5499.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_prior499.56 7598.99 326
VNet99.11 9998.90 11099.73 6499.52 16799.56 7599.41 20799.39 22399.01 4099.74 6099.78 12195.56 18599.92 9599.52 3498.18 23399.72 103
DPM-MVS98.95 11998.71 13299.66 6999.63 13199.55 7798.64 36799.10 30797.93 16299.42 14399.55 22698.67 6699.80 18495.80 32599.68 12699.61 144
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16399.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 9899.90 3999.89 20
FIs98.78 14398.63 14299.23 16299.18 26399.54 7999.83 1699.59 5798.28 11398.79 27199.81 9096.75 14299.37 27999.08 8296.38 30298.78 254
VPA-MVSNet98.29 18397.95 20799.30 14899.16 27399.54 7999.50 16399.58 6198.27 11599.35 16799.37 28092.53 29399.65 23999.35 5194.46 34498.72 267
AdaColmapbinary99.01 11598.80 12399.66 6999.56 15699.54 7999.18 28499.70 1598.18 13199.35 16799.63 19896.32 15799.90 11697.48 25799.77 10799.55 159
114514_t98.93 12098.67 13699.72 6599.85 2699.53 8299.62 8899.59 5792.65 37799.71 6899.78 12198.06 10299.90 11698.84 11599.91 3199.74 92
DP-MVS99.16 8398.95 10599.78 5299.77 6299.53 8299.41 20799.50 13597.03 26399.04 23399.88 3697.39 11699.92 9598.66 13999.90 3999.87 31
OpenMVScopyleft96.50 1698.47 16698.12 18699.52 11199.04 29899.53 8299.82 1799.72 1194.56 36098.08 32999.88 3694.73 22199.98 1397.47 25999.76 11099.06 233
PHI-MVS99.30 6199.17 7099.70 6799.56 15699.52 8599.58 10999.80 897.12 25199.62 10099.73 14998.58 7299.90 11698.61 14699.91 3199.68 119
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 33899.85 698.82 6599.65 8999.74 14398.51 7899.80 18498.83 11899.89 4899.64 136
test22299.75 7399.49 8798.91 34299.49 14396.42 30899.34 17099.65 18698.28 9299.69 12399.72 103
EC-MVSNet99.44 3799.39 2799.58 9099.56 15699.49 8799.88 499.58 6198.38 10299.73 6299.69 16898.20 9599.70 22399.64 2499.82 9099.54 161
test_fmvsmconf0.01_n99.22 7699.03 8799.79 4998.42 36399.48 8999.55 13499.51 11599.39 1099.78 4799.93 994.80 21399.95 5999.93 1199.95 1699.94 11
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16699.74 92
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 33699.85 698.82 6599.54 11999.73 14998.51 7899.74 20198.91 9999.88 5199.77 82
CPTT-MVS99.11 9998.90 11099.74 6199.80 5299.46 9299.59 10199.49 14397.03 26399.63 9699.69 16897.27 12499.96 3097.82 22299.84 7799.81 61
FC-MVSNet-test98.75 14698.62 14799.15 17299.08 29099.45 9399.86 1299.60 5498.23 12198.70 28499.82 7696.80 13999.22 31099.07 8396.38 30298.79 253
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 10999.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
PAPM_NR99.04 10998.84 12099.66 6999.74 8099.44 9499.39 21999.38 23197.70 19299.28 18099.28 30498.34 8999.85 14696.96 29199.45 14599.69 115
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8799.78 4799.70 15898.65 6899.79 18799.65 2399.78 10499.41 195
alignmvs98.81 13998.56 15899.58 9099.43 19899.42 9699.51 15698.96 32598.61 8499.35 16798.92 34894.78 21599.77 19499.35 5198.11 23899.54 161
CNLPA99.14 8798.99 9799.59 8799.58 15099.41 9899.16 28699.44 20198.45 9699.19 20499.49 24798.08 10199.89 12797.73 23399.75 11299.48 178
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 31099.66 2899.14 2199.57 11399.80 10398.46 8199.94 6999.57 2799.84 7799.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21299.37 10099.58 10999.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2299.94 11
HyFIR lowres test99.11 9998.92 10799.65 7399.90 499.37 10099.02 31899.91 397.67 19699.59 10999.75 13895.90 17399.73 20799.53 3299.02 18299.86 33
UniMVSNet (Re)98.29 18398.00 20199.13 17399.00 30299.36 10299.49 17499.51 11597.95 16098.97 24499.13 32396.30 15899.38 27498.36 17893.34 36098.66 298
原ACMM199.65 7399.73 8799.33 10399.47 17397.46 21799.12 21599.66 18598.67 6699.91 10597.70 23899.69 12399.71 112
canonicalmvs99.02 11298.86 11899.51 11399.42 20099.32 10499.80 2599.48 15598.63 8299.31 17498.81 35397.09 12999.75 20099.27 6697.90 24499.47 184
XXY-MVS98.38 17698.09 19199.24 16099.26 24499.32 10499.56 12299.55 7797.45 22098.71 27899.83 6893.23 27099.63 24798.88 10296.32 30498.76 259
IS-MVSNet99.05 10898.87 11599.57 9299.73 8799.32 10499.75 4199.20 29698.02 15799.56 11499.86 4996.54 14999.67 23198.09 19699.13 17099.73 97
MM99.40 5099.28 5599.74 6199.67 11199.31 10799.52 14898.87 34199.55 199.74 6099.80 10396.47 15199.98 1399.97 199.97 799.94 11
API-MVS99.04 10999.03 8799.06 17899.40 20899.31 10799.55 13499.56 6998.54 8999.33 17199.39 27698.76 5299.78 19296.98 28999.78 10498.07 361
ETV-MVS99.26 6999.21 6699.40 13099.46 19199.30 10999.56 12299.52 10198.52 9199.44 13999.27 30798.41 8699.86 14099.10 7999.59 13699.04 234
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 10999.89 299.58 6198.56 8799.73 6299.69 16898.55 7599.82 17399.69 1999.85 6999.48 178
Fast-Effi-MVS+98.70 15198.43 16499.51 11399.51 17099.28 11199.52 14899.47 17396.11 33099.01 23699.34 29096.20 16199.84 15397.88 21498.82 19699.39 198
PatchMatch-RL98.84 13898.62 14799.52 11199.71 9699.28 11199.06 30899.77 997.74 18799.50 12699.53 23595.41 18999.84 15397.17 28199.64 13199.44 191
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11399.52 14897.57 38799.51 299.82 3599.78 12198.09 10099.96 3099.97 199.97 799.94 11
F-COLMAP99.19 7799.04 8599.64 7899.78 5699.27 11399.42 20599.54 8597.29 23699.41 14799.59 21298.42 8599.93 8498.19 18999.69 12399.73 97
NR-MVSNet97.97 22597.61 24599.02 18398.87 32299.26 11599.47 18499.42 20997.63 19997.08 35999.50 24495.07 20299.13 32497.86 21793.59 35898.68 283
WR-MVS98.06 20597.73 23399.06 17898.86 32599.25 11699.19 28299.35 24697.30 23598.66 28799.43 26393.94 25599.21 31598.58 15294.28 34898.71 269
CP-MVSNet98.09 20197.78 22499.01 18498.97 31099.24 11799.67 6499.46 18297.25 23998.48 30899.64 19293.79 26199.06 33498.63 14294.10 35198.74 264
DeepC-MVS98.35 299.30 6199.19 6899.64 7899.82 4299.23 11899.62 8899.55 7798.94 5499.63 9699.95 395.82 17699.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tfpnnormal97.84 24397.47 25898.98 19099.20 25799.22 11999.64 7899.61 4896.32 31298.27 32099.70 15893.35 26999.44 26695.69 32895.40 32798.27 352
ab-mvs98.86 12898.63 14299.54 9799.64 12899.19 12099.44 19499.54 8597.77 18299.30 17699.81 9094.20 24599.93 8499.17 7498.82 19699.49 177
MSDG98.98 11698.80 12399.53 10599.76 6599.19 12098.75 35799.55 7797.25 23999.47 13199.77 12997.82 10799.87 13796.93 29499.90 3999.54 161
EIA-MVS99.18 7999.09 7999.45 12399.49 18199.18 12299.67 6499.53 9697.66 19799.40 15299.44 26198.10 9999.81 17898.94 9499.62 13499.35 204
test_yl98.86 12898.63 14299.54 9799.49 18199.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15398.60 14998.33 22099.59 150
DCV-MVSNet98.86 12898.63 14299.54 9799.49 18199.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19199.84 15398.60 14998.33 22099.59 150
CANet99.25 7399.14 7299.59 8799.41 20399.16 12599.35 23599.57 6498.82 6599.51 12599.61 20796.46 15299.95 5999.59 2599.98 499.65 129
MSLP-MVS++99.46 3199.47 1799.44 12799.60 14699.16 12599.41 20799.71 1398.98 4899.45 13499.78 12199.19 999.54 25699.28 6399.84 7799.63 140
casdiffmvspermissive99.13 8998.98 10099.56 9499.65 12699.16 12599.56 12299.50 13598.33 11099.41 14799.86 4995.92 17199.83 16699.45 4599.16 16599.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
mvsmamba98.92 12198.87 11599.08 17599.07 29199.16 12599.88 499.51 11598.15 13399.40 15299.89 3097.12 12799.33 28999.38 4897.40 27998.73 266
WTY-MVS99.06 10798.88 11499.61 8499.62 13799.16 12599.37 22699.56 6998.04 15499.53 12199.62 20396.84 13899.94 6998.85 11298.49 21599.72 103
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13099.61 9499.45 19399.01 4099.89 1999.82 7699.01 1899.92 9599.56 2899.95 1699.85 36
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13199.60 9599.45 19399.01 4099.90 1899.83 6898.98 2399.93 8499.59 2599.95 1699.86 33
MVS_Test99.10 10398.97 10199.48 11799.49 18199.14 13199.67 6499.34 25097.31 23499.58 11099.76 13597.65 11299.82 17398.87 10599.07 17799.46 186
baseline99.15 8599.02 9199.53 10599.66 12099.14 13199.72 4999.48 15598.35 10799.42 14399.84 6496.07 16399.79 18799.51 3599.14 16999.67 122
Effi-MVS+98.81 13998.59 15499.48 11799.46 19199.12 13498.08 39099.50 13597.50 21599.38 15899.41 26996.37 15699.81 17899.11 7898.54 21299.51 173
Vis-MVSNetpermissive99.12 9598.97 10199.56 9499.78 5699.10 13599.68 6199.66 2898.49 9399.86 2799.87 4494.77 21899.84 15399.19 7199.41 14899.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 13698.94 33899.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13799.82 54
casdiffmvs_mvgpermissive99.15 8599.02 9199.55 9699.66 12099.09 13699.64 7899.56 6998.26 11699.45 13499.87 4496.03 16599.81 17899.54 3099.15 16899.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PCF-MVS97.08 1497.66 27597.06 30099.47 12099.61 14199.09 13698.04 39199.25 28791.24 38298.51 30599.70 15894.55 23399.91 10592.76 37199.85 6999.42 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GeoE98.85 13598.62 14799.53 10599.61 14199.08 13999.80 2599.51 11597.10 25599.31 17499.78 12195.23 19999.77 19498.21 18799.03 18099.75 88
HY-MVS97.30 798.85 13598.64 14199.47 12099.42 20099.08 13999.62 8899.36 24097.39 22899.28 18099.68 17496.44 15499.92 9598.37 17698.22 22899.40 197
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8499.86 2099.07 14199.47 18499.93 297.66 19799.71 6899.86 4997.73 11099.96 3099.47 4399.82 9099.79 74
PS-CasMVS97.93 22897.59 24798.95 19598.99 30599.06 14299.68 6199.52 10197.13 24998.31 31699.68 17492.44 29999.05 33598.51 16394.08 35298.75 261
EPP-MVSNet99.13 8998.99 9799.53 10599.65 12699.06 14299.81 2099.33 25797.43 22399.60 10699.88 3697.14 12699.84 15399.13 7698.94 18599.69 115
FA-MVS(test-final)98.75 14698.53 16099.41 12999.55 16099.05 14499.80 2599.01 31996.59 29699.58 11099.59 21295.39 19099.90 11697.78 22599.49 14399.28 212
PAPR98.63 16098.34 17099.51 11399.40 20899.03 14598.80 35299.36 24096.33 31199.00 24099.12 32698.46 8199.84 15395.23 34099.37 15699.66 125
MVSTER98.49 16498.32 17299.00 18699.35 21999.02 14699.54 13999.38 23197.41 22699.20 20199.73 14993.86 25999.36 28398.87 10597.56 26098.62 313
1112_ss98.98 11698.77 12799.59 8799.68 11099.02 14699.25 27299.48 15597.23 24299.13 21399.58 21696.93 13799.90 11698.87 10598.78 19999.84 40
LFMVS97.90 23497.35 27899.54 9799.52 16799.01 14899.39 21998.24 37597.10 25599.65 8999.79 11584.79 37799.91 10599.28 6398.38 21799.69 115
PLCcopyleft97.94 499.02 11298.85 11999.53 10599.66 12099.01 14899.24 27499.52 10196.85 27599.27 18499.48 25298.25 9399.91 10597.76 22999.62 13499.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UniMVSNet_NR-MVSNet98.22 18697.97 20498.96 19398.92 31498.98 15099.48 17899.53 9697.76 18398.71 27899.46 25996.43 15599.22 31098.57 15592.87 36798.69 278
DU-MVS98.08 20397.79 22198.96 19398.87 32298.98 15099.41 20799.45 19397.87 16798.71 27899.50 24494.82 21099.22 31098.57 15592.87 36798.68 283
FMVSNet398.03 21397.76 23098.84 22399.39 21198.98 15099.40 21599.38 23196.67 28599.07 22599.28 30492.93 27698.98 34597.10 28296.65 29598.56 329
xiu_mvs_v1_base_debu99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29599.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 227
xiu_mvs_v1_base99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29599.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 227
xiu_mvs_v1_base_debi99.29 6399.27 5899.34 13699.63 13198.97 15399.12 29599.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 227
sss99.17 8199.05 8399.53 10599.62 13798.97 15399.36 23099.62 4197.83 17499.67 7899.65 18697.37 11999.95 5999.19 7199.19 16499.68 119
FE-MVS98.48 16598.17 17999.40 13099.54 16298.96 15799.68 6198.81 34895.54 34199.62 10099.70 15893.82 26099.93 8497.35 26899.46 14499.32 209
iter_conf_final98.71 15098.61 15398.99 18899.49 18198.96 15799.63 8299.41 21298.19 12799.39 15599.77 12994.82 21099.38 27499.30 6197.52 26398.64 302
bld_raw_dy_0_6498.69 15398.58 15598.99 18898.88 31898.96 15799.80 2599.41 21297.91 16499.32 17299.87 4495.70 18199.31 29599.09 8097.27 28498.71 269
anonymousdsp98.44 16898.28 17598.94 19698.50 36098.96 15799.77 3499.50 13597.07 25798.87 26099.77 12994.76 21999.28 29898.66 13997.60 25698.57 328
diffmvspermissive99.14 8799.02 9199.51 11399.61 14198.96 15799.28 25699.49 14398.46 9599.72 6799.71 15496.50 15099.88 13299.31 5899.11 17199.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testdata99.54 9799.75 7398.95 16299.51 11597.07 25799.43 14099.70 15898.87 3799.94 6997.76 22999.64 13199.72 103
MVS97.28 30096.55 31299.48 11798.78 33398.95 16299.27 26199.39 22383.53 39498.08 32999.54 23196.97 13599.87 13794.23 35399.16 16599.63 140
Test_1112_low_res98.89 12398.66 13999.57 9299.69 10698.95 16299.03 31599.47 17396.98 26599.15 21199.23 31296.77 14199.89 12798.83 11898.78 19999.86 33
PS-MVSNAJ99.32 5999.32 4099.30 14899.57 15298.94 16598.97 33299.46 18298.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12898.97 242
VPNet97.84 24397.44 26699.01 18499.21 25598.94 16599.48 17899.57 6498.38 10299.28 18099.73 14988.89 34799.39 27399.19 7193.27 36298.71 269
MVSFormer99.17 8199.12 7499.29 15199.51 17098.94 16599.88 499.46 18297.55 20799.80 4099.65 18697.39 11699.28 29899.03 8599.85 6999.65 129
lupinMVS99.13 8999.01 9599.46 12299.51 17098.94 16599.05 31099.16 30197.86 16899.80 4099.56 22397.39 11699.86 14098.94 9499.85 6999.58 154
xiu_mvs_v2_base99.26 6999.25 6299.29 15199.53 16398.91 16999.02 31899.45 19398.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16198.98 241
test_djsdf98.67 15698.57 15698.98 19098.70 34598.91 16999.88 499.46 18297.55 20799.22 19599.88 3695.73 17999.28 29899.03 8597.62 25598.75 261
Vis-MVSNet (Re-imp)98.87 12598.72 13099.31 14399.71 9698.88 17199.80 2599.44 20197.91 16499.36 16499.78 12195.49 18899.43 27097.91 21299.11 17199.62 142
pmmvs498.13 19797.90 21298.81 22998.61 35498.87 17298.99 32699.21 29596.44 30699.06 23099.58 21695.90 17399.11 32997.18 28096.11 30898.46 339
jason99.13 8999.03 8799.45 12399.46 19198.87 17299.12 29599.26 28598.03 15699.79 4299.65 18697.02 13299.85 14699.02 8799.90 3999.65 129
jason: jason.
Patchmtry97.75 25997.40 27398.81 22999.10 28498.87 17299.11 30199.33 25794.83 35598.81 26799.38 27794.33 24199.02 34096.10 31795.57 32398.53 330
test_cas_vis1_n_192099.16 8399.01 9599.61 8499.81 4698.86 17599.65 7599.64 3699.39 1099.97 1399.94 693.20 27399.98 1399.55 2999.91 3199.99 1
TransMVSNet (Re)97.15 30696.58 31198.86 21999.12 27998.85 17699.49 17498.91 33495.48 34297.16 35799.80 10393.38 26899.11 32994.16 35591.73 37298.62 313
V4298.06 20597.79 22198.86 21998.98 30898.84 17799.69 5599.34 25096.53 29899.30 17699.37 28094.67 22699.32 29297.57 24994.66 34198.42 342
WR-MVS_H98.13 19797.87 21798.90 20699.02 30098.84 17799.70 5299.59 5797.27 23798.40 31199.19 31795.53 18699.23 30798.34 17993.78 35798.61 322
FMVSNet297.72 26497.36 27698.80 23199.51 17098.84 17799.45 18899.42 20996.49 30098.86 26499.29 30290.26 33398.98 34596.44 31296.56 29898.58 327
BH-RMVSNet98.41 17298.08 19299.40 13099.41 20398.83 18099.30 24698.77 35197.70 19298.94 24899.65 18692.91 27999.74 20196.52 31099.55 14099.64 136
ET-MVSNet_ETH3D96.49 31995.64 33399.05 18099.53 16398.82 18198.84 34897.51 38897.63 19984.77 39499.21 31692.09 30398.91 35698.98 9092.21 37199.41 195
v2v48298.06 20597.77 22698.92 20098.90 31598.82 18199.57 11699.36 24096.65 28799.19 20499.35 28694.20 24599.25 30397.72 23594.97 33698.69 278
v897.95 22797.63 24498.93 19898.95 31298.81 18399.80 2599.41 21296.03 33599.10 22099.42 26594.92 20699.30 29696.94 29394.08 35298.66 298
PVSNet_BlendedMVS98.86 12898.80 12399.03 18299.76 6598.79 18499.28 25699.91 397.42 22599.67 7899.37 28097.53 11399.88 13298.98 9097.29 28398.42 342
PVSNet_Blended99.08 10598.97 10199.42 12899.76 6598.79 18498.78 35499.91 396.74 28099.67 7899.49 24797.53 11399.88 13298.98 9099.85 6999.60 146
ETVMVS97.50 28796.90 30599.29 15199.23 25098.78 18699.32 24198.90 33697.52 21398.56 30298.09 37884.72 37899.69 22897.86 21797.88 24599.39 198
baseline198.31 18097.95 20799.38 13499.50 17998.74 18799.59 10198.93 32798.41 10099.14 21299.60 21094.59 22999.79 18798.48 16593.29 36199.61 144
CDS-MVSNet99.09 10499.03 8799.25 15899.42 20098.73 18899.45 18899.46 18298.11 14099.46 13399.77 12998.01 10399.37 27998.70 13298.92 18899.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UGNet98.87 12598.69 13499.40 13099.22 25498.72 18999.44 19499.68 2099.24 1799.18 20899.42 26592.74 28399.96 3099.34 5599.94 2199.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PMMVS98.80 14298.62 14799.34 13699.27 24298.70 19098.76 35699.31 27197.34 23199.21 19899.07 32897.20 12599.82 17398.56 15898.87 19199.52 167
v119297.81 25097.44 26698.91 20498.88 31898.68 19199.51 15699.34 25096.18 32399.20 20199.34 29094.03 25299.36 28395.32 33895.18 33198.69 278
v1097.85 24097.52 25298.86 21998.99 30598.67 19299.75 4199.41 21295.70 33998.98 24299.41 26994.75 22099.23 30796.01 32194.63 34298.67 290
v114497.98 22297.69 23698.85 22298.87 32298.66 19399.54 13999.35 24696.27 31699.23 19499.35 28694.67 22699.23 30796.73 30295.16 33298.68 283
v14419297.92 23197.60 24698.87 21598.83 32898.65 19499.55 13499.34 25096.20 32199.32 17299.40 27294.36 24099.26 30296.37 31595.03 33598.70 274
131498.68 15598.54 15999.11 17498.89 31798.65 19499.27 26199.49 14396.89 27397.99 33499.56 22397.72 11199.83 16697.74 23299.27 16098.84 250
MG-MVS99.13 8999.02 9199.45 12399.57 15298.63 19699.07 30599.34 25098.99 4599.61 10399.82 7697.98 10499.87 13797.00 28799.80 9799.85 36
pm-mvs197.68 27197.28 28998.88 21199.06 29498.62 19799.50 16399.45 19396.32 31297.87 33999.79 11592.47 29599.35 28697.54 25293.54 35998.67 290
TranMVSNet+NR-MVSNet97.93 22897.66 23998.76 23598.78 33398.62 19799.65 7599.49 14397.76 18398.49 30799.60 21094.23 24498.97 35298.00 20792.90 36598.70 274
TSAR-MVS + GP.99.36 5599.36 3299.36 13599.67 11198.61 19999.07 30599.33 25799.00 4399.82 3599.81 9099.06 1699.84 15399.09 8099.42 14799.65 129
iter_conf0598.55 16398.44 16398.87 21599.34 22398.60 20099.55 13499.42 20998.21 12499.37 16099.77 12993.55 26699.38 27499.30 6197.48 27198.63 310
v7n97.87 23797.52 25298.92 20098.76 33898.58 20199.84 1399.46 18296.20 32198.91 25299.70 15894.89 20899.44 26696.03 31993.89 35598.75 261
thisisatest053098.35 17898.03 19899.31 14399.63 13198.56 20299.54 13996.75 39397.53 21199.73 6299.65 18691.25 32499.89 12798.62 14399.56 13899.48 178
TAMVS99.12 9599.08 8099.24 16099.46 19198.55 20399.51 15699.46 18298.09 14399.45 13499.82 7698.34 8999.51 25798.70 13298.93 18699.67 122
PEN-MVS97.76 25597.44 26698.72 23798.77 33798.54 20499.78 3299.51 11597.06 25998.29 31999.64 19292.63 29098.89 35898.09 19693.16 36398.72 267
Anonymous2023121197.88 23597.54 25198.90 20699.71 9698.53 20599.48 17899.57 6494.16 36398.81 26799.68 17493.23 27099.42 27198.84 11594.42 34698.76 259
v192192097.80 25297.45 26198.84 22398.80 32998.53 20599.52 14899.34 25096.15 32799.24 19099.47 25593.98 25499.29 29795.40 33695.13 33398.69 278
PS-MVSNAJss98.92 12198.92 10798.90 20698.78 33398.53 20599.78 3299.54 8598.07 14899.00 24099.76 13599.01 1899.37 27999.13 7697.23 28698.81 251
COLMAP_ROBcopyleft97.56 698.86 12898.75 12999.17 16799.88 1198.53 20599.34 23899.59 5797.55 20798.70 28499.89 3095.83 17599.90 11698.10 19599.90 3999.08 227
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
mvs_anonymous99.03 11198.99 9799.16 16899.38 21298.52 20999.51 15699.38 23197.79 17999.38 15899.81 9097.30 12299.45 26199.35 5198.99 18399.51 173
CHOSEN 1792x268899.19 7799.10 7699.45 12399.89 898.52 20999.39 21999.94 198.73 7699.11 21799.89 3095.50 18799.94 6999.50 3699.97 799.89 20
mvs_tets98.40 17598.23 17798.91 20498.67 34898.51 21199.66 6999.53 9698.19 12798.65 29399.81 9092.75 28199.44 26699.31 5897.48 27198.77 257
thisisatest051598.14 19697.79 22199.19 16599.50 17998.50 21298.61 36896.82 39296.95 26999.54 11999.43 26391.66 31699.86 14098.08 20099.51 14299.22 216
CR-MVSNet98.17 19397.93 21098.87 21599.18 26398.49 21399.22 27999.33 25796.96 26799.56 11499.38 27794.33 24199.00 34394.83 34698.58 20799.14 219
RPMNet96.72 31595.90 32799.19 16599.18 26398.49 21399.22 27999.52 10188.72 39099.56 11497.38 38494.08 25199.95 5986.87 39498.58 20799.14 219
AllTest98.87 12598.72 13099.31 14399.86 2098.48 21599.56 12299.61 4897.85 17199.36 16499.85 5495.95 16899.85 14696.66 30799.83 8699.59 150
TestCases99.31 14399.86 2098.48 21599.61 4897.85 17199.36 16499.85 5495.95 16899.85 14696.66 30799.83 8699.59 150
testing22297.16 30596.50 31399.16 16899.16 27398.47 21799.27 26198.66 36497.71 18998.23 32198.15 37382.28 38899.84 15397.36 26797.66 25299.18 218
RRT_MVS98.70 15198.66 13998.83 22598.90 31598.45 21899.89 299.28 28197.76 18398.94 24899.92 1496.98 13499.25 30399.28 6397.00 29298.80 252
Anonymous2024052998.09 20197.68 23799.34 13699.66 12098.44 21999.40 21599.43 20793.67 36799.22 19599.89 3090.23 33699.93 8499.26 6798.33 22099.66 125
jajsoiax98.43 16998.28 17598.88 21198.60 35598.43 22099.82 1799.53 9698.19 12798.63 29599.80 10393.22 27299.44 26699.22 6997.50 26798.77 257
v124097.69 26997.32 28498.79 23298.85 32698.43 22099.48 17899.36 24096.11 33099.27 18499.36 28393.76 26399.24 30694.46 34995.23 33098.70 274
CANet_DTU98.97 11898.87 11599.25 15899.33 22598.42 22299.08 30499.30 27599.16 1999.43 14099.75 13895.27 19599.97 2198.56 15899.95 1699.36 203
tttt051798.42 17098.14 18399.28 15599.66 12098.38 22399.74 4496.85 39197.68 19499.79 4299.74 14391.39 32199.89 12798.83 11899.56 13899.57 156
PatchT97.03 31096.44 31598.79 23298.99 30598.34 22499.16 28699.07 31392.13 37899.52 12397.31 38794.54 23498.98 34588.54 38798.73 20199.03 235
Baseline_NR-MVSNet97.76 25597.45 26198.68 24299.09 28798.29 22599.41 20798.85 34395.65 34098.63 29599.67 18094.82 21099.10 33198.07 20392.89 36698.64 302
CSCG99.32 5999.32 4099.32 14299.85 2698.29 22599.71 5199.66 2898.11 14099.41 14799.80 10398.37 8899.96 3098.99 8999.96 1299.72 103
sd_testset98.75 14698.57 15699.29 15199.81 4698.26 22799.56 12299.62 4198.78 7399.64 9399.88 3692.02 30499.88 13299.54 3098.26 22699.72 103
PAPM97.59 28097.09 29999.07 17799.06 29498.26 22798.30 38599.10 30794.88 35398.08 32999.34 29096.27 15999.64 24289.87 38298.92 18899.31 210
OMC-MVS99.08 10599.04 8599.20 16499.67 11198.22 22999.28 25699.52 10198.07 14899.66 8399.81 9097.79 10899.78 19297.79 22499.81 9399.60 146
EPNet98.86 12898.71 13299.30 14897.20 38398.18 23099.62 8898.91 33499.28 1698.63 29599.81 9095.96 16799.99 499.24 6899.72 11899.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous20240521198.30 18297.98 20399.26 15799.57 15298.16 23199.41 20798.55 36896.03 33599.19 20499.74 14391.87 30799.92 9599.16 7598.29 22599.70 113
GG-mvs-BLEND98.45 26998.55 35898.16 23199.43 19893.68 40597.23 35498.46 36389.30 34499.22 31095.43 33598.22 22897.98 369
gg-mvs-nofinetune96.17 32695.32 33798.73 23698.79 33098.14 23399.38 22494.09 40491.07 38498.07 33291.04 40089.62 34399.35 28696.75 30199.09 17598.68 283
DTE-MVSNet97.51 28697.19 29498.46 26898.63 35198.13 23499.84 1399.48 15596.68 28497.97 33699.67 18092.92 27798.56 36796.88 29892.60 37098.70 274
VDDNet97.55 28297.02 30199.16 16899.49 18198.12 23599.38 22499.30 27595.35 34399.68 7499.90 2682.62 38699.93 8499.31 5898.13 23799.42 193
test_vis1_n97.92 23197.44 26699.34 13699.53 16398.08 23699.74 4499.49 14399.15 20100.00 199.94 679.51 39199.98 1399.88 1499.76 11099.97 4
testing397.28 30096.76 30998.82 22699.37 21598.07 23799.45 18899.36 24097.56 20697.89 33898.95 34383.70 38298.82 35996.03 31998.56 21099.58 154
thres20097.61 27997.28 28998.62 24599.64 12898.03 23899.26 27098.74 35597.68 19499.09 22398.32 36991.66 31699.81 17892.88 36898.22 22898.03 364
baseline297.87 23797.55 24898.82 22699.18 26398.02 23999.41 20796.58 39796.97 26696.51 36499.17 31893.43 26799.57 25297.71 23699.03 18098.86 248
IterMVS-LS98.46 16798.42 16598.58 25099.59 14898.00 24099.37 22699.43 20796.94 27199.07 22599.59 21297.87 10599.03 33898.32 18295.62 32298.71 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GA-MVS97.85 24097.47 25899.00 18699.38 21297.99 24198.57 37199.15 30297.04 26298.90 25499.30 30089.83 33999.38 27496.70 30498.33 22099.62 142
cl____98.01 21897.84 21998.55 25699.25 24897.97 24298.71 36199.34 25096.47 30598.59 30199.54 23195.65 18399.21 31597.21 27495.77 31798.46 339
EI-MVSNet98.67 15698.67 13698.68 24299.35 21997.97 24299.50 16399.38 23196.93 27299.20 20199.83 6897.87 10599.36 28398.38 17497.56 26098.71 269
tfpn200view997.72 26497.38 27498.72 23799.69 10697.96 24499.50 16398.73 36097.83 17499.17 20998.45 36491.67 31499.83 16693.22 36398.18 23398.37 348
thres40097.77 25497.38 27498.92 20099.69 10697.96 24499.50 16398.73 36097.83 17499.17 20998.45 36491.67 31499.83 16693.22 36398.18 23398.96 244
DIV-MVS_self_test98.01 21897.85 21898.48 26299.24 24997.95 24698.71 36199.35 24696.50 29998.60 30099.54 23195.72 18099.03 33897.21 27495.77 31798.46 339
thres600view797.86 23997.51 25498.92 20099.72 9197.95 24699.59 10198.74 35597.94 16199.27 18498.62 35991.75 31099.86 14093.73 35898.19 23298.96 244
test_vis1_n_192098.63 16098.40 16799.31 14399.86 2097.94 24899.67 6499.62 4199.43 799.99 299.91 2087.29 365100.00 199.92 1299.92 2499.98 2
CHOSEN 280x42099.12 9599.13 7399.08 17599.66 12097.89 24998.43 37899.71 1398.88 5999.62 10099.76 13596.63 14599.70 22399.46 4499.99 199.66 125
cl2297.85 24097.64 24398.48 26299.09 28797.87 25098.60 37099.33 25797.11 25498.87 26099.22 31392.38 30099.17 31998.21 18795.99 31198.42 342
TR-MVS97.76 25597.41 27298.82 22699.06 29497.87 25098.87 34698.56 36796.63 29198.68 28699.22 31392.49 29499.65 23995.40 33697.79 24898.95 246
thres100view90097.76 25597.45 26198.69 24199.72 9197.86 25299.59 10198.74 35597.93 16299.26 18898.62 35991.75 31099.83 16693.22 36398.18 23398.37 348
test0.0.03 197.71 26797.42 27198.56 25498.41 36497.82 25398.78 35498.63 36597.34 23198.05 33398.98 34094.45 23898.98 34595.04 34397.15 29098.89 247
JIA-IIPM97.50 28797.02 30198.93 19898.73 34097.80 25499.30 24698.97 32391.73 38098.91 25294.86 39495.10 20199.71 21797.58 24597.98 24199.28 212
XVG-OURS-SEG-HR98.69 15398.62 14798.89 20999.71 9697.74 25599.12 29599.54 8598.44 9999.42 14399.71 15494.20 24599.92 9598.54 16298.90 19099.00 238
XVG-OURS98.73 14998.68 13598.88 21199.70 10197.73 25698.92 34099.55 7798.52 9199.45 13499.84 6495.27 19599.91 10598.08 20098.84 19499.00 238
miper_ehance_all_eth98.18 19298.10 18898.41 27599.23 25097.72 25798.72 36099.31 27196.60 29498.88 25799.29 30297.29 12399.13 32497.60 24395.99 31198.38 347
miper_enhance_ethall98.16 19498.08 19298.41 27598.96 31197.72 25798.45 37799.32 26796.95 26998.97 24499.17 31897.06 13199.22 31097.86 21795.99 31198.29 351
v14897.79 25397.55 24898.50 25998.74 33997.72 25799.54 13999.33 25796.26 31798.90 25499.51 24194.68 22599.14 32197.83 22193.15 36498.63 310
test_fmvs1_n98.41 17298.14 18399.21 16399.82 4297.71 26099.74 4499.49 14399.32 1499.99 299.95 385.32 37499.97 2199.82 1699.84 7799.96 7
c3_l98.12 19998.04 19798.38 27999.30 23397.69 26198.81 35199.33 25796.67 28598.83 26599.34 29097.11 12898.99 34497.58 24595.34 32898.48 334
WB-MVSnew97.65 27697.65 24097.63 32898.78 33397.62 26299.13 29298.33 37297.36 23099.07 22598.94 34495.64 18499.15 32092.95 36798.68 20396.12 392
test_fmvs198.88 12498.79 12699.16 16899.69 10697.61 26399.55 13499.49 14399.32 1499.98 699.91 2091.41 32099.96 3099.82 1699.92 2499.90 17
TAPA-MVS97.07 1597.74 26197.34 28198.94 19699.70 10197.53 26499.25 27299.51 11591.90 37999.30 17699.63 19898.78 4899.64 24288.09 38999.87 5499.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MIMVSNet97.73 26297.45 26198.57 25199.45 19697.50 26599.02 31898.98 32296.11 33099.41 14799.14 32290.28 33298.74 36395.74 32698.93 18699.47 184
UniMVSNet_ETH3D97.32 29996.81 30798.87 21599.40 20897.46 26699.51 15699.53 9695.86 33898.54 30499.77 12982.44 38799.66 23498.68 13797.52 26399.50 176
miper_lstm_enhance98.00 22097.91 21198.28 29099.34 22397.43 26798.88 34499.36 24096.48 30398.80 26999.55 22695.98 16698.91 35697.27 27195.50 32698.51 332
eth_miper_zixun_eth98.05 21097.96 20598.33 28299.26 24497.38 26898.56 37399.31 27196.65 28798.88 25799.52 23896.58 14799.12 32897.39 26595.53 32598.47 336
cascas97.69 26997.43 27098.48 26298.60 35597.30 26998.18 38999.39 22392.96 37598.41 31098.78 35593.77 26299.27 30198.16 19398.61 20498.86 248
PVSNet96.02 1798.85 13598.84 12098.89 20999.73 8797.28 27098.32 38499.60 5497.86 16899.50 12699.57 22096.75 14299.86 14098.56 15899.70 12299.54 161
h-mvs3397.70 26897.28 28998.97 19299.70 10197.27 27199.36 23099.45 19398.94 5499.66 8399.64 19294.93 20499.99 499.48 4184.36 39099.65 129
MDA-MVSNet-bldmvs94.96 34193.98 34897.92 31298.24 36697.27 27199.15 28999.33 25793.80 36680.09 40199.03 33388.31 35697.86 38293.49 36194.36 34798.62 313
GBi-Net97.68 27197.48 25698.29 28799.51 17097.26 27399.43 19899.48 15596.49 30099.07 22599.32 29790.26 33398.98 34597.10 28296.65 29598.62 313
test197.68 27197.48 25698.29 28799.51 17097.26 27399.43 19899.48 15596.49 30099.07 22599.32 29790.26 33398.98 34597.10 28296.65 29598.62 313
FMVSNet196.84 31396.36 31798.29 28799.32 23197.26 27399.43 19899.48 15595.11 34798.55 30399.32 29783.95 38198.98 34595.81 32496.26 30598.62 313
MDA-MVSNet_test_wron95.45 33594.60 34298.01 30698.16 36797.21 27699.11 30199.24 28993.49 37080.73 40098.98 34093.02 27498.18 37394.22 35494.45 34598.64 302
WAC-MVS97.16 27795.47 333
myMVS_eth3d96.89 31196.37 31698.43 27499.00 30297.16 27799.29 25199.39 22397.06 25997.41 34898.15 37383.46 38398.68 36595.27 33998.34 21899.45 189
VDD-MVS97.73 26297.35 27898.88 21199.47 19097.12 27999.34 23898.85 34398.19 12799.67 7899.85 5482.98 38499.92 9599.49 4098.32 22499.60 146
test-LLR98.06 20597.90 21298.55 25698.79 33097.10 28098.67 36397.75 38397.34 23198.61 29898.85 35094.45 23899.45 26197.25 27299.38 14999.10 222
test-mter97.49 29297.13 29798.55 25698.79 33097.10 28098.67 36397.75 38396.65 28798.61 29898.85 35088.23 35799.45 26197.25 27299.38 14999.10 222
YYNet195.36 33794.51 34497.92 31297.89 37097.10 28099.10 30399.23 29093.26 37380.77 39999.04 33292.81 28098.02 37794.30 35094.18 35098.64 302
ACMM97.58 598.37 17798.34 17098.48 26299.41 20397.10 28099.56 12299.45 19398.53 9099.04 23399.85 5493.00 27599.71 21798.74 12797.45 27398.64 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS98.19 19098.10 18898.45 26998.88 31897.07 28499.28 25699.38 23198.57 8699.22 19599.81 9092.12 30299.66 23498.08 20097.54 26298.61 322
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Patchmatch-test97.93 22897.65 24098.77 23499.18 26397.07 28499.03 31599.14 30496.16 32598.74 27599.57 22094.56 23199.72 21193.36 36299.11 17199.52 167
hse-mvs297.50 28797.14 29598.59 24799.49 18197.05 28699.28 25699.22 29298.94 5499.66 8399.42 26594.93 20499.65 23999.48 4183.80 39299.08 227
LPG-MVS_test98.22 18698.13 18598.49 26099.33 22597.05 28699.58 10999.55 7797.46 21799.24 19099.83 6892.58 29199.72 21198.09 19697.51 26598.68 283
LGP-MVS_train98.49 26099.33 22597.05 28699.55 7797.46 21799.24 19099.83 6892.58 29199.72 21198.09 19697.51 26598.68 283
AUN-MVS96.88 31296.31 31898.59 24799.48 18997.04 28999.27 26199.22 29297.44 22298.51 30599.41 26991.97 30599.66 23497.71 23683.83 39199.07 232
plane_prior799.29 23797.03 290
ACMP97.20 1198.06 20597.94 20998.45 26999.37 21597.01 29199.44 19499.49 14397.54 21098.45 30999.79 11591.95 30699.72 21197.91 21297.49 27098.62 313
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
plane_prior397.00 29298.69 7999.11 217
Fast-Effi-MVS+-dtu98.77 14598.83 12298.60 24699.41 20396.99 29399.52 14899.49 14398.11 14099.24 19099.34 29096.96 13699.79 18797.95 21099.45 14599.02 237
plane_prior699.27 24296.98 29492.71 286
HQP_MVS98.27 18598.22 17898.44 27299.29 23796.97 29599.39 21999.47 17398.97 5199.11 21799.61 20792.71 28699.69 22897.78 22597.63 25398.67 290
plane_prior96.97 29599.21 28198.45 9697.60 256
ACMH97.28 898.10 20097.99 20298.44 27299.41 20396.96 29799.60 9599.56 6998.09 14398.15 32799.91 2090.87 32899.70 22398.88 10297.45 27398.67 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
NP-MVS99.23 25096.92 29899.40 272
testing1197.50 28797.10 29898.71 23999.20 25796.91 29999.29 25198.82 34697.89 16698.21 32498.40 36685.63 37199.83 16698.45 17098.04 24099.37 202
Effi-MVS+-dtu98.78 14398.89 11398.47 26799.33 22596.91 29999.57 11699.30 27598.47 9499.41 14798.99 33896.78 14099.74 20198.73 12999.38 14998.74 264
testing9197.44 29497.02 30198.71 23999.18 26396.89 30199.19 28299.04 31697.78 18198.31 31698.29 37085.41 37399.85 14698.01 20697.95 24299.39 198
HQP5-MVS96.83 302
HQP-MVS98.02 21597.90 21298.37 28099.19 26096.83 30298.98 32999.39 22398.24 11898.66 28799.40 27292.47 29599.64 24297.19 27897.58 25898.64 302
CLD-MVS98.16 19498.10 18898.33 28299.29 23796.82 30498.75 35799.44 20197.83 17499.13 21399.55 22692.92 27799.67 23198.32 18297.69 25198.48 334
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LTVRE_ROB97.16 1298.02 21597.90 21298.40 27799.23 25096.80 30599.70 5299.60 5497.12 25198.18 32699.70 15891.73 31299.72 21198.39 17397.45 27398.68 283
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs597.52 28497.30 28698.16 29698.57 35796.73 30699.27 26198.90 33696.14 32898.37 31399.53 23591.54 31999.14 32197.51 25495.87 31598.63 310
testing9997.36 29796.94 30498.63 24499.18 26396.70 30799.30 24698.93 32797.71 18998.23 32198.26 37184.92 37699.84 15398.04 20597.85 24799.35 204
BH-untuned98.42 17098.36 16898.59 24799.49 18196.70 30799.27 26199.13 30597.24 24198.80 26999.38 27795.75 17899.74 20197.07 28599.16 16599.33 208
IB-MVS95.67 1896.22 32395.44 33698.57 25199.21 25596.70 30798.65 36697.74 38596.71 28297.27 35398.54 36286.03 36899.92 9598.47 16886.30 38899.10 222
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ACMH+97.24 1097.92 23197.78 22498.32 28499.46 19196.68 31099.56 12299.54 8598.41 10097.79 34399.87 4490.18 33799.66 23498.05 20497.18 28998.62 313
EU-MVSNet97.98 22298.03 19897.81 32298.72 34296.65 31199.66 6999.66 2898.09 14398.35 31499.82 7695.25 19898.01 37897.41 26495.30 32998.78 254
D2MVS98.41 17298.50 16198.15 29999.26 24496.62 31299.40 21599.61 4897.71 18998.98 24299.36 28396.04 16499.67 23198.70 13297.41 27898.15 358
tt080597.97 22597.77 22698.57 25199.59 14896.61 31399.45 18899.08 31098.21 12498.88 25799.80 10388.66 35199.70 22398.58 15297.72 25099.39 198
MVP-Stereo97.81 25097.75 23197.99 30997.53 37696.60 31498.96 33398.85 34397.22 24397.23 35499.36 28395.28 19499.46 26095.51 33299.78 10497.92 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TESTMET0.1,197.55 28297.27 29298.40 27798.93 31396.53 31598.67 36397.61 38696.96 26798.64 29499.28 30488.63 35399.45 26197.30 27099.38 14999.21 217
OurMVSNet-221017-097.88 23597.77 22698.19 29498.71 34496.53 31599.88 499.00 32097.79 17998.78 27299.94 691.68 31399.35 28697.21 27496.99 29398.69 278
ADS-MVSNet98.20 18998.08 19298.56 25499.33 22596.48 31799.23 27599.15 30296.24 31899.10 22099.67 18094.11 24999.71 21796.81 29999.05 17899.48 178
testgi97.65 27697.50 25598.13 30099.36 21896.45 31899.42 20599.48 15597.76 18397.87 33999.45 26091.09 32598.81 36094.53 34898.52 21399.13 221
test_040296.64 31696.24 31997.85 31698.85 32696.43 31999.44 19499.26 28593.52 36996.98 36199.52 23888.52 35499.20 31792.58 37397.50 26797.93 372
ITE_SJBPF98.08 30199.29 23796.37 32098.92 33098.34 10898.83 26599.75 13891.09 32599.62 24895.82 32397.40 27998.25 354
IterMVS-SCA-FT97.82 24897.75 23198.06 30299.57 15296.36 32199.02 31899.49 14397.18 24598.71 27899.72 15392.72 28499.14 32197.44 26295.86 31698.67 290
K. test v397.10 30896.79 30898.01 30698.72 34296.33 32299.87 997.05 39097.59 20196.16 36899.80 10388.71 34999.04 33696.69 30596.55 29998.65 300
XVG-ACMP-BASELINE97.83 24597.71 23598.20 29399.11 28196.33 32299.41 20799.52 10198.06 15299.05 23299.50 24489.64 34299.73 20797.73 23397.38 28198.53 330
IterMVS97.83 24597.77 22698.02 30599.58 15096.27 32499.02 31899.48 15597.22 24398.71 27899.70 15892.75 28199.13 32497.46 26096.00 31098.67 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UWE-MVS97.58 28197.29 28898.48 26299.09 28796.25 32599.01 32396.61 39697.86 16899.19 20499.01 33688.72 34899.90 11697.38 26698.69 20299.28 212
SixPastTwentyTwo97.50 28797.33 28398.03 30398.65 34996.23 32699.77 3498.68 36397.14 24897.90 33799.93 990.45 33199.18 31897.00 28796.43 30198.67 290
BH-w/o98.00 22097.89 21698.32 28499.35 21996.20 32799.01 32398.90 33696.42 30898.38 31299.00 33795.26 19799.72 21196.06 31898.61 20499.03 235
EGC-MVSNET82.80 36577.86 37197.62 32997.91 36996.12 32899.33 24099.28 2818.40 40825.05 40999.27 30784.11 38099.33 28989.20 38498.22 22897.42 382
TDRefinement95.42 33694.57 34397.97 31089.83 40496.11 32999.48 17898.75 35296.74 28096.68 36399.88 3688.65 35299.71 21798.37 17682.74 39398.09 360
EPMVS97.82 24897.65 24098.35 28198.88 31895.98 33099.49 17494.71 40397.57 20499.26 18899.48 25292.46 29899.71 21797.87 21699.08 17699.35 204
pmmvs-eth3d95.34 33894.73 34197.15 34095.53 39395.94 33199.35 23599.10 30795.13 34593.55 38397.54 38288.15 35997.91 38094.58 34789.69 38397.61 378
FMVSNet596.43 32196.19 32097.15 34099.11 28195.89 33299.32 24199.52 10194.47 36298.34 31599.07 32887.54 36497.07 38992.61 37295.72 32098.47 336
KD-MVS_2432*160094.62 34393.72 35197.31 33797.19 38495.82 33398.34 38199.20 29695.00 35197.57 34598.35 36787.95 36098.10 37592.87 36977.00 39898.01 365
miper_refine_blended94.62 34393.72 35197.31 33797.19 38495.82 33398.34 38199.20 29695.00 35197.57 34598.35 36787.95 36098.10 37592.87 36977.00 39898.01 365
UnsupCasMVSNet_eth96.44 32096.12 32197.40 33698.65 34995.65 33599.36 23099.51 11597.13 24996.04 37098.99 33888.40 35598.17 37496.71 30390.27 38098.40 345
MIMVSNet195.51 33495.04 33996.92 35097.38 37895.60 33699.52 14899.50 13593.65 36896.97 36299.17 31885.28 37596.56 39388.36 38895.55 32498.60 325
CVMVSNet98.57 16298.67 13698.30 28699.35 21995.59 33799.50 16399.55 7798.60 8599.39 15599.83 6894.48 23699.45 26198.75 12698.56 21099.85 36
SCA98.19 19098.16 18098.27 29199.30 23395.55 33899.07 30598.97 32397.57 20499.43 14099.57 22092.72 28499.74 20197.58 24599.20 16399.52 167
LF4IMVS97.52 28497.46 26097.70 32798.98 30895.55 33899.29 25198.82 34698.07 14898.66 28799.64 19289.97 33899.61 24997.01 28696.68 29497.94 371
EPNet_dtu98.03 21397.96 20598.23 29298.27 36595.54 34099.23 27598.75 35299.02 3897.82 34199.71 15496.11 16299.48 25893.04 36699.65 13099.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap97.12 30796.89 30697.83 31999.07 29195.52 34198.57 37198.74 35597.58 20397.81 34299.79 11588.16 35899.56 25395.10 34197.21 28798.39 346
pmmvs696.53 31896.09 32397.82 32198.69 34695.47 34299.37 22699.47 17393.46 37197.41 34899.78 12187.06 36699.33 28996.92 29692.70 36998.65 300
test20.0396.12 32795.96 32696.63 35497.44 37795.45 34399.51 15699.38 23196.55 29796.16 36899.25 31093.76 26396.17 39487.35 39294.22 34998.27 352
lessismore_v097.79 32398.69 34695.44 34494.75 40295.71 37299.87 4488.69 35099.32 29295.89 32294.93 33898.62 313
KD-MVS_self_test95.00 34094.34 34596.96 34797.07 38695.39 34599.56 12299.44 20195.11 34797.13 35897.32 38691.86 30897.27 38890.35 38181.23 39598.23 356
PatchmatchNetpermissive98.31 18098.36 16898.19 29499.16 27395.32 34699.27 26198.92 33097.37 22999.37 16099.58 21694.90 20799.70 22397.43 26399.21 16299.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ppachtmachnet_test97.49 29297.45 26197.61 33098.62 35295.24 34798.80 35299.46 18296.11 33098.22 32399.62 20396.45 15398.97 35293.77 35795.97 31498.61 322
USDC97.34 29897.20 29397.75 32499.07 29195.20 34898.51 37599.04 31697.99 15898.31 31699.86 4989.02 34599.55 25595.67 33097.36 28298.49 333
ADS-MVSNet298.02 21598.07 19597.87 31599.33 22595.19 34999.23 27599.08 31096.24 31899.10 22099.67 18094.11 24998.93 35596.81 29999.05 17899.48 178
MDTV_nov1_ep13_2view95.18 35099.35 23596.84 27699.58 11095.19 20097.82 22299.46 186
new_pmnet96.38 32296.03 32497.41 33598.13 36895.16 35199.05 31099.20 29693.94 36497.39 35198.79 35491.61 31899.04 33690.43 38095.77 31798.05 363
tpm97.67 27497.55 24898.03 30399.02 30095.01 35299.43 19898.54 36996.44 30699.12 21599.34 29091.83 30999.60 25097.75 23196.46 30099.48 178
our_test_397.65 27697.68 23797.55 33298.62 35294.97 35398.84 34899.30 27596.83 27898.19 32599.34 29097.01 13399.02 34095.00 34496.01 30998.64 302
Anonymous2024052196.20 32595.89 32897.13 34297.72 37594.96 35499.79 3199.29 27993.01 37497.20 35699.03 33389.69 34198.36 37191.16 37896.13 30798.07 361
tpmrst98.33 17998.48 16297.90 31499.16 27394.78 35599.31 24499.11 30697.27 23799.45 13499.59 21295.33 19399.84 15398.48 16598.61 20499.09 226
tpmvs97.98 22298.02 20097.84 31899.04 29894.73 35699.31 24499.20 29696.10 33498.76 27499.42 26594.94 20399.81 17896.97 29098.45 21698.97 242
dcpmvs_299.23 7599.58 798.16 29699.83 3994.68 35799.76 3799.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
dmvs_re98.08 20398.16 18097.85 31699.55 16094.67 35899.70 5298.92 33098.15 13399.06 23099.35 28693.67 26599.25 30397.77 22897.25 28599.64 136
patch_mono-299.26 6999.62 598.16 29699.81 4694.59 35999.52 14899.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
pmmvs394.09 34993.25 35596.60 35594.76 39894.49 36098.92 34098.18 37889.66 38596.48 36598.06 37986.28 36797.33 38789.68 38387.20 38797.97 370
MDTV_nov1_ep1398.32 17299.11 28194.44 36199.27 26198.74 35597.51 21499.40 15299.62 20394.78 21599.76 19897.59 24498.81 198
ECVR-MVScopyleft98.04 21198.05 19698.00 30899.74 8094.37 36299.59 10194.98 40199.13 2299.66 8399.93 990.67 33099.84 15399.40 4799.38 14999.80 70
tpm297.44 29497.34 28197.74 32599.15 27794.36 36399.45 18898.94 32693.45 37298.90 25499.44 26191.35 32299.59 25197.31 26998.07 23999.29 211
PVSNet_094.43 1996.09 32895.47 33497.94 31199.31 23294.34 36497.81 39299.70 1597.12 25197.46 34798.75 35689.71 34099.79 18797.69 23981.69 39499.68 119
Anonymous2023120696.22 32396.03 32496.79 35397.31 38194.14 36599.63 8299.08 31096.17 32497.04 36099.06 33093.94 25597.76 38486.96 39395.06 33498.47 336
CostFormer97.72 26497.73 23397.71 32699.15 27794.02 36699.54 13999.02 31894.67 35899.04 23399.35 28692.35 30199.77 19498.50 16497.94 24399.34 207
test111198.04 21198.11 18797.83 31999.74 8093.82 36799.58 10995.40 40099.12 2599.65 8999.93 990.73 32999.84 15399.43 4699.38 14999.82 54
UnsupCasMVSNet_bld93.53 35192.51 35696.58 35697.38 37893.82 36798.24 38699.48 15591.10 38393.10 38596.66 38974.89 39398.37 37094.03 35687.71 38697.56 380
tpm cat197.39 29697.36 27697.50 33499.17 27193.73 36999.43 19899.31 27191.27 38198.71 27899.08 32794.31 24399.77 19496.41 31498.50 21499.00 238
dp97.75 25997.80 22097.59 33199.10 28493.71 37099.32 24198.88 33996.48 30399.08 22499.55 22692.67 28999.82 17396.52 31098.58 20799.24 215
MVS-HIRNet95.75 33395.16 33897.51 33399.30 23393.69 37198.88 34495.78 39885.09 39398.78 27292.65 39691.29 32399.37 27994.85 34599.85 6999.46 186
CL-MVSNet_self_test94.49 34593.97 34996.08 35996.16 38893.67 37298.33 38399.38 23195.13 34597.33 35298.15 37392.69 28896.57 39288.67 38679.87 39697.99 368
DSMNet-mixed97.25 30297.35 27896.95 34897.84 37193.61 37399.57 11696.63 39596.13 32998.87 26098.61 36194.59 22997.70 38595.08 34298.86 19299.55 159
MS-PatchMatch97.24 30497.32 28496.99 34598.45 36293.51 37498.82 35099.32 26797.41 22698.13 32899.30 30088.99 34699.56 25395.68 32999.80 9797.90 374
test_fmvs297.25 30297.30 28697.09 34499.43 19893.31 37599.73 4798.87 34198.83 6499.28 18099.80 10384.45 37999.66 23497.88 21497.45 27398.30 350
OpenMVS_ROBcopyleft92.34 2094.38 34793.70 35396.41 35797.38 37893.17 37699.06 30898.75 35286.58 39194.84 37998.26 37181.53 38999.32 29289.01 38597.87 24696.76 385
gm-plane-assit98.54 35992.96 37794.65 35999.15 32199.64 24297.56 250
EG-PatchMatch MVS95.97 32995.69 33196.81 35297.78 37292.79 37899.16 28698.93 32796.16 32594.08 38199.22 31382.72 38599.47 25995.67 33097.50 26798.17 357
Syy-MVS97.09 30997.14 29596.95 34899.00 30292.73 37999.29 25199.39 22397.06 25997.41 34898.15 37393.92 25798.68 36591.71 37598.34 21899.45 189
new-patchmatchnet94.48 34694.08 34795.67 36195.08 39692.41 38099.18 28499.28 28194.55 36193.49 38497.37 38587.86 36297.01 39091.57 37688.36 38497.61 378
LCM-MVSNet-Re97.83 24598.15 18296.87 35199.30 23392.25 38199.59 10198.26 37397.43 22396.20 36799.13 32396.27 15998.73 36498.17 19298.99 18399.64 136
test250696.81 31496.65 31097.29 33999.74 8092.21 38299.60 9585.06 41199.13 2299.77 5199.93 987.82 36399.85 14699.38 4899.38 14999.80 70
DeepPCF-MVS98.18 398.81 13999.37 3097.12 34399.60 14691.75 38398.61 36899.44 20199.35 1299.83 3499.85 5498.70 6399.81 17899.02 8799.91 3199.81 61
RPSCF98.22 18698.62 14796.99 34599.82 4291.58 38499.72 4999.44 20196.61 29299.66 8399.89 3095.92 17199.82 17397.46 26099.10 17499.57 156
test_vis1_rt95.81 33295.65 33296.32 35899.67 11191.35 38599.49 17496.74 39498.25 11795.24 37398.10 37774.96 39299.90 11699.53 3298.85 19397.70 377
Patchmatch-RL test95.84 33195.81 33095.95 36095.61 39190.57 38698.24 38698.39 37195.10 34995.20 37598.67 35894.78 21597.77 38396.28 31690.02 38199.51 173
Gipumacopyleft90.99 35890.15 36393.51 36698.73 34090.12 38793.98 39899.45 19379.32 39692.28 38894.91 39369.61 39497.98 37987.42 39195.67 32192.45 396
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PM-MVS92.96 35392.23 35795.14 36295.61 39189.98 38899.37 22698.21 37694.80 35695.04 37897.69 38165.06 39697.90 38194.30 35089.98 38297.54 381
mvsany_test393.77 35093.45 35494.74 36395.78 39088.01 38999.64 7898.25 37498.28 11394.31 38097.97 38068.89 39598.51 36997.50 25590.37 37997.71 375
test_fmvs392.10 35591.77 35893.08 36896.19 38786.25 39099.82 1798.62 36696.65 28795.19 37696.90 38855.05 40395.93 39696.63 30990.92 37897.06 384
test_f91.90 35691.26 36093.84 36595.52 39485.92 39199.69 5598.53 37095.31 34493.87 38296.37 39155.33 40298.27 37295.70 32790.98 37797.32 383
APD_test195.87 33096.49 31494.00 36499.53 16384.01 39299.54 13999.32 26795.91 33797.99 33499.85 5485.49 37299.88 13291.96 37498.84 19498.12 359
PMMVS286.87 36285.37 36691.35 37490.21 40383.80 39398.89 34397.45 38983.13 39591.67 39295.03 39248.49 40594.70 39885.86 39777.62 39795.54 393
ambc93.06 36992.68 40082.36 39498.47 37698.73 36095.09 37797.41 38355.55 40199.10 33196.42 31391.32 37397.71 375
DeepMVS_CXcopyleft93.34 36799.29 23782.27 39599.22 29285.15 39296.33 36699.05 33190.97 32799.73 20793.57 36097.77 24998.01 365
test_vis3_rt87.04 36185.81 36490.73 37593.99 39981.96 39699.76 3790.23 41092.81 37681.35 39891.56 39840.06 40799.07 33394.27 35288.23 38591.15 398
WB-MVS93.10 35294.10 34690.12 37795.51 39581.88 39799.73 4799.27 28495.05 35093.09 38698.91 34994.70 22491.89 40176.62 40094.02 35496.58 387
SSC-MVS92.73 35493.73 35089.72 37895.02 39781.38 39899.76 3799.23 29094.87 35492.80 38798.93 34594.71 22391.37 40274.49 40293.80 35696.42 388
LCM-MVSNet86.80 36385.22 36791.53 37387.81 40580.96 39998.23 38898.99 32171.05 39890.13 39396.51 39048.45 40696.88 39190.51 37985.30 38996.76 385
dmvs_testset95.02 33996.12 32191.72 37299.10 28480.43 40099.58 10997.87 38297.47 21695.22 37498.82 35293.99 25395.18 39788.09 38994.91 33999.56 158
CMPMVSbinary69.68 2394.13 34894.90 34091.84 37197.24 38280.01 40198.52 37499.48 15589.01 38891.99 38999.67 18085.67 37099.13 32495.44 33497.03 29196.39 389
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
N_pmnet94.95 34295.83 32992.31 37098.47 36179.33 40299.12 29592.81 40893.87 36597.68 34499.13 32393.87 25899.01 34291.38 37796.19 30698.59 326
ANet_high77.30 36974.86 37384.62 38375.88 40977.61 40397.63 39493.15 40788.81 38964.27 40489.29 40136.51 40883.93 40675.89 40152.31 40392.33 397
EMVS80.02 36879.22 37082.43 38691.19 40176.40 40497.55 39592.49 40966.36 40383.01 39791.27 39964.63 39785.79 40565.82 40560.65 40285.08 401
E-PMN80.61 36779.88 36982.81 38490.75 40276.38 40597.69 39395.76 39966.44 40283.52 39592.25 39762.54 39887.16 40468.53 40461.40 40184.89 402
MVEpermissive76.82 2176.91 37074.31 37484.70 38285.38 40876.05 40696.88 39693.17 40667.39 40171.28 40389.01 40221.66 41387.69 40371.74 40372.29 40090.35 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testf190.42 35990.68 36189.65 37997.78 37273.97 40799.13 29298.81 34889.62 38691.80 39098.93 34562.23 39998.80 36186.61 39591.17 37496.19 390
APD_test290.42 35990.68 36189.65 37997.78 37273.97 40799.13 29298.81 34889.62 38691.80 39098.93 34562.23 39998.80 36186.61 39591.17 37496.19 390
test_method91.10 35791.36 35990.31 37695.85 38973.72 40994.89 39799.25 28768.39 40095.82 37199.02 33580.50 39098.95 35493.64 35994.89 34098.25 354
tmp_tt82.80 36581.52 36886.66 38166.61 41168.44 41092.79 40097.92 38068.96 39980.04 40299.85 5485.77 36996.15 39597.86 21743.89 40495.39 394
FPMVS84.93 36485.65 36582.75 38586.77 40663.39 41198.35 38098.92 33074.11 39783.39 39698.98 34050.85 40492.40 40084.54 39894.97 33692.46 395
PMVScopyleft70.75 2275.98 37174.97 37279.01 38770.98 41055.18 41293.37 39998.21 37665.08 40461.78 40593.83 39521.74 41292.53 39978.59 39991.12 37689.34 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 37241.29 37736.84 38886.18 40749.12 41379.73 40122.81 41327.64 40525.46 40828.45 40821.98 41148.89 40755.80 40623.56 40712.51 405
test12339.01 37442.50 37628.53 38939.17 41220.91 41498.75 35719.17 41419.83 40738.57 40666.67 40433.16 40915.42 40837.50 40829.66 40649.26 403
testmvs39.17 37343.78 37525.37 39036.04 41316.84 41598.36 37926.56 41220.06 40638.51 40767.32 40329.64 41015.30 40937.59 40739.90 40543.98 404
test_blank0.13 3780.17 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4101.57 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k24.64 37532.85 3780.00 3910.00 4140.00 4160.00 40299.51 1150.00 4090.00 41099.56 22396.58 1470.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas8.27 37711.03 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 41099.01 180.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.30 37611.06 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.58 2160.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.02 3790.03 3820.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.27 4100.00 4140.00 4100.00 4090.00 4080.00 406
PC_three_145298.18 13199.84 2999.70 15899.31 398.52 36898.30 18499.80 9799.81 61
eth-test20.00 414
eth-test0.00 414
test_241102_TWO99.48 15599.08 3399.88 2099.81 9098.94 2999.96 3098.91 9999.84 7799.88 26
9.1499.10 7699.72 9199.40 21599.51 11597.53 21199.64 9399.78 12198.84 4199.91 10597.63 24199.82 90
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11299.90 3999.88 26
GSMVS99.52 167
sam_mvs194.86 20999.52 167
sam_mvs94.72 222
MTGPAbinary99.47 173
test_post199.23 27565.14 40694.18 24899.71 21797.58 245
test_post65.99 40594.65 22899.73 207
patchmatchnet-post98.70 35794.79 21499.74 201
MTMP99.54 13998.88 339
test9_res97.49 25699.72 11899.75 88
agg_prior297.21 27499.73 11799.75 88
test_prior298.96 33398.34 10899.01 23699.52 23898.68 6497.96 20999.74 115
旧先验298.96 33396.70 28399.47 13199.94 6998.19 189
新几何299.01 323
无先验98.99 32699.51 11596.89 27399.93 8497.53 25399.72 103
原ACMM298.95 336
testdata299.95 5996.67 306
segment_acmp98.96 24
testdata198.85 34798.32 111
plane_prior599.47 17399.69 22897.78 22597.63 25398.67 290
plane_prior499.61 207
plane_prior299.39 21998.97 51
plane_prior199.26 244
n20.00 415
nn0.00 415
door-mid98.05 379
test1199.35 246
door97.92 380
HQP-NCC99.19 26098.98 32998.24 11898.66 287
ACMP_Plane99.19 26098.98 32998.24 11898.66 287
BP-MVS97.19 278
HQP4-MVS98.66 28799.64 24298.64 302
HQP3-MVS99.39 22397.58 258
HQP2-MVS92.47 295
ACMMP++_ref97.19 288
ACMMP++97.43 277
Test By Simon98.75 55