This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS99.61 299.52 699.88 699.84 3299.90 199.60 7399.48 14099.08 1199.91 199.81 6299.20 599.96 1998.91 6999.85 5899.79 53
test_241102_ONE99.84 3299.90 199.48 14099.07 1399.91 199.74 11799.20 599.76 175
DVP-MVS99.57 799.47 999.88 699.85 2599.89 399.57 9199.37 22699.10 899.81 2299.80 7698.94 3199.96 1998.93 6699.86 5199.81 41
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 399.57 9199.51 10199.96 1998.93 6699.86 5199.88 5
test072699.85 2599.89 399.62 6699.50 12099.10 899.86 1199.82 4998.94 31
APDe-MVS99.66 199.57 199.92 199.77 4999.89 399.75 2899.56 5699.02 1599.88 599.85 2999.18 899.96 1999.22 3799.92 1199.90 1
IU-MVS99.84 3299.88 799.32 25198.30 8899.84 1398.86 7999.85 5899.89 2
DPE-MVScopyleft99.46 2499.32 3199.91 299.78 4499.88 799.36 19499.51 10198.73 5399.88 599.84 3898.72 6099.96 1998.16 16699.87 4099.88 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss99.37 4899.20 6099.88 699.90 399.87 999.30 20999.52 8897.18 20999.60 8399.79 8898.79 4799.95 4398.83 8699.91 1699.83 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.47 2299.34 2699.88 699.87 1599.86 1099.47 14799.48 14098.05 12299.76 3799.86 2398.82 4499.93 6998.82 9099.91 1699.84 18
zzz-MVS99.49 1599.36 2199.89 499.90 399.86 1099.36 19499.47 15898.79 4999.68 5399.81 6298.43 8199.97 1198.88 7299.90 2399.83 29
MTAPA99.52 1399.39 1799.89 499.90 399.86 1099.66 4899.47 15898.79 4999.68 5399.81 6298.43 8199.97 1198.88 7299.90 2399.83 29
HPM-MVS++copyleft99.39 4699.23 5899.87 1199.75 6299.84 1399.43 16199.51 10198.68 5799.27 15799.53 21198.64 6899.96 1998.44 14399.80 8499.79 53
SR-MVS99.43 3399.29 4599.86 1899.75 6299.83 1499.59 7999.62 3398.21 9899.73 4399.79 8898.68 6399.96 1998.44 14399.77 9299.79 53
SMA-MVScopyleft99.44 3099.30 4199.85 2599.73 7599.83 1499.56 9899.47 15897.45 18399.78 3199.82 4999.18 899.91 9198.79 9299.89 3399.81 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_part299.81 4099.83 1499.77 33
XVS99.53 1199.42 1399.87 1199.85 2599.83 1499.69 3799.68 1998.98 2799.37 13599.74 11798.81 4599.94 5498.79 9299.86 5199.84 18
X-MVStestdata96.55 29095.45 30599.87 1199.85 2599.83 1499.69 3799.68 1998.98 2799.37 13564.01 36698.81 4599.94 5498.79 9299.86 5199.84 18
APD-MVS_3200maxsize99.48 1999.35 2499.85 2599.76 5299.83 1499.63 6099.54 7198.36 8199.79 2699.82 4998.86 4099.95 4398.62 11599.81 8099.78 61
test117299.43 3399.29 4599.85 2599.75 6299.82 2099.60 7399.56 5698.28 8999.74 4199.79 8898.53 7299.95 4398.55 13299.78 8999.79 53
SR-MVS-dyc-post99.45 2699.31 3899.85 2599.76 5299.82 2099.63 6099.52 8898.38 7799.76 3799.82 4998.53 7299.95 4398.61 11899.81 8099.77 63
RE-MVS-def99.34 2699.76 5299.82 2099.63 6099.52 8898.38 7799.76 3799.82 4998.75 5698.61 11899.81 8099.77 63
MP-MVScopyleft99.33 5399.15 6499.87 1199.88 1199.82 2099.66 4899.46 16898.09 11299.48 10799.74 11798.29 9299.96 1997.93 18499.87 4099.82 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS99.47 2299.33 2899.87 1199.87 1599.81 2499.64 5899.67 2298.08 11699.55 9599.64 16698.91 3699.96 1998.72 10199.90 2399.82 36
SteuartSystems-ACMMP99.54 999.42 1399.87 1199.82 3799.81 2499.59 7999.51 10198.62 5999.79 2699.83 4299.28 399.97 1198.48 13799.90 2399.84 18
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS99.42 3899.27 5199.88 699.89 899.80 2699.67 4499.50 12098.70 5599.77 3399.49 22498.21 9599.95 4398.46 14199.77 9299.88 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HFP-MVS99.49 1599.37 1999.86 1899.87 1599.80 2699.66 4899.67 2298.15 10399.68 5399.69 14099.06 1399.96 1998.69 10699.87 4099.84 18
region2R99.48 1999.35 2499.87 1199.88 1199.80 2699.65 5599.66 2798.13 10599.66 6499.68 14698.96 2599.96 1998.62 11599.87 4099.84 18
#test#99.43 3399.29 4599.86 1899.87 1599.80 2699.55 10799.67 2297.83 14099.68 5399.69 14099.06 1399.96 1998.39 14599.87 4099.84 18
ZD-MVS99.71 8699.79 3099.61 3596.84 23999.56 9199.54 20798.58 7099.96 1996.93 26499.75 97
testtj99.12 8598.87 10499.86 1899.72 8099.79 3099.44 15599.51 10197.29 19999.59 8699.74 11798.15 10099.96 1996.74 27299.69 11099.81 41
GST-MVS99.40 4599.24 5699.85 2599.86 2199.79 3099.60 7399.67 2297.97 12899.63 7399.68 14698.52 7499.95 4398.38 14799.86 5199.81 41
ACMMPR99.49 1599.36 2199.86 1899.87 1599.79 3099.66 4899.67 2298.15 10399.67 5999.69 14098.95 2899.96 1998.69 10699.87 4099.84 18
mPP-MVS99.44 3099.30 4199.86 1899.88 1199.79 3099.69 3799.48 14098.12 10799.50 10399.75 11198.78 4899.97 1198.57 12699.89 3399.83 29
HPM-MVS_fast99.51 1499.40 1699.85 2599.91 199.79 3099.76 2799.56 5697.72 15499.76 3799.75 11199.13 1099.92 8099.07 5399.92 1199.85 14
APD-MVScopyleft99.27 6199.08 7299.84 3299.75 6299.79 3099.50 12699.50 12097.16 21199.77 3399.82 4998.78 4899.94 5497.56 22099.86 5199.80 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS99.45 2699.31 3899.86 1899.87 1599.78 3799.58 8699.65 3297.84 13999.71 4699.80 7699.12 1199.97 1198.33 15399.87 4099.83 29
abl_699.44 3099.31 3899.83 3399.85 2599.75 3899.66 4899.59 4398.13 10599.82 2099.81 6298.60 6999.96 1998.46 14199.88 3699.79 53
CP-MVS99.45 2699.32 3199.85 2599.83 3699.75 3899.69 3799.52 8898.07 11799.53 9899.63 17298.93 3599.97 1198.74 9799.91 1699.83 29
LS3D99.27 6199.12 6799.74 5699.18 23899.75 3899.56 9899.57 5098.45 7199.49 10699.85 2997.77 11099.94 5498.33 15399.84 6599.52 148
MCST-MVS99.43 3399.30 4199.82 3599.79 4299.74 4199.29 21399.40 20798.79 4999.52 10099.62 17898.91 3699.90 10698.64 11399.75 9799.82 36
OPU-MVS99.64 7799.56 14499.72 4299.60 7399.70 13399.27 499.42 24698.24 15899.80 8499.79 53
HPM-MVScopyleft99.42 3899.28 4999.83 3399.90 399.72 4299.81 1299.54 7197.59 16699.68 5399.63 17298.91 3699.94 5498.58 12499.91 1699.84 18
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CDPH-MVS99.13 7998.91 9999.80 4099.75 6299.71 4499.15 24999.41 20196.60 25799.60 8399.55 20298.83 4399.90 10697.48 22799.83 7299.78 61
CNVR-MVS99.42 3899.30 4199.78 4599.62 12699.71 4499.26 22999.52 8898.82 4499.39 13099.71 12998.96 2599.85 13198.59 12399.80 8499.77 63
DP-MVS Recon99.12 8598.95 9599.65 7299.74 7099.70 4699.27 22099.57 5096.40 27499.42 11999.68 14698.75 5699.80 16197.98 18099.72 10499.44 169
ETH3D-3000-0.199.21 6799.02 8299.77 4799.73 7599.69 4799.38 18799.51 10197.45 18399.61 7999.75 11198.51 7599.91 9197.45 23299.83 7299.71 94
nrg03098.64 14798.42 15299.28 14499.05 26699.69 4799.81 1299.46 16898.04 12399.01 21099.82 4996.69 14399.38 25099.34 2694.59 30898.78 225
SF-MVS99.38 4799.24 5699.79 4399.79 4299.68 4999.57 9199.54 7197.82 14599.71 4699.80 7698.95 2899.93 6998.19 16199.84 6599.74 74
SD-MVS99.41 4299.52 699.05 16599.74 7099.68 4999.46 15099.52 8899.11 799.88 599.91 599.43 197.70 34798.72 10199.93 1099.77 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator+97.12 1399.18 7198.97 9199.82 3599.17 24499.68 4999.81 1299.51 10199.20 498.72 25299.89 1095.68 17799.97 1198.86 7999.86 5199.81 41
QAPM98.67 14498.30 16199.80 4099.20 23399.67 5299.77 2499.72 1194.74 31998.73 25199.90 795.78 17399.98 696.96 26199.88 3699.76 68
ACMMPcopyleft99.45 2699.32 3199.82 3599.89 899.67 5299.62 6699.69 1898.12 10799.63 7399.84 3898.73 5999.96 1998.55 13299.83 7299.81 41
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + MP.99.58 499.50 899.81 3899.91 199.66 5499.63 6099.39 21198.91 3899.78 3199.85 2999.36 299.94 5498.84 8399.88 3699.82 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MAR-MVS98.86 11998.63 13399.54 9299.37 19199.66 5499.45 15199.54 7196.61 25599.01 21099.40 25197.09 12899.86 12597.68 21099.53 13099.10 192
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
3Dnovator97.25 999.24 6699.05 7499.81 3899.12 25199.66 5499.84 699.74 1099.09 1098.92 22699.90 795.94 16699.98 698.95 6399.92 1199.79 53
TEST999.67 10199.65 5799.05 26899.41 20196.22 28598.95 22199.49 22498.77 5199.91 91
train_agg99.02 10498.77 11899.77 4799.67 10199.65 5799.05 26899.41 20196.28 27898.95 22199.49 22498.76 5399.91 9197.63 21199.72 10499.75 69
NCCC99.34 5299.19 6199.79 4399.61 13099.65 5799.30 20999.48 14098.86 4099.21 17399.63 17298.72 6099.90 10698.25 15799.63 12399.80 49
test_part197.75 24097.24 27399.29 14199.59 13699.63 6099.65 5599.49 12896.17 28998.44 28499.69 14089.80 31899.47 23398.68 10893.66 32198.78 225
agg_prior199.01 10798.76 12099.76 5099.67 10199.62 6198.99 28499.40 20796.26 28198.87 23499.49 22498.77 5199.91 9197.69 20899.72 10499.75 69
agg_prior99.67 10199.62 6199.40 20798.87 23499.91 91
test_899.67 10199.61 6399.03 27499.41 20196.28 27898.93 22599.48 23098.76 5399.91 91
test1299.75 5199.64 11799.61 6399.29 26399.21 17398.38 8699.89 11499.74 10099.74 74
ETH3D cwj APD-0.1699.06 9898.84 11099.72 6199.51 15199.60 6599.23 23499.44 18997.04 22499.39 13099.67 15298.30 9199.92 8097.27 23999.69 11099.64 120
ETH3 D test640098.70 14098.35 15699.73 5899.69 9699.60 6599.16 24599.45 18095.42 30799.27 15799.60 18597.39 11799.91 9195.36 30599.83 7299.70 96
112199.09 9498.87 10499.75 5199.74 7099.60 6599.27 22099.48 14096.82 24299.25 16499.65 15998.38 8699.93 6997.53 22399.67 11799.73 81
xxxxxxxxxxxxxcwj99.43 3399.32 3199.75 5199.76 5299.59 6899.14 25199.53 8299.00 2299.71 4699.80 7698.95 2899.93 6998.19 16199.84 6599.74 74
save fliter99.76 5299.59 6899.14 25199.40 20799.00 22
新几何199.75 5199.75 6299.59 6899.54 7196.76 24399.29 15299.64 16698.43 8199.94 5496.92 26699.66 11899.72 87
旧先验199.74 7099.59 6899.54 7199.69 14098.47 7899.68 11599.73 81
DeepC-MVS_fast98.69 199.49 1599.39 1799.77 4799.63 12099.59 6899.36 19499.46 16899.07 1399.79 2699.82 4998.85 4199.92 8098.68 10899.87 4099.82 36
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_prior499.56 7398.99 284
VNet99.11 9098.90 10099.73 5899.52 14999.56 7399.41 17099.39 21199.01 1899.74 4199.78 9595.56 18099.92 8099.52 798.18 20899.72 87
DPM-MVS98.95 11298.71 12499.66 6899.63 12099.55 7598.64 32699.10 28797.93 13199.42 11999.55 20298.67 6699.80 16195.80 29499.68 11599.61 128
UA-Net99.42 3899.29 4599.80 4099.62 12699.55 7599.50 12699.70 1598.79 4999.77 3399.96 197.45 11699.96 1998.92 6899.90 2399.89 2
FIs98.78 13598.63 13399.23 15199.18 23899.54 7799.83 999.59 4398.28 8998.79 24699.81 6296.75 14199.37 25399.08 5296.38 26898.78 225
VPA-MVSNet98.29 16897.95 19099.30 13899.16 24699.54 7799.50 12699.58 4998.27 9199.35 14199.37 25992.53 27599.65 21399.35 2294.46 30998.72 239
AdaColmapbinary99.01 10798.80 11599.66 6899.56 14499.54 7799.18 24399.70 1598.18 10299.35 14199.63 17296.32 15499.90 10697.48 22799.77 9299.55 141
114514_t98.93 11398.67 12899.72 6199.85 2599.53 8099.62 6699.59 4392.65 33899.71 4699.78 9598.06 10399.90 10698.84 8399.91 1699.74 74
DP-MVS99.16 7598.95 9599.78 4599.77 4999.53 8099.41 17099.50 12097.03 22699.04 20799.88 1597.39 11799.92 8098.66 11199.90 2399.87 10
OpenMVScopyleft96.50 1698.47 15298.12 17099.52 10499.04 26799.53 8099.82 1099.72 1194.56 32298.08 30299.88 1594.73 21499.98 697.47 22999.76 9699.06 203
Regformer-299.54 999.47 999.75 5199.71 8699.52 8399.49 13699.49 12898.94 3399.83 1799.76 10699.01 1699.94 5499.15 4699.87 4099.80 49
PHI-MVS99.30 5699.17 6399.70 6499.56 14499.52 8399.58 8699.80 897.12 21599.62 7799.73 12498.58 7099.90 10698.61 11899.91 1699.68 103
CS-MVS99.37 4899.33 2899.51 10699.47 16899.51 8599.81 1299.57 5098.37 8099.65 6999.56 19898.21 9599.77 17099.54 599.77 9299.27 184
MVS_111021_LR99.41 4299.33 2899.65 7299.77 4999.51 8598.94 29899.85 698.82 4499.65 6999.74 11798.51 7599.80 16198.83 8699.89 3399.64 120
test22299.75 6299.49 8798.91 30199.49 12896.42 27299.34 14499.65 15998.28 9399.69 11099.72 87
test_prior399.21 6799.05 7499.68 6599.67 10199.48 8898.96 29299.56 5698.34 8399.01 21099.52 21498.68 6399.83 14597.96 18199.74 10099.74 74
test_prior99.68 6599.67 10199.48 8899.56 5699.83 14599.74 74
MVS_111021_HR99.41 4299.32 3199.66 6899.72 8099.47 9098.95 29699.85 698.82 4499.54 9699.73 12498.51 7599.74 17898.91 6999.88 3699.77 63
CPTT-MVS99.11 9098.90 10099.74 5699.80 4199.46 9199.59 7999.49 12897.03 22699.63 7399.69 14097.27 12499.96 1997.82 19399.84 6599.81 41
FC-MVSNet-test98.75 13898.62 13899.15 15899.08 26099.45 9299.86 599.60 4098.23 9598.70 25999.82 4996.80 13799.22 28199.07 5396.38 26898.79 224
Regformer-199.53 1199.47 999.72 6199.71 8699.44 9399.49 13699.46 16898.95 3299.83 1799.76 10699.01 1699.93 6999.17 4399.87 4099.80 49
PAPM_NR99.04 10198.84 11099.66 6899.74 7099.44 9399.39 18299.38 21797.70 15699.28 15499.28 28298.34 8999.85 13196.96 26199.45 13299.69 99
alignmvs98.81 13198.56 14699.58 8799.43 17699.42 9599.51 12098.96 30298.61 6099.35 14198.92 32094.78 20899.77 17099.35 2298.11 21499.54 143
Regformer-499.59 399.54 499.73 5899.76 5299.41 9699.58 8699.49 12899.02 1599.88 599.80 7699.00 2299.94 5499.45 1899.92 1199.84 18
CNLPA99.14 7798.99 8799.59 8499.58 13899.41 9699.16 24599.44 18998.45 7199.19 17999.49 22498.08 10299.89 11497.73 20299.75 9799.48 159
DELS-MVS99.48 1999.42 1399.65 7299.72 8099.40 9899.05 26899.66 2799.14 699.57 9099.80 7698.46 7999.94 5499.57 399.84 6599.60 130
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HyFIR lowres test99.11 9098.92 9799.65 7299.90 399.37 9999.02 27799.91 397.67 16199.59 8699.75 11195.90 16999.73 18599.53 699.02 16699.86 11
UniMVSNet (Re)98.29 16898.00 18399.13 15999.00 27299.36 10099.49 13699.51 10197.95 12998.97 21999.13 30096.30 15599.38 25098.36 15193.34 32498.66 269
原ACMM199.65 7299.73 7599.33 10199.47 15897.46 18099.12 18999.66 15898.67 6699.91 9197.70 20799.69 11099.71 94
canonicalmvs99.02 10498.86 10899.51 10699.42 17799.32 10299.80 1799.48 14098.63 5899.31 14798.81 32397.09 12899.75 17799.27 3497.90 21899.47 164
XXY-MVS98.38 16198.09 17499.24 14999.26 21999.32 10299.56 9899.55 6497.45 18398.71 25399.83 4293.23 25399.63 22198.88 7296.32 27098.76 231
IS-MVSNet99.05 10098.87 10499.57 8899.73 7599.32 10299.75 2899.20 27698.02 12699.56 9199.86 2396.54 14799.67 20698.09 17099.13 15499.73 81
API-MVS99.04 10199.03 7999.06 16399.40 18599.31 10599.55 10799.56 5698.54 6399.33 14599.39 25598.76 5399.78 16896.98 25999.78 8998.07 330
ETV-MVS99.26 6399.21 5999.40 12399.46 17099.30 10699.56 9899.52 8898.52 6599.44 11599.27 28598.41 8599.86 12599.10 5099.59 12699.04 204
Regformer-399.57 799.53 599.68 6599.76 5299.29 10799.58 8699.44 18999.01 1899.87 1099.80 7698.97 2499.91 9199.44 2099.92 1199.83 29
Fast-Effi-MVS+98.70 14098.43 15199.51 10699.51 15199.28 10899.52 11699.47 15896.11 29699.01 21099.34 26896.20 15899.84 13697.88 18798.82 17999.39 175
PatchMatch-RL98.84 13098.62 13899.52 10499.71 8699.28 10899.06 26699.77 997.74 15399.50 10399.53 21195.41 18499.84 13697.17 25099.64 12199.44 169
F-COLMAP99.19 6999.04 7799.64 7799.78 4499.27 11099.42 16899.54 7197.29 19999.41 12399.59 18898.42 8499.93 6998.19 16199.69 11099.73 81
NR-MVSNet97.97 20897.61 22699.02 16998.87 28999.26 11199.47 14799.42 19997.63 16497.08 32899.50 22195.07 19799.13 29597.86 18993.59 32298.68 254
WR-MVS98.06 19097.73 21599.06 16398.86 29299.25 11299.19 24299.35 23297.30 19898.66 26299.43 24193.94 24299.21 28698.58 12494.28 31398.71 241
CP-MVSNet98.09 18797.78 20799.01 17098.97 27899.24 11399.67 4499.46 16897.25 20398.48 28299.64 16693.79 24699.06 30498.63 11494.10 31698.74 237
DeepC-MVS98.35 299.30 5699.19 6199.64 7799.82 3799.23 11499.62 6699.55 6498.94 3399.63 7399.95 295.82 17299.94 5499.37 2199.97 399.73 81
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tfpnnormal97.84 22497.47 24098.98 17499.20 23399.22 11599.64 5899.61 3596.32 27698.27 29699.70 13393.35 25299.44 24195.69 29695.40 29398.27 322
ab-mvs98.86 11998.63 13399.54 9299.64 11799.19 11699.44 15599.54 7197.77 14899.30 14999.81 6294.20 23399.93 6999.17 4398.82 17999.49 158
MSDG98.98 10998.80 11599.53 9899.76 5299.19 11698.75 31699.55 6497.25 20399.47 10899.77 10297.82 10899.87 12296.93 26499.90 2399.54 143
EIA-MVS99.18 7199.09 7199.45 11799.49 16099.18 11899.67 4499.53 8297.66 16299.40 12899.44 23998.10 10199.81 15698.94 6499.62 12499.35 177
test_yl98.86 11998.63 13399.54 9299.49 16099.18 11899.50 12699.07 29298.22 9699.61 7999.51 21895.37 18699.84 13698.60 12198.33 19899.59 134
DCV-MVSNet98.86 11998.63 13399.54 9299.49 16099.18 11899.50 12699.07 29298.22 9699.61 7999.51 21895.37 18699.84 13698.60 12198.33 19899.59 134
CANet99.25 6599.14 6599.59 8499.41 18099.16 12199.35 20099.57 5098.82 4499.51 10299.61 18296.46 14999.95 4399.59 199.98 299.65 113
MSLP-MVS++99.46 2499.47 999.44 12199.60 13499.16 12199.41 17099.71 1398.98 2799.45 11199.78 9599.19 799.54 23099.28 3299.84 6599.63 124
casdiffmvs99.13 7998.98 9099.56 9099.65 11599.16 12199.56 9899.50 12098.33 8699.41 12399.86 2395.92 16799.83 14599.45 1899.16 15099.70 96
WTY-MVS99.06 9898.88 10399.61 8299.62 12699.16 12199.37 19099.56 5698.04 12399.53 9899.62 17896.84 13699.94 5498.85 8198.49 19599.72 87
EI-MVSNet-Vis-set99.58 499.56 399.64 7799.78 4499.15 12599.61 7299.45 18099.01 1899.89 499.82 4999.01 1699.92 8099.56 499.95 699.85 14
RRT_MVS98.60 14998.44 15099.05 16598.88 28599.14 12699.49 13699.38 21797.76 14999.29 15299.86 2395.38 18599.36 25798.81 9197.16 25498.64 273
EI-MVSNet-UG-set99.58 499.57 199.64 7799.78 4499.14 12699.60 7399.45 18099.01 1899.90 399.83 4298.98 2399.93 6999.59 199.95 699.86 11
MVS_Test99.10 9398.97 9199.48 11199.49 16099.14 12699.67 4499.34 23697.31 19799.58 8899.76 10697.65 11399.82 15298.87 7699.07 16199.46 166
baseline99.15 7699.02 8299.53 9899.66 11099.14 12699.72 3299.48 14098.35 8299.42 11999.84 3896.07 16099.79 16499.51 899.14 15399.67 106
Effi-MVS+98.81 13198.59 14499.48 11199.46 17099.12 13098.08 34999.50 12097.50 17999.38 13399.41 24896.37 15399.81 15699.11 4998.54 19299.51 154
Vis-MVSNetpermissive99.12 8598.97 9199.56 9099.78 4499.10 13199.68 4299.66 2798.49 6799.86 1199.87 2094.77 21199.84 13699.19 4099.41 13599.74 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PCF-MVS97.08 1497.66 25897.06 27999.47 11499.61 13099.09 13298.04 35099.25 26891.24 34398.51 27999.70 13394.55 22399.91 9192.76 33699.85 5899.42 171
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GeoE98.85 12798.62 13899.53 9899.61 13099.08 13399.80 1799.51 10197.10 21999.31 14799.78 9595.23 19499.77 17098.21 15999.03 16499.75 69
HY-MVS97.30 798.85 12798.64 13299.47 11499.42 17799.08 13399.62 6699.36 22797.39 19299.28 15499.68 14696.44 15199.92 8098.37 14998.22 20499.40 174
PVSNet_Blended_VisFu99.36 5099.28 4999.61 8299.86 2199.07 13599.47 14799.93 297.66 16299.71 4699.86 2397.73 11199.96 1999.47 1699.82 7899.79 53
PS-CasMVS97.93 21097.59 22998.95 17998.99 27399.06 13699.68 4299.52 8897.13 21398.31 29399.68 14692.44 28199.05 30598.51 13594.08 31798.75 233
EPP-MVSNet99.13 7998.99 8799.53 9899.65 11599.06 13699.81 1299.33 24397.43 18799.60 8399.88 1597.14 12699.84 13699.13 4798.94 17099.69 99
PAPR98.63 14898.34 15799.51 10699.40 18599.03 13898.80 31199.36 22796.33 27599.00 21599.12 30398.46 7999.84 13695.23 30799.37 14099.66 109
MVSTER98.49 15198.32 15999.00 17299.35 19499.02 13999.54 11099.38 21797.41 19099.20 17699.73 12493.86 24599.36 25798.87 7697.56 23098.62 283
1112_ss98.98 10998.77 11899.59 8499.68 10099.02 13999.25 23199.48 14097.23 20699.13 18799.58 19196.93 13599.90 10698.87 7698.78 18299.84 18
LFMVS97.90 21597.35 26099.54 9299.52 14999.01 14199.39 18298.24 33997.10 21999.65 6999.79 8884.79 34999.91 9199.28 3298.38 19799.69 99
PLCcopyleft97.94 499.02 10498.85 10999.53 9899.66 11099.01 14199.24 23399.52 8896.85 23899.27 15799.48 23098.25 9499.91 9197.76 19899.62 12499.65 113
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UniMVSNet_NR-MVSNet98.22 17197.97 18698.96 17798.92 28298.98 14399.48 14299.53 8297.76 14998.71 25399.46 23796.43 15299.22 28198.57 12692.87 33198.69 249
DU-MVS98.08 18997.79 20498.96 17798.87 28998.98 14399.41 17099.45 18097.87 13498.71 25399.50 22194.82 20599.22 28198.57 12692.87 33198.68 254
FMVSNet398.03 19697.76 21298.84 20799.39 18898.98 14399.40 17899.38 21796.67 24999.07 20199.28 28292.93 25898.98 31597.10 25296.65 25998.56 299
xiu_mvs_v1_base_debu99.29 5899.27 5199.34 12899.63 12098.97 14699.12 25399.51 10198.86 4099.84 1399.47 23398.18 9799.99 199.50 999.31 14199.08 197
xiu_mvs_v1_base99.29 5899.27 5199.34 12899.63 12098.97 14699.12 25399.51 10198.86 4099.84 1399.47 23398.18 9799.99 199.50 999.31 14199.08 197
xiu_mvs_v1_base_debi99.29 5899.27 5199.34 12899.63 12098.97 14699.12 25399.51 10198.86 4099.84 1399.47 23398.18 9799.99 199.50 999.31 14199.08 197
sss99.17 7399.05 7499.53 9899.62 12698.97 14699.36 19499.62 3397.83 14099.67 5999.65 15997.37 12199.95 4399.19 4099.19 14999.68 103
anonymousdsp98.44 15498.28 16298.94 18098.50 32698.96 15099.77 2499.50 12097.07 22198.87 23499.77 10294.76 21299.28 27198.66 11197.60 22698.57 298
diffmvs99.14 7799.02 8299.51 10699.61 13098.96 15099.28 21599.49 12898.46 7099.72 4599.71 12996.50 14899.88 11999.31 2999.11 15599.67 106
testdata99.54 9299.75 6298.95 15299.51 10197.07 22199.43 11699.70 13398.87 3999.94 5497.76 19899.64 12199.72 87
MVS97.28 27896.55 28699.48 11198.78 30098.95 15299.27 22099.39 21183.53 35398.08 30299.54 20796.97 13399.87 12294.23 31999.16 15099.63 124
Test_1112_low_res98.89 11598.66 13199.57 8899.69 9698.95 15299.03 27499.47 15896.98 22899.15 18599.23 28996.77 14099.89 11498.83 8698.78 18299.86 11
PS-MVSNAJ99.32 5499.32 3199.30 13899.57 14098.94 15598.97 29199.46 16898.92 3799.71 4699.24 28899.01 1699.98 699.35 2299.66 11898.97 212
VPNet97.84 22497.44 24899.01 17099.21 23198.94 15599.48 14299.57 5098.38 7799.28 15499.73 12488.89 32799.39 24899.19 4093.27 32698.71 241
MVSFormer99.17 7399.12 6799.29 14199.51 15198.94 15599.88 199.46 16897.55 17199.80 2499.65 15997.39 11799.28 27199.03 5599.85 5899.65 113
lupinMVS99.13 7999.01 8699.46 11699.51 15198.94 15599.05 26899.16 28197.86 13599.80 2499.56 19897.39 11799.86 12598.94 6499.85 5899.58 138
xiu_mvs_v2_base99.26 6399.25 5599.29 14199.53 14798.91 15999.02 27799.45 18098.80 4899.71 4699.26 28698.94 3199.98 699.34 2699.23 14698.98 211
test_djsdf98.67 14498.57 14598.98 17498.70 31198.91 15999.88 199.46 16897.55 17199.22 17099.88 1595.73 17599.28 27199.03 5597.62 22598.75 233
Vis-MVSNet (Re-imp)98.87 11698.72 12299.31 13499.71 8698.88 16199.80 1799.44 18997.91 13399.36 13899.78 9595.49 18399.43 24597.91 18599.11 15599.62 126
pmmvs498.13 18397.90 19598.81 21198.61 32098.87 16298.99 28499.21 27596.44 27099.06 20599.58 19195.90 16999.11 30097.18 24996.11 27498.46 310
jason99.13 7999.03 7999.45 11799.46 17098.87 16299.12 25399.26 26698.03 12599.79 2699.65 15997.02 13199.85 13199.02 5799.90 2399.65 113
jason: jason.
Patchmtry97.75 24097.40 25498.81 21199.10 25698.87 16299.11 25999.33 24394.83 31798.81 24299.38 25694.33 22999.02 31096.10 28795.57 28998.53 300
TransMVSNet (Re)97.15 28196.58 28598.86 20399.12 25198.85 16599.49 13698.91 30995.48 30697.16 32699.80 7693.38 25199.11 30094.16 32191.73 33698.62 283
V4298.06 19097.79 20498.86 20398.98 27698.84 16699.69 3799.34 23696.53 26199.30 14999.37 25994.67 21799.32 26697.57 21994.66 30698.42 313
WR-MVS_H98.13 18397.87 20098.90 19099.02 27098.84 16699.70 3599.59 4397.27 20198.40 28799.19 29495.53 18199.23 27898.34 15293.78 32098.61 292
FMVSNet297.72 24697.36 25898.80 21399.51 15198.84 16699.45 15199.42 19996.49 26398.86 23999.29 28090.26 31198.98 31596.44 28296.56 26298.58 297
BH-RMVSNet98.41 15898.08 17599.40 12399.41 18098.83 16999.30 20998.77 31997.70 15698.94 22399.65 15992.91 26199.74 17896.52 28099.55 12999.64 120
ET-MVSNet_ETH3D96.49 29295.64 30399.05 16599.53 14798.82 17098.84 30797.51 35197.63 16484.77 35499.21 29392.09 28598.91 32698.98 6092.21 33599.41 173
v2v48298.06 19097.77 20998.92 18498.90 28398.82 17099.57 9199.36 22796.65 25199.19 17999.35 26594.20 23399.25 27697.72 20494.97 30298.69 249
v897.95 20997.63 22598.93 18298.95 28098.81 17299.80 1799.41 20196.03 30199.10 19499.42 24494.92 20199.30 26996.94 26394.08 31798.66 269
PVSNet_BlendedMVS98.86 11998.80 11599.03 16899.76 5298.79 17399.28 21599.91 397.42 18999.67 5999.37 25997.53 11499.88 11998.98 6097.29 24998.42 313
PVSNet_Blended99.08 9698.97 9199.42 12299.76 5298.79 17398.78 31399.91 396.74 24499.67 5999.49 22497.53 11499.88 11998.98 6099.85 5899.60 130
baseline198.31 16597.95 19099.38 12699.50 15898.74 17599.59 7998.93 30498.41 7599.14 18699.60 18594.59 22099.79 16498.48 13793.29 32599.61 128
CDS-MVSNet99.09 9499.03 7999.25 14799.42 17798.73 17699.45 15199.46 16898.11 10999.46 11099.77 10298.01 10499.37 25398.70 10398.92 17399.66 109
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UGNet98.87 11698.69 12699.40 12399.22 22998.72 17799.44 15599.68 1999.24 399.18 18299.42 24492.74 26599.96 1999.34 2699.94 999.53 147
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PMMVS98.80 13498.62 13899.34 12899.27 21798.70 17898.76 31599.31 25497.34 19499.21 17399.07 30597.20 12599.82 15298.56 12998.87 17699.52 148
v119297.81 23197.44 24898.91 18898.88 28598.68 17999.51 12099.34 23696.18 28899.20 17699.34 26894.03 24099.36 25795.32 30695.18 29798.69 249
v1097.85 22197.52 23498.86 20398.99 27398.67 18099.75 2899.41 20195.70 30498.98 21799.41 24894.75 21399.23 27896.01 29094.63 30798.67 261
v114497.98 20597.69 21898.85 20698.87 28998.66 18199.54 11099.35 23296.27 28099.23 16999.35 26594.67 21799.23 27896.73 27395.16 29898.68 254
v14419297.92 21397.60 22798.87 20098.83 29598.65 18299.55 10799.34 23696.20 28699.32 14699.40 25194.36 22899.26 27596.37 28595.03 30198.70 245
131498.68 14398.54 14799.11 16098.89 28498.65 18299.27 22099.49 12896.89 23697.99 30799.56 19897.72 11299.83 14597.74 20199.27 14498.84 221
MG-MVS99.13 7999.02 8299.45 11799.57 14098.63 18499.07 26399.34 23698.99 2599.61 7999.82 4997.98 10599.87 12297.00 25799.80 8499.85 14
pm-mvs197.68 25497.28 26998.88 19699.06 26398.62 18599.50 12699.45 18096.32 27697.87 31099.79 8892.47 27799.35 26197.54 22293.54 32398.67 261
TranMVSNet+NR-MVSNet97.93 21097.66 22198.76 21798.78 30098.62 18599.65 5599.49 12897.76 14998.49 28199.60 18594.23 23298.97 32298.00 17992.90 32998.70 245
TSAR-MVS + GP.99.36 5099.36 2199.36 12799.67 10198.61 18799.07 26399.33 24399.00 2299.82 2099.81 6299.06 1399.84 13699.09 5199.42 13499.65 113
v7n97.87 21897.52 23498.92 18498.76 30498.58 18899.84 699.46 16896.20 28698.91 22799.70 13394.89 20399.44 24196.03 28993.89 31998.75 233
thisisatest053098.35 16398.03 18099.31 13499.63 12098.56 18999.54 11096.75 35697.53 17699.73 4399.65 15991.25 30499.89 11498.62 11599.56 12799.48 159
TAMVS99.12 8599.08 7299.24 14999.46 17098.55 19099.51 12099.46 16898.09 11299.45 11199.82 4998.34 8999.51 23198.70 10398.93 17199.67 106
PEN-MVS97.76 23697.44 24898.72 22098.77 30398.54 19199.78 2299.51 10197.06 22398.29 29599.64 16692.63 27298.89 32898.09 17093.16 32798.72 239
Anonymous2023121197.88 21697.54 23398.90 19099.71 8698.53 19299.48 14299.57 5094.16 32598.81 24299.68 14693.23 25399.42 24698.84 8394.42 31198.76 231
v192192097.80 23397.45 24398.84 20798.80 29698.53 19299.52 11699.34 23696.15 29399.24 16599.47 23393.98 24199.29 27095.40 30395.13 29998.69 249
PS-MVSNAJss98.92 11498.92 9798.90 19098.78 30098.53 19299.78 2299.54 7198.07 11799.00 21599.76 10699.01 1699.37 25399.13 4797.23 25098.81 222
COLMAP_ROBcopyleft97.56 698.86 11998.75 12199.17 15599.88 1198.53 19299.34 20399.59 4397.55 17198.70 25999.89 1095.83 17199.90 10698.10 16999.90 2399.08 197
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
mvs_anonymous99.03 10398.99 8799.16 15699.38 18998.52 19699.51 12099.38 21797.79 14699.38 13399.81 6297.30 12299.45 23699.35 2298.99 16899.51 154
CHOSEN 1792x268899.19 6999.10 6999.45 11799.89 898.52 19699.39 18299.94 198.73 5399.11 19199.89 1095.50 18299.94 5499.50 999.97 399.89 2
mvs_tets98.40 16098.23 16498.91 18898.67 31498.51 19899.66 4899.53 8298.19 9998.65 26899.81 6292.75 26399.44 24199.31 2997.48 24098.77 229
thisisatest051598.14 18297.79 20499.19 15399.50 15898.50 19998.61 32796.82 35596.95 23299.54 9699.43 24191.66 29799.86 12598.08 17499.51 13199.22 186
CR-MVSNet98.17 17897.93 19398.87 20099.18 23898.49 20099.22 23999.33 24396.96 23099.56 9199.38 25694.33 22999.00 31394.83 31398.58 18899.14 189
RPMNet96.72 28895.90 29899.19 15399.18 23898.49 20099.22 23999.52 8888.72 34999.56 9197.38 34694.08 23999.95 4386.87 35598.58 18899.14 189
AllTest98.87 11698.72 12299.31 13499.86 2198.48 20299.56 9899.61 3597.85 13799.36 13899.85 2995.95 16499.85 13196.66 27899.83 7299.59 134
TestCases99.31 13499.86 2198.48 20299.61 3597.85 13799.36 13899.85 2995.95 16499.85 13196.66 27899.83 7299.59 134
Anonymous2024052998.09 18797.68 21999.34 12899.66 11098.44 20499.40 17899.43 19793.67 32999.22 17099.89 1090.23 31499.93 6999.26 3598.33 19899.66 109
jajsoiax98.43 15598.28 16298.88 19698.60 32198.43 20599.82 1099.53 8298.19 9998.63 27099.80 7693.22 25599.44 24199.22 3797.50 23698.77 229
v124097.69 25297.32 26698.79 21498.85 29398.43 20599.48 14299.36 22796.11 29699.27 15799.36 26293.76 24899.24 27794.46 31695.23 29698.70 245
CANet_DTU98.97 11198.87 10499.25 14799.33 19998.42 20799.08 26299.30 25899.16 599.43 11699.75 11195.27 19099.97 1198.56 12999.95 699.36 176
tttt051798.42 15698.14 16899.28 14499.66 11098.38 20899.74 3196.85 35497.68 15899.79 2699.74 11791.39 30199.89 11498.83 8699.56 12799.57 139
PatchT97.03 28496.44 28898.79 21498.99 27398.34 20999.16 24599.07 29292.13 33999.52 10097.31 34994.54 22498.98 31588.54 34998.73 18499.03 205
Baseline_NR-MVSNet97.76 23697.45 24398.68 22399.09 25898.29 21099.41 17098.85 31595.65 30598.63 27099.67 15294.82 20599.10 30298.07 17792.89 33098.64 273
CSCG99.32 5499.32 3199.32 13399.85 2598.29 21099.71 3499.66 2798.11 10999.41 12399.80 7698.37 8899.96 1998.99 5999.96 599.72 87
bset_n11_16_dypcd98.16 17997.97 18698.73 21898.26 33198.28 21297.99 35198.01 34497.68 15899.10 19499.63 17295.68 17799.15 29198.78 9596.55 26398.75 233
PAPM97.59 26297.09 27899.07 16299.06 26398.26 21398.30 34499.10 28794.88 31698.08 30299.34 26896.27 15699.64 21689.87 34598.92 17399.31 181
OMC-MVS99.08 9699.04 7799.20 15299.67 10198.22 21499.28 21599.52 8898.07 11799.66 6499.81 6297.79 10999.78 16897.79 19599.81 8099.60 130
EPNet98.86 11998.71 12499.30 13897.20 34698.18 21599.62 6698.91 30999.28 298.63 27099.81 6295.96 16399.99 199.24 3699.72 10499.73 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous20240521198.30 16797.98 18599.26 14699.57 14098.16 21699.41 17098.55 33596.03 30199.19 17999.74 11791.87 28899.92 8099.16 4598.29 20399.70 96
GG-mvs-BLEND98.45 24798.55 32498.16 21699.43 16193.68 36497.23 32398.46 33489.30 32499.22 28195.43 30298.22 20497.98 338
gg-mvs-nofinetune96.17 29995.32 30798.73 21898.79 29798.14 21899.38 18794.09 36391.07 34598.07 30591.04 35989.62 32299.35 26196.75 27199.09 15998.68 254
DTE-MVSNet97.51 26897.19 27598.46 24698.63 31798.13 21999.84 699.48 14096.68 24897.97 30899.67 15292.92 25998.56 33296.88 26892.60 33498.70 245
VDDNet97.55 26397.02 28099.16 15699.49 16098.12 22099.38 18799.30 25895.35 30899.68 5399.90 782.62 35399.93 6999.31 2998.13 21399.42 171
thres20097.61 26197.28 26998.62 22599.64 11798.03 22199.26 22998.74 32397.68 15899.09 19998.32 33991.66 29799.81 15692.88 33398.22 20498.03 333
baseline297.87 21897.55 23098.82 20999.18 23898.02 22299.41 17096.58 35896.97 22996.51 33399.17 29593.43 25099.57 22697.71 20599.03 16498.86 219
IterMVS-LS98.46 15398.42 15298.58 23099.59 13698.00 22399.37 19099.43 19796.94 23499.07 20199.59 18897.87 10699.03 30898.32 15595.62 28898.71 241
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GA-MVS97.85 22197.47 24099.00 17299.38 18997.99 22498.57 33099.15 28297.04 22498.90 22999.30 27889.83 31799.38 25096.70 27598.33 19899.62 126
cl-mvsnet____98.01 20197.84 20298.55 23599.25 22397.97 22598.71 32099.34 23696.47 26998.59 27699.54 20795.65 17999.21 28697.21 24395.77 28398.46 310
EI-MVSNet98.67 14498.67 12898.68 22399.35 19497.97 22599.50 12699.38 21796.93 23599.20 17699.83 4297.87 10699.36 25798.38 14797.56 23098.71 241
tfpn200view997.72 24697.38 25698.72 22099.69 9697.96 22799.50 12698.73 32897.83 14099.17 18398.45 33591.67 29599.83 14593.22 32998.18 20898.37 319
thres40097.77 23597.38 25698.92 18499.69 9697.96 22799.50 12698.73 32897.83 14099.17 18398.45 33591.67 29599.83 14593.22 32998.18 20898.96 214
cl-mvsnet198.01 20197.85 20198.48 24199.24 22497.95 22998.71 32099.35 23296.50 26298.60 27599.54 20795.72 17699.03 30897.21 24395.77 28398.46 310
thres600view797.86 22097.51 23698.92 18499.72 8097.95 22999.59 7998.74 32397.94 13099.27 15798.62 33091.75 29199.86 12593.73 32498.19 20798.96 214
CHOSEN 280x42099.12 8599.13 6699.08 16199.66 11097.89 23198.43 33799.71 1398.88 3999.62 7799.76 10696.63 14499.70 20199.46 1799.99 199.66 109
cl-mvsnet297.85 22197.64 22498.48 24199.09 25897.87 23298.60 32999.33 24397.11 21898.87 23499.22 29092.38 28299.17 29098.21 15995.99 27798.42 313
TR-MVS97.76 23697.41 25398.82 20999.06 26397.87 23298.87 30598.56 33496.63 25498.68 26199.22 29092.49 27699.65 21395.40 30397.79 22098.95 217
thres100view90097.76 23697.45 24398.69 22299.72 8097.86 23499.59 7998.74 32397.93 13199.26 16298.62 33091.75 29199.83 14593.22 32998.18 20898.37 319
test0.0.03 197.71 25097.42 25298.56 23398.41 32997.82 23598.78 31398.63 33297.34 19498.05 30698.98 31794.45 22698.98 31595.04 31097.15 25598.89 218
JIA-IIPM97.50 26997.02 28098.93 18298.73 30697.80 23699.30 20998.97 30091.73 34198.91 22794.86 35495.10 19699.71 19597.58 21597.98 21699.28 183
mvs-test198.86 11998.84 11098.89 19399.33 19997.77 23799.44 15599.30 25898.47 6899.10 19499.43 24196.78 13899.95 4398.73 9999.02 16698.96 214
XVG-OURS-SEG-HR98.69 14298.62 13898.89 19399.71 8697.74 23899.12 25399.54 7198.44 7499.42 11999.71 12994.20 23399.92 8098.54 13498.90 17599.00 208
XVG-OURS98.73 13998.68 12798.88 19699.70 9397.73 23998.92 29999.55 6498.52 6599.45 11199.84 3895.27 19099.91 9198.08 17498.84 17899.00 208
miper_ehance_all_eth98.18 17798.10 17198.41 25299.23 22597.72 24098.72 31999.31 25496.60 25798.88 23299.29 28097.29 12399.13 29597.60 21395.99 27798.38 318
miper_enhance_ethall98.16 17998.08 17598.41 25298.96 27997.72 24098.45 33699.32 25196.95 23298.97 21999.17 29597.06 13099.22 28197.86 18995.99 27798.29 321
v14897.79 23497.55 23098.50 23898.74 30597.72 24099.54 11099.33 24396.26 28198.90 22999.51 21894.68 21699.14 29297.83 19293.15 32898.63 281
cl_fuxian98.12 18598.04 17998.38 25699.30 20897.69 24398.81 31099.33 24396.67 24998.83 24099.34 26897.11 12798.99 31497.58 21595.34 29498.48 304
TAPA-MVS97.07 1597.74 24397.34 26398.94 18099.70 9397.53 24499.25 23199.51 10191.90 34099.30 14999.63 17298.78 4899.64 21688.09 35199.87 4099.65 113
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MIMVSNet97.73 24497.45 24398.57 23199.45 17597.50 24599.02 27798.98 29996.11 29699.41 12399.14 29990.28 31098.74 33095.74 29598.93 17199.47 164
UniMVSNet_ETH3D97.32 27796.81 28398.87 20099.40 18597.46 24699.51 12099.53 8295.86 30398.54 27899.77 10282.44 35499.66 20998.68 10897.52 23399.50 157
miper_lstm_enhance98.00 20397.91 19498.28 26799.34 19897.43 24798.88 30399.36 22796.48 26798.80 24499.55 20295.98 16298.91 32697.27 23995.50 29298.51 302
eth_miper_zixun_eth98.05 19597.96 18898.33 25999.26 21997.38 24898.56 33299.31 25496.65 25198.88 23299.52 21496.58 14599.12 29997.39 23695.53 29198.47 306
cascas97.69 25297.43 25198.48 24198.60 32197.30 24998.18 34899.39 21192.96 33798.41 28698.78 32693.77 24799.27 27498.16 16698.61 18598.86 219
PVSNet96.02 1798.85 12798.84 11098.89 19399.73 7597.28 25098.32 34399.60 4097.86 13599.50 10399.57 19596.75 14199.86 12598.56 12999.70 10999.54 143
hse-mvs397.70 25197.28 26998.97 17699.70 9397.27 25199.36 19499.45 18098.94 3399.66 6499.64 16694.93 19999.99 199.48 1484.36 34899.65 113
MDA-MVSNet-bldmvs94.96 31193.98 31797.92 28898.24 33297.27 25199.15 24999.33 24393.80 32880.09 36099.03 31088.31 33497.86 34493.49 32794.36 31298.62 283
GBi-Net97.68 25497.48 23898.29 26499.51 15197.26 25399.43 16199.48 14096.49 26399.07 20199.32 27590.26 31198.98 31597.10 25296.65 25998.62 283
test197.68 25497.48 23898.29 26499.51 15197.26 25399.43 16199.48 14096.49 26399.07 20199.32 27590.26 31198.98 31597.10 25296.65 25998.62 283
FMVSNet196.84 28696.36 28998.29 26499.32 20697.26 25399.43 16199.48 14095.11 31198.55 27799.32 27583.95 35098.98 31595.81 29396.26 27198.62 283
MDA-MVSNet_test_wron95.45 30694.60 31298.01 28298.16 33397.21 25699.11 25999.24 27093.49 33280.73 35998.98 31793.02 25698.18 33594.22 32094.45 31098.64 273
VDD-MVS97.73 24497.35 26098.88 19699.47 16897.12 25799.34 20398.85 31598.19 9999.67 5999.85 2982.98 35199.92 8099.49 1398.32 20299.60 130
test-LLR98.06 19097.90 19598.55 23598.79 29797.10 25898.67 32297.75 34797.34 19498.61 27398.85 32194.45 22699.45 23697.25 24199.38 13699.10 192
test-mter97.49 27297.13 27798.55 23598.79 29797.10 25898.67 32297.75 34796.65 25198.61 27398.85 32188.23 33599.45 23697.25 24199.38 13699.10 192
YYNet195.36 30894.51 31497.92 28897.89 33597.10 25899.10 26199.23 27193.26 33580.77 35899.04 30992.81 26298.02 33994.30 31794.18 31598.64 273
ACMM97.58 598.37 16298.34 15798.48 24199.41 18097.10 25899.56 9899.45 18098.53 6499.04 20799.85 2993.00 25799.71 19598.74 9797.45 24198.64 273
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS98.19 17598.10 17198.45 24798.88 28597.07 26299.28 21599.38 21798.57 6299.22 17099.81 6292.12 28499.66 20998.08 17497.54 23298.61 292
Patchmatch-test97.93 21097.65 22298.77 21699.18 23897.07 26299.03 27499.14 28496.16 29198.74 25099.57 19594.56 22299.72 18993.36 32899.11 15599.52 148
hse-mvs297.50 26997.14 27698.59 22799.49 16097.05 26499.28 21599.22 27298.94 3399.66 6499.42 24494.93 19999.65 21399.48 1483.80 35099.08 197
LPG-MVS_test98.22 17198.13 16998.49 23999.33 19997.05 26499.58 8699.55 6497.46 18099.24 16599.83 4292.58 27399.72 18998.09 17097.51 23498.68 254
LGP-MVS_train98.49 23999.33 19997.05 26499.55 6497.46 18099.24 16599.83 4292.58 27399.72 18998.09 17097.51 23498.68 254
AUN-MVS96.88 28596.31 29098.59 22799.48 16797.04 26799.27 22099.22 27297.44 18698.51 27999.41 24891.97 28699.66 20997.71 20583.83 34999.07 202
plane_prior799.29 21297.03 268
ACMP97.20 1198.06 19097.94 19298.45 24799.37 19197.01 26999.44 15599.49 12897.54 17498.45 28399.79 8891.95 28799.72 18997.91 18597.49 23998.62 283
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
plane_prior397.00 27098.69 5699.11 191
Fast-Effi-MVS+-dtu98.77 13798.83 11498.60 22699.41 18096.99 27199.52 11699.49 12898.11 10999.24 16599.34 26896.96 13499.79 16497.95 18399.45 13299.02 207
plane_prior699.27 21796.98 27292.71 268
HQP_MVS98.27 17098.22 16598.44 25099.29 21296.97 27399.39 18299.47 15898.97 3099.11 19199.61 18292.71 26899.69 20497.78 19697.63 22398.67 261
plane_prior96.97 27399.21 24198.45 7197.60 226
ACMH97.28 898.10 18697.99 18498.44 25099.41 18096.96 27599.60 7399.56 5698.09 11298.15 30099.91 590.87 30899.70 20198.88 7297.45 24198.67 261
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
NP-MVS99.23 22596.92 27699.40 251
Effi-MVS+-dtu98.78 13598.89 10298.47 24599.33 19996.91 27799.57 9199.30 25898.47 6899.41 12398.99 31496.78 13899.74 17898.73 9999.38 13698.74 237
HQP5-MVS96.83 278
HQP-MVS98.02 19897.90 19598.37 25799.19 23596.83 27898.98 28899.39 21198.24 9298.66 26299.40 25192.47 27799.64 21697.19 24797.58 22898.64 273
CLD-MVS98.16 17998.10 17198.33 25999.29 21296.82 28098.75 31699.44 18997.83 14099.13 18799.55 20292.92 25999.67 20698.32 15597.69 22298.48 304
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LTVRE_ROB97.16 1298.02 19897.90 19598.40 25499.23 22596.80 28199.70 3599.60 4097.12 21598.18 29999.70 13391.73 29399.72 18998.39 14597.45 24198.68 254
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs597.52 26697.30 26898.16 27398.57 32396.73 28299.27 22098.90 31196.14 29498.37 28999.53 21191.54 30099.14 29297.51 22595.87 28198.63 281
BH-untuned98.42 15698.36 15498.59 22799.49 16096.70 28399.27 22099.13 28597.24 20598.80 24499.38 25695.75 17499.74 17897.07 25599.16 15099.33 180
IB-MVS95.67 1896.22 29695.44 30698.57 23199.21 23196.70 28398.65 32597.74 34996.71 24697.27 32298.54 33386.03 34599.92 8098.47 14086.30 34699.10 192
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ACMH+97.24 1097.92 21397.78 20798.32 26199.46 17096.68 28599.56 9899.54 7198.41 7597.79 31499.87 2090.18 31599.66 20998.05 17897.18 25398.62 283
EU-MVSNet97.98 20598.03 18097.81 29698.72 30896.65 28699.66 4899.66 2798.09 11298.35 29199.82 4995.25 19398.01 34097.41 23595.30 29598.78 225
D2MVS98.41 15898.50 14898.15 27499.26 21996.62 28799.40 17899.61 3597.71 15598.98 21799.36 26296.04 16199.67 20698.70 10397.41 24598.15 328
MVP-Stereo97.81 23197.75 21397.99 28497.53 33996.60 28898.96 29298.85 31597.22 20797.23 32399.36 26295.28 18999.46 23595.51 30099.78 8997.92 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TESTMET0.1,197.55 26397.27 27298.40 25498.93 28196.53 28998.67 32297.61 35096.96 23098.64 26999.28 28288.63 33199.45 23697.30 23899.38 13699.21 187
OurMVSNet-221017-097.88 21697.77 20998.19 27198.71 31096.53 28999.88 199.00 29797.79 14698.78 24799.94 391.68 29499.35 26197.21 24396.99 25798.69 249
ADS-MVSNet98.20 17498.08 17598.56 23399.33 19996.48 29199.23 23499.15 28296.24 28399.10 19499.67 15294.11 23799.71 19596.81 26999.05 16299.48 159
testgi97.65 25997.50 23798.13 27599.36 19396.45 29299.42 16899.48 14097.76 14997.87 31099.45 23891.09 30598.81 32994.53 31598.52 19399.13 191
test_040296.64 28996.24 29197.85 29298.85 29396.43 29399.44 15599.26 26693.52 33196.98 33099.52 21488.52 33299.20 28892.58 33897.50 23697.93 341
ITE_SJBPF98.08 27699.29 21296.37 29498.92 30698.34 8398.83 24099.75 11191.09 30599.62 22295.82 29297.40 24698.25 324
IterMVS-SCA-FT97.82 22997.75 21398.06 27899.57 14096.36 29599.02 27799.49 12897.18 20998.71 25399.72 12892.72 26699.14 29297.44 23395.86 28298.67 261
K. test v397.10 28396.79 28498.01 28298.72 30896.33 29699.87 497.05 35397.59 16696.16 33799.80 7688.71 32899.04 30696.69 27696.55 26398.65 271
XVG-ACMP-BASELINE97.83 22697.71 21798.20 27099.11 25396.33 29699.41 17099.52 8898.06 12199.05 20699.50 22189.64 32199.73 18597.73 20297.38 24798.53 300
IterMVS97.83 22697.77 20998.02 28199.58 13896.27 29899.02 27799.48 14097.22 20798.71 25399.70 13392.75 26399.13 29597.46 23096.00 27698.67 261
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SixPastTwentyTwo97.50 26997.33 26598.03 27998.65 31596.23 29999.77 2498.68 33197.14 21297.90 30999.93 490.45 30999.18 28997.00 25796.43 26798.67 261
BH-w/o98.00 20397.89 19998.32 26199.35 19496.20 30099.01 28298.90 31196.42 27298.38 28899.00 31395.26 19299.72 18996.06 28898.61 18599.03 205
TDRefinement95.42 30794.57 31397.97 28589.83 36196.11 30199.48 14298.75 32096.74 24496.68 33299.88 1588.65 33099.71 19598.37 14982.74 35198.09 329
RRT_test8_iter0597.72 24697.60 22798.08 27699.23 22596.08 30299.63 6099.49 12897.54 17498.94 22399.81 6287.99 33899.35 26199.21 3996.51 26598.81 222
EPMVS97.82 22997.65 22298.35 25898.88 28595.98 30399.49 13694.71 36297.57 16999.26 16299.48 23092.46 28099.71 19597.87 18899.08 16099.35 177
pmmvs-eth3d95.34 30994.73 31197.15 31295.53 35495.94 30499.35 20099.10 28795.13 30993.55 34797.54 34488.15 33797.91 34294.58 31489.69 34297.61 345
FMVSNet596.43 29496.19 29297.15 31299.11 25395.89 30599.32 20599.52 8894.47 32498.34 29299.07 30587.54 34297.07 35192.61 33795.72 28698.47 306
KD-MVS_2432*160094.62 31393.72 31997.31 31097.19 34795.82 30698.34 34099.20 27695.00 31497.57 31698.35 33787.95 33998.10 33792.87 33477.00 35698.01 334
miper_refine_blended94.62 31393.72 31997.31 31097.19 34795.82 30698.34 34099.20 27695.00 31497.57 31698.35 33787.95 33998.10 33792.87 33477.00 35698.01 334
UnsupCasMVSNet_eth96.44 29396.12 29397.40 30998.65 31595.65 30899.36 19499.51 10197.13 21396.04 33998.99 31488.40 33398.17 33696.71 27490.27 33998.40 316
MIMVSNet195.51 30595.04 30996.92 32097.38 34195.60 30999.52 11699.50 12093.65 33096.97 33199.17 29585.28 34896.56 35588.36 35095.55 29098.60 295
CVMVSNet98.57 15098.67 12898.30 26399.35 19495.59 31099.50 12699.55 6498.60 6199.39 13099.83 4294.48 22599.45 23698.75 9698.56 19199.85 14
SCA98.19 17598.16 16698.27 26899.30 20895.55 31199.07 26398.97 30097.57 16999.43 11699.57 19592.72 26699.74 17897.58 21599.20 14899.52 148
LF4IMVS97.52 26697.46 24297.70 30198.98 27695.55 31199.29 21398.82 31898.07 11798.66 26299.64 16689.97 31699.61 22397.01 25696.68 25897.94 340
EPNet_dtu98.03 19697.96 18898.23 26998.27 33095.54 31399.23 23498.75 32099.02 1597.82 31299.71 12996.11 15999.48 23293.04 33299.65 12099.69 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap97.12 28296.89 28297.83 29499.07 26195.52 31498.57 33098.74 32397.58 16897.81 31399.79 8888.16 33699.56 22795.10 30897.21 25198.39 317
pmmvs696.53 29196.09 29497.82 29598.69 31295.47 31599.37 19099.47 15893.46 33397.41 31999.78 9587.06 34399.33 26596.92 26692.70 33398.65 271
test20.0396.12 30095.96 29796.63 32497.44 34095.45 31699.51 12099.38 21796.55 26096.16 33799.25 28793.76 24896.17 35687.35 35394.22 31498.27 322
lessismore_v097.79 29798.69 31295.44 31794.75 36195.71 34199.87 2088.69 32999.32 26695.89 29194.93 30498.62 283
DIV-MVS_2432*160095.00 31094.34 31596.96 31897.07 34995.39 31899.56 9899.44 18995.11 31197.13 32797.32 34891.86 28997.27 35090.35 34481.23 35398.23 326
PatchmatchNetpermissive98.31 16598.36 15498.19 27199.16 24695.32 31999.27 22098.92 30697.37 19399.37 13599.58 19194.90 20299.70 20197.43 23499.21 14799.54 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ppachtmachnet_test97.49 27297.45 24397.61 30298.62 31895.24 32098.80 31199.46 16896.11 29698.22 29799.62 17896.45 15098.97 32293.77 32395.97 28098.61 292
USDC97.34 27697.20 27497.75 29899.07 26195.20 32198.51 33499.04 29597.99 12798.31 29399.86 2389.02 32599.55 22995.67 29897.36 24898.49 303
ADS-MVSNet298.02 19898.07 17897.87 29199.33 19995.19 32299.23 23499.08 29096.24 28399.10 19499.67 15294.11 23798.93 32596.81 26999.05 16299.48 159
MDTV_nov1_ep13_2view95.18 32399.35 20096.84 23999.58 8895.19 19597.82 19399.46 166
new_pmnet96.38 29596.03 29597.41 30898.13 33495.16 32499.05 26899.20 27693.94 32697.39 32098.79 32491.61 29999.04 30690.43 34395.77 28398.05 332
tpm97.67 25797.55 23098.03 27999.02 27095.01 32599.43 16198.54 33696.44 27099.12 18999.34 26891.83 29099.60 22497.75 20096.46 26699.48 159
our_test_397.65 25997.68 21997.55 30598.62 31894.97 32698.84 30799.30 25896.83 24198.19 29899.34 26897.01 13299.02 31095.00 31196.01 27598.64 273
Anonymous2024052196.20 29895.89 29997.13 31497.72 33894.96 32799.79 2199.29 26393.01 33697.20 32599.03 31089.69 32098.36 33491.16 34196.13 27398.07 330
MVS_030496.79 28796.52 28797.59 30399.22 22994.92 32899.04 27399.59 4396.49 26398.43 28598.99 31480.48 35799.39 24897.15 25199.27 14498.47 306
DWT-MVSNet_test97.53 26597.40 25497.93 28799.03 26994.86 32999.57 9198.63 33296.59 25998.36 29098.79 32489.32 32399.74 17898.14 16898.16 21299.20 188
tpmrst98.33 16498.48 14997.90 29099.16 24694.78 33099.31 20799.11 28697.27 20199.45 11199.59 18895.33 18899.84 13698.48 13798.61 18599.09 196
tpmvs97.98 20598.02 18297.84 29399.04 26794.73 33199.31 20799.20 27696.10 30098.76 24999.42 24494.94 19899.81 15696.97 26098.45 19698.97 212
pmmvs394.09 31993.25 32296.60 32594.76 35694.49 33298.92 29998.18 34289.66 34696.48 33498.06 34286.28 34497.33 34989.68 34687.20 34597.97 339
MDTV_nov1_ep1398.32 15999.11 25394.44 33399.27 22098.74 32397.51 17899.40 12899.62 17894.78 20899.76 17597.59 21498.81 181
tpm297.44 27497.34 26397.74 29999.15 24994.36 33499.45 15198.94 30393.45 33498.90 22999.44 23991.35 30299.59 22597.31 23798.07 21599.29 182
PVSNet_094.43 1996.09 30195.47 30497.94 28699.31 20794.34 33597.81 35299.70 1597.12 21597.46 31898.75 32789.71 31999.79 16497.69 20881.69 35299.68 103
Anonymous2023120696.22 29696.03 29596.79 32397.31 34494.14 33699.63 6099.08 29096.17 28997.04 32999.06 30793.94 24297.76 34686.96 35495.06 30098.47 306
CostFormer97.72 24697.73 21597.71 30099.15 24994.02 33799.54 11099.02 29694.67 32099.04 20799.35 26592.35 28399.77 17098.50 13697.94 21799.34 179
UnsupCasMVSNet_bld93.53 32092.51 32396.58 32697.38 34193.82 33898.24 34599.48 14091.10 34493.10 34996.66 35074.89 35898.37 33394.03 32287.71 34497.56 347
tpm cat197.39 27597.36 25897.50 30799.17 24493.73 33999.43 16199.31 25491.27 34298.71 25399.08 30494.31 23199.77 17096.41 28498.50 19499.00 208
dp97.75 24097.80 20397.59 30399.10 25693.71 34099.32 20598.88 31396.48 26799.08 20099.55 20292.67 27199.82 15296.52 28098.58 18899.24 185
MVS-HIRNet95.75 30495.16 30897.51 30699.30 20893.69 34198.88 30395.78 35985.09 35298.78 24792.65 35691.29 30399.37 25394.85 31299.85 5899.46 166
CL-MVSNet_2432*160094.49 31593.97 31896.08 32896.16 35093.67 34298.33 34299.38 21795.13 30997.33 32198.15 34192.69 27096.57 35488.67 34879.87 35497.99 337
DSMNet-mixed97.25 27997.35 26096.95 31997.84 33693.61 34399.57 9196.63 35796.13 29598.87 23498.61 33294.59 22097.70 34795.08 30998.86 17799.55 141
MS-PatchMatch97.24 28097.32 26696.99 31698.45 32893.51 34498.82 30999.32 25197.41 19098.13 30199.30 27888.99 32699.56 22795.68 29799.80 8497.90 343
OpenMVS_ROBcopyleft92.34 2094.38 31793.70 32196.41 32797.38 34193.17 34599.06 26698.75 32086.58 35094.84 34598.26 34081.53 35599.32 26689.01 34797.87 21996.76 349
gm-plane-assit98.54 32592.96 34694.65 32199.15 29899.64 21697.56 220
EG-PatchMatch MVS95.97 30295.69 30296.81 32297.78 33792.79 34799.16 24598.93 30496.16 29194.08 34699.22 29082.72 35299.47 23395.67 29897.50 23698.17 327
new-patchmatchnet94.48 31694.08 31695.67 33095.08 35592.41 34899.18 24399.28 26594.55 32393.49 34897.37 34787.86 34197.01 35291.57 33988.36 34397.61 345
LCM-MVSNet-Re97.83 22698.15 16796.87 32199.30 20892.25 34999.59 7998.26 33897.43 18796.20 33699.13 30096.27 15698.73 33198.17 16598.99 16899.64 120
DeepPCF-MVS98.18 398.81 13199.37 1997.12 31599.60 13491.75 35098.61 32799.44 18999.35 199.83 1799.85 2998.70 6299.81 15699.02 5799.91 1699.81 41
RPSCF98.22 17198.62 13896.99 31699.82 3791.58 35199.72 3299.44 18996.61 25599.66 6499.89 1095.92 16799.82 15297.46 23099.10 15899.57 139
Patchmatch-RL test95.84 30395.81 30195.95 32995.61 35290.57 35298.24 34598.39 33795.10 31395.20 34298.67 32994.78 20897.77 34596.28 28690.02 34099.51 154
Gipumacopyleft90.99 32390.15 32693.51 33298.73 30690.12 35393.98 35899.45 18079.32 35592.28 35094.91 35369.61 35997.98 34187.42 35295.67 28792.45 355
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PM-MVS92.96 32192.23 32495.14 33195.61 35289.98 35499.37 19098.21 34094.80 31895.04 34497.69 34365.06 36097.90 34394.30 31789.98 34197.54 348
PMMVS286.87 32485.37 32891.35 33890.21 36083.80 35598.89 30297.45 35283.13 35491.67 35295.03 35248.49 36594.70 35885.86 35677.62 35595.54 352
ambc93.06 33492.68 35782.36 35698.47 33598.73 32895.09 34397.41 34555.55 36399.10 30296.42 28391.32 33797.71 344
DeepMVS_CXcopyleft93.34 33399.29 21282.27 35799.22 27285.15 35196.33 33599.05 30890.97 30799.73 18593.57 32697.77 22198.01 334
LCM-MVSNet86.80 32585.22 32991.53 33787.81 36280.96 35898.23 34798.99 29871.05 35790.13 35396.51 35148.45 36696.88 35390.51 34285.30 34796.76 349
CMPMVSbinary69.68 2394.13 31894.90 31091.84 33697.24 34580.01 35998.52 33399.48 14089.01 34791.99 35199.67 15285.67 34799.13 29595.44 30197.03 25696.39 351
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
N_pmnet94.95 31295.83 30092.31 33598.47 32779.33 36099.12 25392.81 36793.87 32797.68 31599.13 30093.87 24499.01 31291.38 34096.19 27298.59 296
ANet_high77.30 33074.86 33484.62 34275.88 36677.61 36197.63 35493.15 36688.81 34864.27 36389.29 36036.51 36783.93 36475.89 35952.31 36192.33 356
EMVS80.02 32979.22 33282.43 34591.19 35876.40 36297.55 35592.49 36866.36 36283.01 35791.27 35864.63 36185.79 36365.82 36260.65 36085.08 359
E-PMN80.61 32879.88 33182.81 34390.75 35976.38 36397.69 35395.76 36066.44 36183.52 35592.25 35762.54 36287.16 36268.53 36161.40 35984.89 360
MVEpermissive76.82 2176.91 33174.31 33584.70 34185.38 36576.05 36496.88 35693.17 36567.39 36071.28 36289.01 36121.66 37287.69 36171.74 36072.29 35890.35 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method91.10 32291.36 32590.31 33995.85 35173.72 36594.89 35799.25 26868.39 35995.82 34099.02 31280.50 35698.95 32493.64 32594.89 30598.25 324
tmp_tt82.80 32781.52 33086.66 34066.61 36868.44 36692.79 36097.92 34568.96 35880.04 36199.85 2985.77 34696.15 35797.86 18943.89 36295.39 353
FPMVS84.93 32685.65 32782.75 34486.77 36363.39 36798.35 33998.92 30674.11 35683.39 35698.98 31750.85 36492.40 36084.54 35794.97 30292.46 354
PMVScopyleft70.75 2275.98 33274.97 33379.01 34670.98 36755.18 36893.37 35998.21 34065.08 36361.78 36493.83 35521.74 37192.53 35978.59 35891.12 33889.34 358
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 33341.29 33836.84 34786.18 36449.12 36979.73 36122.81 37027.64 36425.46 36728.45 36721.98 37048.89 36555.80 36323.56 36512.51 363
test12339.01 33542.50 33728.53 34839.17 36920.91 37098.75 31619.17 37119.83 36638.57 36566.67 36333.16 36815.42 36637.50 36529.66 36449.26 361
testmvs39.17 33443.78 33625.37 34936.04 37016.84 37198.36 33826.56 36920.06 36538.51 36667.32 36229.64 36915.30 36737.59 36439.90 36343.98 362
uanet_test0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k24.64 33632.85 3390.00 3500.00 3710.00 3720.00 36299.51 1010.00 3670.00 36899.56 19896.58 1450.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas8.27 33811.03 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 36899.01 160.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.30 33711.06 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36899.58 1910.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.02 3390.03 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.27 3680.00 3730.00 3680.00 3660.00 3660.00 364
test_241102_TWO99.48 14099.08 1199.88 599.81 6298.94 3199.96 1998.91 6999.84 6599.88 5
9.1499.10 6999.72 8099.40 17899.51 10197.53 17699.64 7299.78 9598.84 4299.91 9197.63 21199.82 78
test_0728_THIRD98.99 2599.81 2299.80 7699.09 1299.96 1998.85 8199.90 2399.88 5
GSMVS99.52 148
sam_mvs194.86 20499.52 148
sam_mvs94.72 215
MTGPAbinary99.47 158
test_post199.23 23465.14 36594.18 23699.71 19597.58 215
test_post65.99 36494.65 21999.73 185
patchmatchnet-post98.70 32894.79 20799.74 178
MTMP99.54 11098.88 313
test9_res97.49 22699.72 10499.75 69
agg_prior297.21 24399.73 10399.75 69
test_prior298.96 29298.34 8399.01 21099.52 21498.68 6397.96 18199.74 100
旧先验298.96 29296.70 24799.47 10899.94 5498.19 161
新几何299.01 282
无先验98.99 28499.51 10196.89 23699.93 6997.53 22399.72 87
原ACMM298.95 296
testdata299.95 4396.67 277
segment_acmp98.96 25
testdata198.85 30698.32 87
plane_prior599.47 15899.69 20497.78 19697.63 22398.67 261
plane_prior499.61 182
plane_prior299.39 18298.97 30
plane_prior199.26 219
n20.00 372
nn0.00 372
door-mid98.05 343
test1199.35 232
door97.92 345
HQP-NCC99.19 23598.98 28898.24 9298.66 262
ACMP_Plane99.19 23598.98 28898.24 9298.66 262
BP-MVS97.19 247
HQP4-MVS98.66 26299.64 21698.64 273
HQP3-MVS99.39 21197.58 228
HQP2-MVS92.47 277
ACMMP++_ref97.19 252
ACMMP++97.43 244
Test By Simon98.75 56