This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1899.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1899.67 699.77 2
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 9599.59 1999.56 29
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12197.97 10195.59 1196.61 7497.89 9092.57 3599.84 2395.95 7399.51 3499.40 54
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2499.67 699.75 6
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15198.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3599.49 3999.57 26
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16098.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4399.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.28 2595.74 898.10 29
DPM-MVS95.69 8094.92 9498.01 1998.08 10495.71 995.27 29397.62 14590.43 19795.55 11797.07 14891.72 4799.50 9989.62 21098.94 9498.82 113
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7398.18 5790.57 19498.85 1598.94 993.33 2399.83 2696.72 4299.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2899.58 2399.59 22
IU-MVS99.42 795.39 1197.94 10490.40 19998.94 897.41 3199.66 1199.74 8
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2499.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.45 395.36 1398.31 2898.29 3494.92 3298.99 798.92 1095.08 8
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16798.07 7993.54 8596.08 9897.69 10693.86 1699.71 4696.50 4999.39 5599.55 32
3Dnovator+91.43 495.40 8794.48 11098.16 1696.90 17295.34 1698.48 2197.87 11194.65 4988.53 28998.02 8283.69 17499.71 4693.18 14098.96 9399.44 49
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2499.66 1199.56 29
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 5099.52 3199.51 37
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
alignmvs95.87 7895.23 8897.78 3197.56 14395.19 2197.86 8097.17 20094.39 5996.47 8296.40 18885.89 14599.20 12796.21 6295.11 19598.95 96
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5299.86 896.26 5599.52 3199.67 13
sasdasda96.02 7195.45 7997.75 3597.59 13895.15 2398.28 3197.60 14694.52 5296.27 9096.12 20287.65 11699.18 13196.20 6394.82 19998.91 101
canonicalmvs96.02 7195.45 7997.75 3597.59 13895.15 2398.28 3197.60 14694.52 5296.27 9096.12 20287.65 11699.18 13196.20 6394.82 19998.91 101
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14398.04 8995.96 697.09 5697.88 9293.18 2599.71 4695.84 7899.17 7699.56 29
MM97.29 1996.98 2698.23 1198.01 10895.03 2698.07 5495.76 28797.78 197.52 4098.80 2288.09 10799.86 899.44 199.37 5999.80 1
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2797.72 9998.10 7291.50 15398.01 3198.32 5992.33 3999.58 7794.85 10599.51 3499.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1699.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2996.96 17998.06 8290.67 18595.55 11798.78 2591.07 6599.86 896.58 4699.55 2799.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MGCFI-Net95.94 7695.40 8397.56 4697.59 13894.62 3098.21 4397.57 15194.41 5796.17 9496.16 20087.54 12099.17 13396.19 6594.73 20498.91 101
ZD-MVS99.05 3994.59 3198.08 7489.22 22997.03 5898.10 7392.52 3699.65 5894.58 11699.31 63
nrg03094.05 13093.31 14296.27 10995.22 27494.59 3198.34 2697.46 16892.93 11591.21 22396.64 17187.23 12998.22 23394.99 10385.80 31795.98 253
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3397.92 7598.14 6494.82 3899.01 698.55 3394.18 1497.41 32896.94 3699.64 1499.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CDPH-MVS95.97 7495.38 8497.77 3398.93 4794.44 3496.35 23397.88 10986.98 29896.65 7297.89 9091.99 4599.47 10292.26 15299.46 4299.39 56
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3597.24 15498.08 7495.07 2796.11 9698.59 3090.88 7099.90 296.18 6699.50 3699.58 25
MVS_030497.04 2896.73 4297.96 2397.60 13794.36 3698.01 5994.09 35197.33 296.29 8898.79 2489.73 8499.86 899.36 299.42 4999.67 13
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3797.41 13398.04 8994.81 3996.59 7698.37 4991.24 6199.64 6695.16 9899.52 3199.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter98.91 4994.28 3897.02 17298.02 9495.35 16
test1297.65 4298.46 7094.26 3997.66 13795.52 12090.89 6999.46 10399.25 6999.22 70
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2398.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4799.62 1799.65 15
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5497.85 11693.72 7798.57 2198.35 5193.69 1899.40 11097.06 3499.46 4299.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TEST998.70 5694.19 4296.41 22598.02 9488.17 26696.03 9997.56 12192.74 3199.59 74
train_agg96.30 6295.83 7397.72 3898.70 5694.19 4296.41 22598.02 9488.58 25396.03 9997.56 12192.73 3299.59 7495.04 10099.37 5999.39 56
DP-MVS Recon95.68 8195.12 9297.37 5199.19 3194.19 4297.03 17098.08 7488.35 26295.09 12797.65 11189.97 8199.48 10192.08 16198.59 10798.44 145
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4598.29 3098.13 6592.72 12196.70 6898.06 7791.35 5899.86 894.83 10699.28 6499.47 46
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4698.49 2098.18 5792.64 12496.39 8698.18 7091.61 5199.88 495.59 9299.55 2799.57 26
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1698.32 3093.21 9797.18 5198.29 6392.08 4399.83 2695.63 8799.59 1999.54 33
PHI-MVS96.77 4496.46 5697.71 4098.40 7594.07 4898.21 4398.45 2289.86 20997.11 5598.01 8392.52 3699.69 5296.03 7199.53 3099.36 60
test_898.67 5894.06 4996.37 23298.01 9788.58 25395.98 10397.55 12392.73 3299.58 77
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7698.29 6391.70 4999.80 3095.66 8299.40 5399.62 18
X-MVStestdata91.71 21889.67 27997.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7632.69 40891.70 4999.80 3095.66 8299.40 5399.62 18
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5298.52 1698.31 3193.21 9797.15 5298.33 5791.35 5899.86 895.63 8799.59 1999.62 18
MP-MVScopyleft96.77 4496.45 5797.72 3899.39 1393.80 5398.41 2498.06 8293.37 9295.54 11998.34 5490.59 7499.88 494.83 10699.54 2999.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
agg_prior98.67 5893.79 5498.00 9895.68 11399.57 84
region2R97.07 2696.84 3397.77 3399.46 293.79 5498.52 1698.24 4793.19 10097.14 5398.34 5491.59 5399.87 795.46 9499.59 1999.64 16
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4499.21 7299.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_prior493.66 5796.42 224
新几何197.32 5398.60 6593.59 5897.75 12681.58 36695.75 11097.85 9690.04 7999.67 5686.50 27399.13 8198.69 122
CP-MVS97.02 2996.81 3797.64 4499.33 2193.54 5998.80 898.28 3692.99 10896.45 8498.30 6291.90 4699.85 1895.61 8999.68 499.54 33
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10698.98 292.22 13197.14 5398.44 4491.17 6499.85 1894.35 11899.46 4299.57 26
mPP-MVS96.86 3796.60 4797.64 4499.40 1193.44 6198.50 1998.09 7393.27 9695.95 10498.33 5791.04 6699.88 495.20 9799.57 2599.60 21
TSAR-MVS + GP.96.69 4996.49 5297.27 5898.31 8193.39 6296.79 19296.72 24194.17 6497.44 4397.66 11092.76 2999.33 11596.86 3997.76 13699.08 83
CANet96.39 5996.02 6797.50 4797.62 13493.38 6397.02 17297.96 10295.42 1594.86 12997.81 9987.38 12699.82 2896.88 3899.20 7499.29 63
旧先验198.38 7893.38 6397.75 12698.09 7592.30 4299.01 9099.16 73
3Dnovator91.36 595.19 9694.44 11297.44 4996.56 19693.36 6598.65 1198.36 2494.12 6589.25 27498.06 7782.20 21099.77 3793.41 13799.32 6299.18 72
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
UniMVSNet (Re)93.31 15692.55 16895.61 14995.39 25793.34 6697.39 13898.71 1193.14 10490.10 24594.83 26387.71 11498.03 26291.67 17283.99 34495.46 277
SR-MVS97.01 3096.86 3197.47 4899.09 3493.27 6897.98 6398.07 7993.75 7697.45 4298.48 4191.43 5699.59 7496.22 5899.27 6599.54 33
DELS-MVS96.61 5296.38 5997.30 5497.79 12293.19 6995.96 25798.18 5795.23 1995.87 10597.65 11191.45 5499.70 5195.87 7499.44 4899.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepC-MVS93.07 396.06 6895.66 7497.29 5597.96 11193.17 7097.30 14998.06 8293.92 7193.38 16498.66 2786.83 13299.73 4295.60 9199.22 7198.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVScopyleft96.69 4996.45 5797.40 5099.36 1893.11 7198.87 698.06 8291.17 16896.40 8597.99 8490.99 6799.58 7795.61 8999.61 1899.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
NR-MVSNet92.34 19591.27 21295.53 15494.95 28893.05 7297.39 13898.07 7992.65 12384.46 34695.71 22585.00 15697.77 29789.71 20683.52 35195.78 262
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
UA-Net95.95 7595.53 7697.20 6397.67 12792.98 7497.65 10698.13 6594.81 3996.61 7498.35 5188.87 9399.51 9690.36 19497.35 14799.11 81
VNet95.89 7795.45 7997.21 6298.07 10592.94 7597.50 12498.15 6293.87 7397.52 4097.61 11785.29 15299.53 9195.81 7995.27 19199.16 73
UniMVSNet_NR-MVSNet93.37 15492.67 16395.47 16095.34 26392.83 7697.17 16398.58 1792.98 11390.13 24195.80 21888.37 10597.85 28891.71 16983.93 34595.73 269
DU-MVS92.90 17692.04 18395.49 15794.95 28892.83 7697.16 16498.24 4793.02 10790.13 24195.71 22583.47 17897.85 28891.71 16983.93 34595.78 262
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8598.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 8199.50 40
HPM-MVS_fast96.51 5596.27 6197.22 6199.32 2292.74 7998.74 998.06 8290.57 19496.77 6598.35 5190.21 7799.53 9194.80 10999.63 1699.38 58
OpenMVScopyleft89.19 1292.86 17891.68 19696.40 9695.34 26392.73 8098.27 3398.12 6784.86 33385.78 33597.75 10378.89 26999.74 4187.50 25798.65 10396.73 230
EPNet95.20 9594.56 10497.14 6592.80 35792.68 8197.85 8394.87 33496.64 392.46 18097.80 10186.23 13999.65 5893.72 13198.62 10599.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM93.45 15292.27 17896.98 7196.77 18392.62 8298.39 2598.12 6784.50 33888.27 29697.77 10282.39 20799.81 2985.40 29298.81 9898.51 134
ACMMPcopyleft96.27 6395.93 6897.28 5799.24 2892.62 8298.25 3698.81 592.99 10894.56 13698.39 4888.96 9299.85 1894.57 11797.63 13799.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 8998.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7299.40 54
CNLPA94.28 11893.53 13096.52 8298.38 7892.55 8596.59 21696.88 23290.13 20491.91 19797.24 13885.21 15399.09 14687.64 25397.83 13297.92 179
PCF-MVS89.48 1191.56 22889.95 26796.36 10196.60 19192.52 8692.51 36897.26 19579.41 37888.90 27896.56 18084.04 17199.55 8777.01 36297.30 15097.01 219
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS89.66 993.87 13792.95 15096.63 7697.10 15892.49 8795.64 27696.64 24989.05 23593.00 17295.79 22185.77 14899.45 10589.16 22594.35 20797.96 177
ETV-MVS96.02 7195.89 7196.40 9697.16 15492.44 8897.47 13097.77 12494.55 5096.48 8194.51 27891.23 6398.92 16895.65 8598.19 12397.82 187
VPA-MVSNet93.24 15892.48 17395.51 15595.70 24292.39 8997.86 8098.66 1692.30 13092.09 19595.37 24180.49 23698.40 21793.95 12485.86 31695.75 267
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14692.37 9097.91 7698.88 495.83 898.92 1299.05 591.45 5499.80 3099.12 699.46 4299.69 12
SR-MVS-dyc-post96.88 3696.80 3897.11 6799.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3691.40 5799.56 8596.05 6899.26 6799.43 51
RE-MVS-def96.72 4399.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3690.71 7296.05 6899.26 6799.43 51
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6398.06 8293.11 10597.44 4398.55 3390.93 6899.55 8796.06 6799.25 6999.51 37
MVS_111021_HR96.68 5196.58 4996.99 7098.46 7092.31 9396.20 24698.90 394.30 6295.86 10697.74 10492.33 3999.38 11396.04 7099.42 4999.28 65
FMVSNet391.78 21690.69 23795.03 17696.53 20192.27 9597.02 17296.93 22489.79 21489.35 26894.65 27277.01 29097.47 32286.12 28088.82 28995.35 286
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24492.21 9697.95 7298.27 3995.78 1098.40 2599.00 689.99 8099.78 3599.06 799.41 5299.59 22
test22298.24 8792.21 9695.33 28897.60 14679.22 37995.25 12297.84 9888.80 9599.15 7998.72 119
FMVSNet291.31 24390.08 26194.99 17896.51 20392.21 9697.41 13396.95 22288.82 24688.62 28694.75 26773.87 31697.42 32785.20 29588.55 29495.35 286
MAR-MVS94.22 11993.46 13596.51 8598.00 11092.19 9997.67 10397.47 16588.13 26993.00 17295.84 21584.86 15899.51 9687.99 24098.17 12597.83 186
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CANet_DTU94.37 11593.65 12596.55 8096.46 20892.13 10096.21 24596.67 24894.38 6093.53 16097.03 15079.34 25799.71 4690.76 18798.45 11497.82 187
TranMVSNet+NR-MVSNet92.50 18791.63 19795.14 17094.76 30092.07 10197.53 12298.11 7092.90 11689.56 26296.12 20283.16 18497.60 31189.30 21783.20 35495.75 267
WTY-MVS94.71 11194.02 11696.79 7297.71 12692.05 10296.59 21697.35 18990.61 19194.64 13496.93 15386.41 13899.39 11191.20 18194.71 20598.94 97
FIs94.09 12893.70 12395.27 16595.70 24292.03 10398.10 5198.68 1393.36 9490.39 23396.70 16687.63 11897.94 27992.25 15490.50 27695.84 257
API-MVS94.84 10794.49 10995.90 13197.90 11792.00 10497.80 9097.48 16289.19 23094.81 13096.71 16488.84 9499.17 13388.91 22998.76 10096.53 233
sss94.51 11393.80 12196.64 7497.07 15991.97 10596.32 23698.06 8288.94 24094.50 13896.78 16184.60 16099.27 12291.90 16296.02 17498.68 123
ab-mvs93.57 14892.55 16896.64 7497.28 14991.96 10695.40 28597.45 17389.81 21393.22 17096.28 19379.62 25499.46 10390.74 18893.11 23198.50 135
MSLP-MVS++96.94 3397.06 1996.59 7998.72 5591.86 10797.67 10398.49 1994.66 4897.24 5098.41 4792.31 4198.94 16696.61 4599.46 4298.96 94
test_fmvsmconf0.01_n96.15 6695.85 7297.03 6992.66 36091.83 10897.97 6997.84 12095.57 1297.53 3999.00 684.20 16899.76 3898.82 1199.08 8599.48 44
MVSMamba_pp96.06 6895.92 6996.50 8897.00 16891.81 10997.33 14697.77 12492.49 12696.78 6497.19 14188.50 10399.07 15396.54 4899.67 698.60 126
test_fmvsmvis_n_192096.70 4796.84 3396.31 10396.62 18991.73 11097.98 6398.30 3296.19 596.10 9798.95 889.42 8599.76 3898.90 1099.08 8597.43 205
test_fmvsm_n_192097.55 1197.89 396.53 8198.41 7491.73 11098.01 5999.02 196.37 499.30 198.92 1092.39 3899.79 3399.16 599.46 4298.08 173
xiu_mvs_v1_base_debu95.01 9894.76 9795.75 13896.58 19391.71 11296.25 24197.35 18992.99 10896.70 6896.63 17582.67 19899.44 10696.22 5897.46 14096.11 249
xiu_mvs_v1_base95.01 9894.76 9795.75 13896.58 19391.71 11296.25 24197.35 18992.99 10896.70 6896.63 17582.67 19899.44 10696.22 5897.46 14096.11 249
xiu_mvs_v1_base_debi95.01 9894.76 9795.75 13896.58 19391.71 11296.25 24197.35 18992.99 10896.70 6896.63 17582.67 19899.44 10696.22 5897.46 14096.11 249
AdaColmapbinary94.34 11693.68 12496.31 10398.59 6691.68 11596.59 21697.81 12189.87 20892.15 19197.06 14983.62 17799.54 8989.34 21698.07 12797.70 192
CS-MVS-test96.89 3597.04 2396.45 9398.29 8291.66 11699.03 497.85 11695.84 796.90 6097.97 8691.24 6198.75 18696.92 3799.33 6198.94 97
114514_t93.95 13393.06 14796.63 7699.07 3791.61 11797.46 13297.96 10277.99 38393.00 17297.57 11986.14 14499.33 11589.22 22199.15 7998.94 97
LS3D93.57 14892.61 16696.47 9097.59 13891.61 11797.67 10397.72 13185.17 32890.29 23598.34 5484.60 16099.73 4283.85 31398.27 12098.06 174
MVS91.71 21890.44 24495.51 15595.20 27691.59 11996.04 25297.45 17373.44 39287.36 31595.60 23285.42 15199.10 14285.97 28497.46 14095.83 258
Vis-MVSNetpermissive95.23 9394.81 9696.51 8597.18 15391.58 12098.26 3598.12 6794.38 6094.90 12898.15 7282.28 20898.92 16891.45 17698.58 10899.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ET-MVSNet_ETH3D91.49 23290.11 26095.63 14696.40 21191.57 12195.34 28793.48 36390.60 19375.58 38595.49 23880.08 24496.79 35094.25 11989.76 28298.52 132
EC-MVSNet96.42 5796.47 5396.26 11097.01 16791.52 12298.89 597.75 12694.42 5696.64 7397.68 10789.32 8698.60 20297.45 2899.11 8498.67 124
casdiffmvs_mvgpermissive95.81 7995.57 7596.51 8596.87 17391.49 12397.50 12497.56 15593.99 6995.13 12697.92 8987.89 11298.78 18195.97 7297.33 14899.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
iter_conf0596.12 6796.06 6696.29 10798.07 10591.48 12497.25 15397.65 13990.43 19794.65 13397.52 12491.29 6099.19 12898.12 1599.56 2698.22 158
CPTT-MVS95.57 8595.19 8996.70 7399.27 2691.48 12498.33 2798.11 7087.79 27995.17 12598.03 8087.09 13099.61 6993.51 13399.42 4999.02 86
Effi-MVS+94.93 10394.45 11196.36 10196.61 19091.47 12696.41 22597.41 18291.02 17494.50 13895.92 21187.53 12198.78 18193.89 12796.81 16098.84 112
CDS-MVSNet94.14 12693.54 12995.93 13096.18 22191.46 12796.33 23597.04 21588.97 23993.56 15796.51 18287.55 11997.89 28689.80 20495.95 17698.44 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FC-MVSNet-test93.94 13493.57 12795.04 17595.48 25291.45 12898.12 5098.71 1193.37 9290.23 23696.70 16687.66 11597.85 28891.49 17490.39 27795.83 258
PAPR94.18 12093.42 14096.48 8997.64 13191.42 12995.55 27897.71 13588.99 23792.34 18795.82 21789.19 8799.11 14186.14 27997.38 14598.90 104
SDMVSNet94.17 12193.61 12695.86 13398.09 10191.37 13097.35 14298.20 5293.18 10191.79 20197.28 13479.13 26098.93 16794.61 11592.84 23497.28 213
MVS_111021_LR96.24 6496.19 6396.39 9898.23 9191.35 13196.24 24498.79 693.99 6995.80 10897.65 11189.92 8299.24 12495.87 7499.20 7498.58 128
OMC-MVS95.09 9794.70 10096.25 11398.46 7091.28 13296.43 22397.57 15192.04 14094.77 13197.96 8787.01 13199.09 14691.31 17896.77 16198.36 152
LFMVS93.60 14692.63 16496.52 8298.13 10091.27 13397.94 7393.39 36490.57 19496.29 8898.31 6069.00 34699.16 13594.18 12095.87 17899.12 80
test_yl94.78 10994.23 11496.43 9497.74 12491.22 13496.85 18697.10 20591.23 16595.71 11196.93 15384.30 16599.31 11993.10 14195.12 19398.75 116
DCV-MVSNet94.78 10994.23 11496.43 9497.74 12491.22 13496.85 18697.10 20591.23 16595.71 11196.93 15384.30 16599.31 11993.10 14195.12 19398.75 116
MVSFormer95.37 8895.16 9095.99 12996.34 21491.21 13698.22 4197.57 15191.42 15796.22 9297.32 13186.20 14297.92 28294.07 12199.05 8798.85 110
lupinMVS94.99 10294.56 10496.29 10796.34 21491.21 13695.83 26496.27 26788.93 24196.22 9296.88 15886.20 14298.85 17595.27 9699.05 8798.82 113
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7698.24 8791.20 13896.89 18397.73 12994.74 4496.49 8098.49 3890.88 7099.58 7796.44 5198.32 11899.13 77
UGNet94.04 13193.28 14396.31 10396.85 17491.19 13997.88 7997.68 13694.40 5893.00 17296.18 19773.39 32299.61 6991.72 16898.46 11398.13 167
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GBi-Net91.35 24090.27 25294.59 20096.51 20391.18 14097.50 12496.93 22488.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
test191.35 24090.27 25294.59 20096.51 20391.18 14097.50 12496.93 22488.82 24689.35 26894.51 27873.87 31697.29 33486.12 28088.82 28995.31 289
FMVSNet189.88 29288.31 30394.59 20095.41 25691.18 14097.50 12496.93 22486.62 30487.41 31394.51 27865.94 36997.29 33483.04 31787.43 30395.31 289
CS-MVS96.86 3797.06 1996.26 11098.16 9891.16 14399.09 397.87 11195.30 1897.06 5798.03 8091.72 4798.71 19297.10 3399.17 7698.90 104
PLCcopyleft91.00 694.11 12793.43 13896.13 11998.58 6891.15 14496.69 20397.39 18387.29 29391.37 21196.71 16488.39 10499.52 9587.33 26097.13 15697.73 190
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
原ACMM196.38 9998.59 6691.09 14597.89 10787.41 29095.22 12497.68 10790.25 7699.54 8987.95 24199.12 8398.49 137
1112_ss93.37 15492.42 17596.21 11497.05 16490.99 14696.31 23796.72 24186.87 30189.83 25396.69 16886.51 13699.14 13888.12 23893.67 22598.50 135
DP-MVS92.76 18391.51 20496.52 8298.77 5390.99 14697.38 14096.08 27682.38 35889.29 27197.87 9383.77 17399.69 5281.37 33596.69 16598.89 107
VPNet92.23 20391.31 20994.99 17895.56 24890.96 14897.22 15997.86 11592.96 11490.96 22596.62 17875.06 30798.20 23591.90 16283.65 35095.80 260
bld_raw_dy_0_6494.33 11793.90 11995.62 14897.64 13190.95 14995.17 29897.47 16582.34 35991.28 21996.84 16089.10 9099.04 16096.27 5499.00 9196.85 226
XXY-MVS92.16 20591.23 21494.95 18394.75 30190.94 15097.47 13097.43 18089.14 23188.90 27896.43 18679.71 25198.24 23189.56 21187.68 30095.67 271
EI-MVSNet-UG-set96.34 6196.30 6096.47 9098.20 9390.93 15196.86 18597.72 13194.67 4796.16 9598.46 4290.43 7599.58 7796.23 5797.96 13098.90 104
jason94.84 10794.39 11396.18 11795.52 25090.93 15196.09 25096.52 25689.28 22796.01 10297.32 13184.70 15998.77 18495.15 9998.91 9698.85 110
jason: jason.
PVSNet_Blended_VisFu95.27 9194.91 9596.38 9998.20 9390.86 15397.27 15198.25 4590.21 20094.18 14597.27 13687.48 12399.73 4293.53 13297.77 13598.55 129
mvsmamba93.83 13993.46 13594.93 18694.88 29590.85 15498.55 1495.49 30294.24 6391.29 21896.97 15283.04 18998.14 24195.56 9391.17 26395.78 262
WR-MVS92.34 19591.53 20194.77 19595.13 28190.83 15596.40 22997.98 10091.88 14489.29 27195.54 23682.50 20397.80 29389.79 20585.27 32595.69 270
PatchMatch-RL92.90 17692.02 18595.56 15198.19 9590.80 15695.27 29397.18 19887.96 27191.86 20095.68 22880.44 23798.99 16384.01 30897.54 13996.89 225
pmmvs490.93 26189.85 27194.17 22493.34 34890.79 15794.60 31096.02 27784.62 33687.45 31195.15 24981.88 21797.45 32487.70 24887.87 29994.27 344
OPM-MVS93.28 15792.76 15794.82 18894.63 30790.77 15896.65 20797.18 19893.72 7791.68 20597.26 13779.33 25898.63 19992.13 15892.28 24295.07 302
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
baseline192.82 18191.90 18995.55 15397.20 15290.77 15897.19 16194.58 34092.20 13392.36 18496.34 19184.16 16998.21 23489.20 22383.90 34897.68 193
iter_conf05_1196.17 6596.16 6496.21 11497.48 14590.74 16098.14 4997.80 12292.80 11997.34 4897.29 13388.54 10299.10 14296.40 5299.64 1498.80 115
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11697.64 13190.72 16198.00 6198.73 994.55 5098.91 1399.08 388.22 10699.63 6798.91 998.37 11698.25 156
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11895.48 25290.69 16297.91 7698.33 2994.07 6698.93 999.14 187.44 12499.61 6998.63 1398.32 11898.18 162
PAPM_NR95.01 9894.59 10296.26 11098.89 5190.68 16397.24 15497.73 12991.80 14592.93 17796.62 17889.13 8999.14 13889.21 22297.78 13498.97 93
PS-MVSNAJ95.37 8895.33 8695.49 15797.35 14890.66 16495.31 29097.48 16293.85 7496.51 7995.70 22788.65 9899.65 5894.80 10998.27 12096.17 244
IS-MVSNet94.90 10494.52 10896.05 12397.67 12790.56 16598.44 2296.22 27093.21 9793.99 14997.74 10485.55 15098.45 21489.98 19997.86 13199.14 76
MG-MVS95.61 8395.38 8496.31 10398.42 7390.53 16696.04 25297.48 16293.47 8995.67 11498.10 7389.17 8899.25 12391.27 17998.77 9999.13 77
xiu_mvs_v2_base95.32 9095.29 8795.40 16297.22 15090.50 16795.44 28497.44 17793.70 7996.46 8396.18 19788.59 10199.53 9194.79 11197.81 13396.17 244
CSCG96.05 7095.91 7096.46 9299.24 2890.47 16898.30 2998.57 1889.01 23693.97 15197.57 11992.62 3499.76 3894.66 11299.27 6599.15 75
casdiffmvspermissive95.64 8295.49 7796.08 12096.76 18690.45 16997.29 15097.44 17794.00 6895.46 12197.98 8587.52 12298.73 18895.64 8697.33 14899.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TAMVS94.01 13293.46 13595.64 14596.16 22390.45 16996.71 20096.89 23189.27 22893.46 16296.92 15687.29 12797.94 27988.70 23395.74 18198.53 131
baseline95.58 8495.42 8296.08 12096.78 18190.41 17197.16 16497.45 17393.69 8095.65 11597.85 9687.29 12798.68 19495.66 8297.25 15299.13 77
VDDNet93.05 16892.07 18296.02 12696.84 17590.39 17298.08 5395.85 28486.22 31295.79 10998.46 4267.59 35699.19 12894.92 10494.85 19798.47 140
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 12498.07 10590.28 17397.97 6998.76 894.93 3098.84 1699.06 488.80 9599.65 5899.06 798.63 10498.18 162
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12896.67 18890.25 17497.91 7698.38 2394.48 5498.84 1699.14 188.06 10899.62 6898.82 1198.60 10698.15 166
h-mvs3394.15 12393.52 13296.04 12497.81 12190.22 17597.62 11497.58 15095.19 2096.74 6697.45 12583.67 17599.61 6995.85 7679.73 36898.29 155
tfpnnormal89.70 29788.40 30293.60 25695.15 27990.10 17697.56 11898.16 6187.28 29486.16 33394.63 27377.57 28798.05 25874.48 37184.59 33792.65 365
Fast-Effi-MVS+93.46 15192.75 15995.59 15096.77 18390.03 17796.81 19197.13 20288.19 26591.30 21594.27 29486.21 14198.63 19987.66 25296.46 17198.12 168
plane_prior696.10 22990.00 17881.32 224
plane_prior390.00 17894.46 5591.34 212
HQP_MVS93.78 14293.43 13894.82 18896.21 21889.99 18097.74 9497.51 15994.85 3491.34 21296.64 17181.32 22498.60 20293.02 14692.23 24395.86 254
plane_prior89.99 18097.24 15494.06 6792.16 247
plane_prior796.21 21889.98 182
Test_1112_low_res92.84 18091.84 19195.85 13497.04 16589.97 18395.53 28096.64 24985.38 32389.65 25995.18 24885.86 14699.10 14287.70 24893.58 23098.49 137
VDD-MVS93.82 14093.08 14696.02 12697.88 11889.96 18497.72 9995.85 28492.43 12795.86 10698.44 4468.42 35399.39 11196.31 5394.85 19798.71 121
HyFIR lowres test93.66 14592.92 15195.87 13298.24 8789.88 18594.58 31198.49 1985.06 33093.78 15495.78 22282.86 19498.67 19591.77 16795.71 18399.07 85
PAPM91.52 23190.30 25095.20 16795.30 26989.83 18693.38 35496.85 23586.26 31188.59 28795.80 21884.88 15798.15 24075.67 36795.93 17797.63 194
NP-MVS95.99 23389.81 18795.87 213
GeoE93.89 13693.28 14395.72 14296.96 17189.75 18898.24 3996.92 22889.47 22292.12 19397.21 14084.42 16398.39 22187.71 24796.50 16899.01 89
EIA-MVS95.53 8695.47 7895.71 14397.06 16289.63 18997.82 8797.87 11193.57 8193.92 15295.04 25390.61 7398.95 16594.62 11498.68 10298.54 130
pm-mvs190.72 26889.65 28193.96 23794.29 32189.63 18997.79 9196.82 23789.07 23386.12 33495.48 23978.61 27297.78 29586.97 26881.67 36094.46 335
TAPA-MVS90.10 792.30 19891.22 21595.56 15198.33 8089.60 19196.79 19297.65 13981.83 36391.52 20797.23 13987.94 11198.91 17071.31 38498.37 11698.17 165
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVSTER93.20 16092.81 15694.37 21396.56 19689.59 19297.06 16997.12 20391.24 16491.30 21595.96 20982.02 21398.05 25893.48 13490.55 27495.47 276
EPP-MVSNet95.22 9495.04 9395.76 13697.49 14489.56 19398.67 1097.00 21990.69 18394.24 14397.62 11689.79 8398.81 17993.39 13896.49 16998.92 100
anonymousdsp92.16 20591.55 20093.97 23692.58 36289.55 19497.51 12397.42 18189.42 22488.40 29194.84 26280.66 23397.88 28791.87 16491.28 26194.48 334
MVS_Test94.89 10594.62 10195.68 14496.83 17789.55 19496.70 20197.17 20091.17 16895.60 11696.11 20687.87 11398.76 18593.01 14897.17 15598.72 119
LTVRE_ROB88.41 1390.99 25789.92 26994.19 22396.18 22189.55 19496.31 23797.09 20787.88 27485.67 33695.91 21278.79 27098.57 20681.50 33089.98 27994.44 337
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
131492.81 18292.03 18495.14 17095.33 26689.52 19796.04 25297.44 17787.72 28386.25 33295.33 24283.84 17298.79 18089.26 21997.05 15797.11 218
thres600view792.49 18991.60 19895.18 16897.91 11689.47 19897.65 10694.66 33792.18 13793.33 16594.91 25878.06 28299.10 14281.61 32994.06 22096.98 220
WR-MVS_H92.00 21091.35 20693.95 23895.09 28389.47 19898.04 5798.68 1391.46 15588.34 29294.68 27085.86 14697.56 31385.77 28784.24 34294.82 319
PVSNet_BlendedMVS94.06 12993.92 11894.47 20898.27 8389.46 20096.73 19798.36 2490.17 20194.36 14095.24 24788.02 10999.58 7793.44 13590.72 27294.36 339
PVSNet_Blended94.87 10694.56 10495.81 13598.27 8389.46 20095.47 28398.36 2488.84 24494.36 14096.09 20788.02 10999.58 7793.44 13598.18 12498.40 148
Anonymous2024052991.98 21190.73 23495.73 14198.14 9989.40 20297.99 6297.72 13179.63 37793.54 15997.41 12969.94 34299.56 8591.04 18491.11 26598.22 158
CHOSEN 1792x268894.15 12393.51 13396.06 12298.27 8389.38 20395.18 29798.48 2185.60 32093.76 15597.11 14683.15 18599.61 6991.33 17798.72 10199.19 71
thres100view90092.43 19091.58 19994.98 18097.92 11589.37 20497.71 10194.66 33792.20 13393.31 16694.90 25978.06 28299.08 14981.40 33294.08 21696.48 236
diffmvspermissive95.25 9295.13 9195.63 14696.43 21089.34 20595.99 25697.35 18992.83 11796.31 8797.37 13086.44 13798.67 19596.26 5597.19 15498.87 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP5-MVS89.33 206
HQP-MVS93.19 16192.74 16094.54 20695.86 23589.33 20696.65 20797.39 18393.55 8290.14 23795.87 21380.95 22798.50 21092.13 15892.10 24895.78 262
tfpn200view992.38 19391.52 20294.95 18397.85 11989.29 20897.41 13394.88 33192.19 13593.27 16894.46 28378.17 27899.08 14981.40 33294.08 21696.48 236
thres40092.42 19191.52 20295.12 17297.85 11989.29 20897.41 13394.88 33192.19 13593.27 16894.46 28378.17 27899.08 14981.40 33294.08 21696.98 220
PS-MVSNAJss93.74 14393.51 13394.44 21093.91 32989.28 21097.75 9397.56 15592.50 12589.94 24996.54 18188.65 9898.18 23893.83 13090.90 27095.86 254
gg-mvs-nofinetune87.82 31685.61 32894.44 21094.46 31389.27 21191.21 37784.61 40380.88 36989.89 25274.98 39971.50 32997.53 31785.75 28897.21 15396.51 234
sd_testset93.10 16592.45 17495.05 17498.09 10189.21 21296.89 18397.64 14293.18 10191.79 20197.28 13475.35 30698.65 19788.99 22792.84 23497.28 213
GG-mvs-BLEND93.62 25593.69 33689.20 21392.39 37083.33 40587.98 30489.84 37371.00 33396.87 34882.08 32895.40 18994.80 322
CLD-MVS92.98 17192.53 17094.32 21796.12 22889.20 21395.28 29197.47 16592.66 12289.90 25095.62 23180.58 23498.40 21792.73 15092.40 24195.38 284
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023121190.63 27189.42 28694.27 22298.24 8789.19 21598.05 5697.89 10779.95 37588.25 29794.96 25572.56 32598.13 24289.70 20785.14 32795.49 273
cascas91.20 24890.08 26194.58 20494.97 28689.16 21693.65 34897.59 14979.90 37689.40 26692.92 33775.36 30598.36 22392.14 15794.75 20296.23 240
thisisatest053093.03 16992.21 18095.49 15797.07 15989.11 21797.49 12992.19 37590.16 20294.09 14796.41 18776.43 29799.05 15790.38 19395.68 18498.31 154
thres20092.23 20391.39 20594.75 19797.61 13589.03 21896.60 21595.09 32192.08 13993.28 16794.00 30778.39 27699.04 16081.26 33794.18 21296.19 243
F-COLMAP93.58 14792.98 14995.37 16398.40 7588.98 21997.18 16297.29 19487.75 28290.49 23197.10 14785.21 15399.50 9986.70 27096.72 16497.63 194
MSDG91.42 23590.24 25494.96 18297.15 15688.91 22093.69 34696.32 26585.72 31986.93 32696.47 18480.24 24198.98 16480.57 33995.05 19696.98 220
thisisatest051592.29 19991.30 21095.25 16696.60 19188.90 22194.36 32192.32 37487.92 27293.43 16394.57 27577.28 28999.00 16289.42 21495.86 17997.86 183
testdata95.46 16198.18 9788.90 22197.66 13782.73 35697.03 5898.07 7690.06 7898.85 17589.67 20898.98 9298.64 125
Anonymous20240521192.07 20890.83 22995.76 13698.19 9588.75 22397.58 11695.00 32486.00 31593.64 15697.45 12566.24 36799.53 9190.68 19092.71 23799.01 89
ACMM89.79 892.96 17292.50 17294.35 21496.30 21688.71 22497.58 11697.36 18891.40 15990.53 23096.65 17079.77 25098.75 18691.24 18091.64 25395.59 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_djsdf93.07 16792.76 15794.00 23393.49 34388.70 22598.22 4197.57 15191.42 15790.08 24795.55 23582.85 19597.92 28294.07 12191.58 25595.40 282
XVG-OURS93.72 14493.35 14194.80 19397.07 15988.61 22694.79 30697.46 16891.97 14393.99 14997.86 9581.74 21998.88 17292.64 15192.67 23996.92 224
hse-mvs293.45 15292.99 14894.81 19097.02 16688.59 22796.69 20396.47 25995.19 2096.74 6696.16 20083.67 17598.48 21395.85 7679.13 37297.35 210
AUN-MVS91.76 21790.75 23294.81 19097.00 16888.57 22896.65 20796.49 25889.63 21692.15 19196.12 20278.66 27198.50 21090.83 18579.18 37197.36 208
CP-MVSNet91.89 21491.24 21393.82 24595.05 28488.57 22897.82 8798.19 5591.70 14888.21 29895.76 22381.96 21497.52 31987.86 24284.65 33495.37 285
FA-MVS(test-final)93.52 15092.92 15195.31 16496.77 18388.54 23094.82 30596.21 27289.61 21794.20 14495.25 24683.24 18299.14 13890.01 19896.16 17398.25 156
XVG-OURS-SEG-HR93.86 13893.55 12894.81 19097.06 16288.53 23195.28 29197.45 17391.68 14994.08 14897.68 10782.41 20698.90 17193.84 12992.47 24096.98 220
jajsoiax92.42 19191.89 19094.03 23293.33 34988.50 23297.73 9697.53 15792.00 14288.85 28196.50 18375.62 30498.11 24693.88 12891.56 25695.48 274
V4291.58 22790.87 22493.73 24994.05 32688.50 23297.32 14796.97 22088.80 24989.71 25594.33 28982.54 20298.05 25889.01 22685.07 32994.64 332
TransMVSNet (Re)88.94 30387.56 30993.08 27794.35 31788.45 23497.73 9695.23 31587.47 28884.26 34995.29 24379.86 24997.33 33279.44 34974.44 38393.45 355
tt080591.09 25290.07 26494.16 22595.61 24588.31 23597.56 11896.51 25789.56 21889.17 27595.64 23067.08 36398.38 22291.07 18388.44 29595.80 260
mvs_tets92.31 19791.76 19293.94 24093.41 34688.29 23697.63 11297.53 15792.04 14088.76 28496.45 18574.62 31298.09 25093.91 12691.48 25795.45 278
PS-CasMVS91.55 22990.84 22893.69 25394.96 28788.28 23797.84 8498.24 4791.46 15588.04 30295.80 21879.67 25297.48 32187.02 26784.54 33995.31 289
LPG-MVS_test92.94 17492.56 16794.10 22796.16 22388.26 23897.65 10697.46 16891.29 16090.12 24397.16 14379.05 26298.73 18892.25 15491.89 25195.31 289
LGP-MVS_train94.10 22796.16 22388.26 23897.46 16891.29 16090.12 24397.16 14379.05 26298.73 18892.25 15491.89 25195.31 289
v114491.37 23990.60 23993.68 25493.89 33088.23 24096.84 18897.03 21788.37 26189.69 25794.39 28582.04 21297.98 26787.80 24485.37 32294.84 316
MVP-Stereo90.74 26790.08 26192.71 29093.19 35188.20 24195.86 26296.27 26786.07 31484.86 34494.76 26677.84 28597.75 29883.88 31298.01 12892.17 374
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMP89.59 1092.62 18692.14 18194.05 23096.40 21188.20 24197.36 14197.25 19791.52 15288.30 29496.64 17178.46 27498.72 19191.86 16591.48 25795.23 296
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v2v48291.59 22590.85 22793.80 24693.87 33188.17 24396.94 18096.88 23289.54 21989.53 26394.90 25981.70 22098.02 26389.25 22085.04 33195.20 297
v1091.04 25590.23 25593.49 26194.12 32388.16 24497.32 14797.08 20888.26 26488.29 29594.22 29982.17 21197.97 27086.45 27484.12 34394.33 340
v891.29 24590.53 24393.57 25994.15 32288.12 24597.34 14397.06 21288.99 23788.32 29394.26 29683.08 18798.01 26487.62 25483.92 34794.57 333
Baseline_NR-MVSNet91.20 24890.62 23892.95 28193.83 33288.03 24697.01 17595.12 32088.42 26089.70 25695.13 25183.47 17897.44 32589.66 20983.24 35393.37 356
BH-RMVSNet92.72 18591.97 18794.97 18197.16 15487.99 24796.15 24895.60 29790.62 19091.87 19997.15 14578.41 27598.57 20683.16 31597.60 13898.36 152
FE-MVS92.05 20991.05 21995.08 17396.83 17787.93 24893.91 33995.70 29086.30 30994.15 14694.97 25476.59 29399.21 12684.10 30696.86 15898.09 172
Vis-MVSNet (Re-imp)94.15 12393.88 12094.95 18397.61 13587.92 24998.10 5195.80 28692.22 13193.02 17197.45 12584.53 16297.91 28588.24 23797.97 12999.02 86
ACMH87.59 1690.53 27389.42 28693.87 24396.21 21887.92 24997.24 15496.94 22388.45 25983.91 35696.27 19471.92 32698.62 20184.43 30389.43 28595.05 304
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS91.20 24890.44 24493.48 26294.49 31287.91 25197.76 9298.18 5791.29 16087.78 30695.74 22480.35 23997.33 33285.46 29182.96 35595.19 300
UniMVSNet_ETH3D91.34 24290.22 25794.68 19894.86 29687.86 25297.23 15897.46 16887.99 27089.90 25096.92 15666.35 36598.23 23290.30 19590.99 26897.96 177
ETVMVS90.52 27489.14 29394.67 19996.81 18087.85 25395.91 26093.97 35589.71 21592.34 18792.48 34465.41 37197.96 27481.37 33594.27 21098.21 160
v119291.07 25390.23 25593.58 25893.70 33587.82 25496.73 19797.07 21087.77 28089.58 26094.32 29180.90 23197.97 27086.52 27285.48 32094.95 306
MIMVSNet88.50 31086.76 32093.72 25194.84 29787.77 25591.39 37394.05 35286.41 30887.99 30392.59 34263.27 37595.82 36377.44 35692.84 23497.57 201
IB-MVS87.33 1789.91 28988.28 30494.79 19495.26 27387.70 25695.12 30093.95 35689.35 22687.03 32192.49 34370.74 33599.19 12889.18 22481.37 36297.49 203
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GA-MVS91.38 23790.31 24994.59 20094.65 30687.62 25794.34 32296.19 27390.73 18190.35 23493.83 31171.84 32797.96 27487.22 26293.61 22898.21 160
v7n90.76 26589.86 27093.45 26493.54 34087.60 25897.70 10297.37 18688.85 24387.65 30894.08 30581.08 22698.10 24784.68 30083.79 34994.66 331
TR-MVS91.48 23390.59 24094.16 22596.40 21187.33 25995.67 27295.34 31087.68 28491.46 20995.52 23776.77 29298.35 22482.85 32093.61 22896.79 229
testing22290.31 27888.96 29594.35 21496.54 19987.29 26095.50 28193.84 35990.97 17591.75 20392.96 33662.18 38098.00 26582.86 31894.08 21697.76 189
FMVSNet587.29 32185.79 32791.78 31494.80 29987.28 26195.49 28295.28 31184.09 34283.85 35791.82 35762.95 37794.17 38078.48 35285.34 32493.91 349
CHOSEN 280x42093.12 16492.72 16294.34 21696.71 18787.27 26290.29 38297.72 13186.61 30591.34 21295.29 24384.29 16798.41 21693.25 13998.94 9497.35 210
pmmvs-eth3d86.22 33284.45 33991.53 31988.34 39087.25 26394.47 31595.01 32383.47 35179.51 37789.61 37469.75 34495.71 36483.13 31676.73 37991.64 375
DTE-MVSNet90.56 27289.75 27793.01 27893.95 32787.25 26397.64 11097.65 13990.74 18087.12 31895.68 22879.97 24797.00 34483.33 31481.66 36194.78 326
v14419291.06 25490.28 25193.39 26593.66 33887.23 26596.83 18997.07 21087.43 28989.69 25794.28 29381.48 22298.00 26587.18 26484.92 33394.93 310
CR-MVSNet90.82 26489.77 27593.95 23894.45 31487.19 26690.23 38395.68 29486.89 30092.40 18192.36 34980.91 22997.05 34081.09 33893.95 22197.60 199
RPMNet88.98 30287.05 31694.77 19594.45 31487.19 26690.23 38398.03 9177.87 38592.40 18187.55 38880.17 24399.51 9668.84 38993.95 22197.60 199
tttt051792.96 17292.33 17794.87 18797.11 15787.16 26897.97 6992.09 37690.63 18993.88 15397.01 15176.50 29499.06 15690.29 19695.45 18898.38 150
COLMAP_ROBcopyleft87.81 1590.40 27789.28 28993.79 24797.95 11287.13 26996.92 18195.89 28382.83 35586.88 32897.18 14273.77 31999.29 12178.44 35393.62 22794.95 306
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
miper_enhance_ethall91.54 23091.01 22193.15 27495.35 26287.07 27093.97 33496.90 22986.79 30289.17 27593.43 33286.55 13597.64 30689.97 20086.93 30794.74 328
EI-MVSNet93.03 16992.88 15393.48 26295.77 24086.98 27196.44 22197.12 20390.66 18791.30 21597.64 11486.56 13498.05 25889.91 20190.55 27495.41 279
IterMVS-LS92.29 19991.94 18893.34 26796.25 21786.97 27296.57 21997.05 21390.67 18589.50 26594.80 26586.59 13397.64 30689.91 20186.11 31595.40 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192090.85 26390.03 26693.29 26993.55 33986.96 27396.74 19697.04 21587.36 29189.52 26494.34 28880.23 24297.97 27086.27 27585.21 32694.94 308
mvsany_test193.93 13593.98 11793.78 24894.94 29086.80 27494.62 30992.55 37388.77 25096.85 6198.49 3888.98 9198.08 25195.03 10195.62 18596.46 238
cl2291.21 24790.56 24293.14 27596.09 23086.80 27494.41 31996.58 25587.80 27888.58 28893.99 30880.85 23297.62 30989.87 20386.93 30794.99 305
v124090.70 26989.85 27193.23 27193.51 34286.80 27496.61 21397.02 21887.16 29689.58 26094.31 29279.55 25597.98 26785.52 29085.44 32194.90 313
PMMVS92.86 17892.34 17694.42 21294.92 29186.73 27794.53 31396.38 26384.78 33594.27 14295.12 25283.13 18698.40 21791.47 17596.49 16998.12 168
AllTest90.23 28288.98 29493.98 23497.94 11386.64 27896.51 22095.54 30085.38 32385.49 33896.77 16270.28 33799.15 13680.02 34392.87 23296.15 246
TestCases93.98 23497.94 11386.64 27895.54 30085.38 32385.49 33896.77 16270.28 33799.15 13680.02 34392.87 23296.15 246
Patchmtry88.64 30987.25 31292.78 28894.09 32486.64 27889.82 38795.68 29480.81 37187.63 30992.36 34980.91 22997.03 34178.86 35185.12 32894.67 330
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16998.09 10186.63 28196.00 25598.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 4099.48 4099.45 47
miper_ehance_all_eth91.59 22591.13 21892.97 28095.55 24986.57 28294.47 31596.88 23287.77 28088.88 28094.01 30686.22 14097.54 31589.49 21286.93 30794.79 324
testing1191.68 22190.75 23294.47 20896.53 20186.56 28395.76 26994.51 34291.10 17291.24 22293.59 32368.59 35098.86 17391.10 18294.29 20998.00 176
testing9191.90 21391.02 22094.53 20796.54 19986.55 28495.86 26295.64 29691.77 14691.89 19893.47 32869.94 34298.86 17390.23 19793.86 22398.18 162
test_cas_vis1_n_192094.48 11494.55 10794.28 22196.78 18186.45 28597.63 11297.64 14293.32 9597.68 3898.36 5073.75 32099.08 14996.73 4199.05 8797.31 212
ACMH+87.92 1490.20 28489.18 29193.25 27096.48 20686.45 28596.99 17696.68 24688.83 24584.79 34596.22 19670.16 33998.53 20884.42 30488.04 29794.77 327
baseline291.63 22290.86 22593.94 24094.33 31886.32 28795.92 25991.64 38089.37 22586.94 32594.69 26981.62 22198.69 19388.64 23494.57 20696.81 228
c3_l91.38 23790.89 22392.88 28495.58 24786.30 28894.68 30896.84 23688.17 26688.83 28394.23 29785.65 14997.47 32289.36 21584.63 33594.89 314
pmmvs687.81 31786.19 32492.69 29191.32 37286.30 28897.34 14396.41 26280.59 37484.05 35594.37 28767.37 35897.67 30384.75 29979.51 37094.09 347
pmmvs589.86 29488.87 29792.82 28692.86 35586.23 29096.26 24095.39 30484.24 34087.12 31894.51 27874.27 31497.36 33187.61 25587.57 30194.86 315
cl____90.96 26090.32 24892.89 28395.37 26086.21 29194.46 31796.64 24987.82 27688.15 30094.18 30082.98 19197.54 31587.70 24885.59 31894.92 312
DIV-MVS_self_test90.97 25990.33 24792.88 28495.36 26186.19 29294.46 31796.63 25287.82 27688.18 29994.23 29782.99 19097.53 31787.72 24585.57 31994.93 310
BH-untuned92.94 17492.62 16593.92 24297.22 15086.16 29396.40 22996.25 26990.06 20589.79 25496.17 19983.19 18398.35 22487.19 26397.27 15197.24 215
testing9991.62 22390.72 23594.32 21796.48 20686.11 29495.81 26594.76 33591.55 15191.75 20393.44 32968.55 35198.82 17790.43 19193.69 22498.04 175
XVG-ACMP-BASELINE90.93 26190.21 25893.09 27694.31 32085.89 29595.33 28897.26 19591.06 17389.38 26795.44 24068.61 34998.60 20289.46 21391.05 26694.79 324
v14890.99 25790.38 24692.81 28793.83 33285.80 29696.78 19496.68 24689.45 22388.75 28593.93 31082.96 19397.82 29287.83 24383.25 35294.80 322
BH-w/o92.14 20791.75 19393.31 26896.99 17085.73 29795.67 27295.69 29288.73 25189.26 27394.82 26482.97 19298.07 25585.26 29496.32 17296.13 248
test0.0.03 189.37 30088.70 29891.41 32392.47 36485.63 29895.22 29692.70 37191.11 17086.91 32793.65 32179.02 26493.19 38978.00 35589.18 28795.41 279
test_040286.46 32884.79 33791.45 32195.02 28585.55 29996.29 23994.89 33080.90 36882.21 36493.97 30968.21 35497.29 33462.98 39388.68 29391.51 378
D2MVS91.30 24490.95 22292.35 29694.71 30485.52 30096.18 24798.21 5188.89 24286.60 32993.82 31379.92 24897.95 27889.29 21890.95 26993.56 352
Fast-Effi-MVS+-dtu92.29 19991.99 18693.21 27395.27 27085.52 30097.03 17096.63 25292.09 13889.11 27795.14 25080.33 24098.08 25187.54 25694.74 20396.03 252
ECVR-MVScopyleft93.19 16192.73 16194.57 20597.66 12985.41 30298.21 4388.23 39493.43 9094.70 13298.21 6772.57 32499.07 15393.05 14598.49 11099.25 68
mvs_anonymous93.82 14093.74 12294.06 22996.44 20985.41 30295.81 26597.05 21389.85 21190.09 24696.36 19087.44 12497.75 29893.97 12396.69 16599.02 86
patch_mono-296.83 4197.44 1395.01 17799.05 3985.39 30496.98 17798.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 2099.50 3699.72 11
ITE_SJBPF92.43 29595.34 26385.37 30595.92 27991.47 15487.75 30796.39 18971.00 33397.96 27482.36 32689.86 28193.97 348
KD-MVS_2432*160084.81 34382.64 34791.31 32491.07 37485.34 30691.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
miper_refine_blended84.81 34382.64 34791.31 32491.07 37485.34 30691.22 37595.75 28885.56 32183.09 36090.21 36967.21 35995.89 35977.18 36062.48 39992.69 363
dmvs_re90.21 28389.50 28492.35 29695.47 25585.15 30895.70 27194.37 34690.94 17688.42 29093.57 32474.63 31195.67 36682.80 32189.57 28496.22 241
Patchmatch-test89.42 29987.99 30693.70 25295.27 27085.11 30988.98 39094.37 34681.11 36787.10 32093.69 31782.28 20897.50 32074.37 37394.76 20198.48 139
PatchT88.87 30687.42 31093.22 27294.08 32585.10 31089.51 38894.64 33981.92 36292.36 18488.15 38480.05 24597.01 34372.43 38093.65 22697.54 202
EG-PatchMatch MVS87.02 32585.44 32991.76 31692.67 35985.00 31196.08 25196.45 26083.41 35279.52 37693.49 32657.10 38697.72 30079.34 35090.87 27192.56 366
USDC88.94 30387.83 30892.27 30094.66 30584.96 31293.86 34095.90 28187.34 29283.40 35895.56 23467.43 35798.19 23782.64 32589.67 28393.66 351
SCA91.84 21591.18 21793.83 24495.59 24684.95 31394.72 30795.58 29990.82 17792.25 18993.69 31775.80 30198.10 24786.20 27795.98 17598.45 142
ADS-MVSNet89.89 29188.68 29993.53 26095.86 23584.89 31490.93 37895.07 32283.23 35391.28 21991.81 35879.01 26697.85 28879.52 34591.39 25997.84 184
MIMVSNet184.93 34283.05 34490.56 33989.56 38384.84 31595.40 28595.35 30783.91 34380.38 37292.21 35357.23 38593.34 38870.69 38782.75 35893.50 353
MS-PatchMatch90.27 28089.77 27591.78 31494.33 31884.72 31695.55 27896.73 24086.17 31386.36 33195.28 24571.28 33197.80 29384.09 30798.14 12692.81 362
test111193.19 16192.82 15594.30 22097.58 14284.56 31798.21 4389.02 39293.53 8694.58 13598.21 6772.69 32399.05 15793.06 14498.48 11299.28 65
eth_miper_zixun_eth91.02 25690.59 24092.34 29895.33 26684.35 31894.10 33196.90 22988.56 25588.84 28294.33 28984.08 17097.60 31188.77 23284.37 34195.06 303
TDRefinement86.53 32784.76 33891.85 30982.23 40284.25 31996.38 23195.35 30784.97 33284.09 35394.94 25665.76 37098.34 22784.60 30274.52 38292.97 359
EPMVS90.70 26989.81 27393.37 26694.73 30384.21 32093.67 34788.02 39589.50 22192.38 18393.49 32677.82 28697.78 29586.03 28392.68 23898.11 171
IterMVS-SCA-FT90.31 27889.81 27391.82 31195.52 25084.20 32194.30 32596.15 27490.61 19187.39 31494.27 29475.80 30196.44 35387.34 25986.88 31194.82 319
dcpmvs_296.37 6097.05 2294.31 21998.96 4684.11 32297.56 11897.51 15993.92 7197.43 4598.52 3592.75 3099.32 11797.32 3299.50 3699.51 37
PatchmatchNetpermissive91.91 21291.35 20693.59 25795.38 25884.11 32293.15 35895.39 30489.54 21992.10 19493.68 31982.82 19698.13 24284.81 29895.32 19098.52 132
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
OpenMVS_ROBcopyleft81.14 2084.42 34582.28 35190.83 33290.06 37984.05 32495.73 27094.04 35373.89 39180.17 37591.53 36159.15 38297.64 30666.92 39189.05 28890.80 384
test250691.60 22490.78 23094.04 23197.66 12983.81 32598.27 3375.53 40993.43 9095.23 12398.21 6767.21 35999.07 15393.01 14898.49 11099.25 68
miper_lstm_enhance90.50 27690.06 26591.83 31095.33 26683.74 32693.86 34096.70 24587.56 28787.79 30593.81 31483.45 18096.92 34687.39 25884.62 33694.82 319
IterMVS90.15 28689.67 27991.61 31895.48 25283.72 32794.33 32396.12 27589.99 20687.31 31794.15 30275.78 30396.27 35686.97 26886.89 31094.83 317
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPNet_dtu91.71 21891.28 21192.99 27993.76 33483.71 32896.69 20395.28 31193.15 10387.02 32295.95 21083.37 18197.38 33079.46 34896.84 15997.88 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet86.66 1892.24 20291.74 19593.73 24997.77 12383.69 32992.88 36396.72 24187.91 27393.00 17294.86 26178.51 27399.05 15786.53 27197.45 14498.47 140
ppachtmachnet_test88.35 31287.29 31191.53 31992.45 36583.57 33093.75 34395.97 27884.28 33985.32 34194.18 30079.00 26896.93 34575.71 36684.99 33294.10 345
MDA-MVSNet-bldmvs85.00 34182.95 34691.17 32993.13 35383.33 33194.56 31295.00 32484.57 33765.13 39892.65 33970.45 33695.85 36173.57 37777.49 37594.33 340
Effi-MVS+-dtu93.08 16693.21 14592.68 29296.02 23283.25 33297.14 16696.72 24193.85 7491.20 22493.44 32983.08 18798.30 22891.69 17195.73 18296.50 235
WB-MVSnew89.88 29289.56 28290.82 33394.57 31183.06 33395.65 27592.85 36887.86 27590.83 22794.10 30379.66 25396.88 34776.34 36394.19 21192.54 367
TinyColmap86.82 32685.35 33291.21 32694.91 29382.99 33493.94 33694.02 35483.58 34981.56 36694.68 27062.34 37998.13 24275.78 36587.35 30692.52 368
test_vis1_n92.37 19492.26 17992.72 28994.75 30182.64 33598.02 5896.80 23891.18 16797.77 3797.93 8858.02 38498.29 22997.63 2198.21 12297.23 216
MDA-MVSNet_test_wron85.87 33784.23 34190.80 33692.38 36782.57 33693.17 35695.15 31882.15 36067.65 39492.33 35278.20 27795.51 37077.33 35779.74 36794.31 342
our_test_388.78 30787.98 30791.20 32892.45 36582.53 33793.61 35095.69 29285.77 31884.88 34393.71 31679.99 24696.78 35179.47 34786.24 31294.28 343
UnsupCasMVSNet_bld82.13 35279.46 35790.14 34588.00 39182.47 33890.89 38096.62 25478.94 38075.61 38484.40 39456.63 38796.31 35577.30 35966.77 39691.63 376
YYNet185.87 33784.23 34190.78 33792.38 36782.46 33993.17 35695.14 31982.12 36167.69 39292.36 34978.16 28095.50 37177.31 35879.73 36894.39 338
UnsupCasMVSNet_eth85.99 33584.45 33990.62 33889.97 38082.40 34093.62 34997.37 18689.86 20978.59 38092.37 34665.25 37295.35 37382.27 32770.75 38994.10 345
ADS-MVSNet289.45 29888.59 30092.03 30595.86 23582.26 34190.93 37894.32 34983.23 35391.28 21991.81 35879.01 26695.99 35879.52 34591.39 25997.84 184
EGC-MVSNET68.77 36763.01 37386.07 36892.49 36382.24 34293.96 33590.96 3850.71 4132.62 41490.89 36453.66 39093.46 38657.25 39884.55 33882.51 394
test_vis1_n_192094.17 12194.58 10392.91 28297.42 14782.02 34397.83 8597.85 11694.68 4698.10 2998.49 3870.15 34099.32 11797.91 1798.82 9797.40 207
LCM-MVSNet-Re92.50 18792.52 17192.44 29496.82 17981.89 34496.92 18193.71 36192.41 12884.30 34894.60 27485.08 15597.03 34191.51 17397.36 14698.40 148
CostFormer91.18 25190.70 23692.62 29394.84 29781.76 34594.09 33294.43 34384.15 34192.72 17993.77 31579.43 25698.20 23590.70 18992.18 24697.90 180
CL-MVSNet_self_test86.31 33185.15 33389.80 34988.83 38781.74 34693.93 33796.22 27086.67 30385.03 34290.80 36578.09 28194.50 37674.92 37071.86 38893.15 358
JIA-IIPM88.26 31387.04 31791.91 30793.52 34181.42 34789.38 38994.38 34580.84 37090.93 22680.74 39679.22 25997.92 28282.76 32291.62 25496.38 239
OurMVSNet-221017-090.51 27590.19 25991.44 32293.41 34681.25 34896.98 17796.28 26691.68 14986.55 33096.30 19274.20 31597.98 26788.96 22887.40 30595.09 301
tpm289.96 28889.21 29092.23 30294.91 29381.25 34893.78 34294.42 34480.62 37391.56 20693.44 32976.44 29697.94 27985.60 28992.08 25097.49 203
test_fmvs193.21 15993.53 13092.25 30196.55 19881.20 35097.40 13796.96 22190.68 18496.80 6298.04 7969.25 34598.40 21797.58 2398.50 10997.16 217
test_fmvs1_n92.73 18492.88 15392.29 29996.08 23181.05 35197.98 6397.08 20890.72 18296.79 6398.18 7063.07 37698.45 21497.62 2298.42 11597.36 208
testgi87.97 31487.21 31490.24 34492.86 35580.76 35296.67 20694.97 32691.74 14785.52 33795.83 21662.66 37894.47 37876.25 36488.36 29695.48 274
testing387.67 31886.88 31990.05 34696.14 22680.71 35397.10 16892.85 36890.15 20387.54 31094.55 27655.70 38994.10 38173.77 37694.10 21595.35 286
test-LLR91.42 23591.19 21692.12 30394.59 30880.66 35494.29 32692.98 36691.11 17090.76 22892.37 34679.02 26498.07 25588.81 23096.74 16297.63 194
test-mter90.19 28589.54 28392.12 30394.59 30880.66 35494.29 32692.98 36687.68 28490.76 22892.37 34667.67 35598.07 25588.81 23096.74 16297.63 194
TESTMET0.1,190.06 28789.42 28691.97 30694.41 31680.62 35694.29 32691.97 37887.28 29490.44 23292.47 34568.79 34797.67 30388.50 23696.60 16797.61 198
tpm cat188.36 31187.21 31491.81 31295.13 28180.55 35792.58 36795.70 29074.97 38987.45 31191.96 35678.01 28498.17 23980.39 34188.74 29296.72 231
test_vis1_rt86.16 33385.06 33489.46 35293.47 34580.46 35896.41 22586.61 40085.22 32679.15 37888.64 37952.41 39297.06 33993.08 14390.57 27390.87 383
Anonymous2023120687.09 32486.14 32589.93 34891.22 37380.35 35996.11 24995.35 30783.57 35084.16 35093.02 33573.54 32195.61 36772.16 38186.14 31493.84 350
MDTV_nov1_ep1390.76 23195.22 27480.33 36093.03 36195.28 31188.14 26892.84 17893.83 31181.34 22398.08 25182.86 31894.34 208
tpmvs89.83 29589.15 29291.89 30894.92 29180.30 36193.11 35995.46 30386.28 31088.08 30192.65 33980.44 23798.52 20981.47 33189.92 28096.84 227
SixPastTwentyTwo89.15 30188.54 30190.98 33093.49 34380.28 36296.70 20194.70 33690.78 17884.15 35195.57 23371.78 32897.71 30184.63 30185.07 32994.94 308
new_pmnet82.89 35081.12 35588.18 35989.63 38280.18 36391.77 37292.57 37276.79 38775.56 38688.23 38361.22 38194.48 37771.43 38382.92 35689.87 387
test20.0386.14 33485.40 33188.35 35690.12 37880.06 36495.90 26195.20 31688.59 25281.29 36793.62 32271.43 33092.65 39071.26 38581.17 36392.34 370
LF4IMVS87.94 31587.25 31289.98 34792.38 36780.05 36594.38 32095.25 31487.59 28684.34 34794.74 26864.31 37397.66 30584.83 29787.45 30292.23 371
Anonymous2024052186.42 32985.44 32989.34 35390.33 37779.79 36696.73 19795.92 27983.71 34883.25 35991.36 36263.92 37496.01 35778.39 35485.36 32392.22 372
tpm90.25 28189.74 27891.76 31693.92 32879.73 36793.98 33393.54 36288.28 26391.99 19693.25 33377.51 28897.44 32587.30 26187.94 29898.12 168
WAC-MVS79.53 36875.56 368
myMVS_eth3d87.18 32286.38 32289.58 35195.16 27779.53 36895.00 30193.93 35788.55 25686.96 32391.99 35456.23 38894.00 38275.47 36994.11 21395.20 297
PVSNet_082.17 1985.46 34083.64 34390.92 33195.27 27079.49 37090.55 38195.60 29783.76 34783.00 36289.95 37171.09 33297.97 27082.75 32360.79 40195.31 289
K. test v387.64 31986.75 32190.32 34393.02 35479.48 37196.61 21392.08 37790.66 18780.25 37494.09 30467.21 35996.65 35285.96 28580.83 36494.83 317
pmmvs379.97 35577.50 36087.39 36282.80 40179.38 37292.70 36690.75 38770.69 39378.66 37987.47 38951.34 39393.40 38773.39 37869.65 39189.38 388
tpmrst91.44 23491.32 20891.79 31395.15 27979.20 37393.42 35395.37 30688.55 25693.49 16193.67 32082.49 20498.27 23090.41 19289.34 28697.90 180
KD-MVS_self_test85.95 33684.95 33588.96 35589.55 38479.11 37495.13 29996.42 26185.91 31684.07 35490.48 36670.03 34194.82 37580.04 34272.94 38692.94 360
lessismore_v090.45 34091.96 37079.09 37587.19 39880.32 37394.39 28566.31 36697.55 31484.00 30976.84 37794.70 329
gm-plane-assit93.22 35078.89 37684.82 33493.52 32598.64 19887.72 245
Patchmatch-RL test87.38 32086.24 32390.81 33488.74 38978.40 37788.12 39593.17 36587.11 29782.17 36589.29 37681.95 21595.60 36888.64 23477.02 37698.41 147
UWE-MVS89.91 28989.48 28591.21 32695.88 23478.23 37894.91 30490.26 38889.11 23292.35 18694.52 27768.76 34897.96 27483.95 31095.59 18697.42 206
PM-MVS83.48 34781.86 35388.31 35787.83 39277.59 37993.43 35291.75 37986.91 29980.63 37089.91 37244.42 39895.84 36285.17 29676.73 37991.50 379
dp88.90 30588.26 30590.81 33494.58 31076.62 38092.85 36494.93 32885.12 32990.07 24893.07 33475.81 30098.12 24580.53 34087.42 30497.71 191
test_fmvs289.77 29689.93 26889.31 35493.68 33776.37 38197.64 11095.90 28189.84 21291.49 20896.26 19558.77 38397.10 33894.65 11391.13 26494.46 335
RPSCF90.75 26690.86 22590.42 34196.84 17576.29 38295.61 27796.34 26483.89 34491.38 21097.87 9376.45 29598.78 18187.16 26592.23 24396.20 242
new-patchmatchnet83.18 34981.87 35287.11 36386.88 39375.99 38393.70 34495.18 31785.02 33177.30 38388.40 38165.99 36893.88 38574.19 37570.18 39091.47 380
CVMVSNet91.23 24691.75 19389.67 35095.77 24074.69 38496.44 22194.88 33185.81 31792.18 19097.64 11479.07 26195.58 36988.06 23995.86 17998.74 118
EU-MVSNet88.72 30888.90 29688.20 35893.15 35274.21 38596.63 21294.22 35085.18 32787.32 31695.97 20876.16 29894.98 37485.27 29386.17 31395.41 279
mvsany_test383.59 34682.44 35087.03 36483.80 39773.82 38693.70 34490.92 38686.42 30782.51 36390.26 36846.76 39795.71 36490.82 18676.76 37891.57 377
Gipumacopyleft67.86 36865.41 37075.18 38392.66 36073.45 38766.50 40494.52 34153.33 40357.80 40466.07 40430.81 40489.20 39648.15 40278.88 37462.90 404
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mamv494.66 11296.10 6590.37 34298.01 10873.41 38896.82 19097.78 12389.95 20794.52 13797.43 12892.91 2799.09 14698.28 1499.16 7898.60 126
Syy-MVS87.13 32387.02 31887.47 36195.16 27773.21 38995.00 30193.93 35788.55 25686.96 32391.99 35475.90 29994.00 38261.59 39594.11 21395.20 297
CMPMVSbinary62.92 2185.62 33984.92 33687.74 36089.14 38573.12 39094.17 32996.80 23873.98 39073.65 38994.93 25766.36 36497.61 31083.95 31091.28 26192.48 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
DSMNet-mixed86.34 33086.12 32687.00 36589.88 38170.43 39194.93 30390.08 38977.97 38485.42 34092.78 33874.44 31393.96 38474.43 37295.14 19296.62 232
MDTV_nov1_ep13_2view70.35 39293.10 36083.88 34593.55 15882.47 20586.25 27698.38 150
ambc86.56 36683.60 39970.00 39385.69 39794.97 32680.60 37188.45 38037.42 40196.84 34982.69 32475.44 38192.86 361
MVS-HIRNet82.47 35181.21 35486.26 36795.38 25869.21 39488.96 39189.49 39066.28 39680.79 36974.08 40168.48 35297.39 32971.93 38295.47 18792.18 373
APD_test179.31 35677.70 35984.14 36989.11 38669.07 39592.36 37191.50 38169.07 39473.87 38892.63 34139.93 40094.32 37970.54 38880.25 36689.02 389
test_fmvs383.21 34883.02 34583.78 37086.77 39468.34 39696.76 19594.91 32986.49 30684.14 35289.48 37536.04 40291.73 39291.86 16580.77 36591.26 382
test_vis3_rt72.73 36070.55 36379.27 37480.02 40368.13 39793.92 33874.30 41176.90 38658.99 40273.58 40220.29 41195.37 37284.16 30572.80 38774.31 399
test_f80.57 35479.62 35683.41 37183.38 40067.80 39893.57 35193.72 36080.80 37277.91 38287.63 38733.40 40392.08 39187.14 26679.04 37390.34 386
ANet_high63.94 37159.58 37477.02 37861.24 41466.06 39985.66 39887.93 39678.53 38242.94 40671.04 40325.42 40980.71 40552.60 40130.83 40784.28 393
PMMVS270.19 36366.92 36780.01 37376.35 40665.67 40086.22 39687.58 39764.83 39862.38 39980.29 39826.78 40888.49 40063.79 39254.07 40385.88 390
LCM-MVSNet72.55 36169.39 36582.03 37270.81 41265.42 40190.12 38594.36 34855.02 40265.88 39681.72 39524.16 41089.96 39374.32 37468.10 39490.71 385
DeepMVS_CXcopyleft74.68 38490.84 37664.34 40281.61 40765.34 39767.47 39588.01 38648.60 39680.13 40662.33 39473.68 38579.58 396
testf169.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
APD_test269.31 36566.76 36876.94 37978.61 40461.93 40388.27 39386.11 40155.62 40059.69 40085.31 39220.19 41289.32 39457.62 39669.44 39279.58 396
dongtai69.99 36469.33 36671.98 38588.78 38861.64 40589.86 38659.93 41575.67 38874.96 38785.45 39150.19 39481.66 40443.86 40355.27 40272.63 400
kuosan65.27 37064.66 37267.11 38883.80 39761.32 40688.53 39260.77 41468.22 39567.67 39380.52 39749.12 39570.76 41029.67 40953.64 40469.26 402
FPMVS71.27 36269.85 36475.50 38274.64 40759.03 40791.30 37491.50 38158.80 39957.92 40388.28 38229.98 40685.53 40253.43 40082.84 35781.95 395
MVEpermissive50.73 2353.25 37448.81 37966.58 38965.34 41357.50 40872.49 40370.94 41240.15 40739.28 40963.51 4056.89 41673.48 40938.29 40542.38 40568.76 403
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVS76.77 35876.63 36177.18 37785.32 39556.82 40994.53 31389.39 39182.66 35771.35 39089.18 37775.03 30888.88 39735.42 40666.79 39585.84 391
SSC-MVS76.05 35975.83 36276.72 38184.77 39656.22 41094.32 32488.96 39381.82 36470.52 39188.91 37874.79 31088.71 39833.69 40764.71 39785.23 392
dmvs_testset81.38 35382.60 34977.73 37691.74 37151.49 41193.03 36184.21 40489.07 23378.28 38191.25 36376.97 29188.53 39956.57 39982.24 35993.16 357
PMVScopyleft53.92 2258.58 37255.40 37568.12 38751.00 41548.64 41278.86 40187.10 39946.77 40435.84 41074.28 4008.76 41486.34 40142.07 40473.91 38469.38 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 37352.56 37755.43 39074.43 40847.13 41383.63 40076.30 40842.23 40542.59 40762.22 40628.57 40774.40 40731.53 40831.51 40644.78 405
N_pmnet78.73 35778.71 35878.79 37592.80 35746.50 41494.14 33043.71 41678.61 38180.83 36891.66 36074.94 30996.36 35467.24 39084.45 34093.50 353
EMVS52.08 37551.31 37854.39 39172.62 41045.39 41583.84 39975.51 41041.13 40640.77 40859.65 40730.08 40573.60 40828.31 41029.90 40844.18 406
tmp_tt51.94 37653.82 37646.29 39233.73 41645.30 41678.32 40267.24 41318.02 40950.93 40587.05 39052.99 39153.11 41170.76 38625.29 40940.46 407
wuyk23d25.11 37724.57 38126.74 39373.98 40939.89 41757.88 4069.80 41712.27 41010.39 4116.97 4137.03 41536.44 41225.43 41117.39 4103.89 410
test_method66.11 36964.89 37169.79 38672.62 41035.23 41865.19 40592.83 37020.35 40865.20 39788.08 38543.14 39982.70 40373.12 37963.46 39891.45 381
test12313.04 38015.66 3835.18 3944.51 4183.45 41992.50 3691.81 4192.50 4127.58 41320.15 4103.67 4172.18 4147.13 4131.07 4129.90 408
testmvs13.36 37916.33 3824.48 3955.04 4172.26 42093.18 3553.28 4182.70 4118.24 41221.66 4092.29 4182.19 4137.58 4122.96 4119.00 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k23.24 37830.99 3800.00 3960.00 4190.00 4210.00 40797.63 1440.00 4140.00 41596.88 15884.38 1640.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.39 3829.85 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41488.65 980.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.06 38110.74 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41596.69 1680.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
PC_three_145290.77 17998.89 1498.28 6596.24 198.35 22495.76 8099.58 2399.59 22
eth-test20.00 419
eth-test0.00 419
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2499.65 1399.74 8
9.1496.75 4198.93 4797.73 9698.23 5091.28 16397.88 3598.44 4493.00 2699.65 5895.76 8099.47 41
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2899.72 299.77 2
GSMVS98.45 142
sam_mvs182.76 19798.45 142
sam_mvs81.94 216
MTGPAbinary98.08 74
test_post192.81 36516.58 41280.53 23597.68 30286.20 277
test_post17.58 41181.76 21898.08 251
patchmatchnet-post90.45 36782.65 20198.10 247
MTMP97.86 8082.03 406
test9_res94.81 10899.38 5699.45 47
agg_prior293.94 12599.38 5699.50 40
test_prior296.35 23392.80 11996.03 9997.59 11892.01 4495.01 10299.38 56
旧先验295.94 25881.66 36597.34 4898.82 17792.26 152
新几何295.79 267
无先验95.79 26797.87 11183.87 34699.65 5887.68 25198.89 107
原ACMM295.67 272
testdata299.67 5685.96 285
segment_acmp92.89 28
testdata195.26 29593.10 106
plane_prior597.51 15998.60 20293.02 14692.23 24395.86 254
plane_prior496.64 171
plane_prior297.74 9494.85 34
plane_prior196.14 226
n20.00 420
nn0.00 420
door-mid91.06 384
test1197.88 109
door91.13 383
HQP-NCC95.86 23596.65 20793.55 8290.14 237
ACMP_Plane95.86 23596.65 20793.55 8290.14 237
BP-MVS92.13 158
HQP4-MVS90.14 23798.50 21095.78 262
HQP3-MVS97.39 18392.10 248
HQP2-MVS80.95 227
ACMMP++_ref90.30 278
ACMMP++91.02 267
Test By Simon88.73 97