This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND99.71 199.72 1299.35 198.97 6998.88 4999.94 398.47 1699.81 1099.84 4
DVP-MVS99.03 298.83 399.63 399.72 1299.25 298.97 6998.58 14797.62 1199.45 999.46 997.42 699.94 398.47 1699.81 1099.69 51
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.72 1299.25 299.06 5298.88 4997.62 1199.56 599.50 497.42 6
SED-MVS99.09 198.91 199.63 399.71 2099.24 499.02 5998.87 5597.65 999.73 199.48 697.53 499.94 398.43 1999.81 1099.70 48
test_241102_ONE99.71 2099.24 498.87 5597.62 1199.73 199.39 1497.53 499.74 107
IU-MVS99.71 2099.23 698.64 13795.28 12099.63 498.35 2599.81 1099.83 5
DPE-MVScopyleft98.92 498.67 699.65 299.58 3299.20 798.42 17298.91 4397.58 1499.54 799.46 997.10 999.94 397.64 6399.84 899.83 5
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.63 2999.18 899.27 17
HPM-MVS++copyleft98.58 2398.25 3899.55 699.50 4199.08 998.72 12398.66 13297.51 1698.15 8498.83 10895.70 4499.92 2197.53 7399.67 5499.66 65
OPU-MVS99.37 2099.24 9299.05 1099.02 5999.16 6197.81 299.37 15797.24 8199.73 4399.70 48
SMA-MVScopyleft98.58 2398.25 3899.56 599.51 3999.04 1198.95 7398.80 8793.67 19899.37 1399.52 396.52 1799.89 3598.06 3499.81 1099.76 26
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVS99.02 398.84 299.55 699.57 3398.96 1299.39 598.93 3797.38 2699.41 1199.54 196.66 1399.84 5398.86 199.85 399.87 1
ACMMP_NAP98.61 1798.30 3499.55 699.62 3098.95 1398.82 9998.81 7695.80 9299.16 2699.47 895.37 5799.92 2197.89 4499.75 3899.79 10
MP-MVS-pluss98.31 5297.92 5899.49 999.72 1298.88 1498.43 17098.78 9594.10 16897.69 11899.42 1295.25 6699.92 2198.09 3399.80 1799.67 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MCST-MVS98.65 1398.37 2199.48 1099.60 3198.87 1598.41 17398.68 12197.04 4898.52 7098.80 11196.78 1299.83 5697.93 4099.61 6799.74 33
CNVR-MVS98.78 698.56 999.45 1499.32 6898.87 1598.47 16498.81 7697.72 698.76 5299.16 6197.05 1099.78 9698.06 3499.66 5799.69 51
APD-MVScopyleft98.35 4698.00 5399.42 1599.51 3998.72 1798.80 10698.82 7094.52 15799.23 2099.25 4395.54 4999.80 8096.52 11799.77 2699.74 33
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS98.59 2098.32 3399.41 1699.54 3598.71 1899.04 5498.81 7695.12 12999.32 1599.39 1496.22 2099.84 5397.72 5599.73 4399.67 61
ZD-MVS99.46 5198.70 1998.79 9293.21 21598.67 5898.97 8795.70 4499.83 5696.07 12999.58 74
testtj98.33 5097.95 5599.47 1199.49 4598.70 1998.83 9698.86 6195.48 10798.91 4599.17 5695.48 5099.93 1595.80 14299.53 8599.76 26
ETH3D-3000-0.198.35 4698.00 5399.38 1799.47 4898.68 2198.67 13498.84 6594.66 15299.11 2899.25 4395.46 5199.81 7196.80 10799.73 4399.63 73
zzz-MVS98.55 3098.25 3899.46 1299.76 198.64 2298.55 15498.74 10497.27 3598.02 9399.39 1494.81 7799.96 197.91 4199.79 1999.77 20
MTAPA98.58 2398.29 3599.46 1299.76 198.64 2298.90 8098.74 10497.27 3598.02 9399.39 1494.81 7799.96 197.91 4199.79 1999.77 20
NCCC98.61 1798.35 2499.38 1799.28 8298.61 2498.45 16598.76 9997.82 598.45 7498.93 9796.65 1499.83 5697.38 7899.41 9899.71 44
ETH3 D test640097.59 8197.01 9699.34 2399.40 5998.56 2598.20 20298.81 7691.63 27098.44 7598.85 10593.98 9799.82 6494.11 19799.69 5299.64 70
DPM-MVS97.55 8596.99 9899.23 4299.04 10798.55 2697.17 29098.35 19194.85 14397.93 10598.58 13495.07 7299.71 11492.60 23999.34 10399.43 106
ETH3D cwj APD-0.1697.96 5997.52 7299.29 3199.05 10598.52 2798.33 18298.68 12193.18 21698.68 5799.13 6494.62 8199.83 5696.45 11999.55 8399.52 85
3Dnovator+94.38 697.43 9296.78 10799.38 1797.83 20098.52 2799.37 898.71 11497.09 4792.99 27599.13 6489.36 17799.89 3596.97 9099.57 7599.71 44
TEST999.31 7098.50 2997.92 23398.73 10892.63 23597.74 11498.68 12396.20 2399.80 80
train_agg97.97 5897.52 7299.33 2799.31 7098.50 2997.92 23398.73 10892.98 22497.74 11498.68 12396.20 2399.80 8096.59 11399.57 7599.68 57
test_899.29 7898.44 3197.89 23998.72 11092.98 22497.70 11798.66 12696.20 2399.80 80
CDPH-MVS97.94 6397.49 7599.28 3599.47 4898.44 3197.91 23598.67 12992.57 23998.77 5198.85 10595.93 3899.72 10995.56 15299.69 5299.68 57
SteuartSystems-ACMMP98.90 598.75 499.36 2199.22 9498.43 3399.10 4798.87 5597.38 2699.35 1499.40 1397.78 399.87 4497.77 5299.85 399.78 13
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS98.49 3698.20 4499.35 2299.73 1198.39 3499.19 3398.86 6195.77 9398.31 8399.10 6995.46 5199.93 1597.57 7099.81 1099.74 33
xxxxxxxxxxxxxcwj98.70 998.50 1499.30 3099.46 5198.38 3598.21 19998.52 15897.95 399.32 1599.39 1496.22 2099.84 5397.72 5599.73 4399.67 61
save fliter99.46 5198.38 3598.21 19998.71 11497.95 3
GST-MVS98.43 4098.12 4799.34 2399.72 1298.38 3599.09 4898.82 7095.71 9698.73 5599.06 7895.27 6499.93 1597.07 8799.63 6499.72 40
agg_prior197.95 6297.51 7499.28 3599.30 7598.38 3597.81 24698.72 11093.16 21897.57 12798.66 12696.14 2699.81 7196.63 11299.56 8099.66 65
agg_prior99.30 7598.38 3598.72 11097.57 12799.81 71
canonicalmvs97.67 7497.23 8798.98 6598.70 13598.38 3599.34 1298.39 18596.76 5697.67 11997.40 24392.26 11699.49 14698.28 2896.28 20399.08 149
alignmvs97.56 8497.07 9499.01 6298.66 13998.37 4198.83 9698.06 25096.74 5798.00 9997.65 22290.80 15399.48 15098.37 2496.56 19199.19 133
SD-MVS98.64 1498.68 598.53 9199.33 6598.36 4298.90 8098.85 6497.28 3199.72 399.39 1496.63 1597.60 32198.17 2999.85 399.64 70
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVS98.70 998.49 1699.34 2399.70 2398.35 4399.29 1698.88 4997.40 2398.46 7199.20 5295.90 4099.89 3597.85 4799.74 4199.78 13
X-MVStestdata94.06 26592.30 28599.34 2399.70 2398.35 4399.29 1698.88 4997.40 2398.46 7143.50 36295.90 4099.89 3597.85 4799.74 4199.78 13
DP-MVS Recon97.86 6697.46 7799.06 6199.53 3698.35 4398.33 18298.89 4692.62 23698.05 8998.94 9695.34 5999.65 12496.04 13399.42 9799.19 133
HFP-MVS98.63 1698.40 1899.32 2899.72 1298.29 4699.23 2398.96 3296.10 8498.94 3999.17 5696.06 3099.92 2197.62 6499.78 2399.75 28
#test#98.54 3298.27 3699.32 2899.72 1298.29 4698.98 6898.96 3295.65 10098.94 3999.17 5696.06 3099.92 2197.21 8399.78 2399.75 28
TSAR-MVS + MP.98.78 698.62 799.24 4099.69 2598.28 4899.14 3898.66 13296.84 5399.56 599.31 3596.34 1999.70 11598.32 2699.73 4399.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSP-MVS98.74 898.55 1099.29 3199.75 398.23 4999.26 2098.88 4997.52 1599.41 1198.78 11396.00 3499.79 9297.79 5199.59 7199.85 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_prior398.22 5597.90 5999.19 4399.31 7098.22 5097.80 24798.84 6596.12 8297.89 10898.69 12195.96 3699.70 11596.89 9799.60 6899.65 67
test_prior99.19 4399.31 7098.22 5098.84 6599.70 11599.65 67
test1299.18 4799.16 9998.19 5298.53 15698.07 8895.13 7099.72 10999.56 8099.63 73
SR-MVS98.57 2698.35 2499.24 4099.53 3698.18 5399.09 4898.82 7096.58 6399.10 2999.32 3395.39 5599.82 6497.70 6099.63 6499.72 40
MP-MVScopyleft98.33 5098.01 5299.28 3599.75 398.18 5399.22 2798.79 9296.13 8197.92 10699.23 4594.54 8399.94 396.74 11199.78 2399.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
region2R98.61 1798.38 2099.29 3199.74 798.16 5599.23 2398.93 3796.15 7998.94 3999.17 5695.91 3999.94 397.55 7199.79 1999.78 13
nrg03096.28 14095.72 14497.96 13296.90 26798.15 5699.39 598.31 19795.47 10894.42 21798.35 15892.09 12398.69 23297.50 7489.05 30097.04 230
ACMMPR98.59 2098.36 2299.29 3199.74 798.15 5699.23 2398.95 3496.10 8498.93 4399.19 5595.70 4499.94 397.62 6499.79 1999.78 13
PHI-MVS98.34 4898.06 4999.18 4799.15 10198.12 5899.04 5499.09 2093.32 21198.83 4899.10 6996.54 1699.83 5697.70 6099.76 3299.59 80
PGM-MVS98.49 3698.23 4299.27 3899.72 1298.08 5998.99 6599.49 595.43 11099.03 3399.32 3395.56 4799.94 396.80 10799.77 2699.78 13
mPP-MVS98.51 3598.26 3799.25 3999.75 398.04 6099.28 1898.81 7696.24 7698.35 8099.23 4595.46 5199.94 397.42 7699.81 1099.77 20
DeepC-MVS_fast96.70 198.55 3098.34 2899.18 4799.25 8698.04 6098.50 16198.78 9597.72 698.92 4499.28 4095.27 6499.82 6497.55 7199.77 2699.69 51
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Regformer-298.69 1198.52 1299.19 4399.35 6098.01 6298.37 17698.81 7697.48 1899.21 2199.21 4896.13 2799.80 8098.40 2399.73 4399.75 28
test_prior498.01 6297.86 242
新几何199.16 5099.34 6298.01 6298.69 11890.06 30798.13 8598.95 9594.60 8299.89 3591.97 25999.47 9099.59 80
112197.37 9796.77 11199.16 5099.34 6297.99 6598.19 20698.68 12190.14 30698.01 9798.97 8794.80 7999.87 4493.36 21899.46 9399.61 75
test117298.56 2898.35 2499.16 5099.53 3697.94 6699.09 4898.83 6896.52 6699.05 3299.34 3195.34 5999.82 6497.86 4699.64 6299.73 36
APD-MVS_3200maxsize98.53 3498.33 3299.15 5399.50 4197.92 6799.15 3798.81 7696.24 7699.20 2299.37 2295.30 6299.80 8097.73 5499.67 5499.72 40
SR-MVS-dyc-post98.54 3298.35 2499.13 5499.49 4597.86 6899.11 4498.80 8796.49 6899.17 2499.35 2895.34 5999.82 6497.72 5599.65 5899.71 44
RE-MVS-def98.34 2899.49 4597.86 6899.11 4498.80 8796.49 6899.17 2499.35 2895.29 6397.72 5599.65 5899.71 44
HPM-MVS_fast98.38 4398.13 4699.12 5799.75 397.86 6899.44 498.82 7094.46 16098.94 3999.20 5295.16 6999.74 10797.58 6799.85 399.77 20
CP-MVS98.57 2698.36 2299.19 4399.66 2797.86 6899.34 1298.87 5595.96 8798.60 6699.13 6496.05 3299.94 397.77 5299.86 199.77 20
test_part194.82 21393.82 24397.82 13998.84 12497.82 7299.03 5698.81 7692.31 25192.51 29097.89 20081.96 30098.67 23694.80 17388.24 30996.98 233
HPM-MVScopyleft98.36 4598.10 4899.13 5499.74 797.82 7299.53 198.80 8794.63 15398.61 6598.97 8795.13 7099.77 10197.65 6299.83 999.79 10
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Regformer-198.66 1298.51 1399.12 5799.35 6097.81 7498.37 17698.76 9997.49 1799.20 2299.21 4896.08 2999.79 9298.42 2199.73 4399.75 28
abl_698.30 5398.03 5199.13 5499.56 3497.76 7599.13 4198.82 7096.14 8099.26 1899.37 2293.33 10299.93 1596.96 9299.67 5499.69 51
DELS-MVS98.40 4298.20 4498.99 6399.00 11097.66 7697.75 25198.89 4697.71 898.33 8198.97 8794.97 7499.88 4398.42 2199.76 3299.42 108
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator94.51 597.46 8796.93 10099.07 6097.78 20297.64 7799.35 1199.06 2297.02 4993.75 24999.16 6189.25 18099.92 2197.22 8299.75 3899.64 70
114514_t96.93 11596.27 12898.92 6999.50 4197.63 7898.85 9298.90 4484.80 34297.77 11199.11 6792.84 10799.66 12394.85 16999.77 2699.47 98
ACMMPcopyleft98.23 5497.95 5599.09 5999.74 797.62 7999.03 5699.41 695.98 8697.60 12699.36 2694.45 8899.93 1597.14 8498.85 12299.70 48
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
QAPM96.29 13895.40 15698.96 6797.85 19997.60 8099.23 2398.93 3789.76 31293.11 27299.02 8089.11 18599.93 1591.99 25899.62 6699.34 112
VNet97.79 6997.40 8198.96 6798.88 11997.55 8198.63 14098.93 3796.74 5799.02 3498.84 10790.33 16299.83 5698.53 1096.66 18799.50 91
FIs96.51 13196.12 13397.67 15397.13 25397.54 8299.36 999.22 1495.89 8894.03 23798.35 15891.98 12698.44 25896.40 12292.76 25497.01 231
旧先验199.29 7897.48 8398.70 11799.09 7495.56 4799.47 9099.61 75
UA-Net97.96 5997.62 6598.98 6598.86 12197.47 8498.89 8499.08 2196.67 6098.72 5699.54 193.15 10599.81 7194.87 16898.83 12399.65 67
UniMVSNet (Re)95.78 15995.19 17197.58 15996.99 26197.47 8498.79 11099.18 1695.60 10193.92 24097.04 27191.68 13198.48 25295.80 14287.66 31696.79 256
CNLPA97.45 9097.03 9598.73 7699.05 10597.44 8698.07 22098.53 15695.32 11896.80 15598.53 13893.32 10399.72 10994.31 19099.31 10599.02 153
Regformer-498.64 1498.53 1198.99 6399.43 5797.37 8798.40 17498.79 9297.46 2199.09 3099.31 3595.86 4299.80 8098.64 499.76 3299.79 10
RRT_MVS96.04 14795.53 15397.56 16197.07 25797.32 8898.57 15198.09 24195.15 12795.02 19598.44 14788.20 20898.58 24696.17 12893.09 25196.79 256
MVS_111021_HR98.47 3898.34 2898.88 7299.22 9497.32 8897.91 23599.58 397.20 3998.33 8199.00 8595.99 3599.64 12698.05 3699.76 3299.69 51
OpenMVScopyleft93.04 1395.83 15795.00 17998.32 10697.18 25097.32 8899.21 3098.97 3089.96 30891.14 30999.05 7986.64 24199.92 2193.38 21699.47 9097.73 212
ETV-MVS97.96 5997.81 6098.40 10298.42 15497.27 9198.73 11998.55 15296.84 5398.38 7897.44 24095.39 5599.35 15897.62 6498.89 11898.58 186
CANet98.05 5697.76 6298.90 7198.73 13097.27 9198.35 17998.78 9597.37 2897.72 11698.96 9391.53 13899.92 2198.79 299.65 5899.51 89
FC-MVSNet-test96.42 13496.05 13597.53 16396.95 26297.27 9199.36 999.23 1295.83 9193.93 23998.37 15692.00 12598.32 27696.02 13492.72 25597.00 232
VPA-MVSNet95.75 16095.11 17597.69 15197.24 24297.27 9198.94 7599.23 1295.13 12895.51 18897.32 24685.73 25698.91 21197.33 8089.55 29296.89 246
TSAR-MVS + GP.98.38 4398.24 4198.81 7499.22 9497.25 9598.11 21898.29 20597.19 4098.99 3899.02 8096.22 2099.67 12298.52 1498.56 13599.51 89
NR-MVSNet94.98 20594.16 22197.44 16596.53 28597.22 9698.74 11598.95 3494.96 13889.25 32697.69 21889.32 17898.18 28994.59 18087.40 31996.92 238
LS3D97.16 10796.66 11698.68 7998.53 14997.19 9798.93 7798.90 4492.83 23295.99 18499.37 2292.12 12299.87 4493.67 21099.57 7598.97 158
test22299.23 9397.17 9897.40 26998.66 13288.68 32398.05 8998.96 9394.14 9399.53 8599.61 75
CS-MVS98.04 5797.95 5598.32 10698.14 18197.15 9999.39 598.41 18096.51 6798.59 6898.51 14293.89 9999.03 19398.66 399.43 9698.77 171
CPTT-MVS97.72 7297.32 8498.92 6999.64 2897.10 10099.12 4398.81 7692.34 24798.09 8799.08 7693.01 10699.92 2196.06 13299.77 2699.75 28
Regformer-398.59 2098.50 1498.86 7399.43 5797.05 10198.40 17498.68 12197.43 2299.06 3199.31 3595.80 4399.77 10198.62 699.76 3299.78 13
HY-MVS93.96 896.82 12096.23 13198.57 8598.46 15397.00 10298.14 21398.21 21393.95 17796.72 15797.99 19091.58 13399.76 10394.51 18396.54 19298.95 161
UniMVSNet_NR-MVSNet95.71 16295.15 17297.40 16996.84 27096.97 10398.74 11599.24 1095.16 12693.88 24297.72 21791.68 13198.31 27895.81 14087.25 32196.92 238
DU-MVS95.42 17694.76 18997.40 16996.53 28596.97 10398.66 13798.99 2995.43 11093.88 24297.69 21888.57 19998.31 27895.81 14087.25 32196.92 238
DeepC-MVS95.98 397.88 6597.58 6798.77 7599.25 8696.93 10598.83 9698.75 10296.96 5196.89 15099.50 490.46 15999.87 4497.84 4999.76 3299.52 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPR96.84 11996.24 13098.65 8198.72 13496.92 10697.36 27598.57 14893.33 21096.67 15897.57 23094.30 9199.56 13791.05 27498.59 13399.47 98
MVS_111021_LR98.34 4898.23 4298.67 8099.27 8396.90 10797.95 23199.58 397.14 4398.44 7599.01 8495.03 7399.62 13197.91 4199.75 3899.50 91
MAR-MVS96.91 11696.40 12498.45 9798.69 13796.90 10798.66 13798.68 12192.40 24697.07 14097.96 19391.54 13799.75 10593.68 20898.92 11698.69 176
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WTY-MVS97.37 9796.92 10198.72 7798.86 12196.89 10998.31 18898.71 11495.26 12197.67 11998.56 13792.21 11999.78 9695.89 13796.85 18299.48 96
MSLP-MVS++98.56 2898.57 898.55 8799.26 8596.80 11098.71 12499.05 2497.28 3198.84 4699.28 4096.47 1899.40 15598.52 1499.70 5199.47 98
API-MVS97.41 9497.25 8697.91 13398.70 13596.80 11098.82 9998.69 11894.53 15598.11 8698.28 16794.50 8799.57 13594.12 19699.49 8897.37 222
PCF-MVS93.45 1194.68 22193.43 26598.42 10198.62 14396.77 11295.48 33998.20 21584.63 34393.34 26398.32 16488.55 20199.81 7184.80 33398.96 11598.68 177
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ab-mvs96.42 13495.71 14798.55 8798.63 14296.75 11397.88 24098.74 10493.84 18296.54 16798.18 17785.34 26499.75 10595.93 13696.35 19799.15 139
Effi-MVS+97.12 10996.69 11398.39 10398.19 17596.72 11497.37 27398.43 17893.71 19197.65 12298.02 18692.20 12099.25 16496.87 10397.79 16399.19 133
AdaColmapbinary97.15 10896.70 11298.48 9599.16 9996.69 11598.01 22698.89 4694.44 16196.83 15198.68 12390.69 15699.76 10394.36 18699.29 10698.98 157
原ACMM198.65 8199.32 6896.62 11698.67 12993.27 21497.81 11098.97 8795.18 6899.83 5693.84 20499.46 9399.50 91
FMVSNet394.97 20694.26 21597.11 18298.18 17796.62 11698.56 15298.26 21093.67 19894.09 23397.10 25884.25 28198.01 30392.08 25392.14 25896.70 269
sss97.39 9596.98 9998.61 8398.60 14596.61 11898.22 19898.93 3793.97 17698.01 9798.48 14491.98 12699.85 5096.45 11998.15 15199.39 109
test_yl97.22 10296.78 10798.54 8998.73 13096.60 11998.45 16598.31 19794.70 14698.02 9398.42 15090.80 15399.70 11596.81 10596.79 18499.34 112
DCV-MVSNet97.22 10296.78 10798.54 8998.73 13096.60 11998.45 16598.31 19794.70 14698.02 9398.42 15090.80 15399.70 11596.81 10596.79 18499.34 112
VPNet94.99 20394.19 21897.40 16997.16 25196.57 12198.71 12498.97 3095.67 9894.84 19998.24 17380.36 31298.67 23696.46 11887.32 32096.96 235
MVS94.67 22493.54 26198.08 12496.88 26896.56 12298.19 20698.50 16678.05 35192.69 28398.02 18691.07 14999.63 12990.09 28598.36 14698.04 203
XXY-MVS95.20 19294.45 20697.46 16496.75 27596.56 12298.86 9198.65 13693.30 21393.27 26598.27 17084.85 27198.87 21894.82 17191.26 27196.96 235
PatchMatch-RL96.59 12796.03 13798.27 10999.31 7096.51 12497.91 23599.06 2293.72 19096.92 14898.06 18488.50 20399.65 12491.77 26399.00 11498.66 180
EI-MVSNet-Vis-set98.47 3898.39 1998.69 7899.46 5196.49 12598.30 19098.69 11897.21 3898.84 4699.36 2695.41 5499.78 9698.62 699.65 5899.80 9
WR-MVS95.15 19494.46 20497.22 17496.67 28096.45 12698.21 19998.81 7694.15 16693.16 26897.69 21887.51 22598.30 28095.29 16088.62 30696.90 245
EIA-MVS97.75 7097.58 6798.27 10998.38 15696.44 12799.01 6198.60 14095.88 8997.26 13297.53 23394.97 7499.33 16097.38 7899.20 10899.05 151
FMVSNet294.47 23993.61 25897.04 18598.21 17296.43 12898.79 11098.27 20692.46 24093.50 25897.09 26281.16 30498.00 30591.09 27091.93 26196.70 269
PAPM_NR97.46 8797.11 9198.50 9399.50 4196.41 12998.63 14098.60 14095.18 12597.06 14198.06 18494.26 9299.57 13593.80 20698.87 12199.52 85
1112_ss96.63 12496.00 13898.50 9398.56 14696.37 13098.18 21098.10 23692.92 22794.84 19998.43 14892.14 12199.58 13494.35 18796.51 19399.56 84
TranMVSNet+NR-MVSNet95.14 19594.48 20297.11 18296.45 29096.36 13199.03 5699.03 2595.04 13493.58 25297.93 19688.27 20698.03 30294.13 19586.90 32696.95 237
IS-MVSNet97.22 10296.88 10298.25 11298.85 12396.36 13199.19 3397.97 25595.39 11297.23 13398.99 8691.11 14798.93 20994.60 17898.59 13399.47 98
EI-MVSNet-UG-set98.41 4198.34 2898.61 8399.45 5596.32 13398.28 19398.68 12197.17 4198.74 5399.37 2295.25 6699.79 9298.57 899.54 8499.73 36
LFMVS95.86 15594.98 18198.47 9698.87 12096.32 13398.84 9596.02 33293.40 20898.62 6499.20 5274.99 34299.63 12997.72 5597.20 17799.46 102
PLCcopyleft95.07 497.20 10596.78 10798.44 9899.29 7896.31 13598.14 21398.76 9992.41 24596.39 17498.31 16594.92 7699.78 9694.06 19998.77 12699.23 128
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Vis-MVSNetpermissive97.42 9397.11 9198.34 10598.66 13996.23 13699.22 2799.00 2796.63 6298.04 9199.21 4888.05 21499.35 15896.01 13599.21 10799.45 104
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ET-MVSNet_ETH3D94.13 25892.98 27397.58 15998.22 17196.20 13797.31 28095.37 34094.53 15579.56 35197.63 22686.51 24297.53 32496.91 9490.74 27799.02 153
baseline97.64 7697.44 7998.25 11298.35 15896.20 13799.00 6398.32 19596.33 7598.03 9299.17 5691.35 14199.16 17398.10 3298.29 14999.39 109
DP-MVS96.59 12795.93 13998.57 8599.34 6296.19 13998.70 12898.39 18589.45 31794.52 20999.35 2891.85 12899.85 5092.89 23598.88 11999.68 57
casdiffmvs97.63 7797.41 8098.28 10898.33 16496.14 14098.82 9998.32 19596.38 7397.95 10199.21 4891.23 14599.23 16798.12 3198.37 14499.48 96
EPNet97.28 10096.87 10398.51 9294.98 32996.14 14098.90 8097.02 31298.28 195.99 18499.11 6791.36 14099.89 3596.98 8999.19 10999.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet_DTU96.96 11496.55 11998.21 11498.17 17996.07 14297.98 22998.21 21397.24 3797.13 13698.93 9786.88 23899.91 3095.00 16799.37 10298.66 180
xiu_mvs_v1_base_debu97.60 7897.56 6997.72 14798.35 15895.98 14397.86 24298.51 16197.13 4499.01 3598.40 15291.56 13499.80 8098.53 1098.68 12797.37 222
xiu_mvs_v1_base97.60 7897.56 6997.72 14798.35 15895.98 14397.86 24298.51 16197.13 4499.01 3598.40 15291.56 13499.80 8098.53 1098.68 12797.37 222
xiu_mvs_v1_base_debi97.60 7897.56 6997.72 14798.35 15895.98 14397.86 24298.51 16197.13 4499.01 3598.40 15291.56 13499.80 8098.53 1098.68 12797.37 222
baseline195.84 15695.12 17498.01 12898.49 15295.98 14398.73 11997.03 31095.37 11596.22 17798.19 17689.96 16799.16 17394.60 17887.48 31798.90 164
CDS-MVSNet96.99 11396.69 11397.90 13498.05 18895.98 14398.20 20298.33 19493.67 19896.95 14498.49 14393.54 10098.42 26095.24 16397.74 16699.31 118
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+96.28 14095.70 14898.03 12798.29 16895.97 14898.58 14698.25 21191.74 26595.29 19297.23 25291.03 15099.15 17692.90 23397.96 15798.97 158
MVS_Test97.28 10097.00 9798.13 12098.33 16495.97 14898.74 11598.07 24594.27 16498.44 7598.07 18392.48 11199.26 16396.43 12198.19 15099.16 138
MG-MVS97.81 6897.60 6698.44 9899.12 10395.97 14897.75 25198.78 9596.89 5298.46 7199.22 4793.90 9899.68 12194.81 17299.52 8799.67 61
tfpnnormal93.66 27092.70 27996.55 22696.94 26395.94 15198.97 6999.19 1591.04 29191.38 30797.34 24484.94 26998.61 24085.45 32889.02 30295.11 334
pmmvs494.69 21993.99 23396.81 20195.74 31495.94 15197.40 26997.67 27090.42 30093.37 26297.59 22889.08 18698.20 28892.97 23091.67 26496.30 311
Test_1112_low_res96.34 13795.66 15198.36 10498.56 14695.94 15197.71 25398.07 24592.10 25794.79 20397.29 24891.75 13099.56 13794.17 19496.50 19499.58 82
MVSTER96.06 14695.72 14497.08 18498.23 17095.93 15498.73 11998.27 20694.86 14295.07 19398.09 18288.21 20798.54 24896.59 11393.46 24296.79 256
OMC-MVS97.55 8597.34 8398.20 11599.33 6595.92 15598.28 19398.59 14295.52 10697.97 10099.10 6993.28 10499.49 14695.09 16598.88 11999.19 133
PVSNet_Blended_VisFu97.70 7397.46 7798.44 9899.27 8395.91 15698.63 14099.16 1794.48 15997.67 11998.88 10292.80 10899.91 3097.11 8599.12 11199.50 91
anonymousdsp95.42 17694.91 18496.94 19295.10 32895.90 15799.14 3898.41 18093.75 18693.16 26897.46 23787.50 22798.41 26795.63 15194.03 23096.50 299
GeoE96.58 12996.07 13498.10 12398.35 15895.89 15899.34 1298.12 23193.12 22096.09 18098.87 10389.71 17198.97 20092.95 23198.08 15499.43 106
UGNet96.78 12196.30 12798.19 11798.24 16995.89 15898.88 8798.93 3797.39 2596.81 15497.84 20682.60 29799.90 3396.53 11699.49 8898.79 169
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WR-MVS_H95.05 20094.46 20496.81 20196.86 26995.82 16099.24 2299.24 1093.87 18192.53 28896.84 29090.37 16098.24 28793.24 22187.93 31396.38 306
diffmvs97.58 8297.40 8198.13 12098.32 16695.81 16198.06 22198.37 18896.20 7898.74 5398.89 10191.31 14399.25 16498.16 3098.52 13699.34 112
MVSFormer97.57 8397.49 7597.84 13698.07 18595.76 16299.47 298.40 18394.98 13698.79 4998.83 10892.34 11398.41 26796.91 9499.59 7199.34 112
lupinMVS97.44 9197.22 8898.12 12298.07 18595.76 16297.68 25597.76 26694.50 15898.79 4998.61 12992.34 11399.30 16197.58 6799.59 7199.31 118
PAPM94.95 20794.00 23197.78 14297.04 25895.65 16496.03 33098.25 21191.23 28694.19 22997.80 21291.27 14498.86 22082.61 34097.61 17098.84 167
jason97.32 9997.08 9398.06 12697.45 23195.59 16597.87 24197.91 26194.79 14498.55 6998.83 10891.12 14699.23 16797.58 6799.60 6899.34 112
jason: jason.
PS-MVSNAJ97.73 7197.77 6197.62 15798.68 13895.58 16697.34 27798.51 16197.29 3098.66 6297.88 20194.51 8499.90 3397.87 4599.17 11097.39 220
CP-MVSNet94.94 20994.30 21396.83 20096.72 27795.56 16799.11 4498.95 3493.89 17992.42 29497.90 19887.19 23198.12 29494.32 18988.21 31096.82 255
HyFIR lowres test96.90 11796.49 12298.14 11899.33 6595.56 16797.38 27199.65 292.34 24797.61 12598.20 17589.29 17999.10 18596.97 9097.60 17199.77 20
131496.25 14295.73 14397.79 14197.13 25395.55 16998.19 20698.59 14293.47 20592.03 30197.82 21091.33 14299.49 14694.62 17798.44 14198.32 196
thisisatest053096.01 14895.36 16197.97 13098.38 15695.52 17098.88 8794.19 35394.04 17097.64 12398.31 16583.82 29399.46 15295.29 16097.70 16898.93 162
test_djsdf96.00 14995.69 14996.93 19395.72 31595.49 17199.47 298.40 18394.98 13694.58 20797.86 20389.16 18398.41 26796.91 9494.12 22896.88 247
xiu_mvs_v2_base97.66 7597.70 6497.56 16198.61 14495.46 17297.44 26698.46 17197.15 4298.65 6398.15 17894.33 9099.80 8097.84 4998.66 13197.41 218
Vis-MVSNet (Re-imp)96.87 11896.55 11997.83 13798.73 13095.46 17299.20 3198.30 20394.96 13896.60 16298.87 10390.05 16598.59 24493.67 21098.60 13299.46 102
EPP-MVSNet97.46 8797.28 8597.99 12998.64 14195.38 17499.33 1598.31 19793.61 20197.19 13499.07 7794.05 9499.23 16796.89 9798.43 14399.37 111
testdata98.26 11199.20 9795.36 17598.68 12191.89 26298.60 6699.10 6994.44 8999.82 6494.27 19199.44 9599.58 82
MSDG95.93 15295.30 16797.83 13798.90 11795.36 17596.83 31498.37 18891.32 28194.43 21698.73 11990.27 16399.60 13290.05 28898.82 12498.52 187
PVSNet_BlendedMVS96.73 12296.60 11797.12 18199.25 8695.35 17798.26 19699.26 894.28 16397.94 10397.46 23792.74 10999.81 7196.88 10093.32 24796.20 313
PVSNet_Blended97.38 9697.12 9098.14 11899.25 8695.35 17797.28 28299.26 893.13 21997.94 10398.21 17492.74 10999.81 7196.88 10099.40 10099.27 125
TAMVS97.02 11296.79 10697.70 15098.06 18795.31 17998.52 15698.31 19793.95 17797.05 14298.61 12993.49 10198.52 25095.33 15797.81 16299.29 123
PS-CasMVS94.67 22493.99 23396.71 20696.68 27995.26 18099.13 4199.03 2593.68 19692.33 29597.95 19485.35 26398.10 29593.59 21288.16 31296.79 256
V4294.78 21794.14 22396.70 20896.33 29595.22 18198.97 6998.09 24192.32 24994.31 22297.06 26888.39 20498.55 24792.90 23388.87 30496.34 307
pm-mvs193.94 26893.06 27296.59 21996.49 28895.16 18298.95 7398.03 25292.32 24991.08 31097.84 20684.54 27798.41 26792.16 25186.13 33296.19 314
CSCG97.85 6797.74 6398.20 11599.67 2695.16 18299.22 2799.32 793.04 22297.02 14398.92 9995.36 5899.91 3097.43 7599.64 6299.52 85
thisisatest051595.61 17094.89 18597.76 14498.15 18095.15 18496.77 31594.41 34992.95 22697.18 13597.43 24184.78 27299.45 15394.63 17597.73 16798.68 177
bset_n11_16_dypcd94.89 21194.27 21496.76 20394.41 33695.15 18495.67 33595.64 33995.53 10494.65 20597.52 23487.10 23298.29 28396.58 11591.35 26796.83 254
VDDNet95.36 18294.53 19997.86 13598.10 18495.13 18698.85 9297.75 26790.46 29898.36 7999.39 1473.27 34899.64 12697.98 3796.58 19098.81 168
gg-mvs-nofinetune92.21 29290.58 29997.13 18096.75 27595.09 18795.85 33289.40 36285.43 34194.50 21081.98 35680.80 31098.40 27392.16 25198.33 14797.88 206
PS-MVSNAJss96.43 13396.26 12996.92 19695.84 31395.08 18899.16 3698.50 16695.87 9093.84 24598.34 16294.51 8498.61 24096.88 10093.45 24497.06 229
thres600view795.49 17194.77 18897.67 15398.98 11395.02 18998.85 9296.90 31895.38 11396.63 16096.90 28584.29 27999.59 13388.65 30896.33 19898.40 191
GBi-Net94.49 23793.80 24596.56 22398.21 17295.00 19098.82 9998.18 21992.46 24094.09 23397.07 26581.16 30497.95 30792.08 25392.14 25896.72 265
test194.49 23793.80 24596.56 22398.21 17295.00 19098.82 9998.18 21992.46 24094.09 23397.07 26581.16 30497.95 30792.08 25392.14 25896.72 265
FMVSNet193.19 28292.07 28796.56 22397.54 22195.00 19098.82 9998.18 21990.38 30192.27 29697.07 26573.68 34797.95 30789.36 30291.30 26996.72 265
tfpn200view995.32 18694.62 19597.43 16698.94 11594.98 19398.68 13196.93 31695.33 11696.55 16596.53 30284.23 28299.56 13788.11 30996.29 20097.76 209
GG-mvs-BLEND96.59 21996.34 29494.98 19396.51 32488.58 36393.10 27394.34 34080.34 31398.05 30189.53 29896.99 18096.74 262
thres40095.38 17994.62 19597.65 15698.94 11594.98 19398.68 13196.93 31695.33 11696.55 16596.53 30284.23 28299.56 13788.11 30996.29 20098.40 191
F-COLMAP97.09 11196.80 10497.97 13099.45 5594.95 19698.55 15498.62 13993.02 22396.17 17998.58 13494.01 9599.81 7193.95 20198.90 11799.14 141
thres100view90095.38 17994.70 19297.41 16798.98 11394.92 19798.87 8996.90 31895.38 11396.61 16196.88 28684.29 27999.56 13788.11 30996.29 20097.76 209
thres20095.25 18894.57 19797.28 17298.81 12694.92 19798.20 20297.11 30595.24 12496.54 16796.22 31484.58 27699.53 14387.93 31396.50 19497.39 220
tttt051796.07 14595.51 15597.78 14298.41 15594.84 19999.28 1894.33 35194.26 16597.64 12398.64 12884.05 28699.47 15195.34 15697.60 17199.03 152
PEN-MVS94.42 24193.73 25296.49 23096.28 29694.84 19999.17 3599.00 2793.51 20392.23 29797.83 20986.10 25197.90 31192.55 24486.92 32596.74 262
v894.47 23993.77 24896.57 22296.36 29394.83 20199.05 5398.19 21691.92 26193.16 26896.97 27888.82 19698.48 25291.69 26587.79 31496.39 305
TAPA-MVS93.98 795.35 18394.56 19897.74 14699.13 10294.83 20198.33 18298.64 13786.62 33196.29 17698.61 12994.00 9699.29 16280.00 34699.41 9899.09 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v1094.29 24893.55 26096.51 22996.39 29294.80 20398.99 6598.19 21691.35 27993.02 27496.99 27688.09 21298.41 26790.50 28188.41 30896.33 309
v2v48294.69 21994.03 22796.65 21196.17 30094.79 20498.67 13498.08 24392.72 23394.00 23897.16 25687.69 22498.45 25692.91 23288.87 30496.72 265
v114494.59 22993.92 23696.60 21896.21 29794.78 20598.59 14498.14 22991.86 26494.21 22897.02 27387.97 21598.41 26791.72 26489.57 29096.61 279
TransMVSNet (Re)92.67 28891.51 29396.15 25096.58 28394.65 20698.90 8096.73 32590.86 29389.46 32597.86 20385.62 25898.09 29786.45 32081.12 34195.71 324
BH-RMVSNet95.92 15395.32 16597.69 15198.32 16694.64 20798.19 20697.45 29194.56 15496.03 18298.61 12985.02 26799.12 17990.68 27999.06 11299.30 121
OPM-MVS95.69 16595.33 16496.76 20396.16 30294.63 20898.43 17098.39 18596.64 6195.02 19598.78 11385.15 26699.05 18995.21 16494.20 22396.60 280
jajsoiax95.45 17495.03 17896.73 20595.42 32694.63 20899.14 3898.52 15895.74 9493.22 26698.36 15783.87 29198.65 23896.95 9394.04 22996.91 243
plane_prior797.42 23294.63 208
plane_prior697.35 23794.61 21187.09 233
plane_prior394.61 21197.02 4995.34 189
HQP_MVS96.14 14495.90 14096.85 19997.42 23294.60 21398.80 10698.56 15097.28 3195.34 18998.28 16787.09 23399.03 19396.07 12994.27 22096.92 238
plane_prior94.60 21398.44 16896.74 5794.22 222
CHOSEN 1792x268897.12 10996.80 10498.08 12499.30 7594.56 21598.05 22299.71 193.57 20297.09 13798.91 10088.17 20999.89 3596.87 10399.56 8099.81 8
NP-MVS97.28 24094.51 21697.73 215
hse-mvs396.17 14395.62 15297.81 14099.03 10894.45 21798.64 13998.75 10297.48 1898.67 5898.72 12089.76 16999.86 4997.95 3881.59 34099.11 144
v119294.32 24693.58 25996.53 22796.10 30394.45 21798.50 16198.17 22491.54 27294.19 22997.06 26886.95 23798.43 25990.14 28489.57 29096.70 269
mvs_tets95.41 17895.00 17996.65 21195.58 31994.42 21999.00 6398.55 15295.73 9593.21 26798.38 15583.45 29598.63 23997.09 8694.00 23196.91 243
LTVRE_ROB92.95 1594.60 22793.90 23896.68 21097.41 23594.42 21998.52 15698.59 14291.69 26891.21 30898.35 15884.87 27099.04 19291.06 27293.44 24596.60 280
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet93.98 26793.26 27096.14 25196.06 30594.39 22199.20 3198.86 6193.06 22191.78 30397.81 21185.87 25597.58 32290.53 28086.17 33096.46 303
v7n94.19 25493.43 26596.47 23295.90 31094.38 22299.26 2098.34 19391.99 25992.76 28097.13 25788.31 20598.52 25089.48 30087.70 31596.52 294
v14419294.39 24393.70 25496.48 23196.06 30594.35 22398.58 14698.16 22691.45 27494.33 22197.02 27387.50 22798.45 25691.08 27189.11 29996.63 277
Anonymous2023121194.10 26193.26 27096.61 21699.11 10494.28 22499.01 6198.88 4986.43 33392.81 27897.57 23081.66 30398.68 23594.83 17089.02 30296.88 247
cascas94.63 22693.86 24196.93 19396.91 26694.27 22596.00 33198.51 16185.55 34094.54 20896.23 31284.20 28498.87 21895.80 14296.98 18197.66 215
Anonymous2024052995.10 19794.22 21697.75 14599.01 10994.26 22698.87 8998.83 6885.79 33996.64 15998.97 8778.73 32199.85 5096.27 12494.89 21799.12 143
HQP5-MVS94.25 227
HQP-MVS95.72 16195.40 15696.69 20997.20 24694.25 22798.05 22298.46 17196.43 7094.45 21297.73 21586.75 23998.96 20495.30 15894.18 22496.86 251
TR-MVS94.94 20994.20 21797.17 17897.75 20394.14 22997.59 26197.02 31292.28 25295.75 18797.64 22483.88 29098.96 20489.77 29296.15 20898.40 191
v192192094.20 25393.47 26496.40 23995.98 30894.08 23098.52 15698.15 22791.33 28094.25 22597.20 25586.41 24698.42 26090.04 28989.39 29696.69 274
Baseline_NR-MVSNet94.35 24493.81 24495.96 25896.20 29894.05 23198.61 14396.67 32991.44 27593.85 24497.60 22788.57 19998.14 29294.39 18586.93 32495.68 325
VDD-MVS95.82 15895.23 16997.61 15898.84 12493.98 23298.68 13197.40 29595.02 13597.95 10199.34 3174.37 34699.78 9698.64 496.80 18399.08 149
PMMVS96.60 12596.33 12697.41 16797.90 19693.93 23397.35 27698.41 18092.84 23197.76 11297.45 23991.10 14899.20 17096.26 12597.91 15899.11 144
v124094.06 26593.29 26996.34 24396.03 30793.90 23498.44 16898.17 22491.18 28994.13 23297.01 27586.05 25298.42 26089.13 30589.50 29496.70 269
GA-MVS94.81 21594.03 22797.14 17997.15 25293.86 23596.76 31697.58 27694.00 17494.76 20497.04 27180.91 30798.48 25291.79 26296.25 20599.09 146
ACMM93.85 995.69 16595.38 16096.61 21697.61 21393.84 23698.91 7998.44 17595.25 12294.28 22398.47 14586.04 25499.12 17995.50 15493.95 23396.87 249
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_anonymous96.70 12396.53 12197.18 17798.19 17593.78 23798.31 18898.19 21694.01 17394.47 21198.27 17092.08 12498.46 25597.39 7797.91 15899.31 118
XVG-OURS-SEG-HR96.51 13196.34 12597.02 18698.77 12893.76 23897.79 24998.50 16695.45 10996.94 14599.09 7487.87 21999.55 14296.76 11095.83 21397.74 211
XVG-OURS96.55 13096.41 12396.99 18798.75 12993.76 23897.50 26598.52 15895.67 9896.83 15199.30 3888.95 19399.53 14395.88 13896.26 20497.69 214
Anonymous20240521195.28 18794.49 20197.67 15399.00 11093.75 24098.70 12897.04 30990.66 29496.49 17098.80 11178.13 32699.83 5696.21 12795.36 21699.44 105
CLD-MVS95.62 16895.34 16296.46 23597.52 22493.75 24097.27 28398.46 17195.53 10494.42 21798.00 18986.21 24998.97 20096.25 12694.37 21896.66 275
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_enhance_ethall95.10 19794.75 19096.12 25397.53 22393.73 24296.61 32198.08 24392.20 25693.89 24196.65 29892.44 11298.30 28094.21 19391.16 27296.34 307
IterMVS-LS95.46 17295.21 17096.22 24898.12 18293.72 24398.32 18798.13 23093.71 19194.26 22497.31 24792.24 11798.10 29594.63 17590.12 28396.84 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet95.96 15095.83 14296.36 24197.93 19493.70 24498.12 21698.27 20693.70 19395.07 19399.02 8092.23 11898.54 24894.68 17493.46 24296.84 252
cl-mvsnet294.68 22194.19 21896.13 25298.11 18393.60 24596.94 30198.31 19792.43 24493.32 26496.87 28886.51 24298.28 28594.10 19891.16 27296.51 297
baseline295.11 19694.52 20096.87 19896.65 28193.56 24698.27 19594.10 35593.45 20692.02 30297.43 24187.45 22999.19 17193.88 20397.41 17597.87 207
LPG-MVS_test95.62 16895.34 16296.47 23297.46 22793.54 24798.99 6598.54 15494.67 15094.36 21998.77 11585.39 26199.11 18295.71 14794.15 22696.76 260
LGP-MVS_train96.47 23297.46 22793.54 24798.54 15494.67 15094.36 21998.77 11585.39 26199.11 18295.71 14794.15 22696.76 260
hse-mvs295.71 16295.30 16796.93 19398.50 15093.53 24998.36 17898.10 23697.48 1898.67 5897.99 19089.76 16999.02 19797.95 3880.91 34498.22 198
AUN-MVS94.53 23493.73 25296.92 19698.50 15093.52 25098.34 18098.10 23693.83 18495.94 18697.98 19285.59 25999.03 19394.35 18780.94 34398.22 198
ACMP93.49 1095.34 18494.98 18196.43 23797.67 20993.48 25198.73 11998.44 17594.94 14192.53 28898.53 13884.50 27899.14 17795.48 15594.00 23196.66 275
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CR-MVSNet94.76 21894.15 22296.59 21997.00 25993.43 25294.96 34197.56 27792.46 24096.93 14696.24 31088.15 21097.88 31587.38 31596.65 18898.46 189
RPMNet92.81 28691.34 29497.24 17397.00 25993.43 25294.96 34198.80 8782.27 34696.93 14692.12 34986.98 23699.82 6476.32 35496.65 18898.46 189
IB-MVS91.98 1793.27 27891.97 28997.19 17697.47 22693.41 25497.09 29495.99 33393.32 21192.47 29295.73 32278.06 32799.53 14394.59 18082.98 33598.62 183
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cl-mvsnet____94.51 23694.01 23096.02 25497.58 21693.40 25597.05 29597.96 25791.73 26792.76 28097.08 26489.06 18798.13 29392.61 23890.29 28296.52 294
cl-mvsnet194.52 23594.03 22795.99 25597.57 22093.38 25697.05 29597.94 25891.74 26592.81 27897.10 25889.12 18498.07 29992.60 23990.30 28196.53 291
UniMVSNet_ETH3D94.24 25193.33 26796.97 19097.19 24993.38 25698.74 11598.57 14891.21 28893.81 24698.58 13472.85 34998.77 22995.05 16693.93 23498.77 171
miper_ehance_all_eth95.01 20194.69 19395.97 25797.70 20893.31 25897.02 29798.07 24592.23 25393.51 25796.96 28091.85 12898.15 29193.68 20891.16 27296.44 304
CHOSEN 280x42097.18 10697.18 8997.20 17598.81 12693.27 25995.78 33499.15 1895.25 12296.79 15698.11 18192.29 11599.07 18898.56 999.85 399.25 127
ACMH92.88 1694.55 23293.95 23596.34 24397.63 21293.26 26098.81 10598.49 17093.43 20789.74 32198.53 13881.91 30199.08 18793.69 20793.30 24896.70 269
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft93.27 1295.33 18594.87 18696.71 20699.29 7893.24 26198.58 14698.11 23489.92 30993.57 25399.10 6986.37 24799.79 9290.78 27798.10 15397.09 227
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest95.24 18994.65 19496.99 18799.25 8693.21 26298.59 14498.18 21991.36 27793.52 25598.77 11584.67 27499.72 10989.70 29597.87 16098.02 204
TestCases96.99 18799.25 8693.21 26298.18 21991.36 27793.52 25598.77 11584.67 27499.72 10989.70 29597.87 16098.02 204
MIMVSNet93.26 27992.21 28696.41 23897.73 20793.13 26495.65 33697.03 31091.27 28594.04 23696.06 31775.33 34097.19 32986.56 31996.23 20698.92 163
cl_fuxian94.79 21694.43 20895.89 26297.75 20393.12 26597.16 29198.03 25292.23 25393.46 26097.05 27091.39 13998.01 30393.58 21389.21 29896.53 291
Patchmtry93.22 28092.35 28495.84 26496.77 27293.09 26694.66 34697.56 27787.37 32992.90 27696.24 31088.15 21097.90 31187.37 31690.10 28496.53 291
v14894.29 24893.76 25095.91 26096.10 30392.93 26798.58 14697.97 25592.59 23893.47 25996.95 28288.53 20298.32 27692.56 24387.06 32396.49 300
test0.0.03 194.08 26393.51 26295.80 26595.53 32192.89 26897.38 27195.97 33495.11 13092.51 29096.66 29687.71 22196.94 33387.03 31793.67 23797.57 216
PatchT93.06 28491.97 28996.35 24296.69 27892.67 26994.48 34797.08 30686.62 33197.08 13892.23 34887.94 21697.90 31178.89 35096.69 18698.49 188
MVP-Stereo94.28 25093.92 23695.35 27994.95 33092.60 27097.97 23097.65 27191.61 27190.68 31497.09 26286.32 24898.42 26089.70 29599.34 10395.02 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs593.65 27292.97 27495.68 26995.49 32292.37 27198.20 20297.28 30089.66 31492.58 28697.26 24982.14 29898.09 29793.18 22490.95 27696.58 282
BH-untuned95.95 15195.72 14496.65 21198.55 14892.26 27298.23 19797.79 26593.73 18994.62 20698.01 18888.97 19299.00 19993.04 22898.51 13798.68 177
pmmvs-eth3d90.36 30789.05 31294.32 31091.10 35292.12 27397.63 26096.95 31588.86 32284.91 34593.13 34478.32 32396.74 33688.70 30781.81 33994.09 345
FMVSNet591.81 29390.92 29694.49 30597.21 24592.09 27498.00 22897.55 28289.31 31990.86 31295.61 32874.48 34495.32 34985.57 32689.70 28896.07 317
D2MVS95.18 19395.08 17695.48 27497.10 25592.07 27598.30 19099.13 1994.02 17292.90 27696.73 29389.48 17498.73 23194.48 18493.60 24195.65 326
PVSNet91.96 1896.35 13696.15 13296.96 19199.17 9892.05 27696.08 32798.68 12193.69 19497.75 11397.80 21288.86 19499.69 12094.26 19299.01 11399.15 139
ACMH+92.99 1494.30 24793.77 24895.88 26397.81 20192.04 27798.71 12498.37 18893.99 17590.60 31598.47 14580.86 30999.05 18992.75 23792.40 25796.55 288
ADS-MVSNet95.00 20294.45 20696.63 21498.00 18991.91 27896.04 32897.74 26890.15 30496.47 17196.64 29987.89 21798.96 20490.08 28697.06 17899.02 153
mvs-test196.60 12596.68 11596.37 24097.89 19791.81 27998.56 15298.10 23696.57 6496.52 16997.94 19590.81 15199.45 15395.72 14598.01 15597.86 208
BH-w/o95.38 17995.08 17696.26 24798.34 16391.79 28097.70 25497.43 29392.87 23094.24 22697.22 25388.66 19798.84 22191.55 26797.70 16898.16 201
Patchmatch-test94.42 24193.68 25696.63 21497.60 21491.76 28194.83 34597.49 28889.45 31794.14 23197.10 25888.99 18898.83 22385.37 32998.13 15299.29 123
EPMVS94.99 20394.48 20296.52 22897.22 24491.75 28297.23 28491.66 35994.11 16797.28 13196.81 29185.70 25798.84 22193.04 22897.28 17698.97 158
Fast-Effi-MVS+-dtu95.87 15495.85 14195.91 26097.74 20691.74 28398.69 13098.15 22795.56 10394.92 19797.68 22188.98 19198.79 22793.19 22397.78 16497.20 226
eth_miper_zixun_eth94.68 22194.41 20995.47 27597.64 21191.71 28496.73 31898.07 24592.71 23493.64 25097.21 25490.54 15898.17 29093.38 21689.76 28796.54 289
XVG-ACMP-BASELINE94.54 23394.14 22395.75 26896.55 28491.65 28598.11 21898.44 17594.96 13894.22 22797.90 19879.18 31999.11 18294.05 20093.85 23596.48 301
KD-MVS_2432*160089.61 31387.96 31794.54 30394.06 34091.59 28695.59 33797.63 27389.87 31088.95 32894.38 33878.28 32496.82 33484.83 33168.05 35595.21 331
miper_refine_blended89.61 31387.96 31794.54 30394.06 34091.59 28695.59 33797.63 27389.87 31088.95 32894.38 33878.28 32496.82 33484.83 33168.05 35595.21 331
TDRefinement91.06 30189.68 30695.21 28285.35 35891.49 28898.51 16097.07 30791.47 27388.83 33097.84 20677.31 33399.09 18692.79 23677.98 34795.04 336
MDA-MVSNet-bldmvs89.97 31088.35 31594.83 29695.21 32791.34 28997.64 25897.51 28588.36 32571.17 35796.13 31679.22 31896.63 34183.65 33786.27 32996.52 294
RRT_test8_iter0594.56 23194.19 21895.67 27097.60 21491.34 28998.93 7798.42 17994.75 14593.39 26197.87 20279.00 32098.61 24096.78 10990.99 27597.07 228
MVS_030492.81 28692.01 28895.23 28197.46 22791.33 29198.17 21198.81 7691.13 29093.80 24795.68 32766.08 35598.06 30090.79 27696.13 20996.32 310
ITE_SJBPF95.44 27797.42 23291.32 29297.50 28695.09 13393.59 25198.35 15881.70 30298.88 21789.71 29493.39 24696.12 315
SCA95.46 17295.13 17396.46 23597.67 20991.29 29397.33 27897.60 27594.68 14996.92 14897.10 25883.97 28898.89 21592.59 24198.32 14899.20 130
pmmvs691.77 29490.63 29895.17 28494.69 33591.24 29498.67 13497.92 26086.14 33589.62 32297.56 23275.79 33998.34 27490.75 27884.56 33495.94 320
test_040291.32 29790.27 30294.48 30696.60 28291.12 29598.50 16197.22 30386.10 33688.30 33296.98 27777.65 33197.99 30678.13 35292.94 25394.34 341
MIMVSNet189.67 31288.28 31693.82 31492.81 34891.08 29698.01 22697.45 29187.95 32687.90 33495.87 32067.63 35394.56 35378.73 35188.18 31195.83 322
miper_lstm_enhance94.33 24594.07 22695.11 28697.75 20390.97 29797.22 28598.03 25291.67 26992.76 28096.97 27890.03 16697.78 31792.51 24689.64 28996.56 286
ppachtmachnet_test93.22 28092.63 28094.97 29095.45 32490.84 29896.88 31097.88 26290.60 29592.08 30097.26 24988.08 21397.86 31685.12 33090.33 28096.22 312
USDC93.33 27792.71 27895.21 28296.83 27190.83 29996.91 30497.50 28693.84 18290.72 31398.14 17977.69 32998.82 22489.51 29993.21 25095.97 319
DWT-MVSNet_test94.82 21394.36 21196.20 24997.35 23790.79 30098.34 18096.57 33192.91 22895.33 19196.44 30682.00 29999.12 17994.52 18295.78 21498.70 175
MDA-MVSNet_test_wron90.71 30489.38 30994.68 30094.83 33290.78 30197.19 28797.46 28987.60 32772.41 35695.72 32486.51 24296.71 33985.92 32486.80 32796.56 286
PatchmatchNetpermissive95.71 16295.52 15496.29 24697.58 21690.72 30296.84 31397.52 28494.06 16997.08 13896.96 28089.24 18198.90 21492.03 25798.37 14499.26 126
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
YYNet190.70 30589.39 30894.62 30294.79 33390.65 30397.20 28697.46 28987.54 32872.54 35595.74 32186.51 24296.66 34086.00 32386.76 32896.54 289
JIA-IIPM93.35 27592.49 28295.92 25996.48 28990.65 30395.01 34096.96 31485.93 33796.08 18187.33 35387.70 22398.78 22891.35 26995.58 21598.34 194
IterMVS-SCA-FT94.11 26093.87 24094.85 29497.98 19390.56 30597.18 28898.11 23493.75 18692.58 28697.48 23683.97 28897.41 32692.48 24891.30 26996.58 282
EPNet_dtu95.21 19194.95 18395.99 25596.17 30090.45 30698.16 21297.27 30196.77 5593.14 27198.33 16390.34 16198.42 26085.57 32698.81 12599.09 146
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS94.09 26293.85 24294.80 29797.99 19190.35 30797.18 28898.12 23193.68 19692.46 29397.34 24484.05 28697.41 32692.51 24691.33 26896.62 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu96.29 13896.56 11895.51 27397.89 19790.22 30898.80 10698.10 23696.57 6496.45 17396.66 29690.81 15198.91 21195.72 14597.99 15697.40 219
testgi93.06 28492.45 28394.88 29396.43 29189.90 30998.75 11297.54 28395.60 10191.63 30697.91 19774.46 34597.02 33186.10 32293.67 23797.72 213
UnsupCasMVSNet_eth90.99 30289.92 30594.19 31294.08 33989.83 31097.13 29398.67 12993.69 19485.83 34296.19 31575.15 34196.74 33689.14 30479.41 34596.00 318
TinyColmap92.31 29191.53 29294.65 30196.92 26489.75 31196.92 30296.68 32890.45 29989.62 32297.85 20576.06 33898.81 22586.74 31892.51 25695.41 328
test-LLR95.10 19794.87 18695.80 26596.77 27289.70 31296.91 30495.21 34195.11 13094.83 20195.72 32487.71 22198.97 20093.06 22698.50 13898.72 173
test-mter94.08 26393.51 26295.80 26596.77 27289.70 31296.91 30495.21 34192.89 22994.83 20195.72 32477.69 32998.97 20093.06 22698.50 13898.72 173
our_test_393.65 27293.30 26894.69 29995.45 32489.68 31496.91 30497.65 27191.97 26091.66 30596.88 28689.67 17297.93 31088.02 31291.49 26696.48 301
DeepPCF-MVS96.37 297.93 6498.48 1796.30 24599.00 11089.54 31597.43 26898.87 5598.16 299.26 1899.38 2196.12 2899.64 12698.30 2799.77 2699.72 40
MS-PatchMatch93.84 26993.63 25794.46 30896.18 29989.45 31697.76 25098.27 20692.23 25392.13 29997.49 23579.50 31698.69 23289.75 29399.38 10195.25 330
OpenMVS_ROBcopyleft86.42 2089.00 31687.43 32193.69 31593.08 34689.42 31797.91 23596.89 32078.58 35085.86 34194.69 33569.48 35198.29 28377.13 35393.29 24993.36 350
SixPastTwentyTwo93.34 27692.86 27594.75 29895.67 31689.41 31898.75 11296.67 32993.89 17990.15 31998.25 17280.87 30898.27 28690.90 27590.64 27896.57 284
K. test v392.55 28991.91 29194.48 30695.64 31789.24 31999.07 5194.88 34594.04 17086.78 33797.59 22877.64 33297.64 32092.08 25389.43 29596.57 284
OurMVSNet-221017-094.21 25294.00 23194.85 29495.60 31889.22 32098.89 8497.43 29395.29 11992.18 29898.52 14182.86 29698.59 24493.46 21591.76 26396.74 262
TESTMET0.1,194.18 25693.69 25595.63 27196.92 26489.12 32196.91 30494.78 34693.17 21794.88 19896.45 30578.52 32298.92 21093.09 22598.50 13898.85 165
CostFormer94.95 20794.73 19195.60 27297.28 24089.06 32297.53 26496.89 32089.66 31496.82 15396.72 29486.05 25298.95 20895.53 15396.13 20998.79 169
tpm294.19 25493.76 25095.46 27697.23 24389.04 32397.31 28096.85 32487.08 33096.21 17896.79 29283.75 29498.74 23092.43 24996.23 20698.59 184
EG-PatchMatch MVS91.13 30090.12 30394.17 31394.73 33489.00 32498.13 21597.81 26489.22 32085.32 34496.46 30467.71 35298.42 26087.89 31493.82 23695.08 335
DIV-MVS_2432*160090.38 30689.38 30993.40 31992.85 34788.94 32597.95 23197.94 25890.35 30290.25 31793.96 34179.82 31495.94 34584.62 33576.69 34995.33 329
UnsupCasMVSNet_bld87.17 31985.12 32393.31 32191.94 34988.77 32694.92 34398.30 20384.30 34482.30 34890.04 35063.96 35797.25 32885.85 32574.47 35393.93 348
ADS-MVSNet294.58 23094.40 21095.11 28698.00 18988.74 32796.04 32897.30 29890.15 30496.47 17196.64 29987.89 21797.56 32390.08 28697.06 17899.02 153
LF4IMVS93.14 28392.79 27794.20 31195.88 31188.67 32897.66 25797.07 30793.81 18591.71 30497.65 22277.96 32898.81 22591.47 26891.92 26295.12 333
tpmvs94.60 22794.36 21195.33 28097.46 22788.60 32996.88 31097.68 26991.29 28393.80 24796.42 30788.58 19899.24 16691.06 27296.04 21198.17 200
tpmrst95.63 16795.69 14995.44 27797.54 22188.54 33096.97 29997.56 27793.50 20497.52 12996.93 28489.49 17399.16 17395.25 16296.42 19698.64 182
Anonymous2024052191.18 29990.44 30093.42 31793.70 34388.47 33198.94 7597.56 27788.46 32489.56 32495.08 33377.15 33596.97 33283.92 33689.55 29294.82 339
lessismore_v094.45 30994.93 33188.44 33291.03 36086.77 33897.64 22476.23 33798.42 26090.31 28385.64 33396.51 297
MDTV_nov1_ep1395.40 15697.48 22588.34 33396.85 31297.29 29993.74 18897.48 13097.26 24989.18 18299.05 18991.92 26097.43 174
new_pmnet90.06 30989.00 31393.22 32394.18 33788.32 33496.42 32696.89 32086.19 33485.67 34393.62 34277.18 33497.10 33081.61 34289.29 29794.23 342
CL-MVSNet_2432*160090.11 30889.14 31193.02 32491.86 35088.23 33596.51 32498.07 24590.49 29690.49 31694.41 33684.75 27395.34 34880.79 34474.95 35195.50 327
test20.0390.89 30390.38 30192.43 32693.48 34488.14 33698.33 18297.56 27793.40 20887.96 33396.71 29580.69 31194.13 35479.15 34986.17 33095.01 338
tpm cat193.36 27492.80 27695.07 28897.58 21687.97 33796.76 31697.86 26382.17 34793.53 25496.04 31886.13 25099.13 17889.24 30395.87 21298.10 202
tpm94.13 25893.80 24595.12 28596.50 28787.91 33897.44 26695.89 33792.62 23696.37 17596.30 30984.13 28598.30 28093.24 22191.66 26599.14 141
LCM-MVSNet-Re95.22 19095.32 16594.91 29198.18 17787.85 33998.75 11295.66 33895.11 13088.96 32796.85 28990.26 16497.65 31995.65 15098.44 14199.22 129
gm-plane-assit95.88 31187.47 34089.74 31396.94 28399.19 17193.32 220
Anonymous2023120691.66 29591.10 29593.33 32094.02 34287.35 34198.58 14697.26 30290.48 29790.16 31896.31 30883.83 29296.53 34279.36 34889.90 28696.12 315
PVSNet_088.72 1991.28 29890.03 30495.00 28997.99 19187.29 34294.84 34498.50 16692.06 25889.86 32095.19 33079.81 31599.39 15692.27 25069.79 35498.33 195
pmmvs386.67 32184.86 32492.11 32988.16 35587.19 34396.63 32094.75 34779.88 34987.22 33692.75 34666.56 35495.20 35081.24 34376.56 35093.96 347
dp94.15 25793.90 23894.90 29297.31 23986.82 34496.97 29997.19 30491.22 28796.02 18396.61 30185.51 26099.02 19790.00 29094.30 21998.85 165
new-patchmatchnet88.50 31787.45 32091.67 33090.31 35485.89 34597.16 29197.33 29789.47 31683.63 34792.77 34576.38 33695.06 35182.70 33977.29 34894.06 346
Patchmatch-RL test91.49 29690.85 29793.41 31891.37 35184.40 34692.81 35195.93 33691.87 26387.25 33594.87 33488.99 18896.53 34292.54 24582.00 33799.30 121
MDTV_nov1_ep13_2view84.26 34796.89 30990.97 29297.90 10789.89 16893.91 20299.18 137
CVMVSNet95.43 17596.04 13693.57 31697.93 19483.62 34898.12 21698.59 14295.68 9796.56 16399.02 8087.51 22597.51 32593.56 21497.44 17399.60 78
EU-MVSNet93.66 27094.14 22392.25 32895.96 30983.38 34998.52 15698.12 23194.69 14892.61 28598.13 18087.36 23096.39 34491.82 26190.00 28596.98 233
PM-MVS87.77 31886.55 32291.40 33191.03 35383.36 35096.92 30295.18 34391.28 28486.48 34093.42 34353.27 35996.74 33689.43 30181.97 33894.11 344
DSMNet-mixed92.52 29092.58 28192.33 32794.15 33882.65 35198.30 19094.26 35289.08 32192.65 28495.73 32285.01 26895.76 34686.24 32197.76 16598.59 184
MVS-HIRNet89.46 31588.40 31492.64 32597.58 21682.15 35294.16 35093.05 35875.73 35390.90 31182.52 35579.42 31798.33 27583.53 33898.68 12797.43 217
RPSCF94.87 21295.40 15693.26 32298.89 11882.06 35398.33 18298.06 25090.30 30396.56 16399.26 4287.09 23399.49 14693.82 20596.32 19998.24 197
Gipumacopyleft78.40 32476.75 32783.38 33895.54 32080.43 35479.42 36097.40 29564.67 35673.46 35480.82 35745.65 36193.14 35566.32 35787.43 31876.56 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CMPMVSbinary66.06 2189.70 31189.67 30789.78 33293.19 34576.56 35597.00 29898.35 19180.97 34881.57 34997.75 21474.75 34398.61 24089.85 29193.63 23994.17 343
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc89.49 33386.66 35675.78 35692.66 35296.72 32686.55 33992.50 34746.01 36097.90 31190.32 28282.09 33694.80 340
PMMVS277.95 32575.44 32985.46 33682.54 35974.95 35794.23 34993.08 35772.80 35474.68 35387.38 35236.36 36591.56 35773.95 35563.94 35789.87 352
DeepMVS_CXcopyleft86.78 33497.09 25672.30 35895.17 34475.92 35284.34 34695.19 33070.58 35095.35 34779.98 34789.04 30192.68 351
LCM-MVSNet78.70 32376.24 32886.08 33577.26 36471.99 35994.34 34896.72 32661.62 35776.53 35289.33 35133.91 36692.78 35681.85 34174.60 35293.46 349
ANet_high69.08 32765.37 33180.22 34065.99 36671.96 36090.91 35590.09 36182.62 34549.93 36378.39 35829.36 36781.75 36062.49 35838.52 36186.95 355
MVEpermissive62.14 2263.28 33259.38 33574.99 34274.33 36565.47 36185.55 35780.50 36752.02 36051.10 36275.00 36110.91 37180.50 36151.60 36053.40 35878.99 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
N_pmnet87.12 32087.77 31985.17 33795.46 32361.92 36297.37 27370.66 36885.83 33888.73 33196.04 31885.33 26597.76 31880.02 34590.48 27995.84 321
FPMVS77.62 32677.14 32679.05 34179.25 36260.97 36395.79 33395.94 33565.96 35567.93 35894.40 33737.73 36488.88 35968.83 35688.46 30787.29 353
tmp_tt68.90 32866.97 33074.68 34350.78 36859.95 36487.13 35683.47 36638.80 36362.21 35996.23 31264.70 35676.91 36488.91 30630.49 36287.19 354
E-PMN64.94 33064.25 33267.02 34582.28 36059.36 36591.83 35485.63 36452.69 35960.22 36077.28 35941.06 36380.12 36246.15 36141.14 35961.57 360
EMVS64.07 33163.26 33466.53 34681.73 36158.81 36691.85 35384.75 36551.93 36159.09 36175.13 36043.32 36279.09 36342.03 36239.47 36061.69 359
test_method79.03 32278.17 32581.63 33986.06 35754.40 36782.75 35996.89 32039.54 36280.98 35095.57 32958.37 35894.73 35284.74 33478.61 34695.75 323
PMVScopyleft61.03 2365.95 32963.57 33373.09 34457.90 36751.22 36885.05 35893.93 35654.45 35844.32 36483.57 35413.22 36889.15 35858.68 35981.00 34278.91 357
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d30.17 33330.18 33730.16 34778.61 36343.29 36966.79 36114.21 36917.31 36414.82 36711.93 36711.55 37041.43 36537.08 36319.30 3635.76 363
test12320.95 33623.72 33912.64 34813.54 3708.19 37096.55 3236.13 3717.48 36616.74 36637.98 36412.97 3696.05 36616.69 3645.43 36523.68 361
testmvs21.48 33524.95 33811.09 34914.89 3696.47 37196.56 3229.87 3707.55 36517.93 36539.02 3639.43 3725.90 36716.56 36512.72 36420.91 362
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k23.98 33431.98 3360.00 3500.00 3710.00 3720.00 36298.59 1420.00 3670.00 36898.61 12990.60 1570.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.88 33810.50 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36894.51 840.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.20 33710.94 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36898.43 1480.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
test_241102_TWO98.87 5597.65 999.53 899.48 697.34 899.94 398.43 1999.80 1799.83 5
9.1498.06 4999.47 4898.71 12498.82 7094.36 16299.16 2699.29 3996.05 3299.81 7197.00 8899.71 50
test_0728_THIRD97.32 2999.45 999.46 997.88 199.94 398.47 1699.86 199.85 2
GSMVS99.20 130
sam_mvs189.45 17599.20 130
sam_mvs88.99 188
MTGPAbinary98.74 104
test_post196.68 31930.43 36687.85 22098.69 23292.59 241
test_post31.83 36588.83 19598.91 211
patchmatchnet-post95.10 33289.42 17698.89 215
MTMP98.89 8494.14 354
test9_res96.39 12399.57 7599.69 51
agg_prior295.87 13999.57 7599.68 57
test_prior297.80 24796.12 8297.89 10898.69 12195.96 3696.89 9799.60 68
旧先验297.57 26391.30 28298.67 5899.80 8095.70 149
新几何297.64 258
无先验97.58 26298.72 11091.38 27699.87 4493.36 21899.60 78
原ACMM297.67 256
testdata299.89 3591.65 266
segment_acmp96.85 11
testdata197.32 27996.34 74
plane_prior598.56 15099.03 19396.07 12994.27 22096.92 238
plane_prior498.28 167
plane_prior298.80 10697.28 31
plane_prior197.37 236
n20.00 372
nn0.00 372
door-mid94.37 350
test1198.66 132
door94.64 348
HQP-NCC97.20 24698.05 22296.43 7094.45 212
ACMP_Plane97.20 24698.05 22296.43 7094.45 212
BP-MVS95.30 158
HQP4-MVS94.45 21298.96 20496.87 249
HQP3-MVS98.46 17194.18 224
HQP2-MVS86.75 239
ACMMP++_ref92.97 252
ACMMP++93.61 240
Test By Simon94.64 80