This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS199.82 198.66 2499.69 198.95 3897.46 2599.39 22
MTAPA98.58 2098.29 3699.46 1499.76 298.64 2598.90 9798.74 10097.27 4098.02 10199.39 2294.81 7499.96 497.91 5699.79 2399.77 22
MSP-MVS98.74 1098.55 1499.29 2899.75 398.23 4699.26 2798.88 5497.52 2199.41 2098.78 12096.00 3399.79 8897.79 6699.59 7099.85 5
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVScopyleft98.33 4898.01 5299.28 3199.75 398.18 4999.22 3598.79 9096.13 9297.92 11299.23 5294.54 7799.94 596.74 12699.78 2699.73 36
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.51 2998.26 3799.25 3499.75 398.04 5699.28 2498.81 7896.24 8798.35 8699.23 5295.46 4999.94 597.42 9299.81 1299.77 22
HPM-MVS_fast98.38 4198.13 4699.12 4899.75 397.86 6199.44 1198.82 7394.46 17498.94 4499.20 5795.16 6699.74 10197.58 8199.85 599.77 22
region2R98.61 1598.38 2299.29 2899.74 798.16 5199.23 3198.93 4296.15 9198.94 4499.17 6495.91 3799.94 597.55 8599.79 2399.78 16
ACMMPR98.59 1898.36 2499.29 2899.74 798.15 5299.23 3198.95 3896.10 9498.93 4899.19 6295.70 4399.94 597.62 7899.79 2399.78 16
HPM-MVScopyleft98.36 4398.10 4999.13 4699.74 797.82 6599.53 898.80 8594.63 16698.61 7098.97 9595.13 6799.77 9697.65 7699.83 1199.79 14
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft98.23 5097.95 5499.09 4999.74 797.62 7099.03 7199.41 695.98 9797.60 13399.36 3294.45 8299.93 2197.14 10098.85 12599.70 47
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ZNCC-MVS98.49 3098.20 4499.35 2299.73 1198.39 3499.19 4298.86 6795.77 10998.31 8999.10 7695.46 4999.93 2197.57 8499.81 1299.74 31
DVP-MVScopyleft99.03 398.83 699.63 499.72 1299.25 298.97 8498.58 14097.62 1699.45 1899.46 1697.42 999.94 598.47 2899.81 1299.69 50
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 5499.94 598.47 2899.81 1299.84 7
test072699.72 1299.25 299.06 6398.88 5497.62 1699.56 1399.50 897.42 9
GST-MVS98.43 3898.12 4799.34 2399.72 1298.38 3599.09 5998.82 7395.71 11398.73 6199.06 8695.27 6099.93 2197.07 10399.63 6499.72 39
MP-MVS-pluss98.31 4997.92 5599.49 1299.72 1298.88 1898.43 19098.78 9294.10 18297.69 12599.42 2095.25 6299.92 2698.09 4699.80 1999.67 59
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS98.63 1498.40 2099.32 2799.72 1298.29 4499.23 3198.96 3796.10 9498.94 4499.17 6496.06 3099.92 2697.62 7899.78 2699.75 29
PGM-MVS98.49 3098.23 4199.27 3399.72 1298.08 5598.99 8199.49 595.43 12599.03 3899.32 3995.56 4699.94 596.80 12399.77 2899.78 16
SED-MVS99.09 198.91 299.63 499.71 1999.24 599.02 7498.87 6197.65 1499.73 499.48 1197.53 799.94 598.43 3299.81 1299.70 47
IU-MVS99.71 1999.23 798.64 12895.28 13599.63 1198.35 3799.81 1299.83 8
test_241102_ONE99.71 1999.24 598.87 6197.62 1699.73 499.39 2297.53 799.74 101
XVS98.70 1198.49 1799.34 2399.70 2298.35 4199.29 2298.88 5497.40 2798.46 7699.20 5795.90 3999.89 3997.85 6199.74 4299.78 16
X-MVStestdata94.06 27292.30 29399.34 2399.70 2298.35 4199.29 2298.88 5497.40 2798.46 7643.50 38195.90 3999.89 3997.85 6199.74 4299.78 16
TSAR-MVS + MP.98.78 898.62 1099.24 3599.69 2498.28 4599.14 4998.66 12396.84 6199.56 1399.31 4196.34 2399.70 10998.32 3899.73 4499.73 36
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG97.85 6197.74 5998.20 10899.67 2595.16 18199.22 3599.32 893.04 23997.02 15098.92 10695.36 5599.91 3497.43 9199.64 6399.52 80
test_one_060199.66 2699.25 298.86 6797.55 2099.20 3099.47 1397.57 6
CP-MVS98.57 2398.36 2499.19 3999.66 2697.86 6199.34 1898.87 6195.96 9998.60 7199.13 7296.05 3199.94 597.77 6799.86 199.77 22
CPTT-MVS97.72 6697.32 8198.92 5899.64 2897.10 8999.12 5398.81 7892.34 26498.09 9499.08 8493.01 10199.92 2696.06 14599.77 2899.75 29
test_part299.63 2999.18 1099.27 27
ACMMP_NAP98.61 1598.30 3599.55 999.62 3098.95 1798.82 11798.81 7895.80 10899.16 3599.47 1395.37 5499.92 2697.89 5899.75 3899.79 14
MCST-MVS98.65 1298.37 2399.48 1399.60 3198.87 1998.41 19398.68 11597.04 5398.52 7598.80 11896.78 1699.83 5997.93 5499.61 6799.74 31
DPE-MVScopyleft98.92 598.67 999.65 299.58 3299.20 998.42 19298.91 4897.58 1999.54 1599.46 1697.10 1299.94 597.64 7799.84 1099.83 8
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
dcpmvs_298.08 5298.59 1196.56 22699.57 3390.34 31199.15 4798.38 18496.82 6399.29 2699.49 1095.78 4199.57 13298.94 999.86 199.77 22
APDe-MVS99.02 498.84 599.55 999.57 3398.96 1699.39 1298.93 4297.38 3099.41 2099.54 296.66 1799.84 5798.86 1199.85 599.87 2
SF-MVS98.59 1898.32 3499.41 1799.54 3598.71 2299.04 6898.81 7895.12 14399.32 2599.39 2296.22 2499.84 5797.72 7099.73 4499.67 59
patch_mono-298.36 4398.87 496.82 20299.53 3690.68 30498.64 15999.29 997.88 899.19 3299.52 496.80 1599.97 199.11 699.86 199.82 11
SR-MVS98.57 2398.35 2699.24 3599.53 3698.18 4999.09 5998.82 7396.58 7399.10 3799.32 3995.39 5299.82 6697.70 7499.63 6499.72 39
DP-MVS Recon97.86 6097.46 7399.06 5199.53 3698.35 4198.33 19798.89 5192.62 25398.05 9698.94 10395.34 5699.65 11996.04 14699.42 9699.19 133
SMA-MVScopyleft98.58 2098.25 3899.56 899.51 3999.04 1598.95 9098.80 8593.67 21399.37 2399.52 496.52 2199.89 3998.06 4799.81 1299.76 28
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft98.35 4598.00 5399.42 1699.51 3998.72 2198.80 12598.82 7394.52 17199.23 2999.25 5195.54 4899.80 7896.52 13199.77 2899.74 31
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft98.58 2098.25 3899.55 999.50 4199.08 1198.72 14498.66 12397.51 2298.15 9098.83 11595.70 4399.92 2697.53 8799.67 5499.66 62
APD-MVS_3200maxsize98.53 2898.33 3399.15 4599.50 4197.92 6099.15 4798.81 7896.24 8799.20 3099.37 2895.30 5899.80 7897.73 6999.67 5499.72 39
114514_t96.93 11096.27 12698.92 5899.50 4197.63 6998.85 11198.90 4984.80 35897.77 11699.11 7492.84 10299.66 11894.85 18199.77 2899.47 93
PAPM_NR97.46 8297.11 8898.50 8199.50 4196.41 12398.63 16198.60 13395.18 14097.06 14898.06 19594.26 8899.57 13293.80 21998.87 12499.52 80
SR-MVS-dyc-post98.54 2798.35 2699.13 4699.49 4597.86 6199.11 5598.80 8596.49 7699.17 3399.35 3495.34 5699.82 6697.72 7099.65 5999.71 43
RE-MVS-def98.34 2999.49 4597.86 6199.11 5598.80 8596.49 7699.17 3399.35 3495.29 5997.72 7099.65 5999.71 43
9.1498.06 5099.47 4798.71 14598.82 7394.36 17699.16 3599.29 4396.05 3199.81 7197.00 10499.71 49
CDPH-MVS97.94 5797.49 7099.28 3199.47 4798.44 3197.91 24598.67 12092.57 25698.77 5798.85 11295.93 3699.72 10395.56 16399.69 5299.68 55
ZD-MVS99.46 4998.70 2398.79 9093.21 23298.67 6398.97 9595.70 4399.83 5996.07 14299.58 73
save fliter99.46 4998.38 3598.21 21398.71 10897.95 7
EI-MVSNet-Vis-set98.47 3398.39 2198.69 6699.46 4996.49 11798.30 20498.69 11297.21 4298.84 5299.36 3295.41 5199.78 9198.62 1699.65 5999.80 13
EI-MVSNet-UG-set98.41 3998.34 2998.61 7199.45 5296.32 12898.28 20798.68 11597.17 4598.74 5999.37 2895.25 6299.79 8898.57 1799.54 8399.73 36
F-COLMAP97.09 10696.80 10197.97 12499.45 5294.95 19498.55 17498.62 13293.02 24096.17 18598.58 14394.01 9299.81 7193.95 21398.90 12099.14 142
test_fmvsm_n_192098.87 799.01 198.45 8799.42 5496.43 12098.96 8999.36 798.63 299.86 299.51 695.91 3799.97 199.72 299.75 3898.94 164
新几何199.16 4499.34 5598.01 5898.69 11290.06 32198.13 9198.95 10294.60 7699.89 3991.97 27199.47 9199.59 73
DP-MVS96.59 12395.93 14098.57 7399.34 5596.19 13498.70 14998.39 18189.45 33194.52 21999.35 3491.85 12399.85 5392.89 24798.88 12299.68 55
SD-MVS98.64 1398.68 898.53 7999.33 5798.36 4098.90 9798.85 7097.28 3699.72 699.39 2296.63 1997.60 33398.17 4299.85 599.64 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HyFIR lowres test96.90 11296.49 11898.14 11199.33 5795.56 16597.38 28599.65 292.34 26497.61 13298.20 18689.29 17699.10 19296.97 10697.60 17799.77 22
OMC-MVS97.55 8097.34 8098.20 10899.33 5795.92 15298.28 20798.59 13595.52 12197.97 10699.10 7693.28 9999.49 14895.09 17798.88 12299.19 133
原ACMM198.65 6999.32 6096.62 10698.67 12093.27 23197.81 11598.97 9595.18 6599.83 5993.84 21799.46 9499.50 85
CNVR-MVS98.78 898.56 1399.45 1599.32 6098.87 1998.47 18498.81 7897.72 1098.76 5899.16 6797.05 1399.78 9198.06 4799.66 5699.69 50
TEST999.31 6298.50 2997.92 24398.73 10392.63 25297.74 12098.68 13296.20 2699.80 78
train_agg97.97 5497.52 6999.33 2699.31 6298.50 2997.92 24398.73 10392.98 24197.74 12098.68 13296.20 2699.80 7896.59 12799.57 7499.68 55
test_prior99.19 3999.31 6298.22 4798.84 7199.70 10999.65 63
PatchMatch-RL96.59 12396.03 13698.27 10199.31 6296.51 11697.91 24599.06 2793.72 20596.92 15598.06 19588.50 20199.65 11991.77 27599.00 11798.66 185
SDMVSNet96.85 11496.42 11998.14 11199.30 6696.38 12499.21 3899.23 1495.92 10095.96 19298.76 12685.88 25299.44 15797.93 5495.59 21998.60 189
sd_testset96.17 14395.76 14797.42 16399.30 6694.34 22398.82 11799.08 2595.92 10095.96 19298.76 12682.83 30199.32 16495.56 16395.59 21998.60 189
agg_prior99.30 6698.38 3598.72 10597.57 13499.81 71
CHOSEN 1792x268897.12 10496.80 10198.08 11899.30 6694.56 21498.05 23299.71 193.57 21897.09 14498.91 10788.17 20699.89 3996.87 11899.56 8099.81 12
test_899.29 7098.44 3197.89 24998.72 10592.98 24197.70 12498.66 13596.20 2699.80 78
旧先验199.29 7097.48 7498.70 11199.09 8295.56 4699.47 9199.61 69
PLCcopyleft95.07 497.20 10096.78 10498.44 8999.29 7096.31 13098.14 22398.76 9692.41 26296.39 18098.31 17594.92 7399.78 9194.06 21198.77 12999.23 126
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
COLMAP_ROBcopyleft93.27 1295.33 19394.87 19496.71 20799.29 7093.24 26498.58 16798.11 23389.92 32393.57 26599.10 7686.37 24499.79 8890.78 29198.10 15997.09 236
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
NCCC98.61 1598.35 2699.38 1899.28 7498.61 2698.45 18598.76 9697.82 998.45 7998.93 10496.65 1899.83 5997.38 9499.41 9799.71 43
PVSNet_Blended_VisFu97.70 6897.46 7398.44 8999.27 7595.91 15398.63 16199.16 2094.48 17397.67 12698.88 10992.80 10399.91 3497.11 10199.12 11199.50 85
MVS_111021_LR98.34 4698.23 4198.67 6899.27 7596.90 9697.95 24199.58 397.14 4898.44 8199.01 9295.03 7099.62 12797.91 5699.75 3899.50 85
MSLP-MVS++98.56 2598.57 1298.55 7599.26 7796.80 9998.71 14599.05 2997.28 3698.84 5299.28 4496.47 2299.40 15898.52 2699.70 5099.47 93
AllTest95.24 19794.65 20296.99 18899.25 7893.21 26598.59 16598.18 21891.36 29293.52 26798.77 12284.67 27799.72 10389.70 30997.87 16698.02 213
TestCases96.99 18899.25 7893.21 26598.18 21891.36 29293.52 26798.77 12284.67 27799.72 10389.70 30997.87 16698.02 213
PVSNet_BlendedMVS96.73 11896.60 11397.12 18199.25 7895.35 17598.26 21099.26 1094.28 17797.94 10997.46 24892.74 10499.81 7196.88 11593.32 25996.20 324
PVSNet_Blended97.38 9197.12 8798.14 11199.25 7895.35 17597.28 29699.26 1093.13 23597.94 10998.21 18592.74 10499.81 7196.88 11599.40 9999.27 121
DeepC-MVS95.98 397.88 5997.58 6498.77 6399.25 7896.93 9498.83 11598.75 9896.96 5796.89 15799.50 890.46 15599.87 4897.84 6399.76 3499.52 80
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast96.70 198.55 2698.34 2999.18 4199.25 7898.04 5698.50 18198.78 9297.72 1098.92 4999.28 4495.27 6099.82 6697.55 8599.77 2899.69 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.37 2099.24 8499.05 1499.02 7499.16 6797.81 399.37 16097.24 9799.73 4499.70 47
test22299.23 8597.17 8897.40 28398.66 12388.68 33898.05 9698.96 10094.14 9099.53 8499.61 69
TSAR-MVS + GP.98.38 4198.24 4098.81 6299.22 8697.25 8598.11 22898.29 20297.19 4498.99 4399.02 8896.22 2499.67 11698.52 2698.56 13999.51 83
SteuartSystems-ACMMP98.90 698.75 799.36 2199.22 8698.43 3399.10 5898.87 6197.38 3099.35 2499.40 2197.78 599.87 4897.77 6799.85 599.78 16
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR98.47 3398.34 2998.88 6199.22 8697.32 7897.91 24599.58 397.20 4398.33 8799.00 9395.99 3499.64 12198.05 4999.76 3499.69 50
CS-MVS-test98.49 3098.50 1698.46 8699.20 8997.05 9099.64 498.50 16097.45 2698.88 5099.14 7195.25 6299.15 18198.83 1299.56 8099.20 129
testdata98.26 10399.20 8995.36 17398.68 11591.89 27898.60 7199.10 7694.44 8399.82 6694.27 20399.44 9599.58 77
DVP-MVS++99.08 298.89 399.64 399.17 9199.23 799.69 198.88 5497.32 3399.53 1699.47 1397.81 399.94 598.47 2899.72 4799.74 31
MSC_two_6792asdad99.62 699.17 9199.08 1198.63 13099.94 598.53 2099.80 1999.86 3
No_MVS99.62 699.17 9199.08 1198.63 13099.94 598.53 2099.80 1999.86 3
PVSNet91.96 1896.35 13696.15 13096.96 19299.17 9192.05 28096.08 34498.68 11593.69 20997.75 11997.80 22288.86 19299.69 11494.26 20499.01 11699.15 140
test1299.18 4199.16 9598.19 4898.53 15098.07 9595.13 6799.72 10399.56 8099.63 67
AdaColmapbinary97.15 10396.70 10898.48 8499.16 9596.69 10598.01 23698.89 5194.44 17596.83 15898.68 13290.69 15299.76 9794.36 19899.29 10698.98 159
PHI-MVS98.34 4698.06 5099.18 4199.15 9798.12 5499.04 6899.09 2493.32 22798.83 5499.10 7696.54 2099.83 5997.70 7499.76 3499.59 73
TAPA-MVS93.98 795.35 19194.56 20697.74 14199.13 9894.83 20098.33 19798.64 12886.62 34696.29 18298.61 13894.00 9399.29 16680.00 36299.41 9799.09 147
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MG-MVS97.81 6297.60 6398.44 8999.12 9995.97 14597.75 26198.78 9296.89 6098.46 7699.22 5493.90 9499.68 11594.81 18499.52 8599.67 59
test_vis1_n_192096.71 11996.84 10096.31 25199.11 10089.74 31899.05 6598.58 14098.08 699.87 199.37 2878.48 32899.93 2199.29 499.69 5299.27 121
Anonymous2023121194.10 26893.26 27896.61 21999.11 10094.28 22499.01 7698.88 5486.43 34892.81 28997.57 24281.66 30698.68 24494.83 18289.02 31696.88 256
CS-MVS98.44 3698.49 1798.31 9999.08 10296.73 10399.67 398.47 16697.17 4598.94 4499.10 7695.73 4299.13 18498.71 1499.49 8899.09 147
CNLPA97.45 8597.03 9298.73 6499.05 10397.44 7798.07 23098.53 15095.32 13396.80 16298.53 14793.32 9899.72 10394.31 20299.31 10599.02 155
DPM-MVS97.55 8096.99 9499.23 3799.04 10498.55 2797.17 30698.35 18894.85 15897.93 11198.58 14395.07 6999.71 10892.60 25199.34 10399.43 102
h-mvs3396.17 14395.62 15897.81 13499.03 10594.45 21698.64 15998.75 9897.48 2398.67 6398.72 12989.76 16599.86 5297.95 5281.59 35799.11 145
test250694.44 24793.91 24496.04 26099.02 10688.99 33399.06 6379.47 38896.96 5798.36 8499.26 4777.21 34099.52 14696.78 12499.04 11399.59 73
ECVR-MVScopyleft95.95 15395.71 15296.65 21299.02 10690.86 29999.03 7191.80 37596.96 5798.10 9399.26 4781.31 30899.51 14796.90 11299.04 11399.59 73
Anonymous2024052995.10 20594.22 22297.75 14099.01 10894.26 22698.87 10898.83 7285.79 35496.64 16698.97 9578.73 32699.85 5396.27 13794.89 22499.12 144
Anonymous20240521195.28 19594.49 20997.67 14899.00 10993.75 24298.70 14997.04 31890.66 30996.49 17698.80 11878.13 33299.83 5996.21 14195.36 22399.44 100
MVS_030498.47 3398.22 4399.21 3899.00 10997.80 6698.88 10495.32 35398.86 198.53 7499.44 1994.38 8499.94 599.86 199.70 5099.90 1
DELS-MVS98.40 4098.20 4498.99 5399.00 10997.66 6797.75 26198.89 5197.71 1298.33 8798.97 9594.97 7199.88 4798.42 3499.76 3499.42 104
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepPCF-MVS96.37 297.93 5898.48 1996.30 25299.00 10989.54 32397.43 28298.87 6198.16 599.26 2899.38 2796.12 2999.64 12198.30 3999.77 2899.72 39
test111195.94 15595.78 14596.41 24498.99 11390.12 31399.04 6892.45 37496.99 5698.03 9999.27 4681.40 30799.48 15296.87 11899.04 11399.63 67
thres100view90095.38 18794.70 20097.41 16498.98 11494.92 19598.87 10896.90 32795.38 12896.61 16896.88 29884.29 28299.56 13588.11 32496.29 20697.76 218
thres600view795.49 17894.77 19697.67 14898.98 11495.02 18798.85 11196.90 32795.38 12896.63 16796.90 29784.29 28299.59 13088.65 32396.33 20498.40 199
test_cas_vis1_n_192097.38 9197.36 7997.45 16098.95 11693.25 26399.00 7898.53 15097.70 1399.77 399.35 3484.71 27699.85 5398.57 1799.66 5699.26 123
tfpn200view995.32 19494.62 20397.43 16298.94 11794.98 19198.68 15296.93 32595.33 13196.55 17296.53 31484.23 28699.56 13588.11 32496.29 20697.76 218
thres40095.38 18794.62 20397.65 15298.94 11794.98 19198.68 15296.93 32595.33 13196.55 17296.53 31484.23 28699.56 13588.11 32496.29 20698.40 199
MSDG95.93 15695.30 17397.83 13198.90 11995.36 17396.83 33198.37 18591.32 29694.43 22698.73 12890.27 15999.60 12990.05 30298.82 12798.52 195
RPSCF94.87 21995.40 16193.26 33098.89 12082.06 36698.33 19798.06 24890.30 31896.56 17099.26 4787.09 23099.49 14893.82 21896.32 20598.24 205
VNet97.79 6397.40 7798.96 5698.88 12197.55 7298.63 16198.93 4296.74 6799.02 3998.84 11390.33 15899.83 5998.53 2096.66 19399.50 85
LFMVS95.86 16094.98 18898.47 8598.87 12296.32 12898.84 11496.02 34493.40 22498.62 6999.20 5774.99 35099.63 12497.72 7097.20 18399.46 97
UA-Net97.96 5597.62 6298.98 5498.86 12397.47 7598.89 10199.08 2596.67 7098.72 6299.54 293.15 10099.81 7194.87 18098.83 12699.65 63
WTY-MVS97.37 9396.92 9798.72 6598.86 12396.89 9898.31 20298.71 10895.26 13697.67 12698.56 14692.21 11499.78 9195.89 15096.85 18899.48 91
IS-MVSNet97.22 9796.88 9898.25 10498.85 12596.36 12699.19 4297.97 25695.39 12797.23 14098.99 9491.11 14398.93 21794.60 19198.59 13799.47 93
VDD-MVS95.82 16395.23 17597.61 15498.84 12693.98 23498.68 15297.40 30095.02 15097.95 10799.34 3874.37 35499.78 9198.64 1596.80 18999.08 151
test_fmvs196.42 13196.67 11195.66 27798.82 12788.53 34098.80 12598.20 21396.39 8399.64 1099.20 5780.35 31899.67 11699.04 799.57 7498.78 176
CHOSEN 280x42097.18 10197.18 8697.20 17498.81 12893.27 26195.78 35199.15 2195.25 13796.79 16398.11 19292.29 11099.07 19598.56 1999.85 599.25 125
thres20095.25 19694.57 20597.28 17198.81 12894.92 19598.20 21597.11 31395.24 13996.54 17496.22 32584.58 27999.53 14387.93 32896.50 20097.39 229
XVG-OURS-SEG-HR96.51 12896.34 12297.02 18798.77 13093.76 24097.79 25998.50 16095.45 12496.94 15299.09 8287.87 21699.55 14296.76 12595.83 21897.74 220
XVG-OURS96.55 12796.41 12096.99 18898.75 13193.76 24097.50 27998.52 15395.67 11596.83 15899.30 4288.95 19199.53 14395.88 15196.26 21097.69 223
test_yl97.22 9796.78 10498.54 7798.73 13296.60 10998.45 18598.31 19494.70 16098.02 10198.42 16090.80 14999.70 10996.81 12196.79 19099.34 108
DCV-MVSNet97.22 9796.78 10498.54 7798.73 13296.60 10998.45 18598.31 19494.70 16098.02 10198.42 16090.80 14999.70 10996.81 12196.79 19099.34 108
CANet98.05 5397.76 5898.90 6098.73 13297.27 8098.35 19598.78 9297.37 3297.72 12398.96 10091.53 13499.92 2698.79 1399.65 5999.51 83
Vis-MVSNet (Re-imp)96.87 11396.55 11597.83 13198.73 13295.46 17099.20 4098.30 20094.96 15396.60 16998.87 11090.05 16198.59 25193.67 22398.60 13699.46 97
PAPR96.84 11596.24 12898.65 6998.72 13696.92 9597.36 28998.57 14293.33 22696.67 16597.57 24294.30 8699.56 13591.05 28898.59 13799.47 93
canonicalmvs97.67 7097.23 8498.98 5498.70 13798.38 3599.34 1898.39 18196.76 6697.67 12697.40 25492.26 11199.49 14898.28 4096.28 20999.08 151
API-MVS97.41 8997.25 8397.91 12798.70 13796.80 9998.82 11798.69 11294.53 16998.11 9298.28 17794.50 8199.57 13294.12 20899.49 8897.37 231
MAR-MVS96.91 11196.40 12198.45 8798.69 13996.90 9698.66 15798.68 11592.40 26397.07 14797.96 20591.54 13399.75 9993.68 22198.92 11998.69 181
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJ97.73 6597.77 5797.62 15398.68 14095.58 16497.34 29198.51 15597.29 3598.66 6797.88 21294.51 7899.90 3797.87 6099.17 11097.39 229
test_fmvs1_n95.90 15895.99 13895.63 27898.67 14188.32 34499.26 2798.22 21096.40 8299.67 799.26 4773.91 35599.70 10999.02 899.50 8698.87 168
alignmvs97.56 7997.07 9199.01 5298.66 14298.37 3998.83 11598.06 24896.74 6798.00 10597.65 23490.80 14999.48 15298.37 3696.56 19799.19 133
Vis-MVSNetpermissive97.42 8897.11 8898.34 9798.66 14296.23 13199.22 3599.00 3296.63 7298.04 9899.21 5588.05 21199.35 16196.01 14899.21 10799.45 99
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet97.46 8297.28 8297.99 12398.64 14495.38 17299.33 2198.31 19493.61 21797.19 14199.07 8594.05 9199.23 17196.89 11398.43 14799.37 107
ab-mvs96.42 13195.71 15298.55 7598.63 14596.75 10297.88 25098.74 10093.84 19696.54 17498.18 18885.34 26499.75 9995.93 14996.35 20399.15 140
PCF-MVS93.45 1194.68 22693.43 27398.42 9398.62 14696.77 10195.48 35598.20 21384.63 35993.34 27498.32 17488.55 19999.81 7184.80 34898.96 11898.68 182
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
xiu_mvs_v2_base97.66 7197.70 6097.56 15798.61 14795.46 17097.44 28098.46 16797.15 4798.65 6898.15 18994.33 8599.80 7897.84 6398.66 13497.41 227
sss97.39 9096.98 9598.61 7198.60 14896.61 10898.22 21298.93 4293.97 19098.01 10498.48 15291.98 12199.85 5396.45 13398.15 15799.39 105
Test_1112_low_res96.34 13795.66 15798.36 9698.56 14995.94 14897.71 26498.07 24392.10 27394.79 21397.29 25991.75 12599.56 13594.17 20696.50 20099.58 77
1112_ss96.63 12196.00 13798.50 8198.56 14996.37 12598.18 22198.10 23692.92 24494.84 20998.43 15892.14 11699.58 13194.35 19996.51 19999.56 79
BH-untuned95.95 15395.72 14996.65 21298.55 15192.26 27698.23 21197.79 26893.73 20494.62 21698.01 20088.97 19099.00 20693.04 24098.51 14198.68 182
LS3D97.16 10296.66 11298.68 6798.53 15297.19 8798.93 9498.90 4992.83 24895.99 19099.37 2892.12 11799.87 4893.67 22399.57 7498.97 160
hse-mvs295.71 16895.30 17396.93 19498.50 15393.53 25198.36 19498.10 23697.48 2398.67 6397.99 20289.76 16599.02 20397.95 5280.91 36198.22 207
AUN-MVS94.53 23993.73 25996.92 19798.50 15393.52 25298.34 19698.10 23693.83 19895.94 19497.98 20485.59 25899.03 20094.35 19980.94 36098.22 207
baseline195.84 16195.12 18198.01 12298.49 15595.98 14098.73 14097.03 31995.37 13096.22 18398.19 18789.96 16399.16 17894.60 19187.48 33098.90 167
iter_conf_final96.42 13196.12 13197.34 16998.46 15696.55 11599.08 6198.06 24896.03 9695.63 19698.46 15687.72 21898.59 25197.84 6393.80 24496.87 258
HY-MVS93.96 896.82 11696.23 12998.57 7398.46 15697.00 9198.14 22398.21 21193.95 19196.72 16497.99 20291.58 12999.76 9794.51 19596.54 19898.95 163
ETV-MVS97.96 5597.81 5698.40 9498.42 15897.27 8098.73 14098.55 14696.84 6198.38 8397.44 25195.39 5299.35 16197.62 7898.89 12198.58 193
casdiffmvs_mvgpermissive97.72 6697.48 7298.44 8998.42 15896.59 11198.92 9598.44 17196.20 8997.76 11799.20 5791.66 12899.23 17198.27 4198.41 14899.49 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tttt051796.07 14795.51 16097.78 13698.41 16094.84 19899.28 2494.33 36494.26 17997.64 13098.64 13684.05 29099.47 15495.34 16897.60 17799.03 154
EIA-MVS97.75 6497.58 6498.27 10198.38 16196.44 11999.01 7698.60 13395.88 10597.26 13997.53 24594.97 7199.33 16397.38 9499.20 10899.05 153
thisisatest053096.01 14995.36 16697.97 12498.38 16195.52 16898.88 10494.19 36694.04 18497.64 13098.31 17583.82 29799.46 15595.29 17297.70 17498.93 165
FE-MVS95.62 17494.90 19297.78 13698.37 16394.92 19597.17 30697.38 30290.95 30797.73 12297.70 22885.32 26699.63 12491.18 28398.33 15298.79 173
GeoE96.58 12596.07 13398.10 11798.35 16495.89 15599.34 1898.12 23093.12 23696.09 18698.87 11089.71 16798.97 20792.95 24398.08 16099.43 102
xiu_mvs_v1_base_debu97.60 7497.56 6697.72 14298.35 16495.98 14097.86 25298.51 15597.13 4999.01 4098.40 16291.56 13099.80 7898.53 2098.68 13097.37 231
xiu_mvs_v1_base97.60 7497.56 6697.72 14298.35 16495.98 14097.86 25298.51 15597.13 4999.01 4098.40 16291.56 13099.80 7898.53 2098.68 13097.37 231
xiu_mvs_v1_base_debi97.60 7497.56 6697.72 14298.35 16495.98 14097.86 25298.51 15597.13 4999.01 4098.40 16291.56 13099.80 7898.53 2098.68 13097.37 231
baseline97.64 7297.44 7598.25 10498.35 16496.20 13299.00 7898.32 19296.33 8698.03 9999.17 6491.35 13799.16 17898.10 4598.29 15599.39 105
BH-w/o95.38 18795.08 18396.26 25498.34 16991.79 28397.70 26597.43 29892.87 24694.24 23797.22 26588.66 19598.84 22991.55 27997.70 17498.16 210
EC-MVSNet98.21 5198.11 4898.49 8398.34 16997.26 8499.61 598.43 17596.78 6498.87 5198.84 11393.72 9599.01 20598.91 1099.50 8699.19 133
test_fmvsmvis_n_192098.44 3698.51 1598.23 10698.33 17196.15 13598.97 8499.15 2198.55 398.45 7999.55 194.26 8899.97 199.65 399.66 5698.57 194
MVS_Test97.28 9597.00 9398.13 11498.33 17195.97 14598.74 13698.07 24394.27 17898.44 8198.07 19492.48 10699.26 16796.43 13498.19 15699.16 139
casdiffmvspermissive97.63 7397.41 7698.28 10098.33 17196.14 13698.82 11798.32 19296.38 8497.95 10799.21 5591.23 14199.23 17198.12 4498.37 14999.48 91
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive97.58 7797.40 7798.13 11498.32 17495.81 15898.06 23198.37 18596.20 8998.74 5998.89 10891.31 13999.25 16898.16 4398.52 14099.34 108
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-RMVSNet95.92 15795.32 17097.69 14698.32 17494.64 20698.19 21897.45 29694.56 16796.03 18898.61 13885.02 26999.12 18690.68 29399.06 11299.30 117
Fast-Effi-MVS+96.28 14095.70 15498.03 12198.29 17695.97 14598.58 16798.25 20891.74 28195.29 20197.23 26491.03 14699.15 18192.90 24597.96 16398.97 160
mvsany_test197.69 6997.70 6097.66 15198.24 17794.18 23097.53 27797.53 28895.52 12199.66 899.51 694.30 8699.56 13598.38 3598.62 13599.23 126
UGNet96.78 11796.30 12598.19 11098.24 17795.89 15598.88 10498.93 4297.39 2996.81 16197.84 21682.60 30299.90 3796.53 13099.49 8898.79 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVSTER96.06 14895.72 14997.08 18498.23 17995.93 15198.73 14098.27 20394.86 15795.07 20498.09 19388.21 20598.54 25796.59 12793.46 25496.79 267
ET-MVSNet_ETH3D94.13 26592.98 28197.58 15598.22 18096.20 13297.31 29495.37 35294.53 16979.56 36797.63 23886.51 23997.53 33796.91 10990.74 29099.02 155
FA-MVS(test-final)96.41 13595.94 13997.82 13398.21 18195.20 18097.80 25797.58 27993.21 23297.36 13797.70 22889.47 17199.56 13594.12 20897.99 16198.71 180
GBi-Net94.49 24293.80 25296.56 22698.21 18195.00 18898.82 11798.18 21892.46 25794.09 24497.07 27781.16 30997.95 31792.08 26592.14 27296.72 275
test194.49 24293.80 25296.56 22698.21 18195.00 18898.82 11798.18 21892.46 25794.09 24497.07 27781.16 30997.95 31792.08 26592.14 27296.72 275
FMVSNet294.47 24593.61 26597.04 18598.21 18196.43 12098.79 13098.27 20392.46 25793.50 27097.09 27481.16 30998.00 31591.09 28491.93 27596.70 279
Effi-MVS+97.12 10496.69 10998.39 9598.19 18596.72 10497.37 28798.43 17593.71 20697.65 12998.02 19892.20 11599.25 16896.87 11897.79 16999.19 133
mvs_anonymous96.70 12096.53 11797.18 17698.19 18593.78 23998.31 20298.19 21594.01 18794.47 22198.27 18092.08 11998.46 26697.39 9397.91 16499.31 114
LCM-MVSNet-Re95.22 19895.32 17094.91 29998.18 18787.85 35098.75 13395.66 35095.11 14488.96 33796.85 30190.26 16097.65 33195.65 16198.44 14599.22 128
FMVSNet394.97 21494.26 22197.11 18298.18 18796.62 10698.56 17398.26 20793.67 21394.09 24497.10 27084.25 28498.01 31392.08 26592.14 27296.70 279
CANet_DTU96.96 10996.55 11598.21 10798.17 18996.07 13897.98 23998.21 21197.24 4197.13 14398.93 10486.88 23599.91 3495.00 17999.37 10298.66 185
iter_conf0596.13 14695.79 14497.15 17898.16 19095.99 13998.88 10497.98 25495.91 10295.58 19798.46 15685.53 25998.59 25197.88 5993.75 24596.86 261
thisisatest051595.61 17794.89 19397.76 13998.15 19195.15 18396.77 33294.41 36292.95 24397.18 14297.43 25284.78 27499.45 15694.63 18897.73 17398.68 182
IterMVS-LS95.46 18095.21 17696.22 25598.12 19293.72 24598.32 20198.13 22993.71 20694.26 23597.31 25892.24 11298.10 30694.63 18890.12 29796.84 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2294.68 22694.19 22496.13 25898.11 19393.60 24796.94 31898.31 19492.43 26193.32 27596.87 30086.51 23998.28 29694.10 21091.16 28696.51 307
VDDNet95.36 19094.53 20797.86 12998.10 19495.13 18498.85 11197.75 27090.46 31398.36 8499.39 2273.27 35799.64 12197.98 5096.58 19698.81 172
MVSFormer97.57 7897.49 7097.84 13098.07 19595.76 15999.47 998.40 17994.98 15198.79 5598.83 11592.34 10898.41 27996.91 10999.59 7099.34 108
lupinMVS97.44 8697.22 8598.12 11698.07 19595.76 15997.68 26697.76 26994.50 17298.79 5598.61 13892.34 10899.30 16597.58 8199.59 7099.31 114
TAMVS97.02 10796.79 10397.70 14598.06 19795.31 17798.52 17698.31 19493.95 19197.05 14998.61 13893.49 9798.52 25995.33 16997.81 16899.29 119
CDS-MVSNet96.99 10896.69 10997.90 12898.05 19895.98 14098.20 21598.33 19193.67 21396.95 15198.49 15193.54 9698.42 27195.24 17597.74 17299.31 114
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ADS-MVSNet294.58 23594.40 21895.11 29498.00 19988.74 33696.04 34597.30 30590.15 31996.47 17796.64 31187.89 21497.56 33690.08 30097.06 18499.02 155
ADS-MVSNet95.00 21094.45 21496.63 21698.00 19991.91 28296.04 34597.74 27190.15 31996.47 17796.64 31187.89 21498.96 21190.08 30097.06 18499.02 155
IterMVS94.09 26993.85 24994.80 30597.99 20190.35 31097.18 30498.12 23093.68 21192.46 30397.34 25584.05 29097.41 34092.51 25891.33 28296.62 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PVSNet_088.72 1991.28 30690.03 31295.00 29797.99 20187.29 35394.84 36098.50 16092.06 27489.86 33095.19 34279.81 32199.39 15992.27 26269.79 37498.33 203
tt080594.54 23793.85 24996.63 21697.98 20393.06 27098.77 13297.84 26693.67 21393.80 25998.04 19776.88 34398.96 21194.79 18592.86 26697.86 217
IterMVS-SCA-FT94.11 26793.87 24794.85 30297.98 20390.56 30797.18 30498.11 23393.75 20192.58 29797.48 24783.97 29297.41 34092.48 26091.30 28396.58 292
EI-MVSNet95.96 15295.83 14396.36 24797.93 20593.70 24698.12 22698.27 20393.70 20895.07 20499.02 8892.23 11398.54 25794.68 18693.46 25496.84 263
CVMVSNet95.43 18396.04 13593.57 32497.93 20583.62 36198.12 22698.59 13595.68 11496.56 17099.02 8887.51 22397.51 33893.56 22797.44 17999.60 71
PMMVS96.60 12296.33 12397.41 16497.90 20793.93 23597.35 29098.41 17792.84 24797.76 11797.45 25091.10 14499.20 17596.26 13897.91 16499.11 145
Effi-MVS+-dtu96.29 13896.56 11495.51 28197.89 20890.22 31298.80 12598.10 23696.57 7596.45 17996.66 30890.81 14898.91 21995.72 15797.99 16197.40 228
QAPM96.29 13895.40 16198.96 5697.85 20997.60 7199.23 3198.93 4289.76 32693.11 28399.02 8889.11 18399.93 2191.99 27099.62 6699.34 108
3Dnovator+94.38 697.43 8796.78 10499.38 1897.83 21098.52 2899.37 1498.71 10897.09 5292.99 28699.13 7289.36 17499.89 3996.97 10699.57 7499.71 43
ACMH+92.99 1494.30 25493.77 25595.88 27097.81 21192.04 28198.71 14598.37 18593.99 18990.60 32598.47 15480.86 31499.05 19692.75 24992.40 27196.55 298
3Dnovator94.51 597.46 8296.93 9699.07 5097.78 21297.64 6899.35 1799.06 2797.02 5493.75 26199.16 6789.25 17899.92 2697.22 9999.75 3899.64 65
test_vis1_n95.47 17995.13 17996.49 23597.77 21390.41 30999.27 2698.11 23396.58 7399.66 899.18 6367.00 36599.62 12799.21 599.40 9999.44 100
miper_lstm_enhance94.33 25294.07 23295.11 29497.75 21490.97 29897.22 29998.03 25191.67 28592.76 29196.97 29090.03 16297.78 32892.51 25889.64 30396.56 296
c3_l94.79 22194.43 21695.89 26997.75 21493.12 26897.16 30898.03 25192.23 26993.46 27297.05 28291.39 13598.01 31393.58 22689.21 31296.53 301
TR-MVS94.94 21794.20 22397.17 17797.75 21494.14 23197.59 27497.02 32192.28 26895.75 19597.64 23683.88 29498.96 21189.77 30696.15 21498.40 199
Fast-Effi-MVS+-dtu95.87 15995.85 14295.91 26797.74 21791.74 28698.69 15198.15 22695.56 11994.92 20797.68 23388.98 18998.79 23593.19 23597.78 17097.20 235
MIMVSNet93.26 28792.21 29496.41 24497.73 21893.13 26795.65 35297.03 31991.27 30094.04 24796.06 32875.33 34897.19 34386.56 33496.23 21298.92 166
miper_ehance_all_eth95.01 20994.69 20195.97 26497.70 21993.31 26097.02 31498.07 24392.23 26993.51 26996.96 29291.85 12398.15 30293.68 22191.16 28696.44 315
dmvs_re94.48 24494.18 22695.37 28797.68 22090.11 31498.54 17597.08 31494.56 16794.42 22797.24 26384.25 28497.76 32991.02 28992.83 26798.24 205
SCA95.46 18095.13 17996.46 24197.67 22191.29 29497.33 29297.60 27894.68 16396.92 15597.10 27083.97 29298.89 22392.59 25398.32 15499.20 129
ACMP93.49 1095.34 19294.98 18896.43 24397.67 22193.48 25398.73 14098.44 17194.94 15692.53 29998.53 14784.50 28199.14 18395.48 16794.00 23896.66 285
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth94.68 22694.41 21795.47 28397.64 22391.71 28796.73 33598.07 24392.71 25193.64 26297.21 26690.54 15498.17 30193.38 22989.76 30196.54 299
ACMH92.88 1694.55 23693.95 24196.34 24997.63 22493.26 26298.81 12498.49 16593.43 22389.74 33198.53 14781.91 30499.08 19493.69 22093.30 26096.70 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMM93.85 995.69 17195.38 16596.61 21997.61 22593.84 23898.91 9698.44 17195.25 13794.28 23498.47 15486.04 25199.12 18695.50 16693.95 24096.87 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Patchmatch-test94.42 24893.68 26396.63 21697.60 22691.76 28494.83 36197.49 29389.45 33194.14 24297.10 27088.99 18698.83 23185.37 34498.13 15899.29 119
cl____94.51 24194.01 23696.02 26197.58 22793.40 25797.05 31297.96 25891.73 28392.76 29197.08 27689.06 18598.13 30492.61 25090.29 29596.52 304
tpm cat193.36 28292.80 28495.07 29697.58 22787.97 34896.76 33397.86 26582.17 36493.53 26696.04 32986.13 24799.13 18489.24 31795.87 21798.10 211
MVS-HIRNet89.46 32388.40 32392.64 33597.58 22782.15 36594.16 36893.05 37375.73 37090.90 32182.52 37379.42 32398.33 28783.53 35398.68 13097.43 226
PatchmatchNetpermissive95.71 16895.52 15996.29 25397.58 22790.72 30396.84 33097.52 28994.06 18397.08 14596.96 29289.24 17998.90 22292.03 26998.37 14999.26 123
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DIV-MVS_self_test94.52 24094.03 23395.99 26297.57 23193.38 25897.05 31297.94 25991.74 28192.81 28997.10 27089.12 18298.07 31092.60 25190.30 29496.53 301
tpmrst95.63 17395.69 15595.44 28597.54 23288.54 33996.97 31697.56 28193.50 22097.52 13596.93 29689.49 16999.16 17895.25 17496.42 20298.64 187
FMVSNet193.19 29092.07 29596.56 22697.54 23295.00 18898.82 11798.18 21890.38 31692.27 30697.07 27773.68 35697.95 31789.36 31691.30 28396.72 275
miper_enhance_ethall95.10 20594.75 19896.12 25997.53 23493.73 24496.61 33898.08 24192.20 27293.89 25396.65 31092.44 10798.30 29294.21 20591.16 28696.34 318
CLD-MVS95.62 17495.34 16796.46 24197.52 23593.75 24297.27 29798.46 16795.53 12094.42 22798.00 20186.21 24698.97 20796.25 14094.37 22596.66 285
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MDTV_nov1_ep1395.40 16197.48 23688.34 34396.85 32997.29 30693.74 20397.48 13697.26 26089.18 18099.05 19691.92 27297.43 180
IB-MVS91.98 1793.27 28691.97 29697.19 17597.47 23793.41 25697.09 31195.99 34593.32 22792.47 30295.73 33578.06 33399.53 14394.59 19382.98 35298.62 188
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs94.60 23294.36 21995.33 28997.46 23888.60 33896.88 32797.68 27291.29 29893.80 25996.42 31888.58 19699.24 17091.06 28696.04 21698.17 209
LPG-MVS_test95.62 17495.34 16796.47 23897.46 23893.54 24998.99 8198.54 14894.67 16494.36 23098.77 12285.39 26199.11 18895.71 15894.15 23396.76 270
LGP-MVS_train96.47 23897.46 23893.54 24998.54 14894.67 16494.36 23098.77 12285.39 26199.11 18895.71 15894.15 23396.76 270
test_vis1_rt91.29 30590.65 30593.19 33297.45 24186.25 35698.57 17290.90 37993.30 22986.94 34993.59 35662.07 36999.11 18897.48 9095.58 22194.22 355
jason97.32 9497.08 9098.06 12097.45 24195.59 16397.87 25197.91 26394.79 15998.55 7398.83 11591.12 14299.23 17197.58 8199.60 6899.34 108
jason: jason.
HQP_MVS96.14 14595.90 14196.85 20097.42 24394.60 21298.80 12598.56 14497.28 3695.34 19998.28 17787.09 23099.03 20096.07 14294.27 22796.92 247
plane_prior797.42 24394.63 207
ITE_SJBPF95.44 28597.42 24391.32 29397.50 29195.09 14793.59 26398.35 16881.70 30598.88 22589.71 30893.39 25896.12 326
LTVRE_ROB92.95 1594.60 23293.90 24596.68 21197.41 24694.42 21898.52 17698.59 13591.69 28491.21 31898.35 16884.87 27299.04 19991.06 28693.44 25796.60 290
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
plane_prior197.37 247
plane_prior697.35 24894.61 21087.09 230
dp94.15 26493.90 24594.90 30097.31 24986.82 35596.97 31697.19 31291.22 30296.02 18996.61 31385.51 26099.02 20390.00 30494.30 22698.85 169
NP-MVS97.28 25094.51 21597.73 225
CostFormer94.95 21594.73 19995.60 28097.28 25089.06 33097.53 27796.89 32989.66 32896.82 16096.72 30686.05 24998.95 21695.53 16596.13 21598.79 173
VPA-MVSNet95.75 16595.11 18297.69 14697.24 25297.27 8098.94 9299.23 1495.13 14295.51 19897.32 25785.73 25598.91 21997.33 9689.55 30696.89 255
tpm294.19 26193.76 25795.46 28497.23 25389.04 33197.31 29496.85 33387.08 34596.21 18496.79 30483.75 29898.74 23892.43 26196.23 21298.59 191
EPMVS94.99 21194.48 21096.52 23397.22 25491.75 28597.23 29891.66 37694.11 18197.28 13896.81 30385.70 25698.84 22993.04 24097.28 18298.97 160
FMVSNet591.81 30090.92 30394.49 31397.21 25592.09 27898.00 23897.55 28689.31 33490.86 32295.61 34074.48 35295.32 36585.57 34189.70 30296.07 328
HQP-NCC97.20 25698.05 23296.43 7994.45 222
ACMP_Plane97.20 25698.05 23296.43 7994.45 222
HQP-MVS95.72 16795.40 16196.69 21097.20 25694.25 22798.05 23298.46 16796.43 7994.45 22297.73 22586.75 23698.96 21195.30 17094.18 23196.86 261
UniMVSNet_ETH3D94.24 25893.33 27596.97 19197.19 25993.38 25898.74 13698.57 14291.21 30393.81 25898.58 14372.85 35898.77 23795.05 17893.93 24198.77 177
OpenMVScopyleft93.04 1395.83 16295.00 18698.32 9897.18 26097.32 7899.21 3898.97 3589.96 32291.14 31999.05 8786.64 23899.92 2693.38 22999.47 9197.73 221
VPNet94.99 21194.19 22497.40 16697.16 26196.57 11298.71 14598.97 3595.67 11594.84 20998.24 18480.36 31798.67 24596.46 13287.32 33496.96 244
GA-MVS94.81 22094.03 23397.14 17997.15 26293.86 23796.76 33397.58 27994.00 18894.76 21497.04 28380.91 31298.48 26291.79 27496.25 21199.09 147
FIs96.51 12896.12 13197.67 14897.13 26397.54 7399.36 1599.22 1795.89 10394.03 24898.35 16891.98 12198.44 26996.40 13592.76 26897.01 240
131496.25 14295.73 14897.79 13597.13 26395.55 16798.19 21898.59 13593.47 22192.03 31197.82 22091.33 13899.49 14894.62 19098.44 14598.32 204
D2MVS95.18 20195.08 18395.48 28297.10 26592.07 27998.30 20499.13 2394.02 18692.90 28796.73 30589.48 17098.73 23994.48 19693.60 25295.65 337
DeepMVS_CXcopyleft86.78 34997.09 26672.30 37695.17 35775.92 36984.34 36295.19 34270.58 35995.35 36379.98 36389.04 31592.68 367
PAPM94.95 21594.00 23797.78 13697.04 26795.65 16296.03 34798.25 20891.23 30194.19 24097.80 22291.27 14098.86 22882.61 35697.61 17698.84 171
CR-MVSNet94.76 22394.15 22896.59 22297.00 26893.43 25494.96 35797.56 28192.46 25796.93 15396.24 32188.15 20797.88 32587.38 33096.65 19498.46 197
RPMNet92.81 29491.34 30197.24 17297.00 26893.43 25494.96 35798.80 8582.27 36396.93 15392.12 36686.98 23399.82 6676.32 37096.65 19498.46 197
UniMVSNet (Re)95.78 16495.19 17797.58 15596.99 27097.47 7598.79 13099.18 1995.60 11793.92 25297.04 28391.68 12698.48 26295.80 15587.66 32996.79 267
test_fmvs293.43 28193.58 26692.95 33496.97 27183.91 36099.19 4297.24 31095.74 11095.20 20298.27 18069.65 36098.72 24096.26 13893.73 24696.24 322
FC-MVSNet-test96.42 13196.05 13497.53 15896.95 27297.27 8099.36 1599.23 1495.83 10793.93 25198.37 16692.00 12098.32 28896.02 14792.72 26997.00 241
tfpnnormal93.66 27792.70 28796.55 23196.94 27395.94 14898.97 8499.19 1891.04 30591.38 31797.34 25584.94 27198.61 24885.45 34389.02 31695.11 345
TESTMET0.1,194.18 26393.69 26295.63 27896.92 27489.12 32996.91 32194.78 35993.17 23494.88 20896.45 31778.52 32798.92 21893.09 23798.50 14298.85 169
TinyColmap92.31 29891.53 29994.65 30996.92 27489.75 31796.92 31996.68 33790.45 31489.62 33297.85 21576.06 34698.81 23386.74 33392.51 27095.41 339
cascas94.63 23193.86 24896.93 19496.91 27694.27 22596.00 34898.51 15585.55 35594.54 21896.23 32384.20 28898.87 22695.80 15596.98 18797.66 224
nrg03096.28 14095.72 14997.96 12696.90 27798.15 5299.39 1298.31 19495.47 12394.42 22798.35 16892.09 11898.69 24197.50 8989.05 31497.04 238
MVS94.67 22993.54 26998.08 11896.88 27896.56 11398.19 21898.50 16078.05 36892.69 29498.02 19891.07 14599.63 12490.09 29998.36 15198.04 212
WR-MVS_H95.05 20894.46 21296.81 20396.86 27995.82 15799.24 3099.24 1293.87 19592.53 29996.84 30290.37 15698.24 29893.24 23387.93 32696.38 317
UniMVSNet_NR-MVSNet95.71 16895.15 17897.40 16696.84 28096.97 9298.74 13699.24 1295.16 14193.88 25497.72 22791.68 12698.31 29095.81 15387.25 33596.92 247
USDC93.33 28592.71 28695.21 29096.83 28190.83 30196.91 32197.50 29193.84 19690.72 32398.14 19077.69 33598.82 23289.51 31393.21 26295.97 330
test-LLR95.10 20594.87 19495.80 27296.77 28289.70 31996.91 32195.21 35495.11 14494.83 21195.72 33787.71 21998.97 20793.06 23898.50 14298.72 178
test-mter94.08 27093.51 27095.80 27296.77 28289.70 31996.91 32195.21 35492.89 24594.83 21195.72 33777.69 33598.97 20793.06 23898.50 14298.72 178
Patchmtry93.22 28892.35 29295.84 27196.77 28293.09 26994.66 36497.56 28187.37 34492.90 28796.24 32188.15 20797.90 32187.37 33190.10 29896.53 301
gg-mvs-nofinetune92.21 29990.58 30797.13 18096.75 28595.09 18595.85 34989.40 38185.43 35694.50 22081.98 37480.80 31598.40 28592.16 26398.33 15297.88 215
XXY-MVS95.20 20094.45 21497.46 15996.75 28596.56 11398.86 11098.65 12793.30 22993.27 27698.27 18084.85 27398.87 22694.82 18391.26 28596.96 244
CP-MVSNet94.94 21794.30 22096.83 20196.72 28795.56 16599.11 5598.95 3893.89 19392.42 30497.90 20987.19 22998.12 30594.32 20188.21 32396.82 266
PatchT93.06 29291.97 29696.35 24896.69 28892.67 27394.48 36597.08 31486.62 34697.08 14592.23 36587.94 21397.90 32178.89 36696.69 19298.49 196
PS-CasMVS94.67 22993.99 23996.71 20796.68 28995.26 17899.13 5299.03 3093.68 21192.33 30597.95 20685.35 26398.10 30693.59 22588.16 32596.79 267
WR-MVS95.15 20294.46 21297.22 17396.67 29096.45 11898.21 21398.81 7894.15 18093.16 27997.69 23087.51 22398.30 29295.29 17288.62 32096.90 254
baseline295.11 20494.52 20896.87 19996.65 29193.56 24898.27 20994.10 36893.45 22292.02 31297.43 25287.45 22799.19 17693.88 21697.41 18197.87 216
mvsmamba96.57 12696.32 12497.32 17096.60 29296.43 12099.54 797.98 25496.49 7695.20 20298.64 13690.82 14798.55 25597.97 5193.65 24996.98 242
test_040291.32 30490.27 31094.48 31496.60 29291.12 29698.50 18197.22 31186.10 35188.30 34396.98 28977.65 33797.99 31678.13 36892.94 26594.34 352
TransMVSNet (Re)92.67 29591.51 30096.15 25696.58 29494.65 20598.90 9796.73 33490.86 30889.46 33597.86 21385.62 25798.09 30886.45 33581.12 35895.71 335
XVG-ACMP-BASELINE94.54 23794.14 22995.75 27596.55 29591.65 28898.11 22898.44 17194.96 15394.22 23897.90 20979.18 32599.11 18894.05 21293.85 24296.48 312
DU-MVS95.42 18494.76 19797.40 16696.53 29696.97 9298.66 15798.99 3495.43 12593.88 25497.69 23088.57 19798.31 29095.81 15387.25 33596.92 247
NR-MVSNet94.98 21394.16 22797.44 16196.53 29697.22 8698.74 13698.95 3894.96 15389.25 33697.69 23089.32 17598.18 30094.59 19387.40 33296.92 247
tpm94.13 26593.80 25295.12 29396.50 29887.91 34997.44 28095.89 34992.62 25396.37 18196.30 32084.13 28998.30 29293.24 23391.66 28099.14 142
pm-mvs193.94 27593.06 28096.59 22296.49 29995.16 18198.95 9098.03 25192.32 26691.08 32097.84 21684.54 28098.41 27992.16 26386.13 34696.19 325
RRT_MVS95.98 15195.78 14596.56 22696.48 30094.22 22999.57 697.92 26195.89 10393.95 25098.70 13089.27 17798.42 27197.23 9893.02 26397.04 238
JIA-IIPM93.35 28392.49 29095.92 26696.48 30090.65 30595.01 35696.96 32385.93 35296.08 18787.33 37187.70 22198.78 23691.35 28195.58 22198.34 202
TranMVSNet+NR-MVSNet95.14 20394.48 21097.11 18296.45 30296.36 12699.03 7199.03 3095.04 14993.58 26497.93 20788.27 20498.03 31294.13 20786.90 34096.95 246
testgi93.06 29292.45 29194.88 30196.43 30389.90 31598.75 13397.54 28795.60 11791.63 31697.91 20874.46 35397.02 34586.10 33793.67 24797.72 222
v1094.29 25593.55 26896.51 23496.39 30494.80 20298.99 8198.19 21591.35 29493.02 28596.99 28888.09 20998.41 27990.50 29588.41 32296.33 320
v894.47 24593.77 25596.57 22596.36 30594.83 20099.05 6598.19 21591.92 27793.16 27996.97 29088.82 19498.48 26291.69 27787.79 32796.39 316
bld_raw_dy_0_6495.74 16695.31 17297.03 18696.35 30695.76 15999.12 5397.37 30395.97 9894.70 21598.48 15285.80 25498.49 26196.55 12993.48 25396.84 263
GG-mvs-BLEND96.59 22296.34 30794.98 19196.51 34188.58 38293.10 28494.34 35280.34 31998.05 31189.53 31296.99 18696.74 272
V4294.78 22294.14 22996.70 20996.33 30895.22 17998.97 8498.09 24092.32 26694.31 23397.06 28088.39 20298.55 25592.90 24588.87 31896.34 318
PEN-MVS94.42 24893.73 25996.49 23596.28 30994.84 19899.17 4599.00 3293.51 21992.23 30797.83 21986.10 24897.90 32192.55 25686.92 33996.74 272
v114494.59 23493.92 24296.60 22196.21 31094.78 20498.59 16598.14 22891.86 28094.21 23997.02 28587.97 21298.41 27991.72 27689.57 30496.61 289
Baseline_NR-MVSNet94.35 25193.81 25195.96 26596.20 31194.05 23398.61 16496.67 33891.44 29093.85 25697.60 23988.57 19798.14 30394.39 19786.93 33895.68 336
MS-PatchMatch93.84 27693.63 26494.46 31696.18 31289.45 32497.76 26098.27 20392.23 26992.13 30997.49 24679.50 32298.69 24189.75 30799.38 10195.25 341
v2v48294.69 22494.03 23396.65 21296.17 31394.79 20398.67 15598.08 24192.72 25094.00 24997.16 26887.69 22298.45 26792.91 24488.87 31896.72 275
EPNet_dtu95.21 19994.95 19095.99 26296.17 31390.45 30898.16 22297.27 30896.77 6593.14 28298.33 17390.34 15798.42 27185.57 34198.81 12899.09 147
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS95.69 17195.33 16996.76 20596.16 31594.63 20798.43 19098.39 18196.64 7195.02 20698.78 12085.15 26899.05 19695.21 17694.20 23096.60 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v119294.32 25393.58 26696.53 23296.10 31694.45 21698.50 18198.17 22391.54 28794.19 24097.06 28086.95 23498.43 27090.14 29889.57 30496.70 279
v14894.29 25593.76 25795.91 26796.10 31692.93 27198.58 16797.97 25692.59 25593.47 27196.95 29488.53 20098.32 28892.56 25587.06 33796.49 310
v14419294.39 25093.70 26196.48 23796.06 31894.35 22298.58 16798.16 22591.45 28994.33 23297.02 28587.50 22598.45 26791.08 28589.11 31396.63 287
DTE-MVSNet93.98 27493.26 27896.14 25796.06 31894.39 22099.20 4098.86 6793.06 23891.78 31397.81 22185.87 25397.58 33590.53 29486.17 34496.46 314
v124094.06 27293.29 27796.34 24996.03 32093.90 23698.44 18898.17 22391.18 30494.13 24397.01 28786.05 24998.42 27189.13 31989.50 30896.70 279
APD_test188.22 32788.01 32788.86 34695.98 32174.66 37597.21 30096.44 34283.96 36186.66 35297.90 20960.95 37097.84 32782.73 35490.23 29694.09 358
v192192094.20 26093.47 27296.40 24695.98 32194.08 23298.52 17698.15 22691.33 29594.25 23697.20 26786.41 24398.42 27190.04 30389.39 31096.69 284
EU-MVSNet93.66 27794.14 22992.25 33995.96 32383.38 36298.52 17698.12 23094.69 16292.61 29698.13 19187.36 22896.39 35891.82 27390.00 29996.98 242
v7n94.19 26193.43 27396.47 23895.90 32494.38 22199.26 2798.34 19091.99 27592.76 29197.13 26988.31 20398.52 25989.48 31487.70 32896.52 304
gm-plane-assit95.88 32587.47 35189.74 32796.94 29599.19 17693.32 232
LF4IMVS93.14 29192.79 28594.20 31995.88 32588.67 33797.66 26897.07 31693.81 19991.71 31497.65 23477.96 33498.81 23391.47 28091.92 27695.12 344
PS-MVSNAJss96.43 13096.26 12796.92 19795.84 32795.08 18699.16 4698.50 16095.87 10693.84 25798.34 17294.51 7898.61 24896.88 11593.45 25697.06 237
pmmvs494.69 22493.99 23996.81 20395.74 32895.94 14897.40 28397.67 27390.42 31593.37 27397.59 24089.08 18498.20 29992.97 24291.67 27996.30 321
test_djsdf96.00 15095.69 15596.93 19495.72 32995.49 16999.47 998.40 17994.98 15194.58 21797.86 21389.16 18198.41 27996.91 10994.12 23596.88 256
SixPastTwentyTwo93.34 28492.86 28394.75 30695.67 33089.41 32698.75 13396.67 33893.89 19390.15 32998.25 18380.87 31398.27 29790.90 29090.64 29196.57 294
K. test v392.55 29691.91 29894.48 31495.64 33189.24 32799.07 6294.88 35894.04 18486.78 35097.59 24077.64 33897.64 33292.08 26589.43 30996.57 294
OurMVSNet-221017-094.21 25994.00 23794.85 30295.60 33289.22 32898.89 10197.43 29895.29 13492.18 30898.52 15082.86 30098.59 25193.46 22891.76 27796.74 272
mvs_tets95.41 18695.00 18696.65 21295.58 33394.42 21899.00 7898.55 14695.73 11293.21 27898.38 16583.45 29998.63 24797.09 10294.00 23896.91 252
Gipumacopyleft78.40 34076.75 34383.38 35595.54 33480.43 36879.42 37897.40 30064.67 37573.46 37280.82 37645.65 37593.14 37466.32 37787.43 33176.56 378
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test0.0.03 194.08 27093.51 27095.80 27295.53 33592.89 27297.38 28595.97 34695.11 14492.51 30196.66 30887.71 21996.94 34787.03 33293.67 24797.57 225
pmmvs593.65 27992.97 28295.68 27695.49 33692.37 27598.20 21597.28 30789.66 32892.58 29797.26 26082.14 30398.09 30893.18 23690.95 28996.58 292
N_pmnet87.12 33287.77 33085.17 35295.46 33761.92 38397.37 28770.66 38985.83 35388.73 34296.04 32985.33 26597.76 32980.02 36190.48 29295.84 332
our_test_393.65 27993.30 27694.69 30795.45 33889.68 32196.91 32197.65 27491.97 27691.66 31596.88 29889.67 16897.93 32088.02 32791.49 28196.48 312
ppachtmachnet_test93.22 28892.63 28894.97 29895.45 33890.84 30096.88 32797.88 26490.60 31092.08 31097.26 26088.08 21097.86 32685.12 34590.33 29396.22 323
jajsoiax95.45 18295.03 18596.73 20695.42 34094.63 20799.14 4998.52 15395.74 11093.22 27798.36 16783.87 29598.65 24696.95 10894.04 23696.91 252
dmvs_testset87.64 32988.93 32283.79 35495.25 34163.36 38297.20 30191.17 37793.07 23785.64 35895.98 33185.30 26791.52 37769.42 37587.33 33396.49 310
MDA-MVSNet-bldmvs89.97 31888.35 32494.83 30495.21 34291.34 29297.64 27097.51 29088.36 34071.17 37596.13 32779.22 32496.63 35583.65 35286.27 34396.52 304
anonymousdsp95.42 18494.91 19196.94 19395.10 34395.90 15499.14 4998.41 17793.75 20193.16 27997.46 24887.50 22598.41 27995.63 16294.03 23796.50 309
EPNet97.28 9596.87 9998.51 8094.98 34496.14 13698.90 9797.02 32198.28 495.99 19099.11 7491.36 13699.89 3996.98 10599.19 10999.50 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVP-Stereo94.28 25793.92 24295.35 28894.95 34592.60 27497.97 24097.65 27491.61 28690.68 32497.09 27486.32 24598.42 27189.70 30999.34 10395.02 348
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
lessismore_v094.45 31794.93 34688.44 34291.03 37886.77 35197.64 23676.23 34598.42 27190.31 29785.64 34796.51 307
MDA-MVSNet_test_wron90.71 31289.38 31794.68 30894.83 34790.78 30297.19 30397.46 29487.60 34272.41 37495.72 33786.51 23996.71 35385.92 33986.80 34196.56 296
EGC-MVSNET75.22 34369.54 34692.28 33894.81 34889.58 32297.64 27096.50 3411.82 3865.57 38795.74 33368.21 36296.26 35973.80 37291.71 27890.99 368
YYNet190.70 31389.39 31694.62 31094.79 34990.65 30597.20 30197.46 29487.54 34372.54 37395.74 33386.51 23996.66 35486.00 33886.76 34296.54 299
EG-PatchMatch MVS91.13 30890.12 31194.17 32194.73 35089.00 33298.13 22597.81 26789.22 33585.32 36096.46 31667.71 36398.42 27187.89 32993.82 24395.08 346
pmmvs691.77 30190.63 30695.17 29294.69 35191.24 29598.67 15597.92 26186.14 35089.62 33297.56 24475.79 34798.34 28690.75 29284.56 34895.94 331
new_pmnet90.06 31789.00 32193.22 33194.18 35288.32 34496.42 34396.89 32986.19 34985.67 35793.62 35577.18 34197.10 34481.61 35889.29 31194.23 354
DSMNet-mixed92.52 29792.58 28992.33 33794.15 35382.65 36498.30 20494.26 36589.08 33692.65 29595.73 33585.01 27095.76 36186.24 33697.76 17198.59 191
UnsupCasMVSNet_eth90.99 31089.92 31394.19 32094.08 35489.83 31697.13 31098.67 12093.69 20985.83 35696.19 32675.15 34996.74 35089.14 31879.41 36396.00 329
KD-MVS_2432*160089.61 32187.96 32894.54 31194.06 35591.59 28995.59 35397.63 27689.87 32488.95 33894.38 35078.28 33096.82 34884.83 34668.05 37595.21 342
miper_refine_blended89.61 32187.96 32894.54 31194.06 35591.59 28995.59 35397.63 27689.87 32488.95 33894.38 35078.28 33096.82 34884.83 34668.05 37595.21 342
Anonymous2023120691.66 30291.10 30293.33 32894.02 35787.35 35298.58 16797.26 30990.48 31290.16 32896.31 31983.83 29696.53 35679.36 36489.90 30096.12 326
Anonymous2024052191.18 30790.44 30893.42 32593.70 35888.47 34198.94 9297.56 28188.46 33989.56 33495.08 34577.15 34296.97 34683.92 35189.55 30694.82 350
test20.0390.89 31190.38 30992.43 33693.48 35988.14 34798.33 19797.56 28193.40 22487.96 34496.71 30780.69 31694.13 37079.15 36586.17 34495.01 349
CMPMVSbinary66.06 2189.70 31989.67 31589.78 34493.19 36076.56 36997.00 31598.35 18880.97 36581.57 36597.75 22474.75 35198.61 24889.85 30593.63 25094.17 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft86.42 2089.00 32487.43 33293.69 32393.08 36189.42 32597.91 24596.89 32978.58 36785.86 35594.69 34769.48 36198.29 29577.13 36993.29 26193.36 364
KD-MVS_self_test90.38 31489.38 31793.40 32792.85 36288.94 33497.95 24197.94 25990.35 31790.25 32793.96 35379.82 32095.94 36084.62 35076.69 36995.33 340
MIMVSNet189.67 32088.28 32593.82 32292.81 36391.08 29798.01 23697.45 29687.95 34187.90 34595.87 33267.63 36494.56 36978.73 36788.18 32495.83 333
UnsupCasMVSNet_bld87.17 33085.12 33693.31 32991.94 36488.77 33594.92 35998.30 20084.30 36082.30 36490.04 36863.96 36897.25 34285.85 34074.47 37393.93 362
CL-MVSNet_self_test90.11 31689.14 31993.02 33391.86 36588.23 34696.51 34198.07 24390.49 31190.49 32694.41 34884.75 27595.34 36480.79 36074.95 37195.50 338
Patchmatch-RL test91.49 30390.85 30493.41 32691.37 36684.40 35892.81 36995.93 34891.87 27987.25 34794.87 34688.99 18696.53 35692.54 25782.00 35499.30 117
test_fmvs387.17 33087.06 33387.50 34891.21 36775.66 37199.05 6596.61 34092.79 24988.85 34092.78 36143.72 37693.49 37193.95 21384.56 34893.34 365
pmmvs-eth3d90.36 31589.05 32094.32 31891.10 36892.12 27797.63 27396.95 32488.86 33784.91 36193.13 36078.32 32996.74 35088.70 32281.81 35694.09 358
PM-MVS87.77 32886.55 33491.40 34291.03 36983.36 36396.92 31995.18 35691.28 29986.48 35493.42 35753.27 37396.74 35089.43 31581.97 35594.11 357
new-patchmatchnet88.50 32687.45 33191.67 34190.31 37085.89 35797.16 30897.33 30489.47 33083.63 36392.77 36276.38 34495.06 36782.70 35577.29 36894.06 360
mvsany_test388.80 32588.04 32691.09 34389.78 37181.57 36797.83 25695.49 35193.81 19987.53 34693.95 35456.14 37297.43 33994.68 18683.13 35194.26 353
test_f86.07 33485.39 33588.10 34789.28 37275.57 37297.73 26396.33 34389.41 33385.35 35991.56 36743.31 37895.53 36291.32 28284.23 35093.21 366
pmmvs386.67 33384.86 33792.11 34088.16 37387.19 35496.63 33794.75 36079.88 36687.22 34892.75 36366.56 36695.20 36681.24 35976.56 37093.96 361
testf179.02 33777.70 33982.99 35688.10 37466.90 37994.67 36293.11 37071.08 37274.02 37093.41 35834.15 38293.25 37272.25 37378.50 36588.82 370
APD_test279.02 33777.70 33982.99 35688.10 37466.90 37994.67 36293.11 37071.08 37274.02 37093.41 35834.15 38293.25 37272.25 37378.50 36588.82 370
ambc89.49 34586.66 37675.78 37092.66 37096.72 33586.55 35392.50 36446.01 37497.90 32190.32 29682.09 35394.80 351
test_vis3_rt79.22 33577.40 34184.67 35386.44 37774.85 37497.66 26881.43 38684.98 35767.12 37781.91 37528.09 38697.60 33388.96 32080.04 36281.55 375
test_method79.03 33678.17 33881.63 35886.06 37854.40 38882.75 37796.89 32939.54 38180.98 36695.57 34158.37 37194.73 36884.74 34978.61 36495.75 334
TDRefinement91.06 30989.68 31495.21 29085.35 37991.49 29198.51 18097.07 31691.47 28888.83 34197.84 21677.31 33999.09 19392.79 24877.98 36795.04 347
PMMVS277.95 34175.44 34585.46 35182.54 38074.95 37394.23 36793.08 37272.80 37174.68 36987.38 37036.36 38191.56 37673.95 37163.94 37789.87 369
E-PMN64.94 34764.25 34967.02 36482.28 38159.36 38691.83 37285.63 38352.69 37860.22 37977.28 37841.06 37980.12 38246.15 38141.14 37961.57 380
EMVS64.07 34863.26 35166.53 36581.73 38258.81 38791.85 37184.75 38451.93 38059.09 38075.13 37943.32 37779.09 38342.03 38239.47 38061.69 379
FPMVS77.62 34277.14 34279.05 36079.25 38360.97 38495.79 35095.94 34765.96 37467.93 37694.40 34937.73 38088.88 37968.83 37688.46 32187.29 372
wuyk23d30.17 35030.18 35430.16 36678.61 38443.29 39066.79 37914.21 39017.31 38314.82 38611.93 38611.55 38941.43 38537.08 38319.30 3835.76 383
LCM-MVSNet78.70 33976.24 34486.08 35077.26 38571.99 37794.34 36696.72 33561.62 37676.53 36889.33 36933.91 38492.78 37581.85 35774.60 37293.46 363
MVEpermissive62.14 2263.28 34959.38 35274.99 36174.33 38665.47 38185.55 37580.50 38752.02 37951.10 38175.00 38010.91 39080.50 38151.60 38053.40 37878.99 376
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high69.08 34465.37 34880.22 35965.99 38771.96 37890.91 37390.09 38082.62 36249.93 38278.39 37729.36 38581.75 38062.49 37838.52 38186.95 374
PMVScopyleft61.03 2365.95 34663.57 35073.09 36357.90 38851.22 38985.05 37693.93 36954.45 37744.32 38383.57 37213.22 38789.15 37858.68 37981.00 35978.91 377
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt68.90 34566.97 34774.68 36250.78 38959.95 38587.13 37483.47 38538.80 38262.21 37896.23 32364.70 36776.91 38488.91 32130.49 38287.19 373
testmvs21.48 35224.95 35511.09 36814.89 3906.47 39296.56 3399.87 3917.55 38417.93 38439.02 3829.43 3915.90 38716.56 38512.72 38420.91 382
test12320.95 35323.72 35612.64 36713.54 3918.19 39196.55 3406.13 3927.48 38516.74 38537.98 38312.97 3886.05 38616.69 3845.43 38523.68 381
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
eth-test20.00 392
eth-test0.00 392
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k23.98 35131.98 3530.00 3690.00 3920.00 3930.00 38098.59 1350.00 3870.00 38898.61 13890.60 1530.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.88 35510.50 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38794.51 780.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.20 35410.94 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38898.43 1580.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
PC_three_145295.08 14899.60 1299.16 6797.86 298.47 26597.52 8899.72 4799.74 31
test_241102_TWO98.87 6197.65 1499.53 1699.48 1197.34 1199.94 598.43 3299.80 1999.83 8
test_0728_THIRD97.32 3399.45 1899.46 1697.88 199.94 598.47 2899.86 199.85 5
GSMVS99.20 129
sam_mvs189.45 17299.20 129
sam_mvs88.99 186
MTGPAbinary98.74 100
test_post196.68 33630.43 38587.85 21798.69 24192.59 253
test_post31.83 38488.83 19398.91 219
patchmatchnet-post95.10 34489.42 17398.89 223
MTMP98.89 10194.14 367
test9_res96.39 13699.57 7499.69 50
agg_prior295.87 15299.57 7499.68 55
test_prior498.01 5897.86 252
test_prior297.80 25796.12 9397.89 11498.69 13195.96 3596.89 11399.60 68
旧先验297.57 27691.30 29798.67 6399.80 7895.70 160
新几何297.64 270
无先验97.58 27598.72 10591.38 29199.87 4893.36 23199.60 71
原ACMM297.67 267
testdata299.89 3991.65 278
segment_acmp96.85 14
testdata197.32 29396.34 85
plane_prior598.56 14499.03 20096.07 14294.27 22796.92 247
plane_prior498.28 177
plane_prior394.61 21097.02 5495.34 199
plane_prior298.80 12597.28 36
plane_prior94.60 21298.44 18896.74 6794.22 229
n20.00 393
nn0.00 393
door-mid94.37 363
test1198.66 123
door94.64 361
HQP5-MVS94.25 227
BP-MVS95.30 170
HQP4-MVS94.45 22298.96 21196.87 258
HQP3-MVS98.46 16794.18 231
HQP2-MVS86.75 236
MDTV_nov1_ep13_2view84.26 35996.89 32690.97 30697.90 11389.89 16493.91 21599.18 138
ACMMP++_ref92.97 264
ACMMP++93.61 251
Test By Simon94.64 75