This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS199.91 199.93 199.87 899.56 7199.10 2799.81 40
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8399.39 22798.91 5899.78 5099.85 5599.36 299.94 6998.84 11899.88 5699.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS_fast99.51 1899.40 2699.85 2899.91 199.79 3099.76 3799.56 7197.72 19099.76 6099.75 13999.13 1299.92 9799.07 8699.92 2999.85 36
MP-MVS-pluss99.37 5699.20 7199.88 599.90 499.87 1299.30 24999.52 10497.18 24799.60 11099.79 11898.79 4799.95 5998.83 12199.91 3699.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA99.52 1799.39 2999.89 499.90 499.86 1399.66 7099.47 18098.79 7099.68 7899.81 9398.43 8399.97 2198.88 10599.90 4499.83 49
HPM-MVScopyleft99.42 4399.28 5899.83 4099.90 499.72 4299.81 2099.54 8897.59 20399.68 7899.63 19998.91 3499.94 6998.58 15599.91 3699.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HyFIR lowres test99.11 10498.92 11299.65 7499.90 499.37 10399.02 32199.91 397.67 19899.59 11399.75 13995.90 17999.73 21499.53 3699.02 18799.86 33
MSP-MVS99.42 4399.27 6299.88 599.89 899.80 2799.67 6599.50 13998.70 7899.77 5499.49 24898.21 9599.95 5998.46 17299.77 11299.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CHOSEN 1792x268899.19 8299.10 8099.45 12999.89 898.52 21299.39 22299.94 198.73 7699.11 22199.89 3295.50 19299.94 6999.50 4099.97 899.89 20
ACMMPcopyleft99.45 3499.32 4299.82 4199.89 899.67 5199.62 8899.69 1898.12 14199.63 10099.84 6698.73 6099.96 3098.55 16499.83 9199.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R99.48 2699.35 3699.87 1199.88 1199.80 2799.65 7699.66 2898.13 14099.66 8799.68 17598.96 2499.96 3098.62 14699.87 5999.84 40
MP-MVScopyleft99.33 6199.15 7599.87 1199.88 1199.82 2299.66 7099.46 18998.09 14799.48 13599.74 14498.29 9299.96 3097.93 21499.87 5999.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS99.44 3899.30 5299.86 2199.88 1199.79 3099.69 5699.48 16098.12 14199.50 13199.75 13998.78 4899.97 2198.57 15899.89 5399.83 49
COLMAP_ROBcopyleft97.56 698.86 13598.75 13699.17 17399.88 1198.53 20899.34 24199.59 5897.55 20998.70 28799.89 3295.83 18199.90 11998.10 19899.90 4499.08 236
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ZNCC-MVS99.47 3099.33 4099.87 1199.87 1599.81 2599.64 7999.67 2398.08 15199.55 12399.64 19398.91 3499.96 3098.72 13399.90 4499.82 54
ACMMP_NAP99.47 3099.34 3899.88 599.87 1599.86 1399.47 18599.48 16098.05 15799.76 6099.86 5098.82 4399.93 8698.82 12599.91 3699.84 40
HFP-MVS99.49 2299.37 3299.86 2199.87 1599.80 2799.66 7099.67 2398.15 13599.68 7899.69 16999.06 1699.96 3098.69 13899.87 5999.84 40
ACMMPR99.49 2299.36 3499.86 2199.87 1599.79 3099.66 7099.67 2398.15 13599.67 8299.69 16998.95 2799.96 3098.69 13899.87 5999.84 40
PGM-MVS99.45 3499.31 5099.86 2199.87 1599.78 3699.58 10999.65 3397.84 17699.71 7299.80 10699.12 1399.97 2198.33 18399.87 5999.83 49
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 7098.75 5599.99 499.97 199.96 1499.94 11
test_vis1_n_192098.63 16498.40 17099.31 14999.86 2097.94 25099.67 6599.62 4199.43 799.99 299.91 2187.29 368100.00 199.92 1299.92 2999.98 2
GST-MVS99.40 5199.24 6799.85 2899.86 2099.79 3099.60 9599.67 2397.97 16399.63 10099.68 17598.52 7799.95 5998.38 17799.86 6799.81 61
AllTest98.87 13298.72 13799.31 14999.86 2098.48 21899.56 12299.61 4897.85 17499.36 16799.85 5595.95 17499.85 15196.66 31099.83 9199.59 150
TestCases99.31 14999.86 2098.48 21899.61 4897.85 17499.36 16799.85 5595.95 17499.85 15196.66 31099.83 9199.59 150
PVSNet_Blended_VisFu99.36 5799.28 5899.61 8799.86 2099.07 14799.47 18599.93 297.66 19999.71 7299.86 5097.73 11399.96 3099.47 4799.82 9599.79 74
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 24399.10 2799.81 4099.80 10698.94 2999.96 3098.93 9999.86 6799.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.85 2699.89 499.62 8899.50 13999.10 2799.86 3099.82 7898.94 29
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16499.74 14498.81 4499.94 6998.79 12699.86 6799.84 40
X-MVStestdata96.55 32095.45 33899.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16464.01 41298.81 4499.94 6998.79 12699.86 6799.84 40
114514_t98.93 12798.67 14399.72 6599.85 2699.53 8399.62 8899.59 5892.65 38199.71 7299.78 12498.06 10499.90 11998.84 11899.91 3699.74 92
CSCG99.32 6399.32 4299.32 14899.85 2698.29 22799.71 5299.66 2898.11 14399.41 15299.80 10698.37 8999.96 3098.99 9299.96 1499.72 103
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7898.75 5599.99 499.97 199.97 899.94 11
fmvsm_s_conf0.5_n99.51 1899.40 2699.85 2899.84 3299.65 5799.51 15599.67 2399.13 2299.98 699.92 1596.60 15299.96 3099.95 899.96 1499.95 9
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9799.58 10999.69 1899.43 799.98 699.91 2198.62 70100.00 199.97 199.95 2199.90 17
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 16099.08 3399.91 1899.81 9399.20 799.96 3098.91 10299.85 7499.79 74
IU-MVS99.84 3299.88 899.32 27198.30 11599.84 3298.86 11399.85 7499.89 20
test_241102_ONE99.84 3299.90 299.48 16099.07 3599.91 1899.74 14499.20 799.76 203
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11999.96 3098.93 9999.86 6799.88 26
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14799.65 3399.10 2799.98 699.92 1597.35 12599.96 3099.94 1099.92 2999.95 9
dcpmvs_299.23 7999.58 798.16 29999.83 3994.68 36099.76 3799.52 10499.07 3599.98 699.88 3898.56 7499.93 8699.67 2299.98 499.87 31
CP-MVS99.45 3499.32 4299.85 2899.83 3999.75 3999.69 5699.52 10498.07 15299.53 12699.63 19998.93 3399.97 2198.74 13099.91 3699.83 49
test_fmvs1_n98.41 17598.14 18699.21 16999.82 4297.71 26399.74 4599.49 14799.32 1499.99 299.95 385.32 37799.97 2199.82 1699.84 8299.96 7
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11998.62 8499.79 4599.83 7099.28 499.97 2198.48 16899.90 4499.84 40
Skip Steuart: Steuart Systems R&D Blog.
RPSCF98.22 18998.62 15396.99 34899.82 4291.58 38799.72 5099.44 20896.61 29499.66 8799.89 3295.92 17799.82 17897.46 26399.10 17999.57 158
DeepC-MVS98.35 299.30 6599.19 7299.64 7999.82 4299.23 12499.62 8899.55 7998.94 5499.63 10099.95 395.82 18299.94 6999.37 5599.97 899.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SDMVSNet99.11 10498.90 11599.75 5899.81 4699.59 7199.81 2099.65 3398.78 7399.64 9799.88 3894.56 23599.93 8699.67 2298.26 23199.72 103
sd_testset98.75 15398.57 16099.29 15799.81 4698.26 22999.56 12299.62 4198.78 7399.64 9799.88 3892.02 30799.88 13699.54 3498.26 23199.72 103
test_cas_vis1_n_192099.16 8899.01 10099.61 8799.81 4698.86 17999.65 7699.64 3699.39 1099.97 1399.94 693.20 27699.98 1399.55 3399.91 3699.99 1
patch_mono-299.26 7399.62 598.16 29999.81 4694.59 36299.52 14799.64 3699.33 1399.73 6699.90 2899.00 2299.99 499.69 2099.98 499.89 20
test_one_060199.81 4699.88 899.49 14798.97 5199.65 9399.81 9399.09 14
test_part299.81 4699.83 1699.77 54
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17999.64 3699.45 599.92 1799.92 1598.62 7099.99 499.96 799.99 199.96 7
CPTT-MVS99.11 10498.90 11599.74 6199.80 5299.46 9599.59 10199.49 14797.03 26599.63 10099.69 16997.27 12999.96 3097.82 22599.84 8299.81 61
SF-MVS99.38 5599.24 6799.79 4999.79 5499.68 4899.57 11699.54 8897.82 18199.71 7299.80 10698.95 2799.93 8698.19 19299.84 8299.74 92
MCST-MVS99.43 4199.30 5299.82 4199.79 5499.74 4199.29 25499.40 22498.79 7099.52 12899.62 20498.91 3499.90 11998.64 14499.75 11799.82 54
DPE-MVScopyleft99.46 3299.32 4299.91 299.78 5699.88 899.36 23399.51 11998.73 7699.88 2299.84 6698.72 6199.96 3098.16 19699.87 5999.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CS-MVS-test99.49 2299.48 1599.54 10199.78 5699.30 11499.89 299.58 6298.56 8999.73 6699.69 16998.55 7599.82 17899.69 2099.85 7499.48 183
EI-MVSNet-UG-set99.58 999.57 899.64 7999.78 5699.14 13799.60 9599.45 20099.01 4099.90 2099.83 7098.98 2399.93 8699.59 2799.95 2199.86 33
EI-MVSNet-Vis-set99.58 999.56 1099.64 7999.78 5699.15 13699.61 9499.45 20099.01 4099.89 2199.82 7899.01 1899.92 9799.56 3199.95 2199.85 36
Vis-MVSNetpermissive99.12 10098.97 10699.56 9899.78 5699.10 14199.68 6299.66 2898.49 9699.86 3099.87 4694.77 22299.84 15899.19 7599.41 15399.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
F-COLMAP99.19 8299.04 9099.64 7999.78 5699.27 11899.42 20699.54 8897.29 23899.41 15299.59 21398.42 8599.93 8698.19 19299.69 12899.73 97
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 7199.02 3899.88 2299.85 5599.18 1099.96 3099.22 7399.92 2999.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MVS_111021_LR99.41 4899.33 4099.65 7499.77 6299.51 8798.94 34199.85 698.82 6599.65 9399.74 14498.51 7899.80 18998.83 12199.89 5399.64 136
DP-MVS99.16 8898.95 11099.78 5299.77 6299.53 8399.41 21099.50 13997.03 26599.04 23799.88 3897.39 12199.92 9798.66 14299.90 4499.87 31
SR-MVS-dyc-post99.45 3499.31 5099.85 2899.76 6599.82 2299.63 8399.52 10498.38 10599.76 6099.82 7898.53 7699.95 5998.61 14999.81 9899.77 82
RE-MVS-def99.34 3899.76 6599.82 2299.63 8399.52 10498.38 10599.76 6099.82 7898.75 5598.61 14999.81 9899.77 82
save fliter99.76 6599.59 7199.14 29499.40 22499.00 43
CS-MVS99.50 2099.48 1599.54 10199.76 6599.42 9999.90 199.55 7998.56 8999.78 5099.70 15998.65 6899.79 19299.65 2499.78 10999.41 203
APD-MVS_3200maxsize99.48 2699.35 3699.85 2899.76 6599.83 1699.63 8399.54 8898.36 10999.79 4599.82 7898.86 3899.95 5998.62 14699.81 9899.78 80
PVSNet_BlendedMVS98.86 13598.80 13099.03 18999.76 6598.79 18899.28 25999.91 397.42 22799.67 8299.37 28297.53 11899.88 13698.98 9397.29 28998.42 347
PVSNet_Blended99.08 11098.97 10699.42 13499.76 6598.79 18898.78 35799.91 396.74 28299.67 8299.49 24897.53 11899.88 13698.98 9399.85 7499.60 146
MSDG98.98 12398.80 13099.53 10999.76 6599.19 12698.75 36099.55 7997.25 24199.47 13699.77 13297.82 11099.87 14296.93 29799.90 4499.54 164
SR-MVS99.43 4199.29 5699.86 2199.75 7399.83 1699.59 10199.62 4198.21 12899.73 6699.79 11898.68 6499.96 3098.44 17499.77 11299.79 74
HPM-MVS++copyleft99.39 5499.23 6999.87 1199.75 7399.84 1599.43 19999.51 11998.68 8199.27 18899.53 23698.64 6999.96 3098.44 17499.80 10299.79 74
新几何199.75 5899.75 7399.59 7199.54 8896.76 28199.29 18299.64 19398.43 8399.94 6996.92 29999.66 13399.72 103
test22299.75 7399.49 8998.91 34599.49 14796.42 31099.34 17399.65 18798.28 9399.69 12899.72 103
testdata99.54 10199.75 7398.95 16699.51 11997.07 25999.43 14599.70 15998.87 3799.94 6997.76 23299.64 13699.72 103
CDPH-MVS99.13 9498.91 11499.80 4699.75 7399.71 4499.15 29299.41 21896.60 29699.60 11099.55 22798.83 4299.90 11997.48 26099.83 9199.78 80
APD-MVScopyleft99.27 7199.08 8599.84 3999.75 7399.79 3099.50 16299.50 13997.16 24999.77 5499.82 7898.78 4899.94 6997.56 25399.86 6799.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
bld_raw_dy_0_6499.22 8099.09 8399.60 9099.74 8099.31 11199.42 20699.55 7996.02 33999.59 11399.94 698.03 10599.92 9799.58 2999.98 499.56 160
test250696.81 31796.65 31397.29 34299.74 8092.21 38599.60 9585.06 41699.13 2299.77 5499.93 1087.82 36699.85 15199.38 5399.38 15499.80 70
test111198.04 21498.11 19097.83 32299.74 8093.82 37099.58 10995.40 40399.12 2599.65 9399.93 1090.73 33299.84 15899.43 5099.38 15499.82 54
ECVR-MVScopyleft98.04 21498.05 19998.00 31199.74 8094.37 36599.59 10194.98 40499.13 2299.66 8799.93 1090.67 33399.84 15899.40 5199.38 15499.80 70
旧先验199.74 8099.59 7199.54 8899.69 16998.47 8099.68 13199.73 97
SD-MVS99.41 4899.52 1199.05 18799.74 8099.68 4899.46 18899.52 10499.11 2699.88 2299.91 2199.43 197.70 38898.72 13399.93 2799.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DP-MVS Recon99.12 10098.95 11099.65 7499.74 8099.70 4699.27 26499.57 6696.40 31299.42 14899.68 17598.75 5599.80 18997.98 21199.72 12399.44 199
PAPM_NR99.04 11498.84 12799.66 7099.74 8099.44 9799.39 22299.38 23597.70 19499.28 18399.28 30698.34 9099.85 15196.96 29499.45 15099.69 115
SMA-MVScopyleft99.44 3899.30 5299.85 2899.73 8899.83 1699.56 12299.47 18097.45 22299.78 5099.82 7899.18 1099.91 10898.79 12699.89 5399.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM199.65 7499.73 8899.33 10699.47 18097.46 21999.12 21999.66 18698.67 6699.91 10897.70 24199.69 12899.71 112
IS-MVSNet99.05 11398.87 12099.57 9699.73 8899.32 10799.75 4199.20 29998.02 16199.56 11999.86 5096.54 15599.67 23898.09 19999.13 17599.73 97
PVSNet96.02 1798.85 14298.84 12798.89 21499.73 8897.28 27398.32 38799.60 5497.86 17199.50 13199.57 22196.75 14899.86 14598.56 16199.70 12799.54 164
9.1499.10 8099.72 9299.40 21899.51 11997.53 21399.64 9799.78 12498.84 4199.91 10897.63 24499.82 95
thres100view90097.76 25897.45 26498.69 24499.72 9297.86 25499.59 10198.74 35897.93 16699.26 19298.62 36391.75 31399.83 17193.22 36698.18 23898.37 353
thres600view797.86 24297.51 25798.92 20599.72 9297.95 24899.59 10198.74 35897.94 16599.27 18898.62 36391.75 31399.86 14593.73 36198.19 23798.96 253
DELS-MVS99.48 2699.42 2299.65 7499.72 9299.40 10299.05 31399.66 2899.14 2199.57 11899.80 10698.46 8199.94 6999.57 3099.84 8299.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR99.41 4899.32 4299.66 7099.72 9299.47 9398.95 33999.85 698.82 6599.54 12499.73 15098.51 7899.74 20898.91 10299.88 5699.77 82
ZD-MVS99.71 9799.79 3099.61 4896.84 27899.56 11999.54 23298.58 7299.96 3096.93 29799.75 117
Anonymous2023121197.88 23897.54 25498.90 21199.71 9798.53 20899.48 17999.57 6694.16 36698.81 27099.68 17593.23 27399.42 27898.84 11894.42 35198.76 267
XVG-OURS-SEG-HR98.69 15898.62 15398.89 21499.71 9797.74 25799.12 29899.54 8898.44 10299.42 14899.71 15594.20 24999.92 9798.54 16598.90 19599.00 247
Vis-MVSNet (Re-imp)98.87 13298.72 13799.31 14999.71 9798.88 17599.80 2599.44 20897.91 16899.36 16799.78 12495.49 19399.43 27797.91 21599.11 17699.62 142
PatchMatch-RL98.84 14598.62 15399.52 11599.71 9799.28 11699.06 31199.77 997.74 18999.50 13199.53 23695.41 19499.84 15897.17 28499.64 13699.44 199
fmvsm_s_conf0.1_n99.29 6799.10 8099.86 2199.70 10299.65 5799.53 14699.62 4198.74 7599.99 299.95 394.53 23999.94 6999.89 1399.96 1499.97 4
h-mvs3397.70 27197.28 29298.97 19799.70 10297.27 27499.36 23399.45 20098.94 5499.66 8799.64 19394.93 20999.99 499.48 4584.36 39599.65 129
MVS_030499.42 4399.32 4299.72 6599.70 10299.27 11899.52 14797.57 39099.51 299.82 3899.78 12498.09 10199.96 3099.97 199.97 899.94 11
XVG-OURS98.73 15698.68 14298.88 21699.70 10297.73 25898.92 34399.55 7998.52 9499.45 13999.84 6695.27 20099.91 10898.08 20398.84 19999.00 247
TAPA-MVS97.07 1597.74 26497.34 28498.94 20199.70 10297.53 26799.25 27599.51 11991.90 38399.30 17999.63 19998.78 4899.64 24988.09 39299.87 5999.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_fmvs198.88 13198.79 13399.16 17499.69 10797.61 26699.55 13499.49 14799.32 1499.98 699.91 2191.41 32399.96 3099.82 1699.92 2999.90 17
tfpn200view997.72 26797.38 27798.72 24099.69 10797.96 24699.50 16298.73 36397.83 17799.17 21398.45 36891.67 31799.83 17193.22 36698.18 23898.37 353
thres40097.77 25797.38 27798.92 20599.69 10797.96 24699.50 16298.73 36397.83 17799.17 21398.45 36891.67 31799.83 17193.22 36698.18 23898.96 253
Test_1112_low_res98.89 13098.66 14699.57 9699.69 10798.95 16699.03 31899.47 18096.98 26799.15 21599.23 31496.77 14799.89 13098.83 12198.78 20499.86 33
iter_conf0599.48 2699.40 2699.71 6799.68 11199.61 6799.49 17499.58 6298.27 11899.95 1599.92 1598.09 10199.94 6999.65 2499.96 1499.58 154
1112_ss98.98 12398.77 13499.59 9199.68 11199.02 15299.25 27599.48 16097.23 24499.13 21799.58 21796.93 14399.90 11998.87 10898.78 20499.84 40
MM99.40 5199.28 5899.74 6199.67 11399.31 11199.52 14798.87 34499.55 199.74 6499.80 10696.47 15799.98 1399.97 199.97 899.94 11
test_vis1_rt95.81 33595.65 33596.32 36199.67 11391.35 38899.49 17496.74 39798.25 12195.24 37798.10 38274.96 39799.90 11999.53 3698.85 19897.70 382
TEST999.67 11399.65 5799.05 31399.41 21896.22 32298.95 25099.49 24898.77 5199.91 108
train_agg99.02 11798.77 13499.77 5599.67 11399.65 5799.05 31399.41 21896.28 31698.95 25099.49 24898.76 5299.91 10897.63 24499.72 12399.75 88
test_899.67 11399.61 6799.03 31899.41 21896.28 31698.93 25399.48 25398.76 5299.91 108
agg_prior99.67 11399.62 6599.40 22498.87 26399.91 108
mamv499.33 6199.42 2299.07 18399.67 11397.73 25899.42 20699.60 5498.15 13599.94 1699.91 2198.42 8599.94 6999.72 1899.96 1499.54 164
test_prior99.68 6999.67 11399.48 9199.56 7199.83 17199.74 92
TSAR-MVS + GP.99.36 5799.36 3499.36 14199.67 11398.61 20399.07 30899.33 26199.00 4399.82 3899.81 9399.06 1699.84 15899.09 8499.42 15299.65 129
OMC-MVS99.08 11099.04 9099.20 17099.67 11398.22 23199.28 25999.52 10498.07 15299.66 8799.81 9397.79 11199.78 19797.79 22799.81 9899.60 146
Anonymous2024052998.09 20497.68 24099.34 14299.66 12398.44 22199.40 21899.43 21493.67 37099.22 19999.89 3290.23 33999.93 8699.26 7198.33 22599.66 125
tttt051798.42 17398.14 18699.28 16199.66 12398.38 22599.74 4596.85 39497.68 19699.79 4599.74 14491.39 32499.89 13098.83 12199.56 14399.57 158
CHOSEN 280x42099.12 10099.13 7799.08 18199.66 12397.89 25198.43 38199.71 1398.88 5999.62 10499.76 13696.63 15199.70 23099.46 4899.99 199.66 125
casdiffmvs_mvgpermissive99.15 9099.02 9699.55 10099.66 12399.09 14299.64 7999.56 7198.26 12099.45 13999.87 4696.03 17199.81 18399.54 3499.15 17399.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 9099.02 9699.53 10999.66 12399.14 13799.72 5099.48 16098.35 11099.42 14899.84 6696.07 16999.79 19299.51 3999.14 17499.67 122
PLCcopyleft97.94 499.02 11798.85 12599.53 10999.66 12399.01 15499.24 27799.52 10496.85 27799.27 18899.48 25398.25 9499.91 10897.76 23299.62 13999.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
casdiffmvspermissive99.13 9498.98 10599.56 9899.65 12999.16 13199.56 12299.50 13998.33 11399.41 15299.86 5095.92 17799.83 17199.45 4999.16 17099.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet99.13 9498.99 10299.53 10999.65 12999.06 14899.81 2099.33 26197.43 22599.60 11099.88 3897.14 13199.84 15899.13 8098.94 19099.69 115
thres20097.61 28297.28 29298.62 24899.64 13198.03 24099.26 27398.74 35897.68 19699.09 22798.32 37491.66 31999.81 18392.88 37198.22 23398.03 369
test1299.75 5899.64 13199.61 6799.29 28399.21 20298.38 8899.89 13099.74 12099.74 92
ab-mvs98.86 13598.63 14899.54 10199.64 13199.19 12699.44 19599.54 8897.77 18599.30 17999.81 9394.20 24999.93 8699.17 7898.82 20199.49 182
DPM-MVS98.95 12698.71 13999.66 7099.63 13499.55 7898.64 37099.10 31097.93 16699.42 14899.55 22798.67 6699.80 18995.80 32899.68 13199.61 144
thisisatest053098.35 18198.03 20199.31 14999.63 13498.56 20599.54 13896.75 39697.53 21399.73 6699.65 18791.25 32799.89 13098.62 14699.56 14399.48 183
xiu_mvs_v1_base_debu99.29 6799.27 6299.34 14299.63 13498.97 15999.12 29899.51 11998.86 6099.84 3299.47 25698.18 9799.99 499.50 4099.31 16299.08 236
xiu_mvs_v1_base99.29 6799.27 6299.34 14299.63 13498.97 15999.12 29899.51 11998.86 6099.84 3299.47 25698.18 9799.99 499.50 4099.31 16299.08 236
xiu_mvs_v1_base_debi99.29 6799.27 6299.34 14299.63 13498.97 15999.12 29899.51 11998.86 6099.84 3299.47 25698.18 9799.99 499.50 4099.31 16299.08 236
DeepC-MVS_fast98.69 199.49 2299.39 2999.77 5599.63 13499.59 7199.36 23399.46 18999.07 3599.79 4599.82 7898.85 3999.92 9798.68 14099.87 5999.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UA-Net99.42 4399.29 5699.80 4699.62 14099.55 7899.50 16299.70 1598.79 7099.77 5499.96 197.45 12099.96 3098.92 10199.90 4499.89 20
CNVR-MVS99.42 4399.30 5299.78 5299.62 14099.71 4499.26 27399.52 10498.82 6599.39 16099.71 15598.96 2499.85 15198.59 15499.80 10299.77 82
WTY-MVS99.06 11298.88 11999.61 8799.62 14099.16 13199.37 22999.56 7198.04 15899.53 12699.62 20496.84 14499.94 6998.85 11598.49 22099.72 103
sss99.17 8699.05 8899.53 10999.62 14098.97 15999.36 23399.62 4197.83 17799.67 8299.65 18797.37 12499.95 5999.19 7599.19 16999.68 119
mvsany_test199.50 2099.46 2099.62 8599.61 14499.09 14298.94 34199.48 16099.10 2799.96 1499.91 2198.85 3999.96 3099.72 1899.58 14299.82 54
GeoE98.85 14298.62 15399.53 10999.61 14499.08 14599.80 2599.51 11997.10 25799.31 17699.78 12495.23 20499.77 19998.21 19099.03 18599.75 88
diffmvspermissive99.14 9299.02 9699.51 11799.61 14498.96 16399.28 25999.49 14798.46 9899.72 7199.71 15596.50 15699.88 13699.31 6399.11 17699.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NCCC99.34 6099.19 7299.79 4999.61 14499.65 5799.30 24999.48 16098.86 6099.21 20299.63 19998.72 6199.90 11998.25 18899.63 13899.80 70
PCF-MVS97.08 1497.66 27897.06 30399.47 12699.61 14499.09 14298.04 39599.25 29091.24 38698.51 30899.70 15994.55 23799.91 10892.76 37499.85 7499.42 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MSLP-MVS++99.46 3299.47 1799.44 13399.60 14999.16 13199.41 21099.71 1398.98 4899.45 13999.78 12499.19 999.54 26399.28 6799.84 8299.63 140
DeepPCF-MVS98.18 398.81 14699.37 3297.12 34699.60 14991.75 38698.61 37199.44 20899.35 1299.83 3799.85 5598.70 6399.81 18399.02 9099.91 3699.81 61
tt080597.97 22897.77 22998.57 25499.59 15196.61 31699.45 18999.08 31398.21 12898.88 26099.80 10688.66 35499.70 23098.58 15597.72 25899.39 206
IterMVS-LS98.46 17098.42 16898.58 25399.59 15198.00 24299.37 22999.43 21496.94 27399.07 22999.59 21397.87 10899.03 34198.32 18595.62 32798.71 277
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS97.83 24897.77 22998.02 30899.58 15396.27 32799.02 32199.48 16097.22 24598.71 28199.70 15992.75 28499.13 32797.46 26396.00 31598.67 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CNLPA99.14 9298.99 10299.59 9199.58 15399.41 10199.16 28999.44 20898.45 9999.19 20899.49 24898.08 10399.89 13097.73 23699.75 11799.48 183
Anonymous20240521198.30 18597.98 20699.26 16399.57 15598.16 23399.41 21098.55 37196.03 33799.19 20899.74 14491.87 31099.92 9799.16 7998.29 23099.70 113
IterMVS-SCA-FT97.82 25197.75 23498.06 30599.57 15596.36 32499.02 32199.49 14797.18 24798.71 28199.72 15492.72 28799.14 32497.44 26595.86 32198.67 297
PS-MVSNAJ99.32 6399.32 4299.30 15499.57 15598.94 16998.97 33599.46 18998.92 5799.71 7299.24 31399.01 1899.98 1399.35 5699.66 13398.97 251
MG-MVS99.13 9499.02 9699.45 12999.57 15598.63 20099.07 30899.34 25498.99 4599.61 10799.82 7897.98 10799.87 14297.00 29099.80 10299.85 36
OPU-MVS99.64 7999.56 15999.72 4299.60 9599.70 15999.27 599.42 27898.24 18999.80 10299.79 74
EC-MVSNet99.44 3899.39 2999.58 9499.56 15999.49 8999.88 399.58 6298.38 10599.73 6699.69 16998.20 9699.70 23099.64 2699.82 9599.54 164
PHI-MVS99.30 6599.17 7499.70 6899.56 15999.52 8699.58 10999.80 897.12 25399.62 10499.73 15098.58 7299.90 11998.61 14999.91 3699.68 119
AdaColmapbinary99.01 12198.80 13099.66 7099.56 15999.54 8099.18 28799.70 1598.18 13399.35 17099.63 19996.32 16399.90 11997.48 26099.77 11299.55 162
dmvs_re98.08 20698.16 18397.85 31999.55 16394.67 36199.70 5398.92 33398.15 13599.06 23499.35 28893.67 26999.25 30797.77 23197.25 29099.64 136
FA-MVS(test-final)98.75 15398.53 16499.41 13599.55 16399.05 15099.80 2599.01 32296.59 29899.58 11599.59 21395.39 19599.90 11997.78 22899.49 14899.28 220
FE-MVS98.48 16898.17 18299.40 13699.54 16598.96 16399.68 6298.81 35195.54 34499.62 10499.70 15993.82 26499.93 8697.35 27199.46 14999.32 217
test_vis1_n97.92 23497.44 26999.34 14299.53 16698.08 23899.74 4599.49 14799.15 20100.00 199.94 679.51 39699.98 1399.88 1499.76 11599.97 4
APD_test195.87 33396.49 31794.00 36899.53 16684.01 39799.54 13899.32 27195.91 34097.99 33799.85 5585.49 37599.88 13691.96 37798.84 19998.12 364
iter_conf05_1199.40 5199.32 4299.63 8499.53 16699.47 9399.75 4199.52 10498.11 14399.87 2799.85 5597.72 11499.89 13099.56 3199.97 899.53 170
ET-MVSNet_ETH3D96.49 32295.64 33699.05 18799.53 16698.82 18598.84 35197.51 39197.63 20184.77 39999.21 31892.09 30698.91 35998.98 9392.21 37699.41 203
xiu_mvs_v2_base99.26 7399.25 6699.29 15799.53 16698.91 17399.02 32199.45 20098.80 6999.71 7299.26 31198.94 2999.98 1399.34 6099.23 16698.98 250
fmvsm_s_conf0.1_n_a99.26 7399.06 8799.85 2899.52 17199.62 6599.54 13899.62 4198.69 7999.99 299.96 194.47 24199.94 6999.88 1499.92 2999.98 2
LFMVS97.90 23797.35 28199.54 10199.52 17199.01 15499.39 22298.24 37897.10 25799.65 9399.79 11884.79 38099.91 10899.28 6798.38 22299.69 115
VNet99.11 10498.90 11599.73 6499.52 17199.56 7699.41 21099.39 22799.01 4099.74 6499.78 12495.56 19099.92 9799.52 3898.18 23899.72 103
DVP-MVS++99.59 899.50 1399.88 599.51 17499.88 899.87 899.51 11998.99 4599.88 2299.81 9399.27 599.96 3098.85 11599.80 10299.81 61
MSC_two_6792asdad99.87 1199.51 17499.76 3799.33 26199.96 3098.87 10899.84 8299.89 20
No_MVS99.87 1199.51 17499.76 3799.33 26199.96 3098.87 10899.84 8299.89 20
Fast-Effi-MVS+98.70 15798.43 16799.51 11799.51 17499.28 11699.52 14799.47 18096.11 33299.01 24099.34 29296.20 16799.84 15897.88 21798.82 20199.39 206
MVSFormer99.17 8699.12 7899.29 15799.51 17498.94 16999.88 399.46 18997.55 20999.80 4399.65 18797.39 12199.28 30299.03 8899.85 7499.65 129
lupinMVS99.13 9499.01 10099.46 12899.51 17498.94 16999.05 31399.16 30497.86 17199.80 4399.56 22497.39 12199.86 14598.94 9799.85 7499.58 154
GBi-Net97.68 27497.48 25998.29 29099.51 17497.26 27699.43 19999.48 16096.49 30299.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 318
test197.68 27497.48 25998.29 29099.51 17497.26 27699.43 19999.48 16096.49 30299.07 22999.32 29990.26 33698.98 34897.10 28596.65 30098.62 318
FMVSNet297.72 26797.36 27998.80 23499.51 17498.84 18199.45 18999.42 21696.49 30298.86 26799.29 30490.26 33698.98 34896.44 31596.56 30398.58 332
thisisatest051598.14 19997.79 22499.19 17199.50 18398.50 21598.61 37196.82 39596.95 27199.54 12499.43 26491.66 31999.86 14598.08 20399.51 14799.22 225
baseline198.31 18397.95 21099.38 14099.50 18398.74 19199.59 10198.93 33098.41 10399.14 21699.60 21194.59 23399.79 19298.48 16893.29 36699.61 144
hse-mvs297.50 29097.14 29898.59 25099.49 18597.05 28999.28 25999.22 29598.94 5499.66 8799.42 26694.93 20999.65 24699.48 4583.80 39799.08 236
EIA-MVS99.18 8499.09 8399.45 12999.49 18599.18 12899.67 6599.53 9997.66 19999.40 15799.44 26298.10 10099.81 18398.94 9799.62 13999.35 212
test_yl98.86 13598.63 14899.54 10199.49 18599.18 12899.50 16299.07 31698.22 12699.61 10799.51 24295.37 19699.84 15898.60 15298.33 22599.59 150
DCV-MVSNet98.86 13598.63 14899.54 10199.49 18599.18 12899.50 16299.07 31698.22 12699.61 10799.51 24295.37 19699.84 15898.60 15298.33 22599.59 150
VDDNet97.55 28597.02 30499.16 17499.49 18598.12 23799.38 22799.30 27995.35 34699.68 7899.90 2882.62 38999.93 8699.31 6398.13 24299.42 201
MVS_Test99.10 10898.97 10699.48 12399.49 18599.14 13799.67 6599.34 25497.31 23699.58 11599.76 13697.65 11699.82 17898.87 10899.07 18299.46 194
BH-untuned98.42 17398.36 17198.59 25099.49 18596.70 31099.27 26499.13 30897.24 24398.80 27299.38 27995.75 18499.74 20897.07 28899.16 17099.33 216
AUN-MVS96.88 31596.31 32198.59 25099.48 19297.04 29299.27 26499.22 29597.44 22498.51 30899.41 27091.97 30899.66 24197.71 23983.83 39699.07 241
VDD-MVS97.73 26597.35 28198.88 21699.47 19397.12 28299.34 24198.85 34698.19 13099.67 8299.85 5582.98 38799.92 9799.49 4498.32 22999.60 146
ETV-MVS99.26 7399.21 7099.40 13699.46 19499.30 11499.56 12299.52 10498.52 9499.44 14499.27 30998.41 8799.86 14599.10 8399.59 14199.04 243
Effi-MVS+98.81 14698.59 15999.48 12399.46 19499.12 14098.08 39499.50 13997.50 21799.38 16299.41 27096.37 16299.81 18399.11 8298.54 21799.51 178
jason99.13 9499.03 9299.45 12999.46 19498.87 17699.12 29899.26 28898.03 16099.79 4599.65 18797.02 13999.85 15199.02 9099.90 4499.65 129
jason: jason.
TAMVS99.12 10099.08 8599.24 16699.46 19498.55 20699.51 15599.46 18998.09 14799.45 13999.82 7898.34 9099.51 26498.70 13598.93 19199.67 122
ACMH+97.24 1097.92 23497.78 22798.32 28799.46 19496.68 31399.56 12299.54 8898.41 10397.79 34699.87 4690.18 34099.66 24198.05 20797.18 29498.62 318
MIMVSNet97.73 26597.45 26498.57 25499.45 19997.50 26899.02 32198.98 32596.11 33299.41 15299.14 32490.28 33598.74 36695.74 32998.93 19199.47 189
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 20099.65 5799.50 16299.61 4899.45 599.87 2799.92 1597.31 12699.97 2199.95 899.99 199.97 4
test_fmvs297.25 30597.30 28997.09 34799.43 20193.31 37899.73 4898.87 34498.83 6499.28 18399.80 10684.45 38299.66 24197.88 21797.45 27998.30 355
alignmvs98.81 14698.56 16299.58 9499.43 20199.42 9999.51 15598.96 32898.61 8599.35 17098.92 35094.78 21999.77 19999.35 5698.11 24399.54 164
MGCFI-Net99.01 12198.85 12599.50 12299.42 20399.26 12099.82 1699.48 16098.60 8699.28 18398.81 35597.04 13899.76 20399.29 6697.87 25299.47 189
sasdasda99.02 11798.86 12399.51 11799.42 20399.32 10799.80 2599.48 16098.63 8299.31 17698.81 35597.09 13499.75 20699.27 6997.90 24999.47 189
canonicalmvs99.02 11798.86 12399.51 11799.42 20399.32 10799.80 2599.48 16098.63 8299.31 17698.81 35597.09 13499.75 20699.27 6997.90 24999.47 189
HY-MVS97.30 798.85 14298.64 14799.47 12699.42 20399.08 14599.62 8899.36 24497.39 23099.28 18399.68 17596.44 16099.92 9798.37 17998.22 23399.40 205
CDS-MVSNet99.09 10999.03 9299.25 16499.42 20398.73 19299.45 18999.46 18998.11 14399.46 13899.77 13298.01 10699.37 28498.70 13598.92 19399.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet99.25 7799.14 7699.59 9199.41 20899.16 13199.35 23899.57 6698.82 6599.51 13099.61 20896.46 15899.95 5999.59 2799.98 499.65 129
Fast-Effi-MVS+-dtu98.77 15298.83 12998.60 24999.41 20896.99 29699.52 14799.49 14798.11 14399.24 19499.34 29296.96 14299.79 19297.95 21399.45 15099.02 246
BH-RMVSNet98.41 17598.08 19599.40 13699.41 20898.83 18499.30 24998.77 35497.70 19498.94 25299.65 18792.91 28299.74 20896.52 31399.55 14599.64 136
ACMM97.58 598.37 18098.34 17398.48 26599.41 20897.10 28399.56 12299.45 20098.53 9399.04 23799.85 5593.00 27899.71 22498.74 13097.45 27998.64 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH97.28 898.10 20397.99 20598.44 27599.41 20896.96 30099.60 9599.56 7198.09 14798.15 33099.91 2190.87 33199.70 23098.88 10597.45 27998.67 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D97.32 30296.81 31098.87 22099.40 21397.46 26999.51 15599.53 9995.86 34198.54 30799.77 13282.44 39099.66 24198.68 14097.52 27199.50 181
PAPR98.63 16498.34 17399.51 11799.40 21399.03 15198.80 35599.36 24496.33 31399.00 24499.12 32898.46 8199.84 15895.23 34399.37 16199.66 125
API-MVS99.04 11499.03 9299.06 18599.40 21399.31 11199.55 13499.56 7198.54 9299.33 17499.39 27798.76 5299.78 19796.98 29299.78 10998.07 366
dongtai93.26 35592.93 35994.25 36799.39 21685.68 39597.68 39893.27 40992.87 37996.85 36699.39 27782.33 39197.48 39076.78 40397.80 25599.58 154
FMVSNet398.03 21697.76 23398.84 22799.39 21698.98 15699.40 21899.38 23596.67 28799.07 22999.28 30692.93 27998.98 34897.10 28596.65 30098.56 334
MVSMamba_pp99.36 5799.28 5899.62 8599.38 21899.50 8899.50 16299.49 14798.55 9199.77 5499.82 7897.62 11799.88 13699.39 5299.96 1499.47 189
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21899.37 10399.58 10999.62 4199.41 999.87 2799.92 1598.81 44100.00 199.97 199.93 2799.94 11
GA-MVS97.85 24397.47 26199.00 19399.38 21897.99 24398.57 37499.15 30597.04 26498.90 25799.30 30289.83 34299.38 28196.70 30798.33 22599.62 142
mvs_anonymous99.03 11698.99 10299.16 17499.38 21898.52 21299.51 15599.38 23597.79 18299.38 16299.81 9397.30 12799.45 26899.35 5698.99 18899.51 178
testing397.28 30396.76 31298.82 22999.37 22298.07 23999.45 18999.36 24497.56 20897.89 34198.95 34583.70 38598.82 36296.03 32298.56 21599.58 154
ACMP97.20 1198.06 20897.94 21298.45 27299.37 22297.01 29499.44 19599.49 14797.54 21298.45 31299.79 11891.95 30999.72 21897.91 21597.49 27798.62 318
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MAR-MVS98.86 13598.63 14899.54 10199.37 22299.66 5399.45 18999.54 8896.61 29499.01 24099.40 27397.09 13499.86 14597.68 24399.53 14699.10 231
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testgi97.65 27997.50 25898.13 30399.36 22596.45 32199.42 20699.48 16097.76 18697.87 34299.45 26191.09 32898.81 36394.53 35198.52 21899.13 230
EI-MVSNet98.67 16098.67 14398.68 24599.35 22697.97 24499.50 16299.38 23596.93 27499.20 20599.83 7097.87 10899.36 28898.38 17797.56 26898.71 277
CVMVSNet98.57 16698.67 14398.30 28999.35 22695.59 34099.50 16299.55 7998.60 8699.39 16099.83 7094.48 24099.45 26898.75 12998.56 21599.85 36
BH-w/o98.00 22397.89 21998.32 28799.35 22696.20 33099.01 32698.90 33996.42 31098.38 31599.00 33995.26 20299.72 21896.06 32198.61 20999.03 244
MVSTER98.49 16798.32 17599.00 19399.35 22699.02 15299.54 13899.38 23597.41 22899.20 20599.73 15093.86 26399.36 28898.87 10897.56 26898.62 318
miper_lstm_enhance98.00 22397.91 21498.28 29399.34 23097.43 27098.88 34799.36 24496.48 30598.80 27299.55 22795.98 17298.91 35997.27 27495.50 33198.51 337
Effi-MVS+-dtu98.78 15098.89 11898.47 27099.33 23196.91 30299.57 11699.30 27998.47 9799.41 15298.99 34096.78 14699.74 20898.73 13299.38 15498.74 272
CANet_DTU98.97 12598.87 12099.25 16499.33 23198.42 22499.08 30799.30 27999.16 1999.43 14599.75 13995.27 20099.97 2198.56 16199.95 2199.36 211
ADS-MVSNet298.02 21898.07 19897.87 31899.33 23195.19 35299.23 27899.08 31396.24 32099.10 22499.67 18194.11 25398.93 35896.81 30299.05 18399.48 183
ADS-MVSNet98.20 19298.08 19598.56 25799.33 23196.48 32099.23 27899.15 30596.24 32099.10 22499.67 18194.11 25399.71 22496.81 30299.05 18399.48 183
LPG-MVS_test98.22 18998.13 18898.49 26399.33 23197.05 28999.58 10999.55 7997.46 21999.24 19499.83 7092.58 29499.72 21898.09 19997.51 27298.68 290
LGP-MVS_train98.49 26399.33 23197.05 28999.55 7997.46 21999.24 19499.83 7092.58 29499.72 21898.09 19997.51 27298.68 290
FMVSNet196.84 31696.36 32098.29 29099.32 23797.26 27699.43 19999.48 16095.11 35098.55 30699.32 29983.95 38498.98 34895.81 32796.26 31098.62 318
PVSNet_094.43 1996.09 33195.47 33797.94 31499.31 23894.34 36797.81 39699.70 1597.12 25397.46 35098.75 36089.71 34399.79 19297.69 24281.69 39999.68 119
c3_l98.12 20298.04 20098.38 28299.30 23997.69 26498.81 35499.33 26196.67 28798.83 26899.34 29297.11 13398.99 34797.58 24895.34 33398.48 339
SCA98.19 19398.16 18398.27 29499.30 23995.55 34199.07 30898.97 32697.57 20699.43 14599.57 22192.72 28799.74 20897.58 24899.20 16899.52 172
LCM-MVSNet-Re97.83 24898.15 18596.87 35499.30 23992.25 38499.59 10198.26 37697.43 22596.20 37199.13 32596.27 16598.73 36798.17 19598.99 18899.64 136
MVS-HIRNet95.75 33695.16 34197.51 33699.30 23993.69 37498.88 34795.78 40185.09 39898.78 27592.65 40191.29 32699.37 28494.85 34899.85 7499.46 194
HQP_MVS98.27 18898.22 18198.44 27599.29 24396.97 29899.39 22299.47 18098.97 5199.11 22199.61 20892.71 28999.69 23597.78 22897.63 26198.67 297
plane_prior799.29 24397.03 293
ITE_SJBPF98.08 30499.29 24396.37 32398.92 33398.34 11198.83 26899.75 13991.09 32899.62 25595.82 32697.40 28598.25 359
DeepMVS_CXcopyleft93.34 37199.29 24382.27 40099.22 29585.15 39796.33 37099.05 33390.97 33099.73 21493.57 36397.77 25798.01 370
CLD-MVS98.16 19798.10 19198.33 28599.29 24396.82 30798.75 36099.44 20897.83 17799.13 21799.55 22792.92 28099.67 23898.32 18597.69 25998.48 339
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
plane_prior699.27 24896.98 29792.71 289
PMMVS98.80 14998.62 15399.34 14299.27 24898.70 19498.76 35999.31 27597.34 23399.21 20299.07 33097.20 13099.82 17898.56 16198.87 19699.52 172
eth_miper_zixun_eth98.05 21397.96 20898.33 28599.26 25097.38 27198.56 37699.31 27596.65 28998.88 26099.52 23996.58 15399.12 33197.39 26895.53 33098.47 341
D2MVS98.41 17598.50 16598.15 30299.26 25096.62 31599.40 21899.61 4897.71 19198.98 24699.36 28596.04 17099.67 23898.70 13597.41 28498.15 363
plane_prior199.26 250
XXY-MVS98.38 17998.09 19499.24 16699.26 25099.32 10799.56 12299.55 7997.45 22298.71 28199.83 7093.23 27399.63 25498.88 10596.32 30998.76 267
cl____98.01 22197.84 22298.55 25999.25 25497.97 24498.71 36499.34 25496.47 30798.59 30499.54 23295.65 18899.21 31897.21 27795.77 32298.46 344
DIV-MVS_self_test98.01 22197.85 22198.48 26599.24 25597.95 24898.71 36499.35 25096.50 30198.60 30399.54 23295.72 18699.03 34197.21 27795.77 32298.46 344
ETVMVS97.50 29096.90 30899.29 15799.23 25698.78 19099.32 24498.90 33997.52 21598.56 30598.09 38384.72 38199.69 23597.86 22097.88 25199.39 206
miper_ehance_all_eth98.18 19598.10 19198.41 27899.23 25697.72 26098.72 36399.31 27596.60 29698.88 26099.29 30497.29 12899.13 32797.60 24695.99 31698.38 352
NP-MVS99.23 25696.92 30199.40 273
LTVRE_ROB97.16 1298.02 21897.90 21598.40 28099.23 25696.80 30899.70 5399.60 5497.12 25398.18 32999.70 15991.73 31599.72 21898.39 17697.45 27998.68 290
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UGNet98.87 13298.69 14199.40 13699.22 26098.72 19399.44 19599.68 2099.24 1799.18 21299.42 26692.74 28699.96 3099.34 6099.94 2699.53 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VPNet97.84 24697.44 26999.01 19199.21 26198.94 16999.48 17999.57 6698.38 10599.28 18399.73 15088.89 35099.39 28099.19 7593.27 36798.71 277
IB-MVS95.67 1896.22 32695.44 33998.57 25499.21 26196.70 31098.65 36997.74 38896.71 28497.27 35698.54 36686.03 37199.92 9798.47 17186.30 39399.10 231
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing1197.50 29097.10 30198.71 24299.20 26396.91 30299.29 25498.82 34997.89 16998.21 32798.40 37085.63 37499.83 17198.45 17398.04 24599.37 210
tfpnnormal97.84 24697.47 26198.98 19599.20 26399.22 12599.64 7999.61 4896.32 31498.27 32399.70 15993.35 27299.44 27395.69 33195.40 33298.27 357
QAPM98.67 16098.30 17799.80 4699.20 26399.67 5199.77 3499.72 1194.74 36098.73 27999.90 2895.78 18399.98 1396.96 29499.88 5699.76 87
HQP-NCC99.19 26698.98 33298.24 12298.66 290
ACMP_Plane99.19 26698.98 33298.24 12298.66 290
HQP-MVS98.02 21897.90 21598.37 28399.19 26696.83 30598.98 33299.39 22798.24 12298.66 29099.40 27392.47 29899.64 24997.19 28197.58 26698.64 309
testing9197.44 29797.02 30498.71 24299.18 26996.89 30499.19 28599.04 31997.78 18498.31 31998.29 37585.41 37699.85 15198.01 20997.95 24799.39 206
testing9997.36 30096.94 30798.63 24799.18 26996.70 31099.30 24998.93 33097.71 19198.23 32498.26 37684.92 37999.84 15898.04 20897.85 25499.35 212
Patchmatch-test97.93 23197.65 24398.77 23799.18 26997.07 28799.03 31899.14 30796.16 32798.74 27899.57 22194.56 23599.72 21893.36 36599.11 17699.52 172
FIs98.78 15098.63 14899.23 16899.18 26999.54 8099.83 1599.59 5898.28 11698.79 27499.81 9396.75 14899.37 28499.08 8596.38 30798.78 262
baseline297.87 24097.55 25198.82 22999.18 26998.02 24199.41 21096.58 40096.97 26896.51 36899.17 32093.43 27099.57 25997.71 23999.03 18598.86 257
CR-MVSNet98.17 19697.93 21398.87 22099.18 26998.49 21699.22 28299.33 26196.96 26999.56 11999.38 27994.33 24599.00 34694.83 34998.58 21299.14 228
RPMNet96.72 31895.90 33099.19 17199.18 26998.49 21699.22 28299.52 10488.72 39599.56 11997.38 38994.08 25599.95 5986.87 39798.58 21299.14 228
LS3D99.27 7199.12 7899.74 6199.18 26999.75 3999.56 12299.57 6698.45 9999.49 13499.85 5597.77 11299.94 6998.33 18399.84 8299.52 172
tpm cat197.39 29997.36 27997.50 33799.17 27793.73 37299.43 19999.31 27591.27 38598.71 28199.08 32994.31 24799.77 19996.41 31798.50 21999.00 247
3Dnovator+97.12 1399.18 8498.97 10699.82 4199.17 27799.68 4899.81 2099.51 11999.20 1898.72 28099.89 3295.68 18799.97 2198.86 11399.86 6799.81 61
testing22297.16 30896.50 31699.16 17499.16 27998.47 22099.27 26498.66 36797.71 19198.23 32498.15 37882.28 39299.84 15897.36 27097.66 26099.18 227
VPA-MVSNet98.29 18697.95 21099.30 15499.16 27999.54 8099.50 16299.58 6298.27 11899.35 17099.37 28292.53 29699.65 24699.35 5694.46 34998.72 275
tpmrst98.33 18298.48 16697.90 31799.16 27994.78 35899.31 24799.11 30997.27 23999.45 13999.59 21395.33 19899.84 15898.48 16898.61 20999.09 235
PatchmatchNetpermissive98.31 18398.36 17198.19 29799.16 27995.32 34999.27 26498.92 33397.37 23199.37 16499.58 21794.90 21299.70 23097.43 26699.21 16799.54 164
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm297.44 29797.34 28497.74 32899.15 28394.36 36699.45 18998.94 32993.45 37598.90 25799.44 26291.35 32599.59 25897.31 27298.07 24499.29 219
CostFormer97.72 26797.73 23697.71 32999.15 28394.02 36999.54 13899.02 32194.67 36199.04 23799.35 28892.35 30499.77 19998.50 16797.94 24899.34 215
TransMVSNet (Re)97.15 30996.58 31498.86 22399.12 28598.85 18099.49 17498.91 33795.48 34597.16 36099.80 10693.38 27199.11 33294.16 35891.73 37798.62 318
3Dnovator97.25 999.24 7899.05 8899.81 4499.12 28599.66 5399.84 1299.74 1099.09 3298.92 25499.90 2895.94 17699.98 1398.95 9699.92 2999.79 74
XVG-ACMP-BASELINE97.83 24897.71 23898.20 29699.11 28796.33 32599.41 21099.52 10498.06 15699.05 23699.50 24589.64 34599.73 21497.73 23697.38 28798.53 335
FMVSNet596.43 32496.19 32397.15 34399.11 28795.89 33599.32 24499.52 10494.47 36598.34 31899.07 33087.54 36797.07 39392.61 37595.72 32598.47 341
MDTV_nov1_ep1398.32 17599.11 28794.44 36499.27 26498.74 35897.51 21699.40 15799.62 20494.78 21999.76 20397.59 24798.81 203
dmvs_testset95.02 34296.12 32491.72 37799.10 29080.43 40599.58 10997.87 38597.47 21895.22 37898.82 35493.99 25795.18 40288.09 39294.91 34499.56 160
Patchmtry97.75 26297.40 27698.81 23299.10 29098.87 17699.11 30499.33 26194.83 35898.81 27099.38 27994.33 24599.02 34396.10 32095.57 32898.53 335
dp97.75 26297.80 22397.59 33499.10 29093.71 37399.32 24498.88 34296.48 30599.08 22899.55 22792.67 29299.82 17896.52 31398.58 21299.24 224
UWE-MVS97.58 28497.29 29198.48 26599.09 29396.25 32899.01 32696.61 39997.86 17199.19 20899.01 33888.72 35199.90 11997.38 26998.69 20799.28 220
cl2297.85 24397.64 24698.48 26599.09 29397.87 25298.60 37399.33 26197.11 25698.87 26399.22 31592.38 30399.17 32298.21 19095.99 31698.42 347
Baseline_NR-MVSNet97.76 25897.45 26498.68 24599.09 29398.29 22799.41 21098.85 34695.65 34398.63 29899.67 18194.82 21599.10 33498.07 20692.89 37198.64 309
FC-MVSNet-test98.75 15398.62 15399.15 17899.08 29699.45 9699.86 1199.60 5498.23 12598.70 28799.82 7896.80 14599.22 31399.07 8696.38 30798.79 261
mvsmamba98.92 12898.87 12099.08 18199.07 29799.16 13199.88 399.51 11998.15 13599.40 15799.89 3297.12 13299.33 29499.38 5397.40 28598.73 274
USDC97.34 30197.20 29697.75 32799.07 29795.20 35198.51 37899.04 31997.99 16298.31 31999.86 5089.02 34899.55 26295.67 33397.36 28898.49 338
TinyColmap97.12 31096.89 30997.83 32299.07 29795.52 34498.57 37498.74 35897.58 20597.81 34599.79 11888.16 36199.56 26095.10 34497.21 29298.39 351
pm-mvs197.68 27497.28 29298.88 21699.06 30098.62 20199.50 16299.45 20096.32 31497.87 34299.79 11892.47 29899.35 29197.54 25593.54 36498.67 297
TR-MVS97.76 25897.41 27598.82 22999.06 30097.87 25298.87 34998.56 37096.63 29398.68 28999.22 31592.49 29799.65 24695.40 33997.79 25698.95 255
PAPM97.59 28397.09 30299.07 18399.06 30098.26 22998.30 38899.10 31094.88 35698.08 33299.34 29296.27 16599.64 24989.87 38598.92 19399.31 218
nrg03098.64 16398.42 16899.28 16199.05 30399.69 4799.81 2099.46 18998.04 15899.01 24099.82 7896.69 15099.38 28199.34 6094.59 34898.78 262
tpmvs97.98 22598.02 20397.84 32199.04 30494.73 35999.31 24799.20 29996.10 33698.76 27799.42 26694.94 20899.81 18396.97 29398.45 22198.97 251
OpenMVScopyleft96.50 1698.47 16998.12 18999.52 11599.04 30499.53 8399.82 1699.72 1194.56 36398.08 33299.88 3894.73 22599.98 1397.47 26299.76 11599.06 242
WR-MVS_H98.13 20097.87 22098.90 21199.02 30698.84 18199.70 5399.59 5897.27 23998.40 31499.19 31995.53 19199.23 31098.34 18293.78 36298.61 327
tpm97.67 27797.55 25198.03 30699.02 30695.01 35599.43 19998.54 37296.44 30899.12 21999.34 29291.83 31299.60 25797.75 23496.46 30599.48 183
Syy-MVS97.09 31297.14 29896.95 35199.00 30892.73 38299.29 25499.39 22797.06 26197.41 35198.15 37893.92 26198.68 36891.71 37898.34 22399.45 197
myMVS_eth3d96.89 31496.37 31998.43 27799.00 30897.16 28099.29 25499.39 22797.06 26197.41 35198.15 37883.46 38698.68 36895.27 34298.34 22399.45 197
UniMVSNet (Re)98.29 18698.00 20499.13 17999.00 30899.36 10599.49 17499.51 11997.95 16498.97 24899.13 32596.30 16499.38 28198.36 18193.34 36598.66 305
v1097.85 24397.52 25598.86 22398.99 31198.67 19699.75 4199.41 21895.70 34298.98 24699.41 27094.75 22499.23 31096.01 32494.63 34798.67 297
PS-CasMVS97.93 23197.59 25098.95 20098.99 31199.06 14899.68 6299.52 10497.13 25198.31 31999.68 17592.44 30299.05 33898.51 16694.08 35798.75 269
PatchT97.03 31396.44 31898.79 23598.99 31198.34 22699.16 28999.07 31692.13 38299.52 12897.31 39294.54 23898.98 34888.54 39098.73 20699.03 244
V4298.06 20897.79 22498.86 22398.98 31498.84 18199.69 5699.34 25496.53 30099.30 17999.37 28294.67 23099.32 29797.57 25294.66 34698.42 347
LF4IMVS97.52 28797.46 26397.70 33098.98 31495.55 34199.29 25498.82 34998.07 15298.66 29099.64 19389.97 34199.61 25697.01 28996.68 29997.94 376
CP-MVSNet98.09 20497.78 22799.01 19198.97 31699.24 12399.67 6599.46 18997.25 24198.48 31199.64 19393.79 26599.06 33798.63 14594.10 35698.74 272
miper_enhance_ethall98.16 19798.08 19598.41 27898.96 31797.72 26098.45 38099.32 27196.95 27198.97 24899.17 32097.06 13799.22 31397.86 22095.99 31698.29 356
v897.95 23097.63 24798.93 20398.95 31898.81 18799.80 2599.41 21896.03 33799.10 22499.42 26694.92 21199.30 30096.94 29694.08 35798.66 305
TESTMET0.1,197.55 28597.27 29598.40 28098.93 31996.53 31898.67 36697.61 38996.96 26998.64 29799.28 30688.63 35699.45 26897.30 27399.38 15499.21 226
UniMVSNet_NR-MVSNet98.22 18997.97 20798.96 19898.92 32098.98 15699.48 17999.53 9997.76 18698.71 28199.46 26096.43 16199.22 31398.57 15892.87 37298.69 285
v2v48298.06 20897.77 22998.92 20598.90 32198.82 18599.57 11699.36 24496.65 28999.19 20899.35 28894.20 24999.25 30797.72 23894.97 34198.69 285
131498.68 15998.54 16399.11 18098.89 32298.65 19899.27 26499.49 14796.89 27597.99 33799.56 22497.72 11499.83 17197.74 23599.27 16598.84 259
OPM-MVS98.19 19398.10 19198.45 27298.88 32397.07 28799.28 25999.38 23598.57 8899.22 19999.81 9392.12 30599.66 24198.08 20397.54 27098.61 327
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v119297.81 25397.44 26998.91 20998.88 32398.68 19599.51 15599.34 25496.18 32599.20 20599.34 29294.03 25699.36 28895.32 34195.18 33698.69 285
EPMVS97.82 25197.65 24398.35 28498.88 32395.98 33399.49 17494.71 40697.57 20699.26 19299.48 25392.46 30199.71 22497.87 21999.08 18199.35 212
v114497.98 22597.69 23998.85 22698.87 32698.66 19799.54 13899.35 25096.27 31899.23 19899.35 28894.67 23099.23 31096.73 30595.16 33798.68 290
DU-MVS98.08 20697.79 22498.96 19898.87 32698.98 15699.41 21099.45 20097.87 17098.71 28199.50 24594.82 21599.22 31398.57 15892.87 37298.68 290
NR-MVSNet97.97 22897.61 24899.02 19098.87 32699.26 12099.47 18599.42 21697.63 20197.08 36299.50 24595.07 20799.13 32797.86 22093.59 36398.68 290
WR-MVS98.06 20897.73 23699.06 18598.86 32999.25 12299.19 28599.35 25097.30 23798.66 29099.43 26493.94 25999.21 31898.58 15594.28 35398.71 277
v124097.69 27297.32 28798.79 23598.85 33098.43 22299.48 17999.36 24496.11 33299.27 18899.36 28593.76 26799.24 30994.46 35295.23 33598.70 281
test_040296.64 31996.24 32297.85 31998.85 33096.43 32299.44 19599.26 28893.52 37296.98 36499.52 23988.52 35799.20 32092.58 37697.50 27497.93 377
v14419297.92 23497.60 24998.87 22098.83 33298.65 19899.55 13499.34 25496.20 32399.32 17599.40 27394.36 24499.26 30696.37 31895.03 34098.70 281
v192192097.80 25597.45 26498.84 22798.80 33398.53 20899.52 14799.34 25496.15 32999.24 19499.47 25693.98 25899.29 30195.40 33995.13 33898.69 285
gg-mvs-nofinetune96.17 32995.32 34098.73 23998.79 33498.14 23599.38 22794.09 40791.07 38898.07 33591.04 40589.62 34699.35 29196.75 30499.09 18098.68 290
test-LLR98.06 20897.90 21598.55 25998.79 33497.10 28398.67 36697.75 38697.34 23398.61 30198.85 35294.45 24299.45 26897.25 27599.38 15499.10 231
test-mter97.49 29597.13 30098.55 25998.79 33497.10 28398.67 36697.75 38696.65 28998.61 30198.85 35288.23 36099.45 26897.25 27599.38 15499.10 231
kuosan90.92 36390.11 36893.34 37198.78 33785.59 39698.15 39393.16 41189.37 39292.07 39398.38 37181.48 39495.19 40162.54 41097.04 29699.25 223
WB-MVSnew97.65 27997.65 24397.63 33198.78 33797.62 26599.13 29598.33 37597.36 23299.07 22998.94 34695.64 18999.15 32392.95 37098.68 20896.12 397
PS-MVSNAJss98.92 12898.92 11298.90 21198.78 33798.53 20899.78 3299.54 8898.07 15299.00 24499.76 13699.01 1899.37 28499.13 8097.23 29198.81 260
MVS97.28 30396.55 31599.48 12398.78 33798.95 16699.27 26499.39 22783.53 39998.08 33299.54 23296.97 14199.87 14294.23 35699.16 17099.63 140
TranMVSNet+NR-MVSNet97.93 23197.66 24298.76 23898.78 33798.62 20199.65 7699.49 14797.76 18698.49 31099.60 21194.23 24898.97 35598.00 21092.90 37098.70 281
PEN-MVS97.76 25897.44 26998.72 24098.77 34298.54 20799.78 3299.51 11997.06 26198.29 32299.64 19392.63 29398.89 36198.09 19993.16 36898.72 275
v7n97.87 24097.52 25598.92 20598.76 34398.58 20499.84 1299.46 18996.20 32398.91 25599.70 15994.89 21399.44 27396.03 32293.89 36098.75 269
v14897.79 25697.55 25198.50 26298.74 34497.72 26099.54 13899.33 26196.26 31998.90 25799.51 24294.68 22999.14 32497.83 22493.15 36998.63 316
JIA-IIPM97.50 29097.02 30498.93 20398.73 34597.80 25699.30 24998.97 32691.73 38498.91 25594.86 39995.10 20699.71 22497.58 24897.98 24699.28 220
Gipumacopyleft90.99 36290.15 36793.51 37098.73 34590.12 39093.98 40399.45 20079.32 40192.28 39294.91 39869.61 39997.98 38287.42 39495.67 32692.45 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet97.98 22598.03 20197.81 32598.72 34796.65 31499.66 7099.66 2898.09 14798.35 31799.82 7895.25 20398.01 38197.41 26795.30 33498.78 262
K. test v397.10 31196.79 31198.01 30998.72 34796.33 32599.87 897.05 39397.59 20396.16 37299.80 10688.71 35299.04 33996.69 30896.55 30498.65 307
OurMVSNet-221017-097.88 23897.77 22998.19 29798.71 34996.53 31899.88 399.00 32397.79 18298.78 27599.94 691.68 31699.35 29197.21 27796.99 29898.69 285
test_djsdf98.67 16098.57 16098.98 19598.70 35098.91 17399.88 399.46 18997.55 20999.22 19999.88 3895.73 18599.28 30299.03 8897.62 26398.75 269
pmmvs696.53 32196.09 32697.82 32498.69 35195.47 34599.37 22999.47 18093.46 37497.41 35199.78 12487.06 36999.33 29496.92 29992.70 37498.65 307
lessismore_v097.79 32698.69 35195.44 34794.75 40595.71 37699.87 4688.69 35399.32 29795.89 32594.93 34398.62 318
mvs_tets98.40 17898.23 18098.91 20998.67 35398.51 21499.66 7099.53 9998.19 13098.65 29699.81 9392.75 28499.44 27399.31 6397.48 27898.77 265
SixPastTwentyTwo97.50 29097.33 28698.03 30698.65 35496.23 32999.77 3498.68 36697.14 25097.90 34099.93 1090.45 33499.18 32197.00 29096.43 30698.67 297
UnsupCasMVSNet_eth96.44 32396.12 32497.40 33998.65 35495.65 33899.36 23399.51 11997.13 25196.04 37498.99 34088.40 35898.17 37796.71 30690.27 38598.40 350
DTE-MVSNet97.51 28997.19 29798.46 27198.63 35698.13 23699.84 1299.48 16096.68 28697.97 33999.67 18192.92 28098.56 37096.88 30192.60 37598.70 281
our_test_397.65 27997.68 24097.55 33598.62 35794.97 35698.84 35199.30 27996.83 28098.19 32899.34 29297.01 14099.02 34395.00 34796.01 31498.64 309
ppachtmachnet_test97.49 29597.45 26497.61 33398.62 35795.24 35098.80 35599.46 18996.11 33298.22 32699.62 20496.45 15998.97 35593.77 36095.97 31998.61 327
pmmvs498.13 20097.90 21598.81 23298.61 35998.87 17698.99 32999.21 29896.44 30899.06 23499.58 21795.90 17999.11 33297.18 28396.11 31398.46 344
jajsoiax98.43 17298.28 17898.88 21698.60 36098.43 22299.82 1699.53 9998.19 13098.63 29899.80 10693.22 27599.44 27399.22 7397.50 27498.77 265
cascas97.69 27297.43 27398.48 26598.60 36097.30 27298.18 39299.39 22792.96 37898.41 31398.78 35993.77 26699.27 30598.16 19698.61 20998.86 257
pmmvs597.52 28797.30 28998.16 29998.57 36296.73 30999.27 26498.90 33996.14 33098.37 31699.53 23691.54 32299.14 32497.51 25795.87 32098.63 316
GG-mvs-BLEND98.45 27298.55 36398.16 23399.43 19993.68 40897.23 35798.46 36789.30 34799.22 31395.43 33898.22 23397.98 374
gm-plane-assit98.54 36492.96 38094.65 36299.15 32399.64 24997.56 253
anonymousdsp98.44 17198.28 17898.94 20198.50 36598.96 16399.77 3499.50 13997.07 25998.87 26399.77 13294.76 22399.28 30298.66 14297.60 26498.57 333
N_pmnet94.95 34595.83 33292.31 37598.47 36679.33 40799.12 29892.81 41393.87 36897.68 34799.13 32593.87 26299.01 34591.38 38096.19 31198.59 331
MS-PatchMatch97.24 30797.32 28796.99 34898.45 36793.51 37798.82 35399.32 27197.41 22898.13 33199.30 30288.99 34999.56 26095.68 33299.80 10297.90 379
test_fmvsmconf0.01_n99.22 8099.03 9299.79 4998.42 36899.48 9199.55 13499.51 11999.39 1099.78 5099.93 1094.80 21799.95 5999.93 1199.95 2199.94 11
test0.0.03 197.71 27097.42 27498.56 25798.41 36997.82 25598.78 35798.63 36897.34 23398.05 33698.98 34294.45 24298.98 34895.04 34697.15 29598.89 256
EPNet_dtu98.03 21697.96 20898.23 29598.27 37095.54 34399.23 27898.75 35599.02 3897.82 34499.71 15596.11 16899.48 26593.04 36999.65 13599.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDA-MVSNet-bldmvs94.96 34493.98 35197.92 31598.24 37197.27 27499.15 29299.33 26193.80 36980.09 40699.03 33588.31 35997.86 38593.49 36494.36 35298.62 318
MDA-MVSNet_test_wron95.45 33894.60 34598.01 30998.16 37297.21 27999.11 30499.24 29293.49 37380.73 40598.98 34293.02 27798.18 37694.22 35794.45 35098.64 309
new_pmnet96.38 32596.03 32797.41 33898.13 37395.16 35499.05 31399.20 29993.94 36797.39 35498.79 35891.61 32199.04 33990.43 38395.77 32298.05 368
EGC-MVSNET82.80 37077.86 37697.62 33297.91 37496.12 33199.33 24399.28 2858.40 41325.05 41499.27 30984.11 38399.33 29489.20 38798.22 23397.42 387
YYNet195.36 34094.51 34797.92 31597.89 37597.10 28399.10 30699.23 29393.26 37680.77 40499.04 33492.81 28398.02 38094.30 35394.18 35598.64 309
DSMNet-mixed97.25 30597.35 28196.95 35197.84 37693.61 37699.57 11696.63 39896.13 33198.87 26398.61 36594.59 23397.70 38895.08 34598.86 19799.55 162
testf190.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
APD_test290.42 36490.68 36589.65 38497.78 37773.97 41299.13 29598.81 35189.62 39091.80 39598.93 34762.23 40498.80 36486.61 39891.17 37996.19 395
EG-PatchMatch MVS95.97 33295.69 33496.81 35597.78 37792.79 38199.16 28998.93 33096.16 32794.08 38599.22 31582.72 38899.47 26695.67 33397.50 27498.17 362
Anonymous2024052196.20 32895.89 33197.13 34597.72 38094.96 35799.79 3199.29 28393.01 37797.20 35999.03 33589.69 34498.36 37491.16 38196.13 31298.07 366
MVP-Stereo97.81 25397.75 23497.99 31297.53 38196.60 31798.96 33698.85 34697.22 24597.23 35799.36 28595.28 19999.46 26795.51 33599.78 10997.92 378
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test20.0396.12 33095.96 32996.63 35797.44 38295.45 34699.51 15599.38 23596.55 29996.16 37299.25 31293.76 26796.17 39887.35 39594.22 35498.27 357
UnsupCasMVSNet_bld93.53 35492.51 36096.58 35997.38 38393.82 37098.24 38999.48 16091.10 38793.10 38996.66 39474.89 39898.37 37394.03 35987.71 39197.56 385
MIMVSNet195.51 33795.04 34296.92 35397.38 38395.60 33999.52 14799.50 13993.65 37196.97 36599.17 32085.28 37896.56 39788.36 39195.55 32998.60 330
OpenMVS_ROBcopyleft92.34 2094.38 35093.70 35696.41 36097.38 38393.17 37999.06 31198.75 35586.58 39694.84 38398.26 37681.53 39399.32 29789.01 38897.87 25296.76 390
Anonymous2023120696.22 32696.03 32796.79 35697.31 38694.14 36899.63 8399.08 31396.17 32697.04 36399.06 33293.94 25997.76 38786.96 39695.06 33998.47 341
CMPMVSbinary69.68 2394.13 35194.90 34391.84 37697.24 38780.01 40698.52 37799.48 16089.01 39391.99 39499.67 18185.67 37399.13 32795.44 33797.03 29796.39 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EPNet98.86 13598.71 13999.30 15497.20 38898.18 23299.62 8898.91 33799.28 1698.63 29899.81 9395.96 17399.99 499.24 7299.72 12399.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160094.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
miper_refine_blended94.62 34693.72 35497.31 34097.19 38995.82 33698.34 38499.20 29995.00 35497.57 34898.35 37287.95 36398.10 37892.87 37277.00 40398.01 370
KD-MVS_self_test95.00 34394.34 34896.96 35097.07 39195.39 34899.56 12299.44 20895.11 35097.13 36197.32 39191.86 31197.27 39290.35 38481.23 40098.23 361
test_fmvs392.10 35991.77 36293.08 37396.19 39286.25 39399.82 1698.62 36996.65 28995.19 38096.90 39355.05 40895.93 40096.63 31290.92 38397.06 389
CL-MVSNet_self_test94.49 34893.97 35296.08 36296.16 39393.67 37598.33 38699.38 23595.13 34897.33 35598.15 37892.69 29196.57 39688.67 38979.87 40197.99 373
test_method91.10 36191.36 36390.31 38195.85 39473.72 41494.89 40299.25 29068.39 40595.82 37599.02 33780.50 39598.95 35793.64 36294.89 34598.25 359
mvsany_test393.77 35393.45 35794.74 36695.78 39588.01 39299.64 7998.25 37798.28 11694.31 38497.97 38568.89 40098.51 37297.50 25890.37 38497.71 380
Patchmatch-RL test95.84 33495.81 33395.95 36395.61 39690.57 38998.24 38998.39 37495.10 35295.20 37998.67 36294.78 21997.77 38696.28 31990.02 38699.51 178
PM-MVS92.96 35792.23 36195.14 36595.61 39689.98 39199.37 22998.21 37994.80 35995.04 38297.69 38665.06 40197.90 38494.30 35389.98 38797.54 386
pmmvs-eth3d95.34 34194.73 34497.15 34395.53 39895.94 33499.35 23899.10 31095.13 34893.55 38797.54 38788.15 36297.91 38394.58 35089.69 38897.61 383
test_f91.90 36091.26 36493.84 36995.52 39985.92 39499.69 5698.53 37395.31 34793.87 38696.37 39655.33 40798.27 37595.70 33090.98 38297.32 388
WB-MVS93.10 35694.10 34990.12 38295.51 40081.88 40299.73 4899.27 28795.05 35393.09 39098.91 35194.70 22891.89 40676.62 40494.02 35996.58 392
new-patchmatchnet94.48 34994.08 35095.67 36495.08 40192.41 38399.18 28799.28 28594.55 36493.49 38897.37 39087.86 36597.01 39491.57 37988.36 38997.61 383
SSC-MVS92.73 35893.73 35389.72 38395.02 40281.38 40399.76 3799.23 29394.87 35792.80 39198.93 34794.71 22791.37 40774.49 40693.80 36196.42 393
pmmvs394.09 35293.25 35896.60 35894.76 40394.49 36398.92 34398.18 38189.66 38996.48 36998.06 38486.28 37097.33 39189.68 38687.20 39297.97 375
test_vis3_rt87.04 36685.81 36990.73 38093.99 40481.96 40199.76 3790.23 41592.81 38081.35 40391.56 40340.06 41299.07 33694.27 35588.23 39091.15 403
ambc93.06 37492.68 40582.36 39998.47 37998.73 36395.09 38197.41 38855.55 40699.10 33496.42 31691.32 37897.71 380
EMVS80.02 37379.22 37582.43 39191.19 40676.40 40997.55 40092.49 41466.36 40883.01 40291.27 40464.63 40285.79 41065.82 40960.65 40785.08 406
E-PMN80.61 37279.88 37482.81 38990.75 40776.38 41097.69 39795.76 40266.44 40783.52 40092.25 40262.54 40387.16 40968.53 40861.40 40684.89 407
PMMVS286.87 36785.37 37191.35 37990.21 40883.80 39898.89 34697.45 39283.13 40091.67 39795.03 39748.49 41094.70 40385.86 40077.62 40295.54 398
TDRefinement95.42 33994.57 34697.97 31389.83 40996.11 33299.48 17998.75 35596.74 28296.68 36799.88 3888.65 35599.71 22498.37 17982.74 39898.09 365
LCM-MVSNet86.80 36885.22 37291.53 37887.81 41080.96 40498.23 39198.99 32471.05 40390.13 39896.51 39548.45 41196.88 39590.51 38285.30 39496.76 390
FPMVS84.93 36985.65 37082.75 39086.77 41163.39 41698.35 38398.92 33374.11 40283.39 40198.98 34250.85 40992.40 40584.54 40194.97 34192.46 400
wuyk23d40.18 37741.29 38236.84 39386.18 41249.12 41879.73 40622.81 41827.64 41025.46 41328.45 41321.98 41648.89 41255.80 41123.56 41212.51 410
MVEpermissive76.82 2176.91 37574.31 37984.70 38785.38 41376.05 41196.88 40193.17 41067.39 40671.28 40889.01 40721.66 41887.69 40871.74 40772.29 40590.35 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high77.30 37474.86 37884.62 38875.88 41477.61 40897.63 39993.15 41288.81 39464.27 40989.29 40636.51 41383.93 41175.89 40552.31 40892.33 402
PMVScopyleft70.75 2275.98 37674.97 37779.01 39270.98 41555.18 41793.37 40498.21 37965.08 40961.78 41093.83 40021.74 41792.53 40478.59 40291.12 38189.34 405
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt82.80 37081.52 37386.66 38666.61 41668.44 41592.79 40597.92 38368.96 40480.04 40799.85 5585.77 37296.15 39997.86 22043.89 40995.39 399
test12339.01 37942.50 38128.53 39439.17 41720.91 41998.75 36019.17 41919.83 41238.57 41166.67 40933.16 41415.42 41337.50 41329.66 41149.26 408
testmvs39.17 37843.78 38025.37 39536.04 41816.84 42098.36 38226.56 41720.06 41138.51 41267.32 40829.64 41515.30 41437.59 41239.90 41043.98 409
test_blank0.13 3830.17 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4151.57 4140.00 4190.00 4150.00 4140.00 4130.00 411
eth-test20.00 419
eth-test0.00 419
uanet_test0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k24.64 38032.85 3830.00 3960.00 4190.00 4210.00 40799.51 1190.00 4140.00 41599.56 22496.58 1530.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.27 38211.03 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 41599.01 180.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.30 38111.06 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.58 2170.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.02 3840.03 3870.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.27 4150.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS97.16 28095.47 336
PC_three_145298.18 13399.84 3299.70 15999.31 398.52 37198.30 18799.80 10299.81 61
test_241102_TWO99.48 16099.08 3399.88 2299.81 9398.94 2999.96 3098.91 10299.84 8299.88 26
test_0728_THIRD98.99 4599.81 4099.80 10699.09 1499.96 3098.85 11599.90 4499.88 26
GSMVS99.52 172
sam_mvs194.86 21499.52 172
sam_mvs94.72 226
MTGPAbinary99.47 180
test_post199.23 27865.14 41194.18 25299.71 22497.58 248
test_post65.99 41094.65 23299.73 214
patchmatchnet-post98.70 36194.79 21899.74 208
MTMP99.54 13898.88 342
test9_res97.49 25999.72 12399.75 88
agg_prior297.21 27799.73 12299.75 88
test_prior499.56 7698.99 329
test_prior298.96 33698.34 11199.01 24099.52 23998.68 6497.96 21299.74 120
旧先验298.96 33696.70 28599.47 13699.94 6998.19 192
新几何299.01 326
无先验98.99 32999.51 11996.89 27599.93 8697.53 25699.72 103
原ACMM298.95 339
testdata299.95 5996.67 309
segment_acmp98.96 24
testdata198.85 35098.32 114
plane_prior599.47 18099.69 23597.78 22897.63 26198.67 297
plane_prior499.61 208
plane_prior397.00 29598.69 7999.11 221
plane_prior299.39 22298.97 51
plane_prior96.97 29899.21 28498.45 9997.60 264
n20.00 420
nn0.00 420
door-mid98.05 382
test1199.35 250
door97.92 383
HQP5-MVS96.83 305
BP-MVS97.19 281
HQP4-MVS98.66 29099.64 24998.64 309
HQP3-MVS99.39 22797.58 266
HQP2-MVS92.47 298
MDTV_nov1_ep13_2view95.18 35399.35 23896.84 27899.58 11595.19 20597.82 22599.46 194
ACMMP++_ref97.19 293
ACMMP++97.43 283
Test By Simon98.75 55