This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
patch_mono-293.74 4794.32 2692.01 13497.54 5778.37 25993.40 21997.19 3588.02 10394.99 3597.21 4288.35 2198.44 12494.07 3298.09 6499.23 1
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6799.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 6996.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
MM95.10 1194.91 1395.68 596.09 10188.34 996.68 3394.37 23695.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
IU-MVS98.77 586.00 5096.84 6581.26 27097.26 795.50 2399.13 399.03 8
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
DVP-MVS++95.98 196.36 194.82 3197.78 5186.00 5098.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
PC_three_145282.47 23797.09 1097.07 5192.72 198.04 16392.70 5599.02 1298.86 11
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1895.56 9697.51 589.13 6597.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6598.99 1498.84 14
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4297.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
dcpmvs_293.49 5294.19 3691.38 16897.69 5476.78 29194.25 17496.29 10788.33 9094.46 3896.88 5888.07 2598.64 10093.62 3898.09 6498.73 17
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1595.00 12697.12 4187.13 12492.51 8596.30 8389.24 1799.34 3493.46 3998.62 4598.73 17
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4897.28 3185.90 15797.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10796.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1795.66 8996.93 5692.34 493.94 4896.58 7687.74 2799.44 2992.83 5098.40 5398.62 21
MVS_030494.60 1894.38 2595.23 1195.41 13287.49 1696.53 3892.75 27993.82 293.07 6797.84 2283.66 7499.59 897.61 298.76 2898.61 22
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8697.34 2388.28 9395.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
3Dnovator+87.14 492.42 7891.37 8695.55 795.63 12388.73 697.07 1896.77 7490.84 1684.02 26796.62 7475.95 16599.34 3487.77 13397.68 7998.59 24
region2R94.43 2494.27 3294.92 2098.65 886.67 3096.92 2497.23 3488.60 8493.58 5597.27 3885.22 5499.54 2092.21 6698.74 3198.56 25
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 2096.85 2897.32 2788.24 9493.15 6397.04 5286.17 4499.62 292.40 5998.81 2298.52 26
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2896.94 2097.32 2788.63 8293.53 5897.26 4085.04 5899.54 2092.35 6298.78 2598.50 27
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11696.52 8780.00 22194.00 19597.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3398.50 27
casdiffmvs_mvgpermissive92.96 7092.83 6893.35 7294.59 17483.40 11895.00 12696.34 10490.30 3092.05 9496.05 9583.43 7598.15 14792.07 7295.67 11498.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11395.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
SR-MVS94.23 3194.17 3794.43 4798.21 3285.78 6396.40 4196.90 5988.20 9894.33 4097.40 3384.75 6499.03 5893.35 4397.99 6898.48 30
TSAR-MVS + MP.94.85 1494.94 1294.58 4298.25 2986.33 4296.11 6196.62 8888.14 10096.10 2096.96 5589.09 1898.94 7894.48 2898.68 3898.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2194.36 17196.97 5091.07 1393.14 6497.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
XVS94.45 2294.32 2694.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7197.16 4785.02 5999.49 2691.99 7698.56 4998.47 33
X-MVStestdata88.31 17786.13 22394.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7123.41 40585.02 5999.49 2691.99 7698.56 4998.47 33
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MP-MVScopyleft94.25 2994.07 3994.77 3598.47 1886.31 4496.71 3196.98 4989.04 6891.98 9697.19 4485.43 5299.56 1292.06 7598.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS93.99 4193.78 4794.63 4098.50 1685.90 6096.87 2696.91 5888.70 8091.83 10597.17 4683.96 7199.55 1691.44 8898.64 4498.43 38
test111189.10 15088.64 14590.48 20795.53 12974.97 31396.08 6284.89 38188.13 10190.16 12996.65 7063.29 31298.10 15086.14 15396.90 9398.39 39
CANet93.54 5193.20 6194.55 4395.65 12285.73 6594.94 12996.69 8491.89 890.69 12195.88 10281.99 10499.54 2093.14 4697.95 7098.39 39
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3397.48 6186.78 2695.65 9196.89 6089.40 5592.81 7496.97 5485.37 5399.24 4390.87 9998.69 3698.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3194.82 13797.17 3986.26 14792.83 7397.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test250687.21 22186.28 21890.02 22995.62 12473.64 32796.25 4971.38 40587.89 10990.45 12396.65 7055.29 36298.09 15886.03 15796.94 9198.33 43
ECVR-MVScopyleft89.09 15288.53 14990.77 19695.62 12475.89 30496.16 5484.22 38387.89 10990.20 12796.65 7063.19 31498.10 15085.90 15896.94 9198.33 43
HPM-MVScopyleft94.02 3993.88 4494.43 4798.39 2385.78 6397.25 1097.07 4586.90 13292.62 8296.80 6584.85 6399.17 4792.43 5798.65 4398.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS93.96 4293.72 5094.68 3898.43 2086.22 4795.30 10597.78 187.45 12093.26 6097.33 3684.62 6599.51 2490.75 10198.57 4898.32 46
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2496.54 3797.19 3588.24 9493.26 6096.83 6185.48 5199.59 891.43 8998.40 5398.30 47
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2596.94 2097.34 2388.63 8293.65 5397.21 4286.10 4599.49 2692.35 6298.77 2798.30 47
baseline92.39 7992.29 7892.69 10794.46 18381.77 16694.14 18096.27 11189.22 6191.88 10196.00 9682.35 9197.99 16791.05 9295.27 12898.30 47
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7596.96 5291.75 994.02 4796.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
APD-MVScopyleft94.24 3094.07 3994.75 3698.06 3986.90 2395.88 7696.94 5585.68 16395.05 3497.18 4587.31 3599.07 5391.90 8298.61 4798.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MGCFI-Net93.03 6892.63 7294.23 5395.62 12485.92 5796.08 6296.33 10589.86 4193.89 5094.66 15282.11 9998.50 11292.33 6492.82 17798.27 52
sasdasda93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4296.41 9990.00 3794.09 4494.60 15582.33 9298.62 10392.40 5992.86 17498.27 52
agg_prior290.54 10398.68 3898.27 52
canonicalmvs93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4296.41 9990.00 3794.09 4494.60 15582.33 9298.62 10392.40 5992.86 17498.27 52
APD-MVS_3200maxsize93.78 4593.77 4893.80 6497.92 4384.19 9696.30 4496.87 6286.96 12893.92 4997.47 2983.88 7298.96 7792.71 5497.87 7298.26 56
CP-MVS94.34 2794.21 3494.74 3798.39 2386.64 3297.60 497.24 3288.53 8692.73 7997.23 4185.20 5599.32 3892.15 6998.83 2198.25 57
casdiffmvspermissive92.51 7692.43 7692.74 10394.41 18781.98 16194.54 15496.23 11689.57 5191.96 9896.17 9182.58 8898.01 16590.95 9795.45 12298.23 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IS-MVSNet91.43 9191.09 9392.46 11795.87 11481.38 17996.95 1993.69 26289.72 4989.50 13795.98 9878.57 13997.77 17783.02 19496.50 10498.22 59
CS-MVS94.12 3794.44 2293.17 7896.55 8483.08 13197.63 396.95 5491.71 1193.50 5996.21 8685.61 4898.24 14093.64 3798.17 5998.19 60
LFMVS90.08 11889.13 13292.95 9296.71 7782.32 15696.08 6289.91 35386.79 13392.15 9396.81 6362.60 31698.34 13387.18 14293.90 15198.19 60
CDPH-MVS92.83 7192.30 7794.44 4597.79 4986.11 4994.06 18996.66 8580.09 28392.77 7696.63 7386.62 3899.04 5787.40 13898.66 4198.17 62
alignmvs93.08 6792.50 7594.81 3295.62 12487.61 1495.99 7196.07 13089.77 4794.12 4394.87 13980.56 11398.66 9892.42 5893.10 17098.15 63
CS-MVS-test94.02 3994.29 2993.24 7596.69 7883.24 12197.49 596.92 5792.14 592.90 6995.77 10885.02 5998.33 13593.03 4798.62 4598.13 64
VNet92.24 8091.91 8193.24 7596.59 8283.43 11694.84 13696.44 9689.19 6394.08 4695.90 10177.85 14998.17 14588.90 12093.38 16498.13 64
PHI-MVS93.89 4393.65 5494.62 4196.84 7586.43 3996.69 3297.49 685.15 17793.56 5796.28 8485.60 4999.31 3992.45 5698.79 2398.12 66
test_prior93.82 6297.29 6784.49 8696.88 6198.87 8298.11 67
test9_res91.91 8098.71 3398.07 68
CSCG93.23 6493.05 6393.76 6698.04 4084.07 9896.22 5097.37 2184.15 19790.05 13195.66 11287.77 2699.15 5089.91 11098.27 5798.07 68
EPNet91.79 8491.02 9494.10 5490.10 33885.25 7196.03 6892.05 30092.83 387.39 17595.78 10779.39 12899.01 6388.13 12997.48 8198.05 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMPcopyleft93.24 6392.88 6794.30 5198.09 3885.33 7096.86 2797.45 1488.33 9090.15 13097.03 5381.44 10799.51 2490.85 10095.74 11398.04 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SD-MVS94.96 1395.33 893.88 5997.25 6986.69 2896.19 5197.11 4390.42 2796.95 1397.27 3889.53 1496.91 25494.38 2998.85 1998.03 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_HR93.45 5493.31 5793.84 6196.99 7284.84 7593.24 23197.24 3288.76 7791.60 11095.85 10386.07 4698.66 9891.91 8098.16 6098.03 72
Anonymous20240521187.68 19386.13 22392.31 12696.66 7980.74 19894.87 13491.49 31880.47 27989.46 13895.44 11754.72 36498.23 14182.19 21189.89 21497.97 74
test_fmvsmconf_n94.60 1894.81 1693.98 5594.62 17384.96 7496.15 5697.35 2289.37 5696.03 2398.11 586.36 4199.01 6397.45 397.83 7497.96 75
train_agg93.44 5593.08 6294.52 4497.53 5886.49 3794.07 18796.78 7281.86 25492.77 7696.20 8787.63 2999.12 5192.14 7098.69 3697.94 76
mvs_anonymous89.37 14689.32 12889.51 25393.47 22774.22 32291.65 28294.83 21882.91 23085.45 22593.79 19081.23 11096.36 28786.47 15294.09 14897.94 76
VDD-MVS90.74 10389.92 11593.20 7796.27 9383.02 13395.73 8393.86 25688.42 8992.53 8396.84 6062.09 31898.64 10090.95 9792.62 17997.93 78
HPM-MVS_fast93.40 5993.22 6093.94 5898.36 2584.83 7697.15 1396.80 7185.77 16092.47 8797.13 4882.38 9099.07 5390.51 10598.40 5397.92 79
SR-MVS-dyc-post93.82 4493.82 4593.82 6297.92 4384.57 8296.28 4696.76 7587.46 11893.75 5197.43 3184.24 6899.01 6392.73 5197.80 7597.88 80
RE-MVS-def93.68 5297.92 4384.57 8296.28 4696.76 7587.46 11893.75 5197.43 3182.94 8392.73 5197.80 7597.88 80
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5992.46 25784.80 7796.18 5396.82 6889.29 5995.68 2898.11 585.10 5698.99 7097.38 497.75 7897.86 82
test1294.34 5097.13 7086.15 4896.29 10791.04 11885.08 5799.01 6398.13 6297.86 82
VDDNet89.56 13688.49 15392.76 10195.07 14882.09 15896.30 4493.19 26981.05 27591.88 10196.86 5961.16 33198.33 13588.43 12692.49 18397.84 84
TSAR-MVS + GP.93.66 4993.41 5694.41 4996.59 8286.78 2694.40 16493.93 25289.77 4794.21 4195.59 11587.35 3498.61 10592.72 5396.15 11097.83 85
Vis-MVSNet (Re-imp)89.59 13589.44 12390.03 22795.74 11775.85 30595.61 9390.80 33787.66 11787.83 16495.40 12076.79 15596.46 28078.37 26796.73 9897.80 86
3Dnovator86.66 591.73 8790.82 9894.44 4594.59 17486.37 4197.18 1297.02 4789.20 6284.31 26396.66 6973.74 20199.17 4786.74 14897.96 6997.79 87
Vis-MVSNetpermissive91.75 8691.23 8993.29 7395.32 13483.78 10596.14 5895.98 13689.89 3990.45 12396.58 7675.09 17798.31 13884.75 17296.90 9397.78 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.01_n93.19 6593.02 6493.71 6789.25 35084.42 9396.06 6696.29 10789.06 6694.68 3698.13 379.22 13098.98 7497.22 597.24 8597.74 89
GeoE90.05 11989.43 12491.90 14795.16 14380.37 20795.80 8094.65 22883.90 20287.55 17194.75 14778.18 14497.62 19181.28 23093.63 15597.71 90
DELS-MVS93.43 5893.25 5993.97 5695.42 13185.04 7293.06 23897.13 4090.74 2191.84 10395.09 13386.32 4299.21 4591.22 9098.45 5197.65 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MG-MVS91.77 8591.70 8492.00 13797.08 7180.03 21993.60 21395.18 19687.85 11190.89 11996.47 8082.06 10298.36 13085.07 16697.04 8997.62 92
diffmvspermissive91.37 9391.23 8991.77 15493.09 23780.27 20892.36 25995.52 17587.03 12791.40 11494.93 13680.08 11797.44 20892.13 7194.56 14097.61 93
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM_NR91.22 9690.78 9992.52 11597.60 5681.46 17694.37 17096.24 11586.39 14487.41 17294.80 14582.06 10298.48 11482.80 20095.37 12497.61 93
Effi-MVS+91.59 9091.11 9193.01 8794.35 19283.39 11994.60 15095.10 20087.10 12590.57 12293.10 21381.43 10898.07 16189.29 11694.48 14397.59 95
DeepC-MVS88.79 393.31 6092.99 6594.26 5296.07 10385.83 6194.89 13296.99 4889.02 7189.56 13597.37 3582.51 8999.38 3192.20 6798.30 5697.57 96
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet91.70 8891.56 8592.13 13395.88 11280.50 20497.33 795.25 19286.15 15289.76 13495.60 11483.42 7798.32 13787.37 14093.25 16797.56 97
MVS_Test91.31 9491.11 9191.93 14294.37 18880.14 21293.46 21895.80 15186.46 14291.35 11593.77 19282.21 9798.09 15887.57 13694.95 13197.55 98
EIA-MVS91.95 8291.94 8091.98 13895.16 14380.01 22095.36 10096.73 7988.44 8789.34 13992.16 24183.82 7398.45 12289.35 11497.06 8897.48 99
PAPR90.02 12089.27 13192.29 12895.78 11680.95 19292.68 24996.22 11781.91 25186.66 19193.75 19482.23 9698.44 12479.40 26294.79 13397.48 99
UA-Net92.83 7192.54 7493.68 6896.10 10084.71 7995.66 8996.39 10191.92 793.22 6296.49 7983.16 7998.87 8284.47 17695.47 12097.45 101
EI-MVSNet-Vis-set93.01 6992.92 6693.29 7395.01 15083.51 11594.48 15695.77 15390.87 1592.52 8496.67 6884.50 6699.00 6891.99 7694.44 14597.36 102
test_yl90.69 10590.02 11392.71 10495.72 11882.41 15494.11 18295.12 19885.63 16491.49 11194.70 14874.75 18198.42 12886.13 15592.53 18197.31 103
DCV-MVSNet90.69 10590.02 11392.71 10495.72 11882.41 15494.11 18295.12 19885.63 16491.49 11194.70 14874.75 18198.42 12886.13 15592.53 18197.31 103
EC-MVSNet93.44 5593.71 5192.63 10995.21 14182.43 15197.27 996.71 8290.57 2692.88 7095.80 10683.16 7998.16 14693.68 3698.14 6197.31 103
MVSFormer91.68 8991.30 8792.80 9993.86 21283.88 10395.96 7395.90 14484.66 19191.76 10694.91 13777.92 14697.30 22489.64 11297.11 8697.24 106
jason90.80 10190.10 10892.90 9493.04 24183.53 11493.08 23694.15 24580.22 28091.41 11394.91 13776.87 15397.93 17290.28 10996.90 9397.24 106
jason: jason.
WTY-MVS89.60 13488.92 13891.67 15795.47 13081.15 18692.38 25894.78 22283.11 22489.06 14594.32 16478.67 13796.61 26781.57 22790.89 20097.24 106
HyFIR lowres test88.09 18386.81 19591.93 14296.00 10680.63 20090.01 31995.79 15273.42 35987.68 16892.10 24773.86 19897.96 16980.75 24091.70 18797.19 109
test_fmvsm_n_192094.71 1795.11 1093.50 7195.79 11584.62 8096.15 5697.64 289.85 4297.19 897.89 1986.28 4398.71 9797.11 798.08 6697.17 110
ET-MVSNet_ETH3D87.51 20585.91 23592.32 12593.70 22183.93 10192.33 26290.94 33384.16 19672.09 37492.52 23069.90 24695.85 30889.20 11788.36 24597.17 110
EI-MVSNet-UG-set92.74 7392.62 7393.12 8094.86 16183.20 12394.40 16495.74 15690.71 2392.05 9496.60 7584.00 7098.99 7091.55 8693.63 15597.17 110
lupinMVS90.92 10090.21 10493.03 8693.86 21283.88 10392.81 24793.86 25679.84 28691.76 10694.29 16677.92 14698.04 16390.48 10897.11 8697.17 110
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6595.28 13685.43 6895.68 8696.43 9786.56 13996.84 1497.81 2387.56 3298.77 9297.14 696.82 9797.16 114
CHOSEN 1792x268888.84 16287.69 17392.30 12796.14 9681.42 17890.01 31995.86 14874.52 34887.41 17293.94 18275.46 17498.36 13080.36 24695.53 11697.12 115
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6995.29 13584.98 7395.61 9396.28 11086.31 14596.75 1697.86 2187.40 3398.74 9597.07 897.02 9097.07 116
thisisatest053088.67 16787.61 17591.86 14894.87 16080.07 21594.63 14989.90 35484.00 20088.46 15393.78 19166.88 28398.46 11883.30 19092.65 17897.06 117
CPTT-MVS91.99 8191.80 8292.55 11398.24 3181.98 16196.76 3096.49 9581.89 25390.24 12696.44 8178.59 13898.61 10589.68 11197.85 7397.06 117
FA-MVS(test-final)89.66 13288.91 13991.93 14294.57 17780.27 20891.36 28794.74 22484.87 18389.82 13392.61 22874.72 18498.47 11783.97 18293.53 15897.04 119
tttt051788.61 16987.78 17191.11 18194.96 15477.81 27495.35 10189.69 35785.09 17988.05 16094.59 15766.93 28198.48 11483.27 19192.13 18697.03 120
Anonymous2024052988.09 18386.59 20692.58 11296.53 8681.92 16395.99 7195.84 14974.11 35289.06 14595.21 12761.44 32498.81 8983.67 18887.47 25897.01 121
114514_t89.51 13788.50 15192.54 11498.11 3681.99 16095.16 11896.36 10370.19 37885.81 20995.25 12476.70 15798.63 10282.07 21596.86 9697.00 122
iter_conf05_1189.88 12889.04 13592.41 11995.12 14681.63 16992.87 24592.45 28686.21 15092.48 8693.95 18159.05 34498.60 10790.50 10698.72 3296.99 123
bld_raw_dy_0_6488.86 16087.75 17292.21 13195.12 14681.19 18595.56 9691.29 32385.30 17389.10 14294.38 16159.04 34598.44 12490.50 10689.43 22396.99 123
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9793.75 21883.13 12696.02 6995.74 15687.68 11595.89 2598.17 282.78 8698.46 11896.71 1096.17 10996.98 125
旧先验196.79 7681.81 16595.67 16296.81 6386.69 3797.66 8096.97 126
ab-mvs89.41 14288.35 15592.60 11095.15 14582.65 14892.20 26795.60 16983.97 20188.55 15193.70 19574.16 19398.21 14482.46 20589.37 22596.94 127
DPM-MVS92.58 7591.74 8395.08 1596.19 9589.31 592.66 25096.56 9383.44 21591.68 10995.04 13486.60 4098.99 7085.60 16297.92 7196.93 128
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9695.62 12483.17 12496.14 5896.12 12588.13 10195.82 2698.04 1683.43 7598.48 11496.97 996.23 10896.92 129
DP-MVS Recon91.95 8291.28 8893.96 5798.33 2785.92 5794.66 14896.66 8582.69 23590.03 13295.82 10582.30 9499.03 5884.57 17496.48 10596.91 130
QAPM89.51 13788.15 16293.59 7094.92 15784.58 8196.82 2996.70 8378.43 30983.41 28296.19 9073.18 20899.30 4077.11 28396.54 10296.89 131
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 8895.02 14983.67 10896.19 5196.10 12787.27 12295.98 2498.05 1383.07 8298.45 12296.68 1195.51 11796.88 132
fmvsm_s_conf0.1_n_a93.19 6593.26 5892.97 9092.49 25583.62 11196.02 6995.72 15986.78 13496.04 2298.19 182.30 9498.43 12796.38 1395.42 12396.86 133
testing9187.11 22686.18 22189.92 23394.43 18675.38 31291.53 28492.27 29386.48 14086.50 19290.24 30161.19 32997.53 19782.10 21390.88 20196.84 134
OMC-MVS91.23 9590.62 10093.08 8396.27 9384.07 9893.52 21595.93 14086.95 12989.51 13696.13 9378.50 14098.35 13285.84 16092.90 17396.83 135
MSLP-MVS++93.72 4894.08 3892.65 10897.31 6583.43 11695.79 8197.33 2590.03 3693.58 5596.96 5584.87 6297.76 17892.19 6898.66 4196.76 136
MVS_111021_LR92.47 7792.29 7892.98 8995.99 10984.43 9193.08 23696.09 12888.20 9891.12 11795.72 11181.33 10997.76 17891.74 8397.37 8496.75 137
UGNet89.95 12488.95 13792.95 9294.51 18083.31 12095.70 8595.23 19389.37 5687.58 16993.94 18264.00 30698.78 9183.92 18396.31 10796.74 138
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_ETH3D87.53 20486.37 21391.00 18892.44 25878.96 24794.74 14295.61 16884.07 19985.36 23594.52 15959.78 33997.34 22282.93 19587.88 25296.71 139
testing9986.72 23985.73 24489.69 24594.23 19574.91 31591.35 28890.97 33286.14 15386.36 19890.22 30259.41 34197.48 20182.24 21090.66 20296.69 140
LCM-MVSNet-Re88.30 17888.32 15888.27 28394.71 16872.41 34493.15 23290.98 33187.77 11279.25 33491.96 25378.35 14295.75 31483.04 19395.62 11596.65 141
h-mvs3390.80 10190.15 10792.75 10296.01 10582.66 14795.43 9995.53 17489.80 4393.08 6595.64 11375.77 16699.00 6892.07 7278.05 35396.60 142
无先验93.28 22896.26 11273.95 35499.05 5580.56 24496.59 143
ETVMVS84.43 28482.92 29388.97 26794.37 18874.67 31691.23 29388.35 36583.37 21886.06 20789.04 32655.38 36095.67 31767.12 35291.34 19196.58 144
Fast-Effi-MVS+89.41 14288.64 14591.71 15694.74 16580.81 19693.54 21495.10 20083.11 22486.82 18990.67 29479.74 12297.75 18180.51 24593.55 15796.57 145
sss88.93 15988.26 16190.94 19294.05 20280.78 19791.71 27995.38 18681.55 26488.63 15093.91 18675.04 17895.47 32682.47 20491.61 18896.57 145
ETV-MVS92.74 7392.66 7192.97 9095.20 14284.04 10095.07 12296.51 9490.73 2292.96 6891.19 27584.06 6998.34 13391.72 8496.54 10296.54 147
FE-MVS87.40 21086.02 22991.57 16094.56 17879.69 22990.27 30893.72 26180.57 27888.80 14891.62 26465.32 29898.59 10874.97 30494.33 14796.44 148
DP-MVS87.25 21785.36 25192.90 9497.65 5583.24 12194.81 13892.00 30274.99 34381.92 30195.00 13572.66 21499.05 5566.92 35692.33 18496.40 149
CANet_DTU90.26 11589.41 12592.81 9893.46 22883.01 13493.48 21694.47 23189.43 5487.76 16794.23 17070.54 24199.03 5884.97 16796.39 10696.38 150
test_fmvsmvis_n_192093.44 5593.55 5593.10 8193.67 22284.26 9595.83 7996.14 12289.00 7292.43 8897.50 2883.37 7898.72 9696.61 1297.44 8296.32 151
TAMVS89.21 14888.29 15991.96 14093.71 21982.62 14993.30 22694.19 24382.22 24287.78 16693.94 18278.83 13396.95 25177.70 27692.98 17296.32 151
thisisatest051587.33 21385.99 23091.37 16993.49 22679.55 23190.63 30489.56 36080.17 28187.56 17090.86 28667.07 28098.28 13981.50 22893.02 17196.29 153
CDS-MVSNet89.45 14088.51 15092.29 12893.62 22383.61 11393.01 23994.68 22781.95 24987.82 16593.24 20778.69 13696.99 24980.34 24793.23 16896.28 154
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
1112_ss88.42 17387.33 18291.72 15594.92 15780.98 19092.97 24194.54 22978.16 31583.82 27193.88 18778.78 13597.91 17379.45 25889.41 22496.26 155
Test_1112_low_res87.65 19586.51 20991.08 18294.94 15679.28 24291.77 27794.30 23976.04 33383.51 28092.37 23477.86 14897.73 18278.69 26689.13 23196.22 156
testing1186.44 25085.35 25289.69 24594.29 19375.40 31191.30 28990.53 34084.76 18785.06 23990.13 30758.95 34797.45 20582.08 21491.09 19796.21 157
GA-MVS86.61 24185.27 25490.66 19791.33 29878.71 24990.40 30793.81 25985.34 17185.12 23889.57 31961.25 32697.11 24180.99 23689.59 22296.15 158
原ACMM192.01 13497.34 6481.05 18896.81 7078.89 29990.45 12395.92 10082.65 8798.84 8880.68 24298.26 5896.14 159
TAPA-MVS84.62 688.16 18187.01 19191.62 15896.64 8080.65 19994.39 16696.21 12076.38 32886.19 20495.44 11779.75 12198.08 16062.75 37295.29 12696.13 160
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GSMVS96.12 161
sam_mvs171.70 22396.12 161
SCA86.32 25285.18 25589.73 24392.15 26476.60 29491.12 29591.69 31183.53 21385.50 22188.81 33066.79 28496.48 27776.65 28690.35 20796.12 161
PatchmatchNetpermissive85.85 25984.70 26689.29 25791.76 28175.54 30888.49 34391.30 32281.63 26285.05 24088.70 33471.71 22296.24 29274.61 30789.05 23296.08 164
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
testing22284.84 27983.32 28489.43 25594.15 20075.94 30391.09 29689.41 36184.90 18285.78 21089.44 32152.70 37296.28 29170.80 32991.57 18996.07 165
新几何193.10 8197.30 6684.35 9495.56 17071.09 37591.26 11696.24 8582.87 8598.86 8479.19 26398.10 6396.07 165
PVSNet78.82 1885.55 26384.65 26788.23 28694.72 16771.93 34587.12 36092.75 27978.80 30284.95 24290.53 29664.43 30496.71 26174.74 30593.86 15296.06 167
test22296.55 8481.70 16792.22 26695.01 20368.36 38190.20 12796.14 9280.26 11697.80 7596.05 168
PVSNet_Blended_VisFu91.38 9290.91 9692.80 9996.39 9083.17 12494.87 13496.66 8583.29 22089.27 14094.46 16080.29 11599.17 4787.57 13695.37 12496.05 168
testdata90.49 20596.40 8977.89 27195.37 18872.51 36793.63 5496.69 6682.08 10197.65 18683.08 19297.39 8395.94 170
XVG-OURS-SEG-HR89.95 12489.45 12291.47 16594.00 20781.21 18491.87 27596.06 13285.78 15988.55 15195.73 11074.67 18597.27 22888.71 12389.64 22195.91 171
MAR-MVS90.30 11389.37 12693.07 8596.61 8184.48 8795.68 8695.67 16282.36 24087.85 16392.85 21876.63 15998.80 9080.01 25196.68 10095.91 171
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HY-MVS83.01 1289.03 15687.94 16892.29 12894.86 16182.77 13992.08 27294.49 23081.52 26586.93 18192.79 22478.32 14398.23 14179.93 25290.55 20395.88 173
BH-RMVSNet88.37 17587.48 17891.02 18695.28 13679.45 23492.89 24393.07 27185.45 16986.91 18394.84 14470.35 24297.76 17873.97 31094.59 13995.85 174
PVSNet_Blended90.73 10490.32 10391.98 13896.12 9781.25 18192.55 25496.83 6682.04 24789.10 14292.56 22981.04 11198.85 8686.72 15095.91 11195.84 175
Patchmatch-test81.37 31779.30 32587.58 29890.92 31674.16 32480.99 38987.68 37070.52 37776.63 35288.81 33071.21 22792.76 36360.01 38086.93 26795.83 176
XVG-OURS89.40 14488.70 14491.52 16194.06 20181.46 17691.27 29196.07 13086.14 15388.89 14795.77 10868.73 26897.26 23087.39 13989.96 21295.83 176
EPNet_dtu86.49 24985.94 23488.14 28890.24 33672.82 33494.11 18292.20 29586.66 13879.42 33392.36 23573.52 20295.81 31171.26 32293.66 15495.80 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm84.73 28084.02 27586.87 32090.33 33468.90 36889.06 33689.94 35280.85 27685.75 21189.86 31468.54 27095.97 30277.76 27584.05 28795.75 179
test_vis1_n_192089.39 14589.84 11688.04 29092.97 24572.64 33994.71 14596.03 13586.18 15191.94 10096.56 7861.63 32195.74 31593.42 4195.11 13095.74 180
hse-mvs289.88 12889.34 12791.51 16294.83 16381.12 18793.94 19893.91 25589.80 4393.08 6593.60 19675.77 16697.66 18592.07 7277.07 36095.74 180
AUN-MVS87.78 19186.54 20891.48 16494.82 16481.05 18893.91 20293.93 25283.00 22786.93 18193.53 19769.50 25397.67 18386.14 15377.12 35995.73 182
Patchmatch-RL test81.67 31179.96 31786.81 32185.42 38171.23 35382.17 38787.50 37178.47 30777.19 34882.50 38270.81 23493.48 35482.66 20272.89 37095.71 183
LS3D87.89 18786.32 21692.59 11196.07 10382.92 13795.23 11194.92 21175.66 33582.89 28995.98 9872.48 21799.21 4568.43 34495.23 12995.64 184
SDMVSNet90.19 11689.61 11991.93 14296.00 10683.09 13092.89 24395.98 13688.73 7886.85 18795.20 12872.09 22197.08 24288.90 12089.85 21695.63 185
sd_testset88.59 17187.85 17090.83 19396.00 10680.42 20692.35 26094.71 22588.73 7886.85 18795.20 12867.31 27596.43 28279.64 25689.85 21695.63 185
CNLPA89.07 15487.98 16692.34 12496.87 7484.78 7894.08 18693.24 26781.41 26684.46 25395.13 13275.57 17396.62 26477.21 28193.84 15395.61 187
MDTV_nov1_ep13_2view55.91 40287.62 35673.32 36084.59 24970.33 24374.65 30695.50 188
baseline188.10 18287.28 18490.57 19994.96 15480.07 21594.27 17391.29 32386.74 13587.41 17294.00 17876.77 15696.20 29380.77 23979.31 34995.44 189
EPMVS83.90 29382.70 29787.51 29990.23 33772.67 33788.62 34281.96 38981.37 26785.01 24188.34 33866.31 29194.45 33675.30 29987.12 26495.43 190
CR-MVSNet85.35 26883.76 27990.12 22390.58 32979.34 23885.24 37391.96 30678.27 31285.55 21687.87 34771.03 23095.61 31873.96 31189.36 22695.40 191
tpmrst85.35 26884.99 25886.43 32590.88 31967.88 37288.71 34091.43 32080.13 28286.08 20688.80 33273.05 20996.02 30082.48 20383.40 29795.40 191
RPMNet83.95 29181.53 30291.21 17490.58 32979.34 23885.24 37396.76 7571.44 37385.55 21682.97 38070.87 23398.91 8061.01 37689.36 22695.40 191
UWE-MVS83.69 29683.09 28985.48 33593.06 23965.27 38190.92 29986.14 37479.90 28586.26 20290.72 29357.17 35395.81 31171.03 32892.62 17995.35 194
CostFormer85.77 26184.94 26188.26 28491.16 30472.58 34289.47 32991.04 33076.26 33186.45 19689.97 31270.74 23596.86 25782.35 20787.07 26695.34 195
test_fmvs1_n87.03 22987.04 19086.97 31589.74 34671.86 34694.55 15394.43 23278.47 30791.95 9995.50 11651.16 37593.81 34993.02 4894.56 14095.26 196
IB-MVS80.51 1585.24 27283.26 28691.19 17592.13 26679.86 22591.75 27891.29 32383.28 22180.66 31588.49 33661.28 32598.46 11880.99 23679.46 34795.25 197
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline286.50 24785.39 24989.84 23691.12 30676.70 29391.88 27488.58 36382.35 24179.95 32690.95 28573.42 20597.63 19080.27 24989.95 21395.19 198
test_cas_vis1_n_192088.83 16588.85 14388.78 26991.15 30576.72 29293.85 20394.93 21083.23 22392.81 7496.00 9661.17 33094.45 33691.67 8594.84 13295.17 199
ADS-MVSNet281.66 31279.71 32187.50 30091.35 29674.19 32383.33 38388.48 36472.90 36482.24 29685.77 36664.98 30193.20 35964.57 36683.74 28995.12 200
ADS-MVSNet81.56 31479.78 31886.90 31891.35 29671.82 34783.33 38389.16 36272.90 36482.24 29685.77 36664.98 30193.76 35064.57 36683.74 28995.12 200
AdaColmapbinary89.89 12789.07 13392.37 12397.41 6283.03 13294.42 16395.92 14182.81 23286.34 20094.65 15373.89 19799.02 6180.69 24195.51 11795.05 202
PLCcopyleft84.53 789.06 15588.03 16592.15 13297.27 6882.69 14694.29 17295.44 18279.71 28884.01 26894.18 17176.68 15898.75 9377.28 28093.41 16395.02 203
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Effi-MVS+-dtu88.65 16888.35 15589.54 25093.33 23176.39 29894.47 15994.36 23787.70 11485.43 22889.56 32073.45 20497.26 23085.57 16391.28 19294.97 204
test-LLR85.87 25885.41 24887.25 30790.95 31271.67 35089.55 32589.88 35583.41 21684.54 25087.95 34467.25 27795.11 33181.82 22193.37 16594.97 204
test-mter84.54 28383.64 28187.25 30790.95 31271.67 35089.55 32589.88 35579.17 29484.54 25087.95 34455.56 35895.11 33181.82 22193.37 16594.97 204
nrg03091.08 9990.39 10193.17 7893.07 23886.91 2296.41 3996.26 11288.30 9288.37 15594.85 14282.19 9897.64 18991.09 9182.95 29894.96 207
thres600view787.65 19586.67 20190.59 19896.08 10278.72 24894.88 13391.58 31487.06 12688.08 15892.30 23768.91 26598.10 15070.05 33791.10 19394.96 207
thres40087.62 20086.64 20290.57 19995.99 10978.64 25094.58 15191.98 30486.94 13088.09 15691.77 25769.18 26198.10 15070.13 33491.10 19394.96 207
PAPM86.68 24085.39 24990.53 20193.05 24079.33 24189.79 32294.77 22378.82 30181.95 30093.24 20776.81 15497.30 22466.94 35493.16 16994.95 210
MIMVSNet82.59 30380.53 30888.76 27091.51 28878.32 26086.57 36490.13 34779.32 29180.70 31488.69 33552.98 37193.07 36166.03 35988.86 23594.90 211
CVMVSNet84.69 28284.79 26584.37 34691.84 27764.92 38293.70 21091.47 31966.19 38486.16 20595.28 12267.18 27993.33 35680.89 23890.42 20694.88 212
PatchT82.68 30281.27 30486.89 31990.09 33970.94 35984.06 38090.15 34674.91 34485.63 21583.57 37569.37 25494.87 33565.19 36188.50 24194.84 213
OpenMVScopyleft83.78 1188.74 16687.29 18393.08 8392.70 25285.39 6996.57 3696.43 9778.74 30480.85 31296.07 9469.64 25199.01 6378.01 27496.65 10194.83 214
PCF-MVS84.11 1087.74 19286.08 22792.70 10694.02 20384.43 9189.27 33195.87 14773.62 35784.43 25594.33 16378.48 14198.86 8470.27 33094.45 14494.81 215
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
F-COLMAP87.95 18686.80 19691.40 16796.35 9280.88 19494.73 14395.45 18079.65 28982.04 29994.61 15471.13 22898.50 11276.24 29291.05 19894.80 216
FIs90.51 11290.35 10290.99 18993.99 20880.98 19095.73 8397.54 489.15 6486.72 19094.68 15081.83 10697.24 23285.18 16588.31 24694.76 217
FC-MVSNet-test90.27 11490.18 10690.53 20193.71 21979.85 22695.77 8297.59 389.31 5886.27 20194.67 15181.93 10597.01 24884.26 17888.09 24994.71 218
HQP_MVS90.60 11190.19 10591.82 15194.70 16982.73 14395.85 7796.22 11790.81 1786.91 18394.86 14074.23 18998.12 14888.15 12789.99 21094.63 219
plane_prior596.22 11798.12 14888.15 12789.99 21094.63 219
tpm284.08 28882.94 29287.48 30291.39 29471.27 35289.23 33390.37 34271.95 37184.64 24789.33 32267.30 27696.55 27475.17 30087.09 26594.63 219
DU-MVS89.34 14788.50 15191.85 15093.04 24183.72 10694.47 15996.59 9089.50 5286.46 19493.29 20577.25 15197.23 23384.92 16881.02 32794.59 222
NR-MVSNet88.58 17287.47 17991.93 14293.04 24184.16 9794.77 14196.25 11489.05 6780.04 32593.29 20579.02 13297.05 24681.71 22680.05 34194.59 222
PS-MVSNAJss89.97 12289.62 11891.02 18691.90 27580.85 19595.26 11095.98 13686.26 14786.21 20394.29 16679.70 12397.65 18688.87 12288.10 24794.57 224
VPNet88.20 18087.47 17990.39 21293.56 22579.46 23394.04 19095.54 17388.67 8186.96 18094.58 15869.33 25697.15 23784.05 18180.53 33694.56 225
RPSCF85.07 27484.27 27187.48 30292.91 24770.62 36191.69 28192.46 28576.20 33282.67 29295.22 12563.94 30797.29 22777.51 27985.80 27394.53 226
test_fmvs187.34 21287.56 17686.68 32390.59 32871.80 34894.01 19394.04 25078.30 31191.97 9795.22 12556.28 35693.71 35192.89 4994.71 13494.52 227
VPA-MVSNet89.62 13388.96 13691.60 15993.86 21282.89 13895.46 9897.33 2587.91 10688.43 15493.31 20374.17 19297.40 21787.32 14182.86 30394.52 227
RRT_MVS89.09 15288.62 14890.49 20592.85 24979.65 23096.41 3994.41 23488.22 9685.50 22194.77 14669.36 25597.31 22389.33 11586.73 26894.51 229
mvsmamba89.96 12389.50 12191.33 17192.90 24881.82 16496.68 3392.37 28889.03 6987.00 17994.85 14273.05 20997.65 18691.03 9388.63 23794.51 229
HQP4-MVS85.43 22897.96 16994.51 229
TranMVSNet+NR-MVSNet88.84 16287.95 16791.49 16392.68 25383.01 13494.92 13196.31 10689.88 4085.53 21893.85 18976.63 15996.96 25081.91 21979.87 34494.50 232
HQP-MVS89.80 13089.28 13091.34 17094.17 19781.56 17094.39 16696.04 13388.81 7485.43 22893.97 18073.83 19997.96 16987.11 14589.77 21994.50 232
UniMVSNet_NR-MVSNet89.92 12689.29 12991.81 15393.39 23083.72 10694.43 16297.12 4189.80 4386.46 19493.32 20283.16 7997.23 23384.92 16881.02 32794.49 234
thres100view90087.63 19886.71 19990.38 21496.12 9778.55 25295.03 12591.58 31487.15 12388.06 15992.29 23868.91 26598.10 15070.13 33491.10 19394.48 235
tfpn200view987.58 20286.64 20290.41 21195.99 10978.64 25094.58 15191.98 30486.94 13088.09 15691.77 25769.18 26198.10 15070.13 33491.10 19394.48 235
WR-MVS88.38 17487.67 17490.52 20393.30 23280.18 21093.26 22995.96 13988.57 8585.47 22492.81 22276.12 16196.91 25481.24 23182.29 30794.47 237
TESTMET0.1,183.74 29582.85 29586.42 32689.96 34271.21 35489.55 32587.88 36777.41 31983.37 28387.31 35256.71 35493.65 35380.62 24392.85 17694.40 238
test_vis1_n86.56 24486.49 21186.78 32288.51 35672.69 33694.68 14693.78 26079.55 29090.70 12095.31 12148.75 38093.28 35793.15 4593.99 14994.38 239
API-MVS90.66 10790.07 10992.45 11896.36 9184.57 8296.06 6695.22 19582.39 23889.13 14194.27 16980.32 11498.46 11880.16 25096.71 9994.33 240
iter_conf0588.85 16188.08 16491.17 17794.27 19481.64 16895.18 11592.15 29786.23 14987.28 17694.07 17263.89 30997.55 19590.63 10289.00 23394.32 241
PS-MVSNAJ91.18 9790.92 9591.96 14095.26 13982.60 15092.09 27195.70 16086.27 14691.84 10392.46 23179.70 12398.99 7089.08 11895.86 11294.29 242
xiu_mvs_v2_base91.13 9890.89 9791.86 14894.97 15382.42 15292.24 26595.64 16786.11 15691.74 10893.14 21179.67 12698.89 8189.06 11995.46 12194.28 243
xiu_mvs_v1_base_debu90.64 10890.05 11092.40 12093.97 20984.46 8893.32 22295.46 17785.17 17492.25 8994.03 17370.59 23798.57 10990.97 9494.67 13594.18 244
xiu_mvs_v1_base90.64 10890.05 11092.40 12093.97 20984.46 8893.32 22295.46 17785.17 17492.25 8994.03 17370.59 23798.57 10990.97 9494.67 13594.18 244
xiu_mvs_v1_base_debi90.64 10890.05 11092.40 12093.97 20984.46 8893.32 22295.46 17785.17 17492.25 8994.03 17370.59 23798.57 10990.97 9494.67 13594.18 244
Fast-Effi-MVS+-dtu87.44 20886.72 19889.63 24892.04 26977.68 28094.03 19193.94 25185.81 15882.42 29391.32 27270.33 24397.06 24580.33 24890.23 20894.14 247
131487.51 20586.57 20790.34 21692.42 25979.74 22892.63 25195.35 19078.35 31080.14 32291.62 26474.05 19497.15 23781.05 23293.53 15894.12 248
UniMVSNet (Re)89.80 13089.07 13392.01 13493.60 22484.52 8594.78 14097.47 1189.26 6086.44 19792.32 23682.10 10097.39 22084.81 17180.84 33194.12 248
BH-untuned88.60 17088.13 16390.01 23095.24 14078.50 25593.29 22794.15 24584.75 18884.46 25393.40 19975.76 16897.40 21777.59 27794.52 14294.12 248
dp81.47 31680.23 31385.17 34189.92 34365.49 37986.74 36290.10 34876.30 33081.10 30987.12 35762.81 31595.92 30468.13 34779.88 34394.09 251
ACMM84.12 989.14 14988.48 15491.12 17894.65 17281.22 18395.31 10396.12 12585.31 17285.92 20894.34 16270.19 24598.06 16285.65 16188.86 23594.08 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121186.59 24385.13 25690.98 19196.52 8781.50 17296.14 5896.16 12173.78 35583.65 27692.15 24263.26 31397.37 22182.82 19981.74 31694.06 253
test_djsdf89.03 15688.64 14590.21 21890.74 32479.28 24295.96 7395.90 14484.66 19185.33 23692.94 21774.02 19597.30 22489.64 11288.53 23994.05 254
cascas86.43 25184.98 25990.80 19592.10 26880.92 19390.24 31295.91 14373.10 36283.57 27988.39 33765.15 30097.46 20484.90 17091.43 19094.03 255
XXY-MVS87.65 19586.85 19490.03 22792.14 26580.60 20293.76 20695.23 19382.94 22984.60 24894.02 17674.27 18895.49 32581.04 23383.68 29194.01 256
CLD-MVS89.47 13988.90 14091.18 17694.22 19682.07 15992.13 26996.09 12887.90 10785.37 23492.45 23274.38 18797.56 19487.15 14390.43 20593.93 257
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
jajsoiax88.24 17987.50 17790.48 20790.89 31880.14 21295.31 10395.65 16684.97 18184.24 26494.02 17665.31 29997.42 21088.56 12488.52 24093.89 258
IterMVS-LS88.36 17687.91 16989.70 24493.80 21578.29 26293.73 20795.08 20285.73 16184.75 24591.90 25579.88 11996.92 25383.83 18482.51 30493.89 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.10 15088.86 14289.80 24091.84 27778.30 26193.70 21095.01 20385.73 16187.15 17795.28 12279.87 12097.21 23583.81 18587.36 26193.88 260
mvs_tets88.06 18587.28 18490.38 21490.94 31479.88 22495.22 11295.66 16485.10 17884.21 26593.94 18263.53 31097.40 21788.50 12588.40 24493.87 261
MVSTER88.84 16288.29 15990.51 20492.95 24680.44 20593.73 20795.01 20384.66 19187.15 17793.12 21272.79 21397.21 23587.86 13287.36 26193.87 261
tpm cat181.96 30680.27 31287.01 31491.09 30771.02 35787.38 35891.53 31766.25 38380.17 32086.35 36268.22 27396.15 29669.16 33982.29 30793.86 263
v2v48287.84 18887.06 18890.17 21990.99 31079.23 24594.00 19595.13 19784.87 18385.53 21892.07 25074.45 18697.45 20584.71 17381.75 31593.85 264
thres20087.21 22186.24 22090.12 22395.36 13378.53 25393.26 22992.10 29886.42 14388.00 16191.11 28169.24 26098.00 16669.58 33891.04 19993.83 265
tt080586.92 23185.74 24390.48 20792.22 26279.98 22295.63 9294.88 21483.83 20584.74 24692.80 22357.61 35197.67 18385.48 16484.42 28393.79 266
CP-MVSNet87.63 19887.26 18688.74 27393.12 23676.59 29595.29 10796.58 9188.43 8883.49 28192.98 21675.28 17595.83 30978.97 26481.15 32393.79 266
GBi-Net87.26 21585.98 23191.08 18294.01 20483.10 12795.14 11994.94 20683.57 21084.37 25691.64 26066.59 28896.34 28878.23 27185.36 27693.79 266
test187.26 21585.98 23191.08 18294.01 20483.10 12795.14 11994.94 20683.57 21084.37 25691.64 26066.59 28896.34 28878.23 27185.36 27693.79 266
FMVSNet185.85 25984.11 27391.08 18292.81 25083.10 12795.14 11994.94 20681.64 26182.68 29191.64 26059.01 34696.34 28875.37 29883.78 28893.79 266
LPG-MVS_test89.45 14088.90 14091.12 17894.47 18181.49 17495.30 10596.14 12286.73 13685.45 22595.16 13069.89 24798.10 15087.70 13489.23 22993.77 271
LGP-MVS_train91.12 17894.47 18181.49 17496.14 12286.73 13685.45 22595.16 13069.89 24798.10 15087.70 13489.23 22993.77 271
PS-CasMVS87.32 21486.88 19288.63 27692.99 24476.33 30095.33 10296.61 8988.22 9683.30 28693.07 21473.03 21195.79 31378.36 26881.00 32993.75 273
FMVSNet287.19 22385.82 23791.30 17294.01 20483.67 10894.79 13994.94 20683.57 21083.88 27092.05 25166.59 28896.51 27577.56 27885.01 27993.73 274
ACMP84.23 889.01 15888.35 15590.99 18994.73 16681.27 18095.07 12295.89 14686.48 14083.67 27594.30 16569.33 25697.99 16787.10 14788.55 23893.72 275
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
FMVSNet387.40 21086.11 22591.30 17293.79 21783.64 11094.20 17894.81 22083.89 20384.37 25691.87 25668.45 27196.56 27278.23 27185.36 27693.70 276
OPM-MVS90.12 11789.56 12091.82 15193.14 23583.90 10294.16 17995.74 15688.96 7387.86 16295.43 11972.48 21797.91 17388.10 13190.18 20993.65 277
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PEN-MVS86.80 23486.27 21988.40 27992.32 26175.71 30795.18 11596.38 10287.97 10482.82 29093.15 21073.39 20695.92 30476.15 29379.03 35193.59 278
TR-MVS86.78 23585.76 24189.82 23794.37 18878.41 25792.47 25592.83 27681.11 27486.36 19892.40 23368.73 26897.48 20173.75 31389.85 21693.57 279
v14419287.19 22386.35 21489.74 24190.64 32778.24 26393.92 20095.43 18381.93 25085.51 22091.05 28374.21 19197.45 20582.86 19781.56 31793.53 280
v192192086.97 23086.06 22889.69 24590.53 33278.11 26693.80 20495.43 18381.90 25285.33 23691.05 28372.66 21497.41 21582.05 21681.80 31493.53 280
v119287.25 21786.33 21590.00 23190.76 32379.04 24693.80 20495.48 17682.57 23685.48 22391.18 27773.38 20797.42 21082.30 20882.06 30993.53 280
tpmvs83.35 29982.07 29887.20 31191.07 30871.00 35888.31 34691.70 31078.91 29780.49 31887.18 35669.30 25997.08 24268.12 34883.56 29393.51 283
v124086.78 23585.85 23689.56 24990.45 33377.79 27693.61 21295.37 18881.65 26085.43 22891.15 27971.50 22597.43 20981.47 22982.05 31193.47 284
eth_miper_zixun_eth86.50 24785.77 24088.68 27491.94 27275.81 30690.47 30694.89 21282.05 24584.05 26690.46 29775.96 16496.77 25882.76 20179.36 34893.46 285
v114487.61 20186.79 19790.06 22691.01 30979.34 23893.95 19795.42 18583.36 21985.66 21491.31 27374.98 17997.42 21083.37 18982.06 30993.42 286
cl2286.78 23585.98 23189.18 26092.34 26077.62 28190.84 30194.13 24781.33 26883.97 26990.15 30673.96 19696.60 26984.19 17982.94 29993.33 287
v14887.04 22886.32 21689.21 25890.94 31477.26 28593.71 20994.43 23284.84 18584.36 25990.80 29076.04 16397.05 24682.12 21279.60 34693.31 288
AllTest83.42 29781.39 30389.52 25195.01 15077.79 27693.12 23390.89 33577.41 31976.12 35593.34 20054.08 36797.51 19968.31 34584.27 28593.26 289
TestCases89.52 25195.01 15077.79 27690.89 33577.41 31976.12 35593.34 20054.08 36797.51 19968.31 34584.27 28593.26 289
c3_l87.14 22586.50 21089.04 26492.20 26377.26 28591.22 29494.70 22682.01 24884.34 26090.43 29878.81 13496.61 26783.70 18781.09 32493.25 291
DIV-MVS_self_test86.53 24585.78 23888.75 27192.02 27176.45 29790.74 30294.30 23981.83 25683.34 28490.82 28975.75 16996.57 27081.73 22581.52 31993.24 292
cl____86.52 24685.78 23888.75 27192.03 27076.46 29690.74 30294.30 23981.83 25683.34 28490.78 29175.74 17196.57 27081.74 22481.54 31893.22 293
DTE-MVSNet86.11 25485.48 24787.98 29191.65 28774.92 31494.93 13095.75 15587.36 12182.26 29593.04 21572.85 21295.82 31074.04 30977.46 35793.20 294
SixPastTwentyTwo83.91 29282.90 29486.92 31790.99 31070.67 36093.48 21691.99 30385.54 16777.62 34692.11 24660.59 33396.87 25676.05 29477.75 35493.20 294
WR-MVS_H87.80 19087.37 18189.10 26293.23 23378.12 26595.61 9397.30 2987.90 10783.72 27392.01 25279.65 12796.01 30176.36 28980.54 33593.16 296
OurMVSNet-221017-085.35 26884.64 26887.49 30190.77 32272.59 34194.01 19394.40 23584.72 18979.62 33293.17 20961.91 32096.72 25981.99 21781.16 32193.16 296
gg-mvs-nofinetune81.77 30979.37 32488.99 26690.85 32077.73 27986.29 36579.63 39474.88 34683.19 28769.05 39560.34 33496.11 29775.46 29794.64 13893.11 298
MSDG84.86 27883.09 28990.14 22293.80 21580.05 21789.18 33493.09 27078.89 29978.19 34091.91 25465.86 29797.27 22868.47 34388.45 24293.11 298
v7n86.81 23385.76 24189.95 23290.72 32579.25 24495.07 12295.92 14184.45 19482.29 29490.86 28672.60 21697.53 19779.42 26180.52 33793.08 300
miper_ehance_all_eth87.22 22086.62 20589.02 26592.13 26677.40 28490.91 30094.81 22081.28 26984.32 26190.08 30979.26 12996.62 26483.81 18582.94 29993.04 301
miper_lstm_enhance85.27 27184.59 26987.31 30491.28 29974.63 31787.69 35494.09 24981.20 27381.36 30789.85 31574.97 18094.30 34181.03 23579.84 34593.01 302
ACMH80.38 1785.36 26783.68 28090.39 21294.45 18480.63 20094.73 14394.85 21682.09 24477.24 34792.65 22660.01 33797.58 19272.25 31984.87 28092.96 303
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_enhance_ethall86.90 23286.18 22189.06 26391.66 28677.58 28290.22 31494.82 21979.16 29584.48 25289.10 32579.19 13196.66 26284.06 18082.94 29992.94 304
lessismore_v086.04 32888.46 35968.78 36980.59 39273.01 37290.11 30855.39 35996.43 28275.06 30265.06 38692.90 305
V4287.68 19386.86 19390.15 22190.58 32980.14 21294.24 17695.28 19183.66 20885.67 21391.33 27074.73 18397.41 21584.43 17781.83 31392.89 306
XVG-ACMP-BASELINE86.00 25584.84 26489.45 25491.20 30078.00 26791.70 28095.55 17185.05 18082.97 28892.25 24054.49 36597.48 20182.93 19587.45 26092.89 306
v887.50 20786.71 19989.89 23491.37 29579.40 23594.50 15595.38 18684.81 18683.60 27891.33 27076.05 16297.42 21082.84 19880.51 33892.84 308
pm-mvs186.61 24185.54 24589.82 23791.44 29080.18 21095.28 10994.85 21683.84 20481.66 30292.62 22772.45 21996.48 27779.67 25578.06 35292.82 309
K. test v381.59 31380.15 31585.91 33289.89 34469.42 36792.57 25387.71 36985.56 16673.44 37089.71 31755.58 35795.52 32177.17 28269.76 37692.78 310
anonymousdsp87.84 18887.09 18790.12 22389.13 35180.54 20394.67 14795.55 17182.05 24583.82 27192.12 24471.47 22697.15 23787.15 14387.80 25692.67 311
IterMVS-SCA-FT85.45 26484.53 27088.18 28791.71 28376.87 29090.19 31592.65 28385.40 17081.44 30590.54 29566.79 28495.00 33481.04 23381.05 32592.66 312
v1087.25 21786.38 21289.85 23591.19 30179.50 23294.48 15695.45 18083.79 20683.62 27791.19 27575.13 17697.42 21081.94 21880.60 33392.63 313
ACMH+81.04 1485.05 27583.46 28389.82 23794.66 17179.37 23694.44 16194.12 24882.19 24378.04 34292.82 22158.23 34997.54 19673.77 31282.90 30292.54 314
pmmvs584.21 28682.84 29688.34 28288.95 35376.94 28992.41 25691.91 30875.63 33680.28 31991.18 27764.59 30395.57 31977.09 28483.47 29492.53 315
IterMVS84.88 27783.98 27787.60 29791.44 29076.03 30290.18 31692.41 28783.24 22281.06 31190.42 29966.60 28794.28 34279.46 25780.98 33092.48 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS87.44 20886.10 22691.44 16692.61 25483.62 11192.63 25195.66 16467.26 38281.47 30492.15 24277.95 14598.22 14379.71 25495.48 11992.47 317
dmvs_re84.20 28783.22 28887.14 31391.83 27977.81 27490.04 31890.19 34584.70 19081.49 30389.17 32464.37 30591.13 37771.58 32185.65 27592.46 318
testgi80.94 32380.20 31483.18 35287.96 36666.29 37691.28 29090.70 33983.70 20778.12 34192.84 21951.37 37490.82 37963.34 36982.46 30592.43 319
JIA-IIPM81.04 32078.98 33287.25 30788.64 35573.48 32981.75 38889.61 35973.19 36182.05 29873.71 39266.07 29695.87 30771.18 32584.60 28292.41 320
BH-w/o87.57 20387.05 18989.12 26194.90 15977.90 27092.41 25693.51 26482.89 23183.70 27491.34 26975.75 16997.07 24475.49 29693.49 16092.39 321
PMMVS85.71 26284.96 26087.95 29288.90 35477.09 28788.68 34190.06 34972.32 36986.47 19390.76 29272.15 22094.40 33881.78 22393.49 16092.36 322
PVSNet_BlendedMVS89.98 12189.70 11790.82 19496.12 9781.25 18193.92 20096.83 6683.49 21489.10 14292.26 23981.04 11198.85 8686.72 15087.86 25392.35 323
Patchmtry82.71 30180.93 30788.06 28990.05 34076.37 29984.74 37891.96 30672.28 37081.32 30887.87 34771.03 23095.50 32468.97 34080.15 34092.32 324
PatchMatch-RL86.77 23885.54 24590.47 21095.88 11282.71 14590.54 30592.31 29179.82 28784.32 26191.57 26868.77 26796.39 28473.16 31593.48 16292.32 324
pmmvs683.42 29781.60 30188.87 26888.01 36577.87 27294.96 12894.24 24274.67 34778.80 33891.09 28260.17 33696.49 27677.06 28575.40 36692.23 326
DSMNet-mixed76.94 34676.29 34578.89 36583.10 38756.11 40187.78 35179.77 39360.65 39075.64 35888.71 33361.56 32388.34 38860.07 37989.29 22892.21 327
testing380.46 32579.59 32383.06 35493.44 22964.64 38393.33 22185.47 37884.34 19579.93 32790.84 28844.35 38892.39 36557.06 38687.56 25792.16 328
CHOSEN 280x42085.15 27383.99 27688.65 27592.47 25678.40 25879.68 39392.76 27874.90 34581.41 30689.59 31869.85 24995.51 32279.92 25395.29 12692.03 329
UnsupCasMVSNet_eth80.07 32978.27 33585.46 33685.24 38272.63 34088.45 34594.87 21582.99 22871.64 37788.07 34356.34 35591.75 37273.48 31463.36 38992.01 330
test_fmvs283.98 28984.03 27483.83 35187.16 37067.53 37593.93 19992.89 27477.62 31786.89 18693.53 19747.18 38492.02 36990.54 10386.51 26991.93 331
test0.0.03 182.41 30481.69 30084.59 34488.23 36272.89 33390.24 31287.83 36883.41 21679.86 32889.78 31667.25 27788.99 38765.18 36283.42 29691.90 332
pmmvs485.43 26583.86 27890.16 22090.02 34182.97 13690.27 30892.67 28275.93 33480.73 31391.74 25971.05 22995.73 31678.85 26583.46 29591.78 333
LTVRE_ROB82.13 1386.26 25384.90 26290.34 21694.44 18581.50 17292.31 26494.89 21283.03 22679.63 33192.67 22569.69 25097.79 17671.20 32386.26 27191.72 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ppachtmachnet_test81.84 30880.07 31687.15 31288.46 35974.43 32189.04 33792.16 29675.33 33977.75 34488.99 32766.20 29395.37 32765.12 36377.60 35591.65 335
COLMAP_ROBcopyleft80.39 1683.96 29082.04 29989.74 24195.28 13679.75 22794.25 17492.28 29275.17 34178.02 34393.77 19258.60 34897.84 17565.06 36485.92 27291.63 336
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Syy-MVS80.07 32979.78 31880.94 36191.92 27359.93 39289.75 32387.40 37281.72 25878.82 33687.20 35466.29 29291.29 37547.06 39387.84 25491.60 337
myMVS_eth3d79.67 33478.79 33382.32 35991.92 27364.08 38489.75 32387.40 37281.72 25878.82 33687.20 35445.33 38691.29 37559.09 38287.84 25491.60 337
FMVSNet581.52 31579.60 32287.27 30591.17 30277.95 26891.49 28592.26 29476.87 32476.16 35487.91 34651.67 37392.34 36667.74 34981.16 32191.52 339
ITE_SJBPF88.24 28591.88 27677.05 28892.92 27385.54 16780.13 32393.30 20457.29 35296.20 29372.46 31884.71 28191.49 340
MDA-MVSNet-bldmvs78.85 33976.31 34486.46 32489.76 34573.88 32588.79 33990.42 34179.16 29559.18 39188.33 33960.20 33594.04 34462.00 37368.96 38091.48 341
MIMVSNet179.38 33677.28 33885.69 33486.35 37373.67 32691.61 28392.75 27978.11 31672.64 37388.12 34248.16 38191.97 37160.32 37777.49 35691.43 342
EU-MVSNet81.32 31880.95 30682.42 35888.50 35863.67 38693.32 22291.33 32164.02 38780.57 31792.83 22061.21 32892.27 36776.34 29080.38 33991.32 343
Baseline_NR-MVSNet87.07 22786.63 20488.40 27991.44 29077.87 27294.23 17792.57 28484.12 19885.74 21292.08 24877.25 15196.04 29882.29 20979.94 34291.30 344
D2MVS85.90 25785.09 25788.35 28190.79 32177.42 28391.83 27695.70 16080.77 27780.08 32490.02 31066.74 28696.37 28581.88 22087.97 25191.26 345
TransMVSNet (Re)84.43 28483.06 29188.54 27791.72 28278.44 25695.18 11592.82 27782.73 23479.67 33092.12 24473.49 20395.96 30371.10 32768.73 38291.21 346
YYNet179.22 33777.20 33985.28 33988.20 36472.66 33885.87 36790.05 35174.33 35062.70 38787.61 34966.09 29592.03 36866.94 35472.97 36991.15 347
our_test_381.93 30780.46 31086.33 32788.46 35973.48 32988.46 34491.11 32676.46 32676.69 35188.25 34066.89 28294.36 33968.75 34179.08 35091.14 348
Anonymous2023120681.03 32179.77 32084.82 34387.85 36870.26 36391.42 28692.08 29973.67 35677.75 34489.25 32362.43 31793.08 36061.50 37582.00 31291.12 349
CL-MVSNet_self_test81.74 31080.53 30885.36 33785.96 37672.45 34390.25 31093.07 27181.24 27179.85 32987.29 35370.93 23292.52 36466.95 35369.23 37891.11 350
MDA-MVSNet_test_wron79.21 33877.19 34085.29 33888.22 36372.77 33585.87 36790.06 34974.34 34962.62 38987.56 35066.14 29491.99 37066.90 35773.01 36891.10 351
mvsany_test185.42 26685.30 25385.77 33387.95 36775.41 31087.61 35780.97 39176.82 32588.68 14995.83 10477.44 15090.82 37985.90 15886.51 26991.08 352
KD-MVS_self_test80.20 32879.24 32683.07 35385.64 38065.29 38091.01 29893.93 25278.71 30576.32 35386.40 36159.20 34392.93 36272.59 31769.35 37791.00 353
WB-MVSnew83.77 29483.28 28585.26 34091.48 28971.03 35691.89 27387.98 36678.91 29784.78 24490.22 30269.11 26394.02 34564.70 36590.44 20490.71 354
CMPMVSbinary59.16 2180.52 32479.20 32884.48 34583.98 38467.63 37489.95 32193.84 25864.79 38666.81 38591.14 28057.93 35095.17 32976.25 29188.10 24790.65 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc83.06 35479.99 39363.51 38777.47 39492.86 27574.34 36784.45 37228.74 39595.06 33373.06 31668.89 38190.61 356
USDC82.76 30081.26 30587.26 30691.17 30274.55 31889.27 33193.39 26678.26 31375.30 36092.08 24854.43 36696.63 26371.64 32085.79 27490.61 356
GG-mvs-BLEND87.94 29389.73 34777.91 26987.80 35078.23 39880.58 31683.86 37359.88 33895.33 32871.20 32392.22 18590.60 358
tfpnnormal84.72 28183.23 28789.20 25992.79 25180.05 21794.48 15695.81 15082.38 23981.08 31091.21 27469.01 26496.95 25161.69 37480.59 33490.58 359
N_pmnet68.89 35668.44 35870.23 37689.07 35228.79 41388.06 34719.50 41369.47 37971.86 37684.93 36961.24 32791.75 37254.70 38877.15 35890.15 360
Anonymous2024052180.44 32679.21 32784.11 34985.75 37967.89 37192.86 24693.23 26875.61 33775.59 35987.47 35150.03 37694.33 34071.14 32681.21 32090.12 361
test20.0379.95 33179.08 33082.55 35685.79 37867.74 37391.09 29691.08 32781.23 27274.48 36689.96 31361.63 32190.15 38160.08 37876.38 36289.76 362
TDRefinement79.81 33277.34 33787.22 31079.24 39575.48 30993.12 23392.03 30176.45 32775.01 36191.58 26649.19 37996.44 28170.22 33369.18 37989.75 363
test_fmvs377.67 34477.16 34179.22 36479.52 39461.14 39092.34 26191.64 31373.98 35378.86 33586.59 35827.38 39887.03 38988.12 13075.97 36489.50 364
KD-MVS_2432*160078.50 34076.02 34785.93 33086.22 37474.47 31984.80 37692.33 28979.29 29276.98 34985.92 36453.81 36993.97 34667.39 35057.42 39489.36 365
miper_refine_blended78.50 34076.02 34785.93 33086.22 37474.47 31984.80 37692.33 28979.29 29276.98 34985.92 36453.81 36993.97 34667.39 35057.42 39489.36 365
EG-PatchMatch MVS82.37 30580.34 31188.46 27890.27 33579.35 23792.80 24894.33 23877.14 32373.26 37190.18 30547.47 38396.72 25970.25 33187.32 26389.30 367
pmmvs-eth3d80.97 32278.72 33487.74 29484.99 38379.97 22390.11 31791.65 31275.36 33873.51 36986.03 36359.45 34093.96 34875.17 30072.21 37189.29 368
MVP-Stereo85.97 25684.86 26389.32 25690.92 31682.19 15792.11 27094.19 24378.76 30378.77 33991.63 26368.38 27296.56 27275.01 30393.95 15089.20 369
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
new-patchmatchnet76.41 34775.17 35080.13 36282.65 38959.61 39387.66 35591.08 32778.23 31469.85 38183.22 37654.76 36391.63 37464.14 36864.89 38789.16 370
MS-PatchMatch85.05 27584.16 27287.73 29591.42 29378.51 25491.25 29293.53 26377.50 31880.15 32191.58 26661.99 31995.51 32275.69 29594.35 14689.16 370
UnsupCasMVSNet_bld76.23 34873.27 35285.09 34283.79 38572.92 33285.65 37093.47 26571.52 37268.84 38379.08 38749.77 37793.21 35866.81 35860.52 39189.13 372
PM-MVS78.11 34276.12 34684.09 35083.54 38670.08 36488.97 33885.27 38079.93 28474.73 36486.43 36034.70 39493.48 35479.43 26072.06 37288.72 373
LF4IMVS80.37 32779.07 33184.27 34886.64 37269.87 36689.39 33091.05 32976.38 32874.97 36290.00 31147.85 38294.25 34374.55 30880.82 33288.69 374
TinyColmap79.76 33377.69 33685.97 32991.71 28373.12 33189.55 32590.36 34375.03 34272.03 37590.19 30446.22 38596.19 29563.11 37081.03 32688.59 375
test_040281.30 31979.17 32987.67 29693.19 23478.17 26492.98 24091.71 30975.25 34076.02 35790.31 30059.23 34296.37 28550.22 39183.63 29288.47 376
PVSNet_073.20 2077.22 34574.83 35184.37 34690.70 32671.10 35583.09 38589.67 35872.81 36673.93 36883.13 37760.79 33293.70 35268.54 34250.84 39888.30 377
dmvs_testset74.57 35075.81 34970.86 37587.72 36940.47 40887.05 36177.90 40082.75 23371.15 37985.47 36867.98 27484.12 39745.26 39476.98 36188.00 378
OpenMVS_ROBcopyleft74.94 1979.51 33577.03 34286.93 31687.00 37176.23 30192.33 26290.74 33868.93 38074.52 36588.23 34149.58 37896.62 26457.64 38484.29 28487.94 379
mvsany_test374.95 34973.26 35380.02 36374.61 39763.16 38885.53 37178.42 39674.16 35174.89 36386.46 35936.02 39389.09 38682.39 20666.91 38387.82 380
LCM-MVSNet66.00 35962.16 36477.51 36964.51 40758.29 39583.87 38290.90 33448.17 39654.69 39373.31 39316.83 40786.75 39065.47 36061.67 39087.48 381
test_vis1_rt77.96 34376.46 34382.48 35785.89 37771.74 34990.25 31078.89 39571.03 37671.30 37881.35 38442.49 39091.05 37884.55 17582.37 30684.65 382
pmmvs371.81 35468.71 35781.11 36075.86 39670.42 36286.74 36283.66 38458.95 39168.64 38480.89 38536.93 39289.52 38463.10 37163.59 38883.39 383
test_f71.95 35370.87 35575.21 37174.21 39959.37 39485.07 37585.82 37665.25 38570.42 38083.13 37723.62 39982.93 39978.32 26971.94 37383.33 384
MVS-HIRNet73.70 35172.20 35478.18 36891.81 28056.42 40082.94 38682.58 38755.24 39268.88 38266.48 39655.32 36195.13 33058.12 38388.42 24383.01 385
test_method50.52 36948.47 37156.66 38552.26 41118.98 41541.51 40381.40 39010.10 40544.59 40075.01 39128.51 39668.16 40353.54 38949.31 39982.83 386
new_pmnet72.15 35270.13 35678.20 36782.95 38865.68 37783.91 38182.40 38862.94 38964.47 38679.82 38642.85 38986.26 39357.41 38574.44 36782.65 387
ANet_high58.88 36654.22 37072.86 37256.50 41056.67 39780.75 39086.00 37573.09 36337.39 40264.63 39922.17 40279.49 40243.51 39623.96 40482.43 388
PMMVS259.60 36356.40 36569.21 37968.83 40446.58 40573.02 39877.48 40155.07 39349.21 39672.95 39417.43 40680.04 40149.32 39244.33 40180.99 389
WB-MVS67.92 35767.49 35969.21 37981.09 39041.17 40788.03 34878.00 39973.50 35862.63 38883.11 37963.94 30786.52 39125.66 40451.45 39779.94 390
APD_test169.04 35566.26 36177.36 37080.51 39262.79 38985.46 37283.51 38554.11 39459.14 39284.79 37123.40 40189.61 38355.22 38770.24 37579.68 391
SSC-MVS67.06 35866.56 36068.56 38180.54 39140.06 40987.77 35277.37 40272.38 36861.75 39082.66 38163.37 31186.45 39224.48 40548.69 40079.16 392
FPMVS64.63 36162.55 36370.88 37470.80 40156.71 39684.42 37984.42 38251.78 39549.57 39581.61 38323.49 40081.48 40040.61 40076.25 36374.46 393
EGC-MVSNET61.97 36256.37 36678.77 36689.63 34873.50 32889.12 33582.79 3860.21 4101.24 41184.80 37039.48 39190.04 38244.13 39575.94 36572.79 394
testf159.54 36456.11 36769.85 37769.28 40256.61 39880.37 39176.55 40342.58 39945.68 39875.61 38811.26 40984.18 39543.20 39760.44 39268.75 395
APD_test259.54 36456.11 36769.85 37769.28 40256.61 39880.37 39176.55 40342.58 39945.68 39875.61 38811.26 40984.18 39543.20 39760.44 39268.75 395
test_vis3_rt65.12 36062.60 36272.69 37371.44 40060.71 39187.17 35965.55 40663.80 38853.22 39465.65 39814.54 40889.44 38576.65 28665.38 38567.91 397
PMVScopyleft47.18 2252.22 36848.46 37263.48 38345.72 41246.20 40673.41 39778.31 39741.03 40130.06 40465.68 3976.05 41183.43 39830.04 40265.86 38460.80 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 37038.59 37657.77 38456.52 40948.77 40455.38 40058.64 41029.33 40428.96 40552.65 4014.68 41264.62 40628.11 40333.07 40259.93 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft56.31 38674.23 39851.81 40356.67 41144.85 39748.54 39775.16 39027.87 39758.74 40740.92 39952.22 39658.39 400
Gipumacopyleft57.99 36754.91 36967.24 38288.51 35665.59 37852.21 40190.33 34443.58 39842.84 40151.18 40220.29 40485.07 39434.77 40170.45 37451.05 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN43.23 37142.29 37346.03 38765.58 40637.41 41073.51 39664.62 40733.99 40228.47 40647.87 40319.90 40567.91 40422.23 40624.45 40332.77 402
EMVS42.07 37241.12 37444.92 38863.45 40835.56 41273.65 39563.48 40833.05 40326.88 40745.45 40421.27 40367.14 40519.80 40723.02 40532.06 403
tmp_tt35.64 37339.24 37524.84 38914.87 41323.90 41462.71 39951.51 4126.58 40736.66 40362.08 40044.37 38730.34 40952.40 39022.00 40620.27 404
wuyk23d21.27 37520.48 37823.63 39068.59 40536.41 41149.57 4026.85 4149.37 4067.89 4084.46 4104.03 41331.37 40817.47 40816.07 4073.12 405
test1238.76 37711.22 3801.39 3910.85 4150.97 41685.76 3690.35 4160.54 4092.45 4108.14 4090.60 4140.48 4102.16 4100.17 4092.71 406
testmvs8.92 37611.52 3791.12 3921.06 4140.46 41786.02 3660.65 4150.62 4082.74 4099.52 4080.31 4150.45 4112.38 4090.39 4082.46 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k22.14 37429.52 3770.00 3930.00 4160.00 4180.00 40495.76 1540.00 4110.00 41294.29 16675.66 1720.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas6.64 3798.86 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41179.70 1230.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re7.82 37810.43 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41293.88 1870.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS64.08 38459.14 381
FOURS198.86 185.54 6798.29 197.49 689.79 4696.29 18
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1191.45 11
eth-test20.00 416
eth-test0.00 416
ZD-MVS98.15 3486.62 3397.07 4583.63 20994.19 4296.91 5787.57 3199.26 4291.99 7698.44 52
test_241102_ONE98.77 585.99 5297.44 1590.26 3397.71 197.96 1792.31 499.38 31
9.1494.47 2097.79 4996.08 6297.44 1586.13 15595.10 3397.40 3388.34 2299.22 4493.25 4498.70 35
save fliter97.85 4685.63 6695.21 11396.82 6889.44 53
test072698.78 385.93 5597.19 1197.47 1190.27 3197.64 498.13 391.47 8
test_part298.55 1287.22 1996.40 17
sam_mvs70.60 236
MTGPAbinary96.97 50
test_post188.00 3499.81 40769.31 25895.53 32076.65 286
test_post10.29 40670.57 24095.91 306
patchmatchnet-post83.76 37471.53 22496.48 277
MTMP96.16 5460.64 409
gm-plane-assit89.60 34968.00 37077.28 32288.99 32797.57 19379.44 259
TEST997.53 5886.49 3794.07 18796.78 7281.61 26392.77 7696.20 8787.71 2899.12 51
test_897.49 6086.30 4594.02 19296.76 7581.86 25492.70 8096.20 8787.63 2999.02 61
agg_prior97.38 6385.92 5796.72 8192.16 9298.97 75
test_prior485.96 5494.11 182
test_prior294.12 18187.67 11692.63 8196.39 8286.62 3891.50 8798.67 40
旧先验293.36 22071.25 37494.37 3997.13 24086.74 148
新几何293.11 235
原ACMM292.94 242
testdata298.75 9378.30 270
segment_acmp87.16 36
testdata192.15 26887.94 105
plane_prior794.70 16982.74 142
plane_prior694.52 17982.75 14074.23 189
plane_prior494.86 140
plane_prior382.75 14090.26 3386.91 183
plane_prior295.85 7790.81 17
plane_prior194.59 174
plane_prior82.73 14395.21 11389.66 5089.88 215
n20.00 417
nn0.00 417
door-mid85.49 377
test1196.57 92
door85.33 379
HQP5-MVS81.56 170
HQP-NCC94.17 19794.39 16688.81 7485.43 228
ACMP_Plane94.17 19794.39 16688.81 7485.43 228
BP-MVS87.11 145
HQP3-MVS96.04 13389.77 219
HQP2-MVS73.83 199
NP-MVS94.37 18882.42 15293.98 179
MDTV_nov1_ep1383.56 28291.69 28569.93 36587.75 35391.54 31678.60 30684.86 24388.90 32969.54 25296.03 29970.25 33188.93 234
ACMMP++_ref87.47 258
ACMMP++88.01 250
Test By Simon80.02 118