This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
patch_mono-293.74 5194.32 2892.01 14097.54 6078.37 26293.40 22797.19 3588.02 10894.99 3997.21 4488.35 2198.44 13194.07 3898.09 6899.23 1
test_0728_THIRD90.75 1997.04 1198.05 1692.09 699.55 1695.64 1999.13 399.13 2
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6989.90 1299.30 4394.70 3198.04 7199.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 7596.20 1998.10 889.39 1699.34 3795.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSC_two_6792asdad96.52 197.78 5490.86 196.85 6699.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5490.86 196.85 6699.61 496.03 1499.06 999.07 5
MM95.10 1194.91 1695.68 596.09 10688.34 996.68 3394.37 24495.08 194.68 4097.72 2682.94 8899.64 197.85 198.76 2999.06 7
IU-MVS98.77 586.00 5096.84 6881.26 28097.26 795.50 2399.13 399.03 8
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
test_241102_TWO97.44 1590.31 2997.62 598.07 1291.46 1099.58 1095.66 1799.12 698.98 10
DVP-MVS++95.98 196.36 194.82 3197.78 5486.00 5098.29 197.49 690.75 1997.62 598.06 1492.59 299.61 495.64 1999.02 1298.86 11
PC_three_145282.47 24497.09 1097.07 5492.72 198.04 16992.70 6299.02 1298.86 11
DPE-MVScopyleft95.57 495.67 495.25 1198.36 2587.28 1895.56 10197.51 589.13 7097.14 997.91 2191.64 799.62 294.61 3399.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2997.71 198.07 1292.31 499.58 1095.66 1799.13 398.84 14
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 5292.59 298.94 8192.25 7398.99 1498.84 14
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7586.33 4297.33 797.30 2991.38 1295.39 3197.46 3288.98 1999.40 3094.12 3798.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
MVS_030494.18 3993.80 4995.34 994.91 16387.62 1495.97 7293.01 28492.58 394.22 4597.20 4680.56 11899.59 897.04 898.68 3798.81 17
dcpmvs_293.49 5694.19 3991.38 17497.69 5776.78 29594.25 18096.29 11388.33 9694.46 4296.88 6188.07 2598.64 10893.62 4498.09 6898.73 18
MCST-MVS94.45 2494.20 3895.19 1398.46 1987.50 1695.00 13097.12 4487.13 13192.51 9296.30 8689.24 1799.34 3793.46 4598.62 4698.73 18
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4697.28 3185.90 16297.67 398.10 888.41 2099.56 1294.66 3299.19 198.71 20
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 11196.96 5592.09 695.32 3297.08 5289.49 1599.33 4095.10 2898.85 2098.66 21
NCCC94.81 1794.69 2195.17 1497.83 5187.46 1795.66 9396.93 5992.34 493.94 5496.58 7987.74 2799.44 2992.83 5798.40 5498.62 22
ACMMP_NAP94.74 1994.56 2295.28 1098.02 4187.70 1195.68 9097.34 2388.28 9995.30 3397.67 2885.90 5099.54 2093.91 4098.95 1598.60 23
3Dnovator+87.14 492.42 8491.37 9495.55 795.63 12988.73 697.07 1896.77 7790.84 1684.02 27696.62 7775.95 17199.34 3787.77 14097.68 8398.59 24
region2R94.43 2694.27 3494.92 2098.65 886.67 3096.92 2497.23 3488.60 9093.58 6197.27 4085.22 5899.54 2092.21 7498.74 3198.56 25
ZNCC-MVS94.47 2394.28 3295.03 1698.52 1586.96 2096.85 2897.32 2788.24 10093.15 6997.04 5586.17 4799.62 292.40 6798.81 2398.52 26
ACMMPR94.43 2694.28 3294.91 2198.63 986.69 2896.94 2097.32 2788.63 8793.53 6497.26 4285.04 6299.54 2092.35 7098.78 2698.50 27
DeepPCF-MVS89.96 194.20 3694.77 2092.49 12396.52 9180.00 22594.00 20297.08 4790.05 3695.65 2997.29 3989.66 1398.97 7893.95 3998.71 3298.50 27
casdiffmvs_mvgpermissive92.96 7592.83 7393.35 7794.59 17983.40 12395.00 13096.34 11090.30 3192.05 10096.05 9883.43 8098.15 15392.07 8095.67 12198.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SF-MVS94.97 1294.90 1895.20 1297.84 5087.76 1096.65 3497.48 1087.76 12095.71 2797.70 2788.28 2399.35 3693.89 4198.78 2698.48 30
SR-MVS94.23 3394.17 4094.43 4798.21 3285.78 6396.40 3896.90 6288.20 10394.33 4497.40 3584.75 6999.03 6193.35 4997.99 7298.48 30
TSAR-MVS + MP.94.85 1494.94 1494.58 4298.25 2986.33 4296.11 5996.62 9188.14 10596.10 2096.96 5889.09 1898.94 8194.48 3498.68 3798.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MTAPA94.42 2894.22 3595.00 1898.42 2186.95 2194.36 17796.97 5391.07 1393.14 7097.56 2984.30 7399.56 1293.43 4698.75 3098.47 33
XVS94.45 2494.32 2894.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7797.16 5085.02 6399.49 2691.99 8498.56 5098.47 33
X-MVStestdata88.31 18286.13 22994.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7723.41 42085.02 6399.49 2691.99 8498.56 5098.47 33
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 8290.27 3297.04 1198.05 1691.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MP-MVScopyleft94.25 3194.07 4294.77 3598.47 1886.31 4496.71 3196.98 5289.04 7391.98 10297.19 4785.43 5699.56 1292.06 8398.79 2498.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS93.99 4493.78 5194.63 4098.50 1685.90 6096.87 2696.91 6188.70 8591.83 11197.17 4983.96 7799.55 1691.44 9798.64 4598.43 38
test111189.10 15888.64 15390.48 21195.53 13574.97 31896.08 6084.89 39488.13 10690.16 13696.65 7363.29 32098.10 15686.14 16196.90 9898.39 39
CANet93.54 5593.20 6694.55 4395.65 12885.73 6594.94 13396.69 8791.89 890.69 12795.88 10781.99 10999.54 2093.14 5297.95 7498.39 39
DeepC-MVS_fast89.43 294.04 4193.79 5094.80 3397.48 6486.78 2695.65 9596.89 6389.40 6092.81 8096.97 5785.37 5799.24 4690.87 10798.69 3598.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVS-pluss94.21 3494.00 4594.85 2598.17 3386.65 3194.82 14297.17 4086.26 15492.83 7997.87 2385.57 5499.56 1294.37 3698.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
RRT-MVS90.85 10990.70 10891.30 17794.25 20176.83 29494.85 14096.13 13189.04 7390.23 13394.88 14770.15 25398.72 10091.86 9194.88 14098.34 42
reproduce_model94.76 1894.92 1594.29 5497.92 4385.18 7495.95 7597.19 3589.67 5495.27 3498.16 386.53 4399.36 3595.42 2498.15 6498.33 44
test250687.21 22686.28 22490.02 23395.62 13073.64 33496.25 4771.38 41887.89 11490.45 12996.65 7355.29 37298.09 16486.03 16596.94 9698.33 44
ECVR-MVScopyleft89.09 16088.53 15690.77 20195.62 13075.89 30896.16 5284.22 39687.89 11490.20 13496.65 7363.19 32298.10 15685.90 16696.94 9698.33 44
HPM-MVScopyleft94.02 4293.88 4794.43 4798.39 2385.78 6397.25 1097.07 4886.90 13992.62 8996.80 6884.85 6899.17 5092.43 6598.65 4498.33 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS93.96 4693.72 5494.68 3898.43 2086.22 4795.30 10997.78 187.45 12793.26 6697.33 3884.62 7099.51 2490.75 10998.57 4998.32 48
reproduce-ours94.82 1594.97 1294.38 5097.91 4785.46 6895.86 7997.15 4189.82 4495.23 3598.10 887.09 3799.37 3395.30 2598.25 6098.30 49
our_new_method94.82 1594.97 1294.38 5097.91 4785.46 6895.86 7997.15 4189.82 4495.23 3598.10 887.09 3799.37 3395.30 2598.25 6098.30 49
GST-MVS94.21 3493.97 4694.90 2398.41 2286.82 2496.54 3697.19 3588.24 10093.26 6696.83 6485.48 5599.59 891.43 9898.40 5498.30 49
HFP-MVS94.52 2294.40 2694.86 2498.61 1086.81 2596.94 2097.34 2388.63 8793.65 5997.21 4486.10 4899.49 2692.35 7098.77 2898.30 49
baseline92.39 8592.29 8392.69 11494.46 19081.77 17294.14 18696.27 11789.22 6691.88 10796.00 9982.35 9697.99 17391.05 10195.27 13598.30 49
HPM-MVS++copyleft95.14 1094.91 1695.83 498.25 2989.65 495.92 7696.96 5591.75 994.02 5396.83 6488.12 2499.55 1693.41 4898.94 1698.28 54
APD-MVScopyleft94.24 3294.07 4294.75 3698.06 3986.90 2395.88 7896.94 5885.68 16895.05 3897.18 4887.31 3599.07 5691.90 9098.61 4898.28 54
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MGCFI-Net93.03 7392.63 7794.23 5695.62 13085.92 5796.08 6096.33 11189.86 4293.89 5694.66 15982.11 10498.50 11992.33 7292.82 18698.27 56
sasdasda93.27 6692.75 7494.85 2595.70 12587.66 1296.33 3996.41 10590.00 3894.09 4994.60 16282.33 9798.62 11192.40 6792.86 18398.27 56
agg_prior290.54 11098.68 3798.27 56
canonicalmvs93.27 6692.75 7494.85 2595.70 12587.66 1296.33 3996.41 10590.00 3894.09 4994.60 16282.33 9798.62 11192.40 6792.86 18398.27 56
APD-MVS_3200maxsize93.78 4993.77 5293.80 6797.92 4384.19 10196.30 4196.87 6586.96 13593.92 5597.47 3183.88 7898.96 8092.71 6197.87 7698.26 60
CP-MVS94.34 2994.21 3794.74 3798.39 2386.64 3297.60 497.24 3288.53 9292.73 8597.23 4385.20 5999.32 4192.15 7798.83 2298.25 61
casdiffmvspermissive92.51 8192.43 8192.74 11094.41 19481.98 16894.54 15996.23 12289.57 5691.96 10496.17 9482.58 9398.01 17190.95 10595.45 12998.23 62
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IS-MVSNet91.43 9891.09 10192.46 12495.87 11981.38 18496.95 1993.69 27189.72 5389.50 14595.98 10178.57 14597.77 18383.02 20296.50 10998.22 63
CS-MVS94.12 4094.44 2593.17 8496.55 8883.08 13797.63 396.95 5791.71 1193.50 6596.21 8985.61 5298.24 14693.64 4398.17 6298.19 64
LFMVS90.08 12889.13 14192.95 9996.71 8082.32 16396.08 6089.91 36386.79 14092.15 9996.81 6662.60 32498.34 13987.18 14993.90 16098.19 64
CDPH-MVS92.83 7692.30 8294.44 4597.79 5286.11 4994.06 19696.66 8880.09 29492.77 8296.63 7686.62 4099.04 6087.40 14598.66 4198.17 66
alignmvs93.08 7292.50 8094.81 3295.62 13087.61 1595.99 7096.07 13789.77 5194.12 4894.87 14880.56 11898.66 10492.42 6693.10 17998.15 67
BP-MVS192.48 8292.07 8593.72 7194.50 18784.39 9895.90 7794.30 24790.39 2892.67 8795.94 10374.46 19298.65 10693.14 5297.35 8998.13 68
SPE-MVS-test94.02 4294.29 3193.24 8196.69 8183.24 12797.49 596.92 6092.14 592.90 7595.77 11385.02 6398.33 14193.03 5498.62 4698.13 68
VNet92.24 8691.91 8793.24 8196.59 8583.43 12194.84 14196.44 10289.19 6894.08 5295.90 10577.85 15598.17 15188.90 12793.38 17398.13 68
PHI-MVS93.89 4793.65 5894.62 4196.84 7886.43 3996.69 3297.49 685.15 18193.56 6396.28 8785.60 5399.31 4292.45 6498.79 2498.12 71
test_prior93.82 6597.29 7084.49 9096.88 6498.87 8598.11 72
test9_res91.91 8898.71 3298.07 73
CSCG93.23 6993.05 6893.76 6998.04 4084.07 10396.22 4897.37 2184.15 20490.05 13895.66 11787.77 2699.15 5389.91 11798.27 5898.07 73
EPNet91.79 9191.02 10294.10 5790.10 34785.25 7396.03 6792.05 31092.83 287.39 18495.78 11279.39 13499.01 6688.13 13697.48 8598.05 75
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMPcopyleft93.24 6892.88 7294.30 5398.09 3885.33 7296.86 2797.45 1488.33 9690.15 13797.03 5681.44 11299.51 2490.85 10895.74 12098.04 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SD-MVS94.96 1395.33 893.88 6297.25 7286.69 2896.19 4997.11 4690.42 2796.95 1397.27 4089.53 1496.91 26194.38 3598.85 2098.03 77
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_HR93.45 5893.31 6293.84 6496.99 7584.84 7893.24 23997.24 3288.76 8291.60 11695.85 10886.07 4998.66 10491.91 8898.16 6398.03 77
Anonymous20240521187.68 19886.13 22992.31 13296.66 8280.74 20294.87 13891.49 32980.47 29089.46 14695.44 12454.72 37598.23 14782.19 21989.89 22497.97 79
test_fmvsmconf_n94.60 2194.81 1993.98 5894.62 17884.96 7796.15 5497.35 2289.37 6196.03 2398.11 686.36 4499.01 6697.45 297.83 7897.96 80
train_agg93.44 5993.08 6794.52 4497.53 6186.49 3794.07 19496.78 7581.86 26392.77 8296.20 9087.63 2999.12 5492.14 7898.69 3597.94 81
mvs_anonymous89.37 15489.32 13789.51 25793.47 23774.22 32791.65 29094.83 22782.91 23785.45 23293.79 19581.23 11596.36 29686.47 15994.09 15797.94 81
VDD-MVS90.74 11289.92 12493.20 8396.27 9783.02 14095.73 8793.86 26588.42 9592.53 9096.84 6362.09 32698.64 10890.95 10592.62 18897.93 83
HPM-MVS_fast93.40 6493.22 6593.94 6198.36 2584.83 7997.15 1396.80 7485.77 16592.47 9397.13 5182.38 9599.07 5690.51 11298.40 5497.92 84
GDP-MVS92.04 8791.46 9393.75 7094.55 18484.69 8395.60 10096.56 9687.83 11793.07 7395.89 10673.44 21298.65 10690.22 11596.03 11797.91 85
SR-MVS-dyc-post93.82 4893.82 4893.82 6597.92 4384.57 8696.28 4396.76 7887.46 12593.75 5797.43 3384.24 7499.01 6692.73 5897.80 7997.88 86
RE-MVS-def93.68 5697.92 4384.57 8696.28 4396.76 7887.46 12593.75 5797.43 3382.94 8892.73 5897.80 7997.88 86
test_fmvsmconf0.1_n94.20 3694.31 3093.88 6292.46 26684.80 8096.18 5196.82 7189.29 6495.68 2898.11 685.10 6098.99 7397.38 397.75 8297.86 88
test1294.34 5297.13 7386.15 4896.29 11391.04 12485.08 6199.01 6698.13 6697.86 88
VDDNet89.56 14488.49 16092.76 10895.07 15282.09 16596.30 4193.19 27981.05 28591.88 10796.86 6261.16 34298.33 14188.43 13392.49 19297.84 90
TSAR-MVS + GP.93.66 5393.41 6194.41 4996.59 8586.78 2694.40 16993.93 26189.77 5194.21 4695.59 12087.35 3498.61 11392.72 6096.15 11597.83 91
Vis-MVSNet (Re-imp)89.59 14389.44 13290.03 23195.74 12275.85 30995.61 9790.80 34787.66 12487.83 17395.40 12776.79 16196.46 28978.37 27696.73 10397.80 92
3Dnovator86.66 591.73 9490.82 10694.44 4594.59 17986.37 4197.18 1297.02 5089.20 6784.31 27196.66 7273.74 20899.17 5086.74 15597.96 7397.79 93
Vis-MVSNetpermissive91.75 9391.23 9793.29 7895.32 13983.78 11096.14 5695.98 14489.89 4090.45 12996.58 7975.09 18398.31 14484.75 18096.90 9897.78 94
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.01_n93.19 7093.02 6993.71 7289.25 36084.42 9796.06 6496.29 11389.06 7194.68 4098.13 479.22 13698.98 7797.22 497.24 9097.74 95
balanced_conf0393.98 4594.22 3593.26 8096.13 10183.29 12696.27 4596.52 9889.82 4495.56 3095.51 12284.50 7198.79 9494.83 3098.86 1997.72 96
GeoE90.05 12989.43 13391.90 15395.16 14980.37 21195.80 8494.65 23783.90 20987.55 18094.75 15478.18 15097.62 19681.28 23893.63 16497.71 97
mvsmamba90.33 12289.69 12792.25 13795.17 14881.64 17495.27 11493.36 27684.88 18889.51 14394.27 17569.29 26897.42 21489.34 12296.12 11697.68 98
MVSMamba_PlusPlus93.44 5993.54 6093.14 8696.58 8783.05 13896.06 6496.50 10084.42 20194.09 4995.56 12185.01 6698.69 10394.96 2998.66 4197.67 99
DELS-MVS93.43 6393.25 6493.97 5995.42 13785.04 7593.06 24697.13 4390.74 2191.84 10995.09 14186.32 4599.21 4891.22 9998.45 5297.65 100
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MG-MVS91.77 9291.70 9192.00 14397.08 7480.03 22393.60 22095.18 20487.85 11690.89 12596.47 8382.06 10798.36 13685.07 17497.04 9497.62 101
diffmvspermissive91.37 10091.23 9791.77 16093.09 24880.27 21292.36 26795.52 18387.03 13491.40 12094.93 14480.08 12397.44 21292.13 7994.56 14997.61 102
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM_NR91.22 10390.78 10792.52 12297.60 5981.46 18194.37 17596.24 12186.39 15187.41 18194.80 15382.06 10798.48 12182.80 20895.37 13197.61 102
Effi-MVS+91.59 9791.11 9993.01 9494.35 19983.39 12494.60 15595.10 20887.10 13290.57 12893.10 21881.43 11398.07 16789.29 12394.48 15297.59 104
DeepC-MVS88.79 393.31 6592.99 7094.26 5596.07 10885.83 6194.89 13696.99 5189.02 7689.56 14297.37 3782.51 9499.38 3192.20 7598.30 5797.57 105
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet91.70 9591.56 9292.13 13995.88 11780.50 20897.33 795.25 20086.15 15789.76 14195.60 11983.42 8298.32 14387.37 14793.25 17697.56 106
MVS_Test91.31 10191.11 9991.93 14894.37 19580.14 21693.46 22595.80 15986.46 14991.35 12193.77 19782.21 10298.09 16487.57 14394.95 13997.55 107
EIA-MVS91.95 8991.94 8691.98 14495.16 14980.01 22495.36 10496.73 8288.44 9389.34 14792.16 24683.82 7998.45 12989.35 12197.06 9397.48 108
PAPR90.02 13089.27 14092.29 13495.78 12180.95 19692.68 25796.22 12381.91 25986.66 19893.75 19982.23 10198.44 13179.40 27094.79 14297.48 108
UA-Net92.83 7692.54 7993.68 7396.10 10584.71 8295.66 9396.39 10791.92 793.22 6896.49 8283.16 8498.87 8584.47 18495.47 12797.45 110
EI-MVSNet-Vis-set93.01 7492.92 7193.29 7895.01 15483.51 12094.48 16195.77 16190.87 1592.52 9196.67 7184.50 7199.00 7191.99 8494.44 15497.36 111
test_yl90.69 11490.02 12292.71 11195.72 12382.41 16194.11 18995.12 20685.63 16991.49 11794.70 15574.75 18798.42 13486.13 16392.53 19097.31 112
DCV-MVSNet90.69 11490.02 12292.71 11195.72 12382.41 16194.11 18995.12 20685.63 16991.49 11794.70 15574.75 18798.42 13486.13 16392.53 19097.31 112
EC-MVSNet93.44 5993.71 5592.63 11695.21 14682.43 15897.27 996.71 8590.57 2692.88 7695.80 11183.16 8498.16 15293.68 4298.14 6597.31 112
mamv490.92 10791.78 8988.33 28895.67 12770.75 37192.92 25196.02 14381.90 26088.11 16495.34 12885.88 5196.97 25695.22 2795.01 13897.26 115
MVSFormer91.68 9691.30 9592.80 10693.86 22183.88 10895.96 7395.90 15284.66 19791.76 11294.91 14577.92 15297.30 22889.64 11997.11 9197.24 116
jason90.80 11090.10 11792.90 10193.04 25283.53 11993.08 24494.15 25480.22 29191.41 11994.91 14576.87 15997.93 17890.28 11496.90 9897.24 116
jason: jason.
WTY-MVS89.60 14288.92 14691.67 16395.47 13681.15 19092.38 26694.78 23183.11 23189.06 15394.32 17078.67 14396.61 27581.57 23590.89 21097.24 116
HyFIR lowres test88.09 18886.81 20091.93 14896.00 11180.63 20490.01 32995.79 16073.42 37087.68 17792.10 25273.86 20597.96 17580.75 24891.70 19797.19 119
test_fmvsm_n_192094.71 2095.11 1093.50 7695.79 12084.62 8496.15 5497.64 289.85 4397.19 897.89 2286.28 4698.71 10297.11 698.08 7097.17 120
ET-MVSNet_ETH3D87.51 21085.91 24192.32 13193.70 23083.93 10692.33 27090.94 34384.16 20372.09 38692.52 23569.90 25495.85 31889.20 12488.36 25297.17 120
EI-MVSNet-UG-set92.74 7892.62 7893.12 8794.86 16683.20 12994.40 16995.74 16490.71 2392.05 10096.60 7884.00 7698.99 7391.55 9593.63 16497.17 120
lupinMVS90.92 10790.21 11393.03 9393.86 22183.88 10892.81 25593.86 26579.84 29791.76 11294.29 17277.92 15298.04 16990.48 11397.11 9197.17 120
fmvsm_l_conf0.5_n94.29 3094.46 2493.79 6895.28 14185.43 7095.68 9096.43 10386.56 14696.84 1497.81 2587.56 3298.77 9697.14 596.82 10297.16 124
CHOSEN 1792x268888.84 16787.69 17892.30 13396.14 10081.42 18390.01 32995.86 15674.52 35987.41 18193.94 18775.46 18098.36 13680.36 25495.53 12397.12 125
fmvsm_l_conf0.5_n_a94.20 3694.40 2693.60 7495.29 14084.98 7695.61 9796.28 11686.31 15296.75 1697.86 2487.40 3398.74 9997.07 797.02 9597.07 126
thisisatest053088.67 17287.61 18091.86 15494.87 16580.07 21994.63 15489.90 36484.00 20788.46 16193.78 19666.88 29298.46 12583.30 19892.65 18797.06 127
CPTT-MVS91.99 8891.80 8892.55 12098.24 3181.98 16896.76 3096.49 10181.89 26290.24 13296.44 8478.59 14498.61 11389.68 11897.85 7797.06 127
FA-MVS(test-final)89.66 14088.91 14791.93 14894.57 18280.27 21291.36 29594.74 23384.87 18989.82 14092.61 23374.72 19098.47 12483.97 19093.53 16797.04 129
tttt051788.61 17487.78 17791.11 18694.96 15877.81 27795.35 10589.69 36785.09 18388.05 16994.59 16466.93 29098.48 12183.27 19992.13 19597.03 130
Anonymous2024052988.09 18886.59 21192.58 11996.53 9081.92 17095.99 7095.84 15774.11 36389.06 15395.21 13561.44 33498.81 9283.67 19687.47 26597.01 131
114514_t89.51 14588.50 15892.54 12198.11 3681.99 16795.16 12296.36 10970.19 39085.81 21795.25 13276.70 16398.63 11082.07 22396.86 10197.00 132
fmvsm_s_conf0.1_n93.46 5793.66 5792.85 10493.75 22783.13 13296.02 6895.74 16487.68 12295.89 2598.17 282.78 9198.46 12596.71 1096.17 11496.98 133
旧先验196.79 7981.81 17195.67 17096.81 6686.69 3997.66 8496.97 134
ab-mvs89.41 15088.35 16292.60 11795.15 15182.65 15592.20 27595.60 17783.97 20888.55 15993.70 20074.16 20098.21 15082.46 21389.37 23496.94 135
DPM-MVS92.58 8091.74 9095.08 1596.19 9989.31 592.66 25896.56 9683.44 22291.68 11595.04 14286.60 4298.99 7385.60 17097.92 7596.93 136
fmvsm_s_conf0.5_n93.76 5094.06 4492.86 10395.62 13083.17 13096.14 5696.12 13288.13 10695.82 2698.04 1983.43 8098.48 12196.97 996.23 11396.92 137
DP-MVS Recon91.95 8991.28 9693.96 6098.33 2785.92 5794.66 15396.66 8882.69 24290.03 13995.82 11082.30 9999.03 6184.57 18296.48 11096.91 138
QAPM89.51 14588.15 16993.59 7594.92 16184.58 8596.82 2996.70 8678.43 32083.41 29196.19 9373.18 21699.30 4377.11 29296.54 10796.89 139
fmvsm_s_conf0.5_n_a93.57 5493.76 5393.00 9595.02 15383.67 11396.19 4996.10 13487.27 12995.98 2498.05 1683.07 8798.45 12996.68 1195.51 12496.88 140
fmvsm_s_conf0.1_n_a93.19 7093.26 6392.97 9792.49 26483.62 11696.02 6895.72 16786.78 14196.04 2298.19 182.30 9998.43 13396.38 1395.42 13096.86 141
testing9187.11 23186.18 22789.92 23794.43 19375.38 31791.53 29292.27 30486.48 14786.50 19990.24 31161.19 34097.53 20182.10 22190.88 21196.84 142
OMC-MVS91.23 10290.62 10993.08 9096.27 9784.07 10393.52 22295.93 14886.95 13689.51 14396.13 9678.50 14698.35 13885.84 16892.90 18296.83 143
MSLP-MVS++93.72 5294.08 4192.65 11597.31 6883.43 12195.79 8597.33 2590.03 3793.58 6196.96 5884.87 6797.76 18492.19 7698.66 4196.76 144
MVS_111021_LR92.47 8392.29 8392.98 9695.99 11484.43 9593.08 24496.09 13588.20 10391.12 12395.72 11681.33 11497.76 18491.74 9297.37 8896.75 145
UGNet89.95 13388.95 14592.95 9994.51 18683.31 12595.70 8995.23 20189.37 6187.58 17893.94 18764.00 31598.78 9583.92 19196.31 11296.74 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_ETH3D87.53 20986.37 21991.00 19392.44 26778.96 25094.74 14795.61 17684.07 20685.36 24294.52 16659.78 35097.34 22782.93 20387.88 25996.71 147
testing9986.72 24585.73 25189.69 24994.23 20274.91 32091.35 29690.97 34286.14 15886.36 20590.22 31259.41 35297.48 20582.24 21890.66 21296.69 148
LCM-MVSNet-Re88.30 18388.32 16588.27 28994.71 17372.41 35393.15 24090.98 34187.77 11979.25 34591.96 25878.35 14895.75 32483.04 20195.62 12296.65 149
h-mvs3390.80 11090.15 11692.75 10996.01 11082.66 15495.43 10395.53 18289.80 4793.08 7195.64 11875.77 17299.00 7192.07 8078.05 36296.60 150
无先验93.28 23696.26 11873.95 36599.05 5880.56 25296.59 151
ETVMVS84.43 29482.92 30388.97 27194.37 19574.67 32191.23 30188.35 37683.37 22586.06 21489.04 33755.38 37095.67 32767.12 36391.34 20196.58 152
Fast-Effi-MVS+89.41 15088.64 15391.71 16294.74 17080.81 20093.54 22195.10 20883.11 23186.82 19690.67 30379.74 12897.75 18780.51 25393.55 16696.57 153
sss88.93 16688.26 16890.94 19794.05 21180.78 20191.71 28795.38 19481.55 27488.63 15893.91 19175.04 18495.47 33682.47 21291.61 19896.57 153
ETV-MVS92.74 7892.66 7692.97 9795.20 14784.04 10595.07 12696.51 9990.73 2292.96 7491.19 28284.06 7598.34 13991.72 9396.54 10796.54 155
FE-MVS87.40 21586.02 23591.57 16694.56 18379.69 23390.27 31693.72 27080.57 28888.80 15691.62 27165.32 30798.59 11574.97 31494.33 15696.44 156
DP-MVS87.25 22285.36 25892.90 10197.65 5883.24 12794.81 14392.00 31274.99 35481.92 31295.00 14372.66 22199.05 5866.92 36792.33 19396.40 157
CANet_DTU90.26 12589.41 13492.81 10593.46 23883.01 14193.48 22394.47 24089.43 5987.76 17694.23 17770.54 24899.03 6184.97 17596.39 11196.38 158
test_fmvsmvis_n_192093.44 5993.55 5993.10 8893.67 23184.26 10095.83 8396.14 12889.00 7792.43 9497.50 3083.37 8398.72 10096.61 1297.44 8696.32 159
TAMVS89.21 15688.29 16691.96 14693.71 22882.62 15693.30 23494.19 25282.22 25087.78 17593.94 18778.83 13996.95 25877.70 28592.98 18196.32 159
thisisatest051587.33 21885.99 23691.37 17593.49 23679.55 23490.63 31289.56 37180.17 29287.56 17990.86 29367.07 28998.28 14581.50 23693.02 18096.29 161
CDS-MVSNet89.45 14888.51 15792.29 13493.62 23383.61 11893.01 24794.68 23681.95 25787.82 17493.24 21278.69 14296.99 25580.34 25593.23 17796.28 162
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
1112_ss88.42 17887.33 18791.72 16194.92 16180.98 19492.97 24994.54 23878.16 32683.82 28093.88 19278.78 14197.91 17979.45 26689.41 23396.26 163
UBG85.51 27184.57 27788.35 28594.21 20471.78 35890.07 32789.66 36982.28 24985.91 21689.01 33861.30 33597.06 25076.58 29892.06 19696.22 164
Test_1112_low_res87.65 20086.51 21591.08 18794.94 16079.28 24591.77 28594.30 24776.04 34483.51 28992.37 23977.86 15497.73 18878.69 27589.13 24096.22 164
testing1186.44 25685.35 25989.69 24994.29 20075.40 31691.30 29790.53 35084.76 19385.06 24790.13 31758.95 35697.45 20982.08 22291.09 20796.21 166
GA-MVS86.61 24785.27 26190.66 20291.33 30778.71 25290.40 31593.81 26885.34 17685.12 24589.57 33061.25 33797.11 24680.99 24489.59 23296.15 167
原ACMM192.01 14097.34 6781.05 19296.81 7378.89 31090.45 12995.92 10482.65 9298.84 9180.68 25098.26 5996.14 168
TAPA-MVS84.62 688.16 18687.01 19691.62 16496.64 8380.65 20394.39 17196.21 12676.38 33986.19 21195.44 12479.75 12798.08 16662.75 38495.29 13396.13 169
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GSMVS96.12 170
sam_mvs171.70 23096.12 170
SCA86.32 25985.18 26289.73 24792.15 27376.60 29891.12 30391.69 32183.53 22085.50 22988.81 34266.79 29396.48 28676.65 29590.35 21796.12 170
PatchmatchNetpermissive85.85 26684.70 27389.29 26191.76 29075.54 31388.49 35491.30 33381.63 27185.05 24888.70 34671.71 22996.24 30174.61 31789.05 24196.08 173
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
testing22284.84 28983.32 29489.43 25994.15 20875.94 30791.09 30489.41 37284.90 18785.78 21889.44 33252.70 38396.28 30070.80 34091.57 19996.07 174
新几何193.10 8897.30 6984.35 9995.56 17871.09 38691.26 12296.24 8882.87 9098.86 8779.19 27198.10 6796.07 174
PVSNet78.82 1885.55 27084.65 27488.23 29294.72 17271.93 35487.12 37392.75 29278.80 31384.95 25090.53 30564.43 31396.71 26874.74 31593.86 16196.06 176
test22296.55 8881.70 17392.22 27495.01 21268.36 39390.20 13496.14 9580.26 12297.80 7996.05 177
PVSNet_Blended_VisFu91.38 9990.91 10492.80 10696.39 9483.17 13094.87 13896.66 8883.29 22789.27 14994.46 16780.29 12199.17 5087.57 14395.37 13196.05 177
testdata90.49 21096.40 9377.89 27495.37 19672.51 37893.63 6096.69 6982.08 10697.65 19283.08 20097.39 8795.94 179
XVG-OURS-SEG-HR89.95 13389.45 13191.47 17194.00 21681.21 18991.87 28396.06 13985.78 16488.55 15995.73 11574.67 19197.27 23288.71 13089.64 23195.91 180
MAR-MVS90.30 12389.37 13593.07 9296.61 8484.48 9195.68 9095.67 17082.36 24787.85 17292.85 22376.63 16598.80 9380.01 25996.68 10595.91 180
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HY-MVS83.01 1289.03 16387.94 17492.29 13494.86 16682.77 14692.08 28094.49 23981.52 27586.93 18892.79 22978.32 14998.23 14779.93 26090.55 21395.88 182
BH-RMVSNet88.37 18087.48 18391.02 19195.28 14179.45 23792.89 25293.07 28285.45 17486.91 19094.84 15270.35 24997.76 18473.97 32094.59 14895.85 183
PVSNet_Blended90.73 11390.32 11291.98 14496.12 10281.25 18692.55 26296.83 6982.04 25589.10 15192.56 23481.04 11698.85 8986.72 15795.91 11895.84 184
Patchmatch-test81.37 32779.30 33587.58 30790.92 32574.16 32980.99 40387.68 38170.52 38876.63 36388.81 34271.21 23492.76 37460.01 39286.93 27495.83 185
XVG-OURS89.40 15288.70 15291.52 16794.06 21081.46 18191.27 29996.07 13786.14 15888.89 15595.77 11368.73 27797.26 23487.39 14689.96 22295.83 185
EPNet_dtu86.49 25585.94 24088.14 29490.24 34572.82 34394.11 18992.20 30686.66 14579.42 34492.36 24073.52 20995.81 32171.26 33393.66 16395.80 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm84.73 29084.02 28586.87 33090.33 34368.90 38089.06 34789.94 36280.85 28685.75 21989.86 32468.54 27995.97 31177.76 28484.05 29395.75 188
test_vis1_n_192089.39 15389.84 12588.04 29692.97 25672.64 34894.71 15096.03 14286.18 15691.94 10696.56 8161.63 33095.74 32593.42 4795.11 13795.74 189
hse-mvs289.88 13789.34 13691.51 16894.83 16881.12 19193.94 20593.91 26489.80 4793.08 7193.60 20175.77 17297.66 19192.07 8077.07 36995.74 189
AUN-MVS87.78 19686.54 21491.48 17094.82 16981.05 19293.91 20993.93 26183.00 23486.93 18893.53 20269.50 26297.67 18986.14 16177.12 36895.73 191
Patchmatch-RL test81.67 32179.96 32786.81 33185.42 39171.23 36482.17 40187.50 38278.47 31877.19 35982.50 39570.81 24193.48 36582.66 21072.89 37995.71 192
LS3D87.89 19286.32 22292.59 11896.07 10882.92 14495.23 11694.92 22075.66 34682.89 29895.98 10172.48 22499.21 4868.43 35595.23 13695.64 193
SDMVSNet90.19 12689.61 12991.93 14896.00 11183.09 13692.89 25295.98 14488.73 8386.85 19495.20 13672.09 22897.08 24788.90 12789.85 22695.63 194
sd_testset88.59 17687.85 17690.83 19896.00 11180.42 21092.35 26894.71 23488.73 8386.85 19495.20 13667.31 28496.43 29179.64 26489.85 22695.63 194
CNLPA89.07 16187.98 17292.34 13096.87 7784.78 8194.08 19393.24 27781.41 27684.46 26195.13 14075.57 17996.62 27277.21 29093.84 16295.61 196
MDTV_nov1_ep13_2view55.91 41587.62 36973.32 37184.59 25770.33 25074.65 31695.50 197
baseline188.10 18787.28 18990.57 20494.96 15880.07 21994.27 17991.29 33486.74 14287.41 18194.00 18476.77 16296.20 30280.77 24779.31 35895.44 198
EPMVS83.90 30382.70 30787.51 30890.23 34672.67 34688.62 35381.96 40281.37 27785.01 24988.34 35066.31 30094.45 34775.30 30987.12 27195.43 199
CR-MVSNet85.35 27683.76 28990.12 22790.58 33879.34 24185.24 38691.96 31678.27 32385.55 22487.87 35971.03 23795.61 32873.96 32189.36 23595.40 200
tpmrst85.35 27684.99 26586.43 33690.88 32867.88 38488.71 35191.43 33180.13 29386.08 21388.80 34473.05 21796.02 30982.48 21183.40 30495.40 200
RPMNet83.95 30181.53 31291.21 18090.58 33879.34 24185.24 38696.76 7871.44 38485.55 22482.97 39370.87 24098.91 8361.01 38889.36 23595.40 200
UWE-MVS83.69 30683.09 29985.48 34693.06 25065.27 39490.92 30786.14 38679.90 29686.26 20990.72 30257.17 36395.81 32171.03 33992.62 18895.35 203
CostFormer85.77 26884.94 26888.26 29091.16 31372.58 35189.47 34091.04 34076.26 34286.45 20389.97 32270.74 24296.86 26482.35 21587.07 27395.34 204
test_fmvs1_n87.03 23487.04 19586.97 32589.74 35571.86 35594.55 15894.43 24178.47 31891.95 10595.50 12351.16 38693.81 36093.02 5594.56 14995.26 205
IB-MVS80.51 1585.24 28083.26 29691.19 18192.13 27579.86 22991.75 28691.29 33483.28 22880.66 32688.49 34861.28 33698.46 12580.99 24479.46 35695.25 206
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline286.50 25385.39 25689.84 24091.12 31576.70 29791.88 28288.58 37482.35 24879.95 33790.95 29273.42 21397.63 19580.27 25789.95 22395.19 207
test_cas_vis1_n_192088.83 17088.85 15188.78 27391.15 31476.72 29693.85 21094.93 21983.23 23092.81 8096.00 9961.17 34194.45 34791.67 9494.84 14195.17 208
ADS-MVSNet281.66 32279.71 33187.50 30991.35 30574.19 32883.33 39688.48 37572.90 37582.24 30685.77 37964.98 31093.20 37064.57 37883.74 29695.12 209
ADS-MVSNet81.56 32479.78 32886.90 32891.35 30571.82 35683.33 39689.16 37372.90 37582.24 30685.77 37964.98 31093.76 36164.57 37883.74 29695.12 209
MonoMVSNet86.89 23886.55 21387.92 30089.46 35973.75 33194.12 18793.10 28087.82 11885.10 24690.76 29969.59 26094.94 34586.47 15982.50 31295.07 211
AdaColmapbinary89.89 13689.07 14292.37 12997.41 6583.03 13994.42 16895.92 14982.81 23986.34 20794.65 16073.89 20499.02 6480.69 24995.51 12495.05 212
PLCcopyleft84.53 789.06 16288.03 17192.15 13897.27 7182.69 15394.29 17895.44 19079.71 29984.01 27794.18 17876.68 16498.75 9777.28 28993.41 17295.02 213
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Effi-MVS+-dtu88.65 17388.35 16289.54 25493.33 24176.39 30294.47 16494.36 24587.70 12185.43 23589.56 33173.45 21197.26 23485.57 17191.28 20294.97 214
test-LLR85.87 26585.41 25587.25 31790.95 32171.67 36089.55 33689.88 36583.41 22384.54 25887.95 35667.25 28695.11 34181.82 22993.37 17494.97 214
test-mter84.54 29383.64 29187.25 31790.95 32171.67 36089.55 33689.88 36579.17 30584.54 25887.95 35655.56 36895.11 34181.82 22993.37 17494.97 214
nrg03091.08 10690.39 11093.17 8493.07 24986.91 2296.41 3796.26 11888.30 9888.37 16394.85 15182.19 10397.64 19491.09 10082.95 30594.96 217
thres600view787.65 20086.67 20690.59 20396.08 10778.72 25194.88 13791.58 32587.06 13388.08 16792.30 24268.91 27498.10 15670.05 34891.10 20394.96 217
thres40087.62 20586.64 20790.57 20495.99 11478.64 25394.58 15691.98 31486.94 13788.09 16591.77 26369.18 27098.10 15670.13 34591.10 20394.96 217
PAPM86.68 24685.39 25690.53 20693.05 25179.33 24489.79 33294.77 23278.82 31281.95 31193.24 21276.81 16097.30 22866.94 36593.16 17894.95 220
MIMVSNet82.59 31380.53 31888.76 27491.51 29778.32 26386.57 37790.13 35779.32 30280.70 32588.69 34752.98 38293.07 37266.03 37188.86 24394.90 221
CVMVSNet84.69 29284.79 27284.37 35791.84 28664.92 39593.70 21791.47 33066.19 39786.16 21295.28 13067.18 28893.33 36780.89 24690.42 21694.88 222
PatchT82.68 31281.27 31486.89 32990.09 34870.94 37084.06 39390.15 35674.91 35585.63 22383.57 38869.37 26394.87 34665.19 37388.50 24894.84 223
OpenMVScopyleft83.78 1188.74 17187.29 18893.08 9092.70 26185.39 7196.57 3596.43 10378.74 31580.85 32396.07 9769.64 25999.01 6678.01 28396.65 10694.83 224
PCF-MVS84.11 1087.74 19786.08 23392.70 11394.02 21284.43 9589.27 34295.87 15573.62 36884.43 26394.33 16978.48 14798.86 8770.27 34194.45 15394.81 225
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
F-COLMAP87.95 19186.80 20191.40 17396.35 9680.88 19894.73 14895.45 18879.65 30082.04 31094.61 16171.13 23598.50 11976.24 30291.05 20894.80 226
FIs90.51 12190.35 11190.99 19493.99 21780.98 19495.73 8797.54 489.15 6986.72 19794.68 15781.83 11197.24 23685.18 17388.31 25394.76 227
FC-MVSNet-test90.27 12490.18 11590.53 20693.71 22879.85 23095.77 8697.59 389.31 6386.27 20894.67 15881.93 11097.01 25484.26 18688.09 25694.71 228
HQP_MVS90.60 12090.19 11491.82 15794.70 17482.73 15095.85 8196.22 12390.81 1786.91 19094.86 14974.23 19698.12 15488.15 13489.99 22094.63 229
plane_prior596.22 12398.12 15488.15 13489.99 22094.63 229
tpm284.08 29882.94 30287.48 31191.39 30371.27 36389.23 34490.37 35271.95 38284.64 25589.33 33367.30 28596.55 28275.17 31087.09 27294.63 229
DU-MVS89.34 15588.50 15891.85 15693.04 25283.72 11194.47 16496.59 9389.50 5786.46 20193.29 21077.25 15797.23 23784.92 17681.02 33594.59 232
NR-MVSNet88.58 17787.47 18491.93 14893.04 25284.16 10294.77 14696.25 12089.05 7280.04 33693.29 21079.02 13897.05 25281.71 23480.05 34994.59 232
PS-MVSNAJss89.97 13289.62 12891.02 19191.90 28480.85 19995.26 11595.98 14486.26 15486.21 21094.29 17279.70 12997.65 19288.87 12988.10 25494.57 234
VPNet88.20 18587.47 18490.39 21693.56 23579.46 23694.04 19795.54 18188.67 8686.96 18794.58 16569.33 26497.15 24184.05 18980.53 34494.56 235
RPSCF85.07 28284.27 27987.48 31192.91 25870.62 37391.69 28992.46 29776.20 34382.67 30195.22 13363.94 31697.29 23177.51 28885.80 27994.53 236
test_fmvs187.34 21787.56 18186.68 33390.59 33771.80 35794.01 20094.04 25978.30 32291.97 10395.22 13356.28 36693.71 36292.89 5694.71 14394.52 237
VPA-MVSNet89.62 14188.96 14491.60 16593.86 22182.89 14595.46 10297.33 2587.91 11188.43 16293.31 20874.17 19997.40 22287.32 14882.86 31094.52 237
HQP4-MVS85.43 23597.96 17594.51 239
TranMVSNet+NR-MVSNet88.84 16787.95 17391.49 16992.68 26283.01 14194.92 13596.31 11289.88 4185.53 22693.85 19476.63 16596.96 25781.91 22779.87 35294.50 240
HQP-MVS89.80 13889.28 13991.34 17694.17 20581.56 17594.39 17196.04 14088.81 7985.43 23593.97 18673.83 20697.96 17587.11 15289.77 22994.50 240
UniMVSNet_NR-MVSNet89.92 13589.29 13891.81 15993.39 24083.72 11194.43 16797.12 4489.80 4786.46 20193.32 20783.16 8497.23 23784.92 17681.02 33594.49 242
thres100view90087.63 20386.71 20490.38 21896.12 10278.55 25595.03 12991.58 32587.15 13088.06 16892.29 24368.91 27498.10 15670.13 34591.10 20394.48 243
tfpn200view987.58 20786.64 20790.41 21595.99 11478.64 25394.58 15691.98 31486.94 13788.09 16591.77 26369.18 27098.10 15670.13 34591.10 20394.48 243
WR-MVS88.38 17987.67 17990.52 20893.30 24280.18 21493.26 23795.96 14788.57 9185.47 23192.81 22776.12 16796.91 26181.24 23982.29 31594.47 245
TESTMET0.1,183.74 30582.85 30586.42 33789.96 35171.21 36589.55 33687.88 37877.41 33083.37 29287.31 36456.71 36493.65 36480.62 25192.85 18594.40 246
test_vis1_n86.56 25086.49 21786.78 33288.51 36672.69 34594.68 15193.78 26979.55 30190.70 12695.31 12948.75 39193.28 36893.15 5193.99 15894.38 247
API-MVS90.66 11690.07 11892.45 12596.36 9584.57 8696.06 6495.22 20382.39 24589.13 15094.27 17580.32 12098.46 12580.16 25896.71 10494.33 248
PS-MVSNAJ91.18 10490.92 10391.96 14695.26 14482.60 15792.09 27995.70 16886.27 15391.84 10992.46 23679.70 12998.99 7389.08 12595.86 11994.29 249
xiu_mvs_v2_base91.13 10590.89 10591.86 15494.97 15782.42 15992.24 27395.64 17586.11 16191.74 11493.14 21679.67 13298.89 8489.06 12695.46 12894.28 250
xiu_mvs_v1_base_debu90.64 11790.05 11992.40 12693.97 21884.46 9293.32 23095.46 18585.17 17892.25 9594.03 17970.59 24498.57 11690.97 10294.67 14494.18 251
xiu_mvs_v1_base90.64 11790.05 11992.40 12693.97 21884.46 9293.32 23095.46 18585.17 17892.25 9594.03 17970.59 24498.57 11690.97 10294.67 14494.18 251
xiu_mvs_v1_base_debi90.64 11790.05 11992.40 12693.97 21884.46 9293.32 23095.46 18585.17 17892.25 9594.03 17970.59 24498.57 11690.97 10294.67 14494.18 251
Fast-Effi-MVS+-dtu87.44 21386.72 20389.63 25292.04 27877.68 28394.03 19893.94 26085.81 16382.42 30391.32 27970.33 25097.06 25080.33 25690.23 21894.14 254
131487.51 21086.57 21290.34 22092.42 26879.74 23292.63 25995.35 19878.35 32180.14 33391.62 27174.05 20197.15 24181.05 24093.53 16794.12 255
UniMVSNet (Re)89.80 13889.07 14292.01 14093.60 23484.52 8994.78 14597.47 1189.26 6586.44 20492.32 24182.10 10597.39 22584.81 17980.84 33994.12 255
BH-untuned88.60 17588.13 17090.01 23495.24 14578.50 25893.29 23594.15 25484.75 19484.46 26193.40 20475.76 17497.40 22277.59 28694.52 15194.12 255
dp81.47 32680.23 32385.17 35289.92 35265.49 39286.74 37590.10 35876.30 34181.10 32087.12 36962.81 32395.92 31468.13 35879.88 35194.09 258
ACMM84.12 989.14 15788.48 16191.12 18394.65 17781.22 18895.31 10796.12 13285.31 17785.92 21594.34 16870.19 25298.06 16885.65 16988.86 24394.08 259
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121186.59 24985.13 26390.98 19696.52 9181.50 17796.14 5696.16 12773.78 36683.65 28592.15 24763.26 32197.37 22682.82 20781.74 32494.06 260
test_djsdf89.03 16388.64 15390.21 22290.74 33379.28 24595.96 7395.90 15284.66 19785.33 24392.94 22274.02 20297.30 22889.64 11988.53 24694.05 261
cascas86.43 25784.98 26690.80 20092.10 27780.92 19790.24 32095.91 15173.10 37383.57 28888.39 34965.15 30997.46 20884.90 17891.43 20094.03 262
XXY-MVS87.65 20086.85 19990.03 23192.14 27480.60 20693.76 21395.23 20182.94 23684.60 25694.02 18274.27 19595.49 33581.04 24183.68 29894.01 263
CLD-MVS89.47 14788.90 14891.18 18294.22 20382.07 16692.13 27796.09 13587.90 11285.37 24192.45 23774.38 19497.56 19987.15 15090.43 21593.93 264
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
WBMVS84.97 28684.18 28087.34 31394.14 20971.62 36290.20 32392.35 29981.61 27284.06 27490.76 29961.82 32996.52 28378.93 27383.81 29493.89 265
jajsoiax88.24 18487.50 18290.48 21190.89 32780.14 21695.31 10795.65 17484.97 18684.24 27294.02 18265.31 30897.42 21488.56 13188.52 24793.89 265
IterMVS-LS88.36 18187.91 17589.70 24893.80 22478.29 26593.73 21495.08 21085.73 16684.75 25391.90 26179.88 12596.92 26083.83 19282.51 31193.89 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.10 15888.86 15089.80 24491.84 28678.30 26493.70 21795.01 21285.73 16687.15 18595.28 13079.87 12697.21 23983.81 19387.36 26893.88 268
mvs_tets88.06 19087.28 18990.38 21890.94 32379.88 22895.22 11795.66 17285.10 18284.21 27393.94 18763.53 31897.40 22288.50 13288.40 25193.87 269
MVSTER88.84 16788.29 16690.51 20992.95 25780.44 20993.73 21495.01 21284.66 19787.15 18593.12 21772.79 22097.21 23987.86 13987.36 26893.87 269
tpm cat181.96 31680.27 32287.01 32491.09 31671.02 36887.38 37191.53 32866.25 39680.17 33186.35 37568.22 28296.15 30569.16 35082.29 31593.86 271
v2v48287.84 19387.06 19390.17 22390.99 31979.23 24894.00 20295.13 20584.87 18985.53 22692.07 25574.45 19397.45 20984.71 18181.75 32393.85 272
thres20087.21 22686.24 22690.12 22795.36 13878.53 25693.26 23792.10 30886.42 15088.00 17091.11 28869.24 26998.00 17269.58 34991.04 20993.83 273
tt080586.92 23685.74 25090.48 21192.22 27179.98 22695.63 9694.88 22383.83 21284.74 25492.80 22857.61 36197.67 18985.48 17284.42 28993.79 274
CP-MVSNet87.63 20387.26 19188.74 27793.12 24676.59 29995.29 11196.58 9488.43 9483.49 29092.98 22175.28 18195.83 31978.97 27281.15 33193.79 274
GBi-Net87.26 22085.98 23791.08 18794.01 21383.10 13395.14 12394.94 21583.57 21784.37 26491.64 26766.59 29796.34 29778.23 28085.36 28293.79 274
test187.26 22085.98 23791.08 18794.01 21383.10 13395.14 12394.94 21583.57 21784.37 26491.64 26766.59 29796.34 29778.23 28085.36 28293.79 274
FMVSNet185.85 26684.11 28391.08 18792.81 25983.10 13395.14 12394.94 21581.64 27082.68 30091.64 26759.01 35596.34 29775.37 30883.78 29593.79 274
LPG-MVS_test89.45 14888.90 14891.12 18394.47 18881.49 17995.30 10996.14 12886.73 14385.45 23295.16 13869.89 25598.10 15687.70 14189.23 23893.77 279
LGP-MVS_train91.12 18394.47 18881.49 17996.14 12886.73 14385.45 23295.16 13869.89 25598.10 15687.70 14189.23 23893.77 279
PS-CasMVS87.32 21986.88 19788.63 28092.99 25576.33 30495.33 10696.61 9288.22 10283.30 29593.07 21973.03 21895.79 32378.36 27781.00 33793.75 281
FMVSNet287.19 22885.82 24491.30 17794.01 21383.67 11394.79 14494.94 21583.57 21783.88 27992.05 25666.59 29796.51 28477.56 28785.01 28593.73 282
ACMP84.23 889.01 16588.35 16290.99 19494.73 17181.27 18595.07 12695.89 15486.48 14783.67 28494.30 17169.33 26497.99 17387.10 15488.55 24593.72 283
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
FMVSNet387.40 21586.11 23191.30 17793.79 22683.64 11594.20 18494.81 22983.89 21084.37 26491.87 26268.45 28096.56 28078.23 28085.36 28293.70 284
OPM-MVS90.12 12789.56 13091.82 15793.14 24583.90 10794.16 18595.74 16488.96 7887.86 17195.43 12672.48 22497.91 17988.10 13890.18 21993.65 285
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PEN-MVS86.80 24086.27 22588.40 28392.32 27075.71 31295.18 12096.38 10887.97 10982.82 29993.15 21573.39 21495.92 31476.15 30379.03 36093.59 286
TR-MVS86.78 24185.76 24889.82 24194.37 19578.41 26092.47 26392.83 28881.11 28486.36 20592.40 23868.73 27797.48 20573.75 32489.85 22693.57 287
v14419287.19 22886.35 22089.74 24590.64 33678.24 26693.92 20795.43 19181.93 25885.51 22891.05 29074.21 19897.45 20982.86 20581.56 32593.53 288
v192192086.97 23586.06 23489.69 24990.53 34178.11 26993.80 21195.43 19181.90 26085.33 24391.05 29072.66 22197.41 22082.05 22481.80 32293.53 288
v119287.25 22286.33 22190.00 23590.76 33279.04 24993.80 21195.48 18482.57 24385.48 23091.18 28473.38 21597.42 21482.30 21682.06 31793.53 288
tpmvs83.35 30982.07 30887.20 32191.07 31771.00 36988.31 35791.70 32078.91 30880.49 32987.18 36869.30 26797.08 24768.12 35983.56 30093.51 291
v124086.78 24185.85 24389.56 25390.45 34277.79 27993.61 21995.37 19681.65 26985.43 23591.15 28671.50 23297.43 21381.47 23782.05 31993.47 292
eth_miper_zixun_eth86.50 25385.77 24788.68 27891.94 28175.81 31090.47 31494.89 22182.05 25384.05 27590.46 30775.96 17096.77 26582.76 20979.36 35793.46 293
v114487.61 20686.79 20290.06 23091.01 31879.34 24193.95 20495.42 19383.36 22685.66 22291.31 28074.98 18597.42 21483.37 19782.06 31793.42 294
cl2286.78 24185.98 23789.18 26492.34 26977.62 28490.84 30994.13 25681.33 27883.97 27890.15 31673.96 20396.60 27784.19 18782.94 30693.33 295
v14887.04 23386.32 22289.21 26290.94 32377.26 28893.71 21694.43 24184.84 19184.36 26790.80 29776.04 16997.05 25282.12 22079.60 35593.31 296
AllTest83.42 30781.39 31389.52 25595.01 15477.79 27993.12 24190.89 34577.41 33076.12 36693.34 20554.08 37897.51 20368.31 35684.27 29193.26 297
TestCases89.52 25595.01 15477.79 27990.89 34577.41 33076.12 36693.34 20554.08 37897.51 20368.31 35684.27 29193.26 297
c3_l87.14 23086.50 21689.04 26892.20 27277.26 28891.22 30294.70 23582.01 25684.34 26890.43 30878.81 14096.61 27583.70 19581.09 33293.25 299
DIV-MVS_self_test86.53 25185.78 24588.75 27592.02 28076.45 30190.74 31094.30 24781.83 26583.34 29390.82 29675.75 17596.57 27881.73 23381.52 32793.24 300
reproduce_monomvs86.37 25885.87 24287.87 30193.66 23273.71 33293.44 22695.02 21188.61 8982.64 30291.94 25957.88 36096.68 26989.96 11679.71 35493.22 301
cl____86.52 25285.78 24588.75 27592.03 27976.46 30090.74 31094.30 24781.83 26583.34 29390.78 29875.74 17796.57 27881.74 23281.54 32693.22 301
DTE-MVSNet86.11 26185.48 25487.98 29791.65 29674.92 31994.93 13495.75 16387.36 12882.26 30593.04 22072.85 21995.82 32074.04 31977.46 36693.20 303
SixPastTwentyTwo83.91 30282.90 30486.92 32790.99 31970.67 37293.48 22391.99 31385.54 17277.62 35792.11 25160.59 34496.87 26376.05 30477.75 36393.20 303
WR-MVS_H87.80 19587.37 18689.10 26693.23 24378.12 26895.61 9797.30 2987.90 11283.72 28292.01 25779.65 13396.01 31076.36 29980.54 34393.16 305
OurMVSNet-221017-085.35 27684.64 27587.49 31090.77 33172.59 35094.01 20094.40 24384.72 19579.62 34393.17 21461.91 32896.72 26681.99 22581.16 32993.16 305
gg-mvs-nofinetune81.77 31979.37 33488.99 27090.85 32977.73 28286.29 37879.63 40774.88 35783.19 29669.05 40960.34 34596.11 30675.46 30794.64 14793.11 307
MSDG84.86 28883.09 29990.14 22693.80 22480.05 22189.18 34593.09 28178.89 31078.19 35191.91 26065.86 30697.27 23268.47 35488.45 24993.11 307
v7n86.81 23985.76 24889.95 23690.72 33479.25 24795.07 12695.92 14984.45 20082.29 30490.86 29372.60 22397.53 20179.42 26980.52 34593.08 309
miper_ehance_all_eth87.22 22586.62 21089.02 26992.13 27577.40 28790.91 30894.81 22981.28 27984.32 26990.08 31979.26 13596.62 27283.81 19382.94 30693.04 310
miper_lstm_enhance85.27 27984.59 27687.31 31491.28 30874.63 32287.69 36794.09 25881.20 28381.36 31889.85 32574.97 18694.30 35281.03 24379.84 35393.01 311
ACMH80.38 1785.36 27583.68 29090.39 21694.45 19180.63 20494.73 14894.85 22582.09 25277.24 35892.65 23160.01 34897.58 19772.25 33084.87 28692.96 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_enhance_ethall86.90 23786.18 22789.06 26791.66 29577.58 28590.22 32294.82 22879.16 30684.48 26089.10 33679.19 13796.66 27084.06 18882.94 30692.94 313
lessismore_v086.04 33988.46 36968.78 38180.59 40573.01 38490.11 31855.39 36996.43 29175.06 31265.06 39692.90 314
V4287.68 19886.86 19890.15 22590.58 33880.14 21694.24 18295.28 19983.66 21585.67 22191.33 27774.73 18997.41 22084.43 18581.83 32192.89 315
XVG-ACMP-BASELINE86.00 26284.84 27189.45 25891.20 30978.00 27091.70 28895.55 17985.05 18482.97 29792.25 24554.49 37697.48 20582.93 20387.45 26792.89 315
v887.50 21286.71 20489.89 23891.37 30479.40 23894.50 16095.38 19484.81 19283.60 28791.33 27776.05 16897.42 21482.84 20680.51 34692.84 317
pm-mvs186.61 24785.54 25289.82 24191.44 29980.18 21495.28 11394.85 22583.84 21181.66 31392.62 23272.45 22696.48 28679.67 26378.06 36192.82 318
K. test v381.59 32380.15 32585.91 34389.89 35369.42 37992.57 26187.71 38085.56 17173.44 38289.71 32855.58 36795.52 33177.17 29169.76 38592.78 319
anonymousdsp87.84 19387.09 19290.12 22789.13 36180.54 20794.67 15295.55 17982.05 25383.82 28092.12 24971.47 23397.15 24187.15 15087.80 26392.67 320
IterMVS-SCA-FT85.45 27284.53 27888.18 29391.71 29276.87 29390.19 32492.65 29585.40 17581.44 31690.54 30466.79 29395.00 34481.04 24181.05 33392.66 321
v1087.25 22286.38 21889.85 23991.19 31079.50 23594.48 16195.45 18883.79 21383.62 28691.19 28275.13 18297.42 21481.94 22680.60 34192.63 322
ACMH+81.04 1485.05 28383.46 29389.82 24194.66 17679.37 23994.44 16694.12 25782.19 25178.04 35392.82 22658.23 35897.54 20073.77 32382.90 30992.54 323
pmmvs584.21 29682.84 30688.34 28788.95 36376.94 29292.41 26491.91 31875.63 34780.28 33091.18 28464.59 31295.57 32977.09 29383.47 30192.53 324
IterMVS84.88 28783.98 28787.60 30691.44 29976.03 30690.18 32592.41 29883.24 22981.06 32290.42 30966.60 29694.28 35379.46 26580.98 33892.48 325
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS87.44 21386.10 23291.44 17292.61 26383.62 11692.63 25995.66 17267.26 39581.47 31592.15 24777.95 15198.22 14979.71 26295.48 12692.47 326
dmvs_re84.20 29783.22 29887.14 32391.83 28877.81 27790.04 32890.19 35584.70 19681.49 31489.17 33564.37 31491.13 38871.58 33285.65 28192.46 327
testgi80.94 33480.20 32483.18 36387.96 37666.29 38991.28 29890.70 34983.70 21478.12 35292.84 22451.37 38590.82 39063.34 38182.46 31392.43 328
JIA-IIPM81.04 33078.98 34387.25 31788.64 36573.48 33681.75 40289.61 37073.19 37282.05 30973.71 40566.07 30595.87 31771.18 33684.60 28892.41 329
BH-w/o87.57 20887.05 19489.12 26594.90 16477.90 27392.41 26493.51 27382.89 23883.70 28391.34 27675.75 17597.07 24975.49 30693.49 16992.39 330
PMMVS85.71 26984.96 26787.95 29888.90 36477.09 29088.68 35290.06 35972.32 38086.47 20090.76 29972.15 22794.40 34981.78 23193.49 16992.36 331
PVSNet_BlendedMVS89.98 13189.70 12690.82 19996.12 10281.25 18693.92 20796.83 6983.49 22189.10 15192.26 24481.04 11698.85 8986.72 15787.86 26092.35 332
Patchmtry82.71 31180.93 31788.06 29590.05 34976.37 30384.74 39191.96 31672.28 38181.32 31987.87 35971.03 23795.50 33468.97 35180.15 34892.32 333
PatchMatch-RL86.77 24485.54 25290.47 21495.88 11782.71 15290.54 31392.31 30279.82 29884.32 26991.57 27568.77 27696.39 29373.16 32693.48 17192.32 333
pmmvs683.42 30781.60 31188.87 27288.01 37577.87 27594.96 13294.24 25174.67 35878.80 34991.09 28960.17 34796.49 28577.06 29475.40 37592.23 335
DSMNet-mixed76.94 35776.29 35678.89 37883.10 39956.11 41487.78 36479.77 40660.65 40475.64 37088.71 34561.56 33388.34 40060.07 39189.29 23792.21 336
testing380.46 33679.59 33383.06 36593.44 23964.64 39693.33 22985.47 39184.34 20279.93 33890.84 29544.35 40192.39 37657.06 39987.56 26492.16 337
CHOSEN 280x42085.15 28183.99 28688.65 27992.47 26578.40 26179.68 40892.76 29174.90 35681.41 31789.59 32969.85 25795.51 33279.92 26195.29 13392.03 338
UnsupCasMVSNet_eth80.07 34078.27 34685.46 34785.24 39272.63 34988.45 35694.87 22482.99 23571.64 38988.07 35556.34 36591.75 38373.48 32563.36 39992.01 339
test_fmvs283.98 29984.03 28483.83 36287.16 38067.53 38893.93 20692.89 28677.62 32886.89 19393.53 20247.18 39592.02 38090.54 11086.51 27591.93 340
test0.0.03 182.41 31481.69 31084.59 35588.23 37272.89 34290.24 32087.83 37983.41 22379.86 33989.78 32667.25 28688.99 39965.18 37483.42 30391.90 341
pmmvs485.43 27383.86 28890.16 22490.02 35082.97 14390.27 31692.67 29475.93 34580.73 32491.74 26571.05 23695.73 32678.85 27483.46 30291.78 342
LTVRE_ROB82.13 1386.26 26084.90 26990.34 22094.44 19281.50 17792.31 27294.89 22183.03 23379.63 34292.67 23069.69 25897.79 18271.20 33486.26 27791.72 343
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ppachtmachnet_test81.84 31880.07 32687.15 32288.46 36974.43 32689.04 34892.16 30775.33 35077.75 35588.99 33966.20 30295.37 33765.12 37577.60 36491.65 344
COLMAP_ROBcopyleft80.39 1683.96 30082.04 30989.74 24595.28 14179.75 23194.25 18092.28 30375.17 35278.02 35493.77 19758.60 35797.84 18165.06 37685.92 27891.63 345
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Syy-MVS80.07 34079.78 32880.94 37491.92 28259.93 40589.75 33487.40 38381.72 26778.82 34787.20 36666.29 30191.29 38647.06 40687.84 26191.60 346
myMVS_eth3d79.67 34578.79 34482.32 37191.92 28264.08 39789.75 33487.40 38381.72 26778.82 34787.20 36645.33 39991.29 38659.09 39487.84 26191.60 346
FMVSNet581.52 32579.60 33287.27 31591.17 31177.95 27191.49 29392.26 30576.87 33576.16 36587.91 35851.67 38492.34 37767.74 36081.16 32991.52 348
ITE_SJBPF88.24 29191.88 28577.05 29192.92 28585.54 17280.13 33493.30 20957.29 36296.20 30272.46 32984.71 28791.49 349
MDA-MVSNet-bldmvs78.85 35076.31 35586.46 33489.76 35473.88 33088.79 35090.42 35179.16 30659.18 40588.33 35160.20 34694.04 35562.00 38568.96 38991.48 350
MIMVSNet179.38 34777.28 34985.69 34586.35 38373.67 33391.61 29192.75 29278.11 32772.64 38588.12 35448.16 39291.97 38260.32 38977.49 36591.43 351
EU-MVSNet81.32 32880.95 31682.42 37088.50 36863.67 39993.32 23091.33 33264.02 40080.57 32892.83 22561.21 33992.27 37876.34 30080.38 34791.32 352
Baseline_NR-MVSNet87.07 23286.63 20988.40 28391.44 29977.87 27594.23 18392.57 29684.12 20585.74 22092.08 25377.25 15796.04 30782.29 21779.94 35091.30 353
D2MVS85.90 26485.09 26488.35 28590.79 33077.42 28691.83 28495.70 16880.77 28780.08 33590.02 32066.74 29596.37 29481.88 22887.97 25891.26 354
TransMVSNet (Re)84.43 29483.06 30188.54 28191.72 29178.44 25995.18 12092.82 29082.73 24179.67 34192.12 24973.49 21095.96 31271.10 33868.73 39191.21 355
YYNet179.22 34877.20 35085.28 35088.20 37472.66 34785.87 38090.05 36174.33 36162.70 40087.61 36166.09 30492.03 37966.94 36572.97 37891.15 356
our_test_381.93 31780.46 32086.33 33888.46 36973.48 33688.46 35591.11 33676.46 33776.69 36288.25 35266.89 29194.36 35068.75 35279.08 35991.14 357
Anonymous2023120681.03 33179.77 33084.82 35487.85 37870.26 37591.42 29492.08 30973.67 36777.75 35589.25 33462.43 32593.08 37161.50 38782.00 32091.12 358
CL-MVSNet_self_test81.74 32080.53 31885.36 34885.96 38672.45 35290.25 31893.07 28281.24 28179.85 34087.29 36570.93 23992.52 37566.95 36469.23 38791.11 359
MDA-MVSNet_test_wron79.21 34977.19 35185.29 34988.22 37372.77 34485.87 38090.06 35974.34 36062.62 40287.56 36266.14 30391.99 38166.90 36873.01 37791.10 360
mvsany_test185.42 27485.30 26085.77 34487.95 37775.41 31587.61 37080.97 40476.82 33688.68 15795.83 10977.44 15690.82 39085.90 16686.51 27591.08 361
KD-MVS_self_test80.20 33979.24 33683.07 36485.64 39065.29 39391.01 30693.93 26178.71 31676.32 36486.40 37459.20 35492.93 37372.59 32869.35 38691.00 362
WB-MVSnew83.77 30483.28 29585.26 35191.48 29871.03 36791.89 28187.98 37778.91 30884.78 25290.22 31269.11 27294.02 35664.70 37790.44 21490.71 363
CMPMVSbinary59.16 2180.52 33579.20 33884.48 35683.98 39567.63 38789.95 33193.84 26764.79 39966.81 39791.14 28757.93 35995.17 33976.25 30188.10 25490.65 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc83.06 36579.99 40663.51 40077.47 40992.86 28774.34 37984.45 38528.74 41095.06 34373.06 32768.89 39090.61 365
USDC82.76 31081.26 31587.26 31691.17 31174.55 32389.27 34293.39 27578.26 32475.30 37292.08 25354.43 37796.63 27171.64 33185.79 28090.61 365
GG-mvs-BLEND87.94 29989.73 35677.91 27287.80 36278.23 41180.58 32783.86 38659.88 34995.33 33871.20 33492.22 19490.60 367
tfpnnormal84.72 29183.23 29789.20 26392.79 26080.05 22194.48 16195.81 15882.38 24681.08 32191.21 28169.01 27396.95 25861.69 38680.59 34290.58 368
mmtdpeth85.04 28584.15 28287.72 30493.11 24775.74 31194.37 17592.83 28884.98 18589.31 14886.41 37361.61 33297.14 24492.63 6362.11 40190.29 369
N_pmnet68.89 36968.44 37170.23 38989.07 36228.79 42888.06 35919.50 42869.47 39171.86 38884.93 38261.24 33891.75 38354.70 40177.15 36790.15 370
mvs5depth80.98 33279.15 34086.45 33584.57 39473.29 33887.79 36391.67 32280.52 28982.20 30889.72 32755.14 37395.93 31373.93 32266.83 39390.12 371
Anonymous2024052180.44 33779.21 33784.11 36085.75 38967.89 38392.86 25493.23 27875.61 34875.59 37187.47 36350.03 38794.33 35171.14 33781.21 32890.12 371
test20.0379.95 34279.08 34182.55 36785.79 38867.74 38691.09 30491.08 33781.23 28274.48 37889.96 32361.63 33090.15 39260.08 39076.38 37189.76 373
TDRefinement79.81 34377.34 34887.22 32079.24 40875.48 31493.12 24192.03 31176.45 33875.01 37391.58 27349.19 39096.44 29070.22 34469.18 38889.75 374
test_fmvs377.67 35577.16 35279.22 37779.52 40761.14 40392.34 26991.64 32473.98 36478.86 34686.59 37027.38 41387.03 40188.12 13775.97 37389.50 375
KD-MVS_2432*160078.50 35176.02 35885.93 34186.22 38474.47 32484.80 38992.33 30079.29 30376.98 36085.92 37753.81 38093.97 35767.39 36157.42 40689.36 376
miper_refine_blended78.50 35176.02 35885.93 34186.22 38474.47 32484.80 38992.33 30079.29 30376.98 36085.92 37753.81 38093.97 35767.39 36157.42 40689.36 376
ttmdpeth76.55 35874.64 36382.29 37282.25 40267.81 38589.76 33385.69 38970.35 38975.76 36991.69 26646.88 39689.77 39466.16 37063.23 40089.30 378
EG-PatchMatch MVS82.37 31580.34 32188.46 28290.27 34479.35 24092.80 25694.33 24677.14 33473.26 38390.18 31547.47 39496.72 26670.25 34287.32 27089.30 378
pmmvs-eth3d80.97 33378.72 34587.74 30284.99 39379.97 22790.11 32691.65 32375.36 34973.51 38186.03 37659.45 35193.96 35975.17 31072.21 38089.29 380
MVP-Stereo85.97 26384.86 27089.32 26090.92 32582.19 16492.11 27894.19 25278.76 31478.77 35091.63 27068.38 28196.56 28075.01 31393.95 15989.20 381
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
new-patchmatchnet76.41 35975.17 36180.13 37582.65 40159.61 40687.66 36891.08 33778.23 32569.85 39383.22 38954.76 37491.63 38564.14 38064.89 39789.16 382
MS-PatchMatch85.05 28384.16 28187.73 30391.42 30278.51 25791.25 30093.53 27277.50 32980.15 33291.58 27361.99 32795.51 33275.69 30594.35 15589.16 382
UnsupCasMVSNet_bld76.23 36073.27 36485.09 35383.79 39672.92 34185.65 38393.47 27471.52 38368.84 39579.08 40049.77 38893.21 36966.81 36960.52 40389.13 384
MVStest172.91 36469.70 36982.54 36878.14 40973.05 34088.21 35886.21 38560.69 40364.70 39890.53 30546.44 39785.70 40658.78 39553.62 40888.87 385
PM-MVS78.11 35376.12 35784.09 36183.54 39770.08 37688.97 34985.27 39379.93 29574.73 37686.43 37234.70 40993.48 36579.43 26872.06 38188.72 386
LF4IMVS80.37 33879.07 34284.27 35986.64 38269.87 37889.39 34191.05 33976.38 33974.97 37490.00 32147.85 39394.25 35474.55 31880.82 34088.69 387
TinyColmap79.76 34477.69 34785.97 34091.71 29273.12 33989.55 33690.36 35375.03 35372.03 38790.19 31446.22 39896.19 30463.11 38281.03 33488.59 388
test_040281.30 32979.17 33987.67 30593.19 24478.17 26792.98 24891.71 31975.25 35176.02 36890.31 31059.23 35396.37 29450.22 40483.63 29988.47 389
PVSNet_073.20 2077.22 35674.83 36284.37 35790.70 33571.10 36683.09 39889.67 36872.81 37773.93 38083.13 39060.79 34393.70 36368.54 35350.84 41188.30 390
dmvs_testset74.57 36275.81 36070.86 38887.72 37940.47 42387.05 37477.90 41382.75 24071.15 39185.47 38167.98 28384.12 41045.26 40776.98 37088.00 391
OpenMVS_ROBcopyleft74.94 1979.51 34677.03 35386.93 32687.00 38176.23 30592.33 27090.74 34868.93 39274.52 37788.23 35349.58 38996.62 27257.64 39784.29 29087.94 392
mvsany_test374.95 36173.26 36580.02 37674.61 41263.16 40185.53 38478.42 40974.16 36274.89 37586.46 37136.02 40889.09 39882.39 21466.91 39287.82 393
LCM-MVSNet66.00 37262.16 37777.51 38264.51 42258.29 40883.87 39590.90 34448.17 41154.69 40873.31 40616.83 42286.75 40265.47 37261.67 40287.48 394
test_vis1_rt77.96 35476.46 35482.48 36985.89 38771.74 35990.25 31878.89 40871.03 38771.30 39081.35 39742.49 40391.05 38984.55 18382.37 31484.65 395
pmmvs371.81 36768.71 37081.11 37375.86 41170.42 37486.74 37583.66 39758.95 40668.64 39680.89 39836.93 40789.52 39663.10 38363.59 39883.39 396
test_f71.95 36670.87 36775.21 38474.21 41459.37 40785.07 38885.82 38865.25 39870.42 39283.13 39023.62 41482.93 41278.32 27871.94 38283.33 397
MVS-HIRNet73.70 36372.20 36678.18 38191.81 28956.42 41382.94 39982.58 40055.24 40768.88 39466.48 41055.32 37195.13 34058.12 39688.42 25083.01 398
test_method50.52 38448.47 38656.66 39952.26 42618.98 43041.51 41881.40 40310.10 42044.59 41575.01 40428.51 41168.16 41753.54 40249.31 41282.83 399
new_pmnet72.15 36570.13 36878.20 38082.95 40065.68 39083.91 39482.40 40162.94 40264.47 39979.82 39942.85 40286.26 40557.41 39874.44 37682.65 400
ANet_high58.88 37954.22 38472.86 38556.50 42556.67 41080.75 40486.00 38773.09 37437.39 41764.63 41322.17 41779.49 41543.51 40923.96 41982.43 401
PMMVS259.60 37656.40 37969.21 39268.83 41946.58 41873.02 41377.48 41455.07 40849.21 41172.95 40717.43 42180.04 41449.32 40544.33 41480.99 402
WB-MVS67.92 37067.49 37269.21 39281.09 40341.17 42288.03 36078.00 41273.50 36962.63 40183.11 39263.94 31686.52 40325.66 41851.45 41079.94 403
APD_test169.04 36866.26 37477.36 38380.51 40562.79 40285.46 38583.51 39854.11 40959.14 40684.79 38423.40 41689.61 39555.22 40070.24 38479.68 404
SSC-MVS67.06 37166.56 37368.56 39480.54 40440.06 42487.77 36577.37 41572.38 37961.75 40382.66 39463.37 31986.45 40424.48 41948.69 41379.16 405
FPMVS64.63 37462.55 37670.88 38770.80 41656.71 40984.42 39284.42 39551.78 41049.57 41081.61 39623.49 41581.48 41340.61 41376.25 37274.46 406
EGC-MVSNET61.97 37556.37 38078.77 37989.63 35773.50 33589.12 34682.79 3990.21 4251.24 42684.80 38339.48 40490.04 39344.13 40875.94 37472.79 407
testf159.54 37756.11 38169.85 39069.28 41756.61 41180.37 40576.55 41642.58 41445.68 41375.61 40111.26 42484.18 40843.20 41060.44 40468.75 408
APD_test259.54 37756.11 38169.85 39069.28 41756.61 41180.37 40576.55 41642.58 41445.68 41375.61 40111.26 42484.18 40843.20 41060.44 40468.75 408
test_vis3_rt65.12 37362.60 37572.69 38671.44 41560.71 40487.17 37265.55 41963.80 40153.22 40965.65 41214.54 42389.44 39776.65 29565.38 39567.91 410
PMVScopyleft47.18 2252.22 38348.46 38763.48 39645.72 42746.20 41973.41 41278.31 41041.03 41630.06 41965.68 4116.05 42683.43 41130.04 41665.86 39460.80 411
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dongtai58.82 38058.24 37860.56 39783.13 39845.09 42182.32 40048.22 42767.61 39461.70 40469.15 40838.75 40576.05 41632.01 41541.31 41560.55 412
MVEpermissive39.65 2343.39 38538.59 39157.77 39856.52 42448.77 41755.38 41558.64 42329.33 41928.96 42052.65 4164.68 42764.62 42028.11 41733.07 41759.93 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft56.31 40074.23 41351.81 41656.67 42444.85 41248.54 41275.16 40327.87 41258.74 42240.92 41252.22 40958.39 414
kuosan53.51 38253.30 38554.13 40176.06 41045.36 42080.11 40748.36 42659.63 40554.84 40763.43 41437.41 40662.07 42120.73 42139.10 41654.96 415
Gipumacopyleft57.99 38154.91 38367.24 39588.51 36665.59 39152.21 41690.33 35443.58 41342.84 41651.18 41720.29 41985.07 40734.77 41470.45 38351.05 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN43.23 38642.29 38846.03 40265.58 42137.41 42573.51 41164.62 42033.99 41728.47 42147.87 41819.90 42067.91 41822.23 42024.45 41832.77 417
EMVS42.07 38741.12 38944.92 40363.45 42335.56 42773.65 41063.48 42133.05 41826.88 42245.45 41921.27 41867.14 41919.80 42223.02 42032.06 418
tmp_tt35.64 38839.24 39024.84 40414.87 42823.90 42962.71 41451.51 4256.58 42236.66 41862.08 41544.37 40030.34 42452.40 40322.00 42120.27 419
wuyk23d21.27 39020.48 39323.63 40568.59 42036.41 42649.57 4176.85 4299.37 4217.89 4234.46 4254.03 42831.37 42317.47 42316.07 4223.12 420
test1238.76 39211.22 3951.39 4060.85 4300.97 43185.76 3820.35 4310.54 4242.45 4258.14 4240.60 4290.48 4252.16 4250.17 4242.71 421
testmvs8.92 39111.52 3941.12 4071.06 4290.46 43286.02 3790.65 4300.62 4232.74 4249.52 4230.31 4300.45 4262.38 4240.39 4232.46 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k22.14 38929.52 3920.00 4080.00 4310.00 4330.00 41995.76 1620.00 4260.00 42794.29 17275.66 1780.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas6.64 3948.86 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42679.70 1290.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re7.82 39310.43 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42793.88 1920.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS64.08 39759.14 393
FOURS198.86 185.54 6798.29 197.49 689.79 5096.29 18
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1491.45 11
eth-test20.00 431
eth-test0.00 431
ZD-MVS98.15 3486.62 3397.07 4883.63 21694.19 4796.91 6087.57 3199.26 4591.99 8498.44 53
test_241102_ONE98.77 585.99 5297.44 1590.26 3497.71 197.96 2092.31 499.38 31
9.1494.47 2397.79 5296.08 6097.44 1586.13 16095.10 3797.40 3588.34 2299.22 4793.25 5098.70 34
save fliter97.85 4985.63 6695.21 11896.82 7189.44 58
test072698.78 385.93 5597.19 1197.47 1190.27 3297.64 498.13 491.47 8
test_part298.55 1287.22 1996.40 17
sam_mvs70.60 243
MTGPAbinary96.97 53
test_post188.00 3619.81 42269.31 26695.53 33076.65 295
test_post10.29 42170.57 24795.91 316
patchmatchnet-post83.76 38771.53 23196.48 286
MTMP96.16 5260.64 422
gm-plane-assit89.60 35868.00 38277.28 33388.99 33997.57 19879.44 267
TEST997.53 6186.49 3794.07 19496.78 7581.61 27292.77 8296.20 9087.71 2899.12 54
test_897.49 6386.30 4594.02 19996.76 7881.86 26392.70 8696.20 9087.63 2999.02 64
agg_prior97.38 6685.92 5796.72 8492.16 9898.97 78
test_prior485.96 5494.11 189
test_prior294.12 18787.67 12392.63 8896.39 8586.62 4091.50 9698.67 40
旧先验293.36 22871.25 38594.37 4397.13 24586.74 155
新几何293.11 243
原ACMM292.94 250
testdata298.75 9778.30 279
segment_acmp87.16 36
testdata192.15 27687.94 110
plane_prior794.70 17482.74 149
plane_prior694.52 18582.75 14774.23 196
plane_prior494.86 149
plane_prior382.75 14790.26 3486.91 190
plane_prior295.85 8190.81 17
plane_prior194.59 179
plane_prior82.73 15095.21 11889.66 5589.88 225
n20.00 432
nn0.00 432
door-mid85.49 390
test1196.57 95
door85.33 392
HQP5-MVS81.56 175
HQP-NCC94.17 20594.39 17188.81 7985.43 235
ACMP_Plane94.17 20594.39 17188.81 7985.43 235
BP-MVS87.11 152
HQP3-MVS96.04 14089.77 229
HQP2-MVS73.83 206
NP-MVS94.37 19582.42 15993.98 185
MDTV_nov1_ep1383.56 29291.69 29469.93 37787.75 36691.54 32778.60 31784.86 25188.90 34169.54 26196.03 30870.25 34288.93 242
ACMMP++_ref87.47 265
ACMMP++88.01 257
Test By Simon80.02 124