This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
MM97.29 2296.98 2998.23 1198.01 11195.03 2698.07 5595.76 29497.78 197.52 4498.80 2588.09 10799.86 999.44 199.37 6199.80 1
MSC_two_6792asdad98.86 198.67 6196.94 197.93 10899.86 997.68 2099.67 699.77 2
No_MVS98.86 198.67 6196.94 197.93 10899.86 997.68 2099.67 699.77 2
test_0728_THIRD94.78 4498.73 1898.87 1895.87 499.84 2397.45 3299.72 299.77 2
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1498.29 3495.55 1698.56 2297.81 10493.90 1599.65 6196.62 5099.21 7499.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4298.28 3699.86 997.52 2899.67 699.75 6
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4698.30 2698.90 1593.77 1799.68 5797.93 1699.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
IU-MVS99.42 795.39 1197.94 10790.40 20798.94 897.41 3599.66 1099.74 8
test_241102_TWO98.27 3995.13 2698.93 998.89 1694.99 1199.85 1897.52 2899.65 1399.74 8
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16698.35 2795.16 2598.71 2098.80 2595.05 1099.89 396.70 4999.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
patch_mono-296.83 4497.44 1695.01 18199.05 3985.39 30896.98 18598.77 794.70 4897.99 3398.66 2993.61 1999.91 197.67 2499.50 3599.72 11
test_fmvsmconf_n97.49 1597.56 997.29 5897.44 14792.37 9597.91 7698.88 495.83 898.92 1299.05 591.45 5799.80 3399.12 599.46 4199.69 12
reproduce_model97.51 1497.51 1397.50 4998.99 4693.01 7797.79 9398.21 5195.73 1397.99 3399.03 692.63 3699.82 2897.80 1899.42 5099.67 13
reproduce-ours97.53 1297.51 1397.60 4698.97 4793.31 6897.71 10498.20 5395.80 1097.88 3798.98 992.91 2799.81 3097.68 2099.43 4899.67 13
our_new_method97.53 1297.51 1397.60 4698.97 4793.31 6897.71 10498.20 5395.80 1097.88 3798.98 992.91 2799.81 3097.68 2099.43 4899.67 13
ACMMP_NAP97.20 2396.86 3598.23 1199.09 3495.16 2297.60 12098.19 5892.82 12697.93 3698.74 2891.60 5599.86 996.26 5899.52 3099.67 13
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 8094.25 4098.43 2298.27 3995.34 2098.11 2998.56 3394.53 1299.71 4996.57 5399.62 1799.65 17
Skip Steuart: Steuart Systems R&D Blog.
region2R97.07 2996.84 3797.77 3399.46 293.79 5498.52 1598.24 4793.19 10697.14 5898.34 5791.59 5699.87 795.46 9799.59 1999.64 18
SMA-MVScopyleft97.35 1997.03 2798.30 899.06 3895.42 1097.94 7398.18 6090.57 20198.85 1598.94 1293.33 2399.83 2696.72 4899.68 499.63 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS97.18 2496.96 3197.81 2899.38 1494.03 5098.59 1298.20 5394.85 3796.59 8198.29 6691.70 5299.80 3395.66 8699.40 5599.62 20
X-MVStestdata91.71 22389.67 28797.81 2899.38 1494.03 5098.59 1298.20 5394.85 3796.59 8132.69 42091.70 5299.80 3395.66 8699.40 5599.62 20
ACMMPR97.07 2996.84 3797.79 3099.44 693.88 5298.52 1598.31 3193.21 10397.15 5798.33 6091.35 6199.86 995.63 9199.59 1999.62 20
mPP-MVS96.86 3996.60 5097.64 4499.40 1193.44 6198.50 1898.09 7693.27 10295.95 10998.33 6091.04 6999.88 495.20 10099.57 2599.60 23
test_fmvsmconf0.1_n97.09 2797.06 2297.19 6795.67 25392.21 10297.95 7298.27 3995.78 1298.40 2599.00 789.99 8499.78 3899.06 699.41 5399.59 24
DVP-MVS++98.06 197.99 198.28 998.67 6195.39 1199.29 198.28 3694.78 4498.93 998.87 1896.04 299.86 997.45 3299.58 2399.59 24
PC_three_145290.77 18698.89 1498.28 6896.24 198.35 23195.76 8499.58 2399.59 24
MTAPA97.08 2896.78 4397.97 2399.37 1694.42 3697.24 16098.08 7795.07 3096.11 10198.59 3290.88 7499.90 296.18 7099.50 3599.58 27
ZNCC-MVS96.96 3396.67 4897.85 2599.37 1694.12 4698.49 1998.18 6092.64 13196.39 9198.18 7391.61 5499.88 495.59 9699.55 2699.57 28
PGM-MVS96.81 4596.53 5397.65 4299.35 2093.53 6097.65 11198.98 292.22 13797.14 5898.44 4691.17 6799.85 1894.35 12499.46 4199.57 28
CNVR-MVS97.68 697.44 1698.37 798.90 5395.86 697.27 15898.08 7795.81 997.87 4098.31 6394.26 1399.68 5797.02 4099.49 3899.57 28
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3598.27 3995.13 2699.19 498.89 1695.54 599.85 1897.52 2899.66 1099.56 31
OPU-MVS98.55 398.82 5596.86 398.25 3598.26 6996.04 299.24 12895.36 9899.59 1999.56 31
NCCC97.30 2197.03 2798.11 1798.77 5695.06 2597.34 15198.04 9295.96 697.09 6197.88 9593.18 2599.71 4995.84 8299.17 7899.56 31
MVS_030496.74 5096.31 6498.02 1996.87 17494.65 3097.58 12194.39 35496.47 397.16 5698.39 5087.53 12199.87 798.97 899.41 5399.55 34
MCST-MVS97.18 2496.84 3798.20 1499.30 2495.35 1597.12 17398.07 8293.54 9196.08 10397.69 11193.86 1699.71 4996.50 5499.39 5799.55 34
SR-MVS97.01 3296.86 3597.47 5199.09 3493.27 7097.98 6398.07 8293.75 8197.45 4698.48 4391.43 5999.59 7796.22 6199.27 6799.54 36
HFP-MVS97.14 2696.92 3397.83 2699.42 794.12 4698.52 1598.32 3093.21 10397.18 5598.29 6692.08 4699.83 2695.63 9199.59 1999.54 36
CP-MVS97.02 3196.81 4197.64 4499.33 2193.54 5998.80 898.28 3692.99 11596.45 8998.30 6591.90 4999.85 1895.61 9399.68 499.54 36
APD-MVScopyleft96.95 3496.60 5098.01 2099.03 4194.93 2797.72 10298.10 7591.50 15998.01 3298.32 6292.33 4299.58 8094.85 10999.51 3399.53 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS97.39 1897.13 1998.17 1599.02 4295.28 1998.23 3998.27 3992.37 13598.27 2798.65 3193.33 2399.72 4896.49 5599.52 3099.51 40
dcpmvs_296.37 6597.05 2594.31 22398.96 4984.11 32997.56 12497.51 16293.92 7697.43 4998.52 3792.75 3299.32 12097.32 3799.50 3599.51 40
APD-MVS_3200maxsize96.81 4596.71 4797.12 6999.01 4592.31 9897.98 6398.06 8593.11 11297.44 4798.55 3590.93 7299.55 9096.06 7199.25 7199.51 40
fmvsm_l_conf0.5_n97.65 797.75 697.34 5598.21 9592.75 8397.83 8798.73 995.04 3199.30 198.84 2393.34 2299.78 3899.32 299.13 8399.50 43
agg_prior293.94 13199.38 5899.50 43
MP-MVScopyleft96.77 4796.45 6197.72 3899.39 1393.80 5398.41 2398.06 8593.37 9895.54 12498.34 5790.59 7899.88 494.83 11199.54 2899.49 45
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft96.69 5396.45 6197.40 5399.36 1893.11 7598.87 698.06 8591.17 17596.40 9097.99 8790.99 7099.58 8095.61 9399.61 1899.49 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_fmvsmconf0.01_n96.15 7095.85 7497.03 7492.66 36991.83 11597.97 6997.84 12395.57 1597.53 4399.00 784.20 16999.76 4198.82 1199.08 8799.48 47
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4297.85 11994.92 3598.73 1898.87 1895.08 899.84 2397.52 2899.67 699.48 47
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
GST-MVS96.85 4196.52 5497.82 2799.36 1894.14 4598.29 2998.13 6892.72 12896.70 7398.06 8091.35 6199.86 994.83 11199.28 6699.47 49
test9_res94.81 11399.38 5899.45 50
DeepPCF-MVS93.97 196.61 5697.09 2195.15 17398.09 10486.63 28496.00 26398.15 6595.43 1797.95 3598.56 3393.40 2199.36 11796.77 4599.48 3999.45 50
TSAR-MVS + MP.97.42 1697.33 1897.69 4199.25 2794.24 4198.07 5597.85 11993.72 8298.57 2198.35 5493.69 1899.40 11397.06 3999.46 4199.44 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+91.43 495.40 9194.48 11498.16 1696.90 17395.34 1698.48 2097.87 11494.65 5288.53 29798.02 8583.69 17699.71 4993.18 14698.96 9499.44 52
SR-MVS-dyc-post96.88 3896.80 4297.11 7099.02 4292.34 9697.98 6398.03 9493.52 9397.43 4998.51 3891.40 6099.56 8896.05 7299.26 6999.43 54
RE-MVS-def96.72 4699.02 4292.34 9697.98 6398.03 9493.52 9397.43 4998.51 3890.71 7696.05 7299.26 6999.43 54
DeepC-MVS_fast93.89 296.93 3696.64 4997.78 3198.64 6794.30 3797.41 14198.04 9294.81 4296.59 8198.37 5291.24 6499.64 6995.16 10299.52 3099.42 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 6298.25 8992.59 8997.81 9198.68 1394.93 3399.24 398.87 1893.52 2099.79 3699.32 299.21 7499.40 57
HPM-MVS++copyleft97.34 2096.97 3098.47 599.08 3696.16 497.55 12897.97 10495.59 1496.61 7997.89 9392.57 3899.84 2395.95 7799.51 3399.40 57
train_agg96.30 6795.83 7597.72 3898.70 5994.19 4296.41 23398.02 9788.58 26396.03 10497.56 12692.73 3499.59 7795.04 10499.37 6199.39 59
CDPH-MVS95.97 7695.38 8797.77 3398.93 5094.44 3596.35 24197.88 11286.98 30896.65 7797.89 9391.99 4899.47 10592.26 15999.46 4199.39 59
MP-MVS-pluss96.70 5196.27 6697.98 2299.23 3094.71 2996.96 18798.06 8590.67 19295.55 12298.78 2791.07 6899.86 996.58 5299.55 2699.38 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVS_fast96.51 5996.27 6697.22 6499.32 2292.74 8498.74 998.06 8590.57 20196.77 7098.35 5490.21 8199.53 9494.80 11499.63 1699.38 61
ACMMPcopyleft96.27 6895.93 7197.28 6099.24 2892.62 8798.25 3598.81 592.99 11594.56 14298.39 5088.96 9499.85 1894.57 12297.63 14199.36 63
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS96.77 4796.46 6097.71 4098.40 7894.07 4898.21 4298.45 2289.86 21897.11 6098.01 8692.52 3999.69 5596.03 7599.53 2999.36 63
SD-MVS97.41 1797.53 1197.06 7398.57 7294.46 3497.92 7598.14 6794.82 4199.01 698.55 3594.18 1497.41 33796.94 4199.64 1499.32 65
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CANet96.39 6496.02 7097.50 4997.62 13793.38 6397.02 17997.96 10595.42 1894.86 13597.81 10487.38 12799.82 2896.88 4399.20 7699.29 66
test_prior97.23 6398.67 6192.99 7898.00 10199.41 11299.29 66
test111193.19 16592.82 15994.30 22497.58 14484.56 32398.21 4289.02 40493.53 9294.58 14198.21 7072.69 32899.05 16293.06 15098.48 11499.28 68
MVS_111021_HR96.68 5596.58 5296.99 7598.46 7392.31 9896.20 25498.90 394.30 6895.86 11197.74 10992.33 4299.38 11696.04 7499.42 5099.28 68
casdiffmvs_mvgpermissive95.81 8295.57 7796.51 9296.87 17491.49 12997.50 13197.56 15893.99 7495.13 13197.92 9287.89 11298.78 18795.97 7697.33 15299.26 70
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test250691.60 22990.78 23694.04 23597.66 13283.81 33298.27 3275.53 42193.43 9695.23 12898.21 7067.21 36899.07 15993.01 15498.49 11299.25 71
ECVR-MVScopyleft93.19 16592.73 16594.57 20997.66 13285.41 30698.21 4288.23 40693.43 9694.70 13998.21 7072.57 32999.07 15993.05 15198.49 11299.25 71
test1297.65 4298.46 7394.26 3997.66 14195.52 12590.89 7399.46 10699.25 7199.22 73
CHOSEN 1792x268894.15 12893.51 13896.06 12698.27 8689.38 20695.18 30898.48 2185.60 33193.76 16297.11 15083.15 18799.61 7291.33 18498.72 10399.19 74
3Dnovator91.36 595.19 10094.44 11697.44 5296.56 20193.36 6598.65 1198.36 2494.12 7089.25 28198.06 8082.20 21299.77 4093.41 14399.32 6499.18 75
旧先验198.38 8193.38 6397.75 13098.09 7892.30 4599.01 9299.16 76
VNet95.89 7995.45 8297.21 6598.07 10892.94 8097.50 13198.15 6593.87 7897.52 4497.61 12285.29 15399.53 9495.81 8395.27 19699.16 76
CSCG96.05 7295.91 7296.46 9899.24 2890.47 17098.30 2898.57 1889.01 24693.97 15897.57 12492.62 3799.76 4194.66 11799.27 6799.15 78
IS-MVSNet94.90 10894.52 11296.05 12797.67 13090.56 16798.44 2196.22 27693.21 10393.99 15697.74 10985.55 15198.45 22189.98 20697.86 13599.14 79
EI-MVSNet-Vis-set96.51 5996.47 5796.63 8298.24 9091.20 14396.89 19197.73 13394.74 4796.49 8598.49 4090.88 7499.58 8096.44 5698.32 12099.13 80
baseline95.58 8895.42 8596.08 12496.78 18590.41 17397.16 17097.45 17693.69 8595.65 12097.85 9987.29 12898.68 20195.66 8697.25 15799.13 80
MG-MVS95.61 8795.38 8796.31 10998.42 7690.53 16896.04 26097.48 16693.47 9595.67 11998.10 7689.17 9199.25 12791.27 18698.77 10199.13 80
LFMVS93.60 15092.63 16896.52 8998.13 10391.27 13897.94 7393.39 37490.57 20196.29 9498.31 6369.00 35599.16 14094.18 12695.87 18399.12 83
UA-Net95.95 7795.53 7897.20 6697.67 13092.98 7997.65 11198.13 6894.81 4296.61 7998.35 5488.87 9599.51 9990.36 20197.35 15199.11 84
EPNet95.20 9994.56 10897.14 6892.80 36692.68 8697.85 8494.87 34296.64 292.46 18797.80 10686.23 14099.65 6193.72 13798.62 10799.10 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RRT-MVS94.51 11894.35 11894.98 18496.40 21886.55 28797.56 12497.41 18593.19 10694.93 13397.04 15479.12 26599.30 12496.19 6897.32 15499.09 86
casdiffmvspermissive95.64 8595.49 7996.08 12496.76 19090.45 17197.29 15797.44 18094.00 7395.46 12697.98 8887.52 12398.73 19595.64 9097.33 15299.08 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TSAR-MVS + GP.96.69 5396.49 5597.27 6198.31 8493.39 6296.79 20096.72 24594.17 6997.44 4797.66 11592.76 3199.33 11896.86 4497.76 14099.08 87
HyFIR lowres test93.66 14992.92 15595.87 13698.24 9089.88 18894.58 32298.49 1985.06 34193.78 16195.78 22682.86 19698.67 20291.77 17495.71 18899.07 89
mvs_anonymous93.82 14493.74 12794.06 23396.44 21685.41 30695.81 27397.05 21789.85 22090.09 25396.36 19487.44 12597.75 30793.97 12996.69 17099.02 90
CPTT-MVS95.57 8995.19 9296.70 7899.27 2691.48 13098.33 2698.11 7387.79 28995.17 13098.03 8387.09 13199.61 7293.51 13999.42 5099.02 90
Vis-MVSNet (Re-imp)94.15 12893.88 12594.95 18897.61 13887.92 25298.10 5195.80 29392.22 13793.02 17897.45 13084.53 16397.91 29288.24 24597.97 13299.02 90
GeoE93.89 14193.28 14795.72 14796.96 17289.75 19198.24 3896.92 23289.47 23192.12 20097.21 14584.42 16498.39 22887.71 25696.50 17399.01 93
Anonymous20240521192.07 21290.83 23595.76 14198.19 9888.75 22697.58 12195.00 33286.00 32693.64 16397.45 13066.24 37799.53 9490.68 19792.71 24399.01 93
Vis-MVSNetpermissive95.23 9794.81 10096.51 9297.18 15491.58 12698.26 3498.12 7094.38 6694.90 13498.15 7582.28 21098.92 17391.45 18398.58 11099.01 93
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DELS-MVS96.61 5696.38 6397.30 5797.79 12593.19 7395.96 26598.18 6095.23 2295.87 11097.65 11691.45 5799.70 5495.87 7899.44 4799.00 96
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPM_NR95.01 10294.59 10696.26 11598.89 5490.68 16597.24 16097.73 13391.80 15192.93 18496.62 18289.13 9299.14 14589.21 23097.78 13898.97 97
MSLP-MVS++96.94 3597.06 2296.59 8598.72 5891.86 11497.67 10898.49 1994.66 5197.24 5498.41 4992.31 4498.94 17196.61 5199.46 4198.96 98
DeepC-MVS93.07 396.06 7195.66 7697.29 5897.96 11493.17 7497.30 15698.06 8593.92 7693.38 17198.66 2986.83 13399.73 4595.60 9599.22 7398.96 98
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
alignmvs95.87 8195.23 9197.78 3197.56 14595.19 2197.86 8197.17 20494.39 6596.47 8796.40 19285.89 14699.20 13296.21 6595.11 20198.95 100
SPE-MVS-test96.89 3797.04 2696.45 9998.29 8591.66 12299.03 497.85 11995.84 796.90 6597.97 8991.24 6498.75 19296.92 4299.33 6398.94 101
114514_t93.95 13893.06 15196.63 8299.07 3791.61 12397.46 13997.96 10577.99 39493.00 17997.57 12486.14 14599.33 11889.22 22999.15 8198.94 101
WTY-MVS94.71 11594.02 12296.79 7797.71 12992.05 10896.59 22497.35 19390.61 19894.64 14096.93 15786.41 13999.39 11491.20 18894.71 21198.94 101
EPP-MVSNet95.22 9895.04 9795.76 14197.49 14689.56 19698.67 1097.00 22390.69 19094.24 15097.62 12189.79 8798.81 18493.39 14496.49 17498.92 104
MGCFI-Net95.94 7895.40 8697.56 4897.59 14094.62 3198.21 4297.57 15494.41 6396.17 9996.16 20487.54 12099.17 13896.19 6894.73 21098.91 105
sasdasda96.02 7395.45 8297.75 3597.59 14095.15 2398.28 3097.60 14994.52 5796.27 9596.12 20687.65 11699.18 13696.20 6694.82 20598.91 105
canonicalmvs96.02 7395.45 8297.75 3597.59 14095.15 2398.28 3097.60 14994.52 5796.27 9596.12 20687.65 11699.18 13696.20 6694.82 20598.91 105
BP-MVS195.89 7995.49 7997.08 7296.67 19293.20 7298.08 5396.32 26994.56 5496.32 9297.84 10184.07 17299.15 14296.75 4698.78 10098.90 108
CS-MVS96.86 3997.06 2296.26 11598.16 10191.16 14899.09 397.87 11495.30 2197.06 6298.03 8391.72 5098.71 19997.10 3899.17 7898.90 108
EI-MVSNet-UG-set96.34 6696.30 6596.47 9698.20 9690.93 15596.86 19397.72 13594.67 5096.16 10098.46 4490.43 7999.58 8096.23 6097.96 13398.90 108
PAPR94.18 12593.42 14496.48 9597.64 13491.42 13495.55 28797.71 13988.99 24792.34 19495.82 22189.19 9099.11 14886.14 28897.38 14998.90 108
无先验95.79 27597.87 11483.87 35799.65 6187.68 26098.89 112
DP-MVS92.76 18791.51 20996.52 8998.77 5690.99 15197.38 14896.08 28282.38 37089.29 27897.87 9683.77 17599.69 5581.37 34496.69 17098.89 112
GDP-MVS95.62 8695.13 9497.09 7196.79 18493.26 7197.89 7997.83 12493.58 8696.80 6797.82 10383.06 19199.16 14094.40 12397.95 13498.87 114
diffmvspermissive95.25 9695.13 9495.63 15196.43 21789.34 20895.99 26497.35 19392.83 12596.31 9397.37 13586.44 13898.67 20296.26 5897.19 15998.87 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
mvsmamba94.57 11794.14 12195.87 13697.03 16789.93 18797.84 8595.85 29091.34 16694.79 13796.80 16480.67 23698.81 18494.85 10998.12 12998.85 116
MVSFormer95.37 9295.16 9395.99 13396.34 22291.21 14198.22 4097.57 15491.42 16396.22 9797.32 13786.20 14397.92 28994.07 12799.05 8998.85 116
jason94.84 11194.39 11796.18 12195.52 25990.93 15596.09 25896.52 26089.28 23796.01 10797.32 13784.70 16098.77 19095.15 10398.91 9798.85 116
jason: jason.
Effi-MVS+94.93 10794.45 11596.36 10796.61 19591.47 13196.41 23397.41 18591.02 18194.50 14495.92 21587.53 12198.78 18793.89 13396.81 16598.84 119
DPM-MVS95.69 8394.92 9898.01 2098.08 10795.71 995.27 30297.62 14890.43 20595.55 12297.07 15291.72 5099.50 10289.62 21798.94 9598.82 120
lupinMVS94.99 10694.56 10896.29 11396.34 22291.21 14195.83 27296.27 27388.93 25196.22 9796.88 16286.20 14398.85 18095.27 9999.05 8998.82 120
test_yl94.78 11394.23 11996.43 10097.74 12791.22 13996.85 19497.10 20991.23 17295.71 11696.93 15784.30 16699.31 12293.10 14795.12 19998.75 122
DCV-MVSNet94.78 11394.23 11996.43 10097.74 12791.22 13996.85 19497.10 20991.23 17295.71 11696.93 15784.30 16699.31 12293.10 14795.12 19998.75 122
CVMVSNet91.23 25391.75 19889.67 36095.77 24974.69 39696.44 22994.88 33985.81 32892.18 19797.64 11979.07 26695.58 37988.06 24895.86 18498.74 124
test22298.24 9092.21 10295.33 29797.60 14979.22 39095.25 12797.84 10188.80 9799.15 8198.72 125
MVS_Test94.89 10994.62 10595.68 14996.83 17989.55 19796.70 20997.17 20491.17 17595.60 12196.11 21087.87 11398.76 19193.01 15497.17 16098.72 125
VDD-MVS93.82 14493.08 15096.02 13097.88 12189.96 18697.72 10295.85 29092.43 13395.86 11198.44 4668.42 36299.39 11496.31 5794.85 20398.71 127
新几何197.32 5698.60 6893.59 5897.75 13081.58 37795.75 11597.85 9990.04 8399.67 5986.50 28299.13 8398.69 128
sss94.51 11893.80 12696.64 8097.07 16091.97 11196.32 24498.06 8588.94 25094.50 14496.78 16584.60 16199.27 12691.90 16996.02 17998.68 129
EC-MVSNet96.42 6296.47 5796.26 11597.01 16991.52 12898.89 597.75 13094.42 6296.64 7897.68 11289.32 8998.60 20997.45 3299.11 8698.67 130
testdata95.46 16598.18 10088.90 22497.66 14182.73 36897.03 6398.07 7990.06 8298.85 18089.67 21598.98 9398.64 131
balanced_conf0396.84 4396.89 3496.68 7997.63 13692.22 10198.17 4897.82 12594.44 6198.23 2897.36 13690.97 7199.22 13097.74 1999.66 1098.61 132
MVSMamba_PlusPlus96.51 5996.48 5696.59 8598.07 10891.97 11198.14 4997.79 12790.43 20597.34 5297.52 12991.29 6399.19 13398.12 1599.64 1498.60 133
mamv494.66 11696.10 6990.37 35298.01 11173.41 40096.82 19897.78 12889.95 21694.52 14397.43 13392.91 2799.09 15298.28 1499.16 8098.60 133
MVS_111021_LR96.24 6996.19 6896.39 10498.23 9491.35 13696.24 25298.79 693.99 7495.80 11397.65 11689.92 8699.24 12895.87 7899.20 7698.58 135
PVSNet_Blended_VisFu95.27 9594.91 9996.38 10598.20 9690.86 15797.27 15898.25 4590.21 20994.18 15297.27 14187.48 12499.73 4593.53 13897.77 13998.55 136
EIA-MVS95.53 9095.47 8195.71 14897.06 16389.63 19297.82 8997.87 11493.57 8793.92 15995.04 25990.61 7798.95 16994.62 11998.68 10498.54 137
TAMVS94.01 13793.46 14095.64 15096.16 23190.45 17196.71 20896.89 23589.27 23893.46 16996.92 16087.29 12897.94 28688.70 24195.74 18698.53 138
ET-MVSNet_ETH3D91.49 23890.11 26795.63 15196.40 21891.57 12795.34 29693.48 37390.60 20075.58 39695.49 24280.08 24896.79 35994.25 12589.76 28798.52 139
PatchmatchNetpermissive91.91 21791.35 21193.59 26295.38 26784.11 32993.15 36995.39 31289.54 22892.10 20193.68 32982.82 19898.13 24884.81 30795.32 19598.52 139
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
QAPM93.45 15692.27 18296.98 7696.77 18792.62 8798.39 2498.12 7084.50 34988.27 30597.77 10782.39 20999.81 3085.40 30198.81 9998.51 141
1112_ss93.37 15892.42 17996.21 11997.05 16590.99 15196.31 24596.72 24586.87 31189.83 26096.69 17286.51 13799.14 14588.12 24693.67 23198.50 142
ab-mvs93.57 15292.55 17296.64 8097.28 15091.96 11395.40 29497.45 17689.81 22293.22 17796.28 19779.62 25899.46 10690.74 19593.11 23798.50 142
原ACMM196.38 10598.59 6991.09 15097.89 11087.41 30095.22 12997.68 11290.25 8099.54 9287.95 25099.12 8598.49 144
Test_1112_low_res92.84 18491.84 19595.85 13997.04 16689.97 18595.53 28996.64 25385.38 33489.65 26695.18 25485.86 14799.10 14987.70 25793.58 23698.49 144
Patchmatch-test89.42 30887.99 31593.70 25795.27 27985.11 31388.98 40294.37 35681.11 37887.10 33093.69 32782.28 21097.50 32974.37 38494.76 20798.48 146
VDDNet93.05 17292.07 18696.02 13096.84 17790.39 17498.08 5395.85 29086.22 32395.79 11498.46 4467.59 36599.19 13394.92 10894.85 20398.47 147
PVSNet86.66 1892.24 20691.74 20093.73 25497.77 12683.69 33692.88 37496.72 24587.91 28393.00 17994.86 26778.51 27899.05 16286.53 28097.45 14898.47 147
GSMVS98.45 149
sam_mvs182.76 19998.45 149
SCA91.84 22091.18 22293.83 24995.59 25584.95 31994.72 31895.58 30690.82 18492.25 19693.69 32775.80 30698.10 25386.20 28695.98 18098.45 149
CDS-MVSNet94.14 13193.54 13495.93 13496.18 22991.46 13296.33 24397.04 21988.97 24993.56 16496.51 18687.55 11997.89 29389.80 21195.95 18198.44 152
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DP-MVS Recon95.68 8495.12 9697.37 5499.19 3194.19 4297.03 17798.08 7788.35 27295.09 13297.65 11689.97 8599.48 10492.08 16898.59 10998.44 152
Patchmatch-RL test87.38 32986.24 33290.81 34488.74 39978.40 38988.12 40793.17 37687.11 30782.17 37689.29 38881.95 21795.60 37888.64 24277.02 38498.41 154
LCM-MVSNet-Re92.50 19192.52 17592.44 30096.82 18181.89 35596.92 18993.71 37192.41 13484.30 35894.60 28085.08 15697.03 35091.51 18097.36 15098.40 155
PVSNet_Blended94.87 11094.56 10895.81 14098.27 8689.46 20395.47 29298.36 2488.84 25494.36 14796.09 21188.02 10999.58 8093.44 14198.18 12698.40 155
tttt051792.96 17692.33 18194.87 19197.11 15887.16 27197.97 6992.09 38890.63 19693.88 16097.01 15676.50 29999.06 16190.29 20395.45 19398.38 157
MDTV_nov1_ep13_2view70.35 40493.10 37183.88 35693.55 16582.47 20786.25 28598.38 157
BH-RMVSNet92.72 18991.97 19194.97 18697.16 15587.99 25096.15 25695.60 30490.62 19791.87 20797.15 14978.41 28098.57 21383.16 32497.60 14298.36 159
OMC-MVS95.09 10194.70 10496.25 11898.46 7391.28 13796.43 23197.57 15492.04 14694.77 13897.96 9087.01 13299.09 15291.31 18596.77 16698.36 159
thisisatest053093.03 17392.21 18495.49 16197.07 16089.11 22097.49 13692.19 38790.16 21194.09 15496.41 19176.43 30299.05 16290.38 20095.68 18998.31 161
h-mvs3394.15 12893.52 13796.04 12897.81 12490.22 17797.62 11997.58 15395.19 2396.74 7197.45 13083.67 17799.61 7295.85 8079.73 37698.29 162
fmvsm_s_conf0.5_n_a96.75 4996.93 3296.20 12097.64 13490.72 16398.00 6198.73 994.55 5598.91 1399.08 388.22 10699.63 7098.91 998.37 11898.25 163
FA-MVS(test-final)93.52 15492.92 15595.31 16896.77 18788.54 23394.82 31696.21 27889.61 22694.20 15195.25 25283.24 18499.14 14590.01 20596.16 17898.25 163
Anonymous2024052991.98 21590.73 24195.73 14698.14 10289.40 20597.99 6297.72 13579.63 38893.54 16697.41 13469.94 35099.56 8891.04 19191.11 27098.22 165
ETVMVS90.52 28289.14 30194.67 20396.81 18387.85 25695.91 26893.97 36589.71 22492.34 19492.48 35565.41 38297.96 28181.37 34494.27 21698.21 166
GA-MVS91.38 24390.31 25694.59 20494.65 31487.62 26094.34 33396.19 27990.73 18890.35 24193.83 32071.84 33497.96 28187.22 27193.61 23498.21 166
testing9191.90 21891.02 22694.53 21196.54 20486.55 28795.86 27095.64 30391.77 15291.89 20693.47 33869.94 35098.86 17890.23 20493.86 22998.18 168
fmvsm_s_conf0.1_n_a96.40 6396.47 5796.16 12295.48 26190.69 16497.91 7698.33 2994.07 7198.93 999.14 187.44 12599.61 7298.63 1398.32 12098.18 168
fmvsm_s_conf0.5_n96.85 4197.13 1996.04 12898.07 10890.28 17597.97 6998.76 894.93 3398.84 1699.06 488.80 9799.65 6199.06 698.63 10698.18 168
TAPA-MVS90.10 792.30 20291.22 22095.56 15598.33 8389.60 19496.79 20097.65 14381.83 37491.52 21597.23 14487.94 11198.91 17571.31 39698.37 11898.17 171
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
fmvsm_s_conf0.1_n96.58 5896.77 4496.01 13296.67 19290.25 17697.91 7698.38 2394.48 5998.84 1699.14 188.06 10899.62 7198.82 1198.60 10898.15 172
UGNet94.04 13693.28 14796.31 10996.85 17691.19 14497.88 8097.68 14094.40 6493.00 17996.18 20173.39 32799.61 7291.72 17598.46 11598.13 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+93.46 15592.75 16395.59 15496.77 18790.03 17996.81 19997.13 20688.19 27591.30 22394.27 30286.21 14298.63 20687.66 26196.46 17698.12 174
tpm90.25 28989.74 28691.76 32593.92 33679.73 37993.98 34493.54 37288.28 27391.99 20393.25 34377.51 29397.44 33487.30 27087.94 30398.12 174
PMMVS92.86 18292.34 18094.42 21694.92 30086.73 28094.53 32496.38 26784.78 34694.27 14995.12 25883.13 18898.40 22491.47 18296.49 17498.12 174
EPMVS90.70 27689.81 28193.37 27194.73 31184.21 32793.67 35888.02 40789.50 23092.38 19093.49 33677.82 29197.78 30386.03 29292.68 24498.11 177
FE-MVS92.05 21391.05 22595.08 17796.83 17987.93 25193.91 35095.70 29786.30 32094.15 15394.97 26076.59 29899.21 13184.10 31596.86 16398.09 178
test_fmvsm_n_192097.55 1197.89 396.53 8898.41 7791.73 11698.01 6099.02 196.37 499.30 198.92 1392.39 4199.79 3699.16 499.46 4198.08 179
LS3D93.57 15292.61 17096.47 9697.59 14091.61 12397.67 10897.72 13585.17 33990.29 24298.34 5784.60 16199.73 4583.85 32298.27 12298.06 180
testing9991.62 22890.72 24294.32 22196.48 21286.11 29895.81 27394.76 34391.55 15791.75 21193.44 33968.55 36098.82 18290.43 19893.69 23098.04 181
UBG91.55 23490.76 23793.94 24496.52 20885.06 31595.22 30594.54 34990.47 20491.98 20492.71 34972.02 33298.74 19488.10 24795.26 19798.01 182
testing1191.68 22690.75 23994.47 21296.53 20686.56 28695.76 27794.51 35191.10 17991.24 22893.59 33368.59 35998.86 17891.10 18994.29 21598.00 183
UniMVSNet_ETH3D91.34 24890.22 26494.68 20294.86 30487.86 25597.23 16497.46 17187.99 28089.90 25796.92 16066.35 37598.23 23990.30 20290.99 27397.96 184
HY-MVS89.66 993.87 14292.95 15496.63 8297.10 15992.49 9295.64 28596.64 25389.05 24593.00 17995.79 22585.77 14999.45 10889.16 23394.35 21397.96 184
CNLPA94.28 12393.53 13596.52 8998.38 8192.55 9096.59 22496.88 23690.13 21391.91 20597.24 14385.21 15499.09 15287.64 26297.83 13697.92 186
CostFormer91.18 25890.70 24392.62 29994.84 30581.76 35694.09 34394.43 35284.15 35292.72 18693.77 32479.43 26098.20 24290.70 19692.18 25297.90 187
tpmrst91.44 24091.32 21391.79 32295.15 28879.20 38593.42 36495.37 31488.55 26693.49 16893.67 33082.49 20698.27 23790.41 19989.34 29197.90 187
EPNet_dtu91.71 22391.28 21692.99 28493.76 34283.71 33596.69 21195.28 31993.15 11087.02 33295.95 21483.37 18397.38 33979.46 35996.84 16497.88 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest051592.29 20391.30 21595.25 17096.60 19688.90 22494.36 33292.32 38687.92 28293.43 17094.57 28177.28 29499.00 16689.42 22295.86 18497.86 190
ADS-MVSNet289.45 30788.59 30992.03 31295.86 24382.26 35290.93 39094.32 35983.23 36591.28 22691.81 36979.01 27195.99 36879.52 35691.39 26597.84 191
ADS-MVSNet89.89 29988.68 30893.53 26595.86 24384.89 32090.93 39095.07 33083.23 36591.28 22691.81 36979.01 27197.85 29579.52 35691.39 26597.84 191
MAR-MVS94.22 12493.46 14096.51 9298.00 11392.19 10597.67 10897.47 16988.13 27993.00 17995.84 21984.86 15999.51 9987.99 24998.17 12797.83 193
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS96.02 7395.89 7396.40 10297.16 15592.44 9397.47 13797.77 12994.55 5596.48 8694.51 28591.23 6698.92 17395.65 8998.19 12597.82 194
CANet_DTU94.37 12193.65 13096.55 8796.46 21592.13 10696.21 25396.67 25294.38 6693.53 16797.03 15579.34 26199.71 4990.76 19498.45 11697.82 194
testing22290.31 28688.96 30394.35 21896.54 20487.29 26395.50 29093.84 36990.97 18291.75 21192.96 34662.18 39298.00 27282.86 32794.08 22297.76 196
PLCcopyleft91.00 694.11 13293.43 14296.13 12398.58 7191.15 14996.69 21197.39 18787.29 30391.37 21996.71 16888.39 10499.52 9887.33 26997.13 16197.73 197
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dp88.90 31488.26 31490.81 34494.58 31876.62 39292.85 37594.93 33685.12 34090.07 25593.07 34475.81 30598.12 25180.53 35187.42 31097.71 198
AdaColmapbinary94.34 12293.68 12996.31 10998.59 6991.68 12196.59 22497.81 12689.87 21792.15 19897.06 15383.62 17999.54 9289.34 22498.07 13097.70 199
baseline192.82 18591.90 19395.55 15797.20 15390.77 16197.19 16794.58 34892.20 13992.36 19196.34 19584.16 17098.21 24189.20 23183.90 35697.68 200
test-LLR91.42 24191.19 22192.12 31094.59 31680.66 36594.29 33792.98 37891.11 17790.76 23592.37 35779.02 26998.07 26288.81 23896.74 16797.63 201
test-mter90.19 29389.54 29192.12 31094.59 31680.66 36594.29 33792.98 37887.68 29490.76 23592.37 35767.67 36498.07 26288.81 23896.74 16797.63 201
PAPM91.52 23790.30 25795.20 17195.30 27889.83 18993.38 36596.85 23986.26 32288.59 29595.80 22284.88 15898.15 24775.67 37895.93 18297.63 201
F-COLMAP93.58 15192.98 15395.37 16798.40 7888.98 22297.18 16897.29 19887.75 29290.49 23897.10 15185.21 15499.50 10286.70 27996.72 16997.63 201
TESTMET0.1,190.06 29589.42 29491.97 31394.41 32480.62 36794.29 33791.97 39087.28 30490.44 23992.47 35668.79 35697.67 31288.50 24496.60 17297.61 205
CR-MVSNet90.82 27189.77 28393.95 24294.45 32287.19 26990.23 39595.68 30186.89 31092.40 18892.36 36080.91 23297.05 34981.09 34893.95 22797.60 206
RPMNet88.98 31187.05 32594.77 19994.45 32287.19 26990.23 39598.03 9477.87 39692.40 18887.55 40080.17 24799.51 9968.84 40193.95 22797.60 206
MIMVSNet88.50 31986.76 32993.72 25694.84 30587.77 25891.39 38594.05 36286.41 31887.99 31292.59 35363.27 38695.82 37377.44 36792.84 24097.57 208
PatchT88.87 31587.42 31993.22 27794.08 33385.10 31489.51 40094.64 34781.92 37392.36 19188.15 39680.05 24997.01 35272.43 39293.65 23297.54 209
tpm289.96 29689.21 29892.23 30994.91 30281.25 35993.78 35394.42 35380.62 38491.56 21493.44 33976.44 30197.94 28685.60 29892.08 25697.49 210
IB-MVS87.33 1789.91 29788.28 31394.79 19895.26 28287.70 25995.12 31093.95 36689.35 23687.03 33192.49 35470.74 34299.19 13389.18 23281.37 37097.49 210
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MonoMVSNet91.92 21691.77 19692.37 30292.94 36383.11 34097.09 17595.55 30792.91 12390.85 23394.55 28281.27 22896.52 36293.01 15487.76 30597.47 212
test_fmvsmvis_n_192096.70 5196.84 3796.31 10996.62 19491.73 11697.98 6398.30 3296.19 596.10 10298.95 1189.42 8899.76 4198.90 1099.08 8797.43 213
UWE-MVS89.91 29789.48 29391.21 33595.88 24278.23 39094.91 31590.26 40089.11 24292.35 19394.52 28468.76 35797.96 28183.95 31995.59 19197.42 214
test_vis1_n_192094.17 12694.58 10792.91 28797.42 14882.02 35497.83 8797.85 11994.68 4998.10 3098.49 4070.15 34899.32 12097.91 1798.82 9897.40 215
test_fmvs1_n92.73 18892.88 15792.29 30696.08 23981.05 36297.98 6397.08 21290.72 18996.79 6998.18 7363.07 38798.45 22197.62 2698.42 11797.36 216
AUN-MVS91.76 22290.75 23994.81 19497.00 17088.57 23196.65 21596.49 26289.63 22592.15 19896.12 20678.66 27698.50 21790.83 19279.18 37997.36 216
hse-mvs293.45 15692.99 15294.81 19497.02 16888.59 23096.69 21196.47 26395.19 2396.74 7196.16 20483.67 17798.48 22095.85 8079.13 38097.35 218
CHOSEN 280x42093.12 16892.72 16694.34 22096.71 19187.27 26590.29 39497.72 13586.61 31591.34 22095.29 24784.29 16898.41 22393.25 14598.94 9597.35 218
test_cas_vis1_n_192094.48 12094.55 11194.28 22596.78 18586.45 28997.63 11797.64 14593.32 10197.68 4298.36 5373.75 32599.08 15596.73 4799.05 8997.31 220
SDMVSNet94.17 12693.61 13195.86 13898.09 10491.37 13597.35 15098.20 5393.18 10891.79 20997.28 13979.13 26498.93 17294.61 12092.84 24097.28 221
sd_testset93.10 16992.45 17895.05 17898.09 10489.21 21596.89 19197.64 14593.18 10891.79 20997.28 13975.35 31198.65 20488.99 23592.84 24097.28 221
BH-untuned92.94 17892.62 16993.92 24797.22 15186.16 29796.40 23796.25 27590.06 21489.79 26196.17 20383.19 18598.35 23187.19 27297.27 15697.24 223
test_vis1_n92.37 19892.26 18392.72 29594.75 30982.64 34498.02 5996.80 24291.18 17497.77 4197.93 9158.02 39698.29 23697.63 2598.21 12497.23 224
test_fmvs193.21 16393.53 13592.25 30896.55 20381.20 36197.40 14596.96 22590.68 19196.80 6798.04 8269.25 35498.40 22497.58 2798.50 11197.16 225
131492.81 18692.03 18895.14 17495.33 27589.52 20096.04 26097.44 18087.72 29386.25 34295.33 24683.84 17498.79 18689.26 22797.05 16297.11 226
PCF-MVS89.48 1191.56 23389.95 27596.36 10796.60 19692.52 9192.51 37997.26 19979.41 38988.90 28696.56 18484.04 17399.55 9077.01 37397.30 15597.01 227
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres600view792.49 19391.60 20395.18 17297.91 11989.47 20197.65 11194.66 34592.18 14393.33 17294.91 26478.06 28799.10 14981.61 33894.06 22696.98 228
thres40092.42 19591.52 20795.12 17697.85 12289.29 21197.41 14194.88 33992.19 14193.27 17594.46 29078.17 28399.08 15581.40 34194.08 22296.98 228
XVG-OURS-SEG-HR93.86 14393.55 13394.81 19497.06 16388.53 23495.28 30097.45 17691.68 15594.08 15597.68 11282.41 20898.90 17693.84 13592.47 24696.98 228
MSDG91.42 24190.24 26194.96 18797.15 15788.91 22393.69 35796.32 26985.72 33086.93 33696.47 18880.24 24598.98 16880.57 35095.05 20296.98 228
XVG-OURS93.72 14893.35 14594.80 19797.07 16088.61 22994.79 31797.46 17191.97 14993.99 15697.86 9881.74 22198.88 17792.64 15892.67 24596.92 232
PatchMatch-RL92.90 18092.02 18995.56 15598.19 9890.80 15995.27 30297.18 20287.96 28191.86 20895.68 23280.44 24198.99 16784.01 31797.54 14396.89 233
tpmvs89.83 30389.15 30091.89 31794.92 30080.30 37293.11 37095.46 31186.28 32188.08 31092.65 35080.44 24198.52 21681.47 34089.92 28596.84 234
baseline291.63 22790.86 23193.94 24494.33 32686.32 29195.92 26791.64 39289.37 23586.94 33594.69 27581.62 22398.69 20088.64 24294.57 21296.81 235
TR-MVS91.48 23990.59 24794.16 22996.40 21887.33 26295.67 28095.34 31887.68 29491.46 21795.52 24176.77 29798.35 23182.85 32993.61 23496.79 236
OpenMVScopyleft89.19 1292.86 18291.68 20196.40 10295.34 27292.73 8598.27 3298.12 7084.86 34485.78 34597.75 10878.89 27499.74 4487.50 26698.65 10596.73 237
tpm cat188.36 32087.21 32391.81 32195.13 29080.55 36892.58 37895.70 29774.97 40087.45 32091.96 36778.01 28998.17 24680.39 35288.74 29796.72 238
DSMNet-mixed86.34 34086.12 33587.00 37789.88 39070.43 40394.93 31490.08 40177.97 39585.42 35092.78 34874.44 31893.96 39574.43 38395.14 19896.62 239
API-MVS94.84 11194.49 11395.90 13597.90 12092.00 11097.80 9297.48 16689.19 24094.81 13696.71 16888.84 9699.17 13888.91 23798.76 10296.53 240
gg-mvs-nofinetune87.82 32585.61 33794.44 21494.46 32189.27 21491.21 38984.61 41580.88 38089.89 25974.98 41171.50 33697.53 32685.75 29797.21 15896.51 241
Effi-MVS+-dtu93.08 17093.21 14992.68 29896.02 24083.25 33997.14 17296.72 24593.85 7991.20 23093.44 33983.08 18998.30 23591.69 17895.73 18796.50 242
thres100view90092.43 19491.58 20494.98 18497.92 11889.37 20797.71 10494.66 34592.20 13993.31 17394.90 26578.06 28799.08 15581.40 34194.08 22296.48 243
tfpn200view992.38 19791.52 20794.95 18897.85 12289.29 21197.41 14194.88 33992.19 14193.27 17594.46 29078.17 28399.08 15581.40 34194.08 22296.48 243
mvsany_test193.93 14093.98 12393.78 25394.94 29986.80 27794.62 32092.55 38588.77 26096.85 6698.49 4088.98 9398.08 25895.03 10595.62 19096.46 245
JIA-IIPM88.26 32287.04 32691.91 31593.52 34981.42 35889.38 40194.38 35580.84 38190.93 23280.74 40879.22 26397.92 28982.76 33191.62 26096.38 246
cascas91.20 25590.08 26894.58 20894.97 29589.16 21993.65 35997.59 15279.90 38789.40 27392.92 34775.36 31098.36 23092.14 16494.75 20896.23 247
dmvs_re90.21 29189.50 29292.35 30395.47 26485.15 31295.70 27994.37 35690.94 18388.42 29893.57 33474.63 31695.67 37682.80 33089.57 28996.22 248
RPSCF90.75 27390.86 23190.42 35196.84 17776.29 39495.61 28696.34 26883.89 35591.38 21897.87 9676.45 30098.78 18787.16 27492.23 24996.20 249
thres20092.23 20791.39 21094.75 20197.61 13889.03 22196.60 22395.09 32992.08 14593.28 17494.00 31678.39 28199.04 16581.26 34794.18 21896.19 250
xiu_mvs_v2_base95.32 9495.29 9095.40 16697.22 15190.50 16995.44 29397.44 18093.70 8496.46 8896.18 20188.59 10399.53 9494.79 11697.81 13796.17 251
PS-MVSNAJ95.37 9295.33 8995.49 16197.35 14990.66 16695.31 29997.48 16693.85 7996.51 8495.70 23188.65 10099.65 6194.80 11498.27 12296.17 251
AllTest90.23 29088.98 30293.98 23897.94 11686.64 28196.51 22895.54 30885.38 33485.49 34896.77 16670.28 34599.15 14280.02 35492.87 23896.15 253
TestCases93.98 23897.94 11686.64 28195.54 30885.38 33485.49 34896.77 16670.28 34599.15 14280.02 35492.87 23896.15 253
BH-w/o92.14 21191.75 19893.31 27396.99 17185.73 30195.67 28095.69 29988.73 26189.26 28094.82 27082.97 19498.07 26285.26 30396.32 17796.13 255
xiu_mvs_v1_base_debu95.01 10294.76 10195.75 14396.58 19891.71 11896.25 24997.35 19392.99 11596.70 7396.63 17982.67 20099.44 10996.22 6197.46 14496.11 256
xiu_mvs_v1_base95.01 10294.76 10195.75 14396.58 19891.71 11896.25 24997.35 19392.99 11596.70 7396.63 17982.67 20099.44 10996.22 6197.46 14496.11 256
xiu_mvs_v1_base_debi95.01 10294.76 10195.75 14396.58 19891.71 11896.25 24997.35 19392.99 11596.70 7396.63 17982.67 20099.44 10996.22 6197.46 14496.11 256
Fast-Effi-MVS+-dtu92.29 20391.99 19093.21 27895.27 27985.52 30497.03 17796.63 25692.09 14489.11 28495.14 25680.33 24498.08 25887.54 26594.74 20996.03 259
nrg03094.05 13593.31 14696.27 11495.22 28394.59 3298.34 2597.46 17192.93 12291.21 22996.64 17587.23 13098.22 24094.99 10785.80 32495.98 260
PS-MVSNAJss93.74 14793.51 13894.44 21493.91 33789.28 21397.75 9697.56 15892.50 13289.94 25696.54 18588.65 10098.18 24593.83 13690.90 27595.86 261
HQP_MVS93.78 14693.43 14294.82 19296.21 22689.99 18297.74 9797.51 16294.85 3791.34 22096.64 17581.32 22698.60 20993.02 15292.23 24995.86 261
plane_prior597.51 16298.60 20993.02 15292.23 24995.86 261
FIs94.09 13393.70 12895.27 16995.70 25192.03 10998.10 5198.68 1393.36 10090.39 24096.70 17087.63 11897.94 28692.25 16190.50 28195.84 264
FC-MVSNet-test93.94 13993.57 13295.04 17995.48 26191.45 13398.12 5098.71 1193.37 9890.23 24396.70 17087.66 11597.85 29591.49 18190.39 28295.83 265
MVS91.71 22390.44 25195.51 15995.20 28591.59 12596.04 26097.45 17673.44 40487.36 32495.60 23685.42 15299.10 14985.97 29397.46 14495.83 265
tt080591.09 25990.07 27194.16 22995.61 25488.31 23897.56 12496.51 26189.56 22789.17 28295.64 23467.08 37298.38 22991.07 19088.44 30095.80 267
VPNet92.23 20791.31 21494.99 18295.56 25790.96 15397.22 16597.86 11892.96 12190.96 23196.62 18275.06 31298.20 24291.90 16983.65 35895.80 267
DU-MVS92.90 18092.04 18795.49 16194.95 29792.83 8197.16 17098.24 4793.02 11490.13 24895.71 22983.47 18097.85 29591.71 17683.93 35395.78 269
NR-MVSNet92.34 19991.27 21795.53 15894.95 29793.05 7697.39 14698.07 8292.65 13084.46 35695.71 22985.00 15797.77 30589.71 21383.52 35995.78 269
HQP4-MVS90.14 24498.50 21795.78 269
HQP-MVS93.19 16592.74 16494.54 21095.86 24389.33 20996.65 21597.39 18793.55 8890.14 24495.87 21780.95 23098.50 21792.13 16592.10 25495.78 269
VPA-MVSNet93.24 16292.48 17795.51 15995.70 25192.39 9497.86 8198.66 1692.30 13692.09 20295.37 24580.49 24098.40 22493.95 13085.86 32395.75 273
TranMVSNet+NR-MVSNet92.50 19191.63 20295.14 17494.76 30892.07 10797.53 12998.11 7392.90 12489.56 26996.12 20683.16 18697.60 32089.30 22583.20 36295.75 273
UniMVSNet_NR-MVSNet93.37 15892.67 16795.47 16495.34 27292.83 8197.17 16998.58 1792.98 12090.13 24895.80 22288.37 10597.85 29591.71 17683.93 35395.73 275
WR-MVS92.34 19991.53 20694.77 19995.13 29090.83 15896.40 23797.98 10391.88 15089.29 27895.54 24082.50 20597.80 30189.79 21285.27 33295.69 276
XXY-MVS92.16 20991.23 21994.95 18894.75 30990.94 15497.47 13797.43 18389.14 24188.90 28696.43 19079.71 25598.24 23889.56 21887.68 30695.67 277
WBMVS90.69 27889.99 27492.81 29296.48 21285.00 31695.21 30796.30 27189.46 23289.04 28594.05 31472.45 33197.82 29989.46 22087.41 31195.61 278
ACMM89.79 892.96 17692.50 17694.35 21896.30 22488.71 22797.58 12197.36 19291.40 16590.53 23796.65 17479.77 25498.75 19291.24 18791.64 25995.59 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2023121190.63 27989.42 29494.27 22698.24 9089.19 21898.05 5797.89 11079.95 38688.25 30694.96 26172.56 33098.13 24889.70 21485.14 33495.49 280
jajsoiax92.42 19591.89 19494.03 23693.33 35788.50 23597.73 9997.53 16092.00 14888.85 28996.50 18775.62 30998.11 25293.88 13491.56 26295.48 281
testgi87.97 32387.21 32390.24 35492.86 36480.76 36396.67 21494.97 33491.74 15385.52 34795.83 22062.66 39094.47 38976.25 37588.36 30195.48 281
MVSTER93.20 16492.81 16094.37 21796.56 20189.59 19597.06 17697.12 20791.24 17191.30 22395.96 21382.02 21598.05 26593.48 14090.55 27995.47 283
UniMVSNet (Re)93.31 16092.55 17295.61 15395.39 26693.34 6697.39 14698.71 1193.14 11190.10 25294.83 26987.71 11498.03 26991.67 17983.99 35295.46 284
mvs_tets92.31 20191.76 19793.94 24493.41 35488.29 23997.63 11797.53 16092.04 14688.76 29296.45 18974.62 31798.09 25793.91 13291.48 26395.45 285
EI-MVSNet93.03 17392.88 15793.48 26795.77 24986.98 27496.44 22997.12 20790.66 19491.30 22397.64 11986.56 13598.05 26589.91 20890.55 27995.41 286
EU-MVSNet88.72 31788.90 30588.20 37093.15 36074.21 39796.63 22094.22 36185.18 33887.32 32595.97 21276.16 30394.98 38585.27 30286.17 32095.41 286
test0.0.03 189.37 30988.70 30791.41 33292.47 37385.63 30295.22 30592.70 38391.11 17786.91 33793.65 33179.02 26993.19 40178.00 36689.18 29295.41 286
test_djsdf93.07 17192.76 16194.00 23793.49 35188.70 22898.22 4097.57 15491.42 16390.08 25495.55 23982.85 19797.92 28994.07 12791.58 26195.40 289
IterMVS-LS92.29 20391.94 19293.34 27296.25 22586.97 27596.57 22797.05 21790.67 19289.50 27294.80 27186.59 13497.64 31589.91 20886.11 32295.40 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS92.98 17592.53 17494.32 22196.12 23689.20 21695.28 30097.47 16992.66 12989.90 25795.62 23580.58 23898.40 22492.73 15792.40 24795.38 291
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CP-MVSNet91.89 21991.24 21893.82 25095.05 29388.57 23197.82 8998.19 5891.70 15488.21 30795.76 22781.96 21697.52 32887.86 25184.65 34195.37 292
testing387.67 32786.88 32890.05 35696.14 23480.71 36497.10 17492.85 38090.15 21287.54 31994.55 28255.70 40194.10 39273.77 38894.10 22195.35 293
FMVSNet391.78 22190.69 24495.03 18096.53 20692.27 10097.02 17996.93 22889.79 22389.35 27594.65 27877.01 29597.47 33186.12 28988.82 29495.35 293
FMVSNet291.31 24990.08 26894.99 18296.51 20992.21 10297.41 14196.95 22688.82 25688.62 29494.75 27373.87 32197.42 33685.20 30488.55 29995.35 293
PS-CasMVS91.55 23490.84 23493.69 25894.96 29688.28 24097.84 8598.24 4791.46 16188.04 31195.80 22279.67 25697.48 33087.02 27684.54 34795.31 296
LPG-MVS_test92.94 17892.56 17194.10 23196.16 23188.26 24197.65 11197.46 17191.29 16790.12 25097.16 14779.05 26798.73 19592.25 16191.89 25795.31 296
LGP-MVS_train94.10 23196.16 23188.26 24197.46 17191.29 16790.12 25097.16 14779.05 26798.73 19592.25 16191.89 25795.31 296
GBi-Net91.35 24690.27 25994.59 20496.51 20991.18 14597.50 13196.93 22888.82 25689.35 27594.51 28573.87 32197.29 34386.12 28988.82 29495.31 296
test191.35 24690.27 25994.59 20496.51 20991.18 14597.50 13196.93 22888.82 25689.35 27594.51 28573.87 32197.29 34386.12 28988.82 29495.31 296
FMVSNet189.88 30088.31 31294.59 20495.41 26591.18 14597.50 13196.93 22886.62 31487.41 32294.51 28565.94 38097.29 34383.04 32687.43 30995.31 296
PVSNet_082.17 1985.46 35183.64 35490.92 34095.27 27979.49 38290.55 39395.60 30483.76 35983.00 37389.95 38371.09 33997.97 27782.75 33260.79 41395.31 296
ACMP89.59 1092.62 19092.14 18594.05 23496.40 21888.20 24497.36 14997.25 20191.52 15888.30 30396.64 17578.46 27998.72 19891.86 17291.48 26395.23 303
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Syy-MVS87.13 33287.02 32787.47 37395.16 28673.21 40195.00 31293.93 36788.55 26686.96 33391.99 36575.90 30494.00 39361.59 40794.11 21995.20 304
myMVS_eth3d87.18 33186.38 33189.58 36195.16 28679.53 38095.00 31293.93 36788.55 26686.96 33391.99 36556.23 40094.00 39375.47 38094.11 21995.20 304
v2v48291.59 23090.85 23393.80 25193.87 33988.17 24696.94 18896.88 23689.54 22889.53 27094.90 26581.70 22298.02 27089.25 22885.04 33895.20 304
reproduce_monomvs91.30 25091.10 22491.92 31496.82 18182.48 34897.01 18297.49 16594.64 5388.35 30095.27 25070.53 34398.10 25395.20 10084.60 34495.19 307
PEN-MVS91.20 25590.44 25193.48 26794.49 32087.91 25497.76 9598.18 6091.29 16787.78 31595.74 22880.35 24397.33 34185.46 30082.96 36395.19 307
OurMVSNet-221017-090.51 28390.19 26691.44 33193.41 35481.25 35996.98 18596.28 27291.68 15586.55 34096.30 19674.20 32097.98 27488.96 23687.40 31295.09 309
OPM-MVS93.28 16192.76 16194.82 19294.63 31590.77 16196.65 21597.18 20293.72 8291.68 21397.26 14279.33 26298.63 20692.13 16592.28 24895.07 310
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
eth_miper_zixun_eth91.02 26390.59 24792.34 30595.33 27584.35 32594.10 34296.90 23388.56 26588.84 29094.33 29784.08 17197.60 32088.77 24084.37 34995.06 311
ACMH87.59 1690.53 28189.42 29493.87 24896.21 22687.92 25297.24 16096.94 22788.45 26983.91 36696.27 19871.92 33398.62 20884.43 31289.43 29095.05 312
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl2291.21 25490.56 24993.14 28096.09 23886.80 27794.41 33096.58 25987.80 28888.58 29693.99 31780.85 23597.62 31889.87 21086.93 31494.99 313
v119291.07 26090.23 26293.58 26393.70 34387.82 25796.73 20597.07 21487.77 29089.58 26794.32 29980.90 23497.97 27786.52 28185.48 32794.95 314
COLMAP_ROBcopyleft87.81 1590.40 28589.28 29793.79 25297.95 11587.13 27296.92 18995.89 28982.83 36786.88 33897.18 14673.77 32499.29 12578.44 36493.62 23394.95 314
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v192192090.85 27090.03 27393.29 27493.55 34786.96 27696.74 20497.04 21987.36 30189.52 27194.34 29680.23 24697.97 27786.27 28485.21 33394.94 316
SixPastTwentyTwo89.15 31088.54 31090.98 33993.49 35180.28 37396.70 20994.70 34490.78 18584.15 36195.57 23771.78 33597.71 31084.63 31085.07 33694.94 316
DIV-MVS_self_test90.97 26690.33 25492.88 28995.36 27086.19 29694.46 32896.63 25687.82 28688.18 30894.23 30582.99 19297.53 32687.72 25485.57 32694.93 318
v14419291.06 26190.28 25893.39 27093.66 34687.23 26896.83 19797.07 21487.43 29989.69 26494.28 30181.48 22498.00 27287.18 27384.92 34094.93 318
cl____90.96 26790.32 25592.89 28895.37 26986.21 29594.46 32896.64 25387.82 28688.15 30994.18 30882.98 19397.54 32487.70 25785.59 32594.92 320
v124090.70 27689.85 27993.23 27693.51 35086.80 27796.61 22197.02 22287.16 30689.58 26794.31 30079.55 25997.98 27485.52 29985.44 32894.90 321
c3_l91.38 24390.89 22992.88 28995.58 25686.30 29294.68 31996.84 24088.17 27688.83 29194.23 30585.65 15097.47 33189.36 22384.63 34294.89 322
pmmvs589.86 30288.87 30692.82 29192.86 36486.23 29496.26 24895.39 31284.24 35187.12 32794.51 28574.27 31997.36 34087.61 26487.57 30794.86 323
v114491.37 24590.60 24693.68 25993.89 33888.23 24396.84 19697.03 22188.37 27189.69 26494.39 29282.04 21497.98 27487.80 25385.37 32994.84 324
K. test v387.64 32886.75 33090.32 35393.02 36279.48 38396.61 22192.08 38990.66 19480.25 38594.09 31267.21 36896.65 36185.96 29480.83 37294.83 325
IterMVS90.15 29489.67 28791.61 32795.48 26183.72 33494.33 33496.12 28189.99 21587.31 32694.15 31075.78 30896.27 36686.97 27786.89 31794.83 325
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_lstm_enhance90.50 28490.06 27291.83 31995.33 27583.74 33393.86 35196.70 24987.56 29787.79 31493.81 32383.45 18296.92 35587.39 26784.62 34394.82 327
IterMVS-SCA-FT90.31 28689.81 28191.82 32095.52 25984.20 32894.30 33696.15 28090.61 19887.39 32394.27 30275.80 30696.44 36387.34 26886.88 31894.82 327
WR-MVS_H92.00 21491.35 21193.95 24295.09 29289.47 20198.04 5898.68 1391.46 16188.34 30194.68 27685.86 14797.56 32285.77 29684.24 35094.82 327
GG-mvs-BLEND93.62 26093.69 34489.20 21692.39 38183.33 41787.98 31389.84 38571.00 34096.87 35782.08 33795.40 19494.80 330
v14890.99 26490.38 25392.81 29293.83 34085.80 30096.78 20296.68 25089.45 23388.75 29393.93 31982.96 19597.82 29987.83 25283.25 36094.80 330
miper_ehance_all_eth91.59 23091.13 22392.97 28595.55 25886.57 28594.47 32696.88 23687.77 29088.88 28894.01 31586.22 14197.54 32489.49 21986.93 31494.79 332
XVG-ACMP-BASELINE90.93 26890.21 26593.09 28194.31 32885.89 29995.33 29797.26 19991.06 18089.38 27495.44 24468.61 35898.60 20989.46 22091.05 27194.79 332
DTE-MVSNet90.56 28089.75 28593.01 28393.95 33587.25 26697.64 11597.65 14390.74 18787.12 32795.68 23279.97 25197.00 35383.33 32381.66 36994.78 334
ACMH+87.92 1490.20 29289.18 29993.25 27596.48 21286.45 28996.99 18496.68 25088.83 25584.79 35596.22 20070.16 34798.53 21584.42 31388.04 30294.77 335
miper_enhance_ethall91.54 23691.01 22793.15 27995.35 27187.07 27393.97 34596.90 23386.79 31289.17 28293.43 34286.55 13697.64 31589.97 20786.93 31494.74 336
lessismore_v090.45 35091.96 37979.09 38787.19 41080.32 38494.39 29266.31 37697.55 32384.00 31876.84 38594.70 337
Patchmtry88.64 31887.25 32192.78 29494.09 33286.64 28189.82 39995.68 30180.81 38287.63 31892.36 36080.91 23297.03 35078.86 36285.12 33594.67 338
v7n90.76 27289.86 27893.45 26993.54 34887.60 26197.70 10797.37 19088.85 25387.65 31794.08 31381.08 22998.10 25384.68 30983.79 35794.66 339
V4291.58 23290.87 23093.73 25494.05 33488.50 23597.32 15496.97 22488.80 25989.71 26294.33 29782.54 20498.05 26589.01 23485.07 33694.64 340
v891.29 25290.53 25093.57 26494.15 33088.12 24897.34 15197.06 21688.99 24788.32 30294.26 30483.08 18998.01 27187.62 26383.92 35594.57 341
anonymousdsp92.16 20991.55 20593.97 24092.58 37189.55 19797.51 13097.42 18489.42 23488.40 29994.84 26880.66 23797.88 29491.87 17191.28 26794.48 342
test_fmvs289.77 30489.93 27689.31 36693.68 34576.37 39397.64 11595.90 28789.84 22191.49 21696.26 19958.77 39597.10 34794.65 11891.13 26994.46 343
pm-mvs190.72 27589.65 28993.96 24194.29 32989.63 19297.79 9396.82 24189.07 24386.12 34495.48 24378.61 27797.78 30386.97 27781.67 36894.46 343
LTVRE_ROB88.41 1390.99 26489.92 27794.19 22796.18 22989.55 19796.31 24597.09 21187.88 28485.67 34695.91 21678.79 27598.57 21381.50 33989.98 28494.44 345
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
YYNet185.87 34884.23 35290.78 34792.38 37682.46 35093.17 36795.14 32782.12 37267.69 40492.36 36078.16 28595.50 38177.31 36979.73 37694.39 346
PVSNet_BlendedMVS94.06 13493.92 12494.47 21298.27 8689.46 20396.73 20598.36 2490.17 21094.36 14795.24 25388.02 10999.58 8093.44 14190.72 27794.36 347
v1091.04 26290.23 26293.49 26694.12 33188.16 24797.32 15497.08 21288.26 27488.29 30494.22 30782.17 21397.97 27786.45 28384.12 35194.33 348
MDA-MVSNet-bldmvs85.00 35282.95 35791.17 33893.13 36183.33 33894.56 32395.00 33284.57 34865.13 41092.65 35070.45 34495.85 37173.57 38977.49 38394.33 348
MDA-MVSNet_test_wron85.87 34884.23 35290.80 34692.38 37682.57 34593.17 36795.15 32682.15 37167.65 40692.33 36378.20 28295.51 38077.33 36879.74 37594.31 350
our_test_388.78 31687.98 31691.20 33792.45 37482.53 34693.61 36195.69 29985.77 32984.88 35393.71 32579.99 25096.78 36079.47 35886.24 31994.28 351
pmmvs490.93 26889.85 27994.17 22893.34 35690.79 16094.60 32196.02 28384.62 34787.45 32095.15 25581.88 21997.45 33387.70 25787.87 30494.27 352
ppachtmachnet_test88.35 32187.29 32091.53 32892.45 37483.57 33793.75 35495.97 28484.28 35085.32 35194.18 30879.00 27396.93 35475.71 37784.99 33994.10 353
UnsupCasMVSNet_eth85.99 34584.45 35090.62 34889.97 38982.40 35193.62 36097.37 19089.86 21878.59 39192.37 35765.25 38395.35 38382.27 33670.75 39994.10 353
pmmvs687.81 32686.19 33392.69 29791.32 38186.30 29297.34 15196.41 26680.59 38584.05 36594.37 29467.37 36797.67 31284.75 30879.51 37894.09 355
ITE_SJBPF92.43 30195.34 27285.37 30995.92 28591.47 16087.75 31696.39 19371.00 34097.96 28182.36 33589.86 28693.97 356
FMVSNet587.29 33085.79 33691.78 32394.80 30787.28 26495.49 29195.28 31984.09 35383.85 36791.82 36862.95 38894.17 39178.48 36385.34 33193.91 357
Anonymous2023120687.09 33386.14 33489.93 35891.22 38280.35 37096.11 25795.35 31583.57 36284.16 36093.02 34573.54 32695.61 37772.16 39386.14 32193.84 358
USDC88.94 31287.83 31792.27 30794.66 31384.96 31893.86 35195.90 28787.34 30283.40 36895.56 23867.43 36698.19 24482.64 33489.67 28893.66 359
D2MVS91.30 25090.95 22892.35 30394.71 31285.52 30496.18 25598.21 5188.89 25286.60 33993.82 32279.92 25297.95 28589.29 22690.95 27493.56 360
N_pmnet78.73 36978.71 37078.79 38792.80 36646.50 42694.14 34143.71 42878.61 39280.83 37991.66 37174.94 31496.36 36467.24 40284.45 34893.50 361
MIMVSNet184.93 35383.05 35590.56 34989.56 39284.84 32195.40 29495.35 31583.91 35480.38 38392.21 36457.23 39793.34 39970.69 39982.75 36693.50 361
TransMVSNet (Re)88.94 31287.56 31893.08 28294.35 32588.45 23797.73 9995.23 32387.47 29884.26 35995.29 24779.86 25397.33 34179.44 36074.44 39393.45 363
Baseline_NR-MVSNet91.20 25590.62 24592.95 28693.83 34088.03 24997.01 18295.12 32888.42 27089.70 26395.13 25783.47 18097.44 33489.66 21683.24 36193.37 364
dmvs_testset81.38 36582.60 36077.73 38891.74 38051.49 42393.03 37284.21 41689.07 24378.28 39291.25 37476.97 29688.53 41156.57 41182.24 36793.16 365
CL-MVSNet_self_test86.31 34185.15 34289.80 35988.83 39781.74 35793.93 34896.22 27686.67 31385.03 35290.80 37678.09 28694.50 38774.92 38171.86 39893.15 366
TDRefinement86.53 33684.76 34891.85 31882.23 41484.25 32696.38 23995.35 31584.97 34384.09 36394.94 26265.76 38198.34 23484.60 31174.52 39292.97 367
KD-MVS_self_test85.95 34684.95 34588.96 36789.55 39379.11 38695.13 30996.42 26585.91 32784.07 36490.48 37870.03 34994.82 38680.04 35372.94 39692.94 368
ambc86.56 37883.60 41170.00 40585.69 40994.97 33480.60 38288.45 39237.42 41396.84 35882.69 33375.44 39192.86 369
MS-PatchMatch90.27 28889.77 28391.78 32394.33 32684.72 32295.55 28796.73 24486.17 32486.36 34195.28 24971.28 33897.80 30184.09 31698.14 12892.81 370
KD-MVS_2432*160084.81 35482.64 35891.31 33391.07 38385.34 31091.22 38795.75 29585.56 33283.09 37190.21 38167.21 36895.89 36977.18 37162.48 41192.69 371
miper_refine_blended84.81 35482.64 35891.31 33391.07 38385.34 31091.22 38795.75 29585.56 33283.09 37190.21 38167.21 36895.89 36977.18 37162.48 41192.69 371
tfpnnormal89.70 30588.40 31193.60 26195.15 28890.10 17897.56 12498.16 6487.28 30486.16 34394.63 27977.57 29298.05 26574.48 38284.59 34592.65 373
ttmdpeth85.91 34784.76 34889.36 36489.14 39480.25 37495.66 28393.16 37783.77 35883.39 36995.26 25166.24 37795.26 38480.65 34975.57 39092.57 374
EG-PatchMatch MVS87.02 33485.44 33891.76 32592.67 36885.00 31696.08 25996.45 26483.41 36479.52 38793.49 33657.10 39897.72 30979.34 36190.87 27692.56 375
WB-MVSnew89.88 30089.56 29090.82 34394.57 31983.06 34195.65 28492.85 38087.86 28590.83 23494.10 31179.66 25796.88 35676.34 37494.19 21792.54 376
TinyColmap86.82 33585.35 34191.21 33594.91 30282.99 34293.94 34794.02 36483.58 36181.56 37794.68 27662.34 39198.13 24875.78 37687.35 31392.52 377
CMPMVSbinary62.92 2185.62 35084.92 34687.74 37289.14 39473.12 40294.17 34096.80 24273.98 40173.65 40094.93 26366.36 37497.61 31983.95 31991.28 26792.48 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mmtdpeth89.70 30588.96 30391.90 31695.84 24884.42 32497.46 13995.53 31090.27 20894.46 14690.50 37769.74 35398.95 16997.39 3669.48 40292.34 379
test20.0386.14 34485.40 34088.35 36890.12 38780.06 37695.90 26995.20 32488.59 26281.29 37893.62 33271.43 33792.65 40271.26 39781.17 37192.34 379
mvs5depth86.53 33685.08 34390.87 34188.74 39982.52 34791.91 38394.23 36086.35 31987.11 32993.70 32666.52 37397.76 30681.37 34475.80 38992.31 381
LF4IMVS87.94 32487.25 32189.98 35792.38 37680.05 37794.38 33195.25 32287.59 29684.34 35794.74 27464.31 38497.66 31484.83 30687.45 30892.23 382
Anonymous2024052186.42 33985.44 33889.34 36590.33 38679.79 37896.73 20595.92 28583.71 36083.25 37091.36 37363.92 38596.01 36778.39 36585.36 33092.22 383
MVS-HIRNet82.47 36281.21 36586.26 37995.38 26769.21 40688.96 40389.49 40266.28 40880.79 38074.08 41368.48 36197.39 33871.93 39495.47 19292.18 384
MVP-Stereo90.74 27490.08 26892.71 29693.19 35988.20 24495.86 27096.27 27386.07 32584.86 35494.76 27277.84 29097.75 30783.88 32198.01 13192.17 385
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVStest182.38 36380.04 36789.37 36387.63 40482.83 34395.03 31193.37 37573.90 40273.50 40194.35 29562.89 38993.25 40073.80 38765.92 40892.04 386
pmmvs-eth3d86.22 34284.45 35091.53 32888.34 40187.25 26694.47 32695.01 33183.47 36379.51 38889.61 38669.75 35295.71 37483.13 32576.73 38791.64 387
UnsupCasMVSNet_bld82.13 36479.46 36990.14 35588.00 40282.47 34990.89 39296.62 25878.94 39175.61 39584.40 40656.63 39996.31 36577.30 37066.77 40791.63 388
mvsany_test383.59 35782.44 36187.03 37683.80 40973.82 39893.70 35590.92 39886.42 31782.51 37490.26 38046.76 40995.71 37490.82 19376.76 38691.57 389
test_040286.46 33884.79 34791.45 33095.02 29485.55 30396.29 24794.89 33880.90 37982.21 37593.97 31868.21 36397.29 34362.98 40588.68 29891.51 390
PM-MVS83.48 35881.86 36488.31 36987.83 40377.59 39193.43 36391.75 39186.91 30980.63 38189.91 38444.42 41095.84 37285.17 30576.73 38791.50 391
new-patchmatchnet83.18 36081.87 36387.11 37586.88 40575.99 39593.70 35595.18 32585.02 34277.30 39488.40 39365.99 37993.88 39674.19 38670.18 40091.47 392
test_method66.11 38164.89 38369.79 39872.62 42235.23 43065.19 41792.83 38220.35 42065.20 40988.08 39743.14 41182.70 41573.12 39163.46 41091.45 393
test_fmvs383.21 35983.02 35683.78 38286.77 40668.34 40896.76 20394.91 33786.49 31684.14 36289.48 38736.04 41491.73 40491.86 17280.77 37391.26 394
test_vis1_rt86.16 34385.06 34489.46 36293.47 35380.46 36996.41 23386.61 41285.22 33779.15 38988.64 39152.41 40497.06 34893.08 14990.57 27890.87 395
OpenMVS_ROBcopyleft81.14 2084.42 35682.28 36290.83 34290.06 38884.05 33195.73 27894.04 36373.89 40380.17 38691.53 37259.15 39497.64 31566.92 40389.05 29390.80 396
LCM-MVSNet72.55 37369.39 37782.03 38470.81 42465.42 41390.12 39794.36 35855.02 41465.88 40881.72 40724.16 42289.96 40574.32 38568.10 40590.71 397
test_f80.57 36679.62 36883.41 38383.38 41267.80 41093.57 36293.72 37080.80 38377.91 39387.63 39933.40 41592.08 40387.14 27579.04 38190.34 398
new_pmnet82.89 36181.12 36688.18 37189.63 39180.18 37591.77 38492.57 38476.79 39875.56 39788.23 39561.22 39394.48 38871.43 39582.92 36489.87 399
pmmvs379.97 36777.50 37287.39 37482.80 41379.38 38492.70 37790.75 39970.69 40578.66 39087.47 40151.34 40593.40 39873.39 39069.65 40189.38 400
APD_test179.31 36877.70 37184.14 38189.11 39669.07 40792.36 38291.50 39369.07 40673.87 39992.63 35239.93 41294.32 39070.54 40080.25 37489.02 401
PMMVS270.19 37566.92 37980.01 38576.35 41865.67 41286.22 40887.58 40964.83 41062.38 41180.29 41026.78 42088.49 41263.79 40454.07 41585.88 402
WB-MVS76.77 37076.63 37377.18 38985.32 40756.82 42194.53 32489.39 40382.66 36971.35 40289.18 38975.03 31388.88 40935.42 41866.79 40685.84 403
SSC-MVS76.05 37175.83 37476.72 39384.77 40856.22 42294.32 33588.96 40581.82 37570.52 40388.91 39074.79 31588.71 41033.69 41964.71 40985.23 404
ANet_high63.94 38359.58 38677.02 39061.24 42666.06 41185.66 41087.93 40878.53 39342.94 41871.04 41525.42 42180.71 41752.60 41330.83 41984.28 405
EGC-MVSNET68.77 37963.01 38586.07 38092.49 37282.24 35393.96 34690.96 3970.71 4252.62 42690.89 37553.66 40293.46 39757.25 41084.55 34682.51 406
FPMVS71.27 37469.85 37675.50 39474.64 41959.03 41991.30 38691.50 39358.80 41157.92 41588.28 39429.98 41885.53 41453.43 41282.84 36581.95 407
testf169.31 37766.76 38076.94 39178.61 41661.93 41588.27 40586.11 41355.62 41259.69 41285.31 40420.19 42489.32 40657.62 40869.44 40379.58 408
APD_test269.31 37766.76 38076.94 39178.61 41661.93 41588.27 40586.11 41355.62 41259.69 41285.31 40420.19 42489.32 40657.62 40869.44 40379.58 408
DeepMVS_CXcopyleft74.68 39690.84 38564.34 41481.61 41965.34 40967.47 40788.01 39848.60 40880.13 41862.33 40673.68 39579.58 408
test_vis3_rt72.73 37270.55 37579.27 38680.02 41568.13 40993.92 34974.30 42376.90 39758.99 41473.58 41420.29 42395.37 38284.16 31472.80 39774.31 411
dongtai69.99 37669.33 37871.98 39788.78 39861.64 41789.86 39859.93 42775.67 39974.96 39885.45 40350.19 40681.66 41643.86 41555.27 41472.63 412
PMVScopyleft53.92 2258.58 38455.40 38768.12 39951.00 42748.64 42478.86 41387.10 41146.77 41635.84 42274.28 4128.76 42686.34 41342.07 41673.91 39469.38 413
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
kuosan65.27 38264.66 38467.11 40083.80 40961.32 41888.53 40460.77 42668.22 40767.67 40580.52 40949.12 40770.76 42229.67 42153.64 41669.26 414
MVEpermissive50.73 2353.25 38648.81 39166.58 40165.34 42557.50 42072.49 41570.94 42440.15 41939.28 42163.51 4176.89 42873.48 42138.29 41742.38 41768.76 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
Gipumacopyleft67.86 38065.41 38275.18 39592.66 36973.45 39966.50 41694.52 35053.33 41557.80 41666.07 41630.81 41689.20 40848.15 41478.88 38262.90 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
E-PMN53.28 38552.56 38955.43 40274.43 42047.13 42583.63 41276.30 42042.23 41742.59 41962.22 41828.57 41974.40 41931.53 42031.51 41844.78 417
EMVS52.08 38751.31 39054.39 40372.62 42245.39 42783.84 41175.51 42241.13 41840.77 42059.65 41930.08 41773.60 42028.31 42229.90 42044.18 418
tmp_tt51.94 38853.82 38846.29 40433.73 42845.30 42878.32 41467.24 42518.02 42150.93 41787.05 40252.99 40353.11 42370.76 39825.29 42140.46 419
test12313.04 39215.66 3955.18 4064.51 4303.45 43192.50 3801.81 4312.50 4247.58 42520.15 4223.67 4292.18 4267.13 4251.07 4249.90 420
testmvs13.36 39116.33 3944.48 4075.04 4292.26 43293.18 3663.28 4302.70 4238.24 42421.66 4212.29 4302.19 4257.58 4242.96 4239.00 421
wuyk23d25.11 38924.57 39326.74 40573.98 42139.89 42957.88 4189.80 42912.27 42210.39 4236.97 4257.03 42736.44 42425.43 42317.39 4223.89 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k23.24 39030.99 3920.00 4080.00 4310.00 4330.00 41997.63 1470.00 4260.00 42796.88 16284.38 1650.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas7.39 3949.85 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42688.65 1000.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.06 39310.74 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42796.69 1720.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS79.53 38075.56 379
FOURS199.55 193.34 6699.29 198.35 2794.98 3298.49 23
test_one_060199.32 2295.20 2098.25 4595.13 2698.48 2498.87 1895.16 7
eth-test20.00 431
eth-test0.00 431
ZD-MVS99.05 3994.59 3298.08 7789.22 23997.03 6398.10 7692.52 3999.65 6194.58 12199.31 65
test_241102_ONE99.42 795.30 1798.27 3995.09 2999.19 498.81 2495.54 599.65 61
9.1496.75 4598.93 5097.73 9998.23 5091.28 17097.88 3798.44 4693.00 2699.65 6195.76 8499.47 40
save fliter98.91 5294.28 3897.02 17998.02 9795.35 19
test072699.45 395.36 1398.31 2798.29 3494.92 3598.99 798.92 1395.08 8
test_part299.28 2595.74 898.10 30
sam_mvs81.94 218
MTGPAbinary98.08 77
test_post192.81 37616.58 42480.53 23997.68 31186.20 286
test_post17.58 42381.76 22098.08 258
patchmatchnet-post90.45 37982.65 20398.10 253
MTMP97.86 8182.03 418
gm-plane-assit93.22 35878.89 38884.82 34593.52 33598.64 20587.72 254
TEST998.70 5994.19 4296.41 23398.02 9788.17 27696.03 10497.56 12692.74 3399.59 77
test_898.67 6194.06 4996.37 24098.01 10088.58 26395.98 10897.55 12892.73 3499.58 80
agg_prior98.67 6193.79 5498.00 10195.68 11899.57 87
test_prior493.66 5796.42 232
test_prior296.35 24192.80 12796.03 10497.59 12392.01 4795.01 10699.38 58
旧先验295.94 26681.66 37697.34 5298.82 18292.26 159
新几何295.79 275
原ACMM295.67 280
testdata299.67 5985.96 294
segment_acmp92.89 30
testdata195.26 30493.10 113
plane_prior796.21 22689.98 184
plane_prior696.10 23790.00 18081.32 226
plane_prior496.64 175
plane_prior390.00 18094.46 6091.34 220
plane_prior297.74 9794.85 37
plane_prior196.14 234
plane_prior89.99 18297.24 16094.06 7292.16 253
n20.00 432
nn0.00 432
door-mid91.06 396
test1197.88 112
door91.13 395
HQP5-MVS89.33 209
HQP-NCC95.86 24396.65 21593.55 8890.14 244
ACMP_Plane95.86 24396.65 21593.55 8890.14 244
BP-MVS92.13 165
HQP3-MVS97.39 18792.10 254
HQP2-MVS80.95 230
NP-MVS95.99 24189.81 19095.87 217
MDTV_nov1_ep1390.76 23795.22 28380.33 37193.03 37295.28 31988.14 27892.84 18593.83 32081.34 22598.08 25882.86 32794.34 214
ACMMP++_ref90.30 283
ACMMP++91.02 272
Test By Simon88.73 99