This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
test_cas_vis1_n_192099.16 8299.01 9499.61 8499.81 4698.86 17599.65 7599.64 3699.39 1099.97 1399.94 693.20 27299.98 1399.55 2999.91 3199.99 1
fmvsm_s_conf0.1_n_a99.26 6899.06 8199.85 2899.52 16699.62 6599.54 13999.62 4198.69 7999.99 299.96 194.47 23699.94 6999.88 1499.92 2499.98 2
test_vis1_n_192098.63 15998.40 16699.31 14399.86 2097.94 24699.67 6499.62 4199.43 799.99 299.91 2087.29 363100.00 199.92 1299.92 2499.98 2
fmvsm_s_conf0.1_n99.29 6299.10 7599.86 2199.70 10199.65 5799.53 14799.62 4198.74 7599.99 299.95 394.53 23499.94 6999.89 1399.96 1299.97 4
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19699.65 5799.50 16399.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
test_vis1_n97.92 23097.44 26499.34 13699.53 16298.08 23499.74 4499.49 14399.15 20100.00 199.94 679.51 38499.98 1399.88 1499.76 11099.97 4
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17899.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
test_fmvs1_n98.41 17198.14 18299.21 16299.82 4297.71 25899.74 4499.49 14399.32 1499.99 299.95 385.32 37099.97 2199.82 1699.84 7799.96 7
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14899.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2499.95 9
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15699.67 2399.13 2299.98 699.92 1496.60 14699.96 3099.95 899.96 1299.95 9
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12299.63 3999.48 399.98 699.83 6898.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12299.63 3999.47 499.98 699.82 7698.75 5599.99 499.97 199.97 799.94 11
MM99.74 6199.31 10799.52 14898.87 33899.55 199.74 6099.80 10396.47 15199.98 1399.97 199.97 799.94 11
test_fmvsmconf0.01_n99.22 7599.03 8699.79 4998.42 35599.48 8999.55 13499.51 11599.39 1099.78 4799.93 994.80 21299.95 5999.93 1199.95 1699.94 11
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21199.37 10099.58 10999.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2299.94 11
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11399.52 14897.57 38199.51 299.82 3599.78 12198.09 10099.96 3099.97 199.97 799.94 11
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 10999.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
test_fmvs198.88 12398.79 12599.16 16799.69 10697.61 26099.55 13499.49 14399.32 1499.98 699.91 2091.41 31999.96 3099.82 1699.92 2499.90 17
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4199.56 6999.02 3899.88 2099.85 5499.18 1099.96 3099.22 6999.92 2499.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
patch_mono-299.26 6899.62 598.16 29099.81 4694.59 35299.52 14899.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
MSC_two_6792asdad99.87 1199.51 16999.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
No_MVS99.87 1199.51 16999.76 3799.33 25799.96 3098.87 10599.84 7799.89 20
IU-MVS99.84 3299.88 899.32 26798.30 11299.84 2998.86 11099.85 6999.89 20
UA-Net99.42 4299.29 5399.80 4699.62 13699.55 7799.50 16399.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 9899.90 3999.89 20
CHOSEN 1792x268899.19 7699.10 7599.45 12399.89 898.52 20899.39 21999.94 198.73 7699.11 21699.89 3095.50 18699.94 6999.50 3699.97 799.89 20
test_241102_TWO99.48 15599.08 3399.88 2099.81 9098.94 2999.96 3098.91 9999.84 7799.88 26
test_0728_THIRD98.99 4599.81 3799.80 10399.09 1499.96 3098.85 11299.90 3999.88 26
test_0728_SECOND99.91 299.84 3299.89 499.57 11699.51 11599.96 3098.93 9699.86 6299.88 26
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23099.51 11598.73 7699.88 2099.84 6498.72 6199.96 3098.16 19299.87 5499.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS99.42 4299.27 5799.88 599.89 899.80 2799.67 6499.50 13598.70 7899.77 5199.49 24798.21 9499.95 5998.46 16999.77 10799.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
dcpmvs_299.23 7499.58 798.16 29099.83 3994.68 35099.76 3799.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
DP-MVS99.16 8298.95 10499.78 5299.77 6299.53 8299.41 20799.50 13597.03 25699.04 23199.88 3697.39 11699.92 9598.66 13999.90 3999.87 31
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13199.60 9599.45 19399.01 4099.90 1899.83 6898.98 2399.93 8499.59 2599.95 1699.86 33
Test_1112_low_res98.89 12298.66 13899.57 9299.69 10698.95 16299.03 30999.47 17396.98 25899.15 21099.23 31296.77 14199.89 12698.83 11898.78 19999.86 33
HyFIR lowres test99.11 9898.92 10699.65 7399.90 499.37 10099.02 31299.91 397.67 19199.59 10999.75 13895.90 17399.73 20299.53 3299.02 18299.86 33
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13099.61 9499.45 19399.01 4099.89 1999.82 7699.01 1899.92 9599.56 2899.95 1699.85 36
CVMVSNet98.57 16198.67 13598.30 28099.35 21895.59 33099.50 16399.55 7798.60 8599.39 15599.83 6894.48 23599.45 25598.75 12698.56 20899.85 36
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3799.56 6997.72 18599.76 5699.75 13899.13 1299.92 9599.07 8399.92 2499.85 36
MG-MVS99.13 8899.02 9099.45 12399.57 15198.63 19599.07 29999.34 25098.99 4599.61 10399.82 7697.98 10499.87 13697.00 28199.80 9799.85 36
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18499.48 15598.05 15399.76 5699.86 4998.82 4399.93 8498.82 12299.91 3199.84 40
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 6999.67 2398.15 13399.68 7499.69 16899.06 1699.96 3098.69 13599.87 5499.84 40
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7599.66 2898.13 13799.66 8399.68 17498.96 2499.96 3098.62 14399.87 5499.84 40
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16099.74 14398.81 4499.94 6998.79 12399.86 6299.84 40
X-MVStestdata96.55 30995.45 32799.87 1199.85 2699.83 1699.69 5599.68 2098.98 4899.37 16064.01 40098.81 4499.94 6998.79 12399.86 6299.84 40
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 6999.67 2398.15 13399.67 7899.69 16898.95 2799.96 3098.69 13599.87 5499.84 40
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2099.54 8597.59 19699.68 7499.63 19898.91 3499.94 6998.58 15299.91 3199.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10199.51 11598.62 8399.79 4299.83 6899.28 499.97 2198.48 16599.90 3999.84 40
Skip Steuart: Steuart Systems R&D Blog.
1112_ss98.98 11598.77 12699.59 8799.68 11099.02 14699.25 26899.48 15597.23 23599.13 21299.58 21696.93 13799.90 11698.87 10598.78 19999.84 40
MP-MVS-pluss99.37 5399.20 6699.88 599.90 499.87 1299.30 24599.52 10197.18 23899.60 10699.79 11598.79 4799.95 5998.83 11899.91 3199.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 6999.47 17398.79 7099.68 7499.81 9098.43 8399.97 2198.88 10299.90 3999.83 49
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 10999.65 3397.84 17199.71 6899.80 10399.12 1399.97 2198.33 17999.87 5499.83 49
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5599.48 15598.12 13899.50 12699.75 13898.78 4899.97 2198.57 15599.89 4899.83 49
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5599.52 10198.07 14899.53 12199.63 19898.93 3399.97 2198.74 12799.91 3199.83 49
mvsany_test199.50 2099.46 2099.62 8399.61 14099.09 13698.94 33199.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13799.82 54
test111198.04 21098.11 18697.83 31399.74 8093.82 36099.58 10995.40 39399.12 2599.65 8999.93 990.73 32899.84 15199.43 4699.38 14999.82 54
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7899.67 2398.08 14799.55 11899.64 19298.91 3499.96 3098.72 13099.90 3999.82 54
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8299.39 22398.91 5899.78 4799.85 5499.36 299.94 6998.84 11599.88 5199.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVScopyleft99.33 5799.15 7099.87 1199.88 1199.82 2299.66 6999.46 18298.09 14399.48 13099.74 14398.29 9199.96 3097.93 20899.87 5499.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 24999.40 22098.79 7099.52 12399.62 20398.91 3499.90 11698.64 14199.75 11299.82 54
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13099.59 7099.36 23099.46 18299.07 3599.79 4299.82 7698.85 3999.92 9598.68 13799.87 5499.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++99.59 899.50 1399.88 599.51 16999.88 899.87 999.51 11598.99 4599.88 2099.81 9099.27 599.96 3098.85 11299.80 9799.81 61
PC_three_145298.18 13199.84 2999.70 15899.31 398.52 36198.30 18399.80 9799.81 61
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11699.37 23999.10 2799.81 3799.80 10398.94 2999.96 3098.93 9699.86 6299.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
GST-MVS99.40 5099.24 6299.85 2899.86 2099.79 3099.60 9599.67 2397.97 15999.63 9699.68 17498.52 7799.95 5998.38 17399.86 6299.81 61
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12299.47 17397.45 21499.78 4799.82 7699.18 1099.91 10598.79 12399.89 4899.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CPTT-MVS99.11 9898.90 10999.74 6199.80 5299.46 9299.59 10199.49 14397.03 25699.63 9699.69 16897.27 12499.96 3097.82 21899.84 7799.81 61
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 13899.63 9699.84 6498.73 6099.96 3098.55 16199.83 8699.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepPCF-MVS98.18 398.81 13899.37 3097.12 33699.60 14591.75 37698.61 36199.44 20199.35 1299.83 3499.85 5498.70 6399.81 17399.02 8799.91 3199.81 61
3Dnovator+97.12 1399.18 7898.97 10099.82 4199.17 26699.68 4899.81 2099.51 11599.20 1898.72 27599.89 3095.68 18299.97 2198.86 11099.86 6299.81 61
test250696.81 30696.65 30397.29 33299.74 8092.21 37599.60 9585.06 40499.13 2299.77 5199.93 987.82 36199.85 14599.38 4899.38 14999.80 70
ECVR-MVScopyleft98.04 21098.05 19598.00 30299.74 8094.37 35599.59 10194.98 39499.13 2299.66 8399.93 990.67 32999.84 15199.40 4799.38 14999.80 70
APD-MVScopyleft99.27 6699.08 7999.84 3999.75 7399.79 3099.50 16399.50 13597.16 24099.77 5199.82 7698.78 4899.94 6997.56 24699.86 6299.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC99.34 5699.19 6799.79 4999.61 14099.65 5799.30 24599.48 15598.86 6099.21 19899.63 19898.72 6199.90 11698.25 18499.63 13399.80 70
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9599.48 15599.08 3399.91 1699.81 9099.20 799.96 3098.91 9999.85 6999.79 74
OPU-MVS99.64 7899.56 15599.72 4299.60 9599.70 15899.27 599.42 26598.24 18599.80 9799.79 74
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10199.62 4198.21 12499.73 6299.79 11598.68 6499.96 3098.44 17099.77 10799.79 74
HPM-MVS++copyleft99.39 5199.23 6499.87 1199.75 7399.84 1599.43 19899.51 11598.68 8199.27 18499.53 23598.64 6999.96 3098.44 17099.80 9799.79 74
PVSNet_Blended_VisFu99.36 5499.28 5599.61 8499.86 2099.07 14199.47 18499.93 297.66 19299.71 6899.86 4997.73 11099.96 3099.47 4399.82 9099.79 74
3Dnovator97.25 999.24 7399.05 8299.81 4499.12 27399.66 5399.84 1399.74 1099.09 3298.92 24999.90 2695.94 17099.98 1398.95 9399.92 2499.79 74
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8299.54 8598.36 10699.79 4299.82 7698.86 3899.95 5998.62 14399.81 9399.78 80
CDPH-MVS99.13 8898.91 10899.80 4699.75 7399.71 4499.15 28499.41 21296.60 28799.60 10699.55 22698.83 4299.90 11697.48 25399.83 8699.78 80
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.53 7699.95 5998.61 14699.81 9399.77 82
RE-MVS-def99.34 3699.76 6599.82 2299.63 8299.52 10198.38 10299.76 5699.82 7698.75 5598.61 14699.81 9399.77 82
SD-MVS99.41 4799.52 1199.05 17899.74 8099.68 4899.46 18799.52 10199.11 2699.88 2099.91 2099.43 197.70 37898.72 13099.93 2299.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS99.42 4299.30 4999.78 5299.62 13699.71 4499.26 26699.52 10198.82 6599.39 15599.71 15498.96 2499.85 14598.59 15199.80 9799.77 82
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 32999.85 698.82 6599.54 11999.73 14998.51 7899.74 19698.91 9999.88 5199.77 82
QAPM98.67 15598.30 17399.80 4699.20 25599.67 5199.77 3499.72 1194.74 35098.73 27499.90 2695.78 17799.98 1396.96 28599.88 5199.76 87
GeoE98.85 13498.62 14699.53 10599.61 14099.08 13999.80 2599.51 11597.10 24899.31 17499.78 12195.23 19899.77 18998.21 18699.03 18099.75 88
test9_res97.49 25299.72 11899.75 88
train_agg99.02 11198.77 12699.77 5599.67 11199.65 5799.05 30499.41 21296.28 30798.95 24499.49 24798.76 5299.91 10597.63 23799.72 11899.75 88
agg_prior297.21 26899.73 11799.75 88
SF-MVS99.38 5299.24 6299.79 4999.79 5499.68 4899.57 11699.54 8597.82 17699.71 6899.80 10398.95 2799.93 8498.19 18899.84 7799.74 92
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16299.74 92
test1299.75 5899.64 12799.61 6799.29 27999.21 19898.38 8799.89 12699.74 11599.74 92
114514_t98.93 11998.67 13599.72 6599.85 2699.53 8299.62 8899.59 5792.65 37099.71 6899.78 12198.06 10299.90 11698.84 11599.91 3199.74 92
Vis-MVSNetpermissive99.12 9498.97 10099.56 9499.78 5699.10 13599.68 6199.66 2898.49 9399.86 2799.87 4494.77 21799.84 15199.19 7199.41 14899.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
旧先验199.74 8099.59 7099.54 8599.69 16898.47 8099.68 12699.73 97
casdiffmvs_mvgpermissive99.15 8499.02 9099.55 9699.66 11999.09 13699.64 7899.56 6998.26 11699.45 13499.87 4496.03 16599.81 17399.54 3099.15 16899.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet98.86 12798.71 13199.30 14897.20 37598.18 22899.62 8898.91 33299.28 1698.63 29399.81 9095.96 16799.99 499.24 6899.72 11899.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet99.05 10798.87 11499.57 9299.73 8799.32 10499.75 4199.20 29698.02 15799.56 11499.86 4996.54 14999.67 22598.09 19599.13 17099.73 97
F-COLMAP99.19 7699.04 8499.64 7899.78 5699.27 11399.42 20599.54 8597.29 22999.41 14799.59 21298.42 8599.93 8498.19 18899.69 12399.73 97
DeepC-MVS98.35 299.30 6099.19 6799.64 7899.82 4299.23 11899.62 8899.55 7798.94 5499.63 9699.95 395.82 17699.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SDMVSNet99.11 9898.90 10999.75 5899.81 4699.59 7099.81 2099.65 3398.78 7399.64 9399.88 3694.56 23099.93 8499.67 2198.26 22499.72 103
sd_testset98.75 14598.57 15599.29 15199.81 4698.26 22599.56 12299.62 4198.78 7399.64 9399.88 3692.02 30399.88 13199.54 3098.26 22499.72 103
新几何199.75 5899.75 7399.59 7099.54 8596.76 27299.29 17999.64 19298.43 8399.94 6996.92 29099.66 12899.72 103
无先验98.99 31999.51 11596.89 26699.93 8497.53 24999.72 103
test22299.75 7399.49 8798.91 33599.49 14396.42 30199.34 17099.65 18698.28 9299.69 12399.72 103
testdata99.54 9799.75 7398.95 16299.51 11597.07 25099.43 14099.70 15898.87 3799.94 6997.76 22599.64 13199.72 103
VNet99.11 9898.90 10999.73 6499.52 16699.56 7599.41 20799.39 22399.01 4099.74 6099.78 12195.56 18499.92 9599.52 3498.18 23199.72 103
WTY-MVS99.06 10698.88 11399.61 8499.62 13699.16 12599.37 22699.56 6998.04 15499.53 12199.62 20396.84 13899.94 6998.85 11298.49 21399.72 103
CSCG99.32 5899.32 4099.32 14299.85 2698.29 22399.71 5199.66 2898.11 14099.41 14799.80 10398.37 8899.96 3098.99 8999.96 1299.72 103
原ACMM199.65 7399.73 8799.33 10399.47 17397.46 21199.12 21499.66 18598.67 6699.91 10597.70 23499.69 12399.71 112
Anonymous20240521198.30 18197.98 20299.26 15699.57 15198.16 22999.41 20798.55 36396.03 32899.19 20499.74 14391.87 30699.92 9599.16 7598.29 22399.70 113
casdiffmvspermissive99.13 8898.98 9999.56 9499.65 12599.16 12599.56 12299.50 13598.33 11099.41 14799.86 4995.92 17199.83 16299.45 4599.16 16599.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LFMVS97.90 23397.35 27699.54 9799.52 16699.01 14899.39 21998.24 36997.10 24899.65 8999.79 11584.79 37299.91 10599.28 6398.38 21599.69 115
EPNet_dtu98.03 21297.96 20498.23 28698.27 35795.54 33399.23 27198.75 34899.02 3897.82 33499.71 15496.11 16299.48 25293.04 36099.65 13099.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM_NR99.04 10898.84 11999.66 6999.74 8099.44 9499.39 21999.38 23197.70 18799.28 18099.28 30498.34 8999.85 14596.96 28599.45 14599.69 115
EPP-MVSNet99.13 8898.99 9699.53 10599.65 12599.06 14299.81 2099.33 25797.43 21799.60 10699.88 3697.14 12699.84 15199.13 7698.94 18599.69 115
sss99.17 8099.05 8299.53 10599.62 13698.97 15399.36 23099.62 4197.83 17299.67 7899.65 18697.37 11999.95 5999.19 7199.19 16499.68 119
PHI-MVS99.30 6099.17 6999.70 6799.56 15599.52 8599.58 10999.80 897.12 24499.62 10099.73 14998.58 7299.90 11698.61 14699.91 3199.68 119
PVSNet_094.43 1996.09 32095.47 32697.94 30599.31 23194.34 35797.81 38599.70 1597.12 24497.46 34098.75 35489.71 33999.79 18297.69 23581.69 38799.68 119
diffmvspermissive99.14 8699.02 9099.51 11399.61 14098.96 15799.28 25399.49 14398.46 9599.72 6799.71 15496.50 15099.88 13199.31 5899.11 17199.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 8499.02 9099.53 10599.66 11999.14 13199.72 4999.48 15598.35 10799.42 14399.84 6496.07 16399.79 18299.51 3599.14 16999.67 122
TAMVS99.12 9499.08 7999.24 15999.46 19098.55 20299.51 15699.46 18298.09 14399.45 13499.82 7698.34 8999.51 25198.70 13298.93 18699.67 122
Anonymous2024052998.09 20097.68 23699.34 13699.66 11998.44 21799.40 21599.43 20793.67 36099.22 19599.89 3090.23 33599.93 8499.26 6798.33 21899.66 125
CHOSEN 280x42099.12 9499.13 7299.08 17399.66 11997.89 24798.43 37199.71 1398.88 5999.62 10099.76 13596.63 14599.70 21899.46 4499.99 199.66 125
CDS-MVSNet99.09 10399.03 8699.25 15799.42 19998.73 18799.45 18899.46 18298.11 14099.46 13399.77 12998.01 10399.37 27398.70 13298.92 18899.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPR98.63 15998.34 16999.51 11399.40 20799.03 14598.80 34599.36 24096.33 30499.00 23899.12 32698.46 8199.84 15195.23 33499.37 15699.66 125
h-mvs3397.70 26797.28 28698.97 19099.70 10197.27 26899.36 23099.45 19398.94 5499.66 8399.64 19294.93 20399.99 499.48 4184.36 38399.65 129
CANet99.25 7299.14 7199.59 8799.41 20299.16 12599.35 23599.57 6498.82 6599.51 12599.61 20796.46 15299.95 5999.59 2599.98 499.65 129
TSAR-MVS + GP.99.36 5499.36 3299.36 13599.67 11198.61 19899.07 29999.33 25799.00 4399.82 3599.81 9099.06 1699.84 15199.09 8099.42 14799.65 129
MVSFormer99.17 8099.12 7399.29 15199.51 16998.94 16599.88 499.46 18297.55 20299.80 4099.65 18697.39 11699.28 29299.03 8599.85 6999.65 129
jason99.13 8899.03 8699.45 12399.46 19098.87 17299.12 28999.26 28598.03 15699.79 4299.65 18697.02 13299.85 14599.02 8799.90 3999.65 129
jason: jason.
PLCcopyleft97.94 499.02 11198.85 11899.53 10599.66 11999.01 14899.24 27099.52 10196.85 26899.27 18499.48 25298.25 9399.91 10597.76 22599.62 13499.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS97.07 1597.74 26097.34 27998.94 19499.70 10197.53 26199.25 26899.51 11591.90 37299.30 17699.63 19898.78 4899.64 23688.09 38299.87 5499.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dmvs_re98.08 20298.16 17997.85 31099.55 15994.67 35199.70 5298.92 32898.15 13399.06 22899.35 28693.67 26499.25 29797.77 22497.25 27899.64 136
LCM-MVSNet-Re97.83 24498.15 18196.87 34499.30 23292.25 37499.59 10198.26 36797.43 21796.20 36099.13 32396.27 15998.73 35798.17 19198.99 18399.64 136
BH-RMVSNet98.41 17198.08 19199.40 13099.41 20298.83 18099.30 24598.77 34797.70 18798.94 24699.65 18692.91 27899.74 19696.52 30499.55 14099.64 136
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 33199.85 698.82 6599.65 8999.74 14398.51 7899.80 17998.83 11899.89 4899.64 136
MVS97.28 29396.55 30599.48 11798.78 32698.95 16299.27 25899.39 22383.53 38798.08 32299.54 23196.97 13599.87 13694.23 34799.16 16599.63 140
MSLP-MVS++99.46 3199.47 1799.44 12799.60 14599.16 12599.41 20799.71 1398.98 4899.45 13499.78 12199.19 999.54 25099.28 6399.84 7799.63 140
GA-MVS97.85 23997.47 25699.00 18499.38 21197.99 23998.57 36499.15 30297.04 25598.90 25299.30 30089.83 33899.38 26896.70 29898.33 21899.62 142
Vis-MVSNet (Re-imp)98.87 12498.72 12999.31 14399.71 9698.88 17199.80 2599.44 20197.91 16499.36 16499.78 12195.49 18799.43 26497.91 20999.11 17199.62 142
DPM-MVS98.95 11898.71 13199.66 6999.63 13099.55 7798.64 36099.10 30797.93 16299.42 14399.55 22698.67 6699.80 17995.80 31999.68 12699.61 144
baseline198.31 17997.95 20699.38 13499.50 17898.74 18699.59 10198.93 32698.41 10099.14 21199.60 21094.59 22899.79 18298.48 16593.29 35499.61 144
VDD-MVS97.73 26197.35 27698.88 20999.47 18997.12 27699.34 23898.85 34098.19 12799.67 7899.85 5482.98 37899.92 9599.49 4098.32 22299.60 146
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 30499.66 2899.14 2199.57 11399.80 10398.46 8199.94 6999.57 2799.84 7799.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet_Blended99.08 10498.97 10099.42 12899.76 6598.79 18498.78 34799.91 396.74 27399.67 7899.49 24797.53 11399.88 13198.98 9099.85 6999.60 146
OMC-MVS99.08 10499.04 8499.20 16399.67 11198.22 22799.28 25399.52 10198.07 14899.66 8399.81 9097.79 10899.78 18797.79 22099.81 9399.60 146
test_yl98.86 12798.63 14199.54 9799.49 18099.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19099.84 15198.60 14998.33 21899.59 150
DCV-MVSNet98.86 12798.63 14199.54 9799.49 18099.18 12299.50 16399.07 31398.22 12299.61 10399.51 24195.37 19099.84 15198.60 14998.33 21899.59 150
AllTest98.87 12498.72 12999.31 14399.86 2098.48 21499.56 12299.61 4897.85 16999.36 16499.85 5495.95 16899.85 14596.66 30199.83 8699.59 150
TestCases99.31 14399.86 2098.48 21499.61 4897.85 16999.36 16499.85 5495.95 16899.85 14596.66 30199.83 8699.59 150
testing397.28 29396.76 30298.82 22499.37 21498.07 23599.45 18899.36 24097.56 20197.89 33198.95 34283.70 37698.82 35296.03 31398.56 20899.58 154
lupinMVS99.13 8899.01 9499.46 12299.51 16998.94 16599.05 30499.16 30197.86 16799.80 4099.56 22397.39 11699.86 13998.94 9499.85 6999.58 154
tttt051798.42 16998.14 18299.28 15499.66 11998.38 22199.74 4496.85 38597.68 18999.79 4299.74 14391.39 32099.89 12698.83 11899.56 13899.57 156
RPSCF98.22 18598.62 14696.99 33899.82 4291.58 37799.72 4999.44 20196.61 28599.66 8399.89 3095.92 17199.82 16897.46 25699.10 17499.57 156
dmvs_testset95.02 33196.12 31391.72 36599.10 27880.43 39399.58 10997.87 37697.47 21095.22 36798.82 35093.99 25295.18 39088.09 38294.91 33299.56 158
DSMNet-mixed97.25 29597.35 27696.95 34197.84 36393.61 36699.57 11696.63 38996.13 32298.87 25898.61 35994.59 22897.70 37895.08 33698.86 19299.55 159
AdaColmapbinary99.01 11498.80 12299.66 6999.56 15599.54 7999.18 27999.70 1598.18 13199.35 16799.63 19896.32 15799.90 11697.48 25399.77 10799.55 159
alignmvs98.81 13898.56 15799.58 9099.43 19799.42 9699.51 15698.96 32498.61 8499.35 16798.92 34694.78 21499.77 18999.35 5198.11 23699.54 161
EC-MVSNet99.44 3799.39 2799.58 9099.56 15599.49 8799.88 499.58 6198.38 10299.73 6299.69 16898.20 9599.70 21899.64 2499.82 9099.54 161
PatchmatchNetpermissive98.31 17998.36 16798.19 28899.16 26895.32 33999.27 25898.92 32897.37 22399.37 16099.58 21694.90 20699.70 21897.43 25999.21 16299.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet96.02 1798.85 13498.84 11998.89 20799.73 8797.28 26798.32 37799.60 5497.86 16799.50 12699.57 22096.75 14299.86 13998.56 15899.70 12299.54 161
MSDG98.98 11598.80 12299.53 10599.76 6599.19 12098.75 35099.55 7797.25 23299.47 13199.77 12997.82 10799.87 13696.93 28899.90 3999.54 161
UGNet98.87 12498.69 13399.40 13099.22 25298.72 18899.44 19499.68 2099.24 1799.18 20799.42 26592.74 28299.96 3099.34 5599.94 2199.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GSMVS99.52 167
sam_mvs194.86 20899.52 167
SCA98.19 18998.16 17998.27 28599.30 23295.55 33199.07 29998.97 32297.57 19999.43 14099.57 22092.72 28399.74 19697.58 24199.20 16399.52 167
Patchmatch-test97.93 22797.65 23998.77 23299.18 26097.07 28199.03 30999.14 30496.16 31898.74 27399.57 22094.56 23099.72 20693.36 35699.11 17199.52 167
PMMVS98.80 14198.62 14699.34 13699.27 24198.70 18998.76 34999.31 27197.34 22499.21 19899.07 32897.20 12599.82 16898.56 15898.87 19199.52 167
LS3D99.27 6699.12 7399.74 6199.18 26099.75 3999.56 12299.57 6498.45 9699.49 12999.85 5497.77 10999.94 6998.33 17999.84 7799.52 167
Effi-MVS+98.81 13898.59 15399.48 11799.46 19099.12 13498.08 38399.50 13597.50 20999.38 15899.41 26996.37 15699.81 17399.11 7898.54 21099.51 173
Patchmatch-RL test95.84 32395.81 32295.95 35395.61 38390.57 37998.24 37998.39 36695.10 34295.20 36898.67 35694.78 21497.77 37696.28 31090.02 37499.51 173
mvs_anonymous99.03 11098.99 9699.16 16799.38 21198.52 20899.51 15699.38 23197.79 17799.38 15899.81 9097.30 12299.45 25599.35 5198.99 18399.51 173
UniMVSNet_ETH3D97.32 29296.81 30098.87 21399.40 20797.46 26399.51 15699.53 9695.86 33198.54 30199.77 12982.44 38199.66 22898.68 13797.52 25699.50 176
ab-mvs98.86 12798.63 14199.54 9799.64 12799.19 12099.44 19499.54 8597.77 17999.30 17699.81 9094.20 24499.93 8499.17 7498.82 19699.49 177
thisisatest053098.35 17798.03 19799.31 14399.63 13098.56 20199.54 13996.75 38797.53 20699.73 6299.65 18691.25 32399.89 12698.62 14399.56 13899.48 178
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 10999.89 299.58 6198.56 8799.73 6299.69 16898.55 7599.82 16899.69 1999.85 6999.48 178
ADS-MVSNet298.02 21498.07 19497.87 30999.33 22495.19 34299.23 27199.08 31096.24 31199.10 21999.67 18094.11 24898.93 34896.81 29399.05 17899.48 178
ADS-MVSNet98.20 18898.08 19198.56 24999.33 22496.48 31199.23 27199.15 30296.24 31199.10 21999.67 18094.11 24899.71 21296.81 29399.05 17899.48 178
tpm97.67 27397.55 24698.03 29799.02 29395.01 34599.43 19898.54 36496.44 29999.12 21499.34 29091.83 30899.60 24497.75 22796.46 29399.48 178
CNLPA99.14 8698.99 9699.59 8799.58 14999.41 9899.16 28199.44 20198.45 9699.19 20499.49 24798.08 10199.89 12697.73 22999.75 11299.48 178
canonicalmvs99.02 11198.86 11799.51 11399.42 19999.32 10499.80 2599.48 15598.63 8299.31 17498.81 35197.09 12999.75 19599.27 6697.90 24099.47 184
MIMVSNet97.73 26197.45 25998.57 24699.45 19597.50 26299.02 31298.98 32196.11 32399.41 14799.14 32290.28 33198.74 35695.74 32098.93 18699.47 184
MVS_Test99.10 10298.97 10099.48 11799.49 18099.14 13199.67 6499.34 25097.31 22799.58 11099.76 13597.65 11299.82 16898.87 10599.07 17799.46 186
MDTV_nov1_ep13_2view95.18 34399.35 23596.84 26999.58 11095.19 19997.82 21899.46 186
MVS-HIRNet95.75 32595.16 33097.51 32699.30 23293.69 36498.88 33795.78 39185.09 38698.78 27092.65 38991.29 32299.37 27394.85 33999.85 6999.46 186
Syy-MVS97.09 30197.14 29296.95 34199.00 29592.73 37299.29 24999.39 22397.06 25297.41 34198.15 36893.92 25698.68 35891.71 36898.34 21699.45 189
myMVS_eth3d96.89 30396.37 30898.43 26899.00 29597.16 27499.29 24999.39 22397.06 25297.41 34198.15 36883.46 37798.68 35895.27 33398.34 21699.45 189
DP-MVS Recon99.12 9498.95 10499.65 7399.74 8099.70 4699.27 25899.57 6496.40 30399.42 14399.68 17498.75 5599.80 17997.98 20599.72 11899.44 191
PatchMatch-RL98.84 13798.62 14699.52 11199.71 9699.28 11199.06 30299.77 997.74 18499.50 12699.53 23595.41 18899.84 15197.17 27599.64 13199.44 191
VDDNet97.55 27997.02 29799.16 16799.49 18098.12 23399.38 22499.30 27595.35 33699.68 7499.90 2682.62 38099.93 8499.31 5898.13 23599.42 193
PCF-MVS97.08 1497.66 27497.06 29699.47 12099.61 14099.09 13698.04 38499.25 28791.24 37598.51 30299.70 15894.55 23299.91 10592.76 36499.85 6999.42 193
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ET-MVSNet_ETH3D96.49 31195.64 32599.05 17899.53 16298.82 18198.84 34197.51 38297.63 19484.77 38799.21 31692.09 30298.91 34998.98 9092.21 36499.41 195
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8799.78 4799.70 15898.65 6899.79 18299.65 2399.78 10499.41 195
HY-MVS97.30 798.85 13498.64 14099.47 12099.42 19999.08 13999.62 8899.36 24097.39 22299.28 18099.68 17496.44 15499.92 9598.37 17598.22 22699.40 197
tt080597.97 22497.77 22598.57 24699.59 14796.61 30799.45 18899.08 31098.21 12498.88 25599.80 10388.66 34999.70 21898.58 15297.72 24499.39 198
Fast-Effi-MVS+98.70 15098.43 16399.51 11399.51 16999.28 11199.52 14899.47 17396.11 32399.01 23499.34 29096.20 16199.84 15197.88 21198.82 19699.39 198
CANet_DTU98.97 11798.87 11499.25 15799.33 22498.42 22099.08 29899.30 27599.16 1999.43 14099.75 13895.27 19499.97 2198.56 15899.95 1699.36 200
EIA-MVS99.18 7899.09 7899.45 12399.49 18099.18 12299.67 6499.53 9697.66 19299.40 15299.44 26198.10 9999.81 17398.94 9499.62 13499.35 201
EPMVS97.82 24797.65 23998.35 27598.88 31195.98 32399.49 17494.71 39697.57 19999.26 18899.48 25292.46 29799.71 21297.87 21399.08 17699.35 201
CostFormer97.72 26397.73 23297.71 32099.15 27194.02 35999.54 13999.02 31794.67 35199.04 23199.35 28692.35 30099.77 18998.50 16497.94 23999.34 203
BH-untuned98.42 16998.36 16798.59 24299.49 18096.70 30299.27 25899.13 30597.24 23498.80 26799.38 27795.75 17899.74 19697.07 27999.16 16599.33 204
FE-MVS98.48 16498.17 17899.40 13099.54 16198.96 15799.68 6198.81 34495.54 33499.62 10099.70 15893.82 25999.93 8497.35 26299.46 14499.32 205
PAPM97.59 27897.09 29599.07 17599.06 28798.26 22598.30 37899.10 30794.88 34698.08 32299.34 29096.27 15999.64 23689.87 37598.92 18899.31 206
tpm297.44 28997.34 27997.74 31999.15 27194.36 35699.45 18898.94 32593.45 36598.90 25299.44 26191.35 32199.59 24597.31 26398.07 23799.29 207
FA-MVS(test-final)98.75 14598.53 15999.41 12999.55 15999.05 14499.80 2599.01 31896.59 28999.58 11099.59 21295.39 18999.90 11697.78 22199.49 14399.28 208
JIA-IIPM97.50 28497.02 29798.93 19698.73 33297.80 25299.30 24598.97 32291.73 37398.91 25094.86 38795.10 20099.71 21297.58 24197.98 23899.28 208
dp97.75 25897.80 21997.59 32499.10 27893.71 36399.32 24198.88 33696.48 29699.08 22399.55 22692.67 28899.82 16896.52 30498.58 20599.24 210
thisisatest051598.14 19597.79 22099.19 16499.50 17898.50 21198.61 36196.82 38696.95 26299.54 11999.43 26391.66 31599.86 13998.08 19999.51 14299.22 211
TESTMET0.1,197.55 27997.27 28998.40 27198.93 30696.53 30998.67 35697.61 38096.96 26098.64 29299.28 30488.63 35199.45 25597.30 26499.38 14999.21 212
CR-MVSNet98.17 19297.93 20998.87 21399.18 26098.49 21299.22 27599.33 25796.96 26099.56 11499.38 27794.33 24099.00 33694.83 34098.58 20599.14 213
RPMNet96.72 30795.90 31999.19 16499.18 26098.49 21299.22 27599.52 10188.72 38399.56 11497.38 37794.08 25099.95 5986.87 38798.58 20599.14 213
testgi97.65 27597.50 25398.13 29499.36 21796.45 31299.42 20599.48 15597.76 18097.87 33299.45 26091.09 32498.81 35394.53 34298.52 21199.13 215
test-LLR98.06 20497.90 21198.55 25198.79 32397.10 27798.67 35697.75 37797.34 22498.61 29698.85 34894.45 23799.45 25597.25 26699.38 14999.10 216
test-mter97.49 28797.13 29498.55 25198.79 32397.10 27798.67 35697.75 37796.65 28098.61 29698.85 34888.23 35599.45 25597.25 26699.38 14999.10 216
IB-MVS95.67 1896.22 31595.44 32898.57 24699.21 25396.70 30298.65 35997.74 37996.71 27597.27 34698.54 36086.03 36699.92 9598.47 16886.30 38199.10 216
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MAR-MVS98.86 12798.63 14199.54 9799.37 21499.66 5399.45 18899.54 8596.61 28599.01 23499.40 27297.09 12999.86 13997.68 23699.53 14199.10 216
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tpmrst98.33 17898.48 16197.90 30899.16 26894.78 34899.31 24399.11 30697.27 23099.45 13499.59 21295.33 19299.84 15198.48 16598.61 20299.09 220
hse-mvs297.50 28497.14 29298.59 24299.49 18097.05 28399.28 25399.22 29298.94 5499.66 8399.42 26594.93 20399.65 23399.48 4183.80 38599.08 221
xiu_mvs_v1_base_debu99.29 6299.27 5799.34 13699.63 13098.97 15399.12 28999.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 221
xiu_mvs_v1_base99.29 6299.27 5799.34 13699.63 13098.97 15399.12 28999.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 221
xiu_mvs_v1_base_debi99.29 6299.27 5799.34 13699.63 13098.97 15399.12 28999.51 11598.86 6099.84 2999.47 25598.18 9699.99 499.50 3699.31 15799.08 221
COLMAP_ROBcopyleft97.56 698.86 12798.75 12899.17 16699.88 1198.53 20499.34 23899.59 5797.55 20298.70 28299.89 3095.83 17599.90 11698.10 19499.90 3999.08 221
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AUN-MVS96.88 30496.31 31098.59 24299.48 18897.04 28699.27 25899.22 29297.44 21698.51 30299.41 26991.97 30499.66 22897.71 23283.83 38499.07 226
OpenMVScopyleft96.50 1698.47 16598.12 18599.52 11199.04 29199.53 8299.82 1799.72 1194.56 35398.08 32299.88 3694.73 22099.98 1397.47 25599.76 11099.06 227
ETV-MVS99.26 6899.21 6599.40 13099.46 19099.30 10999.56 12299.52 10198.52 9199.44 13999.27 30798.41 8699.86 13999.10 7999.59 13699.04 228
PatchT97.03 30296.44 30798.79 23098.99 29898.34 22299.16 28199.07 31392.13 37199.52 12397.31 38094.54 23398.98 33888.54 38098.73 20199.03 229
BH-w/o98.00 21997.89 21598.32 27899.35 21896.20 32099.01 31798.90 33496.42 30198.38 30999.00 33695.26 19699.72 20696.06 31298.61 20299.03 229
Fast-Effi-MVS+-dtu98.77 14498.83 12198.60 24199.41 20296.99 29099.52 14899.49 14398.11 14099.24 19099.34 29096.96 13699.79 18297.95 20799.45 14599.02 231
XVG-OURS-SEG-HR98.69 15298.62 14698.89 20799.71 9697.74 25399.12 28999.54 8598.44 9999.42 14399.71 15494.20 24499.92 9598.54 16298.90 19099.00 232
XVG-OURS98.73 14898.68 13498.88 20999.70 10197.73 25498.92 33399.55 7798.52 9199.45 13499.84 6495.27 19499.91 10598.08 19998.84 19499.00 232
tpm cat197.39 29097.36 27497.50 32799.17 26693.73 36299.43 19899.31 27191.27 37498.71 27699.08 32794.31 24299.77 18996.41 30898.50 21299.00 232
xiu_mvs_v2_base99.26 6899.25 6199.29 15199.53 16298.91 16999.02 31299.45 19398.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16198.98 235
PS-MVSNAJ99.32 5899.32 4099.30 14899.57 15198.94 16598.97 32599.46 18298.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12898.97 236
tpmvs97.98 22198.02 19997.84 31299.04 29194.73 34999.31 24399.20 29696.10 32798.76 27299.42 26594.94 20299.81 17396.97 28498.45 21498.97 236
thres600view797.86 23897.51 25298.92 19899.72 9197.95 24499.59 10198.74 35197.94 16199.27 18498.62 35791.75 30999.86 13993.73 35298.19 23098.96 238
thres40097.77 25397.38 27298.92 19899.69 10697.96 24299.50 16398.73 35697.83 17299.17 20898.45 36291.67 31399.83 16293.22 35798.18 23198.96 238
TR-MVS97.76 25497.41 27098.82 22499.06 28797.87 24898.87 33998.56 36296.63 28498.68 28499.22 31392.49 29399.65 23395.40 33097.79 24298.95 240
test0.0.03 197.71 26697.42 26998.56 24998.41 35697.82 25198.78 34798.63 36097.34 22498.05 32698.98 33994.45 23798.98 33895.04 33797.15 28398.89 241
baseline297.87 23697.55 24698.82 22499.18 26098.02 23799.41 20796.58 39096.97 25996.51 35799.17 31893.43 26699.57 24697.71 23299.03 18098.86 242
cascas97.69 26897.43 26898.48 25798.60 34797.30 26698.18 38299.39 22392.96 36898.41 30798.78 35393.77 26199.27 29598.16 19298.61 20298.86 242
131498.68 15498.54 15899.11 17298.89 31098.65 19399.27 25899.49 14396.89 26697.99 32799.56 22397.72 11199.83 16297.74 22899.27 16098.84 244
PS-MVSNAJss98.92 12098.92 10698.90 20498.78 32698.53 20499.78 3299.54 8598.07 14899.00 23899.76 13599.01 1899.37 27399.13 7697.23 27998.81 245
RRT_MVS98.70 15098.66 13898.83 22398.90 30898.45 21699.89 299.28 28197.76 18098.94 24699.92 1496.98 13499.25 29799.28 6397.00 28598.80 246
FC-MVSNet-test98.75 14598.62 14699.15 17099.08 28399.45 9399.86 1299.60 5498.23 12198.70 28299.82 7696.80 13999.22 30499.07 8396.38 29598.79 247
nrg03098.64 15898.42 16499.28 15499.05 29099.69 4799.81 2099.46 18298.04 15499.01 23499.82 7696.69 14499.38 26899.34 5594.59 33698.78 248
FIs98.78 14298.63 14199.23 16199.18 26099.54 7999.83 1699.59 5798.28 11398.79 26999.81 9096.75 14299.37 27399.08 8296.38 29598.78 248
EU-MVSNet97.98 22198.03 19797.81 31698.72 33496.65 30599.66 6999.66 2898.09 14398.35 31199.82 7695.25 19798.01 37197.41 26095.30 32298.78 248
jajsoiax98.43 16898.28 17498.88 20998.60 34798.43 21899.82 1799.53 9698.19 12798.63 29399.80 10393.22 27199.44 26099.22 6997.50 26098.77 251
mvs_tets98.40 17498.23 17698.91 20298.67 34098.51 21099.66 6999.53 9698.19 12798.65 29199.81 9092.75 28099.44 26099.31 5897.48 26498.77 251
Anonymous2023121197.88 23497.54 24998.90 20499.71 9698.53 20499.48 17899.57 6494.16 35698.81 26599.68 17493.23 26999.42 26598.84 11594.42 33998.76 253
XXY-MVS98.38 17598.09 19099.24 15999.26 24399.32 10499.56 12299.55 7797.45 21498.71 27699.83 6893.23 26999.63 24198.88 10296.32 29798.76 253
v7n97.87 23697.52 25098.92 19898.76 33098.58 20099.84 1399.46 18296.20 31498.91 25099.70 15894.89 20799.44 26096.03 31393.89 34898.75 255
PS-CasMVS97.93 22797.59 24598.95 19398.99 29899.06 14299.68 6199.52 10197.13 24298.31 31399.68 17492.44 29899.05 32898.51 16394.08 34598.75 255
test_djsdf98.67 15598.57 15598.98 18898.70 33798.91 16999.88 499.46 18297.55 20299.22 19599.88 3695.73 17999.28 29299.03 8597.62 24898.75 255
Effi-MVS+-dtu98.78 14298.89 11298.47 26199.33 22496.91 29699.57 11699.30 27598.47 9499.41 14798.99 33796.78 14099.74 19698.73 12999.38 14998.74 258
CP-MVSNet98.09 20097.78 22399.01 18298.97 30399.24 11799.67 6499.46 18297.25 23298.48 30599.64 19293.79 26099.06 32798.63 14294.10 34498.74 258
mvsmamba98.92 12098.87 11499.08 17399.07 28499.16 12599.88 499.51 11598.15 13399.40 15299.89 3097.12 12799.33 28399.38 4897.40 27298.73 260
VPA-MVSNet98.29 18297.95 20699.30 14899.16 26899.54 7999.50 16399.58 6198.27 11599.35 16799.37 28092.53 29299.65 23399.35 5194.46 33798.72 261
PEN-MVS97.76 25497.44 26498.72 23598.77 32998.54 20399.78 3299.51 11597.06 25298.29 31599.64 19292.63 28998.89 35198.09 19593.16 35698.72 261
bld_raw_dy_0_6498.69 15298.58 15498.99 18698.88 31198.96 15799.80 2599.41 21297.91 16499.32 17299.87 4495.70 18199.31 28999.09 8097.27 27798.71 263
VPNet97.84 24297.44 26499.01 18299.21 25398.94 16599.48 17899.57 6498.38 10299.28 18099.73 14988.89 34699.39 26799.19 7193.27 35598.71 263
EI-MVSNet98.67 15598.67 13598.68 23899.35 21897.97 24099.50 16399.38 23196.93 26599.20 20199.83 6897.87 10599.36 27798.38 17397.56 25398.71 263
WR-MVS98.06 20497.73 23299.06 17698.86 31899.25 11699.19 27899.35 24697.30 22898.66 28599.43 26393.94 25499.21 30998.58 15294.28 34198.71 263
IterMVS-LS98.46 16698.42 16498.58 24599.59 14798.00 23899.37 22699.43 20796.94 26499.07 22499.59 21297.87 10599.03 33198.32 18195.62 31598.71 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419297.92 23097.60 24498.87 21398.83 32198.65 19399.55 13499.34 25096.20 31499.32 17299.40 27294.36 23999.26 29696.37 30995.03 32898.70 268
v124097.69 26897.32 28298.79 23098.85 31998.43 21899.48 17899.36 24096.11 32399.27 18499.36 28393.76 26299.24 30094.46 34395.23 32398.70 268
DTE-MVSNet97.51 28397.19 29198.46 26298.63 34398.13 23299.84 1399.48 15596.68 27797.97 32999.67 18092.92 27698.56 36096.88 29292.60 36398.70 268
TranMVSNet+NR-MVSNet97.93 22797.66 23898.76 23398.78 32698.62 19699.65 7599.49 14397.76 18098.49 30499.60 21094.23 24398.97 34598.00 20492.90 35898.70 268
v192192097.80 25197.45 25998.84 22198.80 32298.53 20499.52 14899.34 25096.15 32099.24 19099.47 25593.98 25399.29 29195.40 33095.13 32698.69 272
v119297.81 24997.44 26498.91 20298.88 31198.68 19099.51 15699.34 25096.18 31699.20 20199.34 29094.03 25199.36 27795.32 33295.18 32498.69 272
v2v48298.06 20497.77 22598.92 19898.90 30898.82 18199.57 11699.36 24096.65 28099.19 20499.35 28694.20 24499.25 29797.72 23194.97 32998.69 272
UniMVSNet_NR-MVSNet98.22 18597.97 20398.96 19198.92 30798.98 15099.48 17899.53 9697.76 18098.71 27699.46 25996.43 15599.22 30498.57 15592.87 36098.69 272
OurMVSNet-221017-097.88 23497.77 22598.19 28898.71 33696.53 30999.88 499.00 31997.79 17798.78 27099.94 691.68 31299.35 28097.21 26896.99 28698.69 272
gg-mvs-nofinetune96.17 31895.32 32998.73 23498.79 32398.14 23199.38 22494.09 39791.07 37798.07 32591.04 39389.62 34299.35 28096.75 29599.09 17598.68 277
v114497.98 22197.69 23598.85 22098.87 31598.66 19299.54 13999.35 24696.27 30999.23 19499.35 28694.67 22599.23 30196.73 29695.16 32598.68 277
DU-MVS98.08 20297.79 22098.96 19198.87 31598.98 15099.41 20799.45 19397.87 16698.71 27699.50 24494.82 20999.22 30498.57 15592.87 36098.68 277
NR-MVSNet97.97 22497.61 24399.02 18198.87 31599.26 11599.47 18499.42 20997.63 19497.08 35299.50 24495.07 20199.13 31797.86 21493.59 35198.68 277
LPG-MVS_test98.22 18598.13 18498.49 25599.33 22497.05 28399.58 10999.55 7797.46 21199.24 19099.83 6892.58 29099.72 20698.09 19597.51 25898.68 277
LGP-MVS_train98.49 25599.33 22497.05 28399.55 7797.46 21199.24 19099.83 6892.58 29099.72 20698.09 19597.51 25898.68 277
LTVRE_ROB97.16 1298.02 21497.90 21198.40 27199.23 24996.80 30099.70 5299.60 5497.12 24498.18 31999.70 15891.73 31199.72 20698.39 17297.45 26698.68 277
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT97.82 24797.75 23098.06 29699.57 15196.36 31599.02 31299.49 14397.18 23898.71 27699.72 15392.72 28399.14 31497.44 25895.86 30998.67 284
pm-mvs197.68 27097.28 28698.88 20999.06 28798.62 19699.50 16399.45 19396.32 30597.87 33299.79 11592.47 29499.35 28097.54 24893.54 35298.67 284
v1097.85 23997.52 25098.86 21798.99 29898.67 19199.75 4199.41 21295.70 33298.98 24099.41 26994.75 21999.23 30196.01 31594.63 33598.67 284
HQP_MVS98.27 18498.22 17798.44 26699.29 23696.97 29299.39 21999.47 17398.97 5199.11 21699.61 20792.71 28599.69 22397.78 22197.63 24698.67 284
plane_prior599.47 17399.69 22397.78 22197.63 24698.67 284
SixPastTwentyTwo97.50 28497.33 28198.03 29798.65 34196.23 31999.77 3498.68 35997.14 24197.90 33099.93 990.45 33099.18 31297.00 28196.43 29498.67 284
IterMVS97.83 24497.77 22598.02 29999.58 14996.27 31899.02 31299.48 15597.22 23698.71 27699.70 15892.75 28099.13 31797.46 25696.00 30398.67 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH97.28 898.10 19997.99 20198.44 26699.41 20296.96 29499.60 9599.56 6998.09 14398.15 32099.91 2090.87 32799.70 21898.88 10297.45 26698.67 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v897.95 22697.63 24298.93 19698.95 30598.81 18399.80 2599.41 21296.03 32899.10 21999.42 26594.92 20599.30 29096.94 28794.08 34598.66 292
UniMVSNet (Re)98.29 18298.00 20099.13 17199.00 29599.36 10299.49 17499.51 11597.95 16098.97 24299.13 32396.30 15899.38 26898.36 17793.34 35398.66 292
pmmvs696.53 31096.09 31597.82 31598.69 33895.47 33599.37 22699.47 17393.46 36497.41 34199.78 12187.06 36499.33 28396.92 29092.70 36298.65 294
K. test v397.10 30096.79 30198.01 30098.72 33496.33 31699.87 997.05 38497.59 19696.16 36199.80 10388.71 34799.04 32996.69 29996.55 29298.65 294
iter_conf_final98.71 14998.61 15298.99 18699.49 18098.96 15799.63 8299.41 21298.19 12799.39 15599.77 12994.82 20999.38 26899.30 6197.52 25698.64 296
our_test_397.65 27597.68 23697.55 32598.62 34494.97 34698.84 34199.30 27596.83 27198.19 31899.34 29097.01 13399.02 33395.00 33896.01 30298.64 296
YYNet195.36 32994.51 33697.92 30697.89 36297.10 27799.10 29799.23 29093.26 36680.77 39299.04 33292.81 27998.02 37094.30 34494.18 34398.64 296
MDA-MVSNet_test_wron95.45 32794.60 33498.01 30098.16 35997.21 27399.11 29599.24 28993.49 36380.73 39398.98 33993.02 27398.18 36694.22 34894.45 33898.64 296
Baseline_NR-MVSNet97.76 25497.45 25998.68 23899.09 28198.29 22399.41 20798.85 34095.65 33398.63 29399.67 18094.82 20999.10 32498.07 20292.89 35998.64 296
HQP4-MVS98.66 28599.64 23698.64 296
HQP-MVS98.02 21497.90 21198.37 27499.19 25796.83 29798.98 32299.39 22398.24 11898.66 28599.40 27292.47 29499.64 23697.19 27297.58 25198.64 296
ACMM97.58 598.37 17698.34 16998.48 25799.41 20297.10 27799.56 12299.45 19398.53 9099.04 23199.85 5493.00 27499.71 21298.74 12797.45 26698.64 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs597.52 28197.30 28498.16 29098.57 34996.73 30199.27 25898.90 33496.14 32198.37 31099.53 23591.54 31899.14 31497.51 25095.87 30898.63 304
v14897.79 25297.55 24698.50 25498.74 33197.72 25599.54 13999.33 25796.26 31098.90 25299.51 24194.68 22499.14 31497.83 21793.15 35798.63 304
iter_conf0598.55 16298.44 16298.87 21399.34 22298.60 19999.55 13499.42 20998.21 12499.37 16099.77 12993.55 26599.38 26899.30 6197.48 26498.63 304
MDA-MVSNet-bldmvs94.96 33393.98 34097.92 30698.24 35897.27 26899.15 28499.33 25793.80 35980.09 39499.03 33388.31 35497.86 37593.49 35594.36 34098.62 307
TransMVSNet (Re)97.15 29896.58 30498.86 21799.12 27398.85 17699.49 17498.91 33295.48 33597.16 35099.80 10393.38 26799.11 32294.16 34991.73 36598.62 307
lessismore_v097.79 31798.69 33895.44 33794.75 39595.71 36599.87 4488.69 34899.32 28695.89 31694.93 33198.62 307
MVSTER98.49 16398.32 17199.00 18499.35 21899.02 14699.54 13999.38 23197.41 22099.20 20199.73 14993.86 25899.36 27798.87 10597.56 25398.62 307
GBi-Net97.68 27097.48 25498.29 28199.51 16997.26 27099.43 19899.48 15596.49 29399.07 22499.32 29790.26 33298.98 33897.10 27696.65 28898.62 307
test197.68 27097.48 25498.29 28199.51 16997.26 27099.43 19899.48 15596.49 29399.07 22499.32 29790.26 33298.98 33897.10 27696.65 28898.62 307
FMVSNet196.84 30596.36 30998.29 28199.32 23097.26 27099.43 19899.48 15595.11 34098.55 30099.32 29783.95 37598.98 33895.81 31896.26 29898.62 307
ACMP97.20 1198.06 20497.94 20898.45 26399.37 21497.01 28899.44 19499.49 14397.54 20598.45 30699.79 11591.95 30599.72 20697.91 20997.49 26398.62 307
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+97.24 1097.92 23097.78 22398.32 27899.46 19096.68 30499.56 12299.54 8598.41 10097.79 33699.87 4490.18 33699.66 22898.05 20397.18 28298.62 307
ppachtmachnet_test97.49 28797.45 25997.61 32398.62 34495.24 34098.80 34599.46 18296.11 32398.22 31799.62 20396.45 15398.97 34593.77 35195.97 30798.61 316
OPM-MVS98.19 18998.10 18798.45 26398.88 31197.07 28199.28 25399.38 23198.57 8699.22 19599.81 9092.12 30199.66 22898.08 19997.54 25598.61 316
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS_H98.13 19697.87 21698.90 20499.02 29398.84 17799.70 5299.59 5797.27 23098.40 30899.19 31795.53 18599.23 30198.34 17893.78 35098.61 316
MIMVSNet195.51 32695.04 33196.92 34397.38 37095.60 32999.52 14899.50 13593.65 36196.97 35599.17 31885.28 37196.56 38688.36 38195.55 31798.60 319
N_pmnet94.95 33495.83 32192.31 36398.47 35379.33 39599.12 28992.81 40193.87 35897.68 33799.13 32393.87 25799.01 33591.38 37096.19 29998.59 320
FMVSNet297.72 26397.36 27498.80 22999.51 16998.84 17799.45 18899.42 20996.49 29398.86 26299.29 30290.26 33298.98 33896.44 30696.56 29198.58 321
anonymousdsp98.44 16798.28 17498.94 19498.50 35298.96 15799.77 3499.50 13597.07 25098.87 25899.77 12994.76 21899.28 29298.66 13997.60 24998.57 322
FMVSNet398.03 21297.76 22998.84 22199.39 21098.98 15099.40 21599.38 23196.67 27899.07 22499.28 30492.93 27598.98 33897.10 27696.65 28898.56 323
XVG-ACMP-BASELINE97.83 24497.71 23498.20 28799.11 27596.33 31699.41 20799.52 10198.06 15299.05 23099.50 24489.64 34199.73 20297.73 22997.38 27498.53 324
Patchmtry97.75 25897.40 27198.81 22799.10 27898.87 17299.11 29599.33 25794.83 34898.81 26599.38 27794.33 24099.02 33396.10 31195.57 31698.53 324
miper_lstm_enhance98.00 21997.91 21098.28 28499.34 22297.43 26498.88 33799.36 24096.48 29698.80 26799.55 22695.98 16698.91 34997.27 26595.50 31998.51 326
USDC97.34 29197.20 29097.75 31899.07 28495.20 34198.51 36899.04 31697.99 15898.31 31399.86 4989.02 34499.55 24995.67 32497.36 27598.49 327
c3_l98.12 19898.04 19698.38 27399.30 23297.69 25998.81 34499.33 25796.67 27898.83 26399.34 29097.11 12898.99 33797.58 24195.34 32198.48 328
CLD-MVS98.16 19398.10 18798.33 27699.29 23696.82 29998.75 35099.44 20197.83 17299.13 21299.55 22692.92 27699.67 22598.32 18197.69 24598.48 328
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth98.05 20997.96 20498.33 27699.26 24397.38 26598.56 36699.31 27196.65 28098.88 25599.52 23896.58 14799.12 32197.39 26195.53 31898.47 330
Anonymous2023120696.22 31596.03 31696.79 34697.31 37394.14 35899.63 8299.08 31096.17 31797.04 35399.06 33093.94 25497.76 37786.96 38695.06 32798.47 330
FMVSNet596.43 31396.19 31297.15 33399.11 27595.89 32599.32 24199.52 10194.47 35598.34 31299.07 32887.54 36297.07 38292.61 36595.72 31398.47 330
cl____98.01 21797.84 21898.55 25199.25 24797.97 24098.71 35499.34 25096.47 29898.59 29999.54 23195.65 18399.21 30997.21 26895.77 31098.46 333
DIV-MVS_self_test98.01 21797.85 21798.48 25799.24 24897.95 24498.71 35499.35 24696.50 29298.60 29899.54 23195.72 18099.03 33197.21 26895.77 31098.46 333
pmmvs498.13 19697.90 21198.81 22798.61 34698.87 17298.99 31999.21 29596.44 29999.06 22899.58 21695.90 17399.11 32297.18 27496.11 30198.46 333
cl2297.85 23997.64 24198.48 25799.09 28197.87 24898.60 36399.33 25797.11 24798.87 25899.22 31392.38 29999.17 31398.21 18695.99 30498.42 336
V4298.06 20497.79 22098.86 21798.98 30198.84 17799.69 5599.34 25096.53 29199.30 17699.37 28094.67 22599.32 28697.57 24594.66 33498.42 336
PVSNet_BlendedMVS98.86 12798.80 12299.03 18099.76 6598.79 18499.28 25399.91 397.42 21999.67 7899.37 28097.53 11399.88 13198.98 9097.29 27698.42 336
UnsupCasMVSNet_eth96.44 31296.12 31397.40 32998.65 34195.65 32899.36 23099.51 11597.13 24296.04 36398.99 33788.40 35398.17 36796.71 29790.27 37398.40 339
TinyColmap97.12 29996.89 29997.83 31399.07 28495.52 33498.57 36498.74 35197.58 19897.81 33599.79 11588.16 35699.56 24795.10 33597.21 28098.39 340
miper_ehance_all_eth98.18 19198.10 18798.41 26999.23 24997.72 25598.72 35399.31 27196.60 28798.88 25599.29 30297.29 12399.13 31797.60 23995.99 30498.38 341
thres100view90097.76 25497.45 25998.69 23799.72 9197.86 25099.59 10198.74 35197.93 16299.26 18898.62 35791.75 30999.83 16293.22 35798.18 23198.37 342
tfpn200view997.72 26397.38 27298.72 23599.69 10697.96 24299.50 16398.73 35697.83 17299.17 20898.45 36291.67 31399.83 16293.22 35798.18 23198.37 342
test_fmvs297.25 29597.30 28497.09 33799.43 19793.31 36899.73 4798.87 33898.83 6499.28 18099.80 10384.45 37399.66 22897.88 21197.45 26698.30 344
miper_enhance_ethall98.16 19398.08 19198.41 26998.96 30497.72 25598.45 37099.32 26796.95 26298.97 24299.17 31897.06 13199.22 30497.86 21495.99 30498.29 345
tfpnnormal97.84 24297.47 25698.98 18899.20 25599.22 11999.64 7899.61 4896.32 30598.27 31699.70 15893.35 26899.44 26095.69 32295.40 32098.27 346
test20.0396.12 31995.96 31896.63 34797.44 36995.45 33699.51 15699.38 23196.55 29096.16 36199.25 31093.76 26296.17 38787.35 38594.22 34298.27 346
test_method91.10 34991.36 35190.31 36995.85 38173.72 40294.89 39099.25 28768.39 39395.82 36499.02 33580.50 38398.95 34793.64 35394.89 33398.25 348
ITE_SJBPF98.08 29599.29 23696.37 31498.92 32898.34 10898.83 26399.75 13891.09 32499.62 24295.82 31797.40 27298.25 348
KD-MVS_self_test95.00 33294.34 33796.96 34097.07 37895.39 33899.56 12299.44 20195.11 34097.13 35197.32 37991.86 30797.27 38190.35 37481.23 38898.23 350
EG-PatchMatch MVS95.97 32195.69 32396.81 34597.78 36492.79 37199.16 28198.93 32696.16 31894.08 37499.22 31382.72 37999.47 25395.67 32497.50 26098.17 351
D2MVS98.41 17198.50 16098.15 29399.26 24396.62 30699.40 21599.61 4897.71 18698.98 24099.36 28396.04 16499.67 22598.70 13297.41 27198.15 352
APD_test195.87 32296.49 30694.00 35799.53 16284.01 38599.54 13999.32 26795.91 33097.99 32799.85 5485.49 36999.88 13191.96 36798.84 19498.12 353
TDRefinement95.42 32894.57 33597.97 30489.83 39696.11 32299.48 17898.75 34896.74 27396.68 35699.88 3688.65 35099.71 21298.37 17582.74 38698.09 354
Anonymous2024052196.20 31795.89 32097.13 33597.72 36794.96 34799.79 3199.29 27993.01 36797.20 34999.03 33389.69 34098.36 36491.16 37196.13 30098.07 355
API-MVS99.04 10899.03 8699.06 17699.40 20799.31 10799.55 13499.56 6998.54 8999.33 17199.39 27698.76 5299.78 18796.98 28399.78 10498.07 355
new_pmnet96.38 31496.03 31697.41 32898.13 36095.16 34499.05 30499.20 29693.94 35797.39 34498.79 35291.61 31799.04 32990.43 37395.77 31098.05 357
thres20097.61 27797.28 28698.62 24099.64 12798.03 23699.26 26698.74 35197.68 18999.09 22298.32 36691.66 31599.81 17392.88 36198.22 22698.03 358
KD-MVS_2432*160094.62 33593.72 34397.31 33097.19 37695.82 32698.34 37499.20 29695.00 34497.57 33898.35 36487.95 35898.10 36892.87 36277.00 39198.01 359
miper_refine_blended94.62 33593.72 34397.31 33097.19 37695.82 32698.34 37499.20 29695.00 34497.57 33898.35 36487.95 35898.10 36892.87 36277.00 39198.01 359
DeepMVS_CXcopyleft93.34 36099.29 23682.27 38899.22 29285.15 38596.33 35999.05 33190.97 32699.73 20293.57 35497.77 24398.01 359
CL-MVSNet_self_test94.49 33793.97 34196.08 35296.16 38093.67 36598.33 37699.38 23195.13 33897.33 34598.15 36892.69 28796.57 38588.67 37979.87 38997.99 362
GG-mvs-BLEND98.45 26398.55 35098.16 22999.43 19893.68 39897.23 34798.46 36189.30 34399.22 30495.43 32998.22 22697.98 363
pmmvs394.09 34193.25 34796.60 34894.76 39094.49 35398.92 33398.18 37289.66 37896.48 35898.06 37286.28 36597.33 38089.68 37687.20 38097.97 364
LF4IMVS97.52 28197.46 25897.70 32198.98 30195.55 33199.29 24998.82 34398.07 14898.66 28599.64 19289.97 33799.61 24397.01 28096.68 28797.94 365
test_040296.64 30896.24 31197.85 31098.85 31996.43 31399.44 19499.26 28593.52 36296.98 35499.52 23888.52 35299.20 31192.58 36697.50 26097.93 366
MVP-Stereo97.81 24997.75 23097.99 30397.53 36896.60 30898.96 32698.85 34097.22 23697.23 34799.36 28395.28 19399.46 25495.51 32699.78 10497.92 367
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MS-PatchMatch97.24 29797.32 28296.99 33898.45 35493.51 36798.82 34399.32 26797.41 22098.13 32199.30 30088.99 34599.56 24795.68 32399.80 9797.90 368
mvsany_test393.77 34293.45 34694.74 35695.78 38288.01 38299.64 7898.25 36898.28 11394.31 37397.97 37368.89 38898.51 36297.50 25190.37 37297.71 369
ambc93.06 36292.68 39282.36 38798.47 36998.73 35695.09 37097.41 37655.55 39499.10 32496.42 30791.32 36697.71 369
test_vis1_rt95.81 32495.65 32496.32 35199.67 11191.35 37899.49 17496.74 38898.25 11795.24 36698.10 37174.96 38599.90 11699.53 3298.85 19397.70 371
new-patchmatchnet94.48 33894.08 33995.67 35495.08 38892.41 37399.18 27999.28 28194.55 35493.49 37797.37 37887.86 36097.01 38391.57 36988.36 37797.61 372
pmmvs-eth3d95.34 33094.73 33397.15 33395.53 38595.94 32499.35 23599.10 30795.13 33893.55 37697.54 37588.15 35797.91 37394.58 34189.69 37697.61 372
UnsupCasMVSNet_bld93.53 34392.51 34896.58 34997.38 37093.82 36098.24 37999.48 15591.10 37693.10 37896.66 38274.89 38698.37 36394.03 35087.71 37997.56 374
PM-MVS92.96 34592.23 34995.14 35595.61 38389.98 38199.37 22698.21 37094.80 34995.04 37197.69 37465.06 38997.90 37494.30 34489.98 37597.54 375
EGC-MVSNET82.80 35777.86 36397.62 32297.91 36196.12 32199.33 24099.28 2818.40 40125.05 40299.27 30784.11 37499.33 28389.20 37798.22 22697.42 376
test_f91.90 34891.26 35293.84 35895.52 38685.92 38499.69 5598.53 36595.31 33793.87 37596.37 38455.33 39598.27 36595.70 32190.98 37097.32 377
test_fmvs392.10 34791.77 35093.08 36196.19 37986.25 38399.82 1798.62 36196.65 28095.19 36996.90 38155.05 39695.93 38996.63 30390.92 37197.06 378
LCM-MVSNet86.80 35585.22 35991.53 36687.81 39780.96 39298.23 38198.99 32071.05 39190.13 38696.51 38348.45 39996.88 38490.51 37285.30 38296.76 379
OpenMVS_ROBcopyleft92.34 2094.38 33993.70 34596.41 35097.38 37093.17 36999.06 30298.75 34886.58 38494.84 37298.26 36781.53 38299.32 28689.01 37897.87 24196.76 379
WB-MVS93.10 34494.10 33890.12 37095.51 38781.88 39099.73 4799.27 28495.05 34393.09 37998.91 34794.70 22391.89 39476.62 39394.02 34796.58 381
SSC-MVS92.73 34693.73 34289.72 37195.02 38981.38 39199.76 3799.23 29094.87 34792.80 38098.93 34394.71 22291.37 39574.49 39593.80 34996.42 382
CMPMVSbinary69.68 2394.13 34094.90 33291.84 36497.24 37480.01 39498.52 36799.48 15589.01 38191.99 38299.67 18085.67 36899.13 31795.44 32897.03 28496.39 383
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testf190.42 35190.68 35389.65 37297.78 36473.97 40099.13 28798.81 34489.62 37991.80 38398.93 34362.23 39298.80 35486.61 38891.17 36796.19 384
APD_test290.42 35190.68 35389.65 37297.78 36473.97 40099.13 28798.81 34489.62 37991.80 38398.93 34362.23 39298.80 35486.61 38891.17 36796.19 384
PMMVS286.87 35485.37 35891.35 36790.21 39583.80 38698.89 33697.45 38383.13 38891.67 38595.03 38548.49 39894.70 39185.86 39077.62 39095.54 386
tmp_tt82.80 35781.52 36086.66 37466.61 40368.44 40392.79 39397.92 37468.96 39280.04 39599.85 5485.77 36796.15 38897.86 21443.89 39795.39 387
FPMVS84.93 35685.65 35782.75 37886.77 39863.39 40498.35 37398.92 32874.11 39083.39 38998.98 33950.85 39792.40 39384.54 39194.97 32992.46 388
Gipumacopyleft90.99 35090.15 35593.51 35998.73 33290.12 38093.98 39199.45 19379.32 38992.28 38194.91 38669.61 38797.98 37287.42 38495.67 31492.45 389
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high77.30 36174.86 36584.62 37675.88 40177.61 39697.63 38793.15 40088.81 38264.27 39789.29 39436.51 40183.93 39975.89 39452.31 39692.33 390
test_vis3_rt87.04 35385.81 35690.73 36893.99 39181.96 38999.76 3790.23 40392.81 36981.35 39191.56 39140.06 40099.07 32694.27 34688.23 37891.15 391
MVEpermissive76.82 2176.91 36274.31 36684.70 37585.38 40076.05 39996.88 38993.17 39967.39 39471.28 39689.01 39521.66 40687.69 39671.74 39672.29 39390.35 392
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft70.75 2275.98 36374.97 36479.01 38070.98 40255.18 40593.37 39298.21 37065.08 39761.78 39893.83 38821.74 40592.53 39278.59 39291.12 36989.34 393
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS80.02 36079.22 36282.43 37991.19 39376.40 39797.55 38892.49 40266.36 39683.01 39091.27 39264.63 39085.79 39865.82 39860.65 39585.08 394
E-PMN80.61 35979.88 36182.81 37790.75 39476.38 39897.69 38695.76 39266.44 39583.52 38892.25 39062.54 39187.16 39768.53 39761.40 39484.89 395
test12339.01 36642.50 36828.53 38239.17 40420.91 40798.75 35019.17 40719.83 40038.57 39966.67 39733.16 40215.42 40137.50 40129.66 39949.26 396
testmvs39.17 36543.78 36725.37 38336.04 40516.84 40898.36 37226.56 40520.06 39938.51 40067.32 39629.64 40315.30 40237.59 40039.90 39843.98 397
wuyk23d40.18 36441.29 36936.84 38186.18 39949.12 40679.73 39422.81 40627.64 39825.46 40128.45 40121.98 40448.89 40055.80 39923.56 40012.51 398
test_blank0.13 3700.17 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4031.57 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k24.64 36732.85 3700.00 3840.00 4060.00 4090.00 39599.51 1150.00 4020.00 40399.56 22396.58 1470.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas8.27 36911.03 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 40399.01 180.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.30 36811.06 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40399.58 2160.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.02 3710.03 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.27 4030.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS97.16 27495.47 327
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 9099.09 14
eth-test20.00 406
eth-test0.00 406
ZD-MVS99.71 9699.79 3099.61 4896.84 26999.56 11499.54 23198.58 7299.96 3096.93 28899.75 112
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14399.20 799.76 193
9.1499.10 7599.72 9199.40 21599.51 11597.53 20699.64 9399.78 12198.84 4199.91 10597.63 23799.82 90
save fliter99.76 6599.59 7099.14 28699.40 22099.00 43
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7698.94 29
test_part299.81 4699.83 1699.77 51
sam_mvs94.72 221
MTGPAbinary99.47 173
test_post199.23 27165.14 39994.18 24799.71 21297.58 241
test_post65.99 39894.65 22799.73 202
patchmatchnet-post98.70 35594.79 21399.74 196
MTMP99.54 13998.88 336
gm-plane-assit98.54 35192.96 37094.65 35299.15 32199.64 23697.56 246
TEST999.67 11199.65 5799.05 30499.41 21296.22 31398.95 24499.49 24798.77 5199.91 105
test_899.67 11199.61 6799.03 30999.41 21296.28 30798.93 24899.48 25298.76 5299.91 105
agg_prior99.67 11199.62 6599.40 22098.87 25899.91 105
test_prior499.56 7598.99 319
test_prior298.96 32698.34 10899.01 23499.52 23898.68 6497.96 20699.74 115
旧先验298.96 32696.70 27699.47 13199.94 6998.19 188
新几何299.01 317
原ACMM298.95 329
testdata299.95 5996.67 300
segment_acmp98.96 24
testdata198.85 34098.32 111
plane_prior799.29 23697.03 287
plane_prior699.27 24196.98 29192.71 285
plane_prior499.61 207
plane_prior397.00 28998.69 7999.11 216
plane_prior299.39 21998.97 51
plane_prior199.26 243
plane_prior96.97 29299.21 27798.45 9697.60 249
n20.00 408
nn0.00 408
door-mid98.05 373
test1199.35 246
door97.92 374
HQP5-MVS96.83 297
HQP-NCC99.19 25798.98 32298.24 11898.66 285
ACMP_Plane99.19 25798.98 32298.24 11898.66 285
BP-MVS97.19 272
HQP3-MVS99.39 22397.58 251
HQP2-MVS92.47 294
NP-MVS99.23 24996.92 29599.40 272
MDTV_nov1_ep1398.32 17199.11 27594.44 35499.27 25898.74 35197.51 20899.40 15299.62 20394.78 21499.76 19397.59 24098.81 198
ACMMP++_ref97.19 281
ACMMP++97.43 270
Test By Simon98.75 55