This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11592.29 795.97 274.28 2997.24 1388.58 2196.91 194.87 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 11
PC_three_145268.21 25492.02 1294.00 4982.09 595.98 5684.58 5396.68 294.95 11
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5393.10 195.72 882.99 197.44 789.07 1496.63 494.88 15
IU-MVS95.30 271.25 5992.95 5566.81 26592.39 688.94 1696.63 494.85 20
test_241102_TWO94.06 1077.24 5392.78 495.72 881.26 897.44 789.07 1496.58 694.26 48
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 996.57 794.67 28
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4782.45 396.87 2083.77 6496.48 894.88 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 39
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 696.44 994.41 39
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3394.27 3575.89 1996.81 2387.45 3296.44 993.05 106
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 5092.12 995.78 480.98 997.40 989.08 1296.41 1293.33 91
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1296.41 1294.21 49
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8488.14 2795.09 1771.06 6396.67 2987.67 2996.37 1494.09 53
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 9092.29 795.66 1081.67 697.38 1187.44 3396.34 1593.95 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10586.34 5195.29 1570.86 6596.00 5488.78 1996.04 1694.58 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9289.16 1995.10 1675.65 2196.19 4687.07 3496.01 1794.79 22
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 2994.06 4576.43 1696.84 2188.48 2495.99 1894.34 44
PHI-MVS86.43 4386.17 4787.24 4190.88 9270.96 6892.27 3294.07 972.45 16385.22 6191.90 9669.47 8096.42 4083.28 6895.94 1994.35 43
test_prior288.85 11775.41 9884.91 6593.54 5974.28 2983.31 6795.86 20
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 2894.80 1973.76 3397.11 1587.51 3195.82 2194.90 14
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6685.24 6094.32 3371.76 5196.93 1985.53 4395.79 2294.32 45
9.1488.26 1592.84 6391.52 4894.75 173.93 13388.57 2594.67 2175.57 2295.79 5886.77 3595.76 23
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4689.79 1894.12 4278.98 1296.58 3585.66 4095.72 2494.58 33
train_agg86.43 4386.20 4587.13 4493.26 5272.96 2588.75 12091.89 10168.69 24685.00 6393.10 7074.43 2695.41 7384.97 4595.71 2593.02 108
test9_res84.90 4695.70 2692.87 113
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9491.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 38
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12586.57 187.39 4194.97 1871.70 5397.68 192.19 195.63 2895.57 1
agg_prior282.91 7395.45 2992.70 116
CDPH-MVS85.76 5685.29 6687.17 4393.49 4771.08 6488.58 12892.42 8068.32 25384.61 7493.48 6172.32 4496.15 4879.00 10695.43 3094.28 47
DeepC-MVS79.81 287.08 3586.88 3887.69 3391.16 8472.32 4390.31 7193.94 1477.12 5882.82 10594.23 3872.13 4797.09 1684.83 4995.37 3193.65 76
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MTAPA87.23 3187.00 3287.90 2294.18 3574.25 586.58 19392.02 9379.45 1985.88 5394.80 1968.07 9696.21 4586.69 3695.34 3293.23 94
DeepC-MVS_fast79.65 386.91 3686.62 4087.76 2793.52 4672.37 4191.26 5193.04 4176.62 7484.22 8193.36 6671.44 5796.76 2580.82 9495.33 3394.16 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17382.14 386.65 4994.28 3468.28 9597.46 690.81 295.31 3495.15 7
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 7077.57 4283.84 9094.40 3272.24 4596.28 4385.65 4195.30 3593.62 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS87.37 2987.25 2987.73 2894.53 1772.46 3889.82 7993.82 1673.07 15684.86 6892.89 7776.22 1796.33 4184.89 4895.13 3694.40 41
balanced_conf0386.78 3786.99 3386.15 6391.24 8367.61 14590.51 6292.90 5677.26 5287.44 4091.63 10571.27 6096.06 4985.62 4295.01 3794.78 23
GST-MVS87.42 2787.26 2887.89 2494.12 3672.97 2492.39 2693.43 2876.89 6484.68 6993.99 5170.67 6896.82 2284.18 6195.01 3793.90 62
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 15888.58 2494.52 2373.36 3496.49 3884.26 5795.01 3792.70 116
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5593.47 6373.02 4097.00 1884.90 4694.94 4094.10 52
ACMMPR87.44 2587.23 3088.08 1594.64 1373.59 1293.04 1293.20 3476.78 6884.66 7294.52 2368.81 9096.65 3084.53 5494.90 4194.00 57
SPE-MVS-test86.29 4686.48 4185.71 7391.02 8867.21 16092.36 2993.78 1878.97 2883.51 9791.20 12070.65 6995.15 8481.96 8394.89 4294.77 24
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6884.91 6594.44 3070.78 6696.61 3284.53 5494.89 4293.66 72
ZD-MVS94.38 2572.22 4492.67 6770.98 19187.75 3594.07 4474.01 3296.70 2784.66 5294.84 44
region2R87.42 2787.20 3188.09 1494.63 1473.55 1393.03 1493.12 4076.73 7184.45 7794.52 2369.09 8496.70 2784.37 5694.83 4594.03 56
原ACMM184.35 11393.01 6068.79 11092.44 7763.96 31081.09 12691.57 10866.06 11995.45 6867.19 22694.82 4688.81 258
HPM-MVScopyleft87.11 3386.98 3487.50 3893.88 3972.16 4592.19 3393.33 3176.07 8783.81 9193.95 5469.77 7896.01 5385.15 4494.66 4794.32 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPM-MVS84.93 7084.29 7786.84 5090.20 10573.04 2387.12 17593.04 4169.80 21882.85 10491.22 11973.06 3996.02 5276.72 13394.63 4891.46 159
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8274.62 11988.90 2293.85 5575.75 2096.00 5487.80 2894.63 4895.04 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS86.68 4086.27 4487.90 2294.22 3373.38 1890.22 7393.04 4175.53 9683.86 8994.42 3167.87 10096.64 3182.70 7994.57 5093.66 72
XVS87.18 3286.91 3788.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9494.17 3967.45 10396.60 3383.06 6994.50 5194.07 54
X-MVStestdata80.37 15477.83 19088.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9412.47 42067.45 10396.60 3383.06 6994.50 5194.07 54
test1286.80 5292.63 6770.70 7591.79 10782.71 10771.67 5496.16 4794.50 5193.54 84
MVSMamba_PlusPlus85.99 4885.96 5286.05 6691.09 8567.64 14489.63 8892.65 7072.89 16184.64 7391.71 10171.85 4996.03 5084.77 5194.45 5494.49 37
CP-MVS87.11 3386.92 3687.68 3494.20 3473.86 793.98 392.82 6376.62 7483.68 9394.46 2767.93 9895.95 5784.20 6094.39 5593.23 94
CSCG86.41 4586.19 4687.07 4592.91 6172.48 3790.81 5893.56 2473.95 13183.16 10091.07 12575.94 1895.19 8279.94 10394.38 5693.55 83
MSLP-MVS++85.43 6285.76 5684.45 10991.93 7570.24 7990.71 5992.86 5877.46 4884.22 8192.81 8167.16 10792.94 18680.36 9894.35 5790.16 203
mPP-MVS86.67 4186.32 4387.72 3094.41 2273.55 1392.74 2092.22 8876.87 6582.81 10694.25 3766.44 11396.24 4482.88 7494.28 5893.38 88
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3690.32 1794.00 4974.83 2393.78 14187.63 3094.27 5993.65 76
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4078.35 1396.77 2489.59 894.22 6094.67 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DELS-MVS85.41 6385.30 6585.77 7288.49 16967.93 13785.52 22693.44 2778.70 2983.63 9689.03 17274.57 2495.71 6180.26 10094.04 6193.66 72
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPNet83.72 8382.92 9586.14 6584.22 27669.48 9491.05 5685.27 26881.30 676.83 19891.65 10366.09 11895.56 6376.00 13993.85 6293.38 88
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EC-MVSNet86.01 4786.38 4284.91 9689.31 13866.27 17392.32 3093.63 2179.37 2084.17 8391.88 9769.04 8895.43 7083.93 6393.77 6393.01 109
3Dnovator+77.84 485.48 6084.47 7688.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20393.37 6560.40 19696.75 2677.20 12593.73 6495.29 5
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 104
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3793.49 6593.06 104
CS-MVS86.69 3986.95 3585.90 7190.76 9667.57 14792.83 1793.30 3279.67 1784.57 7692.27 8971.47 5695.02 9384.24 5993.46 6795.13 8
CANet86.45 4286.10 4987.51 3790.09 10770.94 7089.70 8592.59 7481.78 481.32 12191.43 11370.34 7097.23 1484.26 5793.36 6894.37 42
reproduce_model87.28 3087.39 2786.95 4893.10 5671.24 6391.60 4293.19 3574.69 11688.80 2395.61 1170.29 7296.44 3986.20 3993.08 6993.16 99
新几何183.42 15493.13 5470.71 7485.48 26757.43 36781.80 11691.98 9463.28 14192.27 20864.60 24792.99 7087.27 294
HPM-MVS_fast85.35 6484.95 7086.57 5693.69 4270.58 7892.15 3591.62 11173.89 13482.67 10894.09 4362.60 15295.54 6580.93 9292.93 7193.57 81
SR-MVS86.73 3886.67 3986.91 4994.11 3772.11 4792.37 2892.56 7574.50 12086.84 4894.65 2267.31 10595.77 5984.80 5092.85 7292.84 114
旧先验191.96 7465.79 18486.37 25593.08 7469.31 8392.74 7388.74 263
3Dnovator76.31 583.38 9482.31 10486.59 5587.94 19472.94 2890.64 6092.14 9277.21 5575.47 22892.83 7958.56 20394.72 10573.24 16892.71 7492.13 141
MVS_111021_HR85.14 6684.75 7186.32 5891.65 7972.70 3085.98 20990.33 15076.11 8682.08 11191.61 10771.36 5994.17 12481.02 9192.58 7592.08 142
APD-MVS_3200maxsize85.97 5085.88 5386.22 6092.69 6669.53 9291.93 3792.99 4973.54 14385.94 5294.51 2665.80 12395.61 6283.04 7192.51 7693.53 85
test250677.30 22776.49 22479.74 25290.08 10852.02 36887.86 15663.10 40674.88 11180.16 13692.79 8238.29 37292.35 20568.74 21292.50 7794.86 18
ECVR-MVScopyleft79.61 16579.26 15880.67 23490.08 10854.69 35187.89 15477.44 36074.88 11180.27 13392.79 8248.96 30492.45 19968.55 21392.50 7794.86 18
test111179.43 17279.18 16180.15 24489.99 11353.31 36487.33 17077.05 36475.04 10680.23 13592.77 8448.97 30392.33 20768.87 21092.40 7994.81 21
patch_mono-283.65 8484.54 7380.99 22690.06 11265.83 18284.21 25588.74 20771.60 17885.01 6292.44 8774.51 2583.50 34582.15 8292.15 8093.64 78
dcpmvs_285.63 5886.15 4884.06 13391.71 7864.94 20286.47 19691.87 10373.63 13986.60 5093.02 7576.57 1591.87 22383.36 6692.15 8095.35 3
MAR-MVS81.84 11780.70 12785.27 8291.32 8271.53 5689.82 7990.92 13169.77 22078.50 16086.21 25262.36 15894.52 11165.36 24092.05 8289.77 227
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TSAR-MVS + GP.85.71 5785.33 6386.84 5091.34 8172.50 3689.07 11087.28 23776.41 7785.80 5490.22 14474.15 3195.37 7881.82 8491.88 8392.65 120
SR-MVS-dyc-post85.77 5585.61 5886.23 5993.06 5870.63 7691.88 3892.27 8473.53 14485.69 5694.45 2865.00 13195.56 6382.75 7591.87 8492.50 125
RE-MVS-def85.48 6093.06 5870.63 7691.88 3892.27 8473.53 14485.69 5694.45 2863.87 13782.75 7591.87 8492.50 125
IS-MVSNet83.15 9782.81 9684.18 12389.94 11563.30 23791.59 4388.46 21379.04 2579.49 14392.16 9165.10 12894.28 11767.71 21991.86 8694.95 11
BP-MVS184.32 7583.71 8186.17 6187.84 19967.85 13889.38 9889.64 17177.73 3883.98 8792.12 9356.89 22095.43 7084.03 6291.75 8795.24 6
Vis-MVSNet (Re-imp)78.36 19978.45 17378.07 28588.64 16551.78 37486.70 19079.63 34574.14 12975.11 24790.83 13361.29 17889.75 27558.10 30791.60 8892.69 118
MG-MVS83.41 9283.45 8483.28 15992.74 6562.28 25588.17 14389.50 17575.22 10181.49 12092.74 8566.75 10895.11 8772.85 17191.58 8992.45 128
CPTT-MVS83.73 8283.33 8884.92 9593.28 4970.86 7292.09 3690.38 14668.75 24579.57 14292.83 7960.60 19293.04 18480.92 9391.56 9090.86 176
test22291.50 8068.26 12984.16 25683.20 30154.63 37879.74 13991.63 10558.97 20191.42 9186.77 307
ETV-MVS84.90 7284.67 7285.59 7589.39 13368.66 12088.74 12292.64 7279.97 1584.10 8485.71 26169.32 8295.38 7580.82 9491.37 9292.72 115
testdata79.97 24790.90 9164.21 21784.71 27459.27 35185.40 5892.91 7662.02 16589.08 28868.95 20991.37 9286.63 311
API-MVS81.99 11581.23 11984.26 12190.94 9070.18 8591.10 5589.32 18071.51 18078.66 15688.28 19365.26 12695.10 9064.74 24691.23 9487.51 288
casdiffmvs_mvgpermissive85.99 4886.09 5085.70 7487.65 20967.22 15988.69 12493.04 4179.64 1885.33 5992.54 8673.30 3594.50 11283.49 6591.14 9595.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive83.46 9182.80 9785.43 7990.25 10468.74 11490.30 7290.13 15776.33 8380.87 12992.89 7761.00 18494.20 12272.45 17790.97 9693.35 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft72.83 1079.77 16378.33 17884.09 12985.17 25669.91 8790.57 6190.97 13066.70 26872.17 28891.91 9554.70 23593.96 12861.81 27390.95 9788.41 271
UA-Net85.08 6884.96 6985.45 7892.07 7368.07 13489.78 8290.86 13582.48 284.60 7593.20 6969.35 8195.22 8171.39 18390.88 9893.07 103
test_fmvsmconf_n85.92 5186.04 5185.57 7685.03 26269.51 9389.62 8990.58 14073.42 14787.75 3594.02 4772.85 4193.24 16690.37 390.75 9993.96 58
ACMMPcopyleft85.89 5485.39 6187.38 3993.59 4572.63 3392.74 2093.18 3976.78 6880.73 13093.82 5664.33 13396.29 4282.67 8090.69 10093.23 94
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.1_n85.61 5985.65 5785.50 7782.99 30969.39 10089.65 8690.29 15373.31 15087.77 3494.15 4171.72 5293.23 16790.31 490.67 10193.89 63
casdiffmvspermissive85.11 6785.14 6785.01 9087.20 22365.77 18587.75 15792.83 6077.84 3784.36 8092.38 8872.15 4693.93 13481.27 9090.48 10295.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsm_n_192085.29 6585.34 6285.13 8786.12 24169.93 8688.65 12690.78 13669.97 21488.27 2693.98 5271.39 5891.54 23588.49 2390.45 10393.91 60
UGNet80.83 13779.59 14984.54 10588.04 18968.09 13389.42 9588.16 21576.95 6276.22 21489.46 16249.30 29893.94 13168.48 21490.31 10491.60 150
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline84.93 7084.98 6884.80 10087.30 22165.39 19387.30 17192.88 5777.62 4084.04 8692.26 9071.81 5093.96 12881.31 8890.30 10595.03 10
MVSFormer82.85 10382.05 10985.24 8387.35 21570.21 8090.50 6490.38 14668.55 24881.32 12189.47 16061.68 16793.46 15878.98 10790.26 10692.05 143
lupinMVS81.39 12880.27 13784.76 10187.35 21570.21 8085.55 22286.41 25362.85 32081.32 12188.61 18361.68 16792.24 21078.41 11490.26 10691.83 146
DP-MVS Recon83.11 10082.09 10886.15 6394.44 1970.92 7188.79 11892.20 8970.53 20179.17 14791.03 12864.12 13596.03 5068.39 21690.14 10891.50 155
EIA-MVS83.31 9682.80 9784.82 9889.59 12265.59 18888.21 14192.68 6674.66 11878.96 14986.42 24869.06 8695.26 8075.54 14590.09 10993.62 79
MVS_111021_LR82.61 10682.11 10684.11 12488.82 15671.58 5585.15 22986.16 25974.69 11680.47 13291.04 12662.29 15990.55 26380.33 9990.08 11090.20 202
jason81.39 12880.29 13684.70 10286.63 23569.90 8885.95 21086.77 24963.24 31381.07 12789.47 16061.08 18392.15 21278.33 11590.07 11192.05 143
jason: jason.
test_fmvsmvis_n_192084.02 7883.87 7984.49 10884.12 27869.37 10188.15 14587.96 22170.01 21283.95 8893.23 6868.80 9191.51 23888.61 2089.96 11292.57 121
test_fmvsmconf0.01_n84.73 7384.52 7585.34 8080.25 35069.03 10389.47 9189.65 17073.24 15486.98 4694.27 3566.62 10993.23 16790.26 589.95 11393.78 69
LFMVS81.82 11881.23 11983.57 15191.89 7663.43 23589.84 7881.85 32077.04 6183.21 9893.10 7052.26 25693.43 16071.98 17889.95 11393.85 64
MVS78.19 20476.99 21281.78 20485.66 24766.99 16284.66 24090.47 14455.08 37772.02 29085.27 27263.83 13894.11 12666.10 23489.80 11584.24 347
GDP-MVS83.52 8982.64 9986.16 6288.14 18368.45 12489.13 10892.69 6572.82 16283.71 9291.86 9955.69 22595.35 7980.03 10189.74 11694.69 27
CANet_DTU80.61 14579.87 14382.83 18185.60 24963.17 24287.36 16888.65 20976.37 8175.88 22188.44 18953.51 24693.07 18173.30 16689.74 11692.25 134
PVSNet_Blended80.98 13380.34 13482.90 17988.85 15365.40 19184.43 25092.00 9567.62 25978.11 17085.05 28066.02 12094.27 11871.52 18089.50 11889.01 248
PAPM_NR83.02 10182.41 10184.82 9892.47 7066.37 17187.93 15291.80 10673.82 13577.32 18690.66 13567.90 9994.90 9770.37 19389.48 11993.19 98
114514_t80.68 14479.51 15084.20 12294.09 3867.27 15689.64 8791.11 12858.75 35774.08 26490.72 13458.10 20695.04 9269.70 20189.42 12090.30 199
LCM-MVSNet-Re77.05 22976.94 21377.36 29687.20 22351.60 37580.06 31680.46 33575.20 10267.69 33286.72 23362.48 15588.98 29063.44 25489.25 12191.51 154
fmvsm_l_conf0.5_n_a84.13 7784.16 7884.06 13385.38 25368.40 12588.34 13786.85 24867.48 26287.48 3993.40 6470.89 6491.61 22988.38 2589.22 12292.16 140
mvsmamba80.60 14679.38 15384.27 11989.74 12067.24 15887.47 16486.95 24470.02 21175.38 23488.93 17351.24 27492.56 19575.47 14789.22 12293.00 110
fmvsm_l_conf0.5_n84.47 7484.54 7384.27 11985.42 25268.81 10988.49 13087.26 23868.08 25588.03 3093.49 6072.04 4891.77 22588.90 1789.14 12492.24 136
alignmvs85.48 6085.32 6485.96 7089.51 12669.47 9589.74 8392.47 7676.17 8587.73 3791.46 11270.32 7193.78 14181.51 8588.95 12594.63 32
VNet82.21 11082.41 10181.62 20790.82 9360.93 27084.47 24689.78 16576.36 8284.07 8591.88 9764.71 13290.26 26570.68 19088.89 12693.66 72
PS-MVSNAJ81.69 12181.02 12383.70 14789.51 12668.21 13184.28 25490.09 15870.79 19381.26 12585.62 26663.15 14694.29 11675.62 14388.87 12788.59 266
sasdasda85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3191.23 11773.28 3693.91 13581.50 8688.80 12894.77 24
canonicalmvs85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3191.23 11773.28 3693.91 13581.50 8688.80 12894.77 24
QAPM80.88 13579.50 15185.03 8988.01 19268.97 10791.59 4392.00 9566.63 27475.15 24692.16 9157.70 21095.45 6863.52 25288.76 13090.66 183
MGCFI-Net85.06 6985.51 5983.70 14789.42 13063.01 24389.43 9392.62 7376.43 7687.53 3891.34 11572.82 4293.42 16181.28 8988.74 13194.66 31
VDD-MVS83.01 10282.36 10384.96 9291.02 8866.40 17088.91 11488.11 21677.57 4284.39 7993.29 6752.19 25793.91 13577.05 12888.70 13294.57 35
PVSNet_Blended_VisFu82.62 10581.83 11484.96 9290.80 9469.76 9088.74 12291.70 11069.39 22678.96 14988.46 18865.47 12594.87 10074.42 15488.57 13390.24 201
xiu_mvs_v2_base81.69 12181.05 12283.60 14989.15 14568.03 13684.46 24890.02 15970.67 19681.30 12486.53 24663.17 14594.19 12375.60 14488.54 13488.57 267
PAPR81.66 12380.89 12683.99 14190.27 10364.00 22086.76 18991.77 10968.84 24477.13 19689.50 15867.63 10194.88 9967.55 22188.52 13593.09 102
MVS_Test83.15 9783.06 9183.41 15686.86 22763.21 23986.11 20792.00 9574.31 12482.87 10389.44 16570.03 7493.21 16977.39 12488.50 13693.81 67
AdaColmapbinary80.58 14979.42 15284.06 13393.09 5768.91 10889.36 9988.97 19869.27 22975.70 22489.69 15257.20 21795.77 5963.06 25788.41 13787.50 289
VDDNet81.52 12580.67 12884.05 13690.44 10164.13 21989.73 8485.91 26271.11 18783.18 9993.48 6150.54 28393.49 15573.40 16588.25 13894.54 36
PCF-MVS73.52 780.38 15278.84 16785.01 9087.71 20668.99 10683.65 26491.46 11963.00 31777.77 17890.28 14066.10 11795.09 9161.40 27688.22 13990.94 174
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
RRT-MVS82.60 10882.10 10784.10 12587.98 19362.94 24887.45 16691.27 12177.42 4979.85 13890.28 14056.62 22294.70 10779.87 10488.15 14094.67 28
Effi-MVS+83.62 8783.08 9085.24 8388.38 17567.45 14988.89 11589.15 18975.50 9782.27 10988.28 19369.61 7994.45 11477.81 11987.84 14193.84 66
gg-mvs-nofinetune69.95 31667.96 32075.94 30783.07 30454.51 35477.23 35270.29 38863.11 31570.32 30462.33 40143.62 34288.69 29653.88 33387.76 14284.62 344
xiu_mvs_v1_base_debu80.80 14079.72 14684.03 13887.35 21570.19 8285.56 21988.77 20369.06 23881.83 11388.16 19750.91 27792.85 18878.29 11687.56 14389.06 243
xiu_mvs_v1_base80.80 14079.72 14684.03 13887.35 21570.19 8285.56 21988.77 20369.06 23881.83 11388.16 19750.91 27792.85 18878.29 11687.56 14389.06 243
xiu_mvs_v1_base_debi80.80 14079.72 14684.03 13887.35 21570.19 8285.56 21988.77 20369.06 23881.83 11388.16 19750.91 27792.85 18878.29 11687.56 14389.06 243
CLD-MVS82.31 10981.65 11584.29 11688.47 17067.73 14285.81 21792.35 8275.78 9178.33 16586.58 24364.01 13694.35 11576.05 13887.48 14690.79 177
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CDS-MVSNet79.07 18377.70 19783.17 16687.60 21068.23 13084.40 25286.20 25867.49 26176.36 21186.54 24561.54 17090.79 25961.86 27287.33 14790.49 191
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
diffmvspermissive82.10 11181.88 11382.76 18983.00 30763.78 22583.68 26389.76 16672.94 15982.02 11289.85 14965.96 12290.79 25982.38 8187.30 14893.71 71
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet83.40 9383.02 9284.57 10490.13 10664.47 21292.32 3090.73 13774.45 12379.35 14591.10 12369.05 8795.12 8572.78 17287.22 14994.13 51
TAMVS78.89 18877.51 20283.03 17387.80 20167.79 14184.72 23985.05 27267.63 25876.75 20187.70 20662.25 16090.82 25858.53 30287.13 15090.49 191
TAPA-MVS73.13 979.15 18077.94 18682.79 18689.59 12262.99 24788.16 14491.51 11565.77 28377.14 19591.09 12460.91 18593.21 16950.26 35487.05 15192.17 139
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PAPM77.68 22076.40 22781.51 21087.29 22261.85 26083.78 26189.59 17264.74 29671.23 29788.70 17962.59 15393.66 14852.66 33987.03 15289.01 248
test_yl81.17 13080.47 13283.24 16289.13 14663.62 22686.21 20489.95 16272.43 16681.78 11789.61 15557.50 21393.58 14970.75 18886.90 15392.52 123
DCV-MVSNet81.17 13080.47 13283.24 16289.13 14663.62 22686.21 20489.95 16272.43 16681.78 11789.61 15557.50 21393.58 14970.75 18886.90 15392.52 123
BH-untuned79.47 17078.60 17082.05 19989.19 14465.91 18086.07 20888.52 21272.18 16875.42 23287.69 20761.15 18193.54 15360.38 28386.83 15586.70 309
BH-RMVSNet79.61 16578.44 17483.14 16789.38 13465.93 17984.95 23587.15 24173.56 14278.19 16889.79 15056.67 22193.36 16259.53 29186.74 15690.13 205
LS3D76.95 23274.82 24983.37 15790.45 10067.36 15389.15 10786.94 24561.87 33269.52 31790.61 13651.71 27094.53 11046.38 37586.71 15788.21 274
Fast-Effi-MVS+80.81 13879.92 14183.47 15288.85 15364.51 20985.53 22489.39 17870.79 19378.49 16185.06 27967.54 10293.58 14967.03 22986.58 15892.32 131
EPNet_dtu75.46 25774.86 24877.23 29982.57 31854.60 35286.89 18283.09 30271.64 17466.25 35285.86 25955.99 22488.04 30554.92 32886.55 15989.05 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS83.50 9082.95 9485.14 8588.79 15970.95 6989.13 10891.52 11477.55 4580.96 12891.75 10060.71 18794.50 11279.67 10586.51 16089.97 219
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
OMC-MVS82.69 10481.97 11284.85 9788.75 16167.42 15087.98 14890.87 13474.92 11079.72 14091.65 10362.19 16293.96 12875.26 14986.42 16193.16 99
HQP_MVS83.64 8583.14 8985.14 8590.08 10868.71 11691.25 5292.44 7779.12 2378.92 15191.00 13060.42 19495.38 7578.71 11086.32 16291.33 160
plane_prior592.44 7795.38 7578.71 11086.32 16291.33 160
FA-MVS(test-final)80.96 13479.91 14284.10 12588.30 17865.01 20084.55 24590.01 16073.25 15379.61 14187.57 21058.35 20594.72 10571.29 18486.25 16492.56 122
thisisatest051577.33 22675.38 24283.18 16585.27 25563.80 22482.11 28783.27 29765.06 29275.91 22083.84 30349.54 29394.27 11867.24 22586.19 16591.48 157
plane_prior68.71 11690.38 7077.62 4086.16 166
UWE-MVS72.13 29671.49 28774.03 33186.66 23447.70 39081.40 29776.89 36663.60 31275.59 22584.22 29739.94 36385.62 32748.98 36086.13 16788.77 260
mvs_anonymous79.42 17379.11 16280.34 24084.45 27357.97 30382.59 28287.62 23067.40 26376.17 21888.56 18668.47 9289.59 27870.65 19186.05 16893.47 86
GeoE81.71 12081.01 12483.80 14689.51 12664.45 21388.97 11288.73 20871.27 18478.63 15789.76 15166.32 11593.20 17269.89 19986.02 16993.74 70
HQP3-MVS92.19 9085.99 170
HQP-MVS82.61 10682.02 11084.37 11189.33 13566.98 16389.17 10392.19 9076.41 7777.23 18990.23 14360.17 19795.11 8777.47 12285.99 17091.03 170
BH-w/o78.21 20277.33 20680.84 23088.81 15765.13 19884.87 23687.85 22669.75 22174.52 25984.74 28661.34 17693.11 17958.24 30685.84 17284.27 346
FE-MVS77.78 21575.68 23484.08 13088.09 18766.00 17783.13 27587.79 22768.42 25278.01 17385.23 27445.50 33295.12 8559.11 29585.83 17391.11 166
testing22274.04 27272.66 27678.19 28287.89 19655.36 34481.06 30079.20 34971.30 18374.65 25783.57 31139.11 36788.67 29751.43 34685.75 17490.53 189
CHOSEN 1792x268877.63 22175.69 23383.44 15389.98 11468.58 12278.70 33687.50 23356.38 37275.80 22386.84 22958.67 20291.40 24361.58 27585.75 17490.34 196
Anonymous20240521178.25 20077.01 21081.99 20191.03 8760.67 27584.77 23883.90 28770.65 20080.00 13791.20 12041.08 35891.43 24265.21 24185.26 17693.85 64
cascas76.72 23674.64 25082.99 17585.78 24665.88 18182.33 28489.21 18660.85 33872.74 27881.02 34347.28 31193.75 14567.48 22285.02 17789.34 238
FIs82.07 11382.42 10081.04 22588.80 15858.34 29788.26 14093.49 2676.93 6378.47 16291.04 12669.92 7692.34 20669.87 20084.97 17892.44 129
test-LLR72.94 28972.43 27874.48 32681.35 33858.04 30178.38 34077.46 35866.66 26969.95 31279.00 36448.06 30779.24 36566.13 23284.83 17986.15 317
test-mter71.41 30070.39 30374.48 32681.35 33858.04 30178.38 34077.46 35860.32 34169.95 31279.00 36436.08 37979.24 36566.13 23284.83 17986.15 317
EI-MVSNet-Vis-set84.19 7683.81 8085.31 8188.18 18067.85 13887.66 15989.73 16880.05 1482.95 10189.59 15770.74 6794.82 10180.66 9784.72 18193.28 93
thisisatest053079.40 17477.76 19584.31 11587.69 20865.10 19987.36 16884.26 28370.04 21077.42 18388.26 19549.94 28994.79 10370.20 19484.70 18293.03 107
fmvsm_s_conf0.5_n83.80 8183.71 8184.07 13186.69 23367.31 15489.46 9283.07 30371.09 18886.96 4793.70 5869.02 8991.47 24088.79 1884.62 18393.44 87
testing9176.54 23775.66 23679.18 26488.43 17355.89 33781.08 29983.00 30573.76 13775.34 23684.29 29446.20 32390.07 26964.33 24884.50 18491.58 152
fmvsm_s_conf0.1_n83.56 8883.38 8684.10 12584.86 26467.28 15589.40 9783.01 30470.67 19687.08 4493.96 5368.38 9391.45 24188.56 2284.50 18493.56 82
GG-mvs-BLEND75.38 31781.59 33255.80 33979.32 32569.63 39067.19 33873.67 39043.24 34488.90 29450.41 34984.50 18481.45 375
FC-MVSNet-test81.52 12582.02 11080.03 24688.42 17455.97 33687.95 15093.42 2977.10 5977.38 18490.98 13269.96 7591.79 22468.46 21584.50 18492.33 130
PVSNet64.34 1872.08 29770.87 29775.69 31086.21 23956.44 32874.37 37080.73 33062.06 33170.17 30782.23 33442.86 34783.31 34754.77 32984.45 18887.32 293
ETVMVS72.25 29571.05 29475.84 30887.77 20551.91 37179.39 32474.98 37369.26 23073.71 26782.95 32140.82 36086.14 32146.17 37684.43 18989.47 234
UBG73.08 28672.27 28175.51 31488.02 19051.29 37978.35 34377.38 36165.52 28773.87 26682.36 33045.55 33086.48 31855.02 32784.39 19088.75 261
MS-PatchMatch73.83 27572.67 27577.30 29883.87 28566.02 17681.82 28884.66 27561.37 33668.61 32682.82 32547.29 31088.21 30259.27 29284.32 19177.68 388
ET-MVSNet_ETH3D78.63 19376.63 22384.64 10386.73 23269.47 9585.01 23384.61 27669.54 22466.51 35086.59 24150.16 28691.75 22676.26 13584.24 19292.69 118
testing9976.09 24975.12 24779.00 26588.16 18155.50 34380.79 30381.40 32473.30 15175.17 24484.27 29644.48 33790.02 27064.28 24984.22 19391.48 157
TESTMET0.1,169.89 31769.00 31172.55 34379.27 36656.85 32078.38 34074.71 37757.64 36468.09 32977.19 37737.75 37476.70 37863.92 25184.09 19484.10 350
EI-MVSNet-UG-set83.81 8083.38 8685.09 8887.87 19767.53 14887.44 16789.66 16979.74 1682.23 11089.41 16670.24 7394.74 10479.95 10283.92 19592.99 111
LPG-MVS_test82.08 11281.27 11884.50 10689.23 14268.76 11290.22 7391.94 9975.37 9976.64 20491.51 10954.29 23894.91 9578.44 11283.78 19689.83 224
LGP-MVS_train84.50 10689.23 14268.76 11291.94 9975.37 9976.64 20491.51 10954.29 23894.91 9578.44 11283.78 19689.83 224
testing1175.14 26374.01 25978.53 27688.16 18156.38 33080.74 30680.42 33670.67 19672.69 28183.72 30843.61 34389.86 27262.29 26683.76 19889.36 237
thres100view90076.50 23975.55 23879.33 26089.52 12556.99 31985.83 21683.23 29873.94 13276.32 21287.12 22551.89 26691.95 21848.33 36383.75 19989.07 241
tfpn200view976.42 24375.37 24379.55 25989.13 14657.65 31085.17 22783.60 29073.41 14876.45 20886.39 24952.12 25891.95 21848.33 36383.75 19989.07 241
thres40076.50 23975.37 24379.86 24989.13 14657.65 31085.17 22783.60 29073.41 14876.45 20886.39 24952.12 25891.95 21848.33 36383.75 19990.00 215
thres600view776.50 23975.44 23979.68 25489.40 13257.16 31685.53 22483.23 29873.79 13676.26 21387.09 22651.89 26691.89 22148.05 36883.72 20290.00 215
fmvsm_s_conf0.5_n_a83.63 8683.41 8584.28 11786.14 24068.12 13289.43 9382.87 30870.27 20787.27 4393.80 5769.09 8491.58 23188.21 2683.65 20393.14 101
thres20075.55 25574.47 25478.82 26887.78 20457.85 30683.07 27883.51 29372.44 16575.84 22284.42 28952.08 26191.75 22647.41 37083.64 20486.86 305
SDMVSNet80.38 15280.18 13880.99 22689.03 15164.94 20280.45 31289.40 17775.19 10376.61 20689.98 14660.61 19187.69 30976.83 13183.55 20590.33 197
sd_testset77.70 21977.40 20378.60 27289.03 15160.02 28479.00 33185.83 26375.19 10376.61 20689.98 14654.81 23085.46 33062.63 26383.55 20590.33 197
XVG-OURS80.41 15179.23 15983.97 14285.64 24869.02 10583.03 28090.39 14571.09 18877.63 18091.49 11154.62 23791.35 24475.71 14183.47 20791.54 153
fmvsm_s_conf0.1_n_a83.32 9582.99 9384.28 11783.79 28668.07 13489.34 10082.85 30969.80 21887.36 4294.06 4568.34 9491.56 23387.95 2783.46 20893.21 97
CNLPA78.08 20676.79 21781.97 20290.40 10271.07 6587.59 16184.55 27766.03 28172.38 28589.64 15457.56 21286.04 32259.61 29083.35 20988.79 259
MVP-Stereo76.12 24774.46 25581.13 22385.37 25469.79 8984.42 25187.95 22265.03 29367.46 33585.33 27153.28 24991.73 22858.01 30883.27 21081.85 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
131476.53 23875.30 24580.21 24383.93 28362.32 25484.66 24088.81 20160.23 34270.16 30884.07 30055.30 22890.73 26167.37 22383.21 21187.59 287
tttt051779.40 17477.91 18783.90 14588.10 18663.84 22388.37 13684.05 28571.45 18176.78 20089.12 16949.93 29194.89 9870.18 19583.18 21292.96 112
HyFIR lowres test77.53 22275.40 24183.94 14489.59 12266.62 16780.36 31388.64 21056.29 37376.45 20885.17 27657.64 21193.28 16461.34 27883.10 21391.91 145
ACMP74.13 681.51 12780.57 12984.36 11289.42 13068.69 11989.97 7791.50 11874.46 12275.04 25090.41 13953.82 24394.54 10977.56 12182.91 21489.86 223
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM73.20 880.78 14379.84 14483.58 15089.31 13868.37 12689.99 7691.60 11270.28 20677.25 18789.66 15353.37 24893.53 15474.24 15782.85 21588.85 256
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PMMVS69.34 32168.67 31271.35 35375.67 37962.03 25775.17 36373.46 38050.00 39068.68 32479.05 36252.07 26278.13 37061.16 27982.77 21673.90 394
PLCcopyleft70.83 1178.05 20876.37 22883.08 17091.88 7767.80 14088.19 14289.46 17664.33 30269.87 31488.38 19053.66 24493.58 14958.86 29882.73 21787.86 280
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS77.44 22376.18 22981.20 22088.24 17963.24 23884.61 24386.40 25467.55 26077.81 17686.48 24754.10 24093.15 17657.75 31082.72 21887.20 295
Anonymous2024052980.19 15878.89 16684.10 12590.60 9764.75 20688.95 11390.90 13265.97 28280.59 13191.17 12249.97 28893.73 14769.16 20782.70 21993.81 67
ab-mvs79.51 16878.97 16581.14 22288.46 17160.91 27183.84 26089.24 18570.36 20379.03 14888.87 17663.23 14490.21 26765.12 24282.57 22092.28 133
HY-MVS69.67 1277.95 21177.15 20880.36 23987.57 21460.21 28383.37 27187.78 22866.11 27875.37 23587.06 22863.27 14290.48 26461.38 27782.43 22190.40 195
PS-MVSNAJss82.07 11381.31 11784.34 11486.51 23667.27 15689.27 10191.51 11571.75 17379.37 14490.22 14463.15 14694.27 11877.69 12082.36 22291.49 156
UniMVSNet_ETH3D79.10 18278.24 18081.70 20686.85 22860.24 28287.28 17288.79 20274.25 12676.84 19790.53 13849.48 29491.56 23367.98 21782.15 22393.29 92
WB-MVSnew71.96 29871.65 28672.89 34084.67 27051.88 37282.29 28577.57 35762.31 32773.67 26883.00 32053.49 24781.10 35945.75 37982.13 22485.70 327
PVSNet_BlendedMVS80.60 14680.02 13982.36 19688.85 15365.40 19186.16 20692.00 9569.34 22878.11 17086.09 25666.02 12094.27 11871.52 18082.06 22587.39 290
WTY-MVS75.65 25475.68 23475.57 31286.40 23756.82 32177.92 34882.40 31365.10 29176.18 21687.72 20563.13 14980.90 36060.31 28481.96 22689.00 250
ACMMP++_ref81.95 227
DP-MVS76.78 23574.57 25183.42 15493.29 4869.46 9788.55 12983.70 28963.98 30970.20 30588.89 17554.01 24294.80 10246.66 37281.88 22886.01 321
CMPMVSbinary51.72 2170.19 31468.16 31776.28 30573.15 39557.55 31279.47 32383.92 28648.02 39356.48 39384.81 28443.13 34586.42 31962.67 26281.81 22984.89 340
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
XVG-OURS-SEG-HR80.81 13879.76 14583.96 14385.60 24968.78 11183.54 26990.50 14370.66 19976.71 20291.66 10260.69 18891.26 24676.94 12981.58 23091.83 146
MIMVSNet70.69 30869.30 30774.88 32284.52 27156.35 33275.87 35979.42 34664.59 29767.76 33082.41 32941.10 35781.54 35646.64 37481.34 23186.75 308
ACMMP++81.25 232
D2MVS74.82 26473.21 26979.64 25679.81 35762.56 25180.34 31487.35 23664.37 30168.86 32382.66 32746.37 31990.10 26867.91 21881.24 23386.25 314
test_vis1_n_192075.52 25675.78 23274.75 32579.84 35657.44 31483.26 27285.52 26662.83 32179.34 14686.17 25445.10 33479.71 36478.75 10981.21 23487.10 302
GA-MVS76.87 23375.17 24681.97 20282.75 31362.58 25081.44 29686.35 25672.16 17074.74 25482.89 32346.20 32392.02 21668.85 21181.09 23591.30 162
sss73.60 27773.64 26673.51 33582.80 31255.01 34976.12 35581.69 32162.47 32674.68 25685.85 26057.32 21578.11 37160.86 28180.93 23687.39 290
Effi-MVS+-dtu80.03 16078.57 17184.42 11085.13 26068.74 11488.77 11988.10 21774.99 10774.97 25183.49 31257.27 21693.36 16273.53 16280.88 23791.18 164
EG-PatchMatch MVS74.04 27271.82 28480.71 23384.92 26367.42 15085.86 21488.08 21866.04 28064.22 36483.85 30235.10 38192.56 19557.44 31280.83 23882.16 372
jajsoiax79.29 17777.96 18583.27 16084.68 26766.57 16989.25 10290.16 15669.20 23475.46 23089.49 15945.75 32993.13 17876.84 13080.80 23990.11 207
1112_ss77.40 22576.43 22680.32 24189.11 15060.41 28083.65 26487.72 22962.13 33073.05 27586.72 23362.58 15489.97 27162.11 27080.80 23990.59 187
mvs_tets79.13 18177.77 19483.22 16484.70 26666.37 17189.17 10390.19 15569.38 22775.40 23389.46 16244.17 33993.15 17676.78 13280.70 24190.14 204
PatchMatch-RL72.38 29270.90 29676.80 30388.60 16667.38 15279.53 32276.17 37062.75 32369.36 31982.00 33845.51 33184.89 33653.62 33480.58 24278.12 387
EI-MVSNet80.52 15079.98 14082.12 19784.28 27463.19 24186.41 19788.95 19974.18 12878.69 15487.54 21366.62 10992.43 20072.57 17580.57 24390.74 181
MVSTER79.01 18477.88 18982.38 19583.07 30464.80 20584.08 25988.95 19969.01 24178.69 15487.17 22454.70 23592.43 20074.69 15180.57 24389.89 222
XVG-ACMP-BASELINE76.11 24874.27 25881.62 20783.20 30064.67 20783.60 26789.75 16769.75 22171.85 29187.09 22632.78 38592.11 21369.99 19880.43 24588.09 276
Fast-Effi-MVS+-dtu78.02 20976.49 22482.62 19183.16 30366.96 16586.94 18087.45 23572.45 16371.49 29684.17 29854.79 23491.58 23167.61 22080.31 24689.30 239
LTVRE_ROB69.57 1376.25 24674.54 25381.41 21388.60 16664.38 21579.24 32689.12 19270.76 19569.79 31687.86 20449.09 30193.20 17256.21 32480.16 24786.65 310
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Test_1112_low_res76.40 24475.44 23979.27 26189.28 14058.09 29981.69 29187.07 24259.53 34972.48 28386.67 23861.30 17789.33 28260.81 28280.15 24890.41 194
test_djsdf80.30 15579.32 15683.27 16083.98 28265.37 19490.50 6490.38 14668.55 24876.19 21588.70 17956.44 22393.46 15878.98 10780.14 24990.97 173
test_fmvs170.93 30570.52 29972.16 34673.71 38855.05 34880.82 30178.77 35151.21 38978.58 15884.41 29031.20 39076.94 37775.88 14080.12 25084.47 345
test_fmvs1_n70.86 30670.24 30472.73 34272.51 39955.28 34681.27 29879.71 34451.49 38878.73 15384.87 28227.54 39577.02 37676.06 13779.97 25185.88 325
CHOSEN 280x42066.51 34264.71 34371.90 34781.45 33563.52 23157.98 41068.95 39453.57 38062.59 37376.70 37846.22 32275.29 39355.25 32679.68 25276.88 390
baseline275.70 25373.83 26481.30 21783.26 29861.79 26282.57 28380.65 33166.81 26566.88 34183.42 31357.86 20992.19 21163.47 25379.57 25389.91 220
GBi-Net78.40 19777.40 20381.40 21487.60 21063.01 24388.39 13389.28 18171.63 17575.34 23687.28 21754.80 23191.11 24962.72 25979.57 25390.09 209
test178.40 19777.40 20381.40 21487.60 21063.01 24388.39 13389.28 18171.63 17575.34 23687.28 21754.80 23191.11 24962.72 25979.57 25390.09 209
FMVSNet377.88 21376.85 21580.97 22886.84 22962.36 25286.52 19588.77 20371.13 18675.34 23686.66 23954.07 24191.10 25262.72 25979.57 25389.45 235
FMVSNet278.20 20377.21 20781.20 22087.60 21062.89 24987.47 16489.02 19471.63 17575.29 24287.28 21754.80 23191.10 25262.38 26479.38 25789.61 231
anonymousdsp78.60 19477.15 20882.98 17680.51 34867.08 16187.24 17389.53 17465.66 28575.16 24587.19 22352.52 25192.25 20977.17 12679.34 25889.61 231
nrg03083.88 7983.53 8384.96 9286.77 23169.28 10290.46 6792.67 6774.79 11482.95 10191.33 11672.70 4393.09 18080.79 9679.28 25992.50 125
VPA-MVSNet80.60 14680.55 13080.76 23288.07 18860.80 27386.86 18391.58 11375.67 9580.24 13489.45 16463.34 14090.25 26670.51 19279.22 26091.23 163
tt080578.73 19077.83 19081.43 21285.17 25660.30 28189.41 9690.90 13271.21 18577.17 19488.73 17846.38 31893.21 16972.57 17578.96 26190.79 177
test_cas_vis1_n_192073.76 27673.74 26573.81 33375.90 37759.77 28680.51 31082.40 31358.30 35981.62 11985.69 26244.35 33876.41 38276.29 13478.61 26285.23 334
F-COLMAP76.38 24574.33 25782.50 19389.28 14066.95 16688.41 13289.03 19364.05 30766.83 34288.61 18346.78 31592.89 18757.48 31178.55 26387.67 283
FMVSNet177.44 22376.12 23081.40 21486.81 23063.01 24388.39 13389.28 18170.49 20274.39 26187.28 21749.06 30291.11 24960.91 28078.52 26490.09 209
MDTV_nov1_ep1369.97 30683.18 30153.48 36177.10 35380.18 34160.45 33969.33 32080.44 34948.89 30586.90 31351.60 34478.51 265
CVMVSNet72.99 28872.58 27774.25 32984.28 27450.85 38286.41 19783.45 29544.56 39773.23 27387.54 21349.38 29685.70 32565.90 23678.44 26686.19 316
tpm273.26 28371.46 28878.63 27083.34 29656.71 32480.65 30880.40 33756.63 37173.55 26982.02 33751.80 26891.24 24756.35 32378.42 26787.95 277
test_vis1_n69.85 31869.21 30971.77 34872.66 39855.27 34781.48 29476.21 36952.03 38575.30 24183.20 31728.97 39376.22 38474.60 15278.41 26883.81 353
CostFormer75.24 26273.90 26279.27 26182.65 31758.27 29880.80 30282.73 31161.57 33375.33 24083.13 31855.52 22691.07 25564.98 24478.34 26988.45 269
ACMH67.68 1675.89 25173.93 26181.77 20588.71 16366.61 16888.62 12789.01 19569.81 21766.78 34386.70 23741.95 35591.51 23855.64 32578.14 27087.17 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mamv476.81 23478.23 18272.54 34486.12 24165.75 18678.76 33582.07 31764.12 30472.97 27691.02 12967.97 9768.08 40883.04 7178.02 27183.80 354
WBMVS73.43 27972.81 27475.28 31887.91 19550.99 38178.59 33981.31 32665.51 28974.47 26084.83 28346.39 31786.68 31558.41 30377.86 27288.17 275
dmvs_re71.14 30270.58 29872.80 34181.96 32659.68 28775.60 36179.34 34768.55 24869.27 32180.72 34849.42 29576.54 37952.56 34077.79 27382.19 371
CR-MVSNet73.37 28071.27 29279.67 25581.32 34065.19 19675.92 35780.30 33859.92 34572.73 27981.19 34052.50 25286.69 31459.84 28777.71 27487.11 300
RPMNet73.51 27870.49 30082.58 19281.32 34065.19 19675.92 35792.27 8457.60 36572.73 27976.45 38052.30 25595.43 7048.14 36777.71 27487.11 300
SCA74.22 26972.33 28079.91 24884.05 28162.17 25679.96 31979.29 34866.30 27772.38 28580.13 35351.95 26488.60 29859.25 29377.67 27688.96 252
Anonymous2023121178.97 18677.69 19882.81 18390.54 9964.29 21690.11 7591.51 11565.01 29476.16 21988.13 20250.56 28293.03 18569.68 20277.56 27791.11 166
v114480.03 16079.03 16383.01 17483.78 28764.51 20987.11 17690.57 14271.96 17278.08 17286.20 25361.41 17493.94 13174.93 15077.23 27890.60 186
WR-MVS79.49 16979.22 16080.27 24288.79 15958.35 29685.06 23288.61 21178.56 3077.65 17988.34 19163.81 13990.66 26264.98 24477.22 27991.80 148
v119279.59 16778.43 17583.07 17183.55 29264.52 20886.93 18190.58 14070.83 19277.78 17785.90 25759.15 20093.94 13173.96 15977.19 28090.76 179
VPNet78.69 19278.66 16978.76 26988.31 17755.72 34084.45 24986.63 25176.79 6778.26 16690.55 13759.30 19989.70 27766.63 23077.05 28190.88 175
v124078.99 18577.78 19382.64 19083.21 29963.54 23086.62 19290.30 15269.74 22377.33 18585.68 26357.04 21893.76 14473.13 16976.92 28290.62 184
MSDG73.36 28270.99 29580.49 23784.51 27265.80 18380.71 30786.13 26065.70 28465.46 35583.74 30644.60 33590.91 25751.13 34776.89 28384.74 342
IterMVS-LS80.06 15979.38 15382.11 19885.89 24463.20 24086.79 18689.34 17974.19 12775.45 23186.72 23366.62 10992.39 20272.58 17476.86 28490.75 180
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192079.22 17878.03 18482.80 18483.30 29763.94 22286.80 18590.33 15069.91 21677.48 18285.53 26758.44 20493.75 14573.60 16176.85 28590.71 182
XXY-MVS75.41 25975.56 23774.96 32183.59 29157.82 30780.59 30983.87 28866.54 27574.93 25288.31 19263.24 14380.09 36362.16 26876.85 28586.97 303
v2v48280.23 15679.29 15783.05 17283.62 29064.14 21887.04 17789.97 16173.61 14078.18 16987.22 22161.10 18293.82 13976.11 13676.78 28791.18 164
v14419279.47 17078.37 17682.78 18783.35 29563.96 22186.96 17990.36 14969.99 21377.50 18185.67 26460.66 18993.77 14374.27 15676.58 28890.62 184
UniMVSNet (Re)81.60 12481.11 12183.09 16988.38 17564.41 21487.60 16093.02 4578.42 3278.56 15988.16 19769.78 7793.26 16569.58 20376.49 28991.60 150
UniMVSNet_NR-MVSNet81.88 11681.54 11682.92 17888.46 17163.46 23387.13 17492.37 8180.19 1278.38 16389.14 16871.66 5593.05 18270.05 19676.46 29092.25 134
DU-MVS81.12 13280.52 13182.90 17987.80 20163.46 23387.02 17891.87 10379.01 2678.38 16389.07 17065.02 12993.05 18270.05 19676.46 29092.20 137
cl2278.07 20777.01 21081.23 21982.37 32361.83 26183.55 26887.98 22068.96 24275.06 24983.87 30161.40 17591.88 22273.53 16276.39 29289.98 218
miper_ehance_all_eth78.59 19577.76 19581.08 22482.66 31661.56 26483.65 26489.15 18968.87 24375.55 22783.79 30566.49 11292.03 21573.25 16776.39 29289.64 230
miper_enhance_ethall77.87 21476.86 21480.92 22981.65 33061.38 26682.68 28188.98 19665.52 28775.47 22882.30 33265.76 12492.00 21772.95 17076.39 29289.39 236
Syy-MVS68.05 33267.85 32268.67 36884.68 26740.97 41178.62 33773.08 38266.65 27266.74 34479.46 35952.11 26082.30 35232.89 40376.38 29582.75 366
myMVS_eth3d67.02 33866.29 33969.21 36384.68 26742.58 40678.62 33773.08 38266.65 27266.74 34479.46 35931.53 38982.30 35239.43 39576.38 29582.75 366
PatchmatchNetpermissive73.12 28571.33 29178.49 27883.18 30160.85 27279.63 32178.57 35264.13 30371.73 29279.81 35851.20 27585.97 32357.40 31376.36 29788.66 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
USDC70.33 31268.37 31476.21 30680.60 34656.23 33379.19 32886.49 25260.89 33761.29 37685.47 26931.78 38889.47 28153.37 33676.21 29882.94 365
OpenMVS_ROBcopyleft64.09 1970.56 31068.19 31677.65 29180.26 34959.41 29185.01 23382.96 30758.76 35665.43 35682.33 33137.63 37591.23 24845.34 38276.03 29982.32 369
ACMH+68.96 1476.01 25074.01 25982.03 20088.60 16665.31 19588.86 11687.55 23170.25 20867.75 33187.47 21541.27 35693.19 17458.37 30475.94 30087.60 285
tpm72.37 29371.71 28574.35 32882.19 32452.00 36979.22 32777.29 36264.56 29872.95 27783.68 31051.35 27283.26 34858.33 30575.80 30187.81 281
Anonymous2023120668.60 32667.80 32571.02 35680.23 35150.75 38378.30 34480.47 33456.79 37066.11 35382.63 32846.35 32078.95 36743.62 38575.70 30283.36 358
v7n78.97 18677.58 20183.14 16783.45 29465.51 18988.32 13891.21 12373.69 13872.41 28486.32 25157.93 20793.81 14069.18 20675.65 30390.11 207
NR-MVSNet80.23 15679.38 15382.78 18787.80 20163.34 23686.31 20191.09 12979.01 2672.17 28889.07 17067.20 10692.81 19166.08 23575.65 30392.20 137
v1079.74 16478.67 16882.97 17784.06 28064.95 20187.88 15590.62 13973.11 15575.11 24786.56 24461.46 17394.05 12773.68 16075.55 30589.90 221
IB-MVS68.01 1575.85 25273.36 26883.31 15884.76 26566.03 17583.38 27085.06 27170.21 20969.40 31881.05 34245.76 32894.66 10865.10 24375.49 30689.25 240
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
h-mvs3383.15 9782.19 10586.02 6990.56 9870.85 7388.15 14589.16 18876.02 8884.67 7091.39 11461.54 17095.50 6682.71 7775.48 30791.72 149
c3_l78.75 18977.91 18781.26 21882.89 31161.56 26484.09 25889.13 19169.97 21475.56 22684.29 29466.36 11492.09 21473.47 16475.48 30790.12 206
V4279.38 17678.24 18082.83 18181.10 34265.50 19085.55 22289.82 16471.57 17978.21 16786.12 25560.66 18993.18 17575.64 14275.46 30989.81 226
testing368.56 32867.67 32871.22 35587.33 22042.87 40583.06 27971.54 38570.36 20369.08 32284.38 29130.33 39285.69 32637.50 39875.45 31085.09 339
cl____77.72 21776.76 21880.58 23582.49 32060.48 27883.09 27687.87 22469.22 23274.38 26285.22 27562.10 16391.53 23671.09 18575.41 31189.73 229
DIV-MVS_self_test77.72 21776.76 21880.58 23582.48 32160.48 27883.09 27687.86 22569.22 23274.38 26285.24 27362.10 16391.53 23671.09 18575.40 31289.74 228
v879.97 16279.02 16482.80 18484.09 27964.50 21187.96 14990.29 15374.13 13075.24 24386.81 23062.88 15193.89 13874.39 15575.40 31290.00 215
Baseline_NR-MVSNet78.15 20578.33 17877.61 29285.79 24556.21 33486.78 18785.76 26473.60 14177.93 17587.57 21065.02 12988.99 28967.14 22775.33 31487.63 284
pmmvs571.55 29970.20 30575.61 31177.83 37056.39 32981.74 29080.89 32757.76 36367.46 33584.49 28749.26 29985.32 33257.08 31675.29 31585.11 338
EPMVS69.02 32368.16 31771.59 34979.61 36149.80 38877.40 35066.93 39862.82 32270.01 30979.05 36245.79 32777.86 37356.58 32175.26 31687.13 299
TranMVSNet+NR-MVSNet80.84 13680.31 13582.42 19487.85 19862.33 25387.74 15891.33 12080.55 977.99 17489.86 14865.23 12792.62 19267.05 22875.24 31792.30 132
test_fmvs268.35 33167.48 33170.98 35769.50 40251.95 37080.05 31776.38 36849.33 39174.65 25784.38 29123.30 40475.40 39274.51 15375.17 31885.60 328
tfpnnormal74.39 26673.16 27078.08 28486.10 24358.05 30084.65 24287.53 23270.32 20571.22 29885.63 26554.97 22989.86 27243.03 38675.02 31986.32 313
COLMAP_ROBcopyleft66.92 1773.01 28770.41 30280.81 23187.13 22565.63 18788.30 13984.19 28462.96 31863.80 36887.69 20738.04 37392.56 19546.66 37274.91 32084.24 347
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchT68.46 33067.85 32270.29 35980.70 34543.93 40372.47 37574.88 37460.15 34370.55 30076.57 37949.94 28981.59 35550.58 34874.83 32185.34 332
pmmvs474.03 27471.91 28380.39 23881.96 32668.32 12781.45 29582.14 31559.32 35069.87 31485.13 27752.40 25488.13 30460.21 28574.74 32284.73 343
ITE_SJBPF78.22 28181.77 32960.57 27683.30 29669.25 23167.54 33387.20 22236.33 37887.28 31254.34 33174.62 32386.80 306
test0.0.03 168.00 33367.69 32768.90 36577.55 37147.43 39175.70 36072.95 38466.66 26966.56 34682.29 33348.06 30775.87 38744.97 38374.51 32483.41 357
test_040272.79 29070.44 30179.84 25088.13 18465.99 17885.93 21184.29 28165.57 28667.40 33785.49 26846.92 31492.61 19335.88 40074.38 32580.94 378
CP-MVSNet78.22 20178.34 17777.84 28787.83 20054.54 35387.94 15191.17 12577.65 3973.48 27088.49 18762.24 16188.43 30062.19 26774.07 32690.55 188
FMVSNet569.50 31967.96 32074.15 33082.97 31055.35 34580.01 31882.12 31662.56 32563.02 36981.53 33936.92 37681.92 35448.42 36274.06 32785.17 337
MVS-HIRNet59.14 36157.67 36363.57 37981.65 33043.50 40471.73 37765.06 40339.59 40451.43 39957.73 40738.34 37182.58 35139.53 39373.95 32864.62 403
tpmrst72.39 29172.13 28273.18 33980.54 34749.91 38679.91 32079.08 35063.11 31571.69 29379.95 35555.32 22782.77 35065.66 23973.89 32986.87 304
PS-CasMVS78.01 21078.09 18377.77 28987.71 20654.39 35588.02 14791.22 12277.50 4773.26 27288.64 18260.73 18688.41 30161.88 27173.88 33090.53 189
v14878.72 19177.80 19281.47 21182.73 31461.96 25986.30 20288.08 21873.26 15276.18 21685.47 26962.46 15692.36 20471.92 17973.82 33190.09 209
Patchmatch-test64.82 35063.24 35169.57 36179.42 36449.82 38763.49 40769.05 39351.98 38659.95 38280.13 35350.91 27770.98 40140.66 39273.57 33287.90 279
WR-MVS_H78.51 19678.49 17278.56 27488.02 19056.38 33088.43 13192.67 6777.14 5773.89 26587.55 21266.25 11689.24 28558.92 29773.55 33390.06 213
AUN-MVS79.21 17977.60 20084.05 13688.71 16367.61 14585.84 21587.26 23869.08 23777.23 18988.14 20153.20 25093.47 15775.50 14673.45 33491.06 168
hse-mvs281.72 11980.94 12584.07 13188.72 16267.68 14385.87 21387.26 23876.02 8884.67 7088.22 19661.54 17093.48 15682.71 7773.44 33591.06 168
testgi66.67 34166.53 33867.08 37575.62 38041.69 41075.93 35676.50 36766.11 27865.20 36086.59 24135.72 38074.71 39443.71 38473.38 33684.84 341
Anonymous2024052168.80 32567.22 33473.55 33474.33 38454.11 35683.18 27385.61 26558.15 36061.68 37580.94 34530.71 39181.27 35857.00 31773.34 33785.28 333
pm-mvs177.25 22876.68 22278.93 26784.22 27658.62 29486.41 19788.36 21471.37 18273.31 27188.01 20361.22 18089.15 28764.24 25073.01 33889.03 247
eth_miper_zixun_eth77.92 21276.69 22181.61 20983.00 30761.98 25883.15 27489.20 18769.52 22574.86 25384.35 29361.76 16692.56 19571.50 18272.89 33990.28 200
miper_lstm_enhance74.11 27173.11 27177.13 30080.11 35259.62 28872.23 37686.92 24766.76 26770.40 30382.92 32256.93 21982.92 34969.06 20872.63 34088.87 255
tpmvs71.09 30369.29 30876.49 30482.04 32556.04 33578.92 33381.37 32564.05 30767.18 33978.28 37049.74 29289.77 27449.67 35772.37 34183.67 355
PEN-MVS77.73 21677.69 19877.84 28787.07 22653.91 35887.91 15391.18 12477.56 4473.14 27488.82 17761.23 17989.17 28659.95 28672.37 34190.43 193
DSMNet-mixed57.77 36356.90 36560.38 38367.70 40435.61 41469.18 38953.97 41532.30 41357.49 39079.88 35640.39 36268.57 40738.78 39672.37 34176.97 389
MonoMVSNet76.49 24275.80 23178.58 27381.55 33358.45 29586.36 20086.22 25774.87 11374.73 25583.73 30751.79 26988.73 29570.78 18772.15 34488.55 268
IterMVS-SCA-FT75.43 25873.87 26380.11 24582.69 31564.85 20481.57 29383.47 29469.16 23570.49 30284.15 29951.95 26488.15 30369.23 20572.14 34587.34 292
tpm cat170.57 30968.31 31577.35 29782.41 32257.95 30478.08 34580.22 34052.04 38468.54 32777.66 37552.00 26387.84 30751.77 34272.07 34686.25 314
RPSCF73.23 28471.46 28878.54 27582.50 31959.85 28582.18 28682.84 31058.96 35471.15 29989.41 16645.48 33384.77 33758.82 29971.83 34791.02 172
IterMVS74.29 26772.94 27378.35 28081.53 33463.49 23281.58 29282.49 31268.06 25669.99 31183.69 30951.66 27185.54 32865.85 23771.64 34886.01 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AllTest70.96 30468.09 31979.58 25785.15 25863.62 22684.58 24479.83 34262.31 32760.32 38086.73 23132.02 38688.96 29250.28 35271.57 34986.15 317
TestCases79.58 25785.15 25863.62 22679.83 34262.31 32760.32 38086.73 23132.02 38688.96 29250.28 35271.57 34986.15 317
baseline176.98 23176.75 22077.66 29088.13 18455.66 34185.12 23081.89 31873.04 15776.79 19988.90 17462.43 15787.78 30863.30 25671.18 35189.55 233
Patchmtry70.74 30769.16 31075.49 31580.72 34454.07 35774.94 36880.30 33858.34 35870.01 30981.19 34052.50 25286.54 31653.37 33671.09 35285.87 326
DTE-MVSNet76.99 23076.80 21677.54 29586.24 23853.06 36787.52 16290.66 13877.08 6072.50 28288.67 18160.48 19389.52 27957.33 31470.74 35390.05 214
reproduce_monomvs75.40 26074.38 25678.46 27983.92 28457.80 30883.78 26186.94 24573.47 14672.25 28784.47 28838.74 36889.27 28475.32 14870.53 35488.31 272
MIMVSNet168.58 32766.78 33773.98 33280.07 35351.82 37380.77 30484.37 27864.40 30059.75 38382.16 33536.47 37783.63 34442.73 38770.33 35586.48 312
pmmvs674.69 26573.39 26778.61 27181.38 33757.48 31386.64 19187.95 22264.99 29570.18 30686.61 24050.43 28489.52 27962.12 26970.18 35688.83 257
test_vis1_rt60.28 35958.42 36265.84 37667.25 40555.60 34270.44 38560.94 40944.33 39859.00 38466.64 39924.91 39968.67 40662.80 25869.48 35773.25 395
TinyColmap67.30 33764.81 34274.76 32481.92 32856.68 32580.29 31581.49 32360.33 34056.27 39483.22 31524.77 40087.66 31045.52 38069.47 35879.95 383
OurMVSNet-221017-074.26 26872.42 27979.80 25183.76 28859.59 28985.92 21286.64 25066.39 27666.96 34087.58 20939.46 36491.60 23065.76 23869.27 35988.22 273
JIA-IIPM66.32 34462.82 35576.82 30277.09 37461.72 26365.34 40375.38 37158.04 36264.51 36262.32 40242.05 35486.51 31751.45 34569.22 36082.21 370
ADS-MVSNet266.20 34763.33 35074.82 32379.92 35458.75 29367.55 39575.19 37253.37 38165.25 35875.86 38342.32 35080.53 36241.57 39068.91 36185.18 335
ADS-MVSNet64.36 35162.88 35468.78 36779.92 35447.17 39267.55 39571.18 38653.37 38165.25 35875.86 38342.32 35073.99 39741.57 39068.91 36185.18 335
test20.0367.45 33566.95 33668.94 36475.48 38144.84 40177.50 34977.67 35666.66 26963.01 37083.80 30447.02 31378.40 36942.53 38968.86 36383.58 356
EU-MVSNet68.53 32967.61 32971.31 35478.51 36947.01 39384.47 24684.27 28242.27 40066.44 35184.79 28540.44 36183.76 34258.76 30068.54 36483.17 359
dmvs_testset62.63 35564.11 34658.19 38578.55 36824.76 42375.28 36265.94 40167.91 25760.34 37976.01 38253.56 24573.94 39831.79 40467.65 36575.88 392
our_test_369.14 32267.00 33575.57 31279.80 35858.80 29277.96 34677.81 35559.55 34862.90 37278.25 37147.43 30983.97 34151.71 34367.58 36683.93 352
ppachtmachnet_test70.04 31567.34 33378.14 28379.80 35861.13 26779.19 32880.59 33259.16 35265.27 35779.29 36146.75 31687.29 31149.33 35866.72 36786.00 323
LF4IMVS64.02 35262.19 35669.50 36270.90 40053.29 36576.13 35477.18 36352.65 38358.59 38580.98 34423.55 40376.52 38053.06 33866.66 36878.68 386
Patchmatch-RL test70.24 31367.78 32677.61 29277.43 37259.57 29071.16 38070.33 38762.94 31968.65 32572.77 39250.62 28185.49 32969.58 20366.58 36987.77 282
dp66.80 33965.43 34170.90 35879.74 36048.82 38975.12 36674.77 37559.61 34764.08 36577.23 37642.89 34680.72 36148.86 36166.58 36983.16 360
test_fmvs363.36 35461.82 35767.98 37262.51 41146.96 39477.37 35174.03 37945.24 39667.50 33478.79 36712.16 41672.98 40072.77 17366.02 37183.99 351
CL-MVSNet_self_test72.37 29371.46 28875.09 32079.49 36353.53 36080.76 30585.01 27369.12 23670.51 30182.05 33657.92 20884.13 34052.27 34166.00 37287.60 285
FPMVS53.68 36951.64 37159.81 38465.08 40851.03 38069.48 38869.58 39141.46 40140.67 40872.32 39316.46 41270.00 40524.24 41265.42 37358.40 408
pmmvs-eth3d70.50 31167.83 32478.52 27777.37 37366.18 17481.82 28881.51 32258.90 35563.90 36780.42 35042.69 34886.28 32058.56 30165.30 37483.11 361
N_pmnet52.79 37153.26 36951.40 39578.99 3677.68 42969.52 3873.89 42851.63 38757.01 39174.98 38740.83 35965.96 41037.78 39764.67 37580.56 382
PM-MVS66.41 34364.14 34573.20 33873.92 38756.45 32778.97 33264.96 40463.88 31164.72 36180.24 35219.84 40883.44 34666.24 23164.52 37679.71 384
KD-MVS_self_test68.81 32467.59 33072.46 34574.29 38545.45 39677.93 34787.00 24363.12 31463.99 36678.99 36642.32 35084.77 33756.55 32264.09 37787.16 298
SixPastTwentyTwo73.37 28071.26 29379.70 25385.08 26157.89 30585.57 21883.56 29271.03 19065.66 35485.88 25842.10 35392.57 19459.11 29563.34 37888.65 265
EGC-MVSNET52.07 37347.05 37767.14 37483.51 29360.71 27480.50 31167.75 3960.07 4230.43 42475.85 38524.26 40181.54 35628.82 40662.25 37959.16 406
TransMVSNet (Re)75.39 26174.56 25277.86 28685.50 25157.10 31886.78 18786.09 26172.17 16971.53 29587.34 21663.01 15089.31 28356.84 31961.83 38087.17 296
MDA-MVSNet_test_wron65.03 34862.92 35271.37 35175.93 37656.73 32269.09 39274.73 37657.28 36854.03 39777.89 37245.88 32574.39 39649.89 35661.55 38182.99 364
YYNet165.03 34862.91 35371.38 35075.85 37856.60 32669.12 39174.66 37857.28 36854.12 39677.87 37345.85 32674.48 39549.95 35561.52 38283.05 362
mvsany_test162.30 35661.26 36065.41 37769.52 40154.86 35066.86 39749.78 41746.65 39468.50 32883.21 31649.15 30066.28 40956.93 31860.77 38375.11 393
ambc75.24 31973.16 39450.51 38463.05 40887.47 23464.28 36377.81 37417.80 41089.73 27657.88 30960.64 38485.49 329
TDRefinement67.49 33464.34 34476.92 30173.47 39261.07 26984.86 23782.98 30659.77 34658.30 38785.13 27726.06 39687.89 30647.92 36960.59 38581.81 374
Gipumacopyleft45.18 38041.86 38355.16 39277.03 37551.52 37632.50 41680.52 33332.46 41227.12 41535.02 4169.52 41975.50 38922.31 41360.21 38638.45 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new-patchmatchnet61.73 35761.73 35861.70 38172.74 39724.50 42469.16 39078.03 35461.40 33456.72 39275.53 38638.42 37076.48 38145.95 37857.67 38784.13 349
MDA-MVSNet-bldmvs66.68 34063.66 34975.75 30979.28 36560.56 27773.92 37278.35 35364.43 29950.13 40279.87 35744.02 34083.67 34346.10 37756.86 38883.03 363
new_pmnet50.91 37450.29 37452.78 39468.58 40334.94 41663.71 40556.63 41439.73 40344.95 40565.47 40021.93 40558.48 41434.98 40156.62 38964.92 402
test_f52.09 37250.82 37355.90 38953.82 41942.31 40959.42 40958.31 41336.45 40856.12 39570.96 39612.18 41557.79 41553.51 33556.57 39067.60 400
test_vis3_rt49.26 37647.02 37856.00 38854.30 41745.27 40066.76 39948.08 41836.83 40744.38 40653.20 4117.17 42364.07 41156.77 32055.66 39158.65 407
PMVScopyleft37.38 2244.16 38140.28 38555.82 39040.82 42542.54 40865.12 40463.99 40534.43 41024.48 41657.12 4093.92 42676.17 38517.10 41755.52 39248.75 411
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD_test153.31 37049.93 37563.42 38065.68 40750.13 38571.59 37966.90 39934.43 41040.58 40971.56 3958.65 42176.27 38334.64 40255.36 39363.86 404
mvs5depth69.45 32067.45 33275.46 31673.93 38655.83 33879.19 32883.23 29866.89 26471.63 29483.32 31433.69 38485.09 33359.81 28855.34 39485.46 330
pmmvs357.79 36254.26 36768.37 36964.02 41056.72 32375.12 36665.17 40240.20 40252.93 39869.86 39820.36 40775.48 39045.45 38155.25 39572.90 396
UnsupCasMVSNet_eth67.33 33665.99 34071.37 35173.48 39151.47 37775.16 36485.19 26965.20 29060.78 37880.93 34742.35 34977.20 37557.12 31553.69 39685.44 331
K. test v371.19 30168.51 31379.21 26383.04 30657.78 30984.35 25376.91 36572.90 16062.99 37182.86 32439.27 36591.09 25461.65 27452.66 39788.75 261
mmtdpeth74.16 27073.01 27277.60 29483.72 28961.13 26785.10 23185.10 27072.06 17177.21 19380.33 35143.84 34185.75 32477.14 12752.61 39885.91 324
UnsupCasMVSNet_bld63.70 35361.53 35970.21 36073.69 38951.39 37872.82 37481.89 31855.63 37557.81 38971.80 39438.67 36978.61 36849.26 35952.21 39980.63 380
LCM-MVSNet54.25 36649.68 37667.97 37353.73 42045.28 39966.85 39880.78 32935.96 40939.45 41062.23 4038.70 42078.06 37248.24 36651.20 40080.57 381
KD-MVS_2432*160066.22 34563.89 34773.21 33675.47 38253.42 36270.76 38384.35 27964.10 30566.52 34878.52 36834.55 38284.98 33450.40 35050.33 40181.23 376
miper_refine_blended66.22 34563.89 34773.21 33675.47 38253.42 36270.76 38384.35 27964.10 30566.52 34878.52 36834.55 38284.98 33450.40 35050.33 40181.23 376
mvsany_test353.99 36751.45 37261.61 38255.51 41644.74 40263.52 40645.41 42143.69 39958.11 38876.45 38017.99 40963.76 41254.77 32947.59 40376.34 391
lessismore_v078.97 26681.01 34357.15 31765.99 40061.16 37782.82 32539.12 36691.34 24559.67 28946.92 40488.43 270
testf145.72 37741.96 38157.00 38656.90 41445.32 39766.14 40059.26 41126.19 41430.89 41360.96 4054.14 42470.64 40326.39 41046.73 40555.04 409
APD_test245.72 37741.96 38157.00 38656.90 41445.32 39766.14 40059.26 41126.19 41430.89 41360.96 4054.14 42470.64 40326.39 41046.73 40555.04 409
ttmdpeth59.91 36057.10 36468.34 37067.13 40646.65 39574.64 36967.41 39748.30 39262.52 37485.04 28120.40 40675.93 38642.55 38845.90 40782.44 368
MVStest156.63 36452.76 37068.25 37161.67 41253.25 36671.67 37868.90 39538.59 40550.59 40183.05 31925.08 39870.66 40236.76 39938.56 40880.83 379
PVSNet_057.27 2061.67 35859.27 36168.85 36679.61 36157.44 31468.01 39373.44 38155.93 37458.54 38670.41 39744.58 33677.55 37447.01 37135.91 40971.55 397
WB-MVS54.94 36554.72 36655.60 39173.50 39020.90 42574.27 37161.19 40859.16 35250.61 40074.15 38847.19 31275.78 38817.31 41635.07 41070.12 398
test_method31.52 38529.28 38938.23 39927.03 4276.50 43020.94 41862.21 4074.05 42122.35 41952.50 41213.33 41347.58 41927.04 40934.04 41160.62 405
SSC-MVS53.88 36853.59 36854.75 39372.87 39619.59 42673.84 37360.53 41057.58 36649.18 40473.45 39146.34 32175.47 39116.20 41932.28 41269.20 399
PMMVS240.82 38238.86 38646.69 39653.84 41816.45 42748.61 41349.92 41637.49 40631.67 41160.97 4048.14 42256.42 41628.42 40730.72 41367.19 401
dongtai45.42 37945.38 38045.55 39773.36 39326.85 42167.72 39434.19 42354.15 37949.65 40356.41 41025.43 39762.94 41319.45 41428.09 41446.86 413
kuosan39.70 38340.40 38437.58 40064.52 40926.98 41965.62 40233.02 42446.12 39542.79 40748.99 41324.10 40246.56 42112.16 42226.30 41539.20 414
DeepMVS_CXcopyleft27.40 40340.17 42626.90 42024.59 42717.44 41923.95 41748.61 4149.77 41826.48 42218.06 41524.47 41628.83 416
MVEpermissive26.22 2330.37 38725.89 39143.81 39844.55 42435.46 41528.87 41739.07 42218.20 41818.58 42040.18 4152.68 42747.37 42017.07 41823.78 41748.60 412
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.77 38430.64 38735.15 40152.87 42127.67 41857.09 41147.86 41924.64 41616.40 42133.05 41711.23 41754.90 41714.46 42018.15 41822.87 417
EMVS30.81 38629.65 38834.27 40250.96 42225.95 42256.58 41246.80 42024.01 41715.53 42230.68 41812.47 41454.43 41812.81 42117.05 41922.43 418
ANet_high50.57 37546.10 37963.99 37848.67 42339.13 41270.99 38280.85 32861.39 33531.18 41257.70 40817.02 41173.65 39931.22 40515.89 42079.18 385
tmp_tt18.61 38921.40 39210.23 4054.82 42810.11 42834.70 41530.74 4261.48 42223.91 41826.07 41928.42 39413.41 42427.12 40815.35 4217.17 419
wuyk23d16.82 39015.94 39319.46 40458.74 41331.45 41739.22 4143.74 4296.84 4206.04 4232.70 4231.27 42824.29 42310.54 42314.40 4222.63 420
testmvs6.04 3938.02 3960.10 4070.08 4290.03 43269.74 3860.04 4300.05 4240.31 4251.68 4240.02 4300.04 4250.24 4240.02 4230.25 422
test1236.12 3928.11 3950.14 4060.06 4300.09 43171.05 3810.03 4310.04 4250.25 4261.30 4250.05 4290.03 4260.21 4250.01 4240.29 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k19.96 38826.61 3900.00 4080.00 4310.00 4330.00 41989.26 1840.00 4260.00 42788.61 18361.62 1690.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas5.26 3947.02 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42663.15 1460.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re7.23 3919.64 3940.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42786.72 2330.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS42.58 40639.46 394
FOURS195.00 1072.39 3995.06 193.84 1574.49 12191.30 15
test_one_060195.07 771.46 5794.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 431
eth-test0.00 431
test_241102_ONE95.30 270.98 6694.06 1077.17 5693.10 195.39 1482.99 197.27 12
save fliter93.80 4072.35 4290.47 6691.17 12574.31 124
test072695.27 571.25 5993.60 694.11 677.33 5092.81 395.79 380.98 9
GSMVS88.96 252
test_part295.06 872.65 3291.80 13
sam_mvs151.32 27388.96 252
sam_mvs50.01 287
MTGPAbinary92.02 93
test_post178.90 3345.43 42248.81 30685.44 33159.25 293
test_post5.46 42150.36 28584.24 339
patchmatchnet-post74.00 38951.12 27688.60 298
MTMP92.18 3432.83 425
gm-plane-assit81.40 33653.83 35962.72 32480.94 34592.39 20263.40 255
TEST993.26 5272.96 2588.75 12091.89 10168.44 25185.00 6393.10 7074.36 2895.41 73
test_893.13 5472.57 3588.68 12591.84 10568.69 24684.87 6793.10 7074.43 2695.16 83
agg_prior92.85 6271.94 5091.78 10884.41 7894.93 94
test_prior472.60 3489.01 111
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 60
旧先验286.56 19458.10 36187.04 4588.98 29074.07 158
新几何286.29 203
无先验87.48 16388.98 19660.00 34494.12 12567.28 22488.97 251
原ACMM286.86 183
testdata291.01 25662.37 265
segment_acmp73.08 38
testdata184.14 25775.71 92
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 194
plane_prior491.00 130
plane_prior368.60 12178.44 3178.92 151
plane_prior291.25 5279.12 23
plane_prior189.90 116
n20.00 432
nn0.00 432
door-mid69.98 389
test1192.23 87
door69.44 392
HQP5-MVS66.98 163
HQP-NCC89.33 13589.17 10376.41 7777.23 189
ACMP_Plane89.33 13589.17 10376.41 7777.23 189
BP-MVS77.47 122
HQP4-MVS77.24 18895.11 8791.03 170
HQP2-MVS60.17 197
NP-MVS89.62 12168.32 12790.24 142
MDTV_nov1_ep13_2view37.79 41375.16 36455.10 37666.53 34749.34 29753.98 33287.94 278
Test By Simon64.33 133