This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 16098.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2898.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7398.18 5790.57 19698.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVS97.02 2996.81 3797.64 4499.33 2193.54 5998.80 898.28 3692.99 10996.45 8298.30 6291.90 4599.85 1895.61 8499.68 499.54 33
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4497.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4498.28 3699.86 897.52 2299.67 699.75 6
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3798.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1099.56 29
IU-MVS99.42 795.39 1197.94 10490.40 20098.94 897.41 2999.66 1099.74 8
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1299.74 8
SD-MVS97.41 1497.53 1197.06 6898.57 6994.46 3397.92 7598.14 6494.82 3899.01 698.55 3394.18 1497.41 32796.94 3499.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast96.51 5596.27 6197.22 6199.32 2292.74 7998.74 998.06 8290.57 19696.77 6398.35 5190.21 7599.53 9194.80 10799.63 1499.38 58
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 4098.43 2498.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1599.65 15
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVScopyleft96.69 4996.45 5797.40 5099.36 1893.11 7198.87 698.06 8291.17 17096.40 8397.99 8490.99 6599.58 7795.61 8499.61 1699.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
iter_conf05_1193.70 14092.99 14395.84 13297.02 16290.22 17295.57 27794.66 33492.81 12096.17 9296.51 18069.56 34299.07 15095.03 9799.60 1798.23 155
OPU-MVS98.55 398.82 5296.86 398.25 3798.26 6696.04 299.24 12495.36 9199.59 1899.56 29
HFP-MVS97.14 2396.92 3097.83 2699.42 794.12 4698.52 1698.32 3093.21 9897.18 5098.29 6392.08 4299.83 2695.63 8299.59 1899.54 33
region2R97.07 2696.84 3397.77 3399.46 293.79 5498.52 1698.24 4793.19 10197.14 5298.34 5491.59 5299.87 795.46 8999.59 1899.64 16
ACMMPR97.07 2696.84 3397.79 3099.44 693.88 5298.52 1698.31 3193.21 9897.15 5198.33 5791.35 5799.86 895.63 8299.59 1899.62 18
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2299.59 22
PC_three_145290.77 18198.89 1498.28 6596.24 198.35 22195.76 7599.58 2299.59 22
mPP-MVS96.86 3796.60 4797.64 4499.40 1193.44 6198.50 1998.09 7393.27 9795.95 10398.33 5791.04 6499.88 495.20 9399.57 2499.60 21
ZNCC-MVS96.96 3196.67 4597.85 2599.37 1694.12 4698.49 2098.18 5792.64 12596.39 8498.18 7091.61 5099.88 495.59 8799.55 2599.57 26
MP-MVS-pluss96.70 4796.27 6197.98 2199.23 3094.71 2996.96 17998.06 8290.67 18795.55 11698.78 2591.07 6399.86 896.58 4499.55 2599.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft96.77 4496.45 5797.72 3899.39 1393.80 5398.41 2598.06 8293.37 9395.54 11898.34 5490.59 7299.88 494.83 10499.54 2799.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS96.77 4496.46 5697.71 4098.40 7594.07 4898.21 4498.45 2289.86 20997.11 5498.01 8392.52 3599.69 5296.03 6699.53 2899.36 60
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4198.27 3992.37 13198.27 2798.65 2993.33 2399.72 4596.49 4799.52 2999.51 37
ACMMP_NAP97.20 2096.86 3198.23 1199.09 3495.16 2297.60 11698.19 5592.82 11997.93 3498.74 2691.60 5199.86 896.26 5099.52 2999.67 13
DeepC-MVS_fast93.89 296.93 3496.64 4697.78 3198.64 6494.30 3797.41 13598.04 8994.81 3996.59 7498.37 4991.24 5999.64 6695.16 9499.52 2999.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft97.34 1796.97 2798.47 599.08 3696.16 497.55 12397.97 10195.59 1196.61 7297.89 9092.57 3499.84 2395.95 6899.51 3299.40 54
APD-MVScopyleft96.95 3296.60 4798.01 1999.03 4194.93 2797.72 10098.10 7291.50 15598.01 3198.32 5992.33 3899.58 7794.85 10399.51 3299.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
patch_mono-296.83 4197.44 1395.01 17599.05 3985.39 30496.98 17798.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3499.72 11
dcpmvs_296.37 6097.05 2294.31 21898.96 4684.11 32297.56 12097.51 15593.92 7197.43 4598.52 3592.75 2999.32 11797.32 3099.50 3499.51 37
MTAPA97.08 2596.78 3997.97 2299.37 1694.42 3597.24 15498.08 7495.07 2796.11 9598.59 3090.88 6899.90 296.18 6199.50 3499.58 25
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15298.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3799.57 26
DeepPCF-MVS93.97 196.61 5297.09 1895.15 16798.09 10186.63 28196.00 25498.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 3899.45 47
9.1496.75 4198.93 4797.73 9798.23 5091.28 16597.88 3598.44 4493.00 2699.65 5895.76 7599.47 39
test_fmvsmconf_n97.49 1297.56 997.29 5597.44 14292.37 9097.91 7698.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 4099.69 12
test_fmvsm_n_192097.55 1197.89 396.53 8198.41 7491.73 10998.01 5999.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 4098.08 171
TSAR-MVS + MP.97.42 1397.33 1597.69 4199.25 2794.24 4198.07 5497.85 11693.72 7798.57 2198.35 5193.69 1899.40 11097.06 3299.46 4099.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++96.94 3397.06 1996.59 7998.72 5591.86 10797.67 10498.49 1994.66 4897.24 4998.41 4792.31 4098.94 16396.61 4399.46 4098.96 94
PGM-MVS96.81 4296.53 5097.65 4299.35 2093.53 6097.65 10798.98 292.22 13397.14 5298.44 4491.17 6299.85 1894.35 11699.46 4099.57 26
CDPH-MVS95.97 7195.38 8097.77 3398.93 4794.44 3496.35 23297.88 10986.98 29896.65 7097.89 9091.99 4499.47 10292.26 15199.46 4099.39 56
DELS-MVS96.61 5296.38 5997.30 5497.79 12093.19 6995.96 25698.18 5795.23 1995.87 10497.65 11191.45 5399.70 5195.87 6999.44 4699.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030497.04 2896.73 4297.96 2397.60 13494.36 3698.01 5994.09 34997.33 296.29 8698.79 2489.73 8299.86 899.36 299.42 4799.67 13
CPTT-MVS95.57 8295.19 8596.70 7399.27 2691.48 12398.33 2898.11 7087.79 27995.17 12498.03 8087.09 12599.61 6993.51 13299.42 4799.02 86
MVS_111021_HR96.68 5196.58 4996.99 7098.46 7092.31 9396.20 24598.90 394.30 6295.86 10597.74 10492.33 3899.38 11396.04 6599.42 4799.28 65
test_fmvsmconf0.1_n97.09 2497.06 1997.19 6495.67 24292.21 9697.95 7298.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 5099.59 22
XVS97.18 2196.96 2897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7498.29 6391.70 4899.80 3095.66 7799.40 5199.62 18
X-MVStestdata91.71 21789.67 27897.81 2899.38 1494.03 5098.59 1298.20 5294.85 3496.59 7432.69 40591.70 4899.80 3095.66 7799.40 5199.62 18
MCST-MVS97.18 2196.84 3398.20 1499.30 2495.35 1597.12 16798.07 7993.54 8596.08 9797.69 10693.86 1699.71 4696.50 4699.39 5399.55 32
test9_res94.81 10699.38 5499.45 47
agg_prior293.94 12499.38 5499.50 40
test_prior296.35 23292.80 12196.03 9897.59 11892.01 4395.01 10099.38 54
MM97.29 1996.98 2698.23 1198.01 10795.03 2698.07 5495.76 28397.78 197.52 4098.80 2288.09 10299.86 899.44 199.37 5799.80 1
train_agg96.30 6295.83 6997.72 3898.70 5694.19 4296.41 22498.02 9488.58 25396.03 9897.56 12192.73 3199.59 7495.04 9699.37 5799.39 56
CS-MVS-test96.89 3597.04 2396.45 9298.29 8291.66 11599.03 497.85 11695.84 796.90 5997.97 8691.24 5998.75 18396.92 3599.33 5998.94 97
3Dnovator91.36 595.19 9394.44 10897.44 4996.56 19493.36 6598.65 1198.36 2494.12 6589.25 27398.06 7782.20 20599.77 3793.41 13699.32 6099.18 72
ZD-MVS99.05 3994.59 3198.08 7489.22 22997.03 5798.10 7392.52 3599.65 5894.58 11499.31 61
GST-MVS96.85 3996.52 5197.82 2799.36 1894.14 4598.29 3198.13 6592.72 12296.70 6698.06 7791.35 5799.86 894.83 10499.28 6299.47 46
SR-MVS97.01 3096.86 3197.47 4899.09 3493.27 6897.98 6398.07 7993.75 7697.45 4298.48 4191.43 5599.59 7496.22 5399.27 6399.54 33
CSCG96.05 6795.91 6696.46 9199.24 2890.47 16598.30 3098.57 1889.01 23693.97 14897.57 11992.62 3399.76 3894.66 11099.27 6399.15 75
SR-MVS-dyc-post96.88 3696.80 3897.11 6799.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3691.40 5699.56 8596.05 6399.26 6599.43 51
RE-MVS-def96.72 4399.02 4292.34 9197.98 6398.03 9193.52 8797.43 4598.51 3690.71 7096.05 6399.26 6599.43 51
APD-MVS_3200maxsize96.81 4296.71 4497.12 6699.01 4592.31 9397.98 6398.06 8293.11 10697.44 4398.55 3390.93 6699.55 8796.06 6299.25 6799.51 37
test1297.65 4298.46 7094.26 3997.66 13495.52 11990.89 6799.46 10399.25 6799.22 70
DeepC-MVS93.07 396.06 6695.66 7097.29 5597.96 10993.17 7097.30 15098.06 8293.92 7193.38 16198.66 2786.83 12799.73 4295.60 8699.22 6998.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5998.25 8692.59 8497.81 9098.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 7099.40 54
MSP-MVS97.59 1097.54 1097.73 3799.40 1193.77 5698.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 7099.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CANet96.39 5996.02 6497.50 4797.62 13193.38 6397.02 17297.96 10295.42 1594.86 12897.81 9987.38 12199.82 2896.88 3699.20 7299.29 63
MVS_111021_LR96.24 6496.19 6396.39 9798.23 9191.35 12996.24 24398.79 693.99 6995.80 10797.65 11189.92 8099.24 12495.87 6999.20 7298.58 125
CS-MVS96.86 3797.06 1996.26 10898.16 9891.16 14199.09 397.87 11195.30 1897.06 5698.03 8091.72 4698.71 18997.10 3199.17 7498.90 104
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2597.34 14598.04 8995.96 697.09 5597.88 9293.18 2599.71 4695.84 7399.17 7499.56 29
test22298.24 8792.21 9695.33 28897.60 14279.22 37895.25 12197.84 9888.80 9299.15 7698.72 118
114514_t93.95 12893.06 14296.63 7699.07 3791.61 11697.46 13497.96 10277.99 38293.00 16997.57 11986.14 13999.33 11589.22 22099.15 7698.94 97
fmvsm_l_conf0.5_n97.65 797.75 697.34 5298.21 9292.75 7897.83 8698.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 7899.50 40
新几何197.32 5398.60 6593.59 5897.75 12381.58 36595.75 10997.85 9690.04 7799.67 5686.50 27299.13 7898.69 121
原ACMM196.38 9898.59 6691.09 14397.89 10787.41 29095.22 12397.68 10790.25 7499.54 8987.95 24099.12 8098.49 134
EC-MVSNet96.42 5796.47 5396.26 10897.01 16591.52 12198.89 597.75 12394.42 5696.64 7197.68 10789.32 8498.60 19997.45 2699.11 8198.67 123
test_fmvsmconf0.01_n96.15 6595.85 6897.03 6992.66 35991.83 10897.97 6997.84 12095.57 1297.53 3999.00 684.20 16399.76 3898.82 1199.08 8299.48 44
test_fmvsmvis_n_192096.70 4796.84 3396.31 10296.62 18791.73 10997.98 6398.30 3296.19 596.10 9698.95 889.42 8399.76 3898.90 1099.08 8297.43 203
test_cas_vis1_n_192094.48 11094.55 10394.28 22096.78 17886.45 28597.63 11397.64 13893.32 9697.68 3898.36 5073.75 31799.08 14696.73 3999.05 8497.31 210
MVSFormer95.37 8595.16 8695.99 12696.34 21291.21 13498.22 4297.57 14791.42 15996.22 9097.32 12986.20 13797.92 28194.07 12099.05 8498.85 110
lupinMVS94.99 9994.56 10096.29 10696.34 21291.21 13495.83 26396.27 26388.93 24196.22 9096.88 15586.20 13798.85 17295.27 9299.05 8498.82 113
旧先验198.38 7893.38 6397.75 12398.09 7592.30 4199.01 8799.16 73
testdata95.46 15998.18 9788.90 22097.66 13482.73 35697.03 5798.07 7690.06 7698.85 17289.67 20798.98 8898.64 124
3Dnovator+91.43 495.40 8494.48 10698.16 1696.90 16995.34 1698.48 2197.87 11194.65 4988.53 28898.02 8283.69 16999.71 4693.18 13998.96 8999.44 49
DPM-MVS95.69 7794.92 9098.01 1998.08 10495.71 995.27 29397.62 14190.43 19995.55 11697.07 14491.72 4699.50 9989.62 20998.94 9098.82 113
CHOSEN 280x42093.12 16192.72 15994.34 21596.71 18487.27 26290.29 38197.72 12886.61 30591.34 21195.29 24284.29 16298.41 21393.25 13898.94 9097.35 208
jason94.84 10494.39 10996.18 11495.52 24890.93 14896.09 24996.52 25289.28 22796.01 10197.32 12984.70 15498.77 18195.15 9598.91 9298.85 110
jason: jason.
test_vis1_n_192094.17 11694.58 9992.91 28297.42 14382.02 34397.83 8697.85 11694.68 4698.10 2998.49 3870.15 33799.32 11797.91 1598.82 9397.40 205
QAPM93.45 14892.27 17696.98 7196.77 18092.62 8298.39 2698.12 6784.50 33888.27 29597.77 10282.39 20299.81 2985.40 29198.81 9498.51 131
MG-MVS95.61 8095.38 8096.31 10298.42 7390.53 16396.04 25197.48 15893.47 8995.67 11398.10 7389.17 8699.25 12391.27 17898.77 9599.13 77
API-MVS94.84 10494.49 10595.90 12897.90 11592.00 10497.80 9197.48 15889.19 23094.81 12996.71 16188.84 9199.17 13288.91 22898.76 9696.53 230
CHOSEN 1792x268894.15 11893.51 12896.06 11998.27 8389.38 20295.18 29798.48 2185.60 32093.76 15297.11 14283.15 18099.61 6991.33 17698.72 9799.19 71
EIA-MVS95.53 8395.47 7495.71 14197.06 15889.63 18897.82 8897.87 11193.57 8193.92 14995.04 25290.61 7198.95 16294.62 11298.68 9898.54 127
OpenMVScopyleft89.19 1292.86 17691.68 19596.40 9595.34 26192.73 8098.27 3498.12 6784.86 33385.78 33497.75 10378.89 26599.74 4187.50 25698.65 9996.73 227
fmvsm_s_conf0.5_n96.85 3997.13 1696.04 12198.07 10590.28 17097.97 6998.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 10098.18 160
EPNet95.20 9294.56 10097.14 6592.80 35692.68 8197.85 8494.87 33196.64 392.46 17897.80 10186.23 13499.65 5893.72 13098.62 10199.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.1_n96.58 5496.77 4096.01 12596.67 18590.25 17197.91 7698.38 2394.48 5498.84 1699.14 188.06 10399.62 6898.82 1198.60 10298.15 164
DP-MVS Recon95.68 7895.12 8897.37 5199.19 3194.19 4297.03 17098.08 7488.35 26295.09 12697.65 11189.97 7999.48 10192.08 16098.59 10398.44 142
Vis-MVSNetpermissive95.23 9094.81 9296.51 8597.18 14991.58 11998.26 3698.12 6794.38 6094.90 12798.15 7282.28 20398.92 16591.45 17598.58 10499.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvs193.21 15593.53 12592.25 30196.55 19681.20 35097.40 13996.96 21690.68 18696.80 6198.04 7969.25 34498.40 21497.58 2198.50 10597.16 215
test250691.60 22390.78 22994.04 23097.66 12783.81 32598.27 3475.53 40893.43 9195.23 12298.21 6767.21 35899.07 15093.01 14798.49 10699.25 68
ECVR-MVScopyleft93.19 15792.73 15894.57 20497.66 12785.41 30298.21 4488.23 39393.43 9194.70 13198.21 6772.57 32199.07 15093.05 14498.49 10699.25 68
test111193.19 15792.82 15294.30 21997.58 13984.56 31798.21 4489.02 39193.53 8694.58 13398.21 6772.69 32099.05 15493.06 14398.48 10899.28 65
UGNet94.04 12693.28 13896.31 10296.85 17191.19 13797.88 7997.68 13394.40 5893.00 16996.18 19673.39 31999.61 6991.72 16798.46 10998.13 165
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CANet_DTU94.37 11193.65 12096.55 8096.46 20692.13 10096.21 24496.67 24394.38 6093.53 15797.03 14779.34 25399.71 4690.76 18698.45 11097.82 185
test_fmvs1_n92.73 18392.88 14992.29 29996.08 22981.05 35197.98 6397.08 20390.72 18496.79 6298.18 7063.07 37598.45 21197.62 2098.42 11197.36 206
fmvsm_s_conf0.5_n_a96.75 4696.93 2996.20 11397.64 12990.72 15798.00 6198.73 994.55 5098.91 1399.08 388.22 10199.63 6798.91 998.37 11298.25 153
TAPA-MVS90.10 792.30 19791.22 21495.56 14998.33 8089.60 19096.79 19197.65 13681.83 36291.52 20697.23 13687.94 10698.91 16771.31 38398.37 11298.17 163
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
fmvsm_s_conf0.1_n_a96.40 5896.47 5396.16 11595.48 25090.69 15897.91 7698.33 2994.07 6698.93 999.14 187.44 11999.61 6998.63 1398.32 11498.18 160
EI-MVSNet-Vis-set96.51 5596.47 5396.63 7698.24 8791.20 13696.89 18397.73 12694.74 4496.49 7898.49 3890.88 6899.58 7796.44 4898.32 11499.13 77
PS-MVSNAJ95.37 8595.33 8295.49 15597.35 14490.66 16195.31 29097.48 15893.85 7496.51 7795.70 22688.65 9599.65 5894.80 10798.27 11696.17 241
LS3D93.57 14492.61 16496.47 8997.59 13591.61 11697.67 10497.72 12885.17 32890.29 23398.34 5484.60 15599.73 4283.85 31298.27 11698.06 172
test_vis1_n92.37 19392.26 17792.72 28994.75 30082.64 33598.02 5896.80 23391.18 16997.77 3797.93 8858.02 38398.29 22697.63 1998.21 11897.23 214
ETV-MVS96.02 6895.89 6796.40 9597.16 15092.44 8897.47 13297.77 12294.55 5096.48 7994.51 27791.23 6198.92 16595.65 8098.19 11997.82 185
PVSNet_Blended94.87 10394.56 10095.81 13398.27 8389.46 19995.47 28398.36 2488.84 24494.36 13796.09 20688.02 10499.58 7793.44 13498.18 12098.40 145
MAR-MVS94.22 11493.46 13096.51 8598.00 10892.19 9997.67 10497.47 16188.13 26993.00 16995.84 21484.86 15399.51 9687.99 23998.17 12197.83 184
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MS-PatchMatch90.27 27989.77 27491.78 31494.33 31784.72 31695.55 27896.73 23586.17 31386.36 33095.28 24471.28 32897.80 29284.09 30698.14 12292.81 361
AdaColmapbinary94.34 11293.68 11996.31 10298.59 6691.68 11496.59 21597.81 12189.87 20892.15 18997.06 14583.62 17299.54 8989.34 21598.07 12397.70 190
MVP-Stereo90.74 26690.08 26092.71 29093.19 35088.20 24095.86 26196.27 26386.07 31484.86 34394.76 26577.84 28197.75 29783.88 31198.01 12492.17 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Vis-MVSNet (Re-imp)94.15 11893.88 11594.95 18197.61 13287.92 24998.10 5195.80 28292.22 13393.02 16897.45 12484.53 15797.91 28488.24 23697.97 12599.02 86
EI-MVSNet-UG-set96.34 6196.30 6096.47 8998.20 9390.93 14896.86 18597.72 12894.67 4796.16 9498.46 4290.43 7399.58 7796.23 5297.96 12698.90 104
IS-MVSNet94.90 10194.52 10496.05 12097.67 12590.56 16298.44 2396.22 26693.21 9893.99 14697.74 10485.55 14598.45 21189.98 19897.86 12799.14 76
CNLPA94.28 11393.53 12596.52 8298.38 7892.55 8596.59 21596.88 22790.13 20591.91 19597.24 13585.21 14899.09 14487.64 25297.83 12897.92 177
xiu_mvs_v2_base95.32 8795.29 8395.40 16097.22 14690.50 16495.44 28497.44 17293.70 7996.46 8196.18 19688.59 9899.53 9194.79 10997.81 12996.17 241
PAPM_NR95.01 9594.59 9896.26 10898.89 5190.68 16097.24 15497.73 12691.80 14792.93 17496.62 17689.13 8799.14 13789.21 22197.78 13098.97 93
PVSNet_Blended_VisFu95.27 8894.91 9196.38 9898.20 9390.86 15097.27 15298.25 4590.21 20194.18 14297.27 13387.48 11899.73 4293.53 13197.77 13198.55 126
TSAR-MVS + GP.96.69 4996.49 5297.27 5898.31 8193.39 6296.79 19196.72 23694.17 6497.44 4397.66 11092.76 2899.33 11596.86 3797.76 13299.08 83
ACMMPcopyleft96.27 6395.93 6597.28 5799.24 2892.62 8298.25 3798.81 592.99 10994.56 13498.39 4888.96 8999.85 1894.57 11597.63 13399.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
BH-RMVSNet92.72 18491.97 18594.97 17997.16 15087.99 24796.15 24795.60 29390.62 19291.87 19797.15 14178.41 27198.57 20383.16 31497.60 13498.36 149
PatchMatch-RL92.90 17492.02 18395.56 14998.19 9590.80 15395.27 29397.18 19387.96 27191.86 19895.68 22780.44 23398.99 16084.01 30797.54 13596.89 223
xiu_mvs_v1_base_debu95.01 9594.76 9395.75 13696.58 19191.71 11196.25 24097.35 18492.99 10996.70 6696.63 17382.67 19399.44 10696.22 5397.46 13696.11 246
xiu_mvs_v1_base95.01 9594.76 9395.75 13696.58 19191.71 11196.25 24097.35 18492.99 10996.70 6696.63 17382.67 19399.44 10696.22 5397.46 13696.11 246
xiu_mvs_v1_base_debi95.01 9594.76 9395.75 13696.58 19191.71 11196.25 24097.35 18492.99 10996.70 6696.63 17382.67 19399.44 10696.22 5397.46 13696.11 246
MVS91.71 21790.44 24395.51 15395.20 27491.59 11896.04 25197.45 16873.44 39087.36 31495.60 23185.42 14699.10 14185.97 28397.46 13695.83 255
PVSNet86.66 1892.24 20191.74 19493.73 24997.77 12183.69 32992.88 36296.72 23687.91 27393.00 16994.86 26078.51 26999.05 15486.53 27097.45 14098.47 137
PAPR94.18 11593.42 13596.48 8897.64 12991.42 12795.55 27897.71 13288.99 23792.34 18595.82 21689.19 8599.11 14086.14 27897.38 14198.90 104
LCM-MVSNet-Re92.50 18692.52 16992.44 29496.82 17681.89 34496.92 18193.71 36092.41 13084.30 34794.60 27385.08 15097.03 34091.51 17297.36 14298.40 145
UA-Net95.95 7295.53 7297.20 6397.67 12592.98 7497.65 10798.13 6594.81 3996.61 7298.35 5188.87 9099.51 9690.36 19397.35 14399.11 81
casdiffmvspermissive95.64 7995.49 7396.08 11796.76 18390.45 16697.29 15197.44 17294.00 6895.46 12097.98 8587.52 11798.73 18595.64 8197.33 14499.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive95.81 7695.57 7196.51 8596.87 17091.49 12297.50 12697.56 15193.99 6995.13 12597.92 8987.89 10798.78 17895.97 6797.33 14499.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PCF-MVS89.48 1191.56 22789.95 26696.36 10096.60 18992.52 8692.51 36797.26 19079.41 37788.90 27796.56 17884.04 16699.55 8777.01 36197.30 14697.01 217
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-untuned92.94 17292.62 16393.92 24297.22 14686.16 29396.40 22896.25 26590.06 20689.79 25396.17 19883.19 17898.35 22187.19 26297.27 14797.24 213
baseline95.58 8195.42 7896.08 11796.78 17890.41 16897.16 16497.45 16893.69 8095.65 11497.85 9687.29 12298.68 19195.66 7797.25 14899.13 77
gg-mvs-nofinetune87.82 31585.61 32794.44 20994.46 31289.27 21091.21 37684.61 40280.88 36889.89 25174.98 39671.50 32697.53 31685.75 28797.21 14996.51 231
diffmvspermissive95.25 8995.13 8795.63 14596.43 20889.34 20495.99 25597.35 18492.83 11896.31 8597.37 12886.44 13298.67 19296.26 5097.19 15098.87 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test94.89 10294.62 9795.68 14396.83 17489.55 19396.70 20097.17 19591.17 17095.60 11596.11 20587.87 10898.76 18293.01 14797.17 15198.72 118
PLCcopyleft91.00 694.11 12293.43 13396.13 11698.58 6891.15 14296.69 20297.39 17887.29 29391.37 21096.71 16188.39 9999.52 9587.33 25997.13 15297.73 188
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
131492.81 18192.03 18295.14 16895.33 26489.52 19696.04 25197.44 17287.72 28386.25 33195.33 24183.84 16798.79 17789.26 21897.05 15397.11 216
FE-MVS92.05 20891.05 21895.08 17196.83 17487.93 24893.91 33895.70 28686.30 30994.15 14394.97 25376.59 28999.21 12684.10 30596.86 15498.09 170
EPNet_dtu91.71 21791.28 21092.99 27993.76 33383.71 32896.69 20295.28 30893.15 10487.02 32195.95 20983.37 17697.38 32979.46 34796.84 15597.88 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+94.93 10094.45 10796.36 10096.61 18891.47 12496.41 22497.41 17791.02 17694.50 13595.92 21087.53 11698.78 17893.89 12696.81 15698.84 112
OMC-MVS95.09 9494.70 9696.25 11198.46 7091.28 13096.43 22297.57 14792.04 14294.77 13097.96 8787.01 12699.09 14491.31 17796.77 15798.36 149
test-LLR91.42 23491.19 21592.12 30394.59 30780.66 35494.29 32592.98 36591.11 17290.76 22692.37 34579.02 26098.07 25388.81 22996.74 15897.63 192
test-mter90.19 28489.54 28292.12 30394.59 30780.66 35494.29 32592.98 36587.68 28490.76 22692.37 34567.67 35498.07 25388.81 22996.74 15897.63 192
F-COLMAP93.58 14392.98 14595.37 16198.40 7588.98 21897.18 16297.29 18987.75 28290.49 22997.10 14385.21 14899.50 9986.70 26996.72 16097.63 192
mvs_anonymous93.82 13593.74 11794.06 22896.44 20785.41 30295.81 26497.05 20889.85 21190.09 24496.36 18987.44 11997.75 29793.97 12296.69 16199.02 86
DP-MVS92.76 18291.51 20396.52 8298.77 5390.99 14497.38 14296.08 27282.38 35889.29 27097.87 9383.77 16899.69 5281.37 33496.69 16198.89 107
TESTMET0.1,190.06 28689.42 28591.97 30694.41 31580.62 35694.29 32591.97 37787.28 29490.44 23092.47 34468.79 34697.67 30288.50 23596.60 16397.61 196
GeoE93.89 13193.28 13895.72 14096.96 16889.75 18798.24 4096.92 22389.47 22292.12 19197.21 13784.42 15898.39 21887.71 24696.50 16499.01 89
EPP-MVSNet95.22 9195.04 8995.76 13497.49 14189.56 19298.67 1097.00 21490.69 18594.24 14097.62 11689.79 8198.81 17693.39 13796.49 16598.92 100
PMMVS92.86 17692.34 17494.42 21194.92 28986.73 27794.53 31296.38 25984.78 33594.27 13995.12 25183.13 18198.40 21491.47 17496.49 16598.12 166
Fast-Effi-MVS+93.46 14792.75 15695.59 14896.77 18090.03 17596.81 19097.13 19788.19 26591.30 21494.27 29386.21 13698.63 19687.66 25196.46 16798.12 166
BH-w/o92.14 20691.75 19293.31 26896.99 16785.73 29795.67 27195.69 28888.73 25189.26 27294.82 26382.97 18798.07 25385.26 29396.32 16896.13 245
FA-MVS(test-final)93.52 14692.92 14795.31 16296.77 18088.54 22994.82 30496.21 26889.61 21794.20 14195.25 24583.24 17799.14 13790.01 19796.16 16998.25 153
sss94.51 10993.80 11696.64 7497.07 15591.97 10596.32 23598.06 8288.94 24094.50 13596.78 15884.60 15599.27 12291.90 16196.02 17098.68 122
SCA91.84 21491.18 21693.83 24495.59 24484.95 31394.72 30695.58 29590.82 17992.25 18793.69 31675.80 29898.10 24586.20 27695.98 17198.45 139
CDS-MVSNet94.14 12193.54 12495.93 12796.18 21991.46 12596.33 23497.04 21088.97 23993.56 15496.51 18087.55 11497.89 28589.80 20395.95 17298.44 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM91.52 23090.30 24995.20 16595.30 26789.83 18493.38 35396.85 23086.26 31188.59 28695.80 21784.88 15298.15 23775.67 36695.93 17397.63 192
LFMVS93.60 14292.63 16196.52 8298.13 10091.27 13197.94 7393.39 36390.57 19696.29 8698.31 6069.00 34599.16 13494.18 11995.87 17499.12 80
thisisatest051592.29 19891.30 20995.25 16496.60 18988.90 22094.36 32092.32 37387.92 27293.43 16094.57 27477.28 28599.00 15989.42 21395.86 17597.86 181
CVMVSNet91.23 24591.75 19289.67 34995.77 23874.69 38496.44 22094.88 32885.81 31792.18 18897.64 11479.07 25795.58 36888.06 23895.86 17598.74 117
TAMVS94.01 12793.46 13095.64 14496.16 22190.45 16696.71 19996.89 22689.27 22893.46 15996.92 15387.29 12297.94 27788.70 23295.74 17798.53 128
Effi-MVS+-dtu93.08 16493.21 14092.68 29296.02 23083.25 33297.14 16696.72 23693.85 7491.20 22293.44 32883.08 18298.30 22591.69 17095.73 17896.50 232
HyFIR lowres test93.66 14192.92 14795.87 12998.24 8789.88 18394.58 31098.49 1985.06 33093.78 15195.78 22182.86 18998.67 19291.77 16695.71 17999.07 85
thisisatest053093.03 16792.21 17895.49 15597.07 15589.11 21697.49 13192.19 37490.16 20394.09 14496.41 18676.43 29399.05 15490.38 19295.68 18098.31 151
mvsany_test193.93 13093.98 11393.78 24894.94 28886.80 27494.62 30892.55 37288.77 25096.85 6098.49 3888.98 8898.08 24995.03 9795.62 18196.46 235
UWE-MVS89.91 28889.48 28491.21 32695.88 23278.23 37894.91 30390.26 38789.11 23292.35 18494.52 27668.76 34797.96 27283.95 30995.59 18297.42 204
MVS-HIRNet82.47 35081.21 35386.26 36695.38 25669.21 39388.96 38989.49 38966.28 39380.79 36874.08 39868.48 35197.39 32871.93 38195.47 18392.18 372
tttt051792.96 17092.33 17594.87 18597.11 15387.16 26897.97 6992.09 37590.63 19193.88 15097.01 14876.50 29099.06 15390.29 19595.45 18498.38 147
GG-mvs-BLEND93.62 25593.69 33589.20 21292.39 36983.33 40487.98 30389.84 37271.00 33096.87 34782.08 32795.40 18594.80 321
PatchmatchNetpermissive91.91 21191.35 20593.59 25795.38 25684.11 32293.15 35795.39 30189.54 21992.10 19293.68 31882.82 19198.13 23984.81 29795.32 18698.52 129
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VNet95.89 7495.45 7597.21 6298.07 10592.94 7597.50 12698.15 6293.87 7397.52 4097.61 11785.29 14799.53 9195.81 7495.27 18799.16 73
DSMNet-mixed86.34 32986.12 32587.00 36489.88 38070.43 39094.93 30290.08 38877.97 38385.42 33992.78 33774.44 31093.96 38374.43 37195.14 18896.62 229
test_yl94.78 10694.23 11096.43 9397.74 12291.22 13296.85 18697.10 20091.23 16795.71 11096.93 15084.30 16099.31 11993.10 14095.12 18998.75 115
DCV-MVSNet94.78 10694.23 11096.43 9397.74 12291.22 13296.85 18697.10 20091.23 16795.71 11096.93 15084.30 16099.31 11993.10 14095.12 18998.75 115
alignmvs95.87 7595.23 8497.78 3197.56 14095.19 2197.86 8197.17 19594.39 5996.47 8096.40 18785.89 14099.20 12796.21 5795.11 19198.95 96
MSDG91.42 23490.24 25394.96 18097.15 15288.91 21993.69 34596.32 26185.72 31986.93 32596.47 18380.24 23798.98 16180.57 33895.05 19296.98 218
VDD-MVS93.82 13593.08 14196.02 12397.88 11689.96 18297.72 10095.85 28092.43 12995.86 10598.44 4468.42 35299.39 11196.31 4994.85 19398.71 120
VDDNet93.05 16692.07 18096.02 12396.84 17290.39 16998.08 5395.85 28086.22 31295.79 10898.46 4267.59 35599.19 12894.92 10294.85 19398.47 137
sasdasda96.02 6895.45 7597.75 3597.59 13595.15 2398.28 3297.60 14294.52 5296.27 8896.12 20187.65 11199.18 13096.20 5894.82 19598.91 101
canonicalmvs96.02 6895.45 7597.75 3597.59 13595.15 2398.28 3297.60 14294.52 5296.27 8896.12 20187.65 11199.18 13096.20 5894.82 19598.91 101
Patchmatch-test89.42 29887.99 30593.70 25295.27 26885.11 30988.98 38894.37 34481.11 36687.10 31993.69 31682.28 20397.50 31974.37 37294.76 19798.48 136
cascas91.20 24790.08 26094.58 20394.97 28489.16 21593.65 34797.59 14579.90 37589.40 26592.92 33675.36 30298.36 22092.14 15694.75 19896.23 237
Fast-Effi-MVS+-dtu92.29 19891.99 18493.21 27395.27 26885.52 30097.03 17096.63 24792.09 14089.11 27695.14 24980.33 23698.08 24987.54 25594.74 19996.03 249
MGCFI-Net95.94 7395.40 7997.56 4697.59 13594.62 3098.21 4497.57 14794.41 5796.17 9296.16 19987.54 11599.17 13296.19 6094.73 20098.91 101
WTY-MVS94.71 10894.02 11296.79 7297.71 12492.05 10296.59 21597.35 18490.61 19394.64 13296.93 15086.41 13399.39 11191.20 18094.71 20198.94 97
baseline291.63 22190.86 22493.94 23994.33 31786.32 28795.92 25891.64 37989.37 22586.94 32494.69 26881.62 21698.69 19088.64 23394.57 20296.81 225
HY-MVS89.66 993.87 13292.95 14696.63 7697.10 15492.49 8795.64 27596.64 24489.05 23593.00 16995.79 22085.77 14399.45 10589.16 22494.35 20397.96 175
MDTV_nov1_ep1390.76 23095.22 27280.33 36093.03 36095.28 30888.14 26892.84 17593.83 31081.34 21898.08 24982.86 31794.34 204
testing1191.68 22090.75 23194.47 20796.53 19986.56 28395.76 26894.51 34091.10 17491.24 22093.59 32268.59 34998.86 17091.10 18194.29 20598.00 174
ETVMVS90.52 27389.14 29294.67 19896.81 17787.85 25395.91 25993.97 35389.71 21592.34 18592.48 34365.41 37097.96 27281.37 33494.27 20698.21 158
WB-MVSnew89.88 29189.56 28190.82 33394.57 31083.06 33395.65 27492.85 36787.86 27590.83 22594.10 30279.66 24996.88 34676.34 36294.19 20792.54 366
thres20092.23 20291.39 20494.75 19697.61 13289.03 21796.60 21495.09 31892.08 14193.28 16494.00 30678.39 27299.04 15781.26 33694.18 20896.19 240
Syy-MVS87.13 32287.02 31787.47 36095.16 27573.21 38895.00 30093.93 35688.55 25686.96 32291.99 35375.90 29694.00 38161.59 39494.11 20995.20 296
myMVS_eth3d87.18 32186.38 32189.58 35095.16 27579.53 36895.00 30093.93 35688.55 25686.96 32291.99 35356.23 38794.00 38175.47 36894.11 20995.20 296
testing387.67 31786.88 31890.05 34596.14 22480.71 35397.10 16892.85 36790.15 20487.54 30994.55 27555.70 38894.10 38073.77 37594.10 21195.35 285
testing22290.31 27788.96 29494.35 21396.54 19787.29 26095.50 28193.84 35890.97 17791.75 20192.96 33562.18 37998.00 26382.86 31794.08 21297.76 187
thres100view90092.43 18991.58 19894.98 17897.92 11389.37 20397.71 10294.66 33492.20 13593.31 16394.90 25878.06 27899.08 14681.40 33194.08 21296.48 233
tfpn200view992.38 19291.52 20194.95 18197.85 11789.29 20797.41 13594.88 32892.19 13793.27 16594.46 28278.17 27499.08 14681.40 33194.08 21296.48 233
thres40092.42 19091.52 20195.12 17097.85 11789.29 20797.41 13594.88 32892.19 13793.27 16594.46 28278.17 27499.08 14681.40 33194.08 21296.98 218
thres600view792.49 18891.60 19795.18 16697.91 11489.47 19797.65 10794.66 33492.18 13993.33 16294.91 25778.06 27899.10 14181.61 32894.06 21696.98 218
CR-MVSNet90.82 26389.77 27493.95 23794.45 31387.19 26690.23 38295.68 29086.89 30092.40 17992.36 34880.91 22497.05 33981.09 33793.95 21797.60 197
RPMNet88.98 30187.05 31594.77 19494.45 31387.19 26690.23 38298.03 9177.87 38492.40 17987.55 38780.17 23999.51 9668.84 38893.95 21797.60 197
testing9191.90 21291.02 21994.53 20696.54 19786.55 28495.86 26195.64 29291.77 14891.89 19693.47 32769.94 33998.86 17090.23 19693.86 21998.18 160
testing9991.62 22290.72 23494.32 21696.48 20486.11 29495.81 26494.76 33291.55 15391.75 20193.44 32868.55 35098.82 17490.43 19093.69 22098.04 173
1112_ss93.37 15092.42 17396.21 11297.05 16090.99 14496.31 23696.72 23686.87 30189.83 25296.69 16586.51 13199.14 13788.12 23793.67 22198.50 132
PatchT88.87 30587.42 30993.22 27294.08 32485.10 31089.51 38694.64 33781.92 36192.36 18288.15 38380.05 24197.01 34272.43 37993.65 22297.54 200
COLMAP_ROBcopyleft87.81 1590.40 27689.28 28893.79 24797.95 11087.13 26996.92 18195.89 27982.83 35586.88 32797.18 13873.77 31699.29 12178.44 35293.62 22394.95 305
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GA-MVS91.38 23690.31 24894.59 19994.65 30587.62 25794.34 32196.19 26990.73 18390.35 23293.83 31071.84 32497.96 27287.22 26193.61 22498.21 158
TR-MVS91.48 23290.59 23994.16 22496.40 20987.33 25995.67 27195.34 30787.68 28491.46 20895.52 23676.77 28898.35 22182.85 31993.61 22496.79 226
Test_1112_low_res92.84 17991.84 19095.85 13197.04 16189.97 18195.53 28096.64 24485.38 32389.65 25895.18 24785.86 14199.10 14187.70 24793.58 22698.49 134
ab-mvs93.57 14492.55 16696.64 7497.28 14591.96 10695.40 28597.45 16889.81 21393.22 16796.28 19279.62 25099.46 10390.74 18793.11 22798.50 132
AllTest90.23 28188.98 29393.98 23397.94 11186.64 27896.51 21995.54 29685.38 32385.49 33796.77 15970.28 33499.15 13580.02 34292.87 22896.15 243
TestCases93.98 23397.94 11186.64 27895.54 29685.38 32385.49 33796.77 15970.28 33499.15 13580.02 34292.87 22896.15 243
SDMVSNet94.17 11693.61 12195.86 13098.09 10191.37 12897.35 14498.20 5293.18 10291.79 19997.28 13179.13 25698.93 16494.61 11392.84 23097.28 211
sd_testset93.10 16292.45 17295.05 17298.09 10189.21 21196.89 18397.64 13893.18 10291.79 19997.28 13175.35 30398.65 19488.99 22692.84 23097.28 211
MIMVSNet88.50 30986.76 31993.72 25194.84 29587.77 25591.39 37294.05 35086.41 30887.99 30292.59 34163.27 37495.82 36277.44 35592.84 23097.57 199
Anonymous20240521192.07 20790.83 22895.76 13498.19 9588.75 22297.58 11895.00 32186.00 31593.64 15397.45 12466.24 36699.53 9190.68 18992.71 23399.01 89
EPMVS90.70 26889.81 27293.37 26694.73 30284.21 32093.67 34688.02 39489.50 22192.38 18193.49 32577.82 28297.78 29486.03 28292.68 23498.11 169
XVG-OURS93.72 13993.35 13694.80 19297.07 15588.61 22594.79 30597.46 16391.97 14593.99 14697.86 9581.74 21498.88 16992.64 15092.67 23596.92 222
XVG-OURS-SEG-HR93.86 13393.55 12394.81 18997.06 15888.53 23095.28 29197.45 16891.68 15194.08 14597.68 10782.41 20198.90 16893.84 12892.47 23696.98 218
CLD-MVS92.98 16992.53 16894.32 21696.12 22689.20 21295.28 29197.47 16192.66 12389.90 24995.62 23080.58 23098.40 21492.73 14992.40 23795.38 283
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS93.28 15392.76 15494.82 18794.63 30690.77 15596.65 20697.18 19393.72 7791.68 20397.26 13479.33 25498.63 19692.13 15792.28 23895.07 301
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP_MVS93.78 13793.43 13394.82 18796.21 21689.99 17897.74 9597.51 15594.85 3491.34 21196.64 16881.32 21998.60 19993.02 14592.23 23995.86 251
plane_prior597.51 15598.60 19993.02 14592.23 23995.86 251
RPSCF90.75 26590.86 22490.42 34196.84 17276.29 38295.61 27696.34 26083.89 34491.38 20997.87 9376.45 29198.78 17887.16 26492.23 23996.20 239
CostFormer91.18 25090.70 23592.62 29394.84 29581.76 34594.09 33194.43 34184.15 34192.72 17693.77 31479.43 25298.20 23290.70 18892.18 24297.90 178
plane_prior89.99 17897.24 15494.06 6792.16 243
HQP3-MVS97.39 17892.10 244
HQP-MVS93.19 15792.74 15794.54 20595.86 23389.33 20596.65 20697.39 17893.55 8290.14 23595.87 21280.95 22298.50 20792.13 15792.10 24495.78 260
tpm289.96 28789.21 28992.23 30294.91 29181.25 34893.78 34194.42 34280.62 37291.56 20593.44 32876.44 29297.94 27785.60 28892.08 24697.49 201
LPG-MVS_test92.94 17292.56 16594.10 22696.16 22188.26 23797.65 10797.46 16391.29 16290.12 24197.16 13979.05 25898.73 18592.25 15391.89 24795.31 288
LGP-MVS_train94.10 22696.16 22188.26 23797.46 16391.29 16290.12 24197.16 13979.05 25898.73 18592.25 15391.89 24795.31 288
bld_raw_dy_0_6492.85 17891.91 18795.69 14297.02 16289.81 18597.88 7993.96 35492.57 12692.59 17796.79 15769.53 34399.02 15895.03 9791.78 24998.23 155
ACMM89.79 892.96 17092.50 17094.35 21396.30 21488.71 22397.58 11897.36 18391.40 16190.53 22896.65 16779.77 24698.75 18391.24 17991.64 25095.59 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
JIA-IIPM88.26 31287.04 31691.91 30793.52 34081.42 34789.38 38794.38 34380.84 36990.93 22480.74 39479.22 25597.92 28182.76 32191.62 25196.38 236
test_djsdf93.07 16592.76 15494.00 23293.49 34288.70 22498.22 4297.57 14791.42 15990.08 24595.55 23482.85 19097.92 28194.07 12091.58 25295.40 281
jajsoiax92.42 19091.89 18994.03 23193.33 34888.50 23197.73 9797.53 15392.00 14488.85 28096.50 18275.62 30198.11 24493.88 12791.56 25395.48 273
mvs_tets92.31 19691.76 19193.94 23993.41 34588.29 23597.63 11397.53 15392.04 14288.76 28396.45 18474.62 30998.09 24893.91 12591.48 25495.45 277
ACMP89.59 1092.62 18592.14 17994.05 22996.40 20988.20 24097.36 14397.25 19291.52 15488.30 29396.64 16878.46 27098.72 18891.86 16491.48 25495.23 295
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
iter_conf0593.18 16092.63 16194.83 18696.64 18690.69 15897.60 11695.53 29892.52 12791.58 20496.64 16876.35 29498.13 23995.43 9091.42 25695.68 269
ADS-MVSNet289.45 29788.59 29992.03 30595.86 23382.26 34190.93 37794.32 34783.23 35391.28 21891.81 35779.01 26295.99 35779.52 34491.39 25797.84 182
ADS-MVSNet89.89 29088.68 29893.53 26095.86 23384.89 31490.93 37795.07 31983.23 35391.28 21891.81 35779.01 26297.85 28779.52 34491.39 25797.84 182
anonymousdsp92.16 20491.55 19993.97 23592.58 36189.55 19397.51 12597.42 17689.42 22488.40 29094.84 26180.66 22897.88 28691.87 16391.28 25994.48 333
CMPMVSbinary62.92 2185.62 33884.92 33587.74 35989.14 38473.12 38994.17 32896.80 23373.98 38873.65 38794.93 25666.36 36397.61 30983.95 30991.28 25992.48 368
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvsmamba93.83 13493.46 13094.93 18494.88 29390.85 15198.55 1495.49 29994.24 6391.29 21796.97 14983.04 18498.14 23895.56 8891.17 26195.78 260
test_fmvs289.77 29589.93 26789.31 35393.68 33676.37 38197.64 11195.90 27789.84 21291.49 20796.26 19458.77 38297.10 33794.65 11191.13 26294.46 334
Anonymous2024052991.98 21090.73 23395.73 13998.14 9989.40 20197.99 6297.72 12879.63 37693.54 15697.41 12769.94 33999.56 8591.04 18391.11 26398.22 157
XVG-ACMP-BASELINE90.93 26090.21 25793.09 27694.31 31985.89 29595.33 28897.26 19091.06 17589.38 26695.44 23968.61 34898.60 19989.46 21291.05 26494.79 323
ACMMP++91.02 265
UniMVSNet_ETH3D91.34 24190.22 25694.68 19794.86 29487.86 25297.23 15897.46 16387.99 27089.90 24996.92 15366.35 36498.23 22990.30 19490.99 26697.96 175
D2MVS91.30 24390.95 22192.35 29694.71 30385.52 30096.18 24698.21 5188.89 24286.60 32893.82 31279.92 24497.95 27689.29 21790.95 26793.56 351
PS-MVSNAJss93.74 13893.51 12894.44 20993.91 32889.28 20997.75 9497.56 15192.50 12889.94 24896.54 17988.65 9598.18 23593.83 12990.90 26895.86 251
EG-PatchMatch MVS87.02 32485.44 32891.76 31692.67 35885.00 31196.08 25096.45 25683.41 35279.52 37593.49 32557.10 38597.72 29979.34 34990.87 26992.56 365
PVSNet_BlendedMVS94.06 12493.92 11494.47 20798.27 8389.46 19996.73 19698.36 2490.17 20294.36 13795.24 24688.02 10499.58 7793.44 13490.72 27094.36 338
test_vis1_rt86.16 33285.06 33389.46 35193.47 34480.46 35896.41 22486.61 39985.22 32679.15 37788.64 37852.41 39197.06 33893.08 14290.57 27190.87 382
EI-MVSNet93.03 16792.88 14993.48 26295.77 23886.98 27196.44 22097.12 19890.66 18991.30 21497.64 11486.56 12998.05 25689.91 20090.55 27295.41 278
MVSTER93.20 15692.81 15394.37 21296.56 19489.59 19197.06 16997.12 19891.24 16691.30 21495.96 20882.02 20898.05 25693.48 13390.55 27295.47 275
FIs94.09 12393.70 11895.27 16395.70 24092.03 10398.10 5198.68 1393.36 9590.39 23196.70 16387.63 11397.94 27792.25 15390.50 27495.84 254
FC-MVSNet-test93.94 12993.57 12295.04 17395.48 25091.45 12698.12 5098.71 1193.37 9390.23 23496.70 16387.66 11097.85 28791.49 17390.39 27595.83 255
ACMMP++_ref90.30 276
RRT_MVS93.10 16292.83 15193.93 24194.76 29888.04 24598.47 2296.55 25193.44 9090.01 24797.04 14680.64 22997.93 28094.33 11790.21 27795.83 255
LTVRE_ROB88.41 1390.99 25689.92 26894.19 22296.18 21989.55 19396.31 23697.09 20287.88 27485.67 33595.91 21178.79 26698.57 20381.50 32989.98 27894.44 336
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpmvs89.83 29489.15 29191.89 30894.92 28980.30 36193.11 35895.46 30086.28 31088.08 30092.65 33880.44 23398.52 20681.47 33089.92 27996.84 224
ITE_SJBPF92.43 29595.34 26185.37 30595.92 27591.47 15687.75 30696.39 18871.00 33097.96 27282.36 32589.86 28093.97 347
ET-MVSNet_ETH3D91.49 23190.11 25995.63 14596.40 20991.57 12095.34 28793.48 36290.60 19575.58 38495.49 23780.08 24096.79 34994.25 11889.76 28198.52 129
USDC88.94 30287.83 30792.27 30094.66 30484.96 31293.86 33995.90 27787.34 29283.40 35795.56 23367.43 35698.19 23482.64 32489.67 28293.66 350
dmvs_re90.21 28289.50 28392.35 29695.47 25385.15 30895.70 27094.37 34490.94 17888.42 28993.57 32374.63 30895.67 36582.80 32089.57 28396.22 238
ACMH87.59 1690.53 27289.42 28593.87 24396.21 21687.92 24997.24 15496.94 21888.45 25983.91 35596.27 19371.92 32398.62 19884.43 30289.43 28495.05 303
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpmrst91.44 23391.32 20791.79 31395.15 27779.20 37393.42 35295.37 30388.55 25693.49 15893.67 31982.49 19998.27 22790.41 19189.34 28597.90 178
test0.0.03 189.37 29988.70 29791.41 32392.47 36385.63 29895.22 29692.70 37091.11 17286.91 32693.65 32079.02 26093.19 38878.00 35489.18 28695.41 278
OpenMVS_ROBcopyleft81.14 2084.42 34482.28 35090.83 33290.06 37884.05 32495.73 26994.04 35173.89 38980.17 37491.53 36059.15 38197.64 30566.92 39089.05 28790.80 383
GBi-Net91.35 23990.27 25194.59 19996.51 20191.18 13897.50 12696.93 21988.82 24689.35 26794.51 27773.87 31397.29 33386.12 27988.82 28895.31 288
test191.35 23990.27 25194.59 19996.51 20191.18 13897.50 12696.93 21988.82 24689.35 26794.51 27773.87 31397.29 33386.12 27988.82 28895.31 288
FMVSNet391.78 21590.69 23695.03 17496.53 19992.27 9597.02 17296.93 21989.79 21489.35 26794.65 27177.01 28697.47 32186.12 27988.82 28895.35 285
tpm cat188.36 31087.21 31391.81 31295.13 27980.55 35792.58 36695.70 28674.97 38787.45 31091.96 35578.01 28098.17 23680.39 34088.74 29196.72 228
test_040286.46 32784.79 33691.45 32195.02 28385.55 29996.29 23894.89 32780.90 36782.21 36393.97 30868.21 35397.29 33362.98 39288.68 29291.51 377
FMVSNet291.31 24290.08 26094.99 17696.51 20192.21 9697.41 13596.95 21788.82 24688.62 28594.75 26673.87 31397.42 32685.20 29488.55 29395.35 285
tt080591.09 25190.07 26394.16 22495.61 24388.31 23497.56 12096.51 25389.56 21889.17 27495.64 22967.08 36298.38 21991.07 18288.44 29495.80 258
testgi87.97 31387.21 31390.24 34392.86 35480.76 35296.67 20594.97 32391.74 14985.52 33695.83 21562.66 37794.47 37776.25 36388.36 29595.48 273
ACMH+87.92 1490.20 28389.18 29093.25 27096.48 20486.45 28596.99 17696.68 24188.83 24584.79 34496.22 19570.16 33698.53 20584.42 30388.04 29694.77 326
tpm90.25 28089.74 27791.76 31693.92 32779.73 36793.98 33293.54 36188.28 26391.99 19493.25 33277.51 28497.44 32487.30 26087.94 29798.12 166
pmmvs490.93 26089.85 27094.17 22393.34 34790.79 15494.60 30996.02 27384.62 33687.45 31095.15 24881.88 21297.45 32387.70 24787.87 29894.27 343
XXY-MVS92.16 20491.23 21394.95 18194.75 30090.94 14797.47 13297.43 17589.14 23188.90 27796.43 18579.71 24798.24 22889.56 21087.68 29995.67 270
pmmvs589.86 29388.87 29692.82 28692.86 35486.23 29096.26 23995.39 30184.24 34087.12 31794.51 27774.27 31197.36 33087.61 25487.57 30094.86 314
LF4IMVS87.94 31487.25 31189.98 34692.38 36680.05 36594.38 31995.25 31187.59 28684.34 34694.74 26764.31 37297.66 30484.83 29687.45 30192.23 370
FMVSNet189.88 29188.31 30294.59 19995.41 25491.18 13897.50 12696.93 21986.62 30487.41 31294.51 27765.94 36897.29 33383.04 31687.43 30295.31 288
dp88.90 30488.26 30490.81 33494.58 30976.62 38092.85 36394.93 32585.12 32990.07 24693.07 33375.81 29798.12 24380.53 33987.42 30397.71 189
OurMVSNet-221017-090.51 27490.19 25891.44 32293.41 34581.25 34896.98 17796.28 26291.68 15186.55 32996.30 19174.20 31297.98 26588.96 22787.40 30495.09 300
TinyColmap86.82 32585.35 33191.21 32694.91 29182.99 33493.94 33594.02 35283.58 34981.56 36594.68 26962.34 37898.13 23975.78 36487.35 30592.52 367
cl2291.21 24690.56 24193.14 27596.09 22886.80 27494.41 31896.58 25087.80 27888.58 28793.99 30780.85 22797.62 30889.87 20286.93 30694.99 304
miper_ehance_all_eth91.59 22491.13 21792.97 28095.55 24786.57 28294.47 31496.88 22787.77 28088.88 27994.01 30586.22 13597.54 31489.49 21186.93 30694.79 323
miper_enhance_ethall91.54 22991.01 22093.15 27495.35 26087.07 27093.97 33396.90 22486.79 30289.17 27493.43 33186.55 13097.64 30589.97 19986.93 30694.74 327
IterMVS90.15 28589.67 27891.61 31895.48 25083.72 32794.33 32296.12 27189.99 20787.31 31694.15 30175.78 30096.27 35586.97 26786.89 30994.83 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT90.31 27789.81 27291.82 31195.52 24884.20 32194.30 32496.15 27090.61 19387.39 31394.27 29375.80 29896.44 35287.34 25886.88 31094.82 318
our_test_388.78 30687.98 30691.20 32892.45 36482.53 33793.61 34995.69 28885.77 31884.88 34293.71 31579.99 24296.78 35079.47 34686.24 31194.28 342
EU-MVSNet88.72 30788.90 29588.20 35793.15 35174.21 38596.63 21194.22 34885.18 32787.32 31595.97 20776.16 29594.98 37385.27 29286.17 31295.41 278
Anonymous2023120687.09 32386.14 32489.93 34791.22 37280.35 35996.11 24895.35 30483.57 35084.16 34993.02 33473.54 31895.61 36672.16 38086.14 31393.84 349
IterMVS-LS92.29 19891.94 18693.34 26796.25 21586.97 27296.57 21897.05 20890.67 18789.50 26494.80 26486.59 12897.64 30589.91 20086.11 31495.40 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPA-MVSNet93.24 15492.48 17195.51 15395.70 24092.39 8997.86 8198.66 1692.30 13292.09 19395.37 24080.49 23298.40 21493.95 12385.86 31595.75 265
nrg03094.05 12593.31 13796.27 10795.22 27294.59 3198.34 2797.46 16392.93 11691.21 22196.64 16887.23 12498.22 23094.99 10185.80 31695.98 250
cl____90.96 25990.32 24792.89 28395.37 25886.21 29194.46 31696.64 24487.82 27688.15 29994.18 29982.98 18697.54 31487.70 24785.59 31794.92 311
DIV-MVS_self_test90.97 25890.33 24692.88 28495.36 25986.19 29294.46 31696.63 24787.82 27688.18 29894.23 29682.99 18597.53 31687.72 24485.57 31894.93 309
v119291.07 25290.23 25493.58 25893.70 33487.82 25496.73 19697.07 20587.77 28089.58 25994.32 29080.90 22697.97 26886.52 27185.48 31994.95 305
v124090.70 26889.85 27093.23 27193.51 34186.80 27496.61 21297.02 21387.16 29689.58 25994.31 29179.55 25197.98 26585.52 28985.44 32094.90 312
v114491.37 23890.60 23893.68 25493.89 32988.23 23996.84 18897.03 21288.37 26189.69 25694.39 28482.04 20797.98 26587.80 24385.37 32194.84 315
Anonymous2024052186.42 32885.44 32889.34 35290.33 37679.79 36696.73 19695.92 27583.71 34883.25 35891.36 36163.92 37396.01 35678.39 35385.36 32292.22 371
FMVSNet587.29 32085.79 32691.78 31494.80 29787.28 26195.49 28295.28 30884.09 34283.85 35691.82 35662.95 37694.17 37978.48 35185.34 32393.91 348
WR-MVS92.34 19491.53 20094.77 19495.13 27990.83 15296.40 22897.98 10091.88 14689.29 27095.54 23582.50 19897.80 29289.79 20485.27 32495.69 268
v192192090.85 26290.03 26593.29 26993.55 33886.96 27396.74 19597.04 21087.36 29189.52 26394.34 28780.23 23897.97 26886.27 27485.21 32594.94 307
Anonymous2023121190.63 27089.42 28594.27 22198.24 8789.19 21498.05 5697.89 10779.95 37488.25 29694.96 25472.56 32298.13 23989.70 20685.14 32695.49 272
Patchmtry88.64 30887.25 31192.78 28894.09 32386.64 27889.82 38595.68 29080.81 37087.63 30892.36 34880.91 22497.03 34078.86 35085.12 32794.67 329
V4291.58 22690.87 22393.73 24994.05 32588.50 23197.32 14896.97 21588.80 24989.71 25494.33 28882.54 19798.05 25689.01 22585.07 32894.64 331
SixPastTwentyTwo89.15 30088.54 30090.98 33093.49 34280.28 36296.70 20094.70 33390.78 18084.15 35095.57 23271.78 32597.71 30084.63 30085.07 32894.94 307
v2v48291.59 22490.85 22693.80 24693.87 33088.17 24296.94 18096.88 22789.54 21989.53 26294.90 25881.70 21598.02 26189.25 21985.04 33095.20 296
ppachtmachnet_test88.35 31187.29 31091.53 31992.45 36483.57 33093.75 34295.97 27484.28 33985.32 34094.18 29979.00 26496.93 34475.71 36584.99 33194.10 344
v14419291.06 25390.28 25093.39 26593.66 33787.23 26596.83 18997.07 20587.43 28989.69 25694.28 29281.48 21798.00 26387.18 26384.92 33294.93 309
CP-MVSNet91.89 21391.24 21293.82 24595.05 28288.57 22797.82 8898.19 5591.70 15088.21 29795.76 22281.96 20997.52 31887.86 24184.65 33395.37 284
c3_l91.38 23690.89 22292.88 28495.58 24586.30 28894.68 30796.84 23188.17 26688.83 28294.23 29685.65 14497.47 32189.36 21484.63 33494.89 313
miper_lstm_enhance90.50 27590.06 26491.83 31095.33 26483.74 32693.86 33996.70 24087.56 28787.79 30493.81 31383.45 17596.92 34587.39 25784.62 33594.82 318
tfpnnormal89.70 29688.40 30193.60 25695.15 27790.10 17497.56 12098.16 6187.28 29486.16 33294.63 27277.57 28398.05 25674.48 37084.59 33692.65 364
EGC-MVSNET68.77 36563.01 37086.07 36792.49 36282.24 34293.96 33490.96 3840.71 4102.62 41190.89 36353.66 38993.46 38557.25 39784.55 33782.51 393
PS-CasMVS91.55 22890.84 22793.69 25394.96 28588.28 23697.84 8598.24 4791.46 15788.04 30195.80 21779.67 24897.48 32087.02 26684.54 33895.31 288
N_pmnet78.73 35678.71 35778.79 37492.80 35646.50 41194.14 32943.71 41378.61 38080.83 36791.66 35974.94 30696.36 35367.24 38984.45 33993.50 352
eth_miper_zixun_eth91.02 25590.59 23992.34 29895.33 26484.35 31894.10 33096.90 22488.56 25588.84 28194.33 28884.08 16597.60 31088.77 23184.37 34095.06 302
WR-MVS_H92.00 20991.35 20593.95 23795.09 28189.47 19798.04 5798.68 1391.46 15788.34 29194.68 26985.86 14197.56 31285.77 28684.24 34194.82 318
v1091.04 25490.23 25493.49 26194.12 32288.16 24397.32 14897.08 20388.26 26488.29 29494.22 29882.17 20697.97 26886.45 27384.12 34294.33 339
UniMVSNet (Re)93.31 15292.55 16695.61 14795.39 25593.34 6697.39 14098.71 1193.14 10590.10 24394.83 26287.71 10998.03 26091.67 17183.99 34395.46 276
UniMVSNet_NR-MVSNet93.37 15092.67 16095.47 15895.34 26192.83 7697.17 16398.58 1792.98 11490.13 23995.80 21788.37 10097.85 28791.71 16883.93 34495.73 267
DU-MVS92.90 17492.04 18195.49 15594.95 28692.83 7697.16 16498.24 4793.02 10890.13 23995.71 22483.47 17397.85 28791.71 16883.93 34495.78 260
v891.29 24490.53 24293.57 25994.15 32188.12 24497.34 14597.06 20788.99 23788.32 29294.26 29583.08 18298.01 26287.62 25383.92 34694.57 332
baseline192.82 18091.90 18895.55 15197.20 14890.77 15597.19 16194.58 33892.20 13592.36 18296.34 19084.16 16498.21 23189.20 22283.90 34797.68 191
v7n90.76 26489.86 26993.45 26493.54 33987.60 25897.70 10397.37 18188.85 24387.65 30794.08 30481.08 22198.10 24584.68 29983.79 34894.66 330
VPNet92.23 20291.31 20894.99 17695.56 24690.96 14697.22 15997.86 11592.96 11590.96 22396.62 17675.06 30498.20 23291.90 16183.65 34995.80 258
NR-MVSNet92.34 19491.27 21195.53 15294.95 28693.05 7297.39 14098.07 7992.65 12484.46 34595.71 22485.00 15197.77 29689.71 20583.52 35095.78 260
v14890.99 25690.38 24592.81 28793.83 33185.80 29696.78 19396.68 24189.45 22388.75 28493.93 30982.96 18897.82 29187.83 24283.25 35194.80 321
Baseline_NR-MVSNet91.20 24790.62 23792.95 28193.83 33188.03 24697.01 17595.12 31788.42 26089.70 25595.13 25083.47 17397.44 32489.66 20883.24 35293.37 355
TranMVSNet+NR-MVSNet92.50 18691.63 19695.14 16894.76 29892.07 10197.53 12498.11 7092.90 11789.56 26196.12 20183.16 17997.60 31089.30 21683.20 35395.75 265
PEN-MVS91.20 24790.44 24393.48 26294.49 31187.91 25197.76 9398.18 5791.29 16287.78 30595.74 22380.35 23597.33 33185.46 29082.96 35495.19 299
new_pmnet82.89 34981.12 35488.18 35889.63 38180.18 36391.77 37192.57 37176.79 38675.56 38588.23 38261.22 38094.48 37671.43 38282.92 35589.87 386
FPMVS71.27 36169.85 36375.50 38174.64 40459.03 40491.30 37391.50 38058.80 39657.92 40088.28 38129.98 40385.53 40153.43 39982.84 35681.95 394
MIMVSNet184.93 34183.05 34390.56 33989.56 38284.84 31595.40 28595.35 30483.91 34380.38 37192.21 35257.23 38493.34 38770.69 38682.75 35793.50 352
dmvs_testset81.38 35282.60 34877.73 37591.74 37051.49 40893.03 36084.21 40389.07 23378.28 38091.25 36276.97 28788.53 39856.57 39882.24 35893.16 356
pm-mvs190.72 26789.65 28093.96 23694.29 32089.63 18897.79 9296.82 23289.07 23386.12 33395.48 23878.61 26897.78 29486.97 26781.67 35994.46 334
DTE-MVSNet90.56 27189.75 27693.01 27893.95 32687.25 26397.64 11197.65 13690.74 18287.12 31795.68 22779.97 24397.00 34383.33 31381.66 36094.78 325
IB-MVS87.33 1789.91 28888.28 30394.79 19395.26 27187.70 25695.12 29993.95 35589.35 22687.03 32092.49 34270.74 33299.19 12889.18 22381.37 36197.49 201
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test20.0386.14 33385.40 33088.35 35590.12 37780.06 36495.90 26095.20 31388.59 25281.29 36693.62 32171.43 32792.65 38971.26 38481.17 36292.34 369
K. test v387.64 31886.75 32090.32 34293.02 35379.48 37196.61 21292.08 37690.66 18980.25 37394.09 30367.21 35896.65 35185.96 28480.83 36394.83 316
test_fmvs383.21 34783.02 34483.78 36986.77 39268.34 39596.76 19494.91 32686.49 30684.14 35189.48 37436.04 39991.73 39191.86 16480.77 36491.26 381
APD_test179.31 35577.70 35884.14 36889.11 38569.07 39492.36 37091.50 38069.07 39273.87 38692.63 34039.93 39794.32 37870.54 38780.25 36589.02 388
MDA-MVSNet_test_wron85.87 33684.23 34090.80 33692.38 36682.57 33693.17 35595.15 31582.15 35967.65 39192.33 35178.20 27395.51 36977.33 35679.74 36694.31 341
h-mvs3394.15 11893.52 12796.04 12197.81 11990.22 17297.62 11597.58 14695.19 2096.74 6497.45 12483.67 17099.61 6995.85 7179.73 36798.29 152
YYNet185.87 33684.23 34090.78 33792.38 36682.46 33993.17 35595.14 31682.12 36067.69 39092.36 34878.16 27695.50 37077.31 35779.73 36794.39 337
pmmvs687.81 31686.19 32392.69 29191.32 37186.30 28897.34 14596.41 25880.59 37384.05 35494.37 28667.37 35797.67 30284.75 29879.51 36994.09 346
AUN-MVS91.76 21690.75 23194.81 18997.00 16688.57 22796.65 20696.49 25489.63 21692.15 18996.12 20178.66 26798.50 20790.83 18479.18 37097.36 206
hse-mvs293.45 14892.99 14394.81 18997.02 16288.59 22696.69 20296.47 25595.19 2096.74 6496.16 19983.67 17098.48 21095.85 7179.13 37197.35 208
test_f80.57 35379.62 35583.41 37083.38 39767.80 39793.57 35093.72 35980.80 37177.91 38187.63 38633.40 40092.08 39087.14 26579.04 37290.34 385
Gipumacopyleft67.86 36665.41 36875.18 38292.66 35973.45 38766.50 40194.52 33953.33 40057.80 40166.07 40130.81 40189.20 39548.15 40178.88 37362.90 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MDA-MVSNet-bldmvs85.00 34082.95 34591.17 32993.13 35283.33 33194.56 31195.00 32184.57 33765.13 39592.65 33870.45 33395.85 36073.57 37677.49 37494.33 339
Patchmatch-RL test87.38 31986.24 32290.81 33488.74 38778.40 37788.12 39293.17 36487.11 29782.17 36489.29 37581.95 21095.60 36788.64 23377.02 37598.41 144
lessismore_v090.45 34091.96 36979.09 37587.19 39780.32 37294.39 28466.31 36597.55 31384.00 30876.84 37694.70 328
mvsany_test383.59 34582.44 34987.03 36383.80 39573.82 38693.70 34390.92 38586.42 30782.51 36290.26 36746.76 39495.71 36390.82 18576.76 37791.57 376
pmmvs-eth3d86.22 33184.45 33891.53 31988.34 38887.25 26394.47 31495.01 32083.47 35179.51 37689.61 37369.75 34195.71 36383.13 31576.73 37891.64 374
PM-MVS83.48 34681.86 35288.31 35687.83 39077.59 37993.43 35191.75 37886.91 29980.63 36989.91 37144.42 39595.84 36185.17 29576.73 37891.50 378
ambc86.56 36583.60 39670.00 39285.69 39494.97 32380.60 37088.45 37937.42 39896.84 34882.69 32375.44 38092.86 360
TDRefinement86.53 32684.76 33791.85 30982.23 39984.25 31996.38 23095.35 30484.97 33284.09 35294.94 25565.76 36998.34 22484.60 30174.52 38192.97 358
TransMVSNet (Re)88.94 30287.56 30893.08 27794.35 31688.45 23397.73 9795.23 31287.47 28884.26 34895.29 24279.86 24597.33 33179.44 34874.44 38293.45 354
PMVScopyleft53.92 2258.58 36955.40 37268.12 38551.00 41248.64 40978.86 39887.10 39846.77 40135.84 40774.28 3978.76 41186.34 40042.07 40273.91 38369.38 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft74.68 38390.84 37564.34 40181.61 40665.34 39467.47 39288.01 38548.60 39380.13 40462.33 39373.68 38479.58 395
KD-MVS_self_test85.95 33584.95 33488.96 35489.55 38379.11 37495.13 29896.42 25785.91 31684.07 35390.48 36570.03 33894.82 37480.04 34172.94 38592.94 359
test_vis3_rt72.73 35970.55 36279.27 37380.02 40068.13 39693.92 33774.30 41076.90 38558.99 39973.58 39920.29 40895.37 37184.16 30472.80 38674.31 398
CL-MVSNet_self_test86.31 33085.15 33289.80 34888.83 38681.74 34693.93 33696.22 26686.67 30385.03 34190.80 36478.09 27794.50 37574.92 36971.86 38793.15 357
UnsupCasMVSNet_eth85.99 33484.45 33890.62 33889.97 37982.40 34093.62 34897.37 18189.86 20978.59 37992.37 34565.25 37195.35 37282.27 32670.75 38894.10 344
new-patchmatchnet83.18 34881.87 35187.11 36286.88 39175.99 38393.70 34395.18 31485.02 33177.30 38288.40 38065.99 36793.88 38474.19 37470.18 38991.47 379
pmmvs379.97 35477.50 35987.39 36182.80 39879.38 37292.70 36590.75 38670.69 39178.66 37887.47 38851.34 39293.40 38673.39 37769.65 39089.38 387
testf169.31 36366.76 36676.94 37878.61 40161.93 40288.27 39086.11 40055.62 39759.69 39785.31 39020.19 40989.32 39357.62 39569.44 39179.58 395
APD_test269.31 36366.76 36676.94 37878.61 40161.93 40288.27 39086.11 40055.62 39759.69 39785.31 39020.19 40989.32 39357.62 39569.44 39179.58 395
LCM-MVSNet72.55 36069.39 36482.03 37170.81 40965.42 40090.12 38494.36 34655.02 39965.88 39381.72 39324.16 40789.96 39274.32 37368.10 39390.71 384
WB-MVS76.77 35776.63 36077.18 37685.32 39356.82 40694.53 31289.39 39082.66 35771.35 38889.18 37675.03 30588.88 39635.42 40466.79 39485.84 390
UnsupCasMVSNet_bld82.13 35179.46 35690.14 34488.00 38982.47 33890.89 37996.62 24978.94 37975.61 38384.40 39256.63 38696.31 35477.30 35866.77 39591.63 375
SSC-MVS76.05 35875.83 36176.72 38084.77 39456.22 40794.32 32388.96 39281.82 36370.52 38988.91 37774.79 30788.71 39733.69 40564.71 39685.23 391
test_method66.11 36764.89 36969.79 38472.62 40735.23 41565.19 40292.83 36920.35 40565.20 39488.08 38443.14 39682.70 40273.12 37863.46 39791.45 380
KD-MVS_2432*160084.81 34282.64 34691.31 32491.07 37385.34 30691.22 37495.75 28485.56 32183.09 35990.21 36867.21 35895.89 35877.18 35962.48 39892.69 362
miper_refine_blended84.81 34282.64 34691.31 32491.07 37385.34 30691.22 37495.75 28485.56 32183.09 35990.21 36867.21 35895.89 35877.18 35962.48 39892.69 362
PVSNet_082.17 1985.46 33983.64 34290.92 33195.27 26879.49 37090.55 38095.60 29383.76 34783.00 36189.95 37071.09 32997.97 26882.75 32260.79 40095.31 288
PMMVS270.19 36266.92 36580.01 37276.35 40365.67 39986.22 39387.58 39664.83 39562.38 39680.29 39526.78 40588.49 39963.79 39154.07 40185.88 389
MVEpermissive50.73 2353.25 37148.81 37666.58 38665.34 41057.50 40572.49 40070.94 41140.15 40439.28 40663.51 4026.89 41373.48 40738.29 40342.38 40268.76 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN53.28 37052.56 37455.43 38774.43 40547.13 41083.63 39776.30 40742.23 40242.59 40462.22 40328.57 40474.40 40531.53 40631.51 40344.78 402
ANet_high63.94 36859.58 37177.02 37761.24 41166.06 39885.66 39587.93 39578.53 38142.94 40371.04 40025.42 40680.71 40352.60 40030.83 40484.28 392
EMVS52.08 37251.31 37554.39 38872.62 40745.39 41283.84 39675.51 40941.13 40340.77 40559.65 40430.08 40273.60 40628.31 40729.90 40544.18 403
tmp_tt51.94 37353.82 37346.29 38933.73 41345.30 41378.32 39967.24 41218.02 40650.93 40287.05 38952.99 39053.11 40870.76 38525.29 40640.46 404
wuyk23d25.11 37424.57 37826.74 39073.98 40639.89 41457.88 4039.80 41412.27 40710.39 4086.97 4107.03 41236.44 40925.43 40817.39 4073.89 407
testmvs13.36 37616.33 3794.48 3925.04 4142.26 41793.18 3543.28 4152.70 4088.24 40921.66 4062.29 4152.19 4107.58 4092.96 4089.00 406
test12313.04 37715.66 3805.18 3914.51 4153.45 41692.50 3681.81 4162.50 4097.58 41020.15 4073.67 4142.18 4117.13 4101.07 4099.90 405
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k23.24 37530.99 3770.00 3930.00 4160.00 4180.00 40497.63 1400.00 4110.00 41296.88 15584.38 1590.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.39 3799.85 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41188.65 950.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.06 37810.74 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41296.69 1650.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS79.53 36875.56 367
FOURS199.55 193.34 6699.29 198.35 2794.98 2998.49 23
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
eth-test20.00 416
eth-test0.00 416
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
save fliter98.91 4994.28 3897.02 17298.02 9495.35 16
test072699.45 395.36 1398.31 2998.29 3494.92 3298.99 798.92 1095.08 8
GSMVS98.45 139
test_part299.28 2595.74 898.10 29
sam_mvs182.76 19298.45 139
sam_mvs81.94 211
MTGPAbinary98.08 74
test_post192.81 36416.58 40980.53 23197.68 30186.20 276
test_post17.58 40881.76 21398.08 249
patchmatchnet-post90.45 36682.65 19698.10 245
MTMP97.86 8182.03 405
gm-plane-assit93.22 34978.89 37684.82 33493.52 32498.64 19587.72 244
TEST998.70 5694.19 4296.41 22498.02 9488.17 26696.03 9897.56 12192.74 3099.59 74
test_898.67 5894.06 4996.37 23198.01 9788.58 25395.98 10297.55 12392.73 3199.58 77
agg_prior98.67 5893.79 5498.00 9895.68 11299.57 84
test_prior493.66 5796.42 223
test_prior97.23 6098.67 5892.99 7398.00 9899.41 10999.29 63
旧先验295.94 25781.66 36497.34 4898.82 17492.26 151
新几何295.79 266
无先验95.79 26697.87 11183.87 34699.65 5887.68 25098.89 107
原ACMM295.67 271
testdata299.67 5685.96 284
segment_acmp92.89 27
testdata195.26 29593.10 107
plane_prior796.21 21689.98 180
plane_prior696.10 22790.00 17681.32 219
plane_prior496.64 168
plane_prior390.00 17694.46 5591.34 211
plane_prior297.74 9594.85 34
plane_prior196.14 224
n20.00 417
nn0.00 417
door-mid91.06 383
test1197.88 109
door91.13 382
HQP5-MVS89.33 205
HQP-NCC95.86 23396.65 20693.55 8290.14 235
ACMP_Plane95.86 23396.65 20693.55 8290.14 235
BP-MVS92.13 157
HQP4-MVS90.14 23598.50 20795.78 260
HQP2-MVS80.95 222
NP-MVS95.99 23189.81 18595.87 212
MDTV_nov1_ep13_2view70.35 39193.10 35983.88 34593.55 15582.47 20086.25 27598.38 147
Test By Simon88.73 94