This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
SMA-MVScopyleft80.28 680.39 779.95 486.60 2361.95 1986.33 1385.75 2162.49 6282.20 1592.28 156.53 3489.70 1679.85 591.48 188.19 18
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++81.67 182.40 179.47 1087.24 1459.15 6088.18 187.15 365.04 1684.26 591.86 667.01 190.84 379.48 691.38 288.42 11
PC_three_145255.09 19784.46 489.84 4366.68 589.41 1874.24 4491.38 288.42 11
OPU-MVS79.83 787.54 1160.93 3587.82 789.89 4267.01 190.33 1273.16 5491.15 488.23 16
SED-MVS81.56 282.30 279.32 1387.77 458.90 6987.82 786.78 1064.18 3285.97 191.84 866.87 390.83 578.63 1790.87 588.23 16
IU-MVS87.77 459.15 6085.53 2553.93 22084.64 379.07 1190.87 588.37 13
test_241102_TWO86.73 1264.18 3284.26 591.84 865.19 690.83 578.63 1790.70 787.65 35
MSC_two_6792asdad79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 27
No_MVS79.95 487.24 1461.04 3185.62 2390.96 179.31 990.65 887.85 27
test_0728_THIRD65.04 1683.82 892.00 364.69 1090.75 879.48 690.63 1088.09 21
DVP-MVScopyleft80.84 481.64 378.42 3487.75 759.07 6487.85 585.03 3464.26 2983.82 892.00 364.82 890.75 878.66 1590.61 1185.45 116
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND79.19 1687.82 359.11 6387.85 587.15 390.84 378.66 1590.61 1187.62 37
ACMMP_NAP78.77 1478.78 1378.74 2985.44 4561.04 3183.84 4985.16 3062.88 5378.10 2491.26 1352.51 7588.39 3079.34 890.52 1386.78 62
HPM-MVS++copyleft79.88 880.14 879.10 2188.17 164.80 186.59 1283.70 6165.37 1378.78 2290.64 1958.63 2487.24 5179.00 1290.37 1485.26 127
SF-MVS78.82 1279.22 1177.60 4482.88 7457.83 8084.99 3288.13 261.86 7579.16 2090.75 1857.96 2587.09 6077.08 2690.18 1587.87 26
CNVR-MVS79.84 979.97 979.45 1187.90 262.17 1784.37 3685.03 3466.96 577.58 2790.06 3659.47 2089.13 2278.67 1489.73 1687.03 53
PHI-MVS75.87 4375.36 4477.41 4680.62 10655.91 11384.28 3985.78 2056.08 17573.41 6786.58 9450.94 10188.54 2870.79 6889.71 1787.79 31
DPE-MVScopyleft80.56 580.98 579.29 1587.27 1360.56 4185.71 2686.42 1463.28 4483.27 1391.83 1064.96 790.47 1176.41 2989.67 1886.84 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss78.35 1978.46 1778.03 4084.96 5259.52 5382.93 5985.39 2662.15 6776.41 3391.51 1152.47 7786.78 6780.66 489.64 1987.80 30
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZNCC-MVS78.82 1278.67 1679.30 1486.43 2862.05 1886.62 1186.01 1863.32 4375.08 4090.47 2653.96 5788.68 2776.48 2889.63 2087.16 51
9.1478.75 1483.10 6984.15 4388.26 159.90 10678.57 2390.36 2757.51 3086.86 6477.39 2389.52 21
DeepC-MVS69.38 278.56 1778.14 2179.83 783.60 6361.62 2384.17 4286.85 663.23 4673.84 6390.25 3257.68 2789.96 1474.62 4389.03 2287.89 24
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SteuartSystems-ACMMP79.48 1079.31 1079.98 383.01 7262.18 1687.60 985.83 1966.69 978.03 2690.98 1654.26 5390.06 1378.42 1989.02 2387.69 33
Skip Steuart: Steuart Systems R&D Blog.
test_prior281.75 8060.37 9675.01 4189.06 5256.22 3772.19 5988.96 24
DPM-MVS75.47 4775.00 4876.88 5181.38 9159.16 5979.94 10285.71 2256.59 16572.46 8986.76 8556.89 3287.86 4366.36 9788.91 2583.64 181
DeepPCF-MVS69.58 179.03 1179.00 1279.13 1984.92 5660.32 4483.03 5785.33 2762.86 5480.17 1790.03 3861.76 1488.95 2474.21 4588.67 2688.12 20
MSP-MVS81.06 381.40 480.02 186.21 3162.73 986.09 1886.83 865.51 1283.81 1090.51 2363.71 1289.23 2081.51 388.44 2788.09 21
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CDPH-MVS76.31 3775.67 4378.22 3785.35 4859.14 6281.31 8784.02 4856.32 16974.05 5988.98 5453.34 6787.92 4169.23 7688.42 2887.59 38
GST-MVS78.14 2177.85 2378.99 2586.05 3861.82 2285.84 2185.21 2963.56 4174.29 5790.03 3852.56 7488.53 2974.79 4288.34 2986.63 68
train_agg76.27 3876.15 3676.64 5585.58 4361.59 2481.62 8281.26 11555.86 17774.93 4388.81 5653.70 6384.68 11875.24 3888.33 3083.65 180
APDe-MVScopyleft80.16 780.59 678.86 2886.64 2160.02 4588.12 386.42 1462.94 5182.40 1492.12 259.64 1889.76 1578.70 1388.32 3186.79 61
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test9_res75.28 3788.31 3283.81 169
MTAPA76.90 3376.42 3478.35 3586.08 3763.57 274.92 20880.97 12365.13 1575.77 3590.88 1748.63 12286.66 7077.23 2488.17 3384.81 140
MVS_030478.73 1578.75 1478.66 3080.82 10057.62 8385.31 3081.31 11270.51 274.17 5891.24 1454.99 4589.56 1782.29 288.13 3488.80 7
MM79.99 260.01 4686.19 1783.93 5173.19 177.08 3091.21 1557.23 3190.73 1083.35 188.12 3589.22 5
test1277.76 4384.52 5858.41 7583.36 7272.93 8154.61 5188.05 3788.12 3586.81 60
MP-MVScopyleft78.35 1978.26 2078.64 3186.54 2563.47 486.02 2083.55 6563.89 3773.60 6590.60 2054.85 4886.72 6877.20 2588.06 3785.74 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast68.24 377.25 2976.63 3279.12 2086.15 3460.86 3684.71 3384.85 3861.98 7473.06 7888.88 5553.72 6289.06 2368.27 7888.04 3887.42 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
原ACMM174.69 8985.39 4759.40 5483.42 6951.47 24570.27 10886.61 9248.61 12386.51 7653.85 19787.96 3978.16 268
agg_prior273.09 5587.93 4084.33 150
CSCG76.92 3276.75 3077.41 4683.96 6259.60 5182.95 5886.50 1360.78 8775.27 3784.83 13360.76 1586.56 7367.86 8487.87 4186.06 89
MCST-MVS77.48 2777.45 2677.54 4586.67 2058.36 7683.22 5586.93 556.91 15774.91 4588.19 6259.15 2287.68 4673.67 5187.45 4286.57 69
NCCC78.58 1678.31 1879.39 1287.51 1262.61 1385.20 3184.42 4266.73 874.67 5189.38 4955.30 4289.18 2174.19 4687.34 4386.38 72
HFP-MVS78.01 2377.65 2479.10 2186.71 1962.81 886.29 1484.32 4462.82 5573.96 6190.50 2453.20 6888.35 3174.02 4887.05 4486.13 87
region2R77.67 2677.18 2879.15 1886.76 1762.95 686.29 1484.16 4762.81 5773.30 6890.58 2149.90 10788.21 3473.78 5087.03 4586.29 83
ACMMPR77.71 2477.23 2779.16 1786.75 1862.93 786.29 1484.24 4562.82 5573.55 6690.56 2249.80 10988.24 3374.02 4887.03 4586.32 80
APD-MVScopyleft78.02 2278.04 2277.98 4186.44 2760.81 3885.52 2784.36 4360.61 8979.05 2190.30 3055.54 4188.32 3273.48 5387.03 4584.83 139
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZD-MVS86.64 2160.38 4382.70 8657.95 14278.10 2490.06 3656.12 3888.84 2674.05 4787.00 48
CS-MVS-test75.62 4675.31 4676.56 5780.63 10555.13 13083.88 4885.22 2862.05 7171.49 9986.03 11153.83 5986.36 8167.74 8586.91 4988.19 18
PGM-MVS76.77 3476.06 3778.88 2786.14 3562.73 982.55 6783.74 6061.71 7672.45 9190.34 2948.48 12588.13 3572.32 5886.85 5085.78 99
HPM-MVScopyleft77.28 2876.85 2978.54 3285.00 5160.81 3882.91 6085.08 3162.57 6073.09 7789.97 4150.90 10287.48 4975.30 3686.85 5087.33 49
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + MP.78.44 1878.28 1978.90 2684.96 5261.41 2684.03 4583.82 5959.34 11779.37 1989.76 4559.84 1687.62 4776.69 2786.74 5287.68 34
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVS77.17 3076.56 3379.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 9290.01 4047.95 12988.01 3871.55 6586.74 5286.37 74
X-MVStestdata70.21 11867.28 17079.00 2386.32 2962.62 1185.83 2283.92 5264.55 2372.17 926.49 39647.95 12988.01 3871.55 6586.74 5286.37 74
3Dnovator+66.72 475.84 4474.57 5279.66 982.40 7659.92 4885.83 2286.32 1666.92 767.80 15789.24 5142.03 19789.38 1964.07 11686.50 5589.69 2
EPNet73.09 6872.16 7475.90 6575.95 21656.28 10483.05 5672.39 25666.53 1065.27 20687.00 8150.40 10485.47 10262.48 13386.32 5685.94 92
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS74.76 5174.46 5375.65 7277.84 17252.25 17875.59 19284.17 4663.76 3873.15 7382.79 17459.58 1986.80 6667.24 9186.04 5787.89 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CP-MVS77.12 3176.68 3178.43 3386.05 3863.18 587.55 1083.45 6862.44 6472.68 8590.50 2448.18 12787.34 5073.59 5285.71 5884.76 143
mPP-MVS76.54 3575.93 3978.34 3686.47 2663.50 385.74 2582.28 9062.90 5271.77 9590.26 3146.61 15386.55 7471.71 6385.66 5984.97 136
EC-MVSNet75.84 4475.87 4175.74 6978.86 14152.65 16883.73 5086.08 1763.47 4272.77 8487.25 8053.13 6987.93 4071.97 6185.57 6086.66 66
MSLP-MVS++73.77 6373.47 6374.66 9183.02 7159.29 5882.30 7481.88 9559.34 11771.59 9886.83 8345.94 15783.65 13765.09 11085.22 6181.06 234
SD-MVS77.70 2577.62 2577.93 4284.47 5961.88 2184.55 3483.87 5760.37 9679.89 1889.38 4954.97 4685.58 9776.12 3184.94 6286.33 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator64.47 572.49 7771.39 8575.79 6677.70 17558.99 6880.66 9483.15 7962.24 6665.46 20286.59 9342.38 19585.52 9859.59 15884.72 6382.85 200
CS-MVS76.25 3975.98 3877.06 5080.15 11555.63 12084.51 3583.90 5463.24 4573.30 6887.27 7955.06 4486.30 8371.78 6284.58 6489.25 4
CANet76.46 3675.93 3978.06 3981.29 9257.53 8582.35 6983.31 7467.78 370.09 10986.34 10154.92 4788.90 2572.68 5784.55 6587.76 32
LFMVS71.78 8971.59 7972.32 15883.40 6746.38 25479.75 10771.08 26564.18 3272.80 8388.64 5942.58 19283.72 13557.41 16884.49 6686.86 58
TSAR-MVS + GP.74.90 4974.15 5677.17 4982.00 8058.77 7281.80 7978.57 16258.58 12874.32 5684.51 14355.94 3987.22 5267.11 9284.48 6785.52 112
test250665.33 22064.61 21367.50 24279.46 12634.19 35874.43 21851.92 36458.72 12466.75 17788.05 6625.99 34680.92 19851.94 21284.25 6887.39 44
ECVR-MVScopyleft67.72 17967.51 16068.35 23579.46 12636.29 34874.79 21166.93 29658.72 12467.19 16788.05 6636.10 25981.38 18552.07 21084.25 6887.39 44
MAR-MVS71.51 9470.15 10975.60 7481.84 8359.39 5581.38 8682.90 8354.90 20568.08 14878.70 25747.73 13285.51 9951.68 21784.17 7081.88 217
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS72.17 8371.41 8474.45 10081.95 8257.22 8984.03 4580.38 13259.89 10968.40 13982.33 18849.64 11087.83 4451.87 21384.16 7178.30 266
casdiffmvs_mvgpermissive76.14 4076.30 3575.66 7176.46 21051.83 18679.67 10985.08 3165.02 1975.84 3488.58 6059.42 2185.08 10872.75 5683.93 7290.08 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test111167.21 18667.14 17767.42 24479.24 13234.76 35373.89 22965.65 30358.71 12666.96 17287.95 6936.09 26080.53 20552.03 21183.79 7386.97 54
IS-MVSNet71.57 9371.00 9473.27 13978.86 14145.63 26580.22 9778.69 15964.14 3566.46 18287.36 7649.30 11385.60 9550.26 22683.71 7488.59 9
UA-Net73.13 6772.93 6773.76 11783.58 6451.66 18778.75 11877.66 18467.75 472.61 8789.42 4749.82 10883.29 14353.61 19983.14 7586.32 80
MG-MVS73.96 6173.89 5974.16 10785.65 4249.69 21781.59 8481.29 11461.45 7871.05 10188.11 6351.77 8987.73 4561.05 14683.09 7685.05 133
OpenMVScopyleft61.03 968.85 15267.56 15672.70 15074.26 24853.99 14281.21 8881.34 11152.70 23162.75 24285.55 12538.86 23184.14 12648.41 24283.01 7779.97 250
SR-MVS76.13 4175.70 4277.40 4885.87 4061.20 2985.52 2782.19 9159.99 10575.10 3990.35 2847.66 13486.52 7571.64 6482.99 7884.47 149
VDDNet71.81 8871.33 8773.26 14082.80 7547.60 24578.74 11975.27 21959.59 11472.94 8089.40 4841.51 20783.91 13258.75 16282.99 7888.26 14
MVS_111021_HR74.02 6073.46 6475.69 7083.01 7260.63 4077.29 15678.40 17361.18 8270.58 10485.97 11354.18 5584.00 13167.52 8982.98 8082.45 207
ETV-MVS74.46 5773.84 6076.33 6079.27 13155.24 12979.22 11585.00 3664.97 2172.65 8679.46 24853.65 6687.87 4267.45 9082.91 8185.89 96
HPM-MVS_fast74.30 5973.46 6476.80 5284.45 6059.04 6683.65 5281.05 12060.15 10270.43 10589.84 4341.09 21385.59 9667.61 8882.90 8285.77 102
ACMMPcopyleft76.02 4275.33 4578.07 3885.20 4961.91 2085.49 2984.44 4163.04 4969.80 11989.74 4645.43 16687.16 5572.01 6082.87 8385.14 129
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVS_3200maxsize74.96 4874.39 5476.67 5482.20 7858.24 7783.67 5183.29 7558.41 13173.71 6490.14 3345.62 15985.99 8769.64 7282.85 8485.78 99
casdiffmvspermissive74.80 5074.89 5074.53 9875.59 22250.37 20478.17 13185.06 3362.80 5874.40 5487.86 7057.88 2683.61 13869.46 7582.79 8589.59 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline74.61 5474.70 5174.34 10275.70 21849.99 21277.54 14884.63 4062.73 5973.98 6087.79 7357.67 2883.82 13469.49 7382.74 8689.20 6
VDD-MVS72.50 7672.09 7573.75 11981.58 8549.69 21777.76 14377.63 18563.21 4773.21 7189.02 5342.14 19683.32 14261.72 14082.50 8788.25 15
CLD-MVS73.33 6572.68 6975.29 8078.82 14353.33 15678.23 12884.79 3961.30 8170.41 10681.04 21652.41 7887.12 5864.61 11582.49 8885.41 120
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
canonicalmvs74.67 5374.98 4973.71 12178.94 14050.56 20280.23 9683.87 5760.30 10077.15 2986.56 9559.65 1782.00 17466.01 10182.12 8988.58 10
MVS67.37 18466.33 19070.51 20175.46 22450.94 19273.95 22581.85 9641.57 34562.54 24778.57 26247.98 12885.47 10252.97 20482.05 9075.14 300
patch_mono-269.85 12571.09 9266.16 25979.11 13754.80 13571.97 25674.31 23753.50 22570.90 10284.17 14757.63 2963.31 33366.17 9882.02 9180.38 244
dcpmvs_274.55 5675.23 4772.48 15382.34 7753.34 15577.87 13881.46 10357.80 14675.49 3686.81 8462.22 1377.75 25171.09 6782.02 9186.34 76
alignmvs73.86 6273.99 5773.45 13378.20 16050.50 20378.57 12382.43 8859.40 11576.57 3186.71 8956.42 3681.23 19065.84 10381.79 9388.62 8
SR-MVS-dyc-post74.57 5573.90 5876.58 5683.49 6559.87 4984.29 3781.36 10758.07 13773.14 7490.07 3444.74 17385.84 9168.20 7981.76 9484.03 159
RE-MVS-def73.71 6283.49 6559.87 4984.29 3781.36 10758.07 13773.14 7490.07 3443.06 18868.20 7981.76 9484.03 159
新几何170.76 19585.66 4161.13 3066.43 29944.68 32070.29 10786.64 9041.29 20975.23 27949.72 23081.75 9675.93 292
Vis-MVSNetpermissive72.18 8271.37 8674.61 9481.29 9255.41 12680.90 9078.28 17560.73 8869.23 13088.09 6444.36 17882.65 16257.68 16581.75 9685.77 102
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
VNet69.68 13270.19 10868.16 23779.73 12141.63 30270.53 27577.38 19060.37 9670.69 10386.63 9151.08 9877.09 26153.61 19981.69 9885.75 104
OPM-MVS74.73 5274.25 5576.19 6180.81 10159.01 6782.60 6683.64 6263.74 3972.52 8887.49 7447.18 14485.88 9069.47 7480.78 9983.66 179
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
旧先验183.04 7053.15 15967.52 29087.85 7144.08 17980.76 10078.03 273
PAPM_NR72.63 7571.80 7775.13 8381.72 8453.42 15479.91 10483.28 7659.14 11966.31 18685.90 11651.86 8786.06 8457.45 16780.62 10185.91 94
Vis-MVSNet (Re-imp)63.69 23663.88 21963.14 28874.75 23531.04 37171.16 26763.64 31656.32 16959.80 27484.99 13144.51 17575.46 27839.12 31180.62 10182.92 197
HQP_MVS74.31 5873.73 6176.06 6281.41 8956.31 10284.22 4084.01 4964.52 2569.27 12786.10 10845.26 17087.21 5368.16 8180.58 10384.65 144
plane_prior584.01 4987.21 5368.16 8180.58 10384.65 144
UGNet68.81 15367.39 16573.06 14278.33 15754.47 13779.77 10675.40 21760.45 9263.22 23684.40 14432.71 29780.91 19951.71 21680.56 10583.81 169
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
plane_prior56.31 10283.58 5363.19 4880.48 106
HQP3-MVS83.90 5480.35 107
HQP-MVS73.45 6472.80 6875.40 7680.66 10254.94 13182.31 7183.90 5462.10 6867.85 15285.54 12645.46 16486.93 6267.04 9380.35 10784.32 151
PCF-MVS61.88 870.95 10369.49 11975.35 7777.63 17855.71 11776.04 18581.81 9750.30 26169.66 12085.40 12952.51 7584.89 11451.82 21480.24 10985.45 116
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DP-MVS Recon72.15 8670.73 9876.40 5886.57 2457.99 7981.15 8982.96 8157.03 15466.78 17585.56 12344.50 17688.11 3651.77 21580.23 11083.10 195
CPTT-MVS72.78 7272.08 7674.87 8684.88 5761.41 2684.15 4377.86 18055.27 19267.51 16388.08 6541.93 19981.85 17669.04 7780.01 11181.35 227
114514_t70.83 10569.56 11674.64 9386.21 3154.63 13682.34 7081.81 9748.22 28563.01 23985.83 11940.92 21487.10 5957.91 16479.79 11282.18 210
test_yl69.69 13069.13 12471.36 18178.37 15545.74 26174.71 21280.20 13457.91 14470.01 11483.83 15642.44 19382.87 15454.97 18679.72 11385.48 114
DCV-MVSNet69.69 13069.13 12471.36 18178.37 15545.74 26174.71 21280.20 13457.91 14470.01 11483.83 15642.44 19382.87 15454.97 18679.72 11385.48 114
MVS_Test72.45 7872.46 7272.42 15774.88 23048.50 23376.28 17883.14 8059.40 11572.46 8984.68 13555.66 4081.12 19165.98 10279.66 11587.63 36
PS-MVSNAJ70.51 11169.70 11572.93 14481.52 8655.79 11674.92 20879.00 15155.04 20269.88 11778.66 25847.05 14682.19 17161.61 14179.58 11680.83 237
PVSNet_Blended68.59 15867.72 15271.19 18677.03 19850.57 20072.51 24881.52 10051.91 23864.22 22977.77 27549.13 11782.87 15455.82 17779.58 11680.14 248
EPP-MVSNet72.16 8571.31 8874.71 8878.68 14749.70 21582.10 7681.65 9960.40 9365.94 19185.84 11851.74 9086.37 8055.93 17679.55 11888.07 23
xiu_mvs_v2_base70.52 11069.75 11372.84 14681.21 9555.63 12075.11 20278.92 15354.92 20469.96 11679.68 24347.00 15082.09 17361.60 14279.37 11980.81 238
MVSFormer71.50 9570.38 10474.88 8578.76 14457.15 9482.79 6178.48 16651.26 24969.49 12283.22 16843.99 18183.24 14466.06 9979.37 11984.23 154
lupinMVS69.57 13668.28 14573.44 13478.76 14457.15 9476.57 17273.29 25046.19 30869.49 12282.18 19143.99 18179.23 22664.66 11379.37 11983.93 163
PAPM67.92 17566.69 18071.63 17378.09 16449.02 22577.09 16181.24 11751.04 25360.91 26383.98 15347.71 13384.99 10940.81 30279.32 12280.90 236
FIs70.82 10671.43 8368.98 22778.33 15738.14 32576.96 16483.59 6461.02 8367.33 16586.73 8755.07 4381.64 17954.61 19279.22 12387.14 52
jason69.65 13368.39 14473.43 13578.27 15956.88 9877.12 16073.71 24646.53 30569.34 12683.22 16843.37 18579.18 22764.77 11279.20 12484.23 154
jason: jason.
PAPR71.72 9270.82 9674.41 10181.20 9651.17 18979.55 11283.33 7355.81 18166.93 17484.61 13950.95 10086.06 8455.79 17979.20 12486.00 90
EIA-MVS71.78 8970.60 9975.30 7979.85 11953.54 15077.27 15783.26 7757.92 14366.49 18179.39 24952.07 8486.69 6960.05 15279.14 12685.66 107
Effi-MVS+73.31 6672.54 7175.62 7377.87 17153.64 14779.62 11179.61 14161.63 7772.02 9482.61 17956.44 3585.97 8863.99 11979.07 12787.25 50
gg-mvs-nofinetune57.86 28156.43 28762.18 29472.62 26635.35 35066.57 29856.33 35350.65 25757.64 29657.10 37630.65 31076.36 27437.38 31978.88 12874.82 307
CDS-MVSNet66.80 19965.37 20571.10 19078.98 13953.13 16173.27 23771.07 26652.15 23764.72 22080.23 23343.56 18477.10 26045.48 26878.88 12883.05 196
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
AdaColmapbinary69.99 12268.66 13573.97 11184.94 5457.83 8082.63 6578.71 15856.28 17164.34 22484.14 14841.57 20487.06 6146.45 25678.88 12877.02 283
Anonymous20240521166.84 19865.99 19769.40 22180.19 11342.21 29571.11 26971.31 26458.80 12367.90 15086.39 10029.83 31879.65 21949.60 23378.78 13186.33 78
CANet_DTU68.18 16967.71 15469.59 21774.83 23246.24 25678.66 12176.85 19759.60 11163.45 23582.09 19835.25 26677.41 25659.88 15578.76 13285.14 129
test22283.14 6858.68 7372.57 24763.45 31741.78 34167.56 16286.12 10737.13 25278.73 13374.98 304
TAMVS66.78 20065.27 20871.33 18479.16 13653.67 14673.84 23169.59 27852.32 23665.28 20581.72 20444.49 17777.40 25742.32 29478.66 13482.92 197
PVSNet_Blended_VisFu71.45 9670.39 10374.65 9282.01 7958.82 7179.93 10380.35 13355.09 19765.82 19782.16 19449.17 11682.64 16360.34 15078.62 13582.50 206
test_fmvsmconf_n73.01 6972.59 7074.27 10571.28 29255.88 11478.21 13075.56 21454.31 21674.86 4687.80 7254.72 4980.23 21478.07 2178.48 13686.70 63
testdata64.66 27781.52 8652.93 16265.29 30646.09 30973.88 6287.46 7538.08 24066.26 32553.31 20278.48 13674.78 308
QAPM70.05 12068.81 13173.78 11576.54 20853.43 15383.23 5483.48 6652.89 23065.90 19386.29 10241.55 20686.49 7751.01 22078.40 13881.42 221
test_fmvsmconf0.1_n72.81 7172.33 7374.24 10669.89 31255.81 11578.22 12975.40 21754.17 21875.00 4288.03 6853.82 6080.23 21478.08 2078.34 13986.69 64
FC-MVSNet-test69.80 12870.58 10167.46 24377.61 18334.73 35476.05 18483.19 7860.84 8565.88 19586.46 9854.52 5280.76 20352.52 20678.12 14086.91 56
test_fmvsmvis_n_192070.84 10470.38 10472.22 16071.16 29355.39 12775.86 18872.21 25849.03 27573.28 7086.17 10651.83 8877.29 25875.80 3278.05 14183.98 162
LCM-MVSNet-Re61.88 25661.35 25063.46 28474.58 24031.48 37061.42 33258.14 34358.71 12653.02 33879.55 24643.07 18776.80 26545.69 26377.96 14282.11 213
diffmvspermissive70.69 10870.43 10271.46 17669.45 31748.95 22772.93 24078.46 16857.27 15171.69 9683.97 15451.48 9377.92 24870.70 6977.95 14387.53 40
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OMC-MVS71.40 9770.60 9973.78 11576.60 20653.15 15979.74 10879.78 13758.37 13268.75 13486.45 9945.43 16680.60 20462.58 13177.73 14487.58 39
iter_conf_final69.82 12668.02 14975.23 8179.38 12852.91 16380.11 9973.96 24354.99 20368.04 14983.59 16129.05 32387.16 5565.41 10877.62 14585.63 109
MVS_111021_LR69.50 13968.78 13271.65 17278.38 15459.33 5674.82 21070.11 27358.08 13667.83 15684.68 13541.96 19876.34 27565.62 10677.54 14679.30 260
Fast-Effi-MVS+70.28 11769.12 12673.73 12078.50 15051.50 18875.01 20579.46 14556.16 17468.59 13579.55 24653.97 5684.05 12753.34 20177.53 14785.65 108
fmvsm_l_conf0.5_n70.99 10270.82 9671.48 17571.45 28554.40 13877.18 15970.46 27148.67 27975.17 3886.86 8253.77 6176.86 26476.33 3077.51 14883.17 194
test_fmvsmconf0.01_n72.17 8371.50 8174.16 10767.96 32955.58 12378.06 13574.67 23254.19 21774.54 5288.23 6150.35 10680.24 21378.07 2177.46 14986.65 67
xiu_mvs_v1_base_debu68.58 15967.28 17072.48 15378.19 16157.19 9175.28 19775.09 22651.61 24070.04 11081.41 21032.79 29379.02 23463.81 12177.31 15081.22 229
xiu_mvs_v1_base68.58 15967.28 17072.48 15378.19 16157.19 9175.28 19775.09 22651.61 24070.04 11081.41 21032.79 29379.02 23463.81 12177.31 15081.22 229
xiu_mvs_v1_base_debi68.58 15967.28 17072.48 15378.19 16157.19 9175.28 19775.09 22651.61 24070.04 11081.41 21032.79 29379.02 23463.81 12177.31 15081.22 229
LPG-MVS_test72.74 7371.74 7875.76 6780.22 11057.51 8682.55 6783.40 7061.32 7966.67 17987.33 7739.15 22886.59 7167.70 8677.30 15383.19 191
LGP-MVS_train75.76 6780.22 11057.51 8683.40 7061.32 7966.67 17987.33 7739.15 22886.59 7167.70 8677.30 15383.19 191
test_fmvsm_n_192071.73 9171.14 9173.50 13072.52 26956.53 10175.60 19176.16 20448.11 28777.22 2885.56 12353.10 7077.43 25574.86 4077.14 15586.55 70
fmvsm_l_conf0.5_n_a70.50 11270.27 10671.18 18771.30 29154.09 14076.89 16769.87 27447.90 29174.37 5586.49 9753.07 7176.69 26875.41 3577.11 15682.76 201
Anonymous2024052969.91 12469.02 12772.56 15180.19 11347.65 24377.56 14780.99 12255.45 19069.88 11786.76 8539.24 22782.18 17254.04 19477.10 15787.85 27
iter_conf0569.40 14467.62 15574.73 8777.84 17251.13 19079.28 11473.71 24654.62 20868.17 14483.59 16128.68 32887.16 5565.74 10576.95 15885.91 94
EPNet_dtu61.90 25561.97 24461.68 29672.89 26239.78 31275.85 18965.62 30455.09 19754.56 32479.36 25037.59 24367.02 32039.80 30876.95 15878.25 267
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS59.36 1066.60 20365.20 20970.81 19476.63 20548.75 22976.52 17480.04 13650.64 25865.24 21084.93 13239.15 22878.54 24036.77 32376.88 16085.14 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP63.53 672.30 8071.20 9075.59 7580.28 10857.54 8482.74 6382.84 8560.58 9065.24 21086.18 10539.25 22686.03 8666.95 9576.79 16183.22 189
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
cascas65.98 21063.42 22673.64 12577.26 19252.58 17172.26 25277.21 19348.56 28061.21 26274.60 30932.57 30285.82 9250.38 22576.75 16282.52 205
BH-untuned68.27 16667.29 16971.21 18579.74 12053.22 15876.06 18377.46 18957.19 15266.10 18881.61 20645.37 16883.50 14045.42 27076.68 16376.91 287
ET-MVSNet_ETH3D67.96 17465.72 20174.68 9076.67 20455.62 12275.11 20274.74 23052.91 22960.03 26980.12 23433.68 28382.64 16361.86 13976.34 16485.78 99
FA-MVS(test-final)69.82 12668.48 13873.84 11378.44 15350.04 21075.58 19478.99 15258.16 13567.59 16182.14 19542.66 19085.63 9456.60 17176.19 16585.84 97
ACMM61.98 770.80 10769.73 11474.02 10980.59 10758.59 7482.68 6482.02 9455.46 18967.18 16884.39 14538.51 23383.17 14660.65 14876.10 16680.30 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
BH-RMVSNet68.81 15367.42 16472.97 14380.11 11652.53 17374.26 21976.29 20358.48 13068.38 14084.20 14642.59 19183.83 13346.53 25575.91 16782.56 202
GeoE71.01 10170.15 10973.60 12879.57 12452.17 17978.93 11778.12 17758.02 13967.76 16083.87 15552.36 7982.72 16056.90 17075.79 16885.92 93
XVG-OURS68.76 15667.37 16672.90 14574.32 24757.22 8970.09 28178.81 15555.24 19367.79 15885.81 12136.54 25878.28 24362.04 13775.74 16983.19 191
mvs_anonymous68.03 17167.51 16069.59 21772.08 27744.57 27571.99 25575.23 22151.67 23967.06 17082.57 18054.68 5077.94 24756.56 17275.71 17086.26 84
BH-w/o66.85 19765.83 19969.90 21279.29 12952.46 17574.66 21476.65 20154.51 21364.85 21978.12 26445.59 16182.95 15043.26 28675.54 17174.27 313
thisisatest051565.83 21263.50 22572.82 14873.75 25149.50 22071.32 26373.12 25249.39 27063.82 23176.50 29134.95 27084.84 11753.20 20375.49 17284.13 158
mvsmamba71.15 9869.54 11775.99 6377.61 18353.46 15281.95 7875.11 22557.73 14766.95 17385.96 11437.14 25187.56 4867.94 8375.49 17286.97 54
LS3D64.71 22762.50 23871.34 18379.72 12255.71 11779.82 10574.72 23148.50 28256.62 30284.62 13833.59 28582.34 17029.65 36475.23 17475.97 291
GG-mvs-BLEND62.34 29371.36 29037.04 33869.20 28857.33 34954.73 32265.48 36430.37 31277.82 24934.82 33674.93 17572.17 333
nrg03072.96 7073.01 6672.84 14675.41 22550.24 20580.02 10082.89 8458.36 13374.44 5386.73 8758.90 2380.83 20065.84 10374.46 17687.44 42
VPA-MVSNet69.02 15069.47 12067.69 24177.42 18841.00 30774.04 22279.68 13960.06 10369.26 12984.81 13451.06 9977.58 25354.44 19374.43 17784.48 148
PS-MVSNAJss72.24 8171.21 8975.31 7878.50 15055.93 11281.63 8182.12 9256.24 17270.02 11385.68 12247.05 14684.34 12465.27 10974.41 17885.67 106
EI-MVSNet-Vis-set72.42 7971.59 7974.91 8478.47 15254.02 14177.05 16279.33 14765.03 1871.68 9779.35 25152.75 7284.89 11466.46 9674.23 17985.83 98
CHOSEN 1792x268865.08 22462.84 23471.82 16681.49 8856.26 10566.32 30174.20 24040.53 35063.16 23878.65 25941.30 20877.80 25045.80 26274.09 18081.40 224
ACMMP++_ref74.07 181
SDMVSNet68.03 17168.10 14867.84 23977.13 19448.72 23165.32 31279.10 14958.02 13965.08 21382.55 18147.83 13173.40 28763.92 12073.92 18281.41 222
sd_testset64.46 23164.45 21464.51 27977.13 19442.25 29462.67 32572.11 25958.02 13965.08 21382.55 18141.22 21269.88 30647.32 24873.92 18281.41 222
PVSNet_BlendedMVS68.56 16267.72 15271.07 19177.03 19850.57 20074.50 21681.52 10053.66 22464.22 22979.72 24249.13 11782.87 15455.82 17773.92 18279.77 255
CMPMVSbinary42.80 2157.81 28255.97 29063.32 28560.98 36747.38 24764.66 31769.50 27932.06 36646.83 36077.80 27229.50 32071.36 29748.68 23973.75 18571.21 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MS-PatchMatch62.42 24961.46 24965.31 27475.21 22852.10 18072.05 25474.05 24146.41 30657.42 29974.36 31034.35 27677.57 25445.62 26573.67 18666.26 362
test-LLR58.15 27958.13 27558.22 31468.57 32444.80 27165.46 30957.92 34450.08 26355.44 31269.82 34232.62 29957.44 35749.66 23173.62 18772.41 329
test-mter56.42 29255.82 29258.22 31468.57 32444.80 27165.46 30957.92 34439.94 35555.44 31269.82 34221.92 36057.44 35749.66 23173.62 18772.41 329
EI-MVSNet-UG-set71.92 8771.06 9374.52 9977.98 16953.56 14976.62 17179.16 14864.40 2771.18 10078.95 25652.19 8284.66 12065.47 10773.57 18985.32 123
TR-MVS66.59 20565.07 21071.17 18879.18 13449.63 21973.48 23475.20 22352.95 22867.90 15080.33 23139.81 22083.68 13643.20 28773.56 19080.20 246
UniMVSNet_ETH3D67.60 18167.07 17869.18 22677.39 18942.29 29374.18 22175.59 21360.37 9666.77 17686.06 11037.64 24278.93 23952.16 20973.49 19186.32 80
FE-MVS65.91 21163.33 22873.63 12677.36 19051.95 18572.62 24575.81 20953.70 22265.31 20478.96 25528.81 32786.39 7943.93 27973.48 19282.55 203
ab-mvs66.65 20266.42 18667.37 24576.17 21341.73 29970.41 27876.14 20653.99 21965.98 19083.51 16549.48 11176.24 27648.60 24073.46 19384.14 157
EG-PatchMatch MVS64.71 22762.87 23370.22 20377.68 17653.48 15177.99 13678.82 15453.37 22656.03 30877.41 27824.75 35384.04 12846.37 25773.42 19473.14 319
XVG-OURS-SEG-HR68.81 15367.47 16372.82 14874.40 24556.87 9970.59 27479.04 15054.77 20666.99 17186.01 11239.57 22278.21 24462.54 13273.33 19583.37 185
thres20062.20 25261.16 25465.34 27375.38 22639.99 31069.60 28569.29 28255.64 18761.87 25676.99 28037.07 25478.96 23831.28 35773.28 19677.06 282
thres100view90063.28 24162.41 23965.89 26677.31 19138.66 32172.65 24369.11 28457.07 15362.45 25081.03 21737.01 25579.17 22831.84 34973.25 19779.83 253
tfpn200view963.18 24362.18 24266.21 25876.85 20139.62 31371.96 25769.44 28056.63 16062.61 24579.83 23837.18 24879.17 22831.84 34973.25 19779.83 253
thres40063.31 23962.18 24266.72 25076.85 20139.62 31371.96 25769.44 28056.63 16062.61 24579.83 23837.18 24879.17 22831.84 34973.25 19781.36 225
TESTMET0.1,155.28 30154.90 29856.42 32466.56 33843.67 28265.46 30956.27 35439.18 35753.83 33067.44 35424.21 35455.46 36848.04 24473.11 20070.13 352
thres600view763.30 24062.27 24066.41 25477.18 19338.87 31972.35 25069.11 28456.98 15562.37 25280.96 21937.01 25579.00 23731.43 35673.05 20181.36 225
VPNet67.52 18268.11 14765.74 26879.18 13436.80 34072.17 25372.83 25362.04 7267.79 15885.83 11948.88 12176.60 27051.30 21872.97 20283.81 169
Anonymous2023121169.28 14668.47 14071.73 16980.28 10847.18 24979.98 10182.37 8954.61 20967.24 16684.01 15239.43 22382.41 16955.45 18472.83 20385.62 110
GBi-Net67.21 18666.55 18169.19 22377.63 17843.33 28477.31 15377.83 18156.62 16265.04 21582.70 17541.85 20080.33 21047.18 25072.76 20483.92 164
test167.21 18666.55 18169.19 22377.63 17843.33 28477.31 15377.83 18156.62 16265.04 21582.70 17541.85 20080.33 21047.18 25072.76 20483.92 164
FMVSNet366.32 20865.61 20368.46 23376.48 20942.34 29274.98 20777.15 19455.83 18065.04 21581.16 21339.91 21780.14 21747.18 25072.76 20482.90 199
FMVSNet266.93 19666.31 19268.79 23077.63 17842.98 28876.11 18177.47 18756.62 16265.22 21282.17 19341.85 20080.18 21647.05 25372.72 20783.20 190
thisisatest053067.92 17565.78 20074.33 10376.29 21151.03 19176.89 16774.25 23953.67 22365.59 20081.76 20335.15 26785.50 10055.94 17572.47 20886.47 71
PVSNet50.76 1958.40 27657.39 27761.42 29875.53 22344.04 27961.43 33163.45 31747.04 30356.91 30073.61 31527.00 34064.76 32939.12 31172.40 20975.47 298
MIMVSNet57.35 28357.07 27958.22 31474.21 24937.18 33462.46 32660.88 33648.88 27755.29 31575.99 29631.68 30662.04 33831.87 34872.35 21075.43 299
bld_raw_dy_0_6464.87 22563.22 22969.83 21474.79 23453.32 15778.15 13262.02 33151.20 25160.17 26783.12 17224.15 35574.20 28663.08 12772.33 21181.96 214
131464.61 22963.21 23068.80 22971.87 28147.46 24673.95 22578.39 17442.88 33859.97 27076.60 28838.11 23979.39 22454.84 18872.32 21279.55 256
FMVSNet166.70 20165.87 19869.19 22377.49 18743.33 28477.31 15377.83 18156.45 16764.60 22382.70 17538.08 24080.33 21046.08 25972.31 21383.92 164
tt080567.77 17867.24 17469.34 22274.87 23140.08 30977.36 15281.37 10655.31 19166.33 18584.65 13737.35 24682.55 16555.65 18272.28 21485.39 121
ACMMP++72.16 215
MVP-Stereo65.41 21863.80 22170.22 20377.62 18255.53 12476.30 17778.53 16450.59 25956.47 30678.65 25939.84 21982.68 16144.10 27872.12 21672.44 328
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HyFIR lowres test65.67 21463.01 23273.67 12279.97 11855.65 11969.07 28975.52 21542.68 33963.53 23477.95 26640.43 21581.64 17946.01 26071.91 21783.73 175
XVG-ACMP-BASELINE64.36 23262.23 24170.74 19672.35 27352.45 17670.80 27378.45 16953.84 22159.87 27281.10 21516.24 37179.32 22555.64 18371.76 21880.47 241
HY-MVS56.14 1364.55 23063.89 21866.55 25374.73 23641.02 30469.96 28274.43 23449.29 27261.66 25880.92 22047.43 14076.68 26944.91 27371.69 21981.94 215
D2MVS62.30 25160.29 26068.34 23666.46 34048.42 23465.70 30473.42 24847.71 29358.16 29375.02 30530.51 31177.71 25253.96 19671.68 22078.90 264
ACMH55.70 1565.20 22263.57 22470.07 20778.07 16552.01 18479.48 11379.69 13855.75 18356.59 30380.98 21827.12 33880.94 19642.90 29171.58 22177.25 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVSTER67.16 19165.58 20471.88 16470.37 30449.70 21570.25 28078.45 16951.52 24369.16 13180.37 22838.45 23482.50 16660.19 15171.46 22283.44 184
EI-MVSNet69.27 14768.44 14271.73 16974.47 24249.39 22275.20 20078.45 16959.60 11169.16 13176.51 28951.29 9482.50 16659.86 15771.45 22383.30 186
LTVRE_ROB55.42 1663.15 24461.23 25368.92 22876.57 20747.80 24059.92 34176.39 20254.35 21558.67 28782.46 18629.44 32181.49 18342.12 29571.14 22477.46 276
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet (Re)70.63 10970.20 10771.89 16378.55 14945.29 26875.94 18782.92 8263.68 4068.16 14583.59 16153.89 5883.49 14153.97 19571.12 22586.89 57
Effi-MVS+-dtu69.64 13467.53 15975.95 6476.10 21462.29 1580.20 9876.06 20859.83 11065.26 20977.09 27941.56 20584.02 13060.60 14971.09 22681.53 220
NR-MVSNet69.54 13768.85 12971.59 17478.05 16643.81 28174.20 22080.86 12565.18 1462.76 24184.52 14152.35 8083.59 13950.96 22270.78 22787.37 46
v114470.42 11469.31 12273.76 11773.22 25450.64 19977.83 14181.43 10458.58 12869.40 12581.16 21347.53 13785.29 10764.01 11870.64 22885.34 122
jajsoiax68.25 16766.45 18373.66 12375.62 22055.49 12580.82 9178.51 16552.33 23564.33 22584.11 14928.28 33081.81 17863.48 12570.62 22983.67 177
h-mvs3372.71 7471.49 8276.40 5881.99 8159.58 5276.92 16676.74 20060.40 9374.81 4785.95 11545.54 16285.76 9370.41 7070.61 23083.86 168
mvs_tets68.18 16966.36 18973.63 12675.61 22155.35 12880.77 9278.56 16352.48 23464.27 22784.10 15027.45 33681.84 17763.45 12670.56 23183.69 176
UniMVSNet_NR-MVSNet71.11 9971.00 9471.44 17779.20 13344.13 27776.02 18682.60 8766.48 1168.20 14284.60 14056.82 3382.82 15854.62 19070.43 23287.36 48
DU-MVS70.01 12169.53 11871.44 17778.05 16644.13 27775.01 20581.51 10264.37 2868.20 14284.52 14149.12 11982.82 15854.62 19070.43 23287.37 46
v119269.97 12368.68 13473.85 11273.19 25550.94 19277.68 14481.36 10757.51 14968.95 13380.85 22345.28 16985.33 10662.97 12970.37 23485.27 126
PLCcopyleft56.13 1465.09 22363.21 23070.72 19781.04 9854.87 13478.57 12377.47 18748.51 28155.71 30981.89 20033.71 28279.71 21841.66 29970.37 23477.58 275
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GA-MVS65.53 21663.70 22271.02 19270.87 29748.10 23770.48 27674.40 23556.69 15864.70 22176.77 28433.66 28481.10 19255.42 18570.32 23683.87 167
Fast-Effi-MVS+-dtu67.37 18465.33 20773.48 13272.94 26157.78 8277.47 15076.88 19657.60 14861.97 25476.85 28339.31 22480.49 20854.72 18970.28 23782.17 212
fmvsm_s_conf0.5_n69.58 13568.84 13071.79 16772.31 27552.90 16477.90 13762.43 32649.97 26572.85 8285.90 11652.21 8176.49 27175.75 3370.26 23885.97 91
v2v48270.50 11269.45 12173.66 12372.62 26650.03 21177.58 14580.51 13059.90 10669.52 12182.14 19547.53 13784.88 11665.07 11170.17 23986.09 88
IB-MVS56.42 1265.40 21962.73 23673.40 13674.89 22952.78 16773.09 23975.13 22455.69 18458.48 29173.73 31432.86 29286.32 8250.63 22370.11 24081.10 233
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
fmvsm_s_conf0.1_n69.41 14368.60 13671.83 16571.07 29452.88 16577.85 14062.44 32549.58 26972.97 7986.22 10351.68 9176.48 27275.53 3470.10 24186.14 86
CNLPA65.43 21764.02 21769.68 21578.73 14658.07 7877.82 14270.71 26951.49 24461.57 26083.58 16438.23 23870.82 29943.90 28070.10 24180.16 247
RRT_MVS69.42 14267.49 16275.21 8278.01 16852.56 17282.23 7578.15 17655.84 17965.65 19885.07 13030.86 30986.83 6561.56 14470.00 24386.24 85
1112_ss64.00 23463.36 22765.93 26579.28 13042.58 29171.35 26272.36 25746.41 30660.55 26577.89 27046.27 15673.28 28846.18 25869.97 24481.92 216
DP-MVS65.68 21363.66 22371.75 16884.93 5556.87 9980.74 9373.16 25153.06 22759.09 28382.35 18736.79 25785.94 8932.82 34569.96 24572.45 327
tttt051767.83 17765.66 20274.33 10376.69 20350.82 19677.86 13973.99 24254.54 21264.64 22282.53 18435.06 26885.50 10055.71 18069.91 24686.67 65
IterMVS-LS69.22 14968.48 13871.43 17974.44 24449.40 22176.23 17977.55 18659.60 11165.85 19681.59 20851.28 9581.58 18259.87 15669.90 24783.30 186
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192069.47 14068.17 14673.36 13773.06 25850.10 20977.39 15180.56 12856.58 16668.59 13580.37 22844.72 17484.98 11162.47 13469.82 24885.00 134
Baseline_NR-MVSNet67.05 19367.56 15665.50 27075.65 21937.70 33175.42 19574.65 23359.90 10668.14 14683.15 17149.12 11977.20 25952.23 20869.78 24981.60 219
ACMH+57.40 1166.12 20964.06 21672.30 15977.79 17452.83 16680.39 9578.03 17857.30 15057.47 29782.55 18127.68 33484.17 12545.54 26669.78 24979.90 251
v124069.24 14867.91 15073.25 14173.02 26049.82 21377.21 15880.54 12956.43 16868.34 14180.51 22743.33 18684.99 10962.03 13869.77 25184.95 137
TranMVSNet+NR-MVSNet70.36 11570.10 11171.17 18878.64 14842.97 28976.53 17381.16 11966.95 668.53 13885.42 12851.61 9283.07 14752.32 20769.70 25287.46 41
v14419269.71 12968.51 13773.33 13873.10 25750.13 20877.54 14880.64 12756.65 15968.57 13780.55 22646.87 15184.96 11362.98 12869.66 25384.89 138
WR-MVS68.47 16368.47 14068.44 23480.20 11239.84 31173.75 23276.07 20764.68 2268.11 14783.63 16050.39 10579.14 23249.78 22769.66 25386.34 76
WTY-MVS59.75 27060.39 25957.85 31872.32 27437.83 32861.05 33764.18 31345.95 31361.91 25579.11 25447.01 14960.88 34142.50 29369.49 25574.83 306
cl2267.47 18366.45 18370.54 20069.85 31346.49 25373.85 23077.35 19155.07 20065.51 20177.92 26847.64 13581.10 19261.58 14369.32 25684.01 161
miper_ehance_all_eth68.03 17167.24 17470.40 20270.54 30046.21 25773.98 22378.68 16055.07 20066.05 18977.80 27252.16 8381.31 18761.53 14569.32 25683.67 177
miper_enhance_ethall67.11 19266.09 19670.17 20669.21 32045.98 25972.85 24278.41 17251.38 24665.65 19875.98 29751.17 9781.25 18860.82 14769.32 25683.29 188
test_djsdf69.45 14167.74 15174.58 9674.57 24154.92 13382.79 6178.48 16651.26 24965.41 20383.49 16638.37 23583.24 14466.06 9969.25 25985.56 111
cl____67.18 18966.26 19469.94 20970.20 30545.74 26173.30 23576.83 19855.10 19565.27 20679.57 24547.39 14180.53 20559.41 16169.22 26083.53 183
DIV-MVS_self_test67.18 18966.26 19469.94 20970.20 30545.74 26173.29 23676.83 19855.10 19565.27 20679.58 24447.38 14280.53 20559.43 16069.22 26083.54 182
c3_l68.33 16567.56 15670.62 19870.87 29746.21 25774.47 21778.80 15656.22 17366.19 18778.53 26351.88 8681.40 18462.08 13569.04 26284.25 153
CostFormer64.04 23362.51 23768.61 23271.88 28045.77 26071.30 26470.60 27047.55 29564.31 22676.61 28741.63 20379.62 22149.74 22969.00 26380.42 242
fmvsm_s_conf0.5_n_a69.54 13768.74 13371.93 16272.47 27153.82 14478.25 12762.26 32849.78 26773.12 7686.21 10452.66 7376.79 26675.02 3968.88 26485.18 128
tpm262.07 25360.10 26167.99 23872.79 26343.86 28071.05 27166.85 29743.14 33662.77 24075.39 30338.32 23680.80 20141.69 29868.88 26479.32 259
v1070.21 11869.02 12773.81 11473.51 25350.92 19478.74 11981.39 10560.05 10466.39 18481.83 20247.58 13685.41 10562.80 13068.86 26685.09 132
v870.33 11669.28 12373.49 13173.15 25650.22 20678.62 12280.78 12660.79 8666.45 18382.11 19749.35 11284.98 11163.58 12468.71 26785.28 125
v7n69.01 15167.36 16773.98 11072.51 27052.65 16878.54 12581.30 11360.26 10162.67 24381.62 20543.61 18384.49 12157.01 16968.70 26884.79 141
fmvsm_s_conf0.1_n_a69.32 14568.44 14271.96 16170.91 29653.78 14578.12 13362.30 32749.35 27173.20 7286.55 9651.99 8576.79 26674.83 4168.68 26985.32 123
Test_1112_low_res62.32 25061.77 24564.00 28279.08 13839.53 31568.17 29170.17 27243.25 33459.03 28479.90 23744.08 17971.24 29843.79 28268.42 27081.25 228
PMMVS53.96 30753.26 31356.04 32562.60 35950.92 19461.17 33556.09 35532.81 36553.51 33666.84 35934.04 27859.93 34644.14 27768.18 27157.27 374
tfpnnormal62.47 24861.63 24764.99 27674.81 23339.01 31871.22 26573.72 24555.22 19460.21 26680.09 23641.26 21176.98 26330.02 36268.09 27278.97 263
Anonymous2023120655.10 30455.30 29654.48 33469.81 31433.94 36062.91 32462.13 33041.08 34755.18 31675.65 29932.75 29656.59 36330.32 36167.86 27372.91 320
V4268.65 15767.35 16872.56 15168.93 32350.18 20772.90 24179.47 14456.92 15669.45 12480.26 23246.29 15582.99 14864.07 11667.82 27484.53 146
MDTV_nov1_ep1357.00 28072.73 26438.26 32465.02 31664.73 31044.74 31955.46 31172.48 31932.61 30170.47 30137.47 31867.75 275
anonymousdsp67.00 19564.82 21273.57 12970.09 30856.13 10776.35 17677.35 19148.43 28364.99 21880.84 22433.01 29080.34 20964.66 11367.64 27684.23 154
dmvs_re56.77 28856.83 28356.61 32369.23 31941.02 30458.37 34664.18 31350.59 25957.45 29871.42 32935.54 26458.94 35137.23 32067.45 27769.87 354
OpenMVS_ROBcopyleft52.78 1860.03 26758.14 27465.69 26970.47 30144.82 27075.33 19670.86 26845.04 31756.06 30776.00 29426.89 34179.65 21935.36 33567.29 27872.60 324
XXY-MVS60.68 26461.67 24657.70 32070.43 30238.45 32364.19 31966.47 29848.05 28963.22 23680.86 22249.28 11460.47 34245.25 27267.28 27974.19 314
baseline263.42 23861.26 25269.89 21372.55 26847.62 24471.54 26068.38 28850.11 26254.82 32075.55 30143.06 18880.96 19548.13 24367.16 28081.11 232
AUN-MVS68.45 16466.41 18774.57 9779.53 12557.08 9773.93 22775.23 22154.44 21466.69 17881.85 20137.10 25382.89 15262.07 13666.84 28183.75 174
hse-mvs271.04 10069.86 11274.60 9579.58 12357.12 9673.96 22475.25 22060.40 9374.81 4781.95 19945.54 16282.90 15170.41 7066.83 28283.77 173
F-COLMAP63.05 24560.87 25869.58 21976.99 20053.63 14878.12 13376.16 20447.97 29052.41 33981.61 20627.87 33278.11 24540.07 30566.66 28377.00 284
pm-mvs165.24 22164.97 21166.04 26372.38 27239.40 31672.62 24575.63 21255.53 18862.35 25383.18 17047.45 13976.47 27349.06 23766.54 28482.24 209
v14868.24 16867.19 17671.40 18070.43 30247.77 24275.76 19077.03 19558.91 12167.36 16480.10 23548.60 12481.89 17560.01 15366.52 28584.53 146
eth_miper_zixun_eth67.63 18066.28 19371.67 17171.60 28348.33 23573.68 23377.88 17955.80 18265.91 19278.62 26147.35 14382.88 15359.45 15966.25 28683.81 169
sss56.17 29556.57 28554.96 33166.93 33536.32 34657.94 34961.69 33241.67 34358.64 28875.32 30438.72 23256.25 36442.04 29666.19 28772.31 332
COLMAP_ROBcopyleft52.97 1761.27 26358.81 26668.64 23174.63 23952.51 17478.42 12673.30 24949.92 26650.96 34481.51 20923.06 35779.40 22331.63 35365.85 28874.01 316
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CVMVSNet59.63 27159.14 26461.08 30174.47 24238.84 32075.20 20068.74 28631.15 36758.24 29276.51 28932.39 30368.58 31149.77 22865.84 28975.81 293
MSDG61.81 25759.23 26369.55 22072.64 26552.63 17070.45 27775.81 20951.38 24653.70 33176.11 29329.52 31981.08 19437.70 31765.79 29074.93 305
FMVSNet555.86 29754.93 29758.66 31171.05 29536.35 34464.18 32062.48 32446.76 30450.66 34974.73 30825.80 34764.04 33133.11 34365.57 29175.59 296
pmmvs556.47 29155.68 29358.86 30961.41 36436.71 34166.37 30062.75 32240.38 35153.70 33176.62 28634.56 27267.05 31940.02 30765.27 29272.83 322
miper_lstm_enhance62.03 25460.88 25765.49 27166.71 33746.25 25556.29 35775.70 21150.68 25661.27 26175.48 30240.21 21668.03 31556.31 17465.25 29382.18 210
tpm57.34 28458.16 27354.86 33271.80 28234.77 35267.47 29756.04 35648.20 28660.10 26876.92 28137.17 25053.41 37340.76 30365.01 29476.40 290
test_vis1_n_192058.86 27359.06 26558.25 31363.76 35243.14 28767.49 29666.36 30040.22 35265.89 19471.95 32631.04 30759.75 34759.94 15464.90 29571.85 336
pmmvs461.48 26159.39 26267.76 24071.57 28453.86 14371.42 26165.34 30544.20 32559.46 27877.92 26835.90 26174.71 28143.87 28164.87 29674.71 309
test_040263.25 24261.01 25569.96 20880.00 11754.37 13976.86 16972.02 26054.58 21158.71 28680.79 22535.00 26984.36 12326.41 37564.71 29771.15 345
CR-MVSNet59.91 26857.90 27665.96 26469.96 31052.07 18165.31 31363.15 32042.48 34059.36 27974.84 30635.83 26270.75 30045.50 26764.65 29875.06 301
RPMNet61.53 25958.42 27070.86 19369.96 31052.07 18165.31 31381.36 10743.20 33559.36 27970.15 34035.37 26585.47 10236.42 33064.65 29875.06 301
Syy-MVS56.00 29656.23 28955.32 32974.69 23726.44 38565.52 30757.49 34750.97 25456.52 30472.18 32139.89 21868.09 31324.20 37864.59 30071.44 341
myMVS_eth3d54.86 30554.61 30055.61 32874.69 23727.31 38265.52 30757.49 34750.97 25456.52 30472.18 32121.87 36368.09 31327.70 37064.59 30071.44 341
pmmvs663.69 23662.82 23566.27 25770.63 29939.27 31773.13 23875.47 21652.69 23259.75 27682.30 18939.71 22177.03 26247.40 24764.35 30282.53 204
Anonymous2024052155.30 30054.41 30357.96 31760.92 36941.73 29971.09 27071.06 26741.18 34648.65 35473.31 31616.93 36959.25 34942.54 29264.01 30372.90 321
WR-MVS_H67.02 19466.92 17967.33 24777.95 17037.75 32977.57 14682.11 9362.03 7362.65 24482.48 18550.57 10379.46 22242.91 29064.01 30384.79 141
test0.0.03 153.32 31453.59 31152.50 34662.81 35829.45 37459.51 34254.11 36050.08 26354.40 32674.31 31132.62 29955.92 36630.50 36063.95 30572.15 334
PatchMatch-RL56.25 29454.55 30161.32 30077.06 19756.07 10965.57 30654.10 36144.13 32753.49 33771.27 33225.20 35066.78 32136.52 32963.66 30661.12 366
PatchmatchNetpermissive59.84 26958.24 27264.65 27873.05 25946.70 25269.42 28762.18 32947.55 29558.88 28571.96 32534.49 27469.16 30842.99 28963.60 30778.07 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_cas_vis1_n_192056.91 28756.71 28457.51 32159.13 37245.40 26763.58 32161.29 33436.24 36167.14 16971.85 32729.89 31756.69 36157.65 16663.58 30870.46 349
IterMVS-SCA-FT62.49 24761.52 24865.40 27271.99 27950.80 19771.15 26869.63 27745.71 31460.61 26477.93 26737.45 24465.99 32655.67 18163.50 30979.42 258
CP-MVSNet66.49 20666.41 18766.72 25077.67 17736.33 34576.83 17079.52 14362.45 6362.54 24783.47 16746.32 15478.37 24145.47 26963.43 31085.45 116
PS-CasMVS66.42 20766.32 19166.70 25277.60 18536.30 34776.94 16579.61 14162.36 6562.43 25183.66 15945.69 15878.37 24145.35 27163.26 31185.42 119
IterMVS62.79 24661.27 25167.35 24669.37 31852.04 18371.17 26668.24 28952.63 23359.82 27376.91 28237.32 24772.36 29152.80 20563.19 31277.66 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PEN-MVS66.60 20366.45 18367.04 24877.11 19636.56 34277.03 16380.42 13162.95 5062.51 24984.03 15146.69 15279.07 23344.22 27463.08 31385.51 113
tpmrst58.24 27758.70 26856.84 32266.97 33434.32 35669.57 28661.14 33547.17 30258.58 29071.60 32841.28 21060.41 34349.20 23562.84 31475.78 294
testgi51.90 31852.37 31550.51 35260.39 37023.55 39258.42 34558.15 34249.03 27551.83 34179.21 25322.39 35855.59 36729.24 36662.64 31572.40 331
SCA60.49 26558.38 27166.80 24974.14 25048.06 23863.35 32263.23 31949.13 27459.33 28272.10 32337.45 24474.27 28444.17 27562.57 31678.05 270
EPMVS53.96 30753.69 31054.79 33366.12 34331.96 36962.34 32849.05 37144.42 32455.54 31071.33 33130.22 31456.70 36041.65 30062.54 31775.71 295
ITE_SJBPF62.09 29566.16 34244.55 27664.32 31247.36 29855.31 31480.34 23019.27 36662.68 33636.29 33162.39 31879.04 261
testing356.54 28955.92 29158.41 31277.52 18627.93 37969.72 28456.36 35254.75 20758.63 28977.80 27220.88 36571.75 29625.31 37762.25 31975.53 297
MIMVSNet155.17 30354.31 30557.77 31970.03 30932.01 36865.68 30564.81 30849.19 27346.75 36176.00 29425.53 34964.04 33128.65 36762.13 32077.26 280
CL-MVSNet_self_test61.53 25960.94 25663.30 28668.95 32236.93 33967.60 29572.80 25455.67 18559.95 27176.63 28545.01 17272.22 29439.74 30962.09 32180.74 239
baseline163.81 23563.87 22063.62 28376.29 21136.36 34371.78 25967.29 29356.05 17664.23 22882.95 17347.11 14574.41 28347.30 24961.85 32280.10 249
USDC56.35 29354.24 30662.69 29164.74 34840.31 30865.05 31573.83 24443.93 32947.58 35677.71 27615.36 37375.05 28038.19 31661.81 32372.70 323
PatchT53.17 31553.44 31252.33 34768.29 32825.34 38958.21 34754.41 35944.46 32354.56 32469.05 34833.32 28760.94 34036.93 32261.76 32470.73 348
tpm cat159.25 27256.95 28166.15 26072.19 27646.96 25068.09 29265.76 30240.03 35457.81 29570.56 33538.32 23674.51 28238.26 31561.50 32577.00 284
tpmvs58.47 27556.95 28163.03 29070.20 30541.21 30367.90 29467.23 29449.62 26854.73 32270.84 33334.14 27776.24 27636.64 32761.29 32671.64 337
Patchmtry57.16 28556.47 28659.23 30569.17 32134.58 35562.98 32363.15 32044.53 32156.83 30174.84 30635.83 26268.71 31040.03 30660.91 32774.39 312
DTE-MVSNet65.58 21565.34 20666.31 25576.06 21534.79 35176.43 17579.38 14662.55 6161.66 25883.83 15645.60 16079.15 23141.64 30160.88 32885.00 134
CHOSEN 280x42047.83 33246.36 33652.24 34967.37 33349.78 21438.91 38643.11 38535.00 36343.27 37163.30 36928.95 32449.19 38036.53 32860.80 32957.76 373
test_fmvs151.32 32350.48 32353.81 33853.57 37737.51 33260.63 34051.16 36628.02 37363.62 23369.23 34716.41 37053.93 37251.01 22060.70 33069.99 353
test_fmvs1_n51.37 32150.35 32454.42 33652.85 37837.71 33061.16 33651.93 36328.15 37163.81 23269.73 34413.72 37453.95 37151.16 21960.65 33171.59 338
Patchmatch-test49.08 32948.28 33151.50 35064.40 35030.85 37245.68 37848.46 37435.60 36246.10 36472.10 32334.47 27546.37 38327.08 37360.65 33177.27 279
test20.0353.87 30954.02 30853.41 34261.47 36328.11 37861.30 33359.21 33951.34 24852.09 34077.43 27733.29 28858.55 35329.76 36360.27 33373.58 318
MVS-HIRNet45.52 33544.48 33848.65 35468.49 32634.05 35959.41 34444.50 38227.03 37437.96 38150.47 38426.16 34564.10 33026.74 37459.52 33447.82 383
Patchmatch-RL test58.16 27855.49 29466.15 26067.92 33048.89 22860.66 33951.07 36847.86 29259.36 27962.71 37034.02 27972.27 29356.41 17359.40 33577.30 278
AllTest57.08 28654.65 29964.39 28071.44 28649.03 22369.92 28367.30 29145.97 31147.16 35879.77 24017.47 36767.56 31733.65 34059.16 33676.57 288
TestCases64.39 28071.44 28649.03 22367.30 29145.97 31147.16 35879.77 24017.47 36767.56 31733.65 34059.16 33676.57 288
RPSCF55.80 29854.22 30760.53 30265.13 34742.91 29064.30 31857.62 34636.84 36058.05 29482.28 19028.01 33156.24 36537.14 32158.61 33882.44 208
EU-MVSNet55.61 29954.41 30359.19 30765.41 34633.42 36272.44 24971.91 26128.81 36951.27 34273.87 31324.76 35269.08 30943.04 28858.20 33975.06 301
KD-MVS_self_test55.22 30253.89 30959.21 30657.80 37527.47 38157.75 35174.32 23647.38 29750.90 34570.00 34128.45 32970.30 30440.44 30457.92 34079.87 252
test_vis1_n49.89 32848.69 33053.50 34153.97 37637.38 33361.53 33047.33 37728.54 37059.62 27767.10 35813.52 37552.27 37649.07 23657.52 34170.84 347
dmvs_testset50.16 32651.90 31644.94 36066.49 33911.78 39861.01 33851.50 36551.17 25250.30 35267.44 35439.28 22560.29 34422.38 38057.49 34262.76 365
pmmvs-eth3d58.81 27456.31 28866.30 25667.61 33152.42 17772.30 25164.76 30943.55 33154.94 31974.19 31228.95 32472.60 29043.31 28457.21 34373.88 317
test_fmvs248.69 33047.49 33552.29 34848.63 38433.06 36557.76 35048.05 37525.71 37759.76 27569.60 34511.57 38052.23 37749.45 23456.86 34471.58 339
our_test_356.49 29054.42 30262.68 29269.51 31545.48 26666.08 30261.49 33344.11 32850.73 34869.60 34533.05 28968.15 31238.38 31456.86 34474.40 311
TinyColmap54.14 30651.72 31761.40 29966.84 33641.97 29666.52 29968.51 28744.81 31842.69 37275.77 29811.66 37972.94 28931.96 34756.77 34669.27 358
ppachtmachnet_test58.06 28055.38 29566.10 26269.51 31548.99 22668.01 29366.13 30144.50 32254.05 32970.74 33432.09 30572.34 29236.68 32656.71 34776.99 286
OurMVSNet-221017-061.37 26258.63 26969.61 21672.05 27848.06 23873.93 22772.51 25547.23 30154.74 32180.92 22021.49 36481.24 18948.57 24156.22 34879.53 257
TransMVSNet (Re)64.72 22664.33 21565.87 26775.22 22738.56 32274.66 21475.08 22958.90 12261.79 25782.63 17851.18 9678.07 24643.63 28355.87 34980.99 235
FPMVS42.18 34141.11 34445.39 35758.03 37441.01 30649.50 37053.81 36230.07 36833.71 38264.03 36611.69 37852.08 37814.01 38855.11 35043.09 385
dp51.89 31951.60 31852.77 34568.44 32732.45 36762.36 32754.57 35844.16 32649.31 35367.91 35028.87 32656.61 36233.89 33954.89 35169.24 359
ADS-MVSNet251.33 32248.76 32959.07 30866.02 34444.60 27450.90 36859.76 33836.90 35850.74 34666.18 36226.38 34263.11 33427.17 37154.76 35269.50 356
ADS-MVSNet48.48 33147.77 33250.63 35166.02 34429.92 37350.90 36850.87 37036.90 35850.74 34666.18 36226.38 34252.47 37527.17 37154.76 35269.50 356
PM-MVS52.33 31750.19 32558.75 31062.10 36145.14 26965.75 30340.38 38743.60 33053.52 33572.65 3189.16 38765.87 32750.41 22454.18 35465.24 364
JIA-IIPM51.56 32047.68 33463.21 28764.61 34950.73 19847.71 37458.77 34142.90 33748.46 35551.72 38024.97 35170.24 30536.06 33253.89 35568.64 360
ambc65.13 27563.72 35437.07 33747.66 37578.78 15754.37 32771.42 32911.24 38280.94 19645.64 26453.85 35677.38 277
test_vis1_rt41.35 34439.45 34647.03 35646.65 38737.86 32747.76 37338.65 38823.10 38044.21 36951.22 38211.20 38344.08 38539.27 31053.02 35759.14 369
DSMNet-mixed39.30 34838.72 34741.03 36651.22 38119.66 39545.53 37931.35 39415.83 39139.80 37867.42 35622.19 35945.13 38422.43 37952.69 35858.31 371
N_pmnet39.35 34740.28 34536.54 37163.76 3521.62 40649.37 3710.76 40534.62 36443.61 37066.38 36126.25 34442.57 38726.02 37651.77 35965.44 363
TDRefinement53.44 31350.72 32261.60 29764.31 35146.96 25070.89 27265.27 30741.78 34144.61 36777.98 26511.52 38166.36 32428.57 36851.59 36071.49 340
Gipumacopyleft34.77 35131.91 35543.33 36262.05 36237.87 32620.39 39167.03 29523.23 37918.41 39225.84 3924.24 39362.73 33514.71 38751.32 36129.38 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
YYNet150.73 32448.96 32656.03 32661.10 36641.78 29851.94 36656.44 35140.94 34944.84 36567.80 35230.08 31555.08 36936.77 32350.71 36271.22 343
MDA-MVSNet_test_wron50.71 32548.95 32756.00 32761.17 36541.84 29751.90 36756.45 35040.96 34844.79 36667.84 35130.04 31655.07 37036.71 32550.69 36371.11 346
EGC-MVSNET42.47 34038.48 34854.46 33574.33 24648.73 23070.33 27951.10 3670.03 3990.18 40067.78 35313.28 37666.49 32318.91 38450.36 36448.15 381
test_fmvs344.30 33742.55 34049.55 35342.83 38827.15 38453.03 36444.93 38122.03 38453.69 33364.94 3654.21 39449.63 37947.47 24549.82 36571.88 335
SixPastTwentyTwo61.65 25858.80 26770.20 20575.80 21747.22 24875.59 19269.68 27654.61 20954.11 32879.26 25227.07 33982.96 14943.27 28549.79 36680.41 243
new-patchmatchnet47.56 33347.73 33347.06 35558.81 3739.37 40148.78 37259.21 33943.28 33344.22 36868.66 34925.67 34857.20 35931.57 35549.35 36774.62 310
LF4IMVS42.95 33942.26 34145.04 35848.30 38532.50 36654.80 36048.49 37328.03 37240.51 37570.16 3399.24 38643.89 38631.63 35349.18 36858.72 370
PMVScopyleft28.69 2236.22 35033.29 35445.02 35936.82 39635.98 34954.68 36148.74 37226.31 37521.02 39051.61 3812.88 39960.10 3459.99 39647.58 36938.99 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
pmmvs344.92 33641.95 34353.86 33752.58 38043.55 28362.11 32946.90 37926.05 37640.63 37460.19 37211.08 38457.91 35631.83 35246.15 37060.11 367
MDA-MVSNet-bldmvs53.87 30950.81 32163.05 28966.25 34148.58 23256.93 35563.82 31548.09 28841.22 37370.48 33830.34 31368.00 31634.24 33845.92 37172.57 325
UnsupCasMVSNet_eth53.16 31652.47 31455.23 33059.45 37133.39 36359.43 34369.13 28345.98 31050.35 35172.32 32029.30 32258.26 35542.02 29744.30 37274.05 315
UnsupCasMVSNet_bld50.07 32748.87 32853.66 33960.97 36833.67 36157.62 35264.56 31139.47 35647.38 35764.02 36827.47 33559.32 34834.69 33743.68 37367.98 361
KD-MVS_2432*160053.45 31151.50 31959.30 30362.82 35637.14 33555.33 35871.79 26247.34 29955.09 31770.52 33621.91 36170.45 30235.72 33342.97 37470.31 350
miper_refine_blended53.45 31151.50 31959.30 30362.82 35637.14 33555.33 35871.79 26247.34 29955.09 31770.52 33621.91 36170.45 30235.72 33342.97 37470.31 350
test_vis3_rt32.09 35430.20 35837.76 37035.36 39827.48 38040.60 38528.29 39716.69 38932.52 38340.53 3881.96 40037.40 39233.64 34242.21 37648.39 380
APD_test137.39 34934.94 35244.72 36148.88 38333.19 36452.95 36544.00 38419.49 38527.28 38658.59 3743.18 39852.84 37418.92 38341.17 37748.14 382
new_pmnet34.13 35234.29 35333.64 37352.63 37918.23 39744.43 38133.90 39322.81 38130.89 38453.18 37810.48 38535.72 39420.77 38239.51 37846.98 384
K. test v360.47 26657.11 27870.56 19973.74 25248.22 23675.10 20462.55 32358.27 13453.62 33476.31 29227.81 33381.59 18147.42 24639.18 37981.88 217
LCM-MVSNet40.30 34535.88 35153.57 34042.24 38929.15 37545.21 38060.53 33722.23 38328.02 38550.98 3833.72 39661.78 33931.22 35838.76 38069.78 355
test_f31.86 35531.05 35634.28 37232.33 40021.86 39332.34 38830.46 39516.02 39039.78 37955.45 3774.80 39232.36 39530.61 35937.66 38148.64 379
mvsany_test139.38 34638.16 34943.02 36349.05 38234.28 35744.16 38225.94 39822.74 38246.57 36262.21 37123.85 35641.16 39033.01 34435.91 38253.63 377
testf131.46 35628.89 35939.16 36741.99 39128.78 37646.45 37637.56 38914.28 39221.10 38848.96 3851.48 40247.11 38113.63 38934.56 38341.60 386
APD_test231.46 35628.89 35939.16 36741.99 39128.78 37646.45 37637.56 38914.28 39221.10 38848.96 3851.48 40247.11 38113.63 38934.56 38341.60 386
lessismore_v069.91 21171.42 28847.80 24050.90 36950.39 35075.56 30027.43 33781.33 18645.91 26134.10 38580.59 240
mvsany_test332.62 35330.57 35738.77 36936.16 39724.20 39138.10 38720.63 40019.14 38640.36 37757.43 3755.06 39136.63 39329.59 36528.66 38655.49 375
WB-MVS43.26 33843.41 33942.83 36463.32 35510.32 40058.17 34845.20 38045.42 31540.44 37667.26 35734.01 28058.98 35011.96 39224.88 38759.20 368
PVSNet_043.31 2047.46 33445.64 33752.92 34467.60 33244.65 27354.06 36254.64 35741.59 34446.15 36358.75 37330.99 30858.66 35232.18 34624.81 38855.46 376
test_method19.68 36218.10 36524.41 37813.68 4023.11 40512.06 39442.37 3862.00 39711.97 39536.38 3895.77 39029.35 39715.06 38623.65 38940.76 388
SSC-MVS41.96 34241.99 34241.90 36562.46 3609.28 40257.41 35344.32 38343.38 33238.30 38066.45 36032.67 29858.42 35410.98 39321.91 39057.99 372
PMMVS227.40 35825.91 36131.87 37539.46 3956.57 40331.17 38928.52 39623.96 37820.45 39148.94 3874.20 39537.94 39116.51 38519.97 39151.09 378
MVEpermissive17.77 2321.41 36117.77 36632.34 37434.34 39925.44 38816.11 39224.11 39911.19 39413.22 39431.92 3901.58 40130.95 39610.47 39417.03 39240.62 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN23.77 35922.73 36326.90 37642.02 39020.67 39442.66 38335.70 39117.43 38710.28 39725.05 3936.42 38942.39 38810.28 39514.71 39317.63 392
EMVS22.97 36021.84 36426.36 37740.20 39319.53 39641.95 38434.64 39217.09 3889.73 39822.83 3947.29 38842.22 3899.18 39713.66 39417.32 393
wuyk23d13.32 36412.52 36715.71 37947.54 38626.27 38631.06 3901.98 4044.93 3965.18 3991.94 3990.45 40418.54 3986.81 39912.83 3952.33 396
ANet_high41.38 34337.47 35053.11 34339.73 39424.45 39056.94 35469.69 27547.65 29426.04 38752.32 37912.44 37762.38 33721.80 38110.61 39672.49 326
tmp_tt9.43 36511.14 3684.30 3812.38 4034.40 40413.62 39316.08 4020.39 39815.89 39313.06 39515.80 3725.54 40012.63 39110.46 3972.95 395
DeepMVS_CXcopyleft12.03 38017.97 40110.91 39910.60 4037.46 39511.07 39628.36 3913.28 39711.29 3998.01 3989.74 39813.89 394
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
cdsmvs_eth3d_5k17.50 36323.34 3620.00 3840.00 4060.00 4080.00 39578.63 1610.00 4020.00 40382.18 19149.25 1150.00 4010.00 4020.00 3990.00 399
pcd_1.5k_mvsjas3.92 3695.23 3720.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 40247.05 1460.00 4010.00 4020.00 3990.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
testmvs4.52 3686.03 3710.01 3830.01 4040.00 40853.86 3630.00 4060.01 4000.04 4010.27 4000.00 4060.00 4010.04 4000.00 3990.03 398
test1234.73 3676.30 3700.02 3820.01 4040.01 40756.36 3560.00 4060.01 4000.04 4010.21 4010.01 4050.00 4010.03 4010.00 3990.04 397
ab-mvs-re6.49 3668.65 3690.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 40377.89 2700.00 4060.00 4010.00 4020.00 3990.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4080.00 3950.00 4060.00 4020.00 4030.00 4020.00 4060.00 4010.00 4020.00 3990.00 399
WAC-MVS27.31 38227.77 369
FOURS186.12 3660.82 3788.18 183.61 6360.87 8481.50 16
test_one_060187.58 959.30 5786.84 765.01 2083.80 1191.86 664.03 11
eth-test20.00 406
eth-test0.00 406
test_241102_ONE87.77 458.90 6986.78 1064.20 3185.97 191.34 1266.87 390.78 7
save fliter86.17 3361.30 2883.98 4779.66 14059.00 120
test072687.75 759.07 6487.86 486.83 864.26 2984.19 791.92 564.82 8
GSMVS78.05 270
test_part287.58 960.47 4283.42 12
sam_mvs134.74 27178.05 270
sam_mvs33.43 286
MTGPAbinary80.97 123
test_post168.67 2903.64 39732.39 30369.49 30744.17 275
test_post3.55 39833.90 28166.52 322
patchmatchnet-post64.03 36634.50 27374.27 284
MTMP86.03 1917.08 401
gm-plane-assit71.40 28941.72 30148.85 27873.31 31682.48 16848.90 238
TEST985.58 4361.59 2481.62 8281.26 11555.65 18674.93 4388.81 5653.70 6384.68 118
test_885.40 4660.96 3481.54 8581.18 11855.86 17774.81 4788.80 5853.70 6384.45 122
agg_prior85.04 5059.96 4781.04 12174.68 5084.04 128
test_prior462.51 1482.08 77
test_prior76.69 5384.20 6157.27 8884.88 3786.43 7886.38 72
旧先验276.08 18245.32 31676.55 3265.56 32858.75 162
新几何276.12 180
无先验79.66 11074.30 23848.40 28480.78 20253.62 19879.03 262
原ACMM279.02 116
testdata272.18 29546.95 254
segment_acmp54.23 54
testdata172.65 24360.50 91
plane_prior781.41 8955.96 111
plane_prior681.20 9656.24 10645.26 170
plane_prior486.10 108
plane_prior356.09 10863.92 3669.27 127
plane_prior284.22 4064.52 25
plane_prior181.27 94
n20.00 406
nn0.00 406
door-mid47.19 378
test1183.47 67
door47.60 376
HQP5-MVS54.94 131
HQP-NCC80.66 10282.31 7162.10 6867.85 152
ACMP_Plane80.66 10282.31 7162.10 6867.85 152
BP-MVS67.04 93
HQP4-MVS67.85 15286.93 6284.32 151
HQP2-MVS45.46 164
NP-MVS80.98 9956.05 11085.54 126
MDTV_nov1_ep13_2view25.89 38761.22 33440.10 35351.10 34332.97 29138.49 31378.61 265
Test By Simon48.33 126