This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 189.67 196.44 994.41 30
No_MVS89.16 194.34 2775.53 292.99 4597.53 189.67 196.44 994.41 30
MSP-MVS89.51 489.91 588.30 994.28 3073.46 1692.90 1694.11 680.27 891.35 1494.16 3478.35 1396.77 2289.59 394.22 5694.67 22
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DVP-MVS++90.23 191.01 187.89 2294.34 2771.25 5595.06 194.23 378.38 3192.78 495.74 682.45 397.49 389.42 496.68 294.95 8
test_0728_THIRD78.38 3192.12 995.78 481.46 797.40 789.42 496.57 794.67 22
APDe-MVS89.15 689.63 687.73 2694.49 1871.69 5093.83 493.96 1375.70 8791.06 1696.03 176.84 1497.03 1589.09 695.65 2794.47 29
DVP-MVScopyleft89.60 390.35 387.33 3895.27 571.25 5593.49 992.73 5977.33 4692.12 995.78 480.98 997.40 789.08 796.41 1293.33 76
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND87.71 3095.34 171.43 5493.49 994.23 397.49 389.08 796.41 1294.21 40
SED-MVS90.08 290.85 287.77 2495.30 270.98 6193.57 794.06 1077.24 4893.10 195.72 882.99 197.44 589.07 996.63 494.88 12
test_241102_TWO94.06 1077.24 4892.78 495.72 881.26 897.44 589.07 996.58 694.26 39
IU-MVS95.30 271.25 5592.95 5166.81 23392.39 688.94 1196.63 494.85 17
MP-MVS-pluss87.67 1987.72 1987.54 3493.64 4472.04 4789.80 7793.50 2575.17 9686.34 3395.29 1270.86 5396.00 4788.78 1296.04 1694.58 25
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVScopyleft89.08 789.23 788.61 594.25 3173.73 992.40 2393.63 2174.77 10392.29 795.97 274.28 2997.24 1188.58 1396.91 194.87 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 890.51 5993.00 4380.90 588.06 2594.06 3876.43 1696.84 1988.48 1495.99 1894.34 35
TSAR-MVS + MP.88.02 1688.11 1587.72 2893.68 4372.13 4591.41 4592.35 7474.62 10788.90 2093.85 4475.75 2096.00 4787.80 1594.63 4595.04 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP88.05 1588.08 1687.94 1793.70 4173.05 2190.86 5493.59 2376.27 7788.14 2395.09 1471.06 5296.67 2787.67 1696.37 1494.09 44
SD-MVS88.06 1388.50 1386.71 4992.60 6672.71 2891.81 4093.19 3577.87 3490.32 1794.00 4074.83 2393.78 13487.63 1794.27 5593.65 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 6972.96 2493.73 593.67 2080.19 1088.10 2494.80 1573.76 3397.11 1387.51 1895.82 2194.90 11
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2692.85 5480.26 987.78 2794.27 3075.89 1996.81 2187.45 1996.44 993.05 86
DPE-MVScopyleft89.48 589.98 488.01 1494.80 1172.69 3091.59 4194.10 875.90 8392.29 795.66 1081.67 697.38 987.44 2096.34 1593.95 49
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SF-MVS88.46 1188.74 1187.64 3392.78 6171.95 4892.40 2394.74 275.71 8589.16 1995.10 1375.65 2196.19 4187.07 2196.01 1794.79 19
9.1488.26 1492.84 6091.52 4494.75 173.93 12188.57 2294.67 1775.57 2295.79 5186.77 2295.76 23
MTAPA87.23 2687.00 2787.90 2094.18 3574.25 586.58 17492.02 8579.45 1785.88 3594.80 1568.07 7796.21 4086.69 2395.34 3193.23 79
DeepPCF-MVS80.84 188.10 1288.56 1286.73 4892.24 6869.03 9389.57 8393.39 3077.53 4389.79 1894.12 3578.98 1296.58 3385.66 2495.72 2494.58 25
MP-MVScopyleft87.71 1887.64 2087.93 1994.36 2673.88 692.71 2292.65 6477.57 3983.84 6994.40 2872.24 4296.28 3885.65 2595.30 3393.62 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS87.94 1787.85 1888.20 1194.39 2473.33 1893.03 1493.81 1776.81 6185.24 4294.32 2971.76 4696.93 1785.53 2695.79 2294.32 36
HPM-MVScopyleft87.11 2886.98 2887.50 3693.88 3972.16 4492.19 3293.33 3176.07 8083.81 7093.95 4369.77 6596.01 4685.15 2794.66 4494.32 36
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
train_agg86.43 3786.20 3987.13 4293.26 5072.96 2488.75 10691.89 9368.69 21885.00 4593.10 5474.43 2695.41 6584.97 2895.71 2593.02 88
test9_res84.90 2995.70 2692.87 92
NCCC88.06 1388.01 1788.24 1094.41 2273.62 1091.22 5092.83 5581.50 385.79 3793.47 4973.02 3997.00 1684.90 2994.94 3794.10 43
MCST-MVS87.37 2587.25 2487.73 2694.53 1772.46 3789.82 7593.82 1673.07 14084.86 5092.89 6176.22 1796.33 3684.89 3195.13 3494.40 32
DeepC-MVS79.81 287.08 3086.88 3287.69 3191.16 8072.32 4290.31 6693.94 1477.12 5382.82 8394.23 3272.13 4497.09 1484.83 3295.37 3093.65 63
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3286.67 3386.91 4494.11 3772.11 4692.37 2792.56 6774.50 10886.84 3194.65 1867.31 8595.77 5284.80 3392.85 6592.84 93
ZD-MVS94.38 2572.22 4392.67 6170.98 17187.75 2894.07 3774.01 3296.70 2584.66 3494.84 41
PC_three_145268.21 22592.02 1294.00 4082.09 595.98 4984.58 3596.68 294.95 8
HFP-MVS87.58 2087.47 2287.94 1794.58 1673.54 1493.04 1293.24 3376.78 6384.91 4794.44 2670.78 5496.61 3084.53 3694.89 3993.66 59
ACMMPR87.44 2187.23 2588.08 1394.64 1373.59 1193.04 1293.20 3476.78 6384.66 5494.52 1968.81 7596.65 2884.53 3694.90 3894.00 48
region2R87.42 2387.20 2688.09 1294.63 1473.55 1293.03 1493.12 3776.73 6684.45 5894.52 1969.09 7196.70 2584.37 3894.83 4294.03 47
CANet86.45 3686.10 4387.51 3590.09 10170.94 6589.70 8192.59 6681.78 281.32 9891.43 9370.34 5897.23 1284.26 3993.36 6294.37 33
APD-MVScopyleft87.44 2187.52 2187.19 4094.24 3272.39 3891.86 3992.83 5573.01 14288.58 2194.52 1973.36 3496.49 3484.26 3995.01 3592.70 95
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CS-MVS86.69 3386.95 2985.90 6190.76 9067.57 12992.83 1793.30 3279.67 1584.57 5792.27 7371.47 4995.02 8484.24 4193.46 6195.13 5
CP-MVS87.11 2886.92 3087.68 3294.20 3473.86 793.98 392.82 5876.62 6883.68 7194.46 2367.93 7895.95 5084.20 4294.39 5193.23 79
GST-MVS87.42 2387.26 2387.89 2294.12 3672.97 2392.39 2593.43 2876.89 5984.68 5193.99 4270.67 5696.82 2084.18 4395.01 3593.90 51
DROMVSNet86.01 4186.38 3684.91 8289.31 12966.27 15392.32 2993.63 2179.37 1884.17 6491.88 8069.04 7495.43 6383.93 4493.77 5993.01 89
OPU-MVS89.06 394.62 1575.42 493.57 794.02 3982.45 396.87 1883.77 4596.48 894.88 12
casdiffmvs_mvgpermissive85.99 4286.09 4485.70 6487.65 18967.22 13888.69 11093.04 3879.64 1685.33 4192.54 7073.30 3594.50 10583.49 4691.14 8795.37 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
dcpmvs_285.63 4986.15 4284.06 11391.71 7564.94 18486.47 17791.87 9573.63 12786.60 3293.02 5976.57 1591.87 21183.36 4792.15 7395.35 2
test_prior288.85 10275.41 9184.91 4793.54 4674.28 2983.31 4895.86 20
PHI-MVS86.43 3786.17 4187.24 3990.88 8770.96 6392.27 3194.07 972.45 14585.22 4391.90 7969.47 6796.42 3583.28 4995.94 1994.35 34
XVS87.18 2786.91 3188.00 1594.42 2073.33 1892.78 1892.99 4579.14 1983.67 7294.17 3367.45 8396.60 3183.06 5094.50 4894.07 45
X-MVStestdata80.37 13177.83 16888.00 1594.42 2073.33 1892.78 1892.99 4579.14 1983.67 7212.47 37467.45 8396.60 3183.06 5094.50 4894.07 45
APD-MVS_3200maxsize85.97 4385.88 4586.22 5592.69 6369.53 8691.93 3692.99 4573.54 13185.94 3494.51 2265.80 10295.61 5583.04 5292.51 6993.53 71
agg_prior282.91 5395.45 2892.70 95
mPP-MVS86.67 3586.32 3787.72 2894.41 2273.55 1292.74 2092.22 8076.87 6082.81 8494.25 3166.44 9296.24 3982.88 5494.28 5493.38 73
SR-MVS-dyc-post85.77 4685.61 4886.23 5493.06 5570.63 7191.88 3792.27 7673.53 13285.69 3894.45 2465.00 11095.56 5682.75 5591.87 7792.50 103
RE-MVS-def85.48 4993.06 5570.63 7191.88 3792.27 7673.53 13285.69 3894.45 2463.87 11682.75 5591.87 7792.50 103
h-mvs3383.15 7582.19 8386.02 5990.56 9270.85 6888.15 12889.16 17176.02 8184.67 5291.39 9461.54 14995.50 5982.71 5775.48 27391.72 126
hse-mvs281.72 9680.94 10284.07 11288.72 15167.68 12785.87 19387.26 22176.02 8184.67 5288.22 17461.54 14993.48 14982.71 5773.44 30091.06 146
PGM-MVS86.68 3486.27 3887.90 2094.22 3373.38 1790.22 6893.04 3875.53 8983.86 6894.42 2767.87 8096.64 2982.70 5994.57 4793.66 59
ACMMPcopyleft85.89 4585.39 5087.38 3793.59 4572.63 3292.74 2093.18 3676.78 6380.73 10793.82 4564.33 11296.29 3782.67 6090.69 9193.23 79
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
diffmvspermissive82.10 8881.88 9082.76 16983.00 27363.78 20683.68 24289.76 15372.94 14382.02 9089.85 12565.96 10190.79 23982.38 6187.30 12893.71 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
patch_mono-283.65 6684.54 6180.99 20790.06 10665.83 16284.21 23488.74 19171.60 16085.01 4492.44 7174.51 2583.50 31282.15 6292.15 7393.64 65
CS-MVS-test86.29 4086.48 3585.71 6391.02 8367.21 13992.36 2893.78 1878.97 2683.51 7591.20 9870.65 5795.15 7581.96 6394.89 3994.77 20
TSAR-MVS + GP.85.71 4885.33 5186.84 4591.34 7872.50 3589.07 9587.28 22076.41 7085.80 3690.22 12174.15 3195.37 7081.82 6491.88 7692.65 99
alignmvs85.48 5085.32 5285.96 6089.51 11869.47 8889.74 7992.47 6876.17 7887.73 2991.46 9270.32 5993.78 13481.51 6588.95 10894.63 24
canonicalmvs85.91 4485.87 4686.04 5889.84 11169.44 9190.45 6493.00 4376.70 6788.01 2691.23 9673.28 3693.91 12981.50 6688.80 11194.77 20
baseline84.93 5884.98 5684.80 8687.30 20265.39 17587.30 15292.88 5277.62 3784.04 6792.26 7471.81 4593.96 12281.31 6790.30 9495.03 7
casdiffmvspermissive85.11 5685.14 5585.01 7687.20 20465.77 16687.75 14092.83 5577.84 3584.36 6192.38 7272.15 4393.93 12881.27 6890.48 9295.33 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_HR85.14 5584.75 5986.32 5391.65 7672.70 2985.98 18990.33 13876.11 7982.08 8991.61 8771.36 5194.17 11881.02 6992.58 6892.08 118
HPM-MVS_fast85.35 5484.95 5886.57 5193.69 4270.58 7392.15 3491.62 10373.89 12282.67 8694.09 3662.60 13195.54 5880.93 7092.93 6493.57 68
CPTT-MVS83.73 6483.33 6884.92 8193.28 4970.86 6792.09 3590.38 13468.75 21779.57 11892.83 6360.60 17093.04 17380.92 7191.56 8290.86 154
ETV-MVS84.90 6084.67 6085.59 6589.39 12368.66 10888.74 10892.64 6579.97 1384.10 6585.71 23969.32 6995.38 6780.82 7291.37 8492.72 94
DeepC-MVS_fast79.65 386.91 3186.62 3487.76 2593.52 4672.37 4091.26 4693.04 3876.62 6884.22 6293.36 5171.44 5096.76 2380.82 7295.33 3294.16 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
nrg03083.88 6283.53 6584.96 7886.77 21269.28 9290.46 6392.67 6174.79 10282.95 7991.33 9572.70 4093.09 16980.79 7479.28 23092.50 103
mvsmamba81.69 9880.74 10484.56 9187.45 19666.72 14691.26 4685.89 24174.66 10578.23 14590.56 11454.33 21294.91 8680.73 7583.54 17792.04 121
EI-MVSNet-Vis-set84.19 6183.81 6485.31 6888.18 16867.85 12287.66 14289.73 15580.05 1282.95 7989.59 13370.74 5594.82 9380.66 7684.72 15993.28 78
MSLP-MVS++85.43 5285.76 4784.45 9691.93 7270.24 7490.71 5692.86 5377.46 4584.22 6292.81 6567.16 8792.94 17580.36 7794.35 5390.16 178
MVS_111021_LR82.61 8482.11 8484.11 10788.82 14571.58 5185.15 20986.16 23774.69 10480.47 10991.04 10462.29 13890.55 24380.33 7890.08 9990.20 177
DELS-MVS85.41 5385.30 5385.77 6288.49 15867.93 12185.52 20693.44 2778.70 2783.63 7489.03 14974.57 2495.71 5480.26 7994.04 5793.66 59
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-UG-set83.81 6383.38 6785.09 7487.87 17867.53 13087.44 14889.66 15679.74 1482.23 8889.41 14270.24 6094.74 9679.95 8083.92 16992.99 90
CSCG86.41 3986.19 4087.07 4392.91 5872.48 3690.81 5593.56 2473.95 11983.16 7891.07 10375.94 1895.19 7379.94 8194.38 5293.55 69
OPM-MVS83.50 6982.95 7385.14 7288.79 14870.95 6489.13 9491.52 10677.55 4280.96 10591.75 8260.71 16694.50 10579.67 8286.51 14089.97 194
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
iter_conf_final80.63 12379.35 13284.46 9589.36 12567.70 12689.85 7384.49 25673.19 13878.30 14388.94 15045.98 29194.56 10079.59 8384.48 16391.11 143
iter_conf0580.00 14078.70 14683.91 12487.84 18065.83 16288.84 10384.92 25171.61 15978.70 13088.94 15043.88 30594.56 10079.28 8484.28 16691.33 136
CDPH-MVS85.76 4785.29 5487.17 4193.49 4771.08 5988.58 11392.42 7268.32 22484.61 5593.48 4772.32 4196.15 4379.00 8595.43 2994.28 38
MVSFormer82.85 8182.05 8685.24 7087.35 19770.21 7590.50 6090.38 13468.55 22081.32 9889.47 13661.68 14693.46 15178.98 8690.26 9592.05 119
test_djsdf80.30 13379.32 13383.27 14083.98 25165.37 17690.50 6090.38 13468.55 22076.19 19288.70 15756.44 19993.46 15178.98 8680.14 21990.97 151
test_vis1_n_192075.52 23175.78 20974.75 29479.84 31957.44 28883.26 25185.52 24462.83 28379.34 12286.17 23245.10 30079.71 32878.75 8881.21 20487.10 271
HQP_MVS83.64 6783.14 6985.14 7290.08 10268.71 10491.25 4892.44 6979.12 2178.92 12791.00 10760.42 17295.38 6778.71 8986.32 14291.33 136
plane_prior592.44 6995.38 6778.71 8986.32 14291.33 136
LPG-MVS_test82.08 8981.27 9584.50 9389.23 13368.76 10090.22 6891.94 9175.37 9276.64 18291.51 8954.29 21394.91 8678.44 9183.78 17089.83 199
LGP-MVS_train84.50 9389.23 13368.76 10091.94 9175.37 9276.64 18291.51 8954.29 21394.91 8678.44 9183.78 17089.83 199
lupinMVS81.39 10680.27 11584.76 8787.35 19770.21 7585.55 20286.41 23262.85 28281.32 9888.61 16161.68 14692.24 19878.41 9390.26 9591.83 123
jason81.39 10680.29 11484.70 8886.63 21469.90 8285.95 19086.77 22863.24 27581.07 10489.47 13661.08 16292.15 20078.33 9490.07 10092.05 119
jason: jason.
xiu_mvs_v1_base_debu80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9587.56 12389.06 217
xiu_mvs_v1_base80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9587.56 12389.06 217
xiu_mvs_v1_base_debi80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9587.56 12389.06 217
Effi-MVS+83.62 6883.08 7085.24 7088.38 16367.45 13188.89 10089.15 17275.50 9082.27 8788.28 17169.61 6694.45 10777.81 9887.84 12193.84 54
PS-MVSNAJss82.07 9081.31 9484.34 10186.51 21567.27 13689.27 8791.51 10771.75 15479.37 12090.22 12163.15 12594.27 11177.69 9982.36 19291.49 133
ACMP74.13 681.51 10580.57 10784.36 9989.42 12168.69 10789.97 7291.50 11074.46 11075.04 22390.41 11753.82 21894.54 10277.56 10082.91 18489.86 198
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
BP-MVS77.47 101
HQP-MVS82.61 8482.02 8784.37 9889.33 12666.98 14289.17 8992.19 8276.41 7077.23 16890.23 12060.17 17595.11 7877.47 10185.99 14991.03 148
MVS_Test83.15 7583.06 7183.41 13686.86 20863.21 22086.11 18792.00 8774.31 11282.87 8189.44 14170.03 6193.21 15877.39 10388.50 11793.81 55
3Dnovator+77.84 485.48 5084.47 6288.51 691.08 8173.49 1593.18 1193.78 1880.79 676.66 18193.37 5060.40 17496.75 2477.20 10493.73 6095.29 4
anonymousdsp78.60 17377.15 18582.98 15680.51 31267.08 14087.24 15489.53 15865.66 25175.16 21887.19 20152.52 22492.25 19777.17 10579.34 22989.61 206
VDD-MVS83.01 8082.36 8184.96 7891.02 8366.40 15088.91 9988.11 20077.57 3984.39 6093.29 5252.19 23093.91 12977.05 10688.70 11394.57 27
XVG-OURS-SEG-HR80.81 11679.76 12283.96 12285.60 22568.78 9983.54 24890.50 13170.66 17776.71 18091.66 8360.69 16791.26 22676.94 10781.58 20091.83 123
RRT_MVS80.35 13279.22 13783.74 12787.63 19065.46 17291.08 5288.92 18473.82 12376.44 18790.03 12349.05 27294.25 11576.84 10879.20 23291.51 130
jajsoiax79.29 15677.96 16383.27 14084.68 24066.57 14989.25 8890.16 14369.20 20575.46 20689.49 13545.75 29693.13 16776.84 10880.80 20990.11 182
bld_raw_dy_0_6477.29 20675.98 20881.22 20085.04 23665.47 17188.14 12977.56 32469.20 20573.77 23689.40 14442.24 31688.85 27176.78 11081.64 19989.33 212
mvs_tets79.13 16077.77 17283.22 14484.70 23966.37 15189.17 8990.19 14269.38 19975.40 20989.46 13844.17 30393.15 16576.78 11080.70 21190.14 179
DPM-MVS84.93 5884.29 6386.84 4590.20 9973.04 2287.12 15693.04 3869.80 19182.85 8291.22 9773.06 3896.02 4576.72 11294.63 4591.46 135
ET-MVSNet_ETH3D78.63 17276.63 20084.64 8986.73 21369.47 8885.01 21284.61 25469.54 19666.51 31186.59 21950.16 25691.75 21376.26 11384.24 16792.69 97
v2v48280.23 13479.29 13483.05 15283.62 25664.14 19987.04 15889.97 14873.61 12878.18 14887.22 19961.10 16193.82 13276.11 11476.78 25591.18 141
test_fmvs1_n70.86 27170.24 26972.73 30772.51 35655.28 31581.27 27479.71 31351.49 34578.73 12984.87 25827.54 35377.02 34076.06 11579.97 22185.88 293
CLD-MVS82.31 8681.65 9284.29 10388.47 15967.73 12585.81 19792.35 7475.78 8478.33 14286.58 22164.01 11594.35 10876.05 11687.48 12690.79 155
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EPNet83.72 6582.92 7486.14 5784.22 24669.48 8791.05 5385.27 24681.30 476.83 17691.65 8466.09 9795.56 5676.00 11793.85 5893.38 73
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvs170.93 27070.52 26472.16 31073.71 34855.05 31780.82 27578.77 31851.21 34678.58 13584.41 26431.20 34976.94 34175.88 11880.12 22084.47 310
XVG-OURS80.41 12979.23 13683.97 12185.64 22469.02 9483.03 25890.39 13371.09 16977.63 15991.49 9154.62 21191.35 22475.71 11983.47 17891.54 129
V4279.38 15578.24 15982.83 16181.10 30665.50 17085.55 20289.82 15171.57 16178.21 14686.12 23360.66 16893.18 16475.64 12075.46 27589.81 201
PS-MVSNAJ81.69 9881.02 10083.70 12889.51 11868.21 11784.28 23390.09 14570.79 17381.26 10285.62 24363.15 12594.29 10975.62 12188.87 11088.59 238
xiu_mvs_v2_base81.69 9881.05 9983.60 12989.15 13668.03 12084.46 22790.02 14670.67 17681.30 10186.53 22463.17 12494.19 11775.60 12288.54 11588.57 239
EIA-MVS83.31 7482.80 7684.82 8489.59 11465.59 16888.21 12492.68 6074.66 10578.96 12586.42 22669.06 7295.26 7175.54 12390.09 9893.62 66
AUN-MVS79.21 15877.60 17884.05 11588.71 15267.61 12885.84 19587.26 22169.08 20977.23 16888.14 17953.20 22393.47 15075.50 12473.45 29991.06 146
OMC-MVS82.69 8281.97 8984.85 8388.75 15067.42 13287.98 13190.87 12474.92 9979.72 11691.65 8462.19 14193.96 12275.26 12586.42 14193.16 83
v114480.03 13879.03 14183.01 15483.78 25464.51 19087.11 15790.57 13071.96 15378.08 15186.20 23161.41 15393.94 12574.93 12677.23 24690.60 164
MVSTER79.01 16377.88 16782.38 17583.07 27064.80 18684.08 23988.95 18269.01 21378.69 13187.17 20254.70 20992.43 18874.69 12780.57 21389.89 197
test_vis1_n69.85 28369.21 27471.77 31272.66 35555.27 31681.48 27176.21 33452.03 34275.30 21583.20 28328.97 35176.22 34674.60 12878.41 23983.81 318
test_fmvs268.35 29467.48 29470.98 32069.50 35951.95 33880.05 28776.38 33349.33 34874.65 22984.38 26523.30 35975.40 35174.51 12975.17 28385.60 295
PVSNet_Blended_VisFu82.62 8381.83 9184.96 7890.80 8969.76 8488.74 10891.70 10269.39 19878.96 12588.46 16665.47 10494.87 9274.42 13088.57 11490.24 176
v879.97 14179.02 14282.80 16484.09 24864.50 19287.96 13290.29 14174.13 11875.24 21786.81 20862.88 13093.89 13174.39 13175.40 27790.00 190
v14419279.47 14978.37 15582.78 16783.35 26163.96 20286.96 16090.36 13769.99 18777.50 16085.67 24160.66 16893.77 13674.27 13276.58 25690.62 162
ACMM73.20 880.78 12179.84 12183.58 13089.31 12968.37 11289.99 7191.60 10470.28 18377.25 16689.66 12953.37 22193.53 14774.24 13382.85 18588.85 230
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
旧先验286.56 17558.10 32087.04 3088.98 26674.07 134
v119279.59 14678.43 15483.07 15183.55 25864.52 18986.93 16290.58 12970.83 17277.78 15685.90 23559.15 17893.94 12573.96 13577.19 24890.76 157
v1079.74 14378.67 14782.97 15784.06 24964.95 18387.88 13890.62 12873.11 13975.11 22086.56 22261.46 15294.05 12173.68 13675.55 27189.90 196
v192192079.22 15778.03 16282.80 16483.30 26363.94 20386.80 16690.33 13869.91 18977.48 16185.53 24458.44 18293.75 13873.60 13776.85 25390.71 160
cl2278.07 18677.01 18781.23 19982.37 28861.83 24083.55 24787.98 20468.96 21475.06 22283.87 27161.40 15491.88 21073.53 13876.39 26089.98 193
Effi-MVS+-dtu80.03 13878.57 15084.42 9785.13 23468.74 10288.77 10588.10 20174.99 9874.97 22483.49 27957.27 19493.36 15473.53 13880.88 20791.18 141
c3_l78.75 16877.91 16581.26 19882.89 27661.56 24384.09 23889.13 17469.97 18875.56 20284.29 26766.36 9392.09 20273.47 14075.48 27390.12 181
VDDNet81.52 10380.67 10684.05 11590.44 9564.13 20089.73 8085.91 24071.11 16883.18 7793.48 4750.54 25393.49 14873.40 14188.25 11994.54 28
CANet_DTU80.61 12479.87 12082.83 16185.60 22563.17 22387.36 14988.65 19376.37 7475.88 19888.44 16753.51 22093.07 17073.30 14289.74 10392.25 112
miper_ehance_all_eth78.59 17477.76 17381.08 20582.66 28161.56 24383.65 24389.15 17268.87 21575.55 20383.79 27566.49 9192.03 20373.25 14376.39 26089.64 205
3Dnovator76.31 583.38 7382.31 8286.59 5087.94 17772.94 2790.64 5792.14 8477.21 5075.47 20492.83 6358.56 18194.72 9773.24 14492.71 6792.13 117
v124078.99 16477.78 17182.64 17083.21 26563.54 21186.62 17390.30 14069.74 19577.33 16485.68 24057.04 19693.76 13773.13 14576.92 25090.62 162
miper_enhance_ethall77.87 19376.86 19180.92 20981.65 29561.38 24582.68 25988.98 17965.52 25375.47 20482.30 29465.76 10392.00 20572.95 14676.39 26089.39 210
MG-MVS83.41 7183.45 6683.28 13992.74 6262.28 23488.17 12689.50 15975.22 9481.49 9792.74 6966.75 8895.11 7872.85 14791.58 8192.45 106
EPP-MVSNet83.40 7283.02 7284.57 9090.13 10064.47 19392.32 2990.73 12674.45 11179.35 12191.10 10169.05 7395.12 7672.78 14887.22 12994.13 42
test_fmvs363.36 31561.82 31767.98 33162.51 36646.96 35777.37 31374.03 34345.24 35167.50 29678.79 32612.16 37072.98 35872.77 14966.02 33383.99 316
IterMVS-LS80.06 13779.38 13082.11 17885.89 22063.20 22186.79 16789.34 16274.19 11575.45 20786.72 21166.62 8992.39 19072.58 15076.86 25290.75 158
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tt080578.73 16977.83 16881.43 19285.17 23060.30 25989.41 8590.90 12271.21 16677.17 17288.73 15646.38 28693.21 15872.57 15178.96 23390.79 155
EI-MVSNet80.52 12879.98 11782.12 17784.28 24463.19 22286.41 17888.95 18274.18 11678.69 13187.54 19166.62 8992.43 18872.57 15180.57 21390.74 159
Vis-MVSNetpermissive83.46 7082.80 7685.43 6790.25 9868.74 10290.30 6790.13 14476.33 7680.87 10692.89 6161.00 16394.20 11672.45 15390.97 8893.35 75
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LFMVS81.82 9581.23 9683.57 13191.89 7363.43 21689.84 7481.85 29277.04 5683.21 7693.10 5452.26 22993.43 15371.98 15489.95 10193.85 52
v14878.72 17077.80 17081.47 19182.73 27961.96 23886.30 18288.08 20273.26 13676.18 19385.47 24662.46 13592.36 19271.92 15573.82 29690.09 184
PVSNet_BlendedMVS80.60 12580.02 11682.36 17688.85 14265.40 17386.16 18692.00 8769.34 20078.11 14986.09 23466.02 9994.27 11171.52 15682.06 19487.39 259
PVSNet_Blended80.98 11180.34 11282.90 15988.85 14265.40 17384.43 22992.00 8767.62 22878.11 14985.05 25766.02 9994.27 11171.52 15689.50 10489.01 222
eth_miper_zixun_eth77.92 19176.69 19881.61 18983.00 27361.98 23783.15 25389.20 17069.52 19774.86 22684.35 26661.76 14592.56 18471.50 15872.89 30490.28 175
UA-Net85.08 5784.96 5785.45 6692.07 7068.07 11989.78 7890.86 12582.48 184.60 5693.20 5369.35 6895.22 7271.39 15990.88 9093.07 85
FA-MVS(test-final)80.96 11279.91 11984.10 10888.30 16665.01 18284.55 22490.01 14773.25 13779.61 11787.57 18858.35 18394.72 9771.29 16086.25 14492.56 100
cl____77.72 19676.76 19580.58 21582.49 28560.48 25683.09 25587.87 20769.22 20374.38 23285.22 25262.10 14291.53 21971.09 16175.41 27689.73 204
DIV-MVS_self_test77.72 19676.76 19580.58 21582.48 28660.48 25683.09 25587.86 20869.22 20374.38 23285.24 25062.10 14291.53 21971.09 16175.40 27789.74 203
test_yl81.17 10880.47 11083.24 14289.13 13763.62 20786.21 18489.95 14972.43 14881.78 9589.61 13157.50 19193.58 14270.75 16386.90 13392.52 101
DCV-MVSNet81.17 10880.47 11083.24 14289.13 13763.62 20786.21 18489.95 14972.43 14881.78 9589.61 13157.50 19193.58 14270.75 16386.90 13392.52 101
VNet82.21 8782.41 7981.62 18790.82 8860.93 24884.47 22589.78 15276.36 7584.07 6691.88 8064.71 11190.26 24570.68 16588.89 10993.66 59
mvs_anonymous79.42 15279.11 14080.34 22084.45 24357.97 27882.59 26087.62 21367.40 23176.17 19588.56 16468.47 7689.59 25570.65 16686.05 14793.47 72
VPA-MVSNet80.60 12580.55 10880.76 21288.07 17360.80 25186.86 16491.58 10575.67 8880.24 11189.45 14063.34 11990.25 24670.51 16779.22 23191.23 140
PAPM_NR83.02 7982.41 7984.82 8492.47 6766.37 15187.93 13591.80 9873.82 12377.32 16590.66 11267.90 7994.90 8970.37 16889.48 10593.19 82
thisisatest053079.40 15377.76 17384.31 10287.69 18865.10 18187.36 14984.26 26270.04 18677.42 16288.26 17349.94 25994.79 9570.20 16984.70 16093.03 87
tttt051779.40 15377.91 16583.90 12588.10 17163.84 20488.37 12084.05 26471.45 16376.78 17889.12 14649.93 26194.89 9070.18 17083.18 18292.96 91
UniMVSNet_NR-MVSNet81.88 9381.54 9382.92 15888.46 16063.46 21487.13 15592.37 7380.19 1078.38 14089.14 14571.66 4893.05 17170.05 17176.46 25892.25 112
DU-MVS81.12 11080.52 10982.90 15987.80 18263.46 21487.02 15991.87 9579.01 2478.38 14089.07 14765.02 10893.05 17170.05 17176.46 25892.20 114
XVG-ACMP-BASELINE76.11 22474.27 23281.62 18783.20 26664.67 18883.60 24689.75 15469.75 19371.85 25687.09 20432.78 34592.11 20169.99 17380.43 21588.09 245
GeoE81.71 9781.01 10183.80 12689.51 11864.45 19488.97 9788.73 19271.27 16578.63 13489.76 12766.32 9493.20 16169.89 17486.02 14893.74 57
FIs82.07 9082.42 7881.04 20688.80 14758.34 27288.26 12393.49 2676.93 5878.47 13991.04 10469.92 6392.34 19469.87 17584.97 15692.44 107
114514_t80.68 12279.51 12784.20 10594.09 3867.27 13689.64 8291.11 11858.75 31774.08 23490.72 11158.10 18495.04 8369.70 17689.42 10690.30 174
Anonymous2023121178.97 16577.69 17682.81 16390.54 9364.29 19790.11 7091.51 10765.01 25876.16 19688.13 18050.56 25293.03 17469.68 17777.56 24591.11 143
Patchmatch-RL test70.24 27867.78 29077.61 26577.43 33459.57 26671.16 33670.33 34862.94 28168.65 28772.77 34850.62 25185.49 29869.58 17866.58 33187.77 251
UniMVSNet (Re)81.60 10281.11 9883.09 14988.38 16364.41 19587.60 14393.02 4278.42 3078.56 13688.16 17569.78 6493.26 15769.58 17876.49 25791.60 127
IterMVS-SCA-FT75.43 23373.87 23680.11 22582.69 28064.85 18581.57 27083.47 27469.16 20770.49 26684.15 26951.95 23688.15 27869.23 18072.14 30987.34 261
v7n78.97 16577.58 17983.14 14783.45 26065.51 16988.32 12191.21 11473.69 12672.41 25086.32 22957.93 18593.81 13369.18 18175.65 26990.11 182
Anonymous2024052980.19 13678.89 14484.10 10890.60 9164.75 18788.95 9890.90 12265.97 24880.59 10891.17 10049.97 25893.73 14069.16 18282.70 18993.81 55
miper_lstm_enhance74.11 24373.11 24377.13 27380.11 31559.62 26472.23 33386.92 22766.76 23570.40 26782.92 28556.93 19782.92 31669.06 18372.63 30588.87 229
testdata79.97 22790.90 8664.21 19884.71 25259.27 31285.40 4092.91 6062.02 14489.08 26468.95 18491.37 8486.63 280
test111179.43 15179.18 13980.15 22489.99 10753.31 33387.33 15177.05 33075.04 9780.23 11292.77 6848.97 27392.33 19568.87 18592.40 7294.81 18
GA-MVS76.87 21275.17 22281.97 18282.75 27862.58 22981.44 27386.35 23572.16 15274.74 22782.89 28646.20 29092.02 20468.85 18681.09 20591.30 139
test250677.30 20576.49 20179.74 23290.08 10252.02 33687.86 13963.10 36474.88 10080.16 11392.79 6638.29 33292.35 19368.74 18792.50 7094.86 15
ECVR-MVScopyleft79.61 14479.26 13580.67 21490.08 10254.69 32087.89 13777.44 32774.88 10080.27 11092.79 6648.96 27492.45 18768.55 18892.50 7094.86 15
UGNet80.83 11579.59 12684.54 9288.04 17468.09 11889.42 8488.16 19976.95 5776.22 19189.46 13849.30 26793.94 12568.48 18990.31 9391.60 127
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test81.52 10382.02 8780.03 22688.42 16255.97 30987.95 13393.42 2977.10 5477.38 16390.98 10969.96 6291.79 21268.46 19084.50 16192.33 108
DP-MVS Recon83.11 7882.09 8586.15 5694.44 1970.92 6688.79 10492.20 8170.53 17979.17 12391.03 10664.12 11496.03 4468.39 19190.14 9791.50 132
UniMVSNet_ETH3D79.10 16178.24 15981.70 18686.85 20960.24 26087.28 15388.79 18674.25 11476.84 17590.53 11649.48 26491.56 21867.98 19282.15 19393.29 77
D2MVS74.82 23773.21 24179.64 23679.81 32062.56 23080.34 28487.35 21964.37 26568.86 28582.66 29046.37 28790.10 24867.91 19381.24 20386.25 283
IS-MVSNet83.15 7582.81 7584.18 10689.94 10963.30 21891.59 4188.46 19779.04 2379.49 11992.16 7565.10 10794.28 11067.71 19491.86 7994.95 8
Fast-Effi-MVS+-dtu78.02 18876.49 20182.62 17183.16 26966.96 14486.94 16187.45 21872.45 14571.49 26084.17 26854.79 20891.58 21767.61 19580.31 21689.30 213
PAPR81.66 10180.89 10383.99 12090.27 9764.00 20186.76 17091.77 10168.84 21677.13 17489.50 13467.63 8194.88 9167.55 19688.52 11693.09 84
cascas76.72 21474.64 22582.99 15585.78 22265.88 16182.33 26289.21 16960.85 29972.74 24581.02 30547.28 28193.75 13867.48 19785.02 15589.34 211
131476.53 21575.30 22180.21 22383.93 25262.32 23384.66 21988.81 18560.23 30370.16 27284.07 27055.30 20390.73 24167.37 19883.21 18187.59 256
无先验87.48 14688.98 17960.00 30594.12 11967.28 19988.97 225
thisisatest051577.33 20475.38 21883.18 14585.27 22963.80 20582.11 26483.27 27765.06 25675.91 19783.84 27349.54 26394.27 11167.24 20086.19 14591.48 134
原ACMM184.35 10093.01 5768.79 9892.44 6963.96 27381.09 10391.57 8866.06 9895.45 6167.19 20194.82 4388.81 232
Baseline_NR-MVSNet78.15 18478.33 15777.61 26585.79 22156.21 30786.78 16885.76 24273.60 12977.93 15487.57 18865.02 10888.99 26567.14 20275.33 27987.63 253
TranMVSNet+NR-MVSNet80.84 11480.31 11382.42 17487.85 17962.33 23287.74 14191.33 11280.55 777.99 15389.86 12465.23 10692.62 18167.05 20375.24 28292.30 110
Fast-Effi-MVS+80.81 11679.92 11883.47 13288.85 14264.51 19085.53 20489.39 16170.79 17378.49 13885.06 25667.54 8293.58 14267.03 20486.58 13892.32 109
VPNet78.69 17178.66 14878.76 24788.31 16555.72 31184.45 22886.63 23076.79 6278.26 14490.55 11559.30 17789.70 25466.63 20577.05 24990.88 153
PM-MVS66.41 30464.14 30673.20 30573.92 34756.45 30178.97 29964.96 36263.88 27464.72 32280.24 31319.84 36283.44 31366.24 20664.52 33879.71 343
test-LLR72.94 25772.43 24774.48 29581.35 30258.04 27678.38 30377.46 32566.66 23769.95 27679.00 32348.06 27779.24 32966.13 20784.83 15786.15 286
test-mter71.41 26670.39 26874.48 29581.35 30258.04 27678.38 30377.46 32560.32 30269.95 27679.00 32336.08 33979.24 32966.13 20784.83 15786.15 286
MVS78.19 18376.99 18981.78 18485.66 22366.99 14184.66 21990.47 13255.08 33572.02 25585.27 24963.83 11794.11 12066.10 20989.80 10284.24 312
NR-MVSNet80.23 13479.38 13082.78 16787.80 18263.34 21786.31 18191.09 11979.01 2472.17 25389.07 14767.20 8692.81 18066.08 21075.65 26992.20 114
CVMVSNet72.99 25672.58 24674.25 29884.28 24450.85 34686.41 17883.45 27544.56 35273.23 24187.54 19149.38 26585.70 29665.90 21178.44 23786.19 285
IterMVS74.29 24072.94 24478.35 25481.53 29863.49 21381.58 26982.49 28668.06 22669.99 27583.69 27751.66 24285.54 29765.85 21271.64 31286.01 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OurMVSNet-221017-074.26 24172.42 24879.80 23183.76 25559.59 26585.92 19286.64 22966.39 24266.96 30287.58 18739.46 32691.60 21665.76 21369.27 32288.22 243
tpmrst72.39 26072.13 25073.18 30680.54 31149.91 35079.91 29079.08 31763.11 27771.69 25879.95 31655.32 20282.77 31765.66 21473.89 29486.87 273
MAR-MVS81.84 9480.70 10585.27 6991.32 7971.53 5289.82 7590.92 12169.77 19278.50 13786.21 23062.36 13794.52 10465.36 21592.05 7589.77 202
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Anonymous20240521178.25 17977.01 18781.99 18191.03 8260.67 25384.77 21783.90 26670.65 17880.00 11491.20 9841.08 32291.43 22265.21 21685.26 15493.85 52
ab-mvs79.51 14778.97 14381.14 20388.46 16060.91 24983.84 24089.24 16870.36 18179.03 12488.87 15463.23 12390.21 24765.12 21782.57 19092.28 111
IB-MVS68.01 1575.85 22773.36 24083.31 13884.76 23866.03 15583.38 24985.06 24870.21 18569.40 28281.05 30445.76 29594.66 9965.10 21875.49 27289.25 214
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
WR-MVS79.49 14879.22 13780.27 22288.79 14858.35 27185.06 21188.61 19578.56 2877.65 15888.34 16963.81 11890.66 24264.98 21977.22 24791.80 125
CostFormer75.24 23673.90 23579.27 24182.65 28258.27 27380.80 27682.73 28561.57 29475.33 21483.13 28455.52 20191.07 23564.98 21978.34 24088.45 240
API-MVS81.99 9281.23 9684.26 10490.94 8570.18 8091.10 5189.32 16371.51 16278.66 13388.28 17165.26 10595.10 8164.74 22191.23 8687.51 257
新几何183.42 13493.13 5270.71 6985.48 24557.43 32581.80 9491.98 7763.28 12092.27 19664.60 22292.99 6387.27 263
pm-mvs177.25 20776.68 19978.93 24584.22 24658.62 27086.41 17888.36 19871.37 16473.31 23988.01 18161.22 15989.15 26364.24 22373.01 30389.03 221
TESTMET0.1,169.89 28269.00 27672.55 30879.27 32956.85 29478.38 30374.71 34157.64 32368.09 29177.19 33637.75 33476.70 34263.92 22484.09 16884.10 315
QAPM80.88 11379.50 12885.03 7588.01 17668.97 9691.59 4192.00 8766.63 24075.15 21992.16 7557.70 18895.45 6163.52 22588.76 11290.66 161
baseline275.70 22873.83 23781.30 19783.26 26461.79 24182.57 26180.65 30166.81 23366.88 30383.42 28057.86 18792.19 19963.47 22679.57 22489.91 195
LCM-MVSNet-Re77.05 20876.94 19077.36 26887.20 20451.60 34180.06 28680.46 30575.20 9567.69 29486.72 21162.48 13488.98 26663.44 22789.25 10791.51 130
gm-plane-assit81.40 30053.83 32862.72 28680.94 30792.39 19063.40 228
baseline176.98 21076.75 19777.66 26388.13 16955.66 31285.12 21081.89 29073.04 14176.79 17788.90 15262.43 13687.78 28363.30 22971.18 31589.55 208
AdaColmapbinary80.58 12779.42 12984.06 11393.09 5468.91 9789.36 8688.97 18169.27 20175.70 20189.69 12857.20 19595.77 5263.06 23088.41 11887.50 258
test_vis1_rt60.28 31958.42 32265.84 33567.25 36255.60 31370.44 34160.94 36644.33 35359.00 34366.64 35524.91 35568.67 36362.80 23169.48 32073.25 353
GBi-Net78.40 17677.40 18181.40 19487.60 19163.01 22488.39 11789.28 16471.63 15675.34 21187.28 19554.80 20591.11 22962.72 23279.57 22490.09 184
test178.40 17677.40 18181.40 19487.60 19163.01 22488.39 11789.28 16471.63 15675.34 21187.28 19554.80 20591.11 22962.72 23279.57 22490.09 184
FMVSNet377.88 19276.85 19280.97 20886.84 21062.36 23186.52 17688.77 18771.13 16775.34 21186.66 21754.07 21691.10 23262.72 23279.57 22489.45 209
CMPMVSbinary51.72 2170.19 27968.16 28276.28 27873.15 35357.55 28679.47 29383.92 26548.02 34956.48 35284.81 25943.13 30886.42 29262.67 23581.81 19884.89 304
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet278.20 18277.21 18481.20 20187.60 19162.89 22887.47 14789.02 17771.63 15675.29 21687.28 19554.80 20591.10 23262.38 23679.38 22889.61 206
testdata291.01 23662.37 237
CP-MVSNet78.22 18078.34 15677.84 26087.83 18154.54 32287.94 13491.17 11677.65 3673.48 23888.49 16562.24 14088.43 27562.19 23874.07 29190.55 166
XXY-MVS75.41 23475.56 21374.96 29083.59 25757.82 28280.59 28183.87 26766.54 24174.93 22588.31 17063.24 12280.09 32762.16 23976.85 25386.97 272
pmmvs674.69 23873.39 23978.61 24981.38 30157.48 28786.64 17287.95 20564.99 25970.18 27086.61 21850.43 25489.52 25662.12 24070.18 31988.83 231
1112_ss77.40 20376.43 20380.32 22189.11 14160.41 25883.65 24387.72 21262.13 29173.05 24386.72 21162.58 13389.97 24962.11 24180.80 20990.59 165
PS-CasMVS78.01 18978.09 16177.77 26287.71 18654.39 32488.02 13091.22 11377.50 4473.26 24088.64 16060.73 16588.41 27661.88 24273.88 29590.53 167
CDS-MVSNet79.07 16277.70 17583.17 14687.60 19168.23 11684.40 23186.20 23667.49 23076.36 18886.54 22361.54 14990.79 23961.86 24387.33 12790.49 168
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVScopyleft72.83 1079.77 14278.33 15784.09 11085.17 23069.91 8190.57 5890.97 12066.70 23672.17 25391.91 7854.70 20993.96 12261.81 24490.95 8988.41 242
K. test v371.19 26768.51 27879.21 24383.04 27257.78 28384.35 23276.91 33172.90 14462.99 33282.86 28739.27 32791.09 23461.65 24552.66 35888.75 234
CHOSEN 1792x268877.63 19975.69 21083.44 13389.98 10868.58 11078.70 30287.50 21656.38 33075.80 20086.84 20758.67 18091.40 22361.58 24685.75 15390.34 173
PCF-MVS73.52 780.38 13078.84 14585.01 7687.71 18668.99 9583.65 24391.46 11163.00 27977.77 15790.28 11866.10 9695.09 8261.40 24788.22 12090.94 152
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS69.67 1277.95 19077.15 18580.36 21987.57 19560.21 26183.37 25087.78 21166.11 24475.37 21087.06 20663.27 12190.48 24461.38 24882.43 19190.40 172
HyFIR lowres test77.53 20075.40 21783.94 12389.59 11466.62 14780.36 28388.64 19456.29 33176.45 18485.17 25357.64 18993.28 15661.34 24983.10 18391.91 122
PMMVS69.34 28568.67 27771.35 31775.67 34062.03 23675.17 32373.46 34450.00 34768.68 28679.05 32152.07 23478.13 33461.16 25082.77 18673.90 352
FMVSNet177.44 20176.12 20781.40 19486.81 21163.01 22488.39 11789.28 16470.49 18074.39 23187.28 19549.06 27191.11 22960.91 25178.52 23590.09 184
sss73.60 24773.64 23873.51 30282.80 27755.01 31876.12 31781.69 29362.47 28874.68 22885.85 23857.32 19378.11 33560.86 25280.93 20687.39 259
Test_1112_low_res76.40 22075.44 21579.27 24189.28 13158.09 27481.69 26887.07 22459.53 31072.48 24986.67 21661.30 15689.33 25960.81 25380.15 21890.41 171
BH-untuned79.47 14978.60 14982.05 17989.19 13565.91 16086.07 18888.52 19672.18 15075.42 20887.69 18561.15 16093.54 14660.38 25486.83 13586.70 278
WTY-MVS75.65 22975.68 21175.57 28486.40 21656.82 29577.92 31082.40 28765.10 25576.18 19387.72 18363.13 12880.90 32460.31 25581.96 19589.00 224
pmmvs474.03 24571.91 25180.39 21881.96 29268.32 11381.45 27282.14 28859.32 31169.87 27885.13 25452.40 22788.13 27960.21 25674.74 28784.73 307
PEN-MVS77.73 19577.69 17677.84 26087.07 20753.91 32787.91 13691.18 11577.56 4173.14 24288.82 15561.23 15889.17 26259.95 25772.37 30690.43 170
CR-MVSNet73.37 24971.27 25879.67 23581.32 30465.19 17875.92 31980.30 30759.92 30672.73 24681.19 30252.50 22586.69 28959.84 25877.71 24287.11 269
lessismore_v078.97 24481.01 30757.15 29165.99 35961.16 33782.82 28839.12 32891.34 22559.67 25946.92 36488.43 241
CNLPA78.08 18576.79 19481.97 18290.40 9671.07 6087.59 14484.55 25566.03 24772.38 25189.64 13057.56 19086.04 29459.61 26083.35 17988.79 233
BH-RMVSNet79.61 14478.44 15383.14 14789.38 12465.93 15984.95 21487.15 22373.56 13078.19 14789.79 12656.67 19893.36 15459.53 26186.74 13690.13 180
MS-PatchMatch73.83 24672.67 24577.30 27083.87 25366.02 15681.82 26584.66 25361.37 29768.61 28882.82 28847.29 28088.21 27759.27 26284.32 16577.68 347
test_post178.90 3015.43 37648.81 27685.44 29959.25 263
SCA74.22 24272.33 24979.91 22884.05 25062.17 23579.96 28979.29 31666.30 24372.38 25180.13 31451.95 23688.60 27359.25 26377.67 24488.96 226
FE-MVS77.78 19475.68 21184.08 11188.09 17266.00 15783.13 25487.79 21068.42 22378.01 15285.23 25145.50 29895.12 7659.11 26585.83 15291.11 143
SixPastTwentyTwo73.37 24971.26 25979.70 23385.08 23557.89 28085.57 19883.56 27171.03 17065.66 31585.88 23642.10 31792.57 18359.11 26563.34 34088.65 237
MVS_030472.48 25970.89 26277.24 27182.20 28959.68 26384.11 23783.49 27367.10 23266.87 30480.59 31035.00 34287.40 28559.07 26779.58 22384.63 308
WR-MVS_H78.51 17578.49 15178.56 25088.02 17556.38 30488.43 11592.67 6177.14 5273.89 23587.55 19066.25 9589.24 26158.92 26873.55 29890.06 188
PLCcopyleft70.83 1178.05 18776.37 20583.08 15091.88 7467.80 12388.19 12589.46 16064.33 26669.87 27888.38 16853.66 21993.58 14258.86 26982.73 18787.86 249
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
RPSCF73.23 25371.46 25478.54 25182.50 28459.85 26282.18 26382.84 28458.96 31471.15 26389.41 14245.48 29984.77 30458.82 27071.83 31191.02 150
EU-MVSNet68.53 29267.61 29271.31 31878.51 33147.01 35684.47 22584.27 26142.27 35566.44 31284.79 26040.44 32483.76 30958.76 27168.54 32783.17 323
pmmvs-eth3d70.50 27667.83 28878.52 25277.37 33566.18 15481.82 26581.51 29458.90 31563.90 32880.42 31242.69 31186.28 29358.56 27265.30 33683.11 325
TAMVS78.89 16777.51 18083.03 15387.80 18267.79 12484.72 21885.05 24967.63 22776.75 17987.70 18462.25 13990.82 23858.53 27387.13 13090.49 168
ACMH+68.96 1476.01 22574.01 23382.03 18088.60 15565.31 17788.86 10187.55 21470.25 18467.75 29387.47 19341.27 32093.19 16358.37 27475.94 26687.60 254
tpm72.37 26271.71 25374.35 29782.19 29052.00 33779.22 29677.29 32864.56 26272.95 24483.68 27851.35 24383.26 31558.33 27575.80 26787.81 250
BH-w/o78.21 18177.33 18380.84 21088.81 14665.13 18084.87 21587.85 20969.75 19374.52 23084.74 26161.34 15593.11 16858.24 27685.84 15184.27 311
Vis-MVSNet (Re-imp)78.36 17878.45 15278.07 25888.64 15451.78 34086.70 17179.63 31474.14 11775.11 22090.83 11061.29 15789.75 25258.10 27791.60 8092.69 97
MVP-Stereo76.12 22374.46 23081.13 20485.37 22869.79 8384.42 23087.95 20565.03 25767.46 29785.33 24853.28 22291.73 21558.01 27883.27 18081.85 333
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ambc75.24 28873.16 35250.51 34863.05 36287.47 21764.28 32477.81 33317.80 36489.73 25357.88 27960.64 34685.49 296
TR-MVS77.44 20176.18 20681.20 20188.24 16763.24 21984.61 22286.40 23367.55 22977.81 15586.48 22554.10 21593.15 16557.75 28082.72 18887.20 264
F-COLMAP76.38 22174.33 23182.50 17389.28 13166.95 14588.41 11689.03 17664.05 27066.83 30588.61 16146.78 28492.89 17657.48 28178.55 23487.67 252
EG-PatchMatch MVS74.04 24471.82 25280.71 21384.92 23767.42 13285.86 19488.08 20266.04 24664.22 32583.85 27235.10 34192.56 18457.44 28280.83 20882.16 332
PatchmatchNetpermissive73.12 25471.33 25778.49 25383.18 26760.85 25079.63 29178.57 31964.13 26771.73 25779.81 31951.20 24585.97 29557.40 28376.36 26388.66 236
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DTE-MVSNet76.99 20976.80 19377.54 26786.24 21753.06 33587.52 14590.66 12777.08 5572.50 24888.67 15960.48 17189.52 25657.33 28470.74 31790.05 189
UnsupCasMVSNet_eth67.33 29865.99 30171.37 31573.48 35051.47 34375.16 32485.19 24765.20 25460.78 33880.93 30942.35 31277.20 33957.12 28553.69 35785.44 297
pmmvs571.55 26570.20 27075.61 28377.83 33256.39 30381.74 26780.89 29757.76 32267.46 29784.49 26249.26 26885.32 30057.08 28675.29 28085.11 303
Anonymous2024052168.80 28967.22 29673.55 30174.33 34554.11 32583.18 25285.61 24358.15 31961.68 33580.94 30730.71 35081.27 32357.00 28773.34 30285.28 299
mvsany_test162.30 31661.26 32065.41 33669.52 35854.86 31966.86 35249.78 37346.65 35068.50 29083.21 28249.15 26966.28 36556.93 28860.77 34575.11 351
TransMVSNet (Re)75.39 23574.56 22777.86 25985.50 22757.10 29286.78 16886.09 23972.17 15171.53 25987.34 19463.01 12989.31 26056.84 28961.83 34287.17 265
test_vis3_rt49.26 33247.02 33456.00 34654.30 37145.27 36266.76 35448.08 37436.83 36144.38 36153.20 3667.17 37764.07 36756.77 29055.66 35358.65 363
EPMVS69.02 28768.16 28271.59 31379.61 32449.80 35277.40 31266.93 35762.82 28470.01 27379.05 32145.79 29477.86 33756.58 29175.26 28187.13 268
KD-MVS_self_test68.81 28867.59 29372.46 30974.29 34645.45 35877.93 30987.00 22563.12 27663.99 32778.99 32542.32 31384.77 30456.55 29264.09 33987.16 267
tpm273.26 25271.46 25478.63 24883.34 26256.71 29880.65 28080.40 30656.63 32973.55 23782.02 29951.80 24091.24 22756.35 29378.42 23887.95 246
LTVRE_ROB69.57 1376.25 22274.54 22881.41 19388.60 15564.38 19679.24 29589.12 17570.76 17569.79 28087.86 18249.09 27093.20 16156.21 29480.16 21786.65 279
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH67.68 1675.89 22673.93 23481.77 18588.71 15266.61 14888.62 11289.01 17869.81 19066.78 30686.70 21541.95 31991.51 22155.64 29578.14 24187.17 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42066.51 30364.71 30471.90 31181.45 29963.52 21257.98 36468.95 35553.57 33762.59 33476.70 33746.22 28975.29 35255.25 29679.68 22276.88 349
EPNet_dtu75.46 23274.86 22377.23 27282.57 28354.60 32186.89 16383.09 28171.64 15566.25 31385.86 23755.99 20088.04 28054.92 29786.55 13989.05 220
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvsany_test353.99 32451.45 32861.61 34155.51 37044.74 36463.52 36045.41 37743.69 35458.11 34776.45 33917.99 36363.76 36854.77 29847.59 36376.34 350
PVSNet64.34 1872.08 26470.87 26375.69 28286.21 21856.44 30274.37 32980.73 30062.06 29270.17 27182.23 29642.86 31083.31 31454.77 29884.45 16487.32 262
ITE_SJBPF78.22 25581.77 29460.57 25483.30 27669.25 20267.54 29587.20 20036.33 33887.28 28754.34 30074.62 28886.80 275
MDTV_nov1_ep13_2view37.79 37175.16 32455.10 33466.53 30849.34 26653.98 30187.94 247
gg-mvs-nofinetune69.95 28167.96 28575.94 28083.07 27054.51 32377.23 31470.29 34963.11 27770.32 26862.33 35743.62 30688.69 27253.88 30287.76 12284.62 309
PatchMatch-RL72.38 26170.90 26176.80 27688.60 15567.38 13479.53 29276.17 33562.75 28569.36 28382.00 30045.51 29784.89 30353.62 30380.58 21278.12 346
test_f52.09 32850.82 32955.90 34753.82 37342.31 36859.42 36358.31 36936.45 36256.12 35470.96 35212.18 36957.79 37053.51 30456.57 35267.60 356
Patchmtry70.74 27269.16 27575.49 28680.72 30854.07 32674.94 32880.30 30758.34 31870.01 27381.19 30252.50 22586.54 29053.37 30571.09 31685.87 294
USDC70.33 27768.37 27976.21 27980.60 31056.23 30679.19 29786.49 23160.89 29861.29 33685.47 24631.78 34889.47 25853.37 30576.21 26482.94 329
LF4IMVS64.02 31362.19 31669.50 32570.90 35753.29 33476.13 31677.18 32952.65 34058.59 34480.98 30623.55 35876.52 34353.06 30766.66 33078.68 345
PAPM77.68 19876.40 20481.51 19087.29 20361.85 23983.78 24189.59 15764.74 26071.23 26188.70 15762.59 13293.66 14152.66 30887.03 13289.01 222
CL-MVSNet_self_test72.37 26271.46 25475.09 28979.49 32653.53 32980.76 27885.01 25069.12 20870.51 26582.05 29857.92 18684.13 30752.27 30966.00 33487.60 254
tpm cat170.57 27468.31 28077.35 26982.41 28757.95 27978.08 30780.22 30952.04 34168.54 28977.66 33452.00 23587.84 28251.77 31072.07 31086.25 283
our_test_369.14 28667.00 29775.57 28479.80 32158.80 26877.96 30877.81 32259.55 30962.90 33378.25 33047.43 27983.97 30851.71 31167.58 32883.93 317
MDTV_nov1_ep1369.97 27183.18 26753.48 33077.10 31580.18 31060.45 30069.33 28480.44 31148.89 27586.90 28851.60 31278.51 236
JIA-IIPM66.32 30562.82 31576.82 27577.09 33661.72 24265.34 35775.38 33658.04 32164.51 32362.32 35842.05 31886.51 29151.45 31369.22 32382.21 331
MSDG73.36 25170.99 26080.49 21784.51 24265.80 16480.71 27986.13 23865.70 25065.46 31683.74 27644.60 30190.91 23751.13 31476.89 25184.74 306
PatchT68.46 29367.85 28770.29 32280.70 30943.93 36572.47 33274.88 33860.15 30470.55 26476.57 33849.94 25981.59 32050.58 31574.83 28685.34 298
GG-mvs-BLEND75.38 28781.59 29755.80 31079.32 29469.63 35167.19 30073.67 34743.24 30788.90 27050.41 31684.50 16181.45 335
KD-MVS_2432*160066.22 30663.89 30773.21 30375.47 34353.42 33170.76 33984.35 25864.10 26866.52 30978.52 32734.55 34384.98 30150.40 31750.33 36181.23 336
miper_refine_blended66.22 30663.89 30773.21 30375.47 34353.42 33170.76 33984.35 25864.10 26866.52 30978.52 32734.55 34384.98 30150.40 31750.33 36181.23 336
AllTest70.96 26968.09 28479.58 23785.15 23263.62 20784.58 22379.83 31162.31 28960.32 33986.73 20932.02 34688.96 26850.28 31971.57 31386.15 286
TestCases79.58 23785.15 23263.62 20779.83 31162.31 28960.32 33986.73 20932.02 34688.96 26850.28 31971.57 31386.15 286
TAPA-MVS73.13 979.15 15977.94 16482.79 16689.59 11462.99 22788.16 12791.51 10765.77 24977.14 17391.09 10260.91 16493.21 15850.26 32187.05 13192.17 116
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
YYNet165.03 30962.91 31371.38 31475.85 33956.60 30069.12 34774.66 34257.28 32654.12 35577.87 33245.85 29374.48 35449.95 32261.52 34483.05 326
MDA-MVSNet_test_wron65.03 30962.92 31271.37 31575.93 33856.73 29669.09 34874.73 34057.28 32654.03 35677.89 33145.88 29274.39 35549.89 32361.55 34382.99 328
tpmvs71.09 26869.29 27376.49 27782.04 29156.04 30878.92 30081.37 29664.05 27067.18 30178.28 32949.74 26289.77 25149.67 32472.37 30683.67 319
ppachtmachnet_test70.04 28067.34 29578.14 25679.80 32161.13 24679.19 29780.59 30259.16 31365.27 31879.29 32046.75 28587.29 28649.33 32566.72 32986.00 292
UnsupCasMVSNet_bld63.70 31461.53 31970.21 32373.69 34951.39 34472.82 33181.89 29055.63 33357.81 34871.80 35038.67 32978.61 33249.26 32652.21 35980.63 339
dp66.80 30065.43 30270.90 32179.74 32348.82 35375.12 32674.77 33959.61 30864.08 32677.23 33542.89 30980.72 32548.86 32766.58 33183.16 324
FMVSNet569.50 28467.96 28574.15 29982.97 27555.35 31480.01 28882.12 28962.56 28763.02 33081.53 30136.92 33681.92 31948.42 32874.06 29285.17 302
thres100view90076.50 21675.55 21479.33 24089.52 11756.99 29385.83 19683.23 27873.94 12076.32 18987.12 20351.89 23891.95 20648.33 32983.75 17289.07 215
tfpn200view976.42 21975.37 21979.55 23989.13 13757.65 28485.17 20783.60 26973.41 13476.45 18486.39 22752.12 23191.95 20648.33 32983.75 17289.07 215
thres40076.50 21675.37 21979.86 22989.13 13757.65 28485.17 20783.60 26973.41 13476.45 18486.39 22752.12 23191.95 20648.33 32983.75 17290.00 190
LCM-MVSNet54.25 32349.68 33267.97 33253.73 37445.28 36166.85 35380.78 29935.96 36339.45 36462.23 3598.70 37478.06 33648.24 33251.20 36080.57 340
RPMNet73.51 24870.49 26582.58 17281.32 30465.19 17875.92 31992.27 7657.60 32472.73 24676.45 33952.30 22895.43 6348.14 33377.71 24287.11 269
thres600view776.50 21675.44 21579.68 23489.40 12257.16 29085.53 20483.23 27873.79 12576.26 19087.09 20451.89 23891.89 20948.05 33483.72 17590.00 190
TDRefinement67.49 29664.34 30576.92 27473.47 35161.07 24784.86 21682.98 28259.77 30758.30 34685.13 25426.06 35487.89 28147.92 33560.59 34781.81 334
thres20075.55 23074.47 22978.82 24687.78 18557.85 28183.07 25783.51 27272.44 14775.84 19984.42 26352.08 23391.75 21347.41 33683.64 17686.86 274
PVSNet_057.27 2061.67 31859.27 32168.85 32879.61 32457.44 28868.01 34973.44 34555.93 33258.54 34570.41 35344.58 30277.55 33847.01 33735.91 36771.55 355
DP-MVS76.78 21374.57 22683.42 13493.29 4869.46 9088.55 11483.70 26863.98 27270.20 26988.89 15354.01 21794.80 9446.66 33881.88 19786.01 290
COLMAP_ROBcopyleft66.92 1773.01 25570.41 26780.81 21187.13 20665.63 16788.30 12284.19 26362.96 28063.80 32987.69 18538.04 33392.56 18446.66 33874.91 28584.24 312
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet70.69 27369.30 27274.88 29184.52 24156.35 30575.87 32179.42 31564.59 26167.76 29282.41 29241.10 32181.54 32146.64 34081.34 20186.75 277
LS3D76.95 21174.82 22483.37 13790.45 9467.36 13589.15 9386.94 22661.87 29369.52 28190.61 11351.71 24194.53 10346.38 34186.71 13788.21 244
MDA-MVSNet-bldmvs66.68 30163.66 30975.75 28179.28 32860.56 25573.92 33078.35 32064.43 26350.13 35979.87 31844.02 30483.67 31046.10 34256.86 35083.03 327
new-patchmatchnet61.73 31761.73 31861.70 34072.74 35424.50 37969.16 34678.03 32161.40 29556.72 35175.53 34438.42 33076.48 34445.95 34357.67 34984.13 314
TinyColmap67.30 29964.81 30374.76 29381.92 29356.68 29980.29 28581.49 29560.33 30156.27 35383.22 28124.77 35687.66 28445.52 34469.47 32179.95 342
pmmvs357.79 32154.26 32568.37 33064.02 36556.72 29775.12 32665.17 36040.20 35752.93 35769.86 35420.36 36175.48 35045.45 34555.25 35672.90 354
OpenMVS_ROBcopyleft64.09 1970.56 27568.19 28177.65 26480.26 31359.41 26785.01 21282.96 28358.76 31665.43 31782.33 29337.63 33591.23 22845.34 34676.03 26582.32 330
test0.0.03 168.00 29567.69 29168.90 32777.55 33347.43 35475.70 32272.95 34666.66 23766.56 30782.29 29548.06 27775.87 34844.97 34774.51 28983.41 321
testgi66.67 30266.53 30067.08 33475.62 34141.69 36975.93 31876.50 33266.11 24465.20 32186.59 21935.72 34074.71 35343.71 34873.38 30184.84 305
Anonymous2023120668.60 29067.80 28971.02 31980.23 31450.75 34778.30 30680.47 30456.79 32866.11 31482.63 29146.35 28878.95 33143.62 34975.70 26883.36 322
tfpnnormal74.39 23973.16 24278.08 25786.10 21958.05 27584.65 22187.53 21570.32 18271.22 26285.63 24254.97 20489.86 25043.03 35075.02 28486.32 282
MIMVSNet168.58 29166.78 29973.98 30080.07 31651.82 33980.77 27784.37 25764.40 26459.75 34282.16 29736.47 33783.63 31142.73 35170.33 31886.48 281
test20.0367.45 29766.95 29868.94 32675.48 34244.84 36377.50 31177.67 32366.66 23763.01 33183.80 27447.02 28278.40 33342.53 35268.86 32683.58 320
ADS-MVSNet266.20 30863.33 31074.82 29279.92 31758.75 26967.55 35075.19 33753.37 33865.25 31975.86 34142.32 31380.53 32641.57 35368.91 32485.18 300
ADS-MVSNet64.36 31262.88 31468.78 32979.92 31747.17 35567.55 35071.18 34753.37 33865.25 31975.86 34142.32 31373.99 35641.57 35368.91 32485.18 300
Patchmatch-test64.82 31163.24 31169.57 32479.42 32749.82 35163.49 36169.05 35451.98 34359.95 34180.13 31450.91 24770.98 35940.66 35573.57 29787.90 248
MVS-HIRNet59.14 32057.67 32363.57 33881.65 29543.50 36671.73 33465.06 36139.59 35951.43 35857.73 36338.34 33182.58 31839.53 35673.95 29364.62 359
DSMNet-mixed57.77 32256.90 32460.38 34267.70 36135.61 37269.18 34553.97 37132.30 36757.49 34979.88 31740.39 32568.57 36438.78 35772.37 30676.97 348
N_pmnet52.79 32753.26 32651.40 35178.99 3307.68 38269.52 3433.89 38251.63 34457.01 35074.98 34540.83 32365.96 36637.78 35864.67 33780.56 341
test_040272.79 25870.44 26679.84 23088.13 16965.99 15885.93 19184.29 26065.57 25267.40 29985.49 24546.92 28392.61 18235.88 35974.38 29080.94 338
new_pmnet50.91 33050.29 33052.78 35068.58 36034.94 37463.71 35956.63 37039.73 35844.95 36065.47 35621.93 36058.48 36934.98 36056.62 35164.92 358
APD_test153.31 32649.93 33163.42 33965.68 36350.13 34971.59 33566.90 35834.43 36440.58 36371.56 3518.65 37576.27 34534.64 36155.36 35563.86 360
ANet_high50.57 33146.10 33563.99 33748.67 37739.13 37070.99 33880.85 29861.39 29631.18 36657.70 36417.02 36573.65 35731.22 36215.89 37479.18 344
EGC-MVSNET52.07 32947.05 33367.14 33383.51 25960.71 25280.50 28267.75 3560.07 3770.43 37875.85 34324.26 35781.54 32128.82 36362.25 34159.16 362
PMMVS240.82 33738.86 34046.69 35253.84 37216.45 38048.61 36749.92 37237.49 36031.67 36560.97 3608.14 37656.42 37128.42 36430.72 36967.19 357
tmp_tt18.61 34321.40 34610.23 3594.82 38210.11 38134.70 36930.74 3801.48 37623.91 37226.07 37328.42 35213.41 37827.12 36515.35 3757.17 373
test_method31.52 33929.28 34338.23 35427.03 3816.50 38320.94 37262.21 3654.05 37522.35 37352.50 36713.33 36747.58 37427.04 36634.04 36860.62 361
testf145.72 33341.96 33657.00 34456.90 36845.32 35966.14 35559.26 36726.19 36830.89 36760.96 3614.14 37870.64 36026.39 36746.73 36555.04 365
APD_test245.72 33341.96 33657.00 34456.90 36845.32 35966.14 35559.26 36726.19 36830.89 36760.96 3614.14 37870.64 36026.39 36746.73 36555.04 365
FPMVS53.68 32551.64 32759.81 34365.08 36451.03 34569.48 34469.58 35241.46 35640.67 36272.32 34916.46 36670.00 36224.24 36965.42 33558.40 364
Gipumacopyleft45.18 33541.86 33855.16 34977.03 33751.52 34232.50 37080.52 30332.46 36627.12 36935.02 3709.52 37375.50 34922.31 37060.21 34838.45 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepMVS_CXcopyleft27.40 35740.17 38026.90 37724.59 38117.44 37323.95 37148.61 3689.77 37226.48 37618.06 37124.47 37028.83 370
PMVScopyleft37.38 2244.16 33640.28 33955.82 34840.82 37942.54 36765.12 35863.99 36334.43 36424.48 37057.12 3653.92 38076.17 34717.10 37255.52 35448.75 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive26.22 2330.37 34125.89 34543.81 35344.55 37835.46 37328.87 37139.07 37818.20 37218.58 37440.18 3692.68 38147.37 37517.07 37323.78 37148.60 368
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.77 33830.64 34135.15 35552.87 37527.67 37657.09 36547.86 37524.64 37016.40 37533.05 37111.23 37154.90 37214.46 37418.15 37222.87 371
EMVS30.81 34029.65 34234.27 35650.96 37625.95 37856.58 36646.80 37624.01 37115.53 37630.68 37212.47 36854.43 37312.81 37517.05 37322.43 372
wuyk23d16.82 34415.94 34719.46 35858.74 36731.45 37539.22 3683.74 3836.84 3746.04 3772.70 3771.27 38224.29 37710.54 37614.40 3762.63 374
testmvs6.04 3478.02 3500.10 3610.08 3830.03 38569.74 3420.04 3840.05 3780.31 3791.68 3780.02 3840.04 3790.24 3770.02 3770.25 376
test1236.12 3468.11 3490.14 3600.06 3840.09 38471.05 3370.03 3850.04 3790.25 3801.30 3790.05 3830.03 3800.21 3780.01 3780.29 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k19.96 34226.61 3440.00 3620.00 3850.00 3860.00 37389.26 1670.00 3800.00 38188.61 16161.62 1480.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas5.26 3487.02 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38063.15 1250.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re7.23 3459.64 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38186.72 2110.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS195.00 1072.39 3895.06 193.84 1574.49 10991.30 15
test_one_060195.07 771.46 5394.14 578.27 3392.05 1195.74 680.83 11
eth-test20.00 385
eth-test0.00 385
test_241102_ONE95.30 270.98 6194.06 1077.17 5193.10 195.39 1182.99 197.27 10
save fliter93.80 4072.35 4190.47 6291.17 11674.31 112
test072695.27 571.25 5593.60 694.11 677.33 4692.81 395.79 380.98 9
GSMVS88.96 226
test_part295.06 872.65 3191.80 13
sam_mvs151.32 24488.96 226
sam_mvs50.01 257
MTGPAbinary92.02 85
test_post5.46 37550.36 25584.24 306
patchmatchnet-post74.00 34651.12 24688.60 273
MTMP92.18 3332.83 379
TEST993.26 5072.96 2488.75 10691.89 9368.44 22285.00 4593.10 5474.36 2895.41 65
test_893.13 5272.57 3488.68 11191.84 9768.69 21884.87 4993.10 5474.43 2695.16 74
agg_prior92.85 5971.94 4991.78 10084.41 5994.93 85
test_prior472.60 3389.01 96
test_prior86.33 5292.61 6569.59 8592.97 5095.48 6093.91 50
新几何286.29 183
旧先验191.96 7165.79 16586.37 23493.08 5869.31 7092.74 6688.74 235
原ACMM286.86 164
test22291.50 7768.26 11584.16 23583.20 28054.63 33679.74 11591.63 8658.97 17991.42 8386.77 276
segment_acmp73.08 37
testdata184.14 23675.71 85
test1286.80 4792.63 6470.70 7091.79 9982.71 8571.67 4796.16 4294.50 4893.54 70
plane_prior790.08 10268.51 111
plane_prior689.84 11168.70 10660.42 172
plane_prior491.00 107
plane_prior368.60 10978.44 2978.92 127
plane_prior291.25 4879.12 21
plane_prior189.90 110
plane_prior68.71 10490.38 6577.62 3786.16 146
n20.00 386
nn0.00 386
door-mid69.98 350
test1192.23 79
door69.44 353
HQP5-MVS66.98 142
HQP-NCC89.33 12689.17 8976.41 7077.23 168
ACMP_Plane89.33 12689.17 8976.41 7077.23 168
HQP4-MVS77.24 16795.11 7891.03 148
HQP3-MVS92.19 8285.99 149
HQP2-MVS60.17 175
NP-MVS89.62 11368.32 11390.24 119
ACMMP++_ref81.95 196
ACMMP++81.25 202
Test By Simon64.33 112