This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
CP-MVS87.11 2986.92 3187.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
APDe-MVScopyleft89.15 689.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SteuartSystems-ACMMP88.72 1088.86 1088.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
3Dnovator+77.84 485.48 5384.47 6888.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
HFP-MVS87.58 2187.47 2387.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
ACMMPR87.44 2287.23 2688.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
region2R87.42 2487.20 2788.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CS-MVS86.69 3486.95 3085.90 6390.76 9067.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
XVS87.18 2886.91 3288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
X-MVStestdata80.37 14477.83 18188.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 39667.45 9596.60 3383.06 6394.50 5094.07 47
mPP-MVS86.67 3686.32 3887.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
ACMMPcopyleft85.89 4785.39 5387.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MM88.97 473.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
SF-MVS88.46 1188.74 1187.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
SMA-MVScopyleft89.08 789.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GST-MVS87.42 2487.26 2487.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
HPM-MVS++copyleft89.02 889.15 888.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
SR-MVS86.73 3386.67 3486.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
CS-MVS-test86.29 4186.48 3685.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
EC-MVSNet86.01 4286.38 3784.91 8889.31 13066.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
EPP-MVSNet83.40 8383.02 8384.57 9690.13 10064.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
PHI-MVS86.43 3886.17 4287.24 4190.88 8770.96 6592.27 3294.07 972.45 15285.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
MVS_030488.08 1388.08 1688.08 1489.67 11372.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
HPM-MVScopyleft87.11 2986.98 2987.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MTMP92.18 3532.83 401
HPM-MVS_fast85.35 5784.95 6286.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
CPTT-MVS83.73 7383.33 7984.92 8793.28 4970.86 6992.09 3790.38 13768.75 23179.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 167
APD-MVS_3200maxsize85.97 4485.88 4786.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
SR-MVS-dyc-post85.77 4885.61 5186.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
RE-MVS-def85.48 5293.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
APD-MVScopyleft87.44 2287.52 2287.19 4294.24 3272.39 3991.86 4192.83 5573.01 14988.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS88.06 1488.50 1386.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
QAPM80.88 12579.50 14185.03 8188.01 17968.97 10391.59 4392.00 8766.63 25975.15 23592.16 8857.70 20295.45 6363.52 24088.76 12190.66 174
IS-MVSNet83.15 8782.81 8784.18 11689.94 10963.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
9.1488.26 1492.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
TSAR-MVS + MP.88.02 1788.11 1587.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mvsmamba81.69 11080.74 11684.56 9787.45 19966.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19192.04 134
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HQP_MVS83.64 7683.14 8085.14 7790.08 10268.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 149
plane_prior291.25 5079.12 23
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
API-MVS81.99 10481.23 10884.26 11490.94 8570.18 8291.10 5389.32 16971.51 16978.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 272
RRT_MVS80.35 14579.22 15083.74 14087.63 19365.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29094.25 11776.84 12179.20 24691.51 143
EPNet83.72 7482.92 8686.14 5984.22 25969.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMP_NAP88.05 1688.08 1687.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
CSCG86.41 4086.19 4187.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
MSLP-MVS++85.43 5585.76 4984.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 193
3Dnovator76.31 583.38 8482.31 9486.59 5287.94 18072.94 2890.64 5992.14 8477.21 5275.47 22092.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
OpenMVScopyleft72.83 1079.77 15578.33 17084.09 12185.17 23969.91 8490.57 6090.97 12166.70 25372.17 26991.91 9154.70 22493.96 12461.81 26090.95 9188.41 257
CNVR-MVS88.93 989.13 988.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
MVSFormer82.85 9382.05 9885.24 7587.35 20070.21 7790.50 6290.38 13768.55 23481.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
test_djsdf80.30 14679.32 14683.27 15383.98 26565.37 18990.50 6290.38 13768.55 23476.19 20888.70 17256.44 21393.46 15378.98 9980.14 23490.97 164
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
nrg03083.88 7083.53 7484.96 8486.77 21669.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 24492.50 114
canonicalmvs85.91 4685.87 4886.04 6089.84 11169.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
plane_prior68.71 11290.38 6777.62 3986.16 155
DeepC-MVS79.81 287.08 3186.88 3387.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Vis-MVSNetpermissive83.46 8182.80 8885.43 7190.25 9868.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PGM-MVS86.68 3586.27 3987.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
LPG-MVS_test82.08 10181.27 10784.50 9989.23 13468.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18189.83 214
Anonymous2023121178.97 17877.69 18982.81 17690.54 9364.29 21190.11 7291.51 10765.01 27776.16 21288.13 19550.56 26993.03 17969.68 19277.56 26191.11 156
ACMM73.20 880.78 13379.84 13483.58 14389.31 13068.37 12189.99 7391.60 10470.28 19377.25 18089.66 14453.37 23793.53 14974.24 14882.85 20088.85 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP74.13 681.51 11780.57 11984.36 10689.42 12268.69 11589.97 7491.50 11074.46 11475.04 23990.41 13053.82 23394.54 10477.56 11382.91 19989.86 213
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
iter_conf_final80.63 13579.35 14584.46 10289.36 12667.70 13789.85 7584.49 26773.19 14578.30 15788.94 16545.98 31194.56 10279.59 9684.48 17491.11 156
LFMVS81.82 10781.23 10883.57 14491.89 7363.43 23089.84 7681.85 30777.04 5883.21 8993.10 6752.26 24593.43 15571.98 16989.95 10793.85 57
MCST-MVS87.37 2687.25 2587.73 2894.53 1772.46 3889.82 7793.82 1673.07 14784.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
MAR-MVS81.84 10680.70 11785.27 7491.32 7971.53 5489.82 7790.92 12269.77 20678.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 217
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MP-MVS-pluss87.67 2087.72 2087.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
UA-Net85.08 6184.96 6185.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
alignmvs85.48 5385.32 5685.96 6289.51 11969.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
VDDNet81.52 11580.67 11884.05 12890.44 9564.13 21489.73 8285.91 25071.11 17583.18 9093.48 5850.54 27093.49 15073.40 15688.25 12894.54 30
CANet86.45 3786.10 4487.51 3790.09 10170.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
test_fmvsmconf0.1_n85.61 5285.65 5085.50 6982.99 29069.39 9689.65 8490.29 14473.31 14187.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
114514_t80.68 13479.51 14084.20 11594.09 3867.27 14989.64 8591.11 11958.75 33774.08 25090.72 12458.10 19895.04 8569.70 19189.42 11390.30 189
test_fmvsmconf_n85.92 4586.04 4685.57 6885.03 24669.51 9089.62 8690.58 13173.42 13887.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
test_fmvsmconf0.01_n84.73 6584.52 6785.34 7280.25 33069.03 9989.47 8889.65 16173.24 14486.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
fmvsm_s_conf0.5_n83.80 7283.71 7384.07 12386.69 21867.31 14789.46 8983.07 29271.09 17686.96 4193.70 5569.02 8391.47 23388.79 1884.62 17093.44 80
fmvsm_s_conf0.5_n_a83.63 7783.41 7684.28 11186.14 22468.12 12789.43 9082.87 29670.27 19487.27 3793.80 5469.09 7891.58 22488.21 2683.65 18793.14 93
UGNet80.83 12779.59 13984.54 9888.04 17768.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28593.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tt080578.73 18277.83 18181.43 20585.17 23960.30 27389.41 9290.90 12371.21 17377.17 18688.73 17146.38 30593.21 16372.57 16678.96 24790.79 168
fmvsm_s_conf0.1_n83.56 7983.38 7784.10 11884.86 24867.28 14889.40 9383.01 29370.67 18487.08 3893.96 5068.38 8791.45 23488.56 2284.50 17193.56 75
AdaColmapbinary80.58 13979.42 14284.06 12593.09 5468.91 10489.36 9488.97 18869.27 21575.70 21789.69 14357.20 20995.77 5463.06 24588.41 12787.50 273
fmvsm_s_conf0.1_n_a83.32 8582.99 8484.28 11183.79 26868.07 12989.34 9582.85 29769.80 20487.36 3694.06 4268.34 8891.56 22687.95 2783.46 19393.21 90
PS-MVSNAJss82.07 10281.31 10684.34 10886.51 22067.27 14989.27 9691.51 10771.75 16179.37 13490.22 13463.15 13894.27 11377.69 11282.36 20791.49 146
jajsoiax79.29 16977.96 17683.27 15384.68 25166.57 16289.25 9790.16 14769.20 21975.46 22289.49 15045.75 31693.13 17276.84 12180.80 22490.11 197
mvs_tets79.13 17377.77 18583.22 15784.70 25066.37 16489.17 9890.19 14669.38 21375.40 22589.46 15344.17 32493.15 17076.78 12480.70 22690.14 194
HQP-NCC89.33 12789.17 9876.41 7277.23 182
ACMP_Plane89.33 12789.17 9876.41 7277.23 182
HQP-MVS82.61 9682.02 9984.37 10589.33 12766.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15891.03 161
LS3D76.95 22574.82 23883.37 15090.45 9467.36 14689.15 10286.94 23561.87 31269.52 29790.61 12651.71 25894.53 10546.38 35786.71 14688.21 259
OPM-MVS83.50 8082.95 8585.14 7788.79 15170.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 209
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TSAR-MVS + GP.85.71 5085.33 5586.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
test_prior472.60 3489.01 105
GeoE81.71 10981.01 11383.80 13989.51 11964.45 20888.97 10688.73 19971.27 17278.63 14889.76 14266.32 10793.20 16669.89 18986.02 15793.74 63
Anonymous2024052980.19 14978.89 15784.10 11890.60 9164.75 20188.95 10790.90 12365.97 26780.59 12291.17 11349.97 27593.73 14269.16 19782.70 20493.81 60
VDD-MVS83.01 9282.36 9384.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24693.91 13177.05 11988.70 12294.57 29
Effi-MVS+83.62 7883.08 8185.24 7588.38 16667.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
ACMH+68.96 1476.01 23974.01 24782.03 19388.60 15865.31 19088.86 11087.55 22270.25 19567.75 31187.47 20841.27 34193.19 16858.37 28975.94 28487.60 269
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
iter_conf0580.00 15378.70 15983.91 13787.84 18365.83 17588.84 11284.92 26271.61 16678.70 14488.94 16543.88 32694.56 10279.28 9784.28 17791.33 149
DP-MVS Recon83.11 9082.09 9786.15 5894.44 1970.92 6888.79 11392.20 8170.53 18879.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 145
Effi-MVS+-dtu80.03 15178.57 16384.42 10485.13 24368.74 11088.77 11488.10 20874.99 10274.97 24083.49 29657.27 20893.36 15673.53 15380.88 22291.18 154
TEST993.26 5072.96 2588.75 11591.89 9368.44 23785.00 5793.10 6774.36 2895.41 67
train_agg86.43 3886.20 4087.13 4493.26 5072.96 2588.75 11591.89 9368.69 23285.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
ETV-MVS84.90 6484.67 6485.59 6789.39 12468.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
PVSNet_Blended_VisFu82.62 9581.83 10384.96 8490.80 8969.76 8788.74 11791.70 10269.39 21278.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 191
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6687.65 19267.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_893.13 5272.57 3588.68 12091.84 9768.69 23284.87 6193.10 6774.43 2695.16 76
test_fmvsm_n_192085.29 5885.34 5485.13 7986.12 22569.93 8388.65 12190.78 12769.97 20088.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
ACMH67.68 1675.89 24073.93 24881.77 19888.71 15566.61 16188.62 12289.01 18569.81 20366.78 32386.70 23041.95 34091.51 23155.64 31078.14 25687.17 280
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CDPH-MVS85.76 4985.29 5887.17 4393.49 4771.08 6188.58 12392.42 7268.32 23984.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
DP-MVS76.78 22774.57 24083.42 14793.29 4869.46 9488.55 12483.70 27963.98 29170.20 28588.89 16854.01 23294.80 9646.66 35481.88 21286.01 305
fmvsm_l_conf0.5_n84.47 6684.54 6584.27 11385.42 23568.81 10588.49 12587.26 22968.08 24188.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
WR-MVS_H78.51 18878.49 16478.56 26588.02 17856.38 32088.43 12692.67 6177.14 5473.89 25187.55 20566.25 10889.24 27458.92 28373.55 31790.06 203
F-COLMAP76.38 23574.33 24582.50 18689.28 13266.95 15888.41 12789.03 18364.05 28966.83 32288.61 17646.78 30392.89 18157.48 29678.55 24987.67 267
GBi-Net78.40 18977.40 19481.40 20787.60 19463.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 23890.09 199
test178.40 18977.40 19481.40 20787.60 19463.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 23890.09 199
FMVSNet177.44 21576.12 22181.40 20786.81 21563.01 23888.39 12889.28 17070.49 18974.39 24787.28 21049.06 28991.11 24260.91 26778.52 25090.09 199
tttt051779.40 16677.91 17883.90 13888.10 17463.84 21888.37 13184.05 27571.45 17076.78 19289.12 16149.93 27894.89 9270.18 18583.18 19792.96 101
fmvsm_l_conf0.5_n_a84.13 6884.16 7084.06 12585.38 23668.40 12088.34 13286.85 23767.48 24887.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
v7n78.97 17877.58 19283.14 16083.45 27565.51 18288.32 13391.21 11473.69 13072.41 26686.32 24457.93 19993.81 13569.18 19675.65 28790.11 197
COLMAP_ROBcopyleft66.92 1773.01 27070.41 28280.81 22587.13 21065.63 18088.30 13484.19 27462.96 29963.80 34887.69 20038.04 35492.56 18946.66 35474.91 30484.24 328
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FIs82.07 10282.42 9081.04 21988.80 15058.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16592.44 118
EIA-MVS83.31 8682.80 8884.82 9089.59 11565.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
PLCcopyleft70.83 1178.05 20076.37 21983.08 16391.88 7467.80 13488.19 13789.46 16564.33 28569.87 29488.38 18353.66 23493.58 14458.86 28482.73 20287.86 264
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MG-MVS83.41 8283.45 7583.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
TAPA-MVS73.13 979.15 17277.94 17782.79 17989.59 11562.99 24188.16 13991.51 10765.77 26877.14 18791.09 11560.91 17793.21 16350.26 33787.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_fmvsmvis_n_192084.02 6983.87 7184.49 10184.12 26169.37 9788.15 14087.96 21270.01 19883.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
h-mvs3383.15 8782.19 9586.02 6190.56 9270.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29191.72 139
bld_raw_dy_0_6477.29 22075.98 22281.22 21385.04 24565.47 18488.14 14277.56 34069.20 21973.77 25289.40 15942.24 33788.85 28476.78 12481.64 21489.33 227
PS-CasMVS78.01 20278.09 17477.77 27787.71 18954.39 34088.02 14391.22 11377.50 4673.26 25688.64 17560.73 17888.41 28961.88 25873.88 31490.53 180
OMC-MVS82.69 9481.97 10184.85 8988.75 15367.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
v879.97 15479.02 15582.80 17784.09 26264.50 20687.96 14590.29 14474.13 12275.24 23386.81 22362.88 14393.89 13374.39 14675.40 29690.00 205
FC-MVSNet-test81.52 11582.02 9980.03 24088.42 16555.97 32587.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17192.33 119
CP-MVSNet78.22 19378.34 16977.84 27587.83 18454.54 33887.94 14791.17 11677.65 3873.48 25488.49 18062.24 15388.43 28862.19 25474.07 31090.55 179
PAPM_NR83.02 9182.41 9184.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
PEN-MVS77.73 20877.69 18977.84 27587.07 21153.91 34387.91 14991.18 11577.56 4373.14 25888.82 17061.23 17189.17 27559.95 27372.37 32590.43 183
ECVR-MVScopyleft79.61 15779.26 14880.67 22890.08 10254.69 33687.89 15077.44 34374.88 10480.27 12492.79 7948.96 29292.45 19268.55 20392.50 7294.86 17
v1079.74 15678.67 16082.97 17084.06 26364.95 19687.88 15190.62 13073.11 14675.11 23686.56 23761.46 16594.05 12373.68 15175.55 28989.90 211
test250677.30 21976.49 21579.74 24690.08 10252.02 35287.86 15263.10 38474.88 10480.16 12792.79 7938.29 35392.35 19868.74 20292.50 7294.86 17
casdiffmvspermissive85.11 6085.14 5985.01 8287.20 20865.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet80.84 12680.31 12582.42 18787.85 18262.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30192.30 121
EI-MVSNet-Vis-set84.19 6783.81 7285.31 7388.18 17167.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 16893.28 86
UniMVSNet (Re)81.60 11481.11 11083.09 16288.38 16664.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 27391.60 140
CNLPA78.08 19876.79 20881.97 19590.40 9671.07 6287.59 15784.55 26666.03 26672.38 26789.64 14557.56 20486.04 30759.61 27683.35 19488.79 248
DTE-MVSNet76.99 22376.80 20777.54 28286.24 22253.06 35187.52 15890.66 12977.08 5772.50 26488.67 17460.48 18589.52 26957.33 29970.74 33690.05 204
无先验87.48 15988.98 18660.00 32494.12 12167.28 21488.97 240
FMVSNet278.20 19577.21 19881.20 21487.60 19462.89 24287.47 16089.02 18471.63 16375.29 23287.28 21054.80 22091.10 24562.38 25279.38 24289.61 221
EI-MVSNet-UG-set83.81 7183.38 7785.09 8087.87 18167.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18092.99 100
thisisatest053079.40 16677.76 18684.31 10987.69 19165.10 19487.36 16284.26 27370.04 19777.42 17688.26 18849.94 27694.79 9770.20 18484.70 16993.03 97
CANet_DTU80.61 13679.87 13382.83 17485.60 23263.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
test111179.43 16479.18 15280.15 23889.99 10753.31 34987.33 16477.05 34675.04 10180.23 12692.77 8148.97 29192.33 20068.87 20092.40 7494.81 20
baseline84.93 6284.98 6084.80 9287.30 20665.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
UniMVSNet_ETH3D79.10 17478.24 17281.70 19986.85 21360.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28191.56 22667.98 20782.15 20893.29 85
anonymousdsp78.60 18677.15 19982.98 16980.51 32867.08 15387.24 16789.53 16365.66 27075.16 23487.19 21652.52 24092.25 20277.17 11879.34 24389.61 221
UniMVSNet_NR-MVSNet81.88 10581.54 10582.92 17188.46 16363.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 27492.25 123
DPM-MVS84.93 6284.29 6986.84 4790.20 9973.04 2387.12 16993.04 3869.80 20482.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 148
v114480.03 15179.03 15483.01 16783.78 26964.51 20487.11 17090.57 13371.96 16078.08 16586.20 24661.41 16693.94 12774.93 14177.23 26290.60 177
v2v48280.23 14779.29 14783.05 16583.62 27164.14 21387.04 17189.97 15273.61 13278.18 16287.22 21461.10 17493.82 13476.11 12976.78 27191.18 154
DU-MVS81.12 12280.52 12182.90 17287.80 18563.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 27492.20 126
v14419279.47 16278.37 16882.78 18083.35 27663.96 21686.96 17390.36 14069.99 19977.50 17485.67 25760.66 18193.77 13874.27 14776.58 27290.62 175
Fast-Effi-MVS+-dtu78.02 20176.49 21582.62 18483.16 28466.96 15786.94 17487.45 22672.45 15271.49 27684.17 28554.79 22391.58 22467.61 21080.31 23189.30 228
v119279.59 15978.43 16783.07 16483.55 27364.52 20386.93 17590.58 13170.83 18077.78 17085.90 25059.15 19293.94 12773.96 15077.19 26490.76 170
EPNet_dtu75.46 24674.86 23777.23 28682.57 29954.60 33786.89 17683.09 29171.64 16266.25 33285.86 25255.99 21488.04 29354.92 31286.55 14889.05 235
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
原ACMM286.86 177
VPA-MVSNet80.60 13780.55 12080.76 22688.07 17660.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 24591.23 153
v192192079.22 17078.03 17582.80 17783.30 27863.94 21786.80 17990.33 14169.91 20277.48 17585.53 26058.44 19693.75 14073.60 15276.85 26990.71 173
IterMVS-LS80.06 15079.38 14382.11 19185.89 22763.20 23586.79 18089.34 16874.19 11975.45 22386.72 22666.62 10192.39 19572.58 16576.86 26890.75 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TransMVSNet (Re)75.39 24974.56 24177.86 27485.50 23457.10 30886.78 18186.09 24972.17 15871.53 27587.34 20963.01 14289.31 27356.84 30461.83 36287.17 280
Baseline_NR-MVSNet78.15 19778.33 17077.61 28085.79 22856.21 32386.78 18185.76 25373.60 13377.93 16887.57 20365.02 12188.99 27867.14 21775.33 29887.63 268
PAPR81.66 11380.89 11583.99 13390.27 9764.00 21586.76 18391.77 10168.84 23077.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
Vis-MVSNet (Re-imp)78.36 19178.45 16578.07 27388.64 15751.78 35686.70 18479.63 32974.14 12175.11 23690.83 12361.29 17089.75 26558.10 29291.60 8292.69 107
pmmvs674.69 25273.39 25478.61 26381.38 31757.48 30386.64 18587.95 21364.99 27870.18 28686.61 23350.43 27189.52 26962.12 25670.18 33888.83 246
v124078.99 17777.78 18482.64 18383.21 28063.54 22586.62 18690.30 14369.74 20977.33 17885.68 25657.04 21093.76 13973.13 16076.92 26690.62 175
MTAPA87.23 2787.00 2887.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
旧先验286.56 18858.10 34187.04 3988.98 27974.07 149
FMVSNet377.88 20576.85 20680.97 22286.84 21462.36 24586.52 18988.77 19471.13 17475.34 22786.66 23254.07 23191.10 24562.72 24779.57 23889.45 224
dcpmvs_285.63 5186.15 4384.06 12591.71 7564.94 19786.47 19091.87 9573.63 13186.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
pm-mvs177.25 22176.68 21378.93 25984.22 25958.62 28686.41 19188.36 20571.37 17173.31 25588.01 19661.22 17289.15 27664.24 23873.01 32289.03 236
EI-MVSNet80.52 14079.98 13082.12 19084.28 25763.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 22890.74 172
CVMVSNet72.99 27172.58 26174.25 31284.28 25750.85 36286.41 19183.45 28544.56 37473.23 25787.54 20649.38 28385.70 30965.90 22678.44 25286.19 300
NR-MVSNet80.23 14779.38 14382.78 18087.80 18563.34 23186.31 19491.09 12079.01 2672.17 26989.07 16267.20 9892.81 18566.08 22575.65 28792.20 126
v14878.72 18377.80 18381.47 20482.73 29561.96 25286.30 19588.08 20973.26 14276.18 20985.47 26262.46 14892.36 19771.92 17073.82 31590.09 199
新几何286.29 196
test_yl81.17 12080.47 12283.24 15589.13 13863.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12080.47 12283.24 15589.13 13863.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
PVSNet_BlendedMVS80.60 13780.02 12982.36 18988.85 14565.40 18686.16 19992.00 8769.34 21478.11 16386.09 24966.02 11294.27 11371.52 17182.06 20987.39 274
MVS_Test83.15 8783.06 8283.41 14986.86 21263.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
BH-untuned79.47 16278.60 16282.05 19289.19 13665.91 17386.07 20188.52 20372.18 15775.42 22487.69 20061.15 17393.54 14860.38 27086.83 14486.70 293
MVS_111021_HR85.14 5984.75 6386.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
jason81.39 11880.29 12684.70 9486.63 21969.90 8585.95 20386.77 23863.24 29481.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
test_040272.79 27370.44 28179.84 24488.13 17265.99 17185.93 20484.29 27165.57 27167.40 31785.49 26146.92 30292.61 18735.88 37874.38 30980.94 357
OurMVSNet-221017-074.26 25572.42 26379.80 24583.76 27059.59 28185.92 20586.64 23966.39 26166.96 32087.58 20239.46 34791.60 22365.76 22869.27 34188.22 258
hse-mvs281.72 10880.94 11484.07 12388.72 15467.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 31991.06 159
EG-PatchMatch MVS74.04 25871.82 26780.71 22784.92 24767.42 14385.86 20788.08 20966.04 26564.22 34483.85 28935.10 36292.56 18957.44 29780.83 22382.16 351
AUN-MVS79.21 17177.60 19184.05 12888.71 15567.61 13985.84 20887.26 22969.08 22377.23 18288.14 19453.20 23993.47 15275.50 13973.45 31891.06 159
thres100view90076.50 23075.55 22879.33 25489.52 11856.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25591.95 21148.33 34583.75 18389.07 230
CLD-MVS82.31 9881.65 10484.29 11088.47 16267.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 168
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SixPastTwentyTwo73.37 26471.26 27479.70 24785.08 24457.89 29685.57 21183.56 28271.03 17865.66 33485.88 25142.10 33892.57 18859.11 28163.34 36088.65 252
xiu_mvs_v1_base_debu80.80 13079.72 13684.03 13087.35 20070.19 7985.56 21288.77 19469.06 22481.83 10488.16 19050.91 26492.85 18278.29 10887.56 13289.06 232
xiu_mvs_v1_base80.80 13079.72 13684.03 13087.35 20070.19 7985.56 21288.77 19469.06 22481.83 10488.16 19050.91 26492.85 18278.29 10887.56 13289.06 232
xiu_mvs_v1_base_debi80.80 13079.72 13684.03 13087.35 20070.19 7985.56 21288.77 19469.06 22481.83 10488.16 19050.91 26492.85 18278.29 10887.56 13289.06 232
V4279.38 16878.24 17282.83 17481.10 32265.50 18385.55 21589.82 15571.57 16878.21 16086.12 24860.66 18193.18 16975.64 13575.46 29389.81 216
lupinMVS81.39 11880.27 12784.76 9387.35 20070.21 7785.55 21586.41 24262.85 30181.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
Fast-Effi-MVS+80.81 12879.92 13183.47 14588.85 14564.51 20485.53 21789.39 16770.79 18178.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
thres600view776.50 23075.44 22979.68 24889.40 12357.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25591.89 21448.05 35083.72 18690.00 205
DELS-MVS85.41 5685.30 5785.77 6488.49 16167.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
tfpn200view976.42 23375.37 23379.55 25389.13 13857.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24791.95 21148.33 34583.75 18389.07 230
thres40076.50 23075.37 23379.86 24389.13 13857.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24791.95 21148.33 34583.75 18390.00 205
MVS_111021_LR82.61 9682.11 9684.11 11788.82 14871.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 192
baseline176.98 22476.75 21177.66 27888.13 17255.66 32885.12 22381.89 30573.04 14876.79 19188.90 16762.43 14987.78 29663.30 24471.18 33489.55 223
WR-MVS79.49 16179.22 15080.27 23688.79 15158.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 26391.80 138
ET-MVSNet_ETH3D78.63 18576.63 21484.64 9586.73 21769.47 9285.01 22584.61 26569.54 21066.51 33086.59 23450.16 27391.75 21976.26 12884.24 17892.69 107
OpenMVS_ROBcopyleft64.09 1970.56 29068.19 29677.65 27980.26 32959.41 28385.01 22582.96 29558.76 33665.43 33682.33 31037.63 35691.23 24145.34 36276.03 28382.32 348
BH-RMVSNet79.61 15778.44 16683.14 16089.38 12565.93 17284.95 22787.15 23273.56 13478.19 16189.79 14156.67 21293.36 15659.53 27786.74 14590.13 195
BH-w/o78.21 19477.33 19780.84 22488.81 14965.13 19384.87 22887.85 21769.75 20774.52 24684.74 27761.34 16893.11 17358.24 29185.84 16084.27 327
TDRefinement67.49 31364.34 32376.92 28873.47 37161.07 26184.86 22982.98 29459.77 32658.30 36685.13 27026.06 37687.89 29447.92 35160.59 36781.81 353
Anonymous20240521178.25 19277.01 20181.99 19491.03 8260.67 26784.77 23083.90 27770.65 18780.00 12891.20 11141.08 34391.43 23565.21 23185.26 16393.85 57
TAMVS78.89 18077.51 19383.03 16687.80 18567.79 13584.72 23185.05 26067.63 24476.75 19387.70 19962.25 15290.82 25158.53 28887.13 13990.49 181
131476.53 22975.30 23580.21 23783.93 26662.32 24784.66 23288.81 19260.23 32270.16 28884.07 28755.30 21790.73 25467.37 21383.21 19687.59 271
MVS78.19 19676.99 20381.78 19785.66 23066.99 15484.66 23290.47 13555.08 35772.02 27185.27 26563.83 13094.11 12266.10 22489.80 10984.24 328
tfpnnormal74.39 25373.16 25778.08 27286.10 22658.05 29184.65 23487.53 22370.32 19271.22 27885.63 25854.97 21889.86 26343.03 36675.02 30386.32 297
TR-MVS77.44 21576.18 22081.20 21488.24 17063.24 23384.61 23586.40 24367.55 24677.81 16986.48 24054.10 23093.15 17057.75 29582.72 20387.20 279
AllTest70.96 28468.09 29979.58 25185.15 24163.62 22184.58 23679.83 32662.31 30860.32 35986.73 22432.02 36688.96 28150.28 33571.57 33286.15 301
FA-MVS(test-final)80.96 12479.91 13284.10 11888.30 16965.01 19584.55 23790.01 15173.25 14379.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
EU-MVSNet68.53 30867.61 30971.31 33478.51 34947.01 37284.47 23884.27 27242.27 37766.44 33184.79 27640.44 34583.76 32458.76 28668.54 34683.17 339
VNet82.21 9982.41 9181.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
xiu_mvs_v2_base81.69 11081.05 11183.60 14289.15 13768.03 13184.46 24090.02 15070.67 18481.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 254
VPNet78.69 18478.66 16178.76 26188.31 16855.72 32784.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 26766.63 22077.05 26590.88 166
PVSNet_Blended80.98 12380.34 12482.90 17288.85 14565.40 18684.43 24292.00 8767.62 24578.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 237
MVP-Stereo76.12 23774.46 24481.13 21785.37 23769.79 8684.42 24387.95 21365.03 27667.46 31585.33 26453.28 23891.73 22158.01 29383.27 19581.85 352
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CDS-MVSNet79.07 17577.70 18883.17 15987.60 19468.23 12584.40 24486.20 24667.49 24776.36 20486.54 23861.54 16290.79 25261.86 25987.33 13690.49 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
K. test v371.19 28168.51 29379.21 25783.04 28757.78 29984.35 24576.91 34772.90 15162.99 35182.86 30439.27 34891.09 24761.65 26152.66 37888.75 249
PS-MVSNAJ81.69 11081.02 11283.70 14189.51 11968.21 12684.28 24690.09 14970.79 18181.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 253
patch_mono-283.65 7584.54 6580.99 22090.06 10665.83 17584.21 24788.74 19871.60 16785.01 5592.44 8474.51 2583.50 32782.15 7592.15 7593.64 71
test22291.50 7768.26 12484.16 24883.20 29054.63 35879.74 12991.63 9958.97 19391.42 8586.77 291
testdata184.14 24975.71 87
c3_l78.75 18177.91 17881.26 21182.89 29261.56 25784.09 25089.13 18169.97 20075.56 21884.29 28466.36 10692.09 20773.47 15575.48 29190.12 196
MVSTER79.01 17677.88 18082.38 18883.07 28564.80 20084.08 25188.95 18969.01 22778.69 14587.17 21754.70 22492.43 19374.69 14280.57 22889.89 212
ab-mvs79.51 16078.97 15681.14 21688.46 16360.91 26383.84 25289.24 17570.36 19079.03 13888.87 16963.23 13690.21 26065.12 23282.57 20592.28 122
PAPM77.68 21276.40 21881.51 20387.29 20761.85 25383.78 25389.59 16264.74 27971.23 27788.70 17262.59 14593.66 14352.66 32387.03 14189.01 237
diffmvspermissive82.10 10081.88 10282.76 18283.00 28863.78 22083.68 25489.76 15772.94 15082.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
miper_ehance_all_eth78.59 18777.76 18681.08 21882.66 29761.56 25783.65 25589.15 17968.87 22975.55 21983.79 29266.49 10492.03 20873.25 15876.39 27689.64 220
1112_ss77.40 21776.43 21780.32 23589.11 14260.41 27283.65 25587.72 22062.13 31073.05 25986.72 22662.58 14689.97 26262.11 25780.80 22490.59 178
PCF-MVS73.52 780.38 14278.84 15885.01 8287.71 18968.99 10283.65 25591.46 11163.00 29877.77 17190.28 13166.10 10995.09 8461.40 26388.22 12990.94 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
XVG-ACMP-BASELINE76.11 23874.27 24681.62 20083.20 28164.67 20283.60 25889.75 15869.75 20771.85 27287.09 21932.78 36592.11 20669.99 18880.43 23088.09 260
cl2278.07 19977.01 20181.23 21282.37 30461.83 25483.55 25987.98 21168.96 22875.06 23883.87 28861.40 16791.88 21573.53 15376.39 27689.98 208
XVG-OURS-SEG-HR80.81 12879.76 13583.96 13585.60 23268.78 10783.54 26090.50 13470.66 18676.71 19491.66 9660.69 18091.26 23976.94 12081.58 21591.83 136
IB-MVS68.01 1575.85 24173.36 25583.31 15184.76 24966.03 16883.38 26185.06 25970.21 19669.40 29881.05 32145.76 31594.66 10165.10 23375.49 29089.25 229
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS69.67 1277.95 20377.15 19980.36 23387.57 19860.21 27583.37 26287.78 21966.11 26375.37 22687.06 22163.27 13490.48 25761.38 26482.43 20690.40 185
test_vis1_n_192075.52 24575.78 22374.75 30879.84 33657.44 30483.26 26385.52 25562.83 30279.34 13686.17 24745.10 32079.71 34578.75 10181.21 21987.10 286
Anonymous2024052168.80 30467.22 31373.55 31674.33 36454.11 34183.18 26485.61 25458.15 34061.68 35480.94 32430.71 37181.27 34057.00 30273.34 32185.28 314
eth_miper_zixun_eth77.92 20476.69 21281.61 20283.00 28861.98 25183.15 26589.20 17769.52 21174.86 24284.35 28361.76 15892.56 18971.50 17372.89 32390.28 190
FE-MVS77.78 20775.68 22584.08 12288.09 17566.00 17083.13 26687.79 21868.42 23878.01 16685.23 26745.50 31895.12 7859.11 28185.83 16191.11 156
cl____77.72 20976.76 20980.58 22982.49 30160.48 27083.09 26787.87 21569.22 21774.38 24885.22 26862.10 15591.53 22971.09 17675.41 29589.73 219
DIV-MVS_self_test77.72 20976.76 20980.58 22982.48 30260.48 27083.09 26787.86 21669.22 21774.38 24885.24 26662.10 15591.53 22971.09 17675.40 29689.74 218
thres20075.55 24474.47 24378.82 26087.78 18857.85 29783.07 26983.51 28372.44 15475.84 21584.42 27952.08 25091.75 21947.41 35283.64 18886.86 289
testing368.56 30767.67 30871.22 33587.33 20542.87 38383.06 27071.54 36570.36 19069.08 30284.38 28130.33 37285.69 31037.50 37775.45 29485.09 320
XVG-OURS80.41 14179.23 14983.97 13485.64 23169.02 10183.03 27190.39 13671.09 17677.63 17391.49 10454.62 22691.35 23775.71 13483.47 19291.54 142
miper_enhance_ethall77.87 20676.86 20580.92 22381.65 31161.38 25982.68 27288.98 18665.52 27275.47 22082.30 31165.76 11692.00 21072.95 16176.39 27689.39 225
mvs_anonymous79.42 16579.11 15380.34 23484.45 25657.97 29482.59 27387.62 22167.40 24976.17 21188.56 17968.47 8689.59 26870.65 18186.05 15693.47 79
baseline275.70 24273.83 25181.30 21083.26 27961.79 25582.57 27480.65 31666.81 25066.88 32183.42 29757.86 20192.19 20463.47 24179.57 23889.91 210
cascas76.72 22874.64 23982.99 16885.78 22965.88 17482.33 27589.21 17660.85 31872.74 26181.02 32247.28 29993.75 14067.48 21285.02 16489.34 226
RPSCF73.23 26871.46 26978.54 26682.50 30059.85 27782.18 27682.84 29858.96 33471.15 27989.41 15745.48 31984.77 31958.82 28571.83 33091.02 163
thisisatest051577.33 21875.38 23283.18 15885.27 23863.80 21982.11 27783.27 28765.06 27575.91 21383.84 29049.54 28094.27 11367.24 21586.19 15491.48 147
pmmvs-eth3d70.50 29167.83 30478.52 26777.37 35366.18 16781.82 27881.51 30958.90 33563.90 34780.42 32942.69 33286.28 30658.56 28765.30 35683.11 341
MS-PatchMatch73.83 26072.67 26077.30 28583.87 26766.02 16981.82 27884.66 26461.37 31668.61 30682.82 30547.29 29888.21 29059.27 27884.32 17677.68 366
pmmvs571.55 27970.20 28575.61 29777.83 35056.39 31981.74 28080.89 31257.76 34367.46 31584.49 27849.26 28685.32 31557.08 30175.29 29985.11 319
Test_1112_low_res76.40 23475.44 22979.27 25589.28 13258.09 29081.69 28187.07 23359.53 32972.48 26586.67 23161.30 16989.33 27260.81 26980.15 23390.41 184
IterMVS74.29 25472.94 25978.35 26981.53 31463.49 22781.58 28282.49 30068.06 24269.99 29183.69 29451.66 25985.54 31165.85 22771.64 33186.01 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT75.43 24773.87 25080.11 23982.69 29664.85 19981.57 28383.47 28469.16 22170.49 28284.15 28651.95 25388.15 29169.23 19572.14 32887.34 276
test_vis1_n69.85 29869.21 28971.77 32872.66 37655.27 33281.48 28476.21 35052.03 36475.30 23183.20 30028.97 37376.22 36574.60 14378.41 25483.81 334
pmmvs474.03 25971.91 26680.39 23281.96 30768.32 12281.45 28582.14 30359.32 33069.87 29485.13 27052.40 24388.13 29260.21 27274.74 30684.73 324
GA-MVS76.87 22675.17 23681.97 19582.75 29462.58 24381.44 28686.35 24572.16 15974.74 24382.89 30346.20 31092.02 20968.85 20181.09 22091.30 152
test_fmvs1_n70.86 28670.24 28472.73 32372.51 37755.28 33181.27 28779.71 32851.49 36778.73 14384.87 27427.54 37577.02 35776.06 13079.97 23685.88 308
test_fmvs170.93 28570.52 27972.16 32673.71 36755.05 33380.82 28878.77 33451.21 36878.58 14984.41 28031.20 37076.94 35875.88 13380.12 23584.47 326
CostFormer75.24 25073.90 24979.27 25582.65 29858.27 28980.80 28982.73 29961.57 31375.33 23083.13 30155.52 21591.07 24864.98 23478.34 25588.45 255
MIMVSNet168.58 30666.78 31673.98 31480.07 33351.82 35580.77 29084.37 26864.40 28359.75 36282.16 31436.47 35883.63 32642.73 36770.33 33786.48 296
CL-MVSNet_self_test72.37 27671.46 26975.09 30379.49 34353.53 34580.76 29185.01 26169.12 22270.51 28182.05 31557.92 20084.13 32252.27 32566.00 35487.60 269
MSDG73.36 26670.99 27580.49 23184.51 25565.80 17780.71 29286.13 24865.70 26965.46 33583.74 29344.60 32190.91 25051.13 33076.89 26784.74 323
tpm273.26 26771.46 26978.63 26283.34 27756.71 31480.65 29380.40 32156.63 35173.55 25382.02 31651.80 25791.24 24056.35 30878.42 25387.95 261
XXY-MVS75.41 24875.56 22774.96 30483.59 27257.82 29880.59 29483.87 27866.54 26074.93 24188.31 18563.24 13580.09 34462.16 25576.85 26986.97 287
test_cas_vis1_n_192073.76 26173.74 25273.81 31575.90 35759.77 27880.51 29582.40 30158.30 33981.62 11085.69 25544.35 32376.41 36376.29 12778.61 24885.23 315
EGC-MVSNET52.07 35047.05 35467.14 35283.51 27460.71 26680.50 29667.75 3750.07 3990.43 40075.85 36324.26 37981.54 33828.82 38462.25 36159.16 384
SDMVSNet80.38 14280.18 12880.99 22089.03 14364.94 19780.45 29789.40 16675.19 9876.61 19889.98 13760.61 18387.69 29776.83 12383.55 18990.33 187
HyFIR lowres test77.53 21475.40 23183.94 13689.59 11566.62 16080.36 29888.64 20156.29 35376.45 20085.17 26957.64 20393.28 15861.34 26583.10 19891.91 135
D2MVS74.82 25173.21 25679.64 25079.81 33762.56 24480.34 29987.35 22764.37 28468.86 30382.66 30746.37 30690.10 26167.91 20881.24 21886.25 298
TinyColmap67.30 31664.81 32174.76 30781.92 30956.68 31580.29 30081.49 31060.33 32056.27 37383.22 29824.77 37887.66 29845.52 36069.47 34079.95 361
LCM-MVSNet-Re77.05 22276.94 20477.36 28387.20 20851.60 35780.06 30180.46 32075.20 9767.69 31286.72 22662.48 14788.98 27963.44 24289.25 11491.51 143
test_fmvs268.35 31067.48 31170.98 33769.50 38051.95 35480.05 30276.38 34949.33 37074.65 24584.38 28123.30 38175.40 37274.51 14475.17 30285.60 310
FMVSNet569.50 29967.96 30074.15 31382.97 29155.35 33080.01 30382.12 30462.56 30663.02 34981.53 31836.92 35781.92 33648.42 34474.06 31185.17 318
SCA74.22 25672.33 26479.91 24284.05 26462.17 24979.96 30479.29 33266.30 26272.38 26780.13 33151.95 25388.60 28659.25 27977.67 26088.96 241
tpmrst72.39 27472.13 26573.18 32180.54 32749.91 36679.91 30579.08 33363.11 29671.69 27479.95 33355.32 21682.77 33265.66 22973.89 31386.87 288
PatchmatchNetpermissive73.12 26971.33 27278.49 26883.18 28260.85 26479.63 30678.57 33564.13 28671.73 27379.81 33651.20 26285.97 30857.40 29876.36 28188.66 251
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL72.38 27570.90 27676.80 29088.60 15867.38 14579.53 30776.17 35162.75 30469.36 29982.00 31745.51 31784.89 31853.62 31880.58 22778.12 365
CMPMVSbinary51.72 2170.19 29468.16 29776.28 29273.15 37357.55 30279.47 30883.92 27648.02 37156.48 37284.81 27543.13 32986.42 30562.67 25081.81 21384.89 321
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GG-mvs-BLEND75.38 30181.59 31355.80 32679.32 30969.63 37067.19 31873.67 36843.24 32888.90 28350.41 33284.50 17181.45 354
LTVRE_ROB69.57 1376.25 23674.54 24281.41 20688.60 15864.38 21079.24 31089.12 18270.76 18369.79 29687.86 19749.09 28893.20 16656.21 30980.16 23286.65 294
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpm72.37 27671.71 26874.35 31182.19 30552.00 35379.22 31177.29 34464.56 28172.95 26083.68 29551.35 26083.26 33058.33 29075.80 28587.81 265
ppachtmachnet_test70.04 29567.34 31278.14 27179.80 33861.13 26079.19 31280.59 31759.16 33265.27 33779.29 33946.75 30487.29 29949.33 34166.72 34986.00 307
USDC70.33 29268.37 29476.21 29380.60 32656.23 32279.19 31286.49 24160.89 31761.29 35585.47 26231.78 36889.47 27153.37 32076.21 28282.94 345
sd_testset77.70 21177.40 19478.60 26489.03 14360.02 27679.00 31485.83 25275.19 9876.61 19889.98 13754.81 21985.46 31362.63 25183.55 18990.33 187
PM-MVS66.41 32264.14 32473.20 32073.92 36656.45 31778.97 31564.96 38263.88 29364.72 34180.24 33019.84 38483.44 32866.24 22164.52 35879.71 362
tpmvs71.09 28369.29 28876.49 29182.04 30656.04 32478.92 31681.37 31164.05 28967.18 31978.28 34849.74 27989.77 26449.67 34072.37 32583.67 335
test_post178.90 3175.43 39848.81 29485.44 31459.25 279
CHOSEN 1792x268877.63 21375.69 22483.44 14689.98 10868.58 11878.70 31887.50 22456.38 35275.80 21686.84 22258.67 19491.40 23661.58 26285.75 16290.34 186
Syy-MVS68.05 31167.85 30268.67 34884.68 25140.97 38978.62 31973.08 36266.65 25766.74 32479.46 33752.11 24982.30 33432.89 38176.38 27982.75 346
myMVS_eth3d67.02 31766.29 31869.21 34384.68 25142.58 38478.62 31973.08 36266.65 25766.74 32479.46 33731.53 36982.30 33439.43 37476.38 27982.75 346
test-LLR72.94 27272.43 26274.48 30981.35 31858.04 29278.38 32177.46 34166.66 25469.95 29279.00 34248.06 29579.24 34666.13 22284.83 16686.15 301
TESTMET0.1,169.89 29769.00 29172.55 32479.27 34656.85 31078.38 32174.71 35757.64 34468.09 30977.19 35537.75 35576.70 35963.92 23984.09 17984.10 331
test-mter71.41 28070.39 28374.48 30981.35 31858.04 29278.38 32177.46 34160.32 32169.95 29279.00 34236.08 36079.24 34666.13 22284.83 16686.15 301
Anonymous2023120668.60 30567.80 30571.02 33680.23 33150.75 36378.30 32480.47 31956.79 35066.11 33382.63 30846.35 30778.95 34843.62 36575.70 28683.36 338
tpm cat170.57 28968.31 29577.35 28482.41 30357.95 29578.08 32580.22 32452.04 36368.54 30777.66 35352.00 25287.84 29551.77 32672.07 32986.25 298
our_test_369.14 30167.00 31475.57 29879.80 33858.80 28477.96 32677.81 33859.55 32862.90 35278.25 34947.43 29783.97 32351.71 32767.58 34883.93 333
KD-MVS_self_test68.81 30367.59 31072.46 32574.29 36545.45 37477.93 32787.00 23463.12 29563.99 34678.99 34442.32 33484.77 31956.55 30764.09 35987.16 282
WTY-MVS75.65 24375.68 22575.57 29886.40 22156.82 31177.92 32882.40 30165.10 27476.18 20987.72 19863.13 14180.90 34160.31 27181.96 21089.00 239
test20.0367.45 31466.95 31568.94 34475.48 36144.84 37977.50 32977.67 33966.66 25463.01 35083.80 29147.02 30178.40 35042.53 36868.86 34583.58 336
EPMVS69.02 30268.16 29771.59 32979.61 34149.80 36877.40 33066.93 37662.82 30370.01 28979.05 34045.79 31477.86 35456.58 30675.26 30087.13 283
test_fmvs363.36 33361.82 33667.98 35062.51 38746.96 37377.37 33174.03 35945.24 37367.50 31478.79 34512.16 39272.98 38072.77 16466.02 35383.99 332
gg-mvs-nofinetune69.95 29667.96 30075.94 29483.07 28554.51 33977.23 33270.29 36863.11 29670.32 28462.33 37943.62 32788.69 28553.88 31787.76 13184.62 325
MDTV_nov1_ep1369.97 28683.18 28253.48 34677.10 33380.18 32560.45 31969.33 30080.44 32848.89 29386.90 30151.60 32878.51 251
LF4IMVS64.02 33162.19 33569.50 34270.90 37853.29 35076.13 33477.18 34552.65 36258.59 36480.98 32323.55 38076.52 36153.06 32266.66 35078.68 364
sss73.60 26273.64 25373.51 31782.80 29355.01 33476.12 33581.69 30862.47 30774.68 24485.85 25357.32 20778.11 35260.86 26880.93 22187.39 274
testgi66.67 32066.53 31767.08 35375.62 36041.69 38875.93 33676.50 34866.11 26365.20 34086.59 23435.72 36174.71 37443.71 36473.38 32084.84 322
CR-MVSNet73.37 26471.27 27379.67 24981.32 32065.19 19175.92 33780.30 32259.92 32572.73 26281.19 31952.50 24186.69 30259.84 27477.71 25887.11 284
RPMNet73.51 26370.49 28082.58 18581.32 32065.19 19175.92 33792.27 7657.60 34572.73 26276.45 35852.30 24495.43 6548.14 34977.71 25887.11 284
MIMVSNet70.69 28869.30 28774.88 30584.52 25456.35 32175.87 33979.42 33064.59 28067.76 31082.41 30941.10 34281.54 33846.64 35681.34 21686.75 292
test0.0.03 168.00 31267.69 30768.90 34577.55 35147.43 37075.70 34072.95 36466.66 25466.56 32682.29 31248.06 29575.87 36744.97 36374.51 30883.41 337
dmvs_re71.14 28270.58 27872.80 32281.96 30759.68 27975.60 34179.34 33168.55 23469.27 30180.72 32749.42 28276.54 36052.56 32477.79 25782.19 350
dmvs_testset62.63 33464.11 32558.19 36378.55 34824.76 39975.28 34265.94 37967.91 24360.34 35876.01 36053.56 23573.94 37831.79 38267.65 34775.88 370
PMMVS69.34 30068.67 29271.35 33375.67 35962.03 25075.17 34373.46 36050.00 36968.68 30479.05 34052.07 25178.13 35161.16 26682.77 20173.90 372
UnsupCasMVSNet_eth67.33 31565.99 31971.37 33173.48 37051.47 35975.16 34485.19 25865.20 27360.78 35780.93 32642.35 33377.20 35657.12 30053.69 37785.44 312
MDTV_nov1_ep13_2view37.79 39175.16 34455.10 35666.53 32749.34 28453.98 31687.94 262
pmmvs357.79 34054.26 34568.37 34964.02 38656.72 31375.12 34665.17 38040.20 37952.93 37769.86 37620.36 38375.48 37045.45 36155.25 37672.90 374
dp66.80 31865.43 32070.90 33879.74 34048.82 36975.12 34674.77 35559.61 32764.08 34577.23 35442.89 33080.72 34248.86 34366.58 35183.16 340
Patchmtry70.74 28769.16 29075.49 30080.72 32454.07 34274.94 34880.30 32258.34 33870.01 28981.19 31952.50 24186.54 30353.37 32071.09 33585.87 309
PVSNet64.34 1872.08 27870.87 27775.69 29686.21 22356.44 31874.37 34980.73 31562.06 31170.17 28782.23 31342.86 33183.31 32954.77 31384.45 17587.32 277
WB-MVS54.94 34254.72 34455.60 36973.50 36920.90 40174.27 35061.19 38659.16 33250.61 37974.15 36647.19 30075.78 36817.31 39335.07 38870.12 376
MDA-MVSNet-bldmvs66.68 31963.66 32875.75 29579.28 34560.56 26973.92 35178.35 33664.43 28250.13 38079.87 33544.02 32583.67 32546.10 35856.86 37083.03 343
SSC-MVS53.88 34553.59 34654.75 37172.87 37419.59 40273.84 35260.53 38857.58 34649.18 38173.45 36946.34 30875.47 37116.20 39632.28 39069.20 377
UnsupCasMVSNet_bld63.70 33261.53 33870.21 34073.69 36851.39 36072.82 35381.89 30555.63 35557.81 36871.80 37238.67 35078.61 34949.26 34252.21 37980.63 358
PatchT68.46 30967.85 30270.29 33980.70 32543.93 38172.47 35474.88 35460.15 32370.55 28076.57 35749.94 27681.59 33750.58 33174.83 30585.34 313
miper_lstm_enhance74.11 25773.11 25877.13 28780.11 33259.62 28072.23 35586.92 23666.76 25270.40 28382.92 30256.93 21182.92 33169.06 19872.63 32488.87 244
MVS-HIRNet59.14 33957.67 34263.57 35781.65 31143.50 38271.73 35665.06 38139.59 38151.43 37857.73 38538.34 35282.58 33339.53 37273.95 31264.62 381
APD_test153.31 34749.93 35263.42 35865.68 38450.13 36571.59 35766.90 37734.43 38640.58 38571.56 3738.65 39776.27 36434.64 38055.36 37563.86 382
Patchmatch-RL test70.24 29367.78 30677.61 28077.43 35259.57 28271.16 35870.33 36762.94 30068.65 30572.77 37050.62 26885.49 31269.58 19366.58 35187.77 266
test1236.12 3678.11 3700.14 3820.06 4050.09 40771.05 3590.03 4070.04 4010.25 4021.30 4010.05 4050.03 4020.21 4010.01 4000.29 397
ANet_high50.57 35246.10 35663.99 35648.67 39839.13 39070.99 36080.85 31361.39 31531.18 38857.70 38617.02 38773.65 37931.22 38315.89 39679.18 363
KD-MVS_2432*160066.22 32463.89 32673.21 31875.47 36253.42 34770.76 36184.35 26964.10 28766.52 32878.52 34634.55 36384.98 31650.40 33350.33 38181.23 355
miper_refine_blended66.22 32463.89 32673.21 31875.47 36253.42 34770.76 36184.35 26964.10 28766.52 32878.52 34634.55 36384.98 31650.40 33350.33 38181.23 355
test_vis1_rt60.28 33858.42 34165.84 35467.25 38355.60 32970.44 36360.94 38744.33 37559.00 36366.64 37724.91 37768.67 38562.80 24669.48 33973.25 373
testmvs6.04 3688.02 3710.10 3830.08 4040.03 40869.74 3640.04 4060.05 4000.31 4011.68 4000.02 4060.04 4010.24 4000.02 3990.25 398
N_pmnet52.79 34853.26 34751.40 37378.99 3477.68 40569.52 3653.89 40451.63 36657.01 37074.98 36540.83 34465.96 38837.78 37664.67 35780.56 360
FPMVS53.68 34651.64 34859.81 36265.08 38551.03 36169.48 36669.58 37141.46 37840.67 38472.32 37116.46 38870.00 38424.24 39065.42 35558.40 386
DSMNet-mixed57.77 34156.90 34360.38 36167.70 38235.61 39269.18 36753.97 39332.30 38957.49 36979.88 33440.39 34668.57 38638.78 37572.37 32576.97 367
new-patchmatchnet61.73 33661.73 33761.70 35972.74 37524.50 40069.16 36878.03 33761.40 31456.72 37175.53 36438.42 35176.48 36245.95 35957.67 36984.13 330
YYNet165.03 32762.91 33271.38 33075.85 35856.60 31669.12 36974.66 35857.28 34854.12 37577.87 35145.85 31374.48 37549.95 33861.52 36483.05 342
MDA-MVSNet_test_wron65.03 32762.92 33171.37 33175.93 35656.73 31269.09 37074.73 35657.28 34854.03 37677.89 35045.88 31274.39 37649.89 33961.55 36382.99 344
PVSNet_057.27 2061.67 33759.27 34068.85 34679.61 34157.44 30468.01 37173.44 36155.93 35458.54 36570.41 37544.58 32277.55 35547.01 35335.91 38771.55 375
ADS-MVSNet266.20 32663.33 32974.82 30679.92 33458.75 28567.55 37275.19 35353.37 36065.25 33875.86 36142.32 33480.53 34341.57 36968.91 34385.18 316
ADS-MVSNet64.36 33062.88 33368.78 34779.92 33447.17 37167.55 37271.18 36653.37 36065.25 33875.86 36142.32 33473.99 37741.57 36968.91 34385.18 316
mvsany_test162.30 33561.26 33965.41 35569.52 37954.86 33566.86 37449.78 39546.65 37268.50 30883.21 29949.15 28766.28 38756.93 30360.77 36575.11 371
LCM-MVSNet54.25 34349.68 35367.97 35153.73 39545.28 37766.85 37580.78 31435.96 38539.45 38662.23 3818.70 39678.06 35348.24 34851.20 38080.57 359
test_vis3_rt49.26 35347.02 35556.00 36654.30 39245.27 37866.76 37648.08 39636.83 38344.38 38353.20 3887.17 39964.07 38956.77 30555.66 37358.65 385
testf145.72 35441.96 35757.00 36456.90 38945.32 37566.14 37759.26 38926.19 39030.89 38960.96 3834.14 40070.64 38226.39 38846.73 38555.04 387
APD_test245.72 35441.96 35757.00 36456.90 38945.32 37566.14 37759.26 38926.19 39030.89 38960.96 3834.14 40070.64 38226.39 38846.73 38555.04 387
JIA-IIPM66.32 32362.82 33476.82 28977.09 35461.72 25665.34 37975.38 35258.04 34264.51 34262.32 38042.05 33986.51 30451.45 32969.22 34282.21 349
PMVScopyleft37.38 2244.16 35740.28 36055.82 36840.82 40042.54 38665.12 38063.99 38334.43 38624.48 39257.12 3873.92 40276.17 36617.10 39455.52 37448.75 389
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet50.91 35150.29 35152.78 37268.58 38134.94 39463.71 38156.63 39239.73 38044.95 38265.47 37821.93 38258.48 39134.98 37956.62 37164.92 380
mvsany_test353.99 34451.45 34961.61 36055.51 39144.74 38063.52 38245.41 39943.69 37658.11 36776.45 35817.99 38563.76 39054.77 31347.59 38376.34 369
Patchmatch-test64.82 32963.24 33069.57 34179.42 34449.82 36763.49 38369.05 37351.98 36559.95 36180.13 33150.91 26470.98 38140.66 37173.57 31687.90 263
ambc75.24 30273.16 37250.51 36463.05 38487.47 22564.28 34377.81 35217.80 38689.73 26657.88 29460.64 36685.49 311
test_f52.09 34950.82 35055.90 36753.82 39442.31 38759.42 38558.31 39136.45 38456.12 37470.96 37412.18 39157.79 39253.51 31956.57 37267.60 378
CHOSEN 280x42066.51 32164.71 32271.90 32781.45 31563.52 22657.98 38668.95 37453.57 35962.59 35376.70 35646.22 30975.29 37355.25 31179.68 23776.88 368
E-PMN31.77 35930.64 36235.15 37752.87 39627.67 39657.09 38747.86 39724.64 39216.40 39733.05 39311.23 39354.90 39414.46 39718.15 39422.87 393
EMVS30.81 36129.65 36334.27 37850.96 39725.95 39856.58 38846.80 39824.01 39315.53 39830.68 39412.47 39054.43 39512.81 39817.05 39522.43 394
PMMVS240.82 35838.86 36146.69 37453.84 39316.45 40348.61 38949.92 39437.49 38231.67 38760.97 3828.14 39856.42 39328.42 38530.72 39167.19 379
wuyk23d16.82 36515.94 36819.46 38058.74 38831.45 39539.22 3903.74 4056.84 3966.04 3992.70 3991.27 40424.29 39910.54 39914.40 3982.63 396
tmp_tt18.61 36421.40 36710.23 3814.82 40310.11 40434.70 39130.74 4021.48 39823.91 39426.07 39528.42 37413.41 40027.12 38615.35 3977.17 395
Gipumacopyleft45.18 35641.86 35955.16 37077.03 35551.52 35832.50 39280.52 31832.46 38827.12 39135.02 3929.52 39575.50 36922.31 39160.21 36838.45 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive26.22 2330.37 36225.89 36643.81 37544.55 39935.46 39328.87 39339.07 40018.20 39418.58 39640.18 3912.68 40347.37 39717.07 39523.78 39348.60 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method31.52 36029.28 36438.23 37627.03 4026.50 40620.94 39462.21 3854.05 39722.35 39552.50 38913.33 38947.58 39627.04 38734.04 38960.62 383
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k19.96 36326.61 3650.00 3840.00 4060.00 4090.00 39589.26 1730.00 4020.00 40388.61 17661.62 1610.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas5.26 3697.02 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40263.15 1380.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re7.23 3669.64 3690.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40386.72 2260.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS42.58 38439.46 373
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
PC_three_145268.21 24092.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 406
eth-test0.00 406
ZD-MVS94.38 2572.22 4492.67 6170.98 17987.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
IU-MVS95.30 271.25 5792.95 5166.81 25092.39 688.94 1696.63 494.85 19
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
GSMVS88.96 241
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26188.96 241
sam_mvs50.01 274
MTGPAbinary92.02 85
test_post5.46 39750.36 27284.24 321
patchmatchnet-post74.00 36751.12 26388.60 286
gm-plane-assit81.40 31653.83 34462.72 30580.94 32492.39 19563.40 243
test9_res84.90 4295.70 2692.87 102
agg_prior282.91 6695.45 3092.70 105
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
TestCases79.58 25185.15 24163.62 22179.83 32662.31 30860.32 35986.73 22432.02 36688.96 28150.28 33571.57 33286.15 301
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
新几何183.42 14793.13 5270.71 7185.48 25657.43 34781.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 278
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 250
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29281.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 247
testdata291.01 24962.37 253
segment_acmp73.08 37
testdata79.97 24190.90 8664.21 21284.71 26359.27 33185.40 5192.91 7362.02 15789.08 27768.95 19991.37 8686.63 295
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
plane_prior790.08 10268.51 119
plane_prior689.84 11168.70 11460.42 186
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 149
plane_prior491.00 120
plane_prior368.60 11778.44 3178.92 141
plane_prior189.90 110
n20.00 408
nn0.00 408
door-mid69.98 369
lessismore_v078.97 25881.01 32357.15 30765.99 37861.16 35682.82 30539.12 34991.34 23859.67 27546.92 38488.43 256
LGP-MVS_train84.50 9989.23 13468.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18189.83 214
test1192.23 79
door69.44 372
HQP5-MVS66.98 155
BP-MVS77.47 114
HQP4-MVS77.24 18195.11 8091.03 161
HQP3-MVS92.19 8285.99 158
HQP2-MVS60.17 189
NP-MVS89.62 11468.32 12290.24 132
ACMMP++_ref81.95 211
ACMMP++81.25 217
Test By Simon64.33 125
ITE_SJBPF78.22 27081.77 31060.57 26883.30 28669.25 21667.54 31387.20 21536.33 35987.28 30054.34 31574.62 30786.80 290
DeepMVS_CXcopyleft27.40 37940.17 40126.90 39724.59 40317.44 39523.95 39348.61 3909.77 39426.48 39818.06 39224.47 39228.83 392