CP-MVS | | | 87.11 34 | 86.92 35 | 87.68 34 | 94.20 31 | 73.86 6 | 93.98 1 | 92.82 58 | 76.62 68 | 83.68 77 | 94.46 25 | 67.93 84 | 95.95 52 | 84.20 44 | 94.39 55 | 93.23 78 |
|
APDe-MVS | | | 89.15 5 | 89.63 5 | 87.73 27 | 94.49 18 | 71.69 55 | 93.83 2 | 93.96 14 | 75.70 88 | 91.06 12 | 96.03 1 | 76.84 12 | 97.03 12 | 89.09 3 | 95.65 28 | 94.47 23 |
|
SteuartSystems-ACMMP | | | 88.72 9 | 88.86 9 | 88.32 6 | 92.14 75 | 72.96 24 | 93.73 3 | 93.67 19 | 80.19 14 | 88.10 23 | 94.80 14 | 73.76 36 | 97.11 10 | 87.51 15 | 95.82 20 | 94.90 6 |
Skip Steuart: Steuart Systems R&D Blog. |
test0726 | | | | | | 95.27 5 | 71.25 59 | 93.60 4 | 94.11 6 | 77.33 45 | 92.81 3 | 95.79 3 | 80.98 7 | | | | |
|
SED-MVS | | | 90.08 1 | 90.85 1 | 87.77 23 | 95.30 2 | 70.98 65 | 93.57 5 | 94.06 10 | 77.24 47 | 93.10 1 | 95.72 6 | 82.99 1 | 97.44 2 | 89.07 6 | 96.63 2 | 94.88 7 |
|
OPU-MVS | | | | | 89.06 1 | 94.62 13 | 75.42 2 | 93.57 5 | | | | 94.02 45 | 82.45 3 | 96.87 16 | 83.77 48 | 96.48 6 | 94.88 7 |
|
DVP-MVS | | | 89.60 2 | 90.35 2 | 87.33 42 | 95.27 5 | 71.25 59 | 93.49 7 | 92.73 59 | 77.33 45 | 92.12 8 | 95.78 4 | 80.98 7 | 97.40 4 | 89.08 4 | 96.41 8 | 93.33 75 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 87.71 31 | 95.34 1 | 71.43 58 | 93.49 7 | 94.23 5 | | | | | 97.49 1 | 89.08 4 | 96.41 8 | 94.21 32 |
|
3Dnovator+ | | 77.84 4 | 85.48 57 | 84.47 72 | 88.51 4 | 91.08 87 | 73.49 15 | 93.18 9 | 93.78 18 | 80.79 10 | 76.66 179 | 93.37 57 | 60.40 184 | 96.75 22 | 77.20 109 | 93.73 63 | 95.29 2 |
|
HFP-MVS | | | 87.58 22 | 87.47 24 | 87.94 15 | 94.58 14 | 73.54 13 | 93.04 10 | 93.24 33 | 76.78 63 | 84.91 52 | 94.44 28 | 70.78 58 | 96.61 29 | 84.53 37 | 94.89 42 | 93.66 58 |
|
ACMMPR | | | 87.44 25 | 87.23 30 | 88.08 11 | 94.64 11 | 73.59 10 | 93.04 10 | 93.20 35 | 76.78 63 | 84.66 61 | 94.52 21 | 68.81 80 | 96.65 26 | 84.53 37 | 94.90 41 | 94.00 42 |
|
ZNCC-MVS | | | 87.94 17 | 87.85 19 | 88.20 9 | 94.39 24 | 73.33 18 | 93.03 12 | 93.81 17 | 76.81 61 | 85.24 47 | 94.32 33 | 71.76 51 | 96.93 15 | 85.53 26 | 95.79 21 | 94.32 28 |
|
region2R | | | 87.42 27 | 87.20 31 | 88.09 10 | 94.63 12 | 73.55 11 | 93.03 12 | 93.12 38 | 76.73 66 | 84.45 64 | 94.52 21 | 69.09 77 | 96.70 23 | 84.37 40 | 94.83 46 | 94.03 39 |
|
MSP-MVS | | | 89.51 3 | 89.91 4 | 88.30 7 | 94.28 27 | 73.46 16 | 92.90 14 | 94.11 6 | 80.27 12 | 91.35 11 | 94.16 39 | 78.35 10 | 96.77 20 | 89.59 1 | 94.22 60 | 94.67 16 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
XVS | | | 87.18 33 | 86.91 36 | 88.00 13 | 94.42 20 | 73.33 18 | 92.78 15 | 92.99 45 | 79.14 21 | 83.67 78 | 94.17 38 | 67.45 89 | 96.60 31 | 83.06 55 | 94.50 52 | 94.07 37 |
|
X-MVStestdata | | | 80.37 141 | 77.83 175 | 88.00 13 | 94.42 20 | 73.33 18 | 92.78 15 | 92.99 45 | 79.14 21 | 83.67 78 | 12.47 363 | 67.45 89 | 96.60 31 | 83.06 55 | 94.50 52 | 94.07 37 |
|
mPP-MVS | | | 86.67 41 | 86.32 43 | 87.72 29 | 94.41 22 | 73.55 11 | 92.74 17 | 92.22 81 | 76.87 60 | 82.81 90 | 94.25 36 | 66.44 98 | 96.24 39 | 82.88 59 | 94.28 58 | 93.38 72 |
|
ACMMP |  | | 85.89 52 | 85.39 57 | 87.38 41 | 93.59 46 | 72.63 32 | 92.74 17 | 93.18 37 | 76.78 63 | 80.73 115 | 93.82 50 | 64.33 119 | 96.29 37 | 82.67 65 | 90.69 92 | 93.23 78 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MP-MVS |  | | 87.71 20 | 87.64 22 | 87.93 18 | 94.36 26 | 73.88 5 | 92.71 19 | 92.65 64 | 77.57 38 | 83.84 75 | 94.40 32 | 72.24 47 | 96.28 38 | 85.65 25 | 95.30 36 | 93.62 65 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
SF-MVS | | | 88.46 10 | 88.74 10 | 87.64 35 | 92.78 64 | 71.95 50 | 92.40 20 | 94.74 2 | 75.71 86 | 89.16 15 | 95.10 11 | 75.65 18 | 96.19 42 | 87.07 18 | 96.01 13 | 94.79 11 |
|
SMA-MVS |  | | 89.08 6 | 89.23 6 | 88.61 3 | 94.25 28 | 73.73 8 | 92.40 20 | 93.63 20 | 74.77 106 | 92.29 6 | 95.97 2 | 74.28 31 | 97.24 8 | 88.58 10 | 96.91 1 | 94.87 9 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
GST-MVS | | | 87.42 27 | 87.26 28 | 87.89 22 | 94.12 34 | 72.97 23 | 92.39 22 | 93.43 29 | 76.89 59 | 84.68 58 | 93.99 47 | 70.67 61 | 96.82 18 | 84.18 45 | 95.01 38 | 93.90 47 |
|
HPM-MVS++ |  | | 89.02 7 | 89.15 7 | 88.63 2 | 95.01 8 | 76.03 1 | 92.38 23 | 92.85 54 | 80.26 13 | 87.78 26 | 94.27 34 | 75.89 16 | 96.81 19 | 87.45 16 | 96.44 7 | 93.05 86 |
|
SR-MVS | | | 86.73 38 | 86.67 39 | 86.91 49 | 94.11 35 | 72.11 48 | 92.37 24 | 92.56 67 | 74.50 111 | 86.84 33 | 94.65 18 | 67.31 91 | 95.77 56 | 84.80 34 | 92.85 70 | 92.84 94 |
|
#test# | | | 87.33 30 | 87.13 32 | 87.94 15 | 94.58 14 | 73.54 13 | 92.34 25 | 93.24 33 | 75.23 97 | 84.91 52 | 94.44 28 | 70.78 58 | 96.61 29 | 83.75 49 | 94.89 42 | 93.66 58 |
|
EPP-MVSNet | | | 83.40 82 | 83.02 82 | 84.57 100 | 90.13 105 | 64.47 196 | 92.32 26 | 90.73 132 | 74.45 114 | 79.35 126 | 91.10 101 | 69.05 79 | 95.12 85 | 72.78 150 | 87.22 134 | 94.13 34 |
|
PHI-MVS | | | 86.43 44 | 86.17 48 | 87.24 43 | 90.88 92 | 70.96 67 | 92.27 27 | 94.07 9 | 72.45 146 | 85.22 48 | 91.90 81 | 69.47 73 | 96.42 35 | 83.28 53 | 95.94 16 | 94.35 26 |
|
testtj | | | 87.78 19 | 87.78 20 | 87.77 23 | 94.55 16 | 72.47 37 | 92.23 28 | 93.49 26 | 74.75 107 | 88.33 21 | 94.43 30 | 73.27 39 | 97.02 13 | 84.18 45 | 94.84 44 | 93.82 52 |
|
HPM-MVS |  | | 87.11 34 | 86.98 34 | 87.50 38 | 93.88 38 | 72.16 46 | 92.19 29 | 93.33 32 | 76.07 80 | 83.81 76 | 93.95 48 | 69.77 71 | 96.01 49 | 85.15 28 | 94.66 48 | 94.32 28 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MTMP | | | | | | | | 92.18 30 | 32.83 366 | | | | | | | | |
|
HPM-MVS_fast | | | 85.35 61 | 84.95 67 | 86.57 58 | 93.69 43 | 70.58 80 | 92.15 31 | 91.62 107 | 73.89 126 | 82.67 92 | 94.09 42 | 62.60 141 | 95.54 64 | 80.93 77 | 92.93 68 | 93.57 67 |
|
CPTT-MVS | | | 83.73 75 | 83.33 78 | 84.92 91 | 93.28 50 | 70.86 72 | 92.09 32 | 90.38 140 | 68.75 220 | 79.57 123 | 92.83 70 | 60.60 180 | 93.04 179 | 80.92 78 | 91.56 83 | 90.86 155 |
|
APD-MVS_3200maxsize | | | 85.97 50 | 85.88 51 | 86.22 64 | 92.69 67 | 69.53 98 | 91.93 33 | 92.99 45 | 73.54 133 | 85.94 37 | 94.51 24 | 65.80 108 | 95.61 59 | 83.04 57 | 92.51 75 | 93.53 70 |
|
SR-MVS-dyc-post | | | 85.77 53 | 85.61 54 | 86.23 63 | 93.06 57 | 70.63 77 | 91.88 34 | 92.27 77 | 73.53 134 | 85.69 42 | 94.45 26 | 65.00 116 | 95.56 61 | 82.75 60 | 91.87 78 | 92.50 103 |
|
RE-MVS-def | | | | 85.48 55 | | 93.06 57 | 70.63 77 | 91.88 34 | 92.27 77 | 73.53 134 | 85.69 42 | 94.45 26 | 63.87 123 | | 82.75 60 | 91.87 78 | 92.50 103 |
|
APD-MVS |  | | 87.44 25 | 87.52 23 | 87.19 44 | 94.24 29 | 72.39 40 | 91.86 36 | 92.83 55 | 73.01 143 | 88.58 19 | 94.52 21 | 73.36 37 | 96.49 34 | 84.26 42 | 95.01 38 | 92.70 96 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SD-MVS | | | 88.06 13 | 88.50 12 | 86.71 54 | 92.60 71 | 72.71 28 | 91.81 37 | 93.19 36 | 77.87 33 | 90.32 13 | 94.00 46 | 74.83 24 | 93.78 140 | 87.63 14 | 94.27 59 | 93.65 63 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test1172 | | | 86.20 49 | 86.22 45 | 86.12 67 | 93.95 37 | 69.89 91 | 91.79 38 | 92.28 76 | 75.07 101 | 86.40 35 | 94.58 20 | 65.00 116 | 95.56 61 | 84.34 41 | 92.60 73 | 92.90 92 |
|
DPE-MVS |  | | 89.48 4 | 89.98 3 | 88.01 12 | 94.80 9 | 72.69 30 | 91.59 39 | 94.10 8 | 75.90 84 | 92.29 6 | 95.66 8 | 81.67 4 | 97.38 6 | 87.44 17 | 96.34 11 | 93.95 44 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
QAPM | | | 80.88 122 | 79.50 138 | 85.03 85 | 88.01 177 | 68.97 109 | 91.59 39 | 92.00 91 | 66.63 241 | 75.15 218 | 92.16 76 | 57.70 197 | 95.45 68 | 63.52 222 | 88.76 115 | 90.66 161 |
|
IS-MVSNet | | | 83.15 85 | 82.81 85 | 84.18 115 | 89.94 110 | 63.30 221 | 91.59 39 | 88.46 203 | 79.04 25 | 79.49 124 | 92.16 76 | 65.10 113 | 94.28 114 | 67.71 190 | 91.86 80 | 94.95 5 |
|
9.14 | | | | 88.26 14 | | 92.84 63 | | 91.52 42 | 94.75 1 | 73.93 125 | 88.57 20 | 94.67 17 | 75.57 20 | 95.79 55 | 86.77 20 | 95.76 24 | |
|
ETH3D-3000-0.1 | | | 88.09 12 | 88.29 13 | 87.50 38 | 92.76 65 | 71.89 53 | 91.43 43 | 94.70 3 | 74.47 112 | 88.86 18 | 94.61 19 | 75.23 21 | 95.84 54 | 86.62 23 | 95.92 17 | 94.78 13 |
|
TSAR-MVS + MP. | | | 88.02 16 | 88.11 15 | 87.72 29 | 93.68 44 | 72.13 47 | 91.41 44 | 92.35 74 | 74.62 110 | 88.90 17 | 93.85 49 | 75.75 17 | 96.00 50 | 87.80 12 | 94.63 49 | 95.04 3 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DeepC-MVS_fast | | 79.65 3 | 86.91 37 | 86.62 40 | 87.76 26 | 93.52 47 | 72.37 41 | 91.26 45 | 93.04 39 | 76.62 68 | 84.22 69 | 93.36 58 | 71.44 54 | 96.76 21 | 80.82 79 | 95.33 34 | 94.16 33 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HQP_MVS | | | 83.64 77 | 83.14 79 | 85.14 82 | 90.08 107 | 68.71 117 | 91.25 46 | 92.44 69 | 79.12 23 | 78.92 131 | 91.00 107 | 60.42 182 | 95.38 74 | 78.71 92 | 86.32 147 | 91.33 138 |
|
plane_prior2 | | | | | | | | 91.25 46 | | 79.12 23 | | | | | | | |
|
NCCC | | | 88.06 13 | 88.01 17 | 88.24 8 | 94.41 22 | 73.62 9 | 91.22 48 | 92.83 55 | 81.50 6 | 85.79 41 | 93.47 56 | 73.02 42 | 97.00 14 | 84.90 30 | 94.94 40 | 94.10 35 |
|
API-MVS | | | 81.99 103 | 81.23 107 | 84.26 113 | 90.94 90 | 70.18 88 | 91.10 49 | 89.32 170 | 71.51 164 | 78.66 136 | 88.28 172 | 65.26 111 | 95.10 89 | 64.74 218 | 91.23 88 | 87.51 259 |
|
EPNet | | | 83.72 76 | 82.92 84 | 86.14 66 | 84.22 246 | 69.48 99 | 91.05 50 | 85.27 251 | 81.30 7 | 76.83 174 | 91.65 85 | 66.09 103 | 95.56 61 | 76.00 121 | 93.85 62 | 93.38 72 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test_part1 | | | 82.78 92 | 82.08 96 | 84.89 92 | 90.66 95 | 66.97 153 | 90.96 51 | 92.93 51 | 77.19 50 | 80.53 117 | 90.04 124 | 63.44 126 | 95.39 73 | 76.04 120 | 76.90 248 | 92.31 110 |
|
ACMMP_NAP | | | 88.05 15 | 88.08 16 | 87.94 15 | 93.70 42 | 73.05 21 | 90.86 52 | 93.59 21 | 76.27 77 | 88.14 22 | 95.09 13 | 71.06 56 | 96.67 25 | 87.67 13 | 96.37 10 | 94.09 36 |
|
CSCG | | | 86.41 46 | 86.19 47 | 87.07 47 | 92.91 60 | 72.48 36 | 90.81 53 | 93.56 23 | 73.95 123 | 83.16 83 | 91.07 103 | 75.94 15 | 95.19 83 | 79.94 87 | 94.38 56 | 93.55 68 |
|
abl_6 | | | 85.23 62 | 84.95 67 | 86.07 68 | 92.23 74 | 70.48 81 | 90.80 54 | 92.08 86 | 73.51 136 | 85.26 46 | 94.16 39 | 62.75 140 | 95.92 53 | 82.46 67 | 91.30 87 | 91.81 126 |
|
MSLP-MVS++ | | | 85.43 59 | 85.76 53 | 84.45 104 | 91.93 78 | 70.24 82 | 90.71 55 | 92.86 53 | 77.46 44 | 84.22 69 | 92.81 72 | 67.16 93 | 92.94 181 | 80.36 83 | 94.35 57 | 90.16 179 |
|
3Dnovator | | 76.31 5 | 83.38 83 | 82.31 92 | 86.59 57 | 87.94 178 | 72.94 27 | 90.64 56 | 92.14 85 | 77.21 49 | 75.47 204 | 92.83 70 | 58.56 191 | 94.72 105 | 73.24 146 | 92.71 72 | 92.13 118 |
|
ETH3 D test6400 | | | 87.50 24 | 87.44 25 | 87.70 32 | 93.71 41 | 71.75 54 | 90.62 57 | 94.05 13 | 70.80 174 | 87.59 29 | 93.51 53 | 77.57 11 | 96.63 28 | 83.31 50 | 95.77 22 | 94.72 15 |
|
OpenMVS |  | 72.83 10 | 79.77 151 | 78.33 164 | 84.09 118 | 85.17 231 | 69.91 89 | 90.57 58 | 90.97 127 | 66.70 237 | 72.17 250 | 91.91 80 | 54.70 219 | 93.96 128 | 61.81 241 | 90.95 90 | 88.41 243 |
|
CNVR-MVS | | | 88.93 8 | 89.13 8 | 88.33 5 | 94.77 10 | 73.82 7 | 90.51 59 | 93.00 43 | 80.90 9 | 88.06 24 | 94.06 44 | 76.43 13 | 96.84 17 | 88.48 11 | 95.99 15 | 94.34 27 |
|
MVSFormer | | | 82.85 91 | 82.05 97 | 85.24 80 | 87.35 196 | 70.21 83 | 90.50 60 | 90.38 140 | 68.55 223 | 81.32 106 | 89.47 140 | 61.68 156 | 93.46 158 | 78.98 90 | 90.26 98 | 92.05 120 |
|
test_djsdf | | | 80.30 142 | 79.32 143 | 83.27 146 | 83.98 251 | 65.37 180 | 90.50 60 | 90.38 140 | 68.55 223 | 76.19 190 | 88.70 158 | 56.44 209 | 93.46 158 | 78.98 90 | 80.14 218 | 90.97 151 |
|
xxxxxxxxxxxxxcwj | | | 87.88 18 | 87.92 18 | 87.77 23 | 93.80 39 | 72.35 42 | 90.47 62 | 89.69 162 | 74.31 115 | 89.16 15 | 95.10 11 | 75.65 18 | 96.19 42 | 87.07 18 | 96.01 13 | 94.79 11 |
|
save fliter | | | | | | 93.80 39 | 72.35 42 | 90.47 62 | 91.17 123 | 74.31 115 | | | | | | | |
|
nrg030 | | | 83.88 73 | 83.53 75 | 84.96 88 | 86.77 211 | 69.28 104 | 90.46 64 | 92.67 61 | 74.79 105 | 82.95 85 | 91.33 96 | 72.70 43 | 93.09 175 | 80.79 81 | 79.28 228 | 92.50 103 |
|
canonicalmvs | | | 85.91 51 | 85.87 52 | 86.04 69 | 89.84 112 | 69.44 103 | 90.45 65 | 93.00 43 | 76.70 67 | 88.01 25 | 91.23 97 | 73.28 38 | 93.91 135 | 81.50 72 | 88.80 114 | 94.77 14 |
|
plane_prior | | | | | | | 68.71 117 | 90.38 66 | | 77.62 36 | | | | | | 86.16 150 | |
|
DeepC-MVS | | 79.81 2 | 87.08 36 | 86.88 37 | 87.69 33 | 91.16 86 | 72.32 44 | 90.31 67 | 93.94 15 | 77.12 53 | 82.82 89 | 94.23 37 | 72.13 49 | 97.09 11 | 84.83 33 | 95.37 31 | 93.65 63 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
Vis-MVSNet |  | | 83.46 80 | 82.80 86 | 85.43 76 | 90.25 103 | 68.74 115 | 90.30 68 | 90.13 150 | 76.33 76 | 80.87 114 | 92.89 68 | 61.00 173 | 94.20 120 | 72.45 153 | 90.97 89 | 93.35 74 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
zzz-MVS | | | 87.53 23 | 87.41 26 | 87.90 19 | 94.18 32 | 74.25 3 | 90.23 69 | 92.02 88 | 79.45 19 | 85.88 38 | 94.80 14 | 68.07 82 | 96.21 40 | 86.69 21 | 95.34 32 | 93.23 78 |
|
PGM-MVS | | | 86.68 40 | 86.27 44 | 87.90 19 | 94.22 30 | 73.38 17 | 90.22 70 | 93.04 39 | 75.53 90 | 83.86 74 | 94.42 31 | 67.87 86 | 96.64 27 | 82.70 64 | 94.57 51 | 93.66 58 |
|
LPG-MVS_test | | | 82.08 100 | 81.27 106 | 84.50 102 | 89.23 134 | 68.76 113 | 90.22 70 | 91.94 95 | 75.37 94 | 76.64 180 | 91.51 90 | 54.29 222 | 94.91 95 | 78.44 96 | 83.78 171 | 89.83 200 |
|
Anonymous20231211 | | | 78.97 172 | 77.69 182 | 82.81 170 | 90.54 98 | 64.29 200 | 90.11 72 | 91.51 111 | 65.01 260 | 76.16 194 | 88.13 182 | 50.56 261 | 93.03 180 | 69.68 176 | 77.56 241 | 91.11 145 |
|
ETH3D cwj APD-0.16 | | | 87.31 31 | 87.27 27 | 87.44 40 | 91.60 82 | 72.45 39 | 90.02 73 | 94.37 4 | 71.76 157 | 87.28 30 | 94.27 34 | 75.18 22 | 96.08 46 | 85.16 27 | 95.77 22 | 93.80 55 |
|
ACMM | | 73.20 8 | 80.78 132 | 79.84 130 | 83.58 135 | 89.31 131 | 68.37 125 | 89.99 74 | 91.60 108 | 70.28 185 | 77.25 165 | 89.66 133 | 53.37 230 | 93.53 154 | 74.24 134 | 82.85 186 | 88.85 230 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMP | | 74.13 6 | 81.51 115 | 80.57 117 | 84.36 108 | 89.42 122 | 68.69 120 | 89.97 75 | 91.50 114 | 74.46 113 | 75.04 222 | 90.41 116 | 53.82 227 | 94.54 107 | 77.56 105 | 82.91 185 | 89.86 199 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LFMVS | | | 81.82 106 | 81.23 107 | 83.57 136 | 91.89 79 | 63.43 219 | 89.84 76 | 81.85 297 | 77.04 56 | 83.21 81 | 93.10 62 | 52.26 238 | 93.43 160 | 71.98 154 | 89.95 104 | 93.85 49 |
|
MCST-MVS | | | 87.37 29 | 87.25 29 | 87.73 27 | 94.53 17 | 72.46 38 | 89.82 77 | 93.82 16 | 73.07 141 | 84.86 57 | 92.89 68 | 76.22 14 | 96.33 36 | 84.89 32 | 95.13 37 | 94.40 24 |
|
MAR-MVS | | | 81.84 105 | 80.70 115 | 85.27 79 | 91.32 85 | 71.53 57 | 89.82 77 | 90.92 128 | 69.77 195 | 78.50 139 | 86.21 233 | 62.36 147 | 94.52 109 | 65.36 212 | 92.05 76 | 89.77 203 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MP-MVS-pluss | | | 87.67 21 | 87.72 21 | 87.54 36 | 93.64 45 | 72.04 49 | 89.80 79 | 93.50 24 | 75.17 100 | 86.34 36 | 95.29 10 | 70.86 57 | 96.00 50 | 88.78 9 | 96.04 12 | 94.58 19 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
UA-Net | | | 85.08 66 | 84.96 66 | 85.45 75 | 92.07 76 | 68.07 132 | 89.78 80 | 90.86 131 | 82.48 2 | 84.60 63 | 93.20 60 | 69.35 74 | 95.22 81 | 71.39 159 | 90.88 91 | 93.07 85 |
|
alignmvs | | | 85.48 57 | 85.32 59 | 85.96 71 | 89.51 119 | 69.47 100 | 89.74 81 | 92.47 68 | 76.17 78 | 87.73 28 | 91.46 93 | 70.32 63 | 93.78 140 | 81.51 71 | 88.95 111 | 94.63 18 |
|
VDDNet | | | 81.52 113 | 80.67 116 | 84.05 121 | 90.44 100 | 64.13 203 | 89.73 82 | 85.91 246 | 71.11 169 | 83.18 82 | 93.48 54 | 50.54 262 | 93.49 155 | 73.40 143 | 88.25 122 | 94.54 22 |
|
CANet | | | 86.45 43 | 86.10 49 | 87.51 37 | 90.09 106 | 70.94 69 | 89.70 83 | 92.59 66 | 81.78 4 | 81.32 106 | 91.43 94 | 70.34 62 | 97.23 9 | 84.26 42 | 93.36 66 | 94.37 25 |
|
114514_t | | | 80.68 133 | 79.51 137 | 84.20 114 | 94.09 36 | 67.27 147 | 89.64 84 | 91.11 125 | 58.75 318 | 74.08 232 | 90.72 111 | 58.10 193 | 95.04 91 | 69.70 175 | 89.42 109 | 90.30 175 |
|
DeepPCF-MVS | | 80.84 1 | 88.10 11 | 88.56 11 | 86.73 53 | 92.24 73 | 69.03 105 | 89.57 85 | 93.39 31 | 77.53 42 | 89.79 14 | 94.12 41 | 78.98 9 | 96.58 33 | 85.66 24 | 95.72 25 | 94.58 19 |
|
UGNet | | | 80.83 126 | 79.59 136 | 84.54 101 | 88.04 175 | 68.09 131 | 89.42 86 | 88.16 205 | 76.95 57 | 76.22 189 | 89.46 142 | 49.30 276 | 93.94 131 | 68.48 185 | 90.31 96 | 91.60 129 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
AdaColmap |  | | 80.58 137 | 79.42 139 | 84.06 120 | 93.09 56 | 68.91 110 | 89.36 87 | 88.97 188 | 69.27 204 | 75.70 201 | 89.69 132 | 57.20 205 | 95.77 56 | 63.06 228 | 88.41 121 | 87.50 260 |
|
mvs-test1 | | | 80.88 122 | 79.40 140 | 85.29 78 | 85.13 234 | 69.75 94 | 89.28 88 | 88.10 207 | 74.99 102 | 76.44 185 | 86.72 213 | 57.27 203 | 94.26 119 | 73.53 139 | 83.18 182 | 91.87 123 |
|
PS-MVSNAJss | | | 82.07 101 | 81.31 105 | 84.34 110 | 86.51 214 | 67.27 147 | 89.27 89 | 91.51 111 | 71.75 158 | 79.37 125 | 90.22 120 | 63.15 134 | 94.27 115 | 77.69 104 | 82.36 193 | 91.49 134 |
|
jajsoiax | | | 79.29 163 | 77.96 170 | 83.27 146 | 84.68 240 | 66.57 158 | 89.25 90 | 90.16 149 | 69.20 208 | 75.46 206 | 89.49 139 | 45.75 300 | 93.13 173 | 76.84 114 | 80.80 208 | 90.11 183 |
|
mvs_tets | | | 79.13 167 | 77.77 178 | 83.22 151 | 84.70 239 | 66.37 160 | 89.17 91 | 90.19 148 | 69.38 202 | 75.40 209 | 89.46 142 | 44.17 308 | 93.15 171 | 76.78 115 | 80.70 210 | 90.14 180 |
|
HQP-NCC | | | | | | 89.33 126 | | 89.17 91 | | 76.41 70 | 77.23 167 | | | | | | |
|
ACMP_Plane | | | | | | 89.33 126 | | 89.17 91 | | 76.41 70 | 77.23 167 | | | | | | |
|
HQP-MVS | | | 82.61 95 | 82.02 98 | 84.37 107 | 89.33 126 | 66.98 151 | 89.17 91 | 92.19 83 | 76.41 70 | 77.23 167 | 90.23 119 | 60.17 185 | 95.11 86 | 77.47 106 | 85.99 153 | 91.03 148 |
|
LS3D | | | 76.95 216 | 74.82 228 | 83.37 143 | 90.45 99 | 67.36 146 | 89.15 95 | 86.94 232 | 61.87 294 | 69.52 279 | 90.61 113 | 51.71 250 | 94.53 108 | 46.38 333 | 86.71 142 | 88.21 245 |
|
OPM-MVS | | | 83.50 79 | 82.95 83 | 85.14 82 | 88.79 151 | 70.95 68 | 89.13 96 | 91.52 110 | 77.55 41 | 80.96 113 | 91.75 83 | 60.71 176 | 94.50 110 | 79.67 88 | 86.51 145 | 89.97 195 |
|
TSAR-MVS + GP. | | | 85.71 55 | 85.33 58 | 86.84 50 | 91.34 84 | 72.50 35 | 89.07 97 | 87.28 226 | 76.41 70 | 85.80 40 | 90.22 120 | 74.15 34 | 95.37 77 | 81.82 70 | 91.88 77 | 92.65 100 |
|
test_prior4 | | | | | | | 72.60 33 | 89.01 98 | | | | | | | | | |
|
GeoE | | | 81.71 108 | 81.01 112 | 83.80 132 | 89.51 119 | 64.45 197 | 88.97 99 | 88.73 198 | 71.27 167 | 78.63 137 | 89.76 130 | 66.32 100 | 93.20 167 | 69.89 173 | 86.02 152 | 93.74 56 |
|
Anonymous20240529 | | | 80.19 145 | 78.89 151 | 84.10 117 | 90.60 96 | 64.75 189 | 88.95 100 | 90.90 129 | 65.97 249 | 80.59 116 | 91.17 100 | 49.97 267 | 93.73 146 | 69.16 181 | 82.70 190 | 93.81 53 |
|
VDD-MVS | | | 83.01 90 | 82.36 91 | 84.96 88 | 91.02 89 | 66.40 159 | 88.91 101 | 88.11 206 | 77.57 38 | 84.39 67 | 93.29 59 | 52.19 239 | 93.91 135 | 77.05 111 | 88.70 116 | 94.57 21 |
|
Effi-MVS+ | | | 83.62 78 | 83.08 80 | 85.24 80 | 88.38 166 | 67.45 142 | 88.89 102 | 89.15 179 | 75.50 91 | 82.27 93 | 88.28 172 | 69.61 72 | 94.45 111 | 77.81 103 | 87.84 124 | 93.84 51 |
|
ACMH+ | | 68.96 14 | 76.01 230 | 74.01 237 | 82.03 188 | 88.60 158 | 65.31 181 | 88.86 103 | 87.55 220 | 70.25 186 | 67.75 290 | 87.47 194 | 41.27 323 | 93.19 169 | 58.37 270 | 75.94 264 | 87.60 256 |
|
test_prior3 | | | 86.73 38 | 86.86 38 | 86.33 60 | 92.61 69 | 69.59 96 | 88.85 104 | 92.97 48 | 75.41 92 | 84.91 52 | 93.54 51 | 74.28 31 | 95.48 66 | 83.31 50 | 95.86 18 | 93.91 45 |
|
test_prior2 | | | | | | | | 88.85 104 | | 75.41 92 | 84.91 52 | 93.54 51 | 74.28 31 | | 83.31 50 | 95.86 18 | |
|
CS-MVS | | | 84.53 70 | 84.97 65 | 83.23 150 | 87.54 195 | 63.27 222 | 88.82 106 | 93.50 24 | 75.98 83 | 83.07 84 | 89.73 131 | 70.29 64 | 95.23 80 | 82.07 69 | 93.70 64 | 91.18 142 |
|
DP-MVS Recon | | | 83.11 88 | 82.09 95 | 86.15 65 | 94.44 19 | 70.92 71 | 88.79 107 | 92.20 82 | 70.53 181 | 79.17 127 | 91.03 106 | 64.12 121 | 96.03 47 | 68.39 187 | 90.14 100 | 91.50 133 |
|
Effi-MVS+-dtu | | | 80.03 147 | 78.57 156 | 84.42 105 | 85.13 234 | 68.74 115 | 88.77 108 | 88.10 207 | 74.99 102 | 74.97 223 | 83.49 277 | 57.27 203 | 93.36 161 | 73.53 139 | 80.88 206 | 91.18 142 |
|
TEST9 | | | | | | 93.26 51 | 72.96 24 | 88.75 109 | 91.89 97 | 68.44 225 | 85.00 50 | 93.10 62 | 74.36 30 | 95.41 71 | | | |
|
train_agg | | | 86.43 44 | 86.20 46 | 87.13 46 | 93.26 51 | 72.96 24 | 88.75 109 | 91.89 97 | 68.69 221 | 85.00 50 | 93.10 62 | 74.43 27 | 95.41 71 | 84.97 29 | 95.71 26 | 93.02 88 |
|
ETV-MVS | | | 84.90 69 | 84.67 70 | 85.59 74 | 89.39 124 | 68.66 121 | 88.74 111 | 92.64 65 | 79.97 17 | 84.10 71 | 85.71 241 | 69.32 75 | 95.38 74 | 80.82 79 | 91.37 85 | 92.72 95 |
|
PVSNet_Blended_VisFu | | | 82.62 94 | 81.83 102 | 84.96 88 | 90.80 94 | 69.76 93 | 88.74 111 | 91.70 106 | 69.39 201 | 78.96 129 | 88.46 167 | 65.47 110 | 94.87 100 | 74.42 131 | 88.57 117 | 90.24 177 |
|
RRT_MVS | | | 79.88 150 | 78.38 161 | 84.38 106 | 85.42 228 | 70.60 79 | 88.71 113 | 88.75 197 | 72.30 151 | 78.83 133 | 89.14 148 | 44.44 306 | 92.18 204 | 78.50 95 | 79.33 227 | 90.35 173 |
|
test_8 | | | | | | 93.13 53 | 72.57 34 | 88.68 114 | 91.84 100 | 68.69 221 | 84.87 56 | 93.10 62 | 74.43 27 | 95.16 84 | | | |
|
CS-MVS-test | | | 84.27 71 | 84.52 71 | 83.55 137 | 87.94 178 | 64.55 191 | 88.65 115 | 93.57 22 | 75.26 96 | 81.78 101 | 88.17 176 | 70.27 65 | 95.22 81 | 81.41 73 | 93.62 65 | 90.87 154 |
|
ACMH | | 67.68 16 | 75.89 231 | 73.93 238 | 81.77 193 | 88.71 155 | 66.61 157 | 88.62 116 | 89.01 185 | 69.81 193 | 66.78 302 | 86.70 218 | 41.95 322 | 91.51 225 | 55.64 289 | 78.14 236 | 87.17 268 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
agg_prior1 | | | 86.22 48 | 86.09 50 | 86.62 56 | 92.85 61 | 71.94 51 | 88.59 117 | 91.78 103 | 68.96 216 | 84.41 65 | 93.18 61 | 74.94 23 | 94.93 93 | 84.75 35 | 95.33 34 | 93.01 89 |
|
CDPH-MVS | | | 85.76 54 | 85.29 61 | 87.17 45 | 93.49 48 | 71.08 63 | 88.58 118 | 92.42 72 | 68.32 226 | 84.61 62 | 93.48 54 | 72.32 46 | 96.15 45 | 79.00 89 | 95.43 30 | 94.28 30 |
|
DP-MVS | | | 76.78 218 | 74.57 230 | 83.42 140 | 93.29 49 | 69.46 102 | 88.55 119 | 83.70 271 | 63.98 274 | 70.20 267 | 88.89 155 | 54.01 226 | 94.80 102 | 46.66 330 | 81.88 198 | 86.01 292 |
|
Regformer-1 | | | 86.41 46 | 86.33 42 | 86.64 55 | 89.33 126 | 70.93 70 | 88.43 120 | 91.39 116 | 82.14 3 | 86.65 34 | 90.09 122 | 74.39 29 | 95.01 92 | 83.97 47 | 90.63 93 | 93.97 43 |
|
Regformer-2 | | | 86.63 42 | 86.53 41 | 86.95 48 | 89.33 126 | 71.24 62 | 88.43 120 | 92.05 87 | 82.50 1 | 86.88 32 | 90.09 122 | 74.45 26 | 95.61 59 | 84.38 39 | 90.63 93 | 94.01 41 |
|
WR-MVS_H | | | 78.51 181 | 78.49 157 | 78.56 254 | 88.02 176 | 56.38 307 | 88.43 120 | 92.67 61 | 77.14 52 | 73.89 233 | 87.55 191 | 66.25 101 | 89.24 266 | 58.92 264 | 73.55 296 | 90.06 189 |
|
F-COLMAP | | | 76.38 226 | 74.33 235 | 82.50 180 | 89.28 132 | 66.95 155 | 88.41 123 | 89.03 183 | 64.05 272 | 66.83 301 | 88.61 162 | 46.78 290 | 92.89 182 | 57.48 277 | 78.55 230 | 87.67 254 |
|
GBi-Net | | | 78.40 182 | 77.40 187 | 81.40 201 | 87.60 190 | 63.01 228 | 88.39 124 | 89.28 171 | 71.63 160 | 75.34 211 | 87.28 197 | 54.80 215 | 91.11 233 | 62.72 229 | 79.57 221 | 90.09 185 |
|
test1 | | | 78.40 182 | 77.40 187 | 81.40 201 | 87.60 190 | 63.01 228 | 88.39 124 | 89.28 171 | 71.63 160 | 75.34 211 | 87.28 197 | 54.80 215 | 91.11 233 | 62.72 229 | 79.57 221 | 90.09 185 |
|
FMVSNet1 | | | 77.44 207 | 76.12 213 | 81.40 201 | 86.81 210 | 63.01 228 | 88.39 124 | 89.28 171 | 70.49 182 | 74.39 229 | 87.28 197 | 49.06 279 | 91.11 233 | 60.91 248 | 78.52 231 | 90.09 185 |
|
tttt0517 | | | 79.40 160 | 77.91 172 | 83.90 131 | 88.10 173 | 63.84 207 | 88.37 127 | 84.05 267 | 71.45 165 | 76.78 176 | 89.12 150 | 49.93 270 | 94.89 98 | 70.18 169 | 83.18 182 | 92.96 91 |
|
v7n | | | 78.97 172 | 77.58 185 | 83.14 154 | 83.45 259 | 65.51 175 | 88.32 128 | 91.21 121 | 73.69 129 | 72.41 247 | 86.32 232 | 57.93 194 | 93.81 139 | 69.18 180 | 75.65 267 | 90.11 183 |
|
COLMAP_ROB |  | 66.92 17 | 73.01 260 | 70.41 271 | 80.81 217 | 87.13 205 | 65.63 173 | 88.30 129 | 84.19 266 | 62.96 282 | 63.80 325 | 87.69 187 | 38.04 335 | 92.56 190 | 46.66 330 | 74.91 283 | 84.24 311 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Regformer-3 | | | 85.23 62 | 85.07 63 | 85.70 73 | 88.95 143 | 69.01 107 | 88.29 130 | 89.91 156 | 80.95 8 | 85.01 49 | 90.01 125 | 72.45 45 | 94.19 121 | 82.50 66 | 87.57 126 | 93.90 47 |
|
Regformer-4 | | | 85.68 56 | 85.45 56 | 86.35 59 | 88.95 143 | 69.67 95 | 88.29 130 | 91.29 118 | 81.73 5 | 85.36 45 | 90.01 125 | 72.62 44 | 95.35 78 | 83.28 53 | 87.57 126 | 94.03 39 |
|
FIs | | | 82.07 101 | 82.42 88 | 81.04 213 | 88.80 150 | 58.34 276 | 88.26 132 | 93.49 26 | 76.93 58 | 78.47 141 | 91.04 104 | 69.92 69 | 92.34 198 | 69.87 174 | 84.97 159 | 92.44 107 |
|
EIA-MVS | | | 83.31 84 | 82.80 86 | 84.82 94 | 89.59 115 | 65.59 174 | 88.21 133 | 92.68 60 | 74.66 109 | 78.96 129 | 86.42 229 | 69.06 78 | 95.26 79 | 75.54 126 | 90.09 101 | 93.62 65 |
|
PLC |  | 70.83 11 | 78.05 194 | 76.37 211 | 83.08 157 | 91.88 80 | 67.80 136 | 88.19 134 | 89.46 167 | 64.33 268 | 69.87 276 | 88.38 169 | 53.66 228 | 93.58 149 | 58.86 265 | 82.73 188 | 87.86 251 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MG-MVS | | | 83.41 81 | 83.45 76 | 83.28 145 | 92.74 66 | 62.28 238 | 88.17 135 | 89.50 166 | 75.22 98 | 81.49 105 | 92.74 73 | 66.75 94 | 95.11 86 | 72.85 149 | 91.58 82 | 92.45 106 |
|
TAPA-MVS | | 73.13 9 | 79.15 166 | 77.94 171 | 82.79 173 | 89.59 115 | 62.99 231 | 88.16 136 | 91.51 111 | 65.77 250 | 77.14 171 | 91.09 102 | 60.91 174 | 93.21 165 | 50.26 313 | 87.05 136 | 92.17 117 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
hse-mvs3 | | | 83.15 85 | 82.19 93 | 86.02 70 | 90.56 97 | 70.85 73 | 88.15 137 | 89.16 178 | 76.02 81 | 84.67 59 | 91.39 95 | 61.54 159 | 95.50 65 | 82.71 62 | 75.48 271 | 91.72 128 |
|
PS-CasMVS | | | 78.01 196 | 78.09 168 | 77.77 266 | 87.71 187 | 54.39 321 | 88.02 138 | 91.22 120 | 77.50 43 | 73.26 237 | 88.64 161 | 60.73 175 | 88.41 280 | 61.88 239 | 73.88 293 | 90.53 167 |
|
OMC-MVS | | | 82.69 93 | 81.97 100 | 84.85 93 | 88.75 153 | 67.42 143 | 87.98 139 | 90.87 130 | 74.92 104 | 79.72 122 | 91.65 85 | 62.19 151 | 93.96 128 | 75.26 128 | 86.42 146 | 93.16 83 |
|
v8 | | | 79.97 149 | 79.02 149 | 82.80 171 | 84.09 248 | 64.50 195 | 87.96 140 | 90.29 147 | 74.13 122 | 75.24 216 | 86.81 210 | 62.88 139 | 93.89 137 | 74.39 132 | 75.40 275 | 90.00 191 |
|
FC-MVSNet-test | | | 81.52 113 | 82.02 98 | 80.03 230 | 88.42 165 | 55.97 312 | 87.95 141 | 93.42 30 | 77.10 54 | 77.38 162 | 90.98 109 | 69.96 68 | 91.79 216 | 68.46 186 | 84.50 164 | 92.33 108 |
|
CP-MVSNet | | | 78.22 187 | 78.34 163 | 77.84 264 | 87.83 182 | 54.54 319 | 87.94 142 | 91.17 123 | 77.65 35 | 73.48 235 | 88.49 166 | 62.24 150 | 88.43 279 | 62.19 235 | 74.07 289 | 90.55 166 |
|
PAPM_NR | | | 83.02 89 | 82.41 89 | 84.82 94 | 92.47 72 | 66.37 160 | 87.93 143 | 91.80 101 | 73.82 127 | 77.32 164 | 90.66 112 | 67.90 85 | 94.90 97 | 70.37 167 | 89.48 108 | 93.19 82 |
|
PEN-MVS | | | 77.73 201 | 77.69 182 | 77.84 264 | 87.07 206 | 53.91 324 | 87.91 144 | 91.18 122 | 77.56 40 | 73.14 239 | 88.82 157 | 61.23 168 | 89.17 267 | 59.95 254 | 72.37 304 | 90.43 170 |
|
v10 | | | 79.74 152 | 78.67 153 | 82.97 164 | 84.06 249 | 64.95 186 | 87.88 145 | 90.62 134 | 73.11 140 | 75.11 219 | 86.56 225 | 61.46 162 | 94.05 127 | 73.68 137 | 75.55 269 | 89.90 197 |
|
casdiffmvs | | | 85.11 65 | 85.14 62 | 85.01 86 | 87.20 203 | 65.77 172 | 87.75 146 | 92.83 55 | 77.84 34 | 84.36 68 | 92.38 74 | 72.15 48 | 93.93 134 | 81.27 75 | 90.48 95 | 95.33 1 |
|
TranMVSNet+NR-MVSNet | | | 80.84 124 | 80.31 123 | 82.42 181 | 87.85 181 | 62.33 236 | 87.74 147 | 91.33 117 | 80.55 11 | 77.99 152 | 89.86 127 | 65.23 112 | 92.62 187 | 67.05 200 | 75.24 281 | 92.30 111 |
|
EI-MVSNet-Vis-set | | | 84.19 72 | 83.81 74 | 85.31 77 | 88.18 170 | 67.85 135 | 87.66 148 | 89.73 161 | 80.05 16 | 82.95 85 | 89.59 137 | 70.74 60 | 94.82 101 | 80.66 82 | 84.72 162 | 93.28 77 |
|
UniMVSNet (Re) | | | 81.60 112 | 81.11 109 | 83.09 156 | 88.38 166 | 64.41 198 | 87.60 149 | 93.02 42 | 78.42 31 | 78.56 138 | 88.16 177 | 69.78 70 | 93.26 164 | 69.58 177 | 76.49 255 | 91.60 129 |
|
CNLPA | | | 78.08 192 | 76.79 201 | 81.97 190 | 90.40 101 | 71.07 64 | 87.59 150 | 84.55 259 | 66.03 248 | 72.38 248 | 89.64 134 | 57.56 199 | 86.04 298 | 59.61 257 | 83.35 179 | 88.79 233 |
|
DTE-MVSNet | | | 76.99 214 | 76.80 200 | 77.54 271 | 86.24 216 | 53.06 331 | 87.52 151 | 90.66 133 | 77.08 55 | 72.50 245 | 88.67 160 | 60.48 181 | 89.52 261 | 57.33 280 | 70.74 315 | 90.05 190 |
|
æ— å…ˆéªŒ | | | | | | | | 87.48 152 | 88.98 186 | 60.00 306 | | | | 94.12 124 | 67.28 195 | | 88.97 225 |
|
FMVSNet2 | | | 78.20 189 | 77.21 191 | 81.20 208 | 87.60 190 | 62.89 232 | 87.47 153 | 89.02 184 | 71.63 160 | 75.29 215 | 87.28 197 | 54.80 215 | 91.10 236 | 62.38 233 | 79.38 225 | 89.61 207 |
|
EI-MVSNet-UG-set | | | 83.81 74 | 83.38 77 | 85.09 84 | 87.87 180 | 67.53 141 | 87.44 154 | 89.66 163 | 79.74 18 | 82.23 94 | 89.41 146 | 70.24 66 | 94.74 104 | 79.95 86 | 83.92 170 | 92.99 90 |
|
thisisatest0530 | | | 79.40 160 | 77.76 179 | 84.31 111 | 87.69 189 | 65.10 185 | 87.36 155 | 84.26 265 | 70.04 188 | 77.42 161 | 88.26 174 | 49.94 268 | 94.79 103 | 70.20 168 | 84.70 163 | 93.03 87 |
|
CANet_DTU | | | 80.61 134 | 79.87 129 | 82.83 168 | 85.60 225 | 63.17 227 | 87.36 155 | 88.65 199 | 76.37 74 | 75.88 198 | 88.44 168 | 53.51 229 | 93.07 176 | 73.30 144 | 89.74 106 | 92.25 113 |
|
baseline | | | 84.93 67 | 84.98 64 | 84.80 96 | 87.30 201 | 65.39 179 | 87.30 157 | 92.88 52 | 77.62 36 | 84.04 73 | 92.26 75 | 71.81 50 | 93.96 128 | 81.31 74 | 90.30 97 | 95.03 4 |
|
UniMVSNet_ETH3D | | | 79.10 168 | 78.24 166 | 81.70 194 | 86.85 208 | 60.24 262 | 87.28 158 | 88.79 192 | 74.25 118 | 76.84 173 | 90.53 115 | 49.48 273 | 91.56 222 | 67.98 188 | 82.15 194 | 93.29 76 |
|
anonymousdsp | | | 78.60 179 | 77.15 192 | 82.98 163 | 80.51 313 | 67.08 149 | 87.24 159 | 89.53 165 | 65.66 252 | 75.16 217 | 87.19 203 | 52.52 233 | 92.25 201 | 77.17 110 | 79.34 226 | 89.61 207 |
|
UniMVSNet_NR-MVSNet | | | 81.88 104 | 81.54 104 | 82.92 165 | 88.46 163 | 63.46 217 | 87.13 160 | 92.37 73 | 80.19 14 | 78.38 142 | 89.14 148 | 71.66 53 | 93.05 177 | 70.05 170 | 76.46 256 | 92.25 113 |
|
DPM-MVS | | | 84.93 67 | 84.29 73 | 86.84 50 | 90.20 104 | 73.04 22 | 87.12 161 | 93.04 39 | 69.80 194 | 82.85 88 | 91.22 98 | 73.06 41 | 96.02 48 | 76.72 116 | 94.63 49 | 91.46 136 |
|
v1144 | | | 80.03 147 | 79.03 148 | 83.01 161 | 83.78 254 | 64.51 193 | 87.11 162 | 90.57 136 | 71.96 156 | 78.08 151 | 86.20 234 | 61.41 163 | 93.94 131 | 74.93 129 | 77.23 243 | 90.60 164 |
|
v2v482 | | | 80.23 143 | 79.29 144 | 83.05 159 | 83.62 256 | 64.14 202 | 87.04 163 | 89.97 153 | 73.61 130 | 78.18 148 | 87.22 201 | 61.10 171 | 93.82 138 | 76.11 118 | 76.78 253 | 91.18 142 |
|
DU-MVS | | | 81.12 120 | 80.52 119 | 82.90 166 | 87.80 183 | 63.46 217 | 87.02 164 | 91.87 99 | 79.01 26 | 78.38 142 | 89.07 151 | 65.02 114 | 93.05 177 | 70.05 170 | 76.46 256 | 92.20 115 |
|
v144192 | | | 79.47 157 | 78.37 162 | 82.78 174 | 83.35 260 | 63.96 205 | 86.96 165 | 90.36 143 | 69.99 189 | 77.50 159 | 85.67 243 | 60.66 178 | 93.77 142 | 74.27 133 | 76.58 254 | 90.62 162 |
|
Fast-Effi-MVS+-dtu | | | 78.02 195 | 76.49 208 | 82.62 178 | 83.16 268 | 66.96 154 | 86.94 166 | 87.45 224 | 72.45 146 | 71.49 257 | 84.17 266 | 54.79 218 | 91.58 221 | 67.61 191 | 80.31 215 | 89.30 213 |
|
v1192 | | | 79.59 154 | 78.43 160 | 83.07 158 | 83.55 258 | 64.52 192 | 86.93 167 | 90.58 135 | 70.83 173 | 77.78 155 | 85.90 237 | 59.15 188 | 93.94 131 | 73.96 136 | 77.19 245 | 90.76 157 |
|
EPNet_dtu | | | 75.46 236 | 74.86 227 | 77.23 276 | 82.57 283 | 54.60 318 | 86.89 168 | 83.09 285 | 71.64 159 | 66.25 309 | 85.86 239 | 55.99 210 | 88.04 284 | 54.92 291 | 86.55 144 | 89.05 220 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
原ACMM2 | | | | | | | | 86.86 169 | | | | | | | | | |
|
VPA-MVSNet | | | 80.60 135 | 80.55 118 | 80.76 218 | 88.07 174 | 60.80 255 | 86.86 169 | 91.58 109 | 75.67 89 | 80.24 119 | 89.45 144 | 63.34 128 | 90.25 250 | 70.51 166 | 79.22 229 | 91.23 141 |
|
v1921920 | | | 79.22 164 | 78.03 169 | 82.80 171 | 83.30 262 | 63.94 206 | 86.80 171 | 90.33 144 | 69.91 192 | 77.48 160 | 85.53 246 | 58.44 192 | 93.75 144 | 73.60 138 | 76.85 251 | 90.71 160 |
|
IterMVS-LS | | | 80.06 146 | 79.38 141 | 82.11 185 | 85.89 220 | 63.20 225 | 86.79 172 | 89.34 169 | 74.19 119 | 75.45 207 | 86.72 213 | 66.62 95 | 92.39 195 | 72.58 151 | 76.86 250 | 90.75 158 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TransMVSNet (Re) | | | 75.39 239 | 74.56 231 | 77.86 263 | 85.50 227 | 57.10 295 | 86.78 173 | 86.09 245 | 72.17 153 | 71.53 256 | 87.34 196 | 63.01 138 | 89.31 265 | 56.84 284 | 61.83 337 | 87.17 268 |
|
Baseline_NR-MVSNet | | | 78.15 191 | 78.33 164 | 77.61 269 | 85.79 221 | 56.21 310 | 86.78 173 | 85.76 247 | 73.60 131 | 77.93 153 | 87.57 190 | 65.02 114 | 88.99 270 | 67.14 199 | 75.33 277 | 87.63 255 |
|
PAPR | | | 81.66 111 | 80.89 114 | 83.99 127 | 90.27 102 | 64.00 204 | 86.76 175 | 91.77 105 | 68.84 219 | 77.13 172 | 89.50 138 | 67.63 87 | 94.88 99 | 67.55 192 | 88.52 119 | 93.09 84 |
|
Vis-MVSNet (Re-imp) | | | 78.36 185 | 78.45 158 | 78.07 262 | 88.64 157 | 51.78 334 | 86.70 176 | 79.63 318 | 74.14 121 | 75.11 219 | 90.83 110 | 61.29 167 | 89.75 257 | 58.10 273 | 91.60 81 | 92.69 98 |
|
pmmvs6 | | | 74.69 242 | 73.39 243 | 78.61 253 | 81.38 301 | 57.48 291 | 86.64 177 | 87.95 212 | 64.99 261 | 70.18 268 | 86.61 221 | 50.43 263 | 89.52 261 | 62.12 237 | 70.18 317 | 88.83 231 |
|
v1240 | | | 78.99 171 | 77.78 177 | 82.64 177 | 83.21 264 | 63.54 214 | 86.62 178 | 90.30 146 | 69.74 198 | 77.33 163 | 85.68 242 | 57.04 206 | 93.76 143 | 73.13 147 | 76.92 247 | 90.62 162 |
|
MTAPA | | | 87.23 32 | 87.00 33 | 87.90 19 | 94.18 32 | 74.25 3 | 86.58 179 | 92.02 88 | 79.45 19 | 85.88 38 | 94.80 14 | 68.07 82 | 96.21 40 | 86.69 21 | 95.34 32 | 93.23 78 |
|
旧先验2 | | | | | | | | 86.56 180 | | 58.10 321 | 87.04 31 | | | 88.98 271 | 74.07 135 | | |
|
RRT_test8_iter05 | | | 78.38 184 | 77.40 187 | 81.34 204 | 86.00 219 | 58.86 271 | 86.55 181 | 91.26 119 | 72.13 155 | 75.91 196 | 87.42 195 | 44.97 303 | 93.73 146 | 77.02 112 | 75.30 278 | 91.45 137 |
|
FMVSNet3 | | | 77.88 199 | 76.85 199 | 80.97 214 | 86.84 209 | 62.36 235 | 86.52 182 | 88.77 193 | 71.13 168 | 75.34 211 | 86.66 220 | 54.07 225 | 91.10 236 | 62.72 229 | 79.57 221 | 89.45 210 |
|
pm-mvs1 | | | 77.25 211 | 76.68 206 | 78.93 249 | 84.22 246 | 58.62 274 | 86.41 183 | 88.36 204 | 71.37 166 | 73.31 236 | 88.01 183 | 61.22 169 | 89.15 268 | 64.24 220 | 73.01 301 | 89.03 221 |
|
EI-MVSNet | | | 80.52 138 | 79.98 127 | 82.12 184 | 84.28 244 | 63.19 226 | 86.41 183 | 88.95 189 | 74.18 120 | 78.69 134 | 87.54 192 | 66.62 95 | 92.43 193 | 72.57 152 | 80.57 212 | 90.74 159 |
|
CVMVSNet | | | 72.99 261 | 72.58 250 | 74.25 301 | 84.28 244 | 50.85 340 | 86.41 183 | 83.45 278 | 44.56 348 | 73.23 238 | 87.54 192 | 49.38 274 | 85.70 300 | 65.90 208 | 78.44 233 | 86.19 287 |
|
NR-MVSNet | | | 80.23 143 | 79.38 141 | 82.78 174 | 87.80 183 | 63.34 220 | 86.31 186 | 91.09 126 | 79.01 26 | 72.17 250 | 89.07 151 | 67.20 92 | 92.81 186 | 66.08 207 | 75.65 267 | 92.20 115 |
|
v148 | | | 78.72 176 | 77.80 176 | 81.47 199 | 82.73 279 | 61.96 242 | 86.30 187 | 88.08 209 | 73.26 139 | 76.18 191 | 85.47 248 | 62.46 145 | 92.36 197 | 71.92 155 | 73.82 294 | 90.09 185 |
|
æ–°å‡ ä½•2 | | | | | | | | 86.29 188 | | | | | | | | | |
|
test_yl | | | 81.17 118 | 80.47 120 | 83.24 148 | 89.13 138 | 63.62 210 | 86.21 189 | 89.95 154 | 72.43 149 | 81.78 101 | 89.61 135 | 57.50 200 | 93.58 149 | 70.75 162 | 86.90 138 | 92.52 101 |
|
DCV-MVSNet | | | 81.17 118 | 80.47 120 | 83.24 148 | 89.13 138 | 63.62 210 | 86.21 189 | 89.95 154 | 72.43 149 | 81.78 101 | 89.61 135 | 57.50 200 | 93.58 149 | 70.75 162 | 86.90 138 | 92.52 101 |
|
PVSNet_BlendedMVS | | | 80.60 135 | 80.02 126 | 82.36 183 | 88.85 145 | 65.40 177 | 86.16 191 | 92.00 91 | 69.34 203 | 78.11 149 | 86.09 236 | 66.02 105 | 94.27 115 | 71.52 156 | 82.06 195 | 87.39 261 |
|
MVS_Test | | | 83.15 85 | 83.06 81 | 83.41 142 | 86.86 207 | 63.21 224 | 86.11 192 | 92.00 91 | 74.31 115 | 82.87 87 | 89.44 145 | 70.03 67 | 93.21 165 | 77.39 108 | 88.50 120 | 93.81 53 |
|
BH-untuned | | | 79.47 157 | 78.60 155 | 82.05 187 | 89.19 136 | 65.91 168 | 86.07 193 | 88.52 202 | 72.18 152 | 75.42 208 | 87.69 187 | 61.15 170 | 93.54 153 | 60.38 251 | 86.83 140 | 86.70 280 |
|
MVS_111021_HR | | | 85.14 64 | 84.75 69 | 86.32 62 | 91.65 81 | 72.70 29 | 85.98 194 | 90.33 144 | 76.11 79 | 82.08 95 | 91.61 88 | 71.36 55 | 94.17 123 | 81.02 76 | 92.58 74 | 92.08 119 |
|
jason | | | 81.39 116 | 80.29 124 | 84.70 98 | 86.63 213 | 69.90 90 | 85.95 195 | 86.77 234 | 63.24 277 | 81.07 112 | 89.47 140 | 61.08 172 | 92.15 205 | 78.33 99 | 90.07 103 | 92.05 120 |
jason: jason. |
test_0402 | | | 72.79 263 | 70.44 270 | 79.84 234 | 88.13 171 | 65.99 165 | 85.93 196 | 84.29 263 | 65.57 253 | 67.40 295 | 85.49 247 | 46.92 289 | 92.61 188 | 35.88 351 | 74.38 288 | 80.94 335 |
|
OurMVSNet-221017-0 | | | 74.26 245 | 72.42 252 | 79.80 235 | 83.76 255 | 59.59 267 | 85.92 197 | 86.64 235 | 66.39 243 | 66.96 298 | 87.58 189 | 39.46 329 | 91.60 220 | 65.76 210 | 69.27 319 | 88.22 244 |
|
hse-mvs2 | | | 81.72 107 | 80.94 113 | 84.07 119 | 88.72 154 | 67.68 139 | 85.87 198 | 87.26 227 | 76.02 81 | 84.67 59 | 88.22 175 | 61.54 159 | 93.48 156 | 82.71 62 | 73.44 298 | 91.06 146 |
|
EG-PatchMatch MVS | | | 74.04 248 | 71.82 257 | 80.71 219 | 84.92 237 | 67.42 143 | 85.86 199 | 88.08 209 | 66.04 247 | 64.22 321 | 83.85 270 | 35.10 343 | 92.56 190 | 57.44 278 | 80.83 207 | 82.16 329 |
|
AUN-MVS | | | 79.21 165 | 77.60 184 | 84.05 121 | 88.71 155 | 67.61 140 | 85.84 200 | 87.26 227 | 69.08 211 | 77.23 167 | 88.14 181 | 53.20 232 | 93.47 157 | 75.50 127 | 73.45 297 | 91.06 146 |
|
thres100view900 | | | 76.50 221 | 75.55 217 | 79.33 243 | 89.52 118 | 56.99 296 | 85.83 201 | 83.23 281 | 73.94 124 | 76.32 187 | 87.12 205 | 51.89 247 | 91.95 211 | 48.33 321 | 83.75 173 | 89.07 215 |
|
CLD-MVS | | | 82.31 97 | 81.65 103 | 84.29 112 | 88.47 162 | 67.73 138 | 85.81 202 | 92.35 74 | 75.78 85 | 78.33 144 | 86.58 224 | 64.01 122 | 94.35 112 | 76.05 119 | 87.48 131 | 90.79 156 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
SixPastTwentyTwo | | | 73.37 254 | 71.26 264 | 79.70 236 | 85.08 236 | 57.89 284 | 85.57 203 | 83.56 274 | 71.03 171 | 65.66 311 | 85.88 238 | 42.10 320 | 92.57 189 | 59.11 262 | 63.34 336 | 88.65 237 |
|
xiu_mvs_v1_base_debu | | | 80.80 129 | 79.72 133 | 84.03 124 | 87.35 196 | 70.19 85 | 85.56 204 | 88.77 193 | 69.06 212 | 81.83 97 | 88.16 177 | 50.91 256 | 92.85 183 | 78.29 100 | 87.56 128 | 89.06 217 |
|
xiu_mvs_v1_base | | | 80.80 129 | 79.72 133 | 84.03 124 | 87.35 196 | 70.19 85 | 85.56 204 | 88.77 193 | 69.06 212 | 81.83 97 | 88.16 177 | 50.91 256 | 92.85 183 | 78.29 100 | 87.56 128 | 89.06 217 |
|
xiu_mvs_v1_base_debi | | | 80.80 129 | 79.72 133 | 84.03 124 | 87.35 196 | 70.19 85 | 85.56 204 | 88.77 193 | 69.06 212 | 81.83 97 | 88.16 177 | 50.91 256 | 92.85 183 | 78.29 100 | 87.56 128 | 89.06 217 |
|
V42 | | | 79.38 162 | 78.24 166 | 82.83 168 | 81.10 307 | 65.50 176 | 85.55 207 | 89.82 157 | 71.57 163 | 78.21 146 | 86.12 235 | 60.66 178 | 93.18 170 | 75.64 123 | 75.46 273 | 89.81 202 |
|
lupinMVS | | | 81.39 116 | 80.27 125 | 84.76 97 | 87.35 196 | 70.21 83 | 85.55 207 | 86.41 238 | 62.85 284 | 81.32 106 | 88.61 162 | 61.68 156 | 92.24 202 | 78.41 98 | 90.26 98 | 91.83 124 |
|
Fast-Effi-MVS+ | | | 80.81 127 | 79.92 128 | 83.47 138 | 88.85 145 | 64.51 193 | 85.53 209 | 89.39 168 | 70.79 175 | 78.49 140 | 85.06 257 | 67.54 88 | 93.58 149 | 67.03 201 | 86.58 143 | 92.32 109 |
|
thres600view7 | | | 76.50 221 | 75.44 219 | 79.68 237 | 89.40 123 | 57.16 293 | 85.53 209 | 83.23 281 | 73.79 128 | 76.26 188 | 87.09 206 | 51.89 247 | 91.89 214 | 48.05 326 | 83.72 176 | 90.00 191 |
|
DELS-MVS | | | 85.41 60 | 85.30 60 | 85.77 72 | 88.49 161 | 67.93 134 | 85.52 211 | 93.44 28 | 78.70 28 | 83.63 80 | 89.03 153 | 74.57 25 | 95.71 58 | 80.26 85 | 94.04 61 | 93.66 58 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
tfpn200view9 | | | 76.42 224 | 75.37 223 | 79.55 242 | 89.13 138 | 57.65 288 | 85.17 212 | 83.60 272 | 73.41 137 | 76.45 182 | 86.39 230 | 52.12 240 | 91.95 211 | 48.33 321 | 83.75 173 | 89.07 215 |
|
thres400 | | | 76.50 221 | 75.37 223 | 79.86 233 | 89.13 138 | 57.65 288 | 85.17 212 | 83.60 272 | 73.41 137 | 76.45 182 | 86.39 230 | 52.12 240 | 91.95 211 | 48.33 321 | 83.75 173 | 90.00 191 |
|
MVS_111021_LR | | | 82.61 95 | 82.11 94 | 84.11 116 | 88.82 148 | 71.58 56 | 85.15 214 | 86.16 243 | 74.69 108 | 80.47 118 | 91.04 104 | 62.29 148 | 90.55 247 | 80.33 84 | 90.08 102 | 90.20 178 |
|
baseline1 | | | 76.98 215 | 76.75 204 | 77.66 267 | 88.13 171 | 55.66 315 | 85.12 215 | 81.89 295 | 73.04 142 | 76.79 175 | 88.90 154 | 62.43 146 | 87.78 287 | 63.30 226 | 71.18 313 | 89.55 209 |
|
WR-MVS | | | 79.49 156 | 79.22 146 | 80.27 227 | 88.79 151 | 58.35 275 | 85.06 216 | 88.61 201 | 78.56 29 | 77.65 157 | 88.34 170 | 63.81 125 | 90.66 246 | 64.98 216 | 77.22 244 | 91.80 127 |
|
ET-MVSNet_ETH3D | | | 78.63 178 | 76.63 207 | 84.64 99 | 86.73 212 | 69.47 100 | 85.01 217 | 84.61 258 | 69.54 199 | 66.51 307 | 86.59 222 | 50.16 265 | 91.75 217 | 76.26 117 | 84.24 168 | 92.69 98 |
|
OpenMVS_ROB |  | 64.09 19 | 70.56 278 | 68.19 283 | 77.65 268 | 80.26 314 | 59.41 269 | 85.01 217 | 82.96 287 | 58.76 317 | 65.43 313 | 82.33 290 | 37.63 337 | 91.23 232 | 45.34 338 | 76.03 263 | 82.32 327 |
|
BH-RMVSNet | | | 79.61 153 | 78.44 159 | 83.14 154 | 89.38 125 | 65.93 167 | 84.95 219 | 87.15 229 | 73.56 132 | 78.19 147 | 89.79 129 | 56.67 208 | 93.36 161 | 59.53 258 | 86.74 141 | 90.13 181 |
|
BH-w/o | | | 78.21 188 | 77.33 190 | 80.84 216 | 88.81 149 | 65.13 184 | 84.87 220 | 87.85 216 | 69.75 196 | 74.52 228 | 84.74 261 | 61.34 165 | 93.11 174 | 58.24 272 | 85.84 155 | 84.27 310 |
|
TDRefinement | | | 67.49 297 | 64.34 306 | 76.92 278 | 73.47 350 | 61.07 251 | 84.86 221 | 82.98 286 | 59.77 308 | 58.30 341 | 85.13 255 | 26.06 353 | 87.89 285 | 47.92 327 | 60.59 341 | 81.81 331 |
|
Anonymous202405211 | | | 78.25 186 | 77.01 194 | 81.99 189 | 91.03 88 | 60.67 256 | 84.77 222 | 83.90 269 | 70.65 180 | 80.00 120 | 91.20 99 | 41.08 325 | 91.43 226 | 65.21 213 | 85.26 157 | 93.85 49 |
|
TAMVS | | | 78.89 174 | 77.51 186 | 83.03 160 | 87.80 183 | 67.79 137 | 84.72 223 | 85.05 254 | 67.63 228 | 76.75 177 | 87.70 186 | 62.25 149 | 90.82 242 | 58.53 269 | 87.13 135 | 90.49 168 |
|
1314 | | | 76.53 220 | 75.30 225 | 80.21 228 | 83.93 252 | 62.32 237 | 84.66 224 | 88.81 191 | 60.23 304 | 70.16 270 | 84.07 268 | 55.30 213 | 90.73 245 | 67.37 194 | 83.21 181 | 87.59 258 |
|
1121 | | | 80.84 124 | 79.77 131 | 84.05 121 | 93.11 55 | 70.78 74 | 84.66 224 | 85.42 250 | 57.37 327 | 81.76 104 | 92.02 78 | 63.41 127 | 94.12 124 | 67.28 195 | 92.93 68 | 87.26 266 |
|
MVS | | | 78.19 190 | 76.99 196 | 81.78 192 | 85.66 223 | 66.99 150 | 84.66 224 | 90.47 138 | 55.08 337 | 72.02 252 | 85.27 251 | 63.83 124 | 94.11 126 | 66.10 206 | 89.80 105 | 84.24 311 |
|
tfpnnormal | | | 74.39 243 | 73.16 246 | 78.08 261 | 86.10 218 | 58.05 279 | 84.65 227 | 87.53 221 | 70.32 184 | 71.22 259 | 85.63 244 | 54.97 214 | 89.86 255 | 43.03 342 | 75.02 282 | 86.32 284 |
|
TR-MVS | | | 77.44 207 | 76.18 212 | 81.20 208 | 88.24 169 | 63.24 223 | 84.61 228 | 86.40 239 | 67.55 230 | 77.81 154 | 86.48 228 | 54.10 224 | 93.15 171 | 57.75 276 | 82.72 189 | 87.20 267 |
|
AllTest | | | 70.96 274 | 68.09 286 | 79.58 240 | 85.15 232 | 63.62 210 | 84.58 229 | 79.83 316 | 62.31 290 | 60.32 335 | 86.73 211 | 32.02 348 | 88.96 273 | 50.28 311 | 71.57 311 | 86.15 288 |
|
EU-MVSNet | | | 68.53 294 | 67.61 294 | 71.31 318 | 78.51 331 | 47.01 349 | 84.47 230 | 84.27 264 | 42.27 349 | 66.44 308 | 84.79 260 | 40.44 327 | 83.76 313 | 58.76 267 | 68.54 324 | 83.17 320 |
|
VNet | | | 82.21 98 | 82.41 89 | 81.62 195 | 90.82 93 | 60.93 252 | 84.47 230 | 89.78 158 | 76.36 75 | 84.07 72 | 91.88 82 | 64.71 118 | 90.26 249 | 70.68 164 | 88.89 112 | 93.66 58 |
|
xiu_mvs_v2_base | | | 81.69 109 | 81.05 110 | 83.60 134 | 89.15 137 | 68.03 133 | 84.46 232 | 90.02 152 | 70.67 178 | 81.30 109 | 86.53 227 | 63.17 133 | 94.19 121 | 75.60 125 | 88.54 118 | 88.57 239 |
|
VPNet | | | 78.69 177 | 78.66 154 | 78.76 251 | 88.31 168 | 55.72 314 | 84.45 233 | 86.63 236 | 76.79 62 | 78.26 145 | 90.55 114 | 59.30 187 | 89.70 259 | 66.63 202 | 77.05 246 | 90.88 153 |
|
PVSNet_Blended | | | 80.98 121 | 80.34 122 | 82.90 166 | 88.85 145 | 65.40 177 | 84.43 234 | 92.00 91 | 67.62 229 | 78.11 149 | 85.05 258 | 66.02 105 | 94.27 115 | 71.52 156 | 89.50 107 | 89.01 222 |
|
MVP-Stereo | | | 76.12 228 | 74.46 234 | 81.13 211 | 85.37 229 | 69.79 92 | 84.42 235 | 87.95 212 | 65.03 259 | 67.46 293 | 85.33 250 | 53.28 231 | 91.73 219 | 58.01 274 | 83.27 180 | 81.85 330 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
CDS-MVSNet | | | 79.07 169 | 77.70 181 | 83.17 153 | 87.60 190 | 68.23 129 | 84.40 236 | 86.20 242 | 67.49 231 | 76.36 186 | 86.54 226 | 61.54 159 | 90.79 243 | 61.86 240 | 87.33 132 | 90.49 168 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
K. test v3 | | | 71.19 272 | 68.51 280 | 79.21 246 | 83.04 271 | 57.78 287 | 84.35 237 | 76.91 331 | 72.90 145 | 62.99 328 | 82.86 284 | 39.27 330 | 91.09 238 | 61.65 242 | 52.66 349 | 88.75 234 |
|
PS-MVSNAJ | | | 81.69 109 | 81.02 111 | 83.70 133 | 89.51 119 | 68.21 130 | 84.28 238 | 90.09 151 | 70.79 175 | 81.26 110 | 85.62 245 | 63.15 134 | 94.29 113 | 75.62 124 | 88.87 113 | 88.59 238 |
|
test222 | | | | | | 91.50 83 | 68.26 128 | 84.16 239 | 83.20 283 | 54.63 338 | 79.74 121 | 91.63 87 | 58.97 189 | | | 91.42 84 | 86.77 278 |
|
testdata1 | | | | | | | | 84.14 240 | | 75.71 86 | | | | | | | |
|
MVS_0304 | | | 72.48 264 | 70.89 267 | 77.24 275 | 82.20 289 | 59.68 265 | 84.11 241 | 83.49 276 | 67.10 233 | 66.87 300 | 80.59 307 | 35.00 344 | 87.40 289 | 59.07 263 | 79.58 220 | 84.63 308 |
|
cl_fuxian | | | 78.75 175 | 77.91 172 | 81.26 206 | 82.89 276 | 61.56 247 | 84.09 242 | 89.13 181 | 69.97 190 | 75.56 202 | 84.29 265 | 66.36 99 | 92.09 207 | 73.47 142 | 75.48 271 | 90.12 182 |
|
MVSTER | | | 79.01 170 | 77.88 174 | 82.38 182 | 83.07 269 | 64.80 188 | 84.08 243 | 88.95 189 | 69.01 215 | 78.69 134 | 87.17 204 | 54.70 219 | 92.43 193 | 74.69 130 | 80.57 212 | 89.89 198 |
|
ab-mvs | | | 79.51 155 | 78.97 150 | 81.14 210 | 88.46 163 | 60.91 253 | 83.84 244 | 89.24 175 | 70.36 183 | 79.03 128 | 88.87 156 | 63.23 132 | 90.21 251 | 65.12 214 | 82.57 191 | 92.28 112 |
|
PAPM | | | 77.68 204 | 76.40 210 | 81.51 198 | 87.29 202 | 61.85 243 | 83.78 245 | 89.59 164 | 64.74 262 | 71.23 258 | 88.70 158 | 62.59 142 | 93.66 148 | 52.66 300 | 87.03 137 | 89.01 222 |
|
diffmvs | | | 82.10 99 | 81.88 101 | 82.76 176 | 83.00 272 | 63.78 209 | 83.68 246 | 89.76 159 | 72.94 144 | 82.02 96 | 89.85 128 | 65.96 107 | 90.79 243 | 82.38 68 | 87.30 133 | 93.71 57 |
|
miper_ehance_all_eth | | | 78.59 180 | 77.76 179 | 81.08 212 | 82.66 281 | 61.56 247 | 83.65 247 | 89.15 179 | 68.87 218 | 75.55 203 | 83.79 273 | 66.49 97 | 92.03 208 | 73.25 145 | 76.39 258 | 89.64 206 |
|
1112_ss | | | 77.40 209 | 76.43 209 | 80.32 226 | 89.11 142 | 60.41 261 | 83.65 247 | 87.72 218 | 62.13 292 | 73.05 240 | 86.72 213 | 62.58 143 | 89.97 254 | 62.11 238 | 80.80 208 | 90.59 165 |
|
PCF-MVS | | 73.52 7 | 80.38 140 | 78.84 152 | 85.01 86 | 87.71 187 | 68.99 108 | 83.65 247 | 91.46 115 | 63.00 281 | 77.77 156 | 90.28 117 | 66.10 102 | 95.09 90 | 61.40 244 | 88.22 123 | 90.94 152 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
XVG-ACMP-BASELINE | | | 76.11 229 | 74.27 236 | 81.62 195 | 83.20 265 | 64.67 190 | 83.60 250 | 89.75 160 | 69.75 196 | 71.85 253 | 87.09 206 | 32.78 347 | 92.11 206 | 69.99 172 | 80.43 214 | 88.09 246 |
|
cl-mvsnet2 | | | 78.07 193 | 77.01 194 | 81.23 207 | 82.37 288 | 61.83 244 | 83.55 251 | 87.98 211 | 68.96 216 | 75.06 221 | 83.87 269 | 61.40 164 | 91.88 215 | 73.53 139 | 76.39 258 | 89.98 194 |
|
XVG-OURS-SEG-HR | | | 80.81 127 | 79.76 132 | 83.96 129 | 85.60 225 | 68.78 112 | 83.54 252 | 90.50 137 | 70.66 179 | 76.71 178 | 91.66 84 | 60.69 177 | 91.26 230 | 76.94 113 | 81.58 200 | 91.83 124 |
|
IB-MVS | | 68.01 15 | 75.85 232 | 73.36 244 | 83.31 144 | 84.76 238 | 66.03 163 | 83.38 253 | 85.06 253 | 70.21 187 | 69.40 280 | 81.05 301 | 45.76 299 | 94.66 106 | 65.10 215 | 75.49 270 | 89.25 214 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
HY-MVS | | 69.67 12 | 77.95 197 | 77.15 192 | 80.36 224 | 87.57 194 | 60.21 263 | 83.37 254 | 87.78 217 | 66.11 245 | 75.37 210 | 87.06 208 | 63.27 130 | 90.48 248 | 61.38 245 | 82.43 192 | 90.40 172 |
|
Anonymous20240521 | | | 68.80 291 | 67.22 297 | 73.55 304 | 74.33 345 | 54.11 322 | 83.18 255 | 85.61 248 | 58.15 320 | 61.68 331 | 80.94 304 | 30.71 351 | 81.27 325 | 57.00 283 | 73.34 300 | 85.28 299 |
|
eth_miper_zixun_eth | | | 77.92 198 | 76.69 205 | 81.61 197 | 83.00 272 | 61.98 241 | 83.15 256 | 89.20 177 | 69.52 200 | 74.86 225 | 84.35 264 | 61.76 155 | 92.56 190 | 71.50 158 | 72.89 302 | 90.28 176 |
|
cl-mvsnet____ | | | 77.72 202 | 76.76 202 | 80.58 220 | 82.49 285 | 60.48 259 | 83.09 257 | 87.87 214 | 69.22 206 | 74.38 230 | 85.22 253 | 62.10 152 | 91.53 223 | 71.09 160 | 75.41 274 | 89.73 205 |
|
cl-mvsnet1 | | | 77.72 202 | 76.76 202 | 80.58 220 | 82.48 286 | 60.48 259 | 83.09 257 | 87.86 215 | 69.22 206 | 74.38 230 | 85.24 252 | 62.10 152 | 91.53 223 | 71.09 160 | 75.40 275 | 89.74 204 |
|
thres200 | | | 75.55 235 | 74.47 233 | 78.82 250 | 87.78 186 | 57.85 285 | 83.07 259 | 83.51 275 | 72.44 148 | 75.84 199 | 84.42 263 | 52.08 242 | 91.75 217 | 47.41 328 | 83.64 177 | 86.86 276 |
|
XVG-OURS | | | 80.41 139 | 79.23 145 | 83.97 128 | 85.64 224 | 69.02 106 | 83.03 260 | 90.39 139 | 71.09 170 | 77.63 158 | 91.49 92 | 54.62 221 | 91.35 228 | 75.71 122 | 83.47 178 | 91.54 131 |
|
miper_enhance_ethall | | | 77.87 200 | 76.86 198 | 80.92 215 | 81.65 295 | 61.38 249 | 82.68 261 | 88.98 186 | 65.52 254 | 75.47 204 | 82.30 291 | 65.76 109 | 92.00 210 | 72.95 148 | 76.39 258 | 89.39 211 |
|
mvs_anonymous | | | 79.42 159 | 79.11 147 | 80.34 225 | 84.45 243 | 57.97 282 | 82.59 262 | 87.62 219 | 67.40 232 | 76.17 193 | 88.56 165 | 68.47 81 | 89.59 260 | 70.65 165 | 86.05 151 | 93.47 71 |
|
baseline2 | | | 75.70 233 | 73.83 241 | 81.30 205 | 83.26 263 | 61.79 245 | 82.57 263 | 80.65 306 | 66.81 234 | 66.88 299 | 83.42 278 | 57.86 196 | 92.19 203 | 63.47 223 | 79.57 221 | 89.91 196 |
|
DWT-MVSNet_test | | | 73.70 251 | 71.86 256 | 79.21 246 | 82.91 275 | 58.94 270 | 82.34 264 | 82.17 292 | 65.21 255 | 71.05 261 | 78.31 325 | 44.21 307 | 90.17 252 | 63.29 227 | 77.28 242 | 88.53 240 |
|
cascas | | | 76.72 219 | 74.64 229 | 82.99 162 | 85.78 222 | 65.88 169 | 82.33 265 | 89.21 176 | 60.85 300 | 72.74 242 | 81.02 302 | 47.28 287 | 93.75 144 | 67.48 193 | 85.02 158 | 89.34 212 |
|
RPSCF | | | 73.23 258 | 71.46 259 | 78.54 255 | 82.50 284 | 59.85 264 | 82.18 266 | 82.84 288 | 58.96 315 | 71.15 260 | 89.41 146 | 45.48 302 | 84.77 308 | 58.82 266 | 71.83 309 | 91.02 150 |
|
thisisatest0515 | | | 77.33 210 | 75.38 222 | 83.18 152 | 85.27 230 | 63.80 208 | 82.11 267 | 83.27 280 | 65.06 258 | 75.91 196 | 83.84 271 | 49.54 272 | 94.27 115 | 67.24 197 | 86.19 149 | 91.48 135 |
|
pmmvs-eth3d | | | 70.50 279 | 67.83 290 | 78.52 256 | 77.37 335 | 66.18 162 | 81.82 268 | 81.51 299 | 58.90 316 | 63.90 324 | 80.42 309 | 42.69 315 | 86.28 297 | 58.56 268 | 65.30 332 | 83.11 322 |
|
MS-PatchMatch | | | 73.83 250 | 72.67 249 | 77.30 274 | 83.87 253 | 66.02 164 | 81.82 268 | 84.66 257 | 61.37 298 | 68.61 286 | 82.82 285 | 47.29 286 | 88.21 281 | 59.27 259 | 84.32 167 | 77.68 344 |
|
pmmvs5 | | | 71.55 270 | 70.20 273 | 75.61 287 | 77.83 332 | 56.39 306 | 81.74 270 | 80.89 302 | 57.76 323 | 67.46 293 | 84.49 262 | 49.26 277 | 85.32 304 | 57.08 282 | 75.29 279 | 85.11 303 |
|
Test_1112_low_res | | | 76.40 225 | 75.44 219 | 79.27 244 | 89.28 132 | 58.09 278 | 81.69 271 | 87.07 230 | 59.53 311 | 72.48 246 | 86.67 219 | 61.30 166 | 89.33 264 | 60.81 250 | 80.15 217 | 90.41 171 |
|
IterMVS | | | 74.29 244 | 72.94 248 | 78.35 258 | 81.53 298 | 63.49 216 | 81.58 272 | 82.49 290 | 68.06 227 | 69.99 273 | 83.69 275 | 51.66 251 | 85.54 301 | 65.85 209 | 71.64 310 | 86.01 292 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 75.43 237 | 73.87 240 | 80.11 229 | 82.69 280 | 64.85 187 | 81.57 273 | 83.47 277 | 69.16 209 | 70.49 264 | 84.15 267 | 51.95 245 | 88.15 282 | 69.23 179 | 72.14 307 | 87.34 263 |
|
pmmvs4 | | | 74.03 249 | 71.91 255 | 80.39 223 | 81.96 292 | 68.32 126 | 81.45 274 | 82.14 293 | 59.32 312 | 69.87 276 | 85.13 255 | 52.40 236 | 88.13 283 | 60.21 253 | 74.74 285 | 84.73 307 |
|
GA-MVS | | | 76.87 217 | 75.17 226 | 81.97 190 | 82.75 278 | 62.58 233 | 81.44 275 | 86.35 241 | 72.16 154 | 74.74 226 | 82.89 283 | 46.20 295 | 92.02 209 | 68.85 184 | 81.09 204 | 91.30 140 |
|
bset_n11_16_dypcd | | | 77.12 212 | 75.47 218 | 82.06 186 | 81.12 306 | 65.99 165 | 81.37 276 | 83.20 283 | 69.94 191 | 76.09 195 | 83.38 279 | 47.75 284 | 92.26 200 | 78.51 94 | 77.91 237 | 87.95 247 |
|
CostFormer | | | 75.24 240 | 73.90 239 | 79.27 244 | 82.65 282 | 58.27 277 | 80.80 277 | 82.73 289 | 61.57 295 | 75.33 214 | 83.13 281 | 55.52 211 | 91.07 239 | 64.98 216 | 78.34 235 | 88.45 241 |
|
MIMVSNet1 | | | 68.58 293 | 66.78 300 | 73.98 303 | 80.07 317 | 51.82 333 | 80.77 278 | 84.37 260 | 64.40 266 | 59.75 338 | 82.16 294 | 36.47 339 | 83.63 315 | 42.73 343 | 70.33 316 | 86.48 283 |
|
CL-MVSNet_2432*1600 | | | 72.37 267 | 71.46 259 | 75.09 293 | 79.49 326 | 53.53 326 | 80.76 279 | 85.01 255 | 69.12 210 | 70.51 263 | 82.05 295 | 57.92 195 | 84.13 311 | 52.27 301 | 66.00 330 | 87.60 256 |
|
MSDG | | | 73.36 256 | 70.99 265 | 80.49 222 | 84.51 242 | 65.80 170 | 80.71 280 | 86.13 244 | 65.70 251 | 65.46 312 | 83.74 274 | 44.60 304 | 90.91 241 | 51.13 306 | 76.89 249 | 84.74 306 |
|
tpm2 | | | 73.26 257 | 71.46 259 | 78.63 252 | 83.34 261 | 56.71 301 | 80.65 281 | 80.40 311 | 56.63 331 | 73.55 234 | 82.02 296 | 51.80 249 | 91.24 231 | 56.35 287 | 78.42 234 | 87.95 247 |
|
XXY-MVS | | | 75.41 238 | 75.56 216 | 74.96 294 | 83.59 257 | 57.82 286 | 80.59 282 | 83.87 270 | 66.54 242 | 74.93 224 | 88.31 171 | 63.24 131 | 80.09 329 | 62.16 236 | 76.85 251 | 86.97 274 |
|
HyFIR lowres test | | | 77.53 206 | 75.40 221 | 83.94 130 | 89.59 115 | 66.62 156 | 80.36 283 | 88.64 200 | 56.29 333 | 76.45 182 | 85.17 254 | 57.64 198 | 93.28 163 | 61.34 246 | 83.10 184 | 91.91 122 |
|
D2MVS | | | 74.82 241 | 73.21 245 | 79.64 239 | 79.81 320 | 62.56 234 | 80.34 284 | 87.35 225 | 64.37 267 | 68.86 283 | 82.66 287 | 46.37 292 | 90.10 253 | 67.91 189 | 81.24 203 | 86.25 285 |
|
TinyColmap | | | 67.30 300 | 64.81 304 | 74.76 297 | 81.92 293 | 56.68 302 | 80.29 285 | 81.49 300 | 60.33 302 | 56.27 347 | 83.22 280 | 24.77 354 | 87.66 288 | 45.52 336 | 69.47 318 | 79.95 339 |
|
LCM-MVSNet-Re | | | 77.05 213 | 76.94 197 | 77.36 272 | 87.20 203 | 51.60 335 | 80.06 286 | 80.46 310 | 75.20 99 | 67.69 291 | 86.72 213 | 62.48 144 | 88.98 271 | 63.44 224 | 89.25 110 | 91.51 132 |
|
FMVSNet5 | | | 69.50 286 | 67.96 287 | 74.15 302 | 82.97 274 | 55.35 316 | 80.01 287 | 82.12 294 | 62.56 288 | 63.02 326 | 81.53 298 | 36.92 338 | 81.92 322 | 48.42 320 | 74.06 290 | 85.17 302 |
|
SCA | | | 74.22 246 | 72.33 253 | 79.91 232 | 84.05 250 | 62.17 239 | 79.96 288 | 79.29 320 | 66.30 244 | 72.38 248 | 80.13 311 | 51.95 245 | 88.60 277 | 59.25 260 | 77.67 240 | 88.96 226 |
|
tpmrst | | | 72.39 265 | 72.13 254 | 73.18 309 | 80.54 312 | 49.91 343 | 79.91 289 | 79.08 321 | 63.11 279 | 71.69 255 | 79.95 313 | 55.32 212 | 82.77 320 | 65.66 211 | 73.89 292 | 86.87 275 |
|
PatchmatchNet |  | | 73.12 259 | 71.33 262 | 78.49 257 | 83.18 266 | 60.85 254 | 79.63 290 | 78.57 322 | 64.13 269 | 71.73 254 | 79.81 316 | 51.20 254 | 85.97 299 | 57.40 279 | 76.36 261 | 88.66 236 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PatchMatch-RL | | | 72.38 266 | 70.90 266 | 76.80 280 | 88.60 158 | 67.38 145 | 79.53 291 | 76.17 333 | 62.75 286 | 69.36 281 | 82.00 297 | 45.51 301 | 84.89 307 | 53.62 296 | 80.58 211 | 78.12 343 |
|
CMPMVS |  | 51.72 21 | 70.19 282 | 68.16 284 | 76.28 282 | 73.15 352 | 57.55 290 | 79.47 292 | 83.92 268 | 48.02 347 | 56.48 346 | 84.81 259 | 43.13 312 | 86.42 296 | 62.67 232 | 81.81 199 | 84.89 304 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
GG-mvs-BLEND | | | | | 75.38 291 | 81.59 297 | 55.80 313 | 79.32 293 | 69.63 348 | | 67.19 296 | 73.67 342 | 43.24 311 | 88.90 275 | 50.41 308 | 84.50 164 | 81.45 332 |
|
LTVRE_ROB | | 69.57 13 | 76.25 227 | 74.54 232 | 81.41 200 | 88.60 158 | 64.38 199 | 79.24 294 | 89.12 182 | 70.76 177 | 69.79 278 | 87.86 184 | 49.09 278 | 93.20 167 | 56.21 288 | 80.16 216 | 86.65 281 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
tpm | | | 72.37 267 | 71.71 258 | 74.35 300 | 82.19 290 | 52.00 332 | 79.22 295 | 77.29 329 | 64.56 264 | 72.95 241 | 83.68 276 | 51.35 252 | 83.26 318 | 58.33 271 | 75.80 265 | 87.81 252 |
|
ppachtmachnet_test | | | 70.04 283 | 67.34 296 | 78.14 260 | 79.80 321 | 61.13 250 | 79.19 296 | 80.59 307 | 59.16 314 | 65.27 314 | 79.29 317 | 46.75 291 | 87.29 290 | 49.33 317 | 66.72 326 | 86.00 294 |
|
USDC | | | 70.33 280 | 68.37 281 | 76.21 283 | 80.60 311 | 56.23 309 | 79.19 296 | 86.49 237 | 60.89 299 | 61.29 332 | 85.47 248 | 31.78 350 | 89.47 263 | 53.37 297 | 76.21 262 | 82.94 326 |
|
PM-MVS | | | 66.41 305 | 64.14 307 | 73.20 308 | 73.92 347 | 56.45 304 | 78.97 298 | 64.96 357 | 63.88 276 | 64.72 318 | 80.24 310 | 19.84 358 | 83.44 316 | 66.24 203 | 64.52 334 | 79.71 340 |
|
tpmvs | | | 71.09 273 | 69.29 276 | 76.49 281 | 82.04 291 | 56.04 311 | 78.92 299 | 81.37 301 | 64.05 272 | 67.18 297 | 78.28 326 | 49.74 271 | 89.77 256 | 49.67 316 | 72.37 304 | 83.67 316 |
|
test_post1 | | | | | | | | 78.90 300 | | | | 5.43 365 | 48.81 281 | 85.44 303 | 59.25 260 | | |
|
CHOSEN 1792x2688 | | | 77.63 205 | 75.69 214 | 83.44 139 | 89.98 109 | 68.58 123 | 78.70 301 | 87.50 222 | 56.38 332 | 75.80 200 | 86.84 209 | 58.67 190 | 91.40 227 | 61.58 243 | 85.75 156 | 90.34 174 |
|
test-LLR | | | 72.94 262 | 72.43 251 | 74.48 298 | 81.35 302 | 58.04 280 | 78.38 302 | 77.46 327 | 66.66 238 | 69.95 274 | 79.00 320 | 48.06 282 | 79.24 330 | 66.13 204 | 84.83 160 | 86.15 288 |
|
TESTMET0.1,1 | | | 69.89 285 | 69.00 278 | 72.55 310 | 79.27 329 | 56.85 297 | 78.38 302 | 74.71 339 | 57.64 324 | 68.09 288 | 77.19 333 | 37.75 336 | 76.70 341 | 63.92 221 | 84.09 169 | 84.10 314 |
|
test-mter | | | 71.41 271 | 70.39 272 | 74.48 298 | 81.35 302 | 58.04 280 | 78.38 302 | 77.46 327 | 60.32 303 | 69.95 274 | 79.00 320 | 36.08 341 | 79.24 330 | 66.13 204 | 84.83 160 | 86.15 288 |
|
Anonymous20231206 | | | 68.60 292 | 67.80 291 | 71.02 319 | 80.23 315 | 50.75 341 | 78.30 305 | 80.47 309 | 56.79 330 | 66.11 310 | 82.63 288 | 46.35 293 | 78.95 332 | 43.62 341 | 75.70 266 | 83.36 319 |
|
tpm cat1 | | | 70.57 277 | 68.31 282 | 77.35 273 | 82.41 287 | 57.95 283 | 78.08 306 | 80.22 314 | 52.04 343 | 68.54 287 | 77.66 331 | 52.00 244 | 87.84 286 | 51.77 302 | 72.07 308 | 86.25 285 |
|
our_test_3 | | | 69.14 288 | 67.00 298 | 75.57 288 | 79.80 321 | 58.80 272 | 77.96 307 | 77.81 325 | 59.55 310 | 62.90 329 | 78.25 327 | 47.43 285 | 83.97 312 | 51.71 303 | 67.58 325 | 83.93 315 |
|
DIV-MVS_2432*1600 | | | 68.81 290 | 67.59 295 | 72.46 311 | 74.29 346 | 45.45 350 | 77.93 308 | 87.00 231 | 63.12 278 | 63.99 323 | 78.99 322 | 42.32 317 | 84.77 308 | 56.55 286 | 64.09 335 | 87.16 270 |
|
WTY-MVS | | | 75.65 234 | 75.68 215 | 75.57 288 | 86.40 215 | 56.82 298 | 77.92 309 | 82.40 291 | 65.10 257 | 76.18 191 | 87.72 185 | 63.13 137 | 80.90 326 | 60.31 252 | 81.96 196 | 89.00 224 |
|
test20.03 | | | 67.45 298 | 66.95 299 | 68.94 325 | 75.48 342 | 44.84 352 | 77.50 310 | 77.67 326 | 66.66 238 | 63.01 327 | 83.80 272 | 47.02 288 | 78.40 334 | 42.53 344 | 68.86 323 | 83.58 317 |
|
EPMVS | | | 69.02 289 | 68.16 284 | 71.59 313 | 79.61 324 | 49.80 345 | 77.40 311 | 66.93 353 | 62.82 285 | 70.01 271 | 79.05 318 | 45.79 298 | 77.86 338 | 56.58 285 | 75.26 280 | 87.13 271 |
|
gg-mvs-nofinetune | | | 69.95 284 | 67.96 287 | 75.94 284 | 83.07 269 | 54.51 320 | 77.23 312 | 70.29 346 | 63.11 279 | 70.32 266 | 62.33 349 | 43.62 310 | 88.69 276 | 53.88 295 | 87.76 125 | 84.62 309 |
|
MDTV_nov1_ep13 | | | | 69.97 274 | | 83.18 266 | 53.48 327 | 77.10 313 | 80.18 315 | 60.45 301 | 69.33 282 | 80.44 308 | 48.89 280 | 86.90 292 | 51.60 304 | 78.51 232 | |
|
LF4IMVS | | | 64.02 314 | 62.19 317 | 69.50 324 | 70.90 354 | 53.29 330 | 76.13 314 | 77.18 330 | 52.65 342 | 58.59 339 | 80.98 303 | 23.55 355 | 76.52 342 | 53.06 299 | 66.66 327 | 78.68 342 |
|
sss | | | 73.60 252 | 73.64 242 | 73.51 305 | 82.80 277 | 55.01 317 | 76.12 315 | 81.69 298 | 62.47 289 | 74.68 227 | 85.85 240 | 57.32 202 | 78.11 336 | 60.86 249 | 80.93 205 | 87.39 261 |
|
testgi | | | 66.67 303 | 66.53 301 | 67.08 331 | 75.62 341 | 41.69 356 | 75.93 316 | 76.50 332 | 66.11 245 | 65.20 317 | 86.59 222 | 35.72 342 | 74.71 349 | 43.71 340 | 73.38 299 | 84.84 305 |
|
CR-MVSNet | | | 73.37 254 | 71.27 263 | 79.67 238 | 81.32 304 | 65.19 182 | 75.92 317 | 80.30 312 | 59.92 307 | 72.73 243 | 81.19 299 | 52.50 234 | 86.69 293 | 59.84 255 | 77.71 238 | 87.11 272 |
|
RPMNet | | | 73.51 253 | 70.49 269 | 82.58 179 | 81.32 304 | 65.19 182 | 75.92 317 | 92.27 77 | 57.60 325 | 72.73 243 | 76.45 336 | 52.30 237 | 95.43 70 | 48.14 325 | 77.71 238 | 87.11 272 |
|
MIMVSNet | | | 70.69 276 | 69.30 275 | 74.88 295 | 84.52 241 | 56.35 308 | 75.87 319 | 79.42 319 | 64.59 263 | 67.76 289 | 82.41 289 | 41.10 324 | 81.54 324 | 46.64 332 | 81.34 201 | 86.75 279 |
|
test0.0.03 1 | | | 68.00 296 | 67.69 293 | 68.90 326 | 77.55 333 | 47.43 347 | 75.70 320 | 72.95 343 | 66.66 238 | 66.56 303 | 82.29 292 | 48.06 282 | 75.87 345 | 44.97 339 | 74.51 287 | 83.41 318 |
|
PMMVS | | | 69.34 287 | 68.67 279 | 71.35 317 | 75.67 340 | 62.03 240 | 75.17 321 | 73.46 341 | 50.00 346 | 68.68 284 | 79.05 318 | 52.07 243 | 78.13 335 | 61.16 247 | 82.77 187 | 73.90 347 |
|
UnsupCasMVSNet_eth | | | 67.33 299 | 65.99 302 | 71.37 315 | 73.48 349 | 51.47 337 | 75.16 322 | 85.19 252 | 65.20 256 | 60.78 334 | 80.93 306 | 42.35 316 | 77.20 340 | 57.12 281 | 53.69 348 | 85.44 297 |
|
MDTV_nov1_ep13_2view | | | | | | | 37.79 358 | 75.16 322 | | 55.10 336 | 66.53 304 | | 49.34 275 | | 53.98 294 | | 87.94 249 |
|
pmmvs3 | | | 57.79 319 | 54.26 323 | 68.37 329 | 64.02 358 | 56.72 300 | 75.12 324 | 65.17 355 | 40.20 351 | 52.93 350 | 69.86 347 | 20.36 357 | 75.48 347 | 45.45 337 | 55.25 347 | 72.90 348 |
|
dp | | | 66.80 301 | 65.43 303 | 70.90 320 | 79.74 323 | 48.82 346 | 75.12 324 | 74.77 337 | 59.61 309 | 64.08 322 | 77.23 332 | 42.89 313 | 80.72 327 | 48.86 319 | 66.58 328 | 83.16 321 |
|
Patchmtry | | | 70.74 275 | 69.16 277 | 75.49 290 | 80.72 309 | 54.07 323 | 74.94 326 | 80.30 312 | 58.34 319 | 70.01 271 | 81.19 299 | 52.50 234 | 86.54 294 | 53.37 297 | 71.09 314 | 85.87 295 |
|
PVSNet | | 64.34 18 | 72.08 269 | 70.87 268 | 75.69 286 | 86.21 217 | 56.44 305 | 74.37 327 | 80.73 305 | 62.06 293 | 70.17 269 | 82.23 293 | 42.86 314 | 83.31 317 | 54.77 292 | 84.45 166 | 87.32 264 |
|
MDA-MVSNet-bldmvs | | | 66.68 302 | 63.66 310 | 75.75 285 | 79.28 328 | 60.56 258 | 73.92 328 | 78.35 323 | 64.43 265 | 50.13 352 | 79.87 315 | 44.02 309 | 83.67 314 | 46.10 334 | 56.86 344 | 83.03 324 |
|
UnsupCasMVSNet_bld | | | 63.70 315 | 61.53 319 | 70.21 322 | 73.69 348 | 51.39 338 | 72.82 329 | 81.89 295 | 55.63 335 | 57.81 342 | 71.80 345 | 38.67 332 | 78.61 333 | 49.26 318 | 52.21 350 | 80.63 336 |
|
PatchT | | | 68.46 295 | 67.85 289 | 70.29 321 | 80.70 310 | 43.93 353 | 72.47 330 | 74.88 336 | 60.15 305 | 70.55 262 | 76.57 335 | 49.94 268 | 81.59 323 | 50.58 307 | 74.83 284 | 85.34 298 |
|
miper_lstm_enhance | | | 74.11 247 | 73.11 247 | 77.13 277 | 80.11 316 | 59.62 266 | 72.23 331 | 86.92 233 | 66.76 236 | 70.40 265 | 82.92 282 | 56.93 207 | 82.92 319 | 69.06 182 | 72.63 303 | 88.87 229 |
|
MVS-HIRNet | | | 59.14 318 | 57.67 321 | 63.57 333 | 81.65 295 | 43.50 354 | 71.73 332 | 65.06 356 | 39.59 353 | 51.43 351 | 57.73 353 | 38.34 334 | 82.58 321 | 39.53 348 | 73.95 291 | 64.62 352 |
|
Patchmatch-RL test | | | 70.24 281 | 67.78 292 | 77.61 269 | 77.43 334 | 59.57 268 | 71.16 333 | 70.33 345 | 62.94 283 | 68.65 285 | 72.77 343 | 50.62 260 | 85.49 302 | 69.58 177 | 66.58 328 | 87.77 253 |
|
test123 | | | 6.12 337 | 8.11 340 | 0.14 349 | 0.06 371 | 0.09 371 | 71.05 334 | 0.03 372 | 0.04 367 | 0.25 368 | 1.30 368 | 0.05 372 | 0.03 368 | 0.21 366 | 0.01 366 | 0.29 363 |
|
ANet_high | | | 50.57 325 | 46.10 328 | 63.99 332 | 48.67 364 | 39.13 357 | 70.99 335 | 80.85 303 | 61.39 297 | 31.18 357 | 57.70 354 | 17.02 360 | 73.65 353 | 31.22 353 | 15.89 362 | 79.18 341 |
|
KD-MVS_2432*1600 | | | 66.22 307 | 63.89 308 | 73.21 306 | 75.47 343 | 53.42 328 | 70.76 336 | 84.35 261 | 64.10 270 | 66.52 305 | 78.52 323 | 34.55 345 | 84.98 305 | 50.40 309 | 50.33 352 | 81.23 333 |
|
miper_refine_blended | | | 66.22 307 | 63.89 308 | 73.21 306 | 75.47 343 | 53.42 328 | 70.76 336 | 84.35 261 | 64.10 270 | 66.52 305 | 78.52 323 | 34.55 345 | 84.98 305 | 50.40 309 | 50.33 352 | 81.23 333 |
|
testmvs | | | 6.04 338 | 8.02 341 | 0.10 350 | 0.08 370 | 0.03 372 | 69.74 338 | 0.04 371 | 0.05 366 | 0.31 367 | 1.68 367 | 0.02 373 | 0.04 367 | 0.24 365 | 0.02 365 | 0.25 364 |
|
N_pmnet | | | 52.79 323 | 53.26 324 | 51.40 340 | 78.99 330 | 7.68 369 | 69.52 339 | 3.89 369 | 51.63 345 | 57.01 344 | 74.98 340 | 40.83 326 | 65.96 357 | 37.78 350 | 64.67 333 | 80.56 338 |
|
FPMVS | | | 53.68 322 | 51.64 325 | 59.81 336 | 65.08 357 | 51.03 339 | 69.48 340 | 69.58 349 | 41.46 350 | 40.67 354 | 72.32 344 | 16.46 361 | 70.00 355 | 24.24 357 | 65.42 331 | 58.40 354 |
|
DSMNet-mixed | | | 57.77 320 | 56.90 322 | 60.38 335 | 67.70 356 | 35.61 359 | 69.18 341 | 53.97 361 | 32.30 358 | 57.49 343 | 79.88 314 | 40.39 328 | 68.57 356 | 38.78 349 | 72.37 304 | 76.97 345 |
|
new-patchmatchnet | | | 61.73 316 | 61.73 318 | 61.70 334 | 72.74 353 | 24.50 366 | 69.16 342 | 78.03 324 | 61.40 296 | 56.72 345 | 75.53 339 | 38.42 333 | 76.48 343 | 45.95 335 | 57.67 343 | 84.13 313 |
|
YYNet1 | | | 65.03 310 | 62.91 314 | 71.38 314 | 75.85 339 | 56.60 303 | 69.12 343 | 74.66 340 | 57.28 328 | 54.12 348 | 77.87 329 | 45.85 297 | 74.48 350 | 49.95 314 | 61.52 339 | 83.05 323 |
|
MDA-MVSNet_test_wron | | | 65.03 310 | 62.92 313 | 71.37 315 | 75.93 338 | 56.73 299 | 69.09 344 | 74.73 338 | 57.28 328 | 54.03 349 | 77.89 328 | 45.88 296 | 74.39 351 | 49.89 315 | 61.55 338 | 82.99 325 |
|
PVSNet_0 | | 57.27 20 | 61.67 317 | 59.27 320 | 68.85 327 | 79.61 324 | 57.44 292 | 68.01 345 | 73.44 342 | 55.93 334 | 58.54 340 | 70.41 346 | 44.58 305 | 77.55 339 | 47.01 329 | 35.91 355 | 71.55 349 |
|
ADS-MVSNet2 | | | 66.20 309 | 63.33 311 | 74.82 296 | 79.92 318 | 58.75 273 | 67.55 346 | 75.19 335 | 53.37 340 | 65.25 315 | 75.86 337 | 42.32 317 | 80.53 328 | 41.57 345 | 68.91 321 | 85.18 300 |
|
ADS-MVSNet | | | 64.36 313 | 62.88 315 | 68.78 328 | 79.92 318 | 47.17 348 | 67.55 346 | 71.18 344 | 53.37 340 | 65.25 315 | 75.86 337 | 42.32 317 | 73.99 352 | 41.57 345 | 68.91 321 | 85.18 300 |
|
LCM-MVSNet | | | 54.25 321 | 49.68 327 | 67.97 330 | 53.73 361 | 45.28 351 | 66.85 348 | 80.78 304 | 35.96 355 | 39.45 355 | 62.23 351 | 8.70 367 | 78.06 337 | 48.24 324 | 51.20 351 | 80.57 337 |
|
JIA-IIPM | | | 66.32 306 | 62.82 316 | 76.82 279 | 77.09 336 | 61.72 246 | 65.34 349 | 75.38 334 | 58.04 322 | 64.51 319 | 62.32 350 | 42.05 321 | 86.51 295 | 51.45 305 | 69.22 320 | 82.21 328 |
|
PMVS |  | 37.38 22 | 44.16 327 | 40.28 330 | 55.82 337 | 40.82 366 | 42.54 355 | 65.12 350 | 63.99 358 | 34.43 356 | 24.48 359 | 57.12 355 | 3.92 369 | 76.17 344 | 17.10 360 | 55.52 346 | 48.75 355 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
new_pmnet | | | 50.91 324 | 50.29 326 | 52.78 339 | 68.58 355 | 34.94 361 | 63.71 351 | 56.63 360 | 39.73 352 | 44.95 353 | 65.47 348 | 21.93 356 | 58.48 358 | 34.98 352 | 56.62 345 | 64.92 351 |
|
Patchmatch-test | | | 64.82 312 | 63.24 312 | 69.57 323 | 79.42 327 | 49.82 344 | 63.49 352 | 69.05 351 | 51.98 344 | 59.95 337 | 80.13 311 | 50.91 256 | 70.98 354 | 40.66 347 | 73.57 295 | 87.90 250 |
|
ambc | | | | | 75.24 292 | 73.16 351 | 50.51 342 | 63.05 353 | 87.47 223 | | 64.28 320 | 77.81 330 | 17.80 359 | 89.73 258 | 57.88 275 | 60.64 340 | 85.49 296 |
|
CHOSEN 280x420 | | | 66.51 304 | 64.71 305 | 71.90 312 | 81.45 299 | 63.52 215 | 57.98 354 | 68.95 352 | 53.57 339 | 62.59 330 | 76.70 334 | 46.22 294 | 75.29 348 | 55.25 290 | 79.68 219 | 76.88 346 |
|
E-PMN | | | 31.77 329 | 30.64 332 | 35.15 344 | 52.87 362 | 27.67 363 | 57.09 355 | 47.86 363 | 24.64 359 | 16.40 364 | 33.05 360 | 11.23 364 | 54.90 360 | 14.46 362 | 18.15 360 | 22.87 359 |
|
EMVS | | | 30.81 331 | 29.65 333 | 34.27 345 | 50.96 363 | 25.95 365 | 56.58 356 | 46.80 364 | 24.01 360 | 15.53 365 | 30.68 361 | 12.47 363 | 54.43 361 | 12.81 363 | 17.05 361 | 22.43 360 |
|
PMMVS2 | | | 40.82 328 | 38.86 331 | 46.69 341 | 53.84 360 | 16.45 367 | 48.61 357 | 49.92 362 | 37.49 354 | 31.67 356 | 60.97 352 | 8.14 368 | 56.42 359 | 28.42 354 | 30.72 357 | 67.19 350 |
|
wuyk23d | | | 16.82 335 | 15.94 338 | 19.46 347 | 58.74 359 | 31.45 362 | 39.22 358 | 3.74 370 | 6.84 363 | 6.04 366 | 2.70 366 | 1.27 371 | 24.29 365 | 10.54 364 | 14.40 364 | 2.63 362 |
|
tmp_tt | | | 18.61 334 | 21.40 337 | 10.23 348 | 4.82 369 | 10.11 368 | 34.70 359 | 30.74 367 | 1.48 365 | 23.91 361 | 26.07 362 | 28.42 352 | 13.41 366 | 27.12 355 | 15.35 363 | 7.17 361 |
|
Gipuma |  | | 45.18 326 | 41.86 329 | 55.16 338 | 77.03 337 | 51.52 336 | 32.50 360 | 80.52 308 | 32.46 357 | 27.12 358 | 35.02 359 | 9.52 366 | 75.50 346 | 22.31 358 | 60.21 342 | 38.45 357 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MVE |  | 26.22 23 | 30.37 332 | 25.89 336 | 43.81 342 | 44.55 365 | 35.46 360 | 28.87 361 | 39.07 365 | 18.20 361 | 18.58 363 | 40.18 358 | 2.68 370 | 47.37 363 | 17.07 361 | 23.78 359 | 48.60 356 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 31.52 330 | 29.28 334 | 38.23 343 | 27.03 368 | 6.50 370 | 20.94 362 | 62.21 359 | 4.05 364 | 22.35 362 | 52.50 356 | 13.33 362 | 47.58 362 | 27.04 356 | 34.04 356 | 60.62 353 |
|
uanet_test | | | 0.00 340 | 0.00 343 | 0.00 351 | 0.00 372 | 0.00 373 | 0.00 363 | 0.00 373 | 0.00 368 | 0.00 369 | 0.00 369 | 0.00 374 | 0.00 369 | 0.00 367 | 0.00 367 | 0.00 365 |
|
cdsmvs_eth3d_5k | | | 19.96 333 | 26.61 335 | 0.00 351 | 0.00 372 | 0.00 373 | 0.00 363 | 89.26 174 | 0.00 368 | 0.00 369 | 88.61 162 | 61.62 158 | 0.00 369 | 0.00 367 | 0.00 367 | 0.00 365 |
|
pcd_1.5k_mvsjas | | | 5.26 339 | 7.02 342 | 0.00 351 | 0.00 372 | 0.00 373 | 0.00 363 | 0.00 373 | 0.00 368 | 0.00 369 | 0.00 369 | 63.15 134 | 0.00 369 | 0.00 367 | 0.00 367 | 0.00 365 |
|
sosnet-low-res | | | 0.00 340 | 0.00 343 | 0.00 351 | 0.00 372 | 0.00 373 | 0.00 363 | 0.00 373 | 0.00 368 | 0.00 369 | 0.00 369 | 0.00 374 | 0.00 369 | 0.00 367 | 0.00 367 | 0.00 365 |
|
sosnet | | | 0.00 340 | 0.00 343 | 0.00 351 | 0.00 372 | 0.00 373 | 0.00 363 | 0.00 373 | 0.00 368 | 0.00 369 | 0.00 369 | 0.00 374 | 0.00 369 | 0.00 367 | 0.00 367 | 0.00 365 |
|
uncertanet | | | 0.00 340 | 0.00 343 | 0.00 351 | 0.00 372 | 0.00 373 | 0.00 363 | 0.00 373 | 0.00 368 | 0.00 369 | 0.00 369 | 0.00 374 | 0.00 369 | 0.00 367 | 0.00 367 | 0.00 365 |
|
Regformer | | | 0.00 340 | 0.00 343 | 0.00 351 | 0.00 372 | 0.00 373 | 0.00 363 | 0.00 373 | 0.00 368 | 0.00 369 | 0.00 369 | 0.00 374 | 0.00 369 | 0.00 367 | 0.00 367 | 0.00 365 |
|
ab-mvs-re | | | 7.23 336 | 9.64 339 | 0.00 351 | 0.00 372 | 0.00 373 | 0.00 363 | 0.00 373 | 0.00 368 | 0.00 369 | 86.72 213 | 0.00 374 | 0.00 369 | 0.00 367 | 0.00 367 | 0.00 365 |
|
uanet | | | 0.00 340 | 0.00 343 | 0.00 351 | 0.00 372 | 0.00 373 | 0.00 363 | 0.00 373 | 0.00 368 | 0.00 369 | 0.00 369 | 0.00 374 | 0.00 369 | 0.00 367 | 0.00 367 | 0.00 365 |
|
eth-test2 | | | | | | 0.00 372 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 372 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 94.38 25 | 72.22 45 | | 92.67 61 | 70.98 172 | 87.75 27 | 94.07 43 | 74.01 35 | 96.70 23 | 84.66 36 | 94.84 44 | |
|
IU-MVS | | | | | | 95.30 2 | 71.25 59 | | 92.95 50 | 66.81 234 | 92.39 5 | | | | 88.94 8 | 96.63 2 | 94.85 10 |
|
test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 47 | 92.78 4 | 95.72 6 | 81.26 6 | 97.44 2 | 89.07 6 | 96.58 4 | 94.26 31 |
|
test_241102_ONE | | | | | | 95.30 2 | 70.98 65 | | 94.06 10 | 77.17 51 | 93.10 1 | 95.39 9 | 82.99 1 | 97.27 7 | | | |
|
test_0728_THIRD | | | | | | | | | | 78.38 32 | 92.12 8 | 95.78 4 | 81.46 5 | 97.40 4 | 89.42 2 | 96.57 5 | 94.67 16 |
|
GSMVS | | | | | | | | | | | | | | | | | 88.96 226 |
|
test_part2 | | | | | | 95.06 7 | 72.65 31 | | | | 91.80 10 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 51.32 253 | | | | 88.96 226 |
|
sam_mvs | | | | | | | | | | | | | 50.01 266 | | | | |
|
MTGPA |  | | | | | | | | 92.02 88 | | | | | | | | |
|
test_post | | | | | | | | | | | | 5.46 364 | 50.36 264 | 84.24 310 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 74.00 341 | 51.12 255 | 88.60 277 | | | |
|
gm-plane-assit | | | | | | 81.40 300 | 53.83 325 | | | 62.72 287 | | 80.94 304 | | 92.39 195 | 63.40 225 | | |
|
test9_res | | | | | | | | | | | | | | | 84.90 30 | 95.70 27 | 92.87 93 |
|
agg_prior2 | | | | | | | | | | | | | | | 82.91 58 | 95.45 29 | 92.70 96 |
|
agg_prior | | | | | | 92.85 61 | 71.94 51 | | 91.78 103 | | 84.41 65 | | | 94.93 93 | | | |
|
TestCases | | | | | 79.58 240 | 85.15 232 | 63.62 210 | | 79.83 316 | 62.31 290 | 60.32 335 | 86.73 211 | 32.02 348 | 88.96 273 | 50.28 311 | 71.57 311 | 86.15 288 |
|
test_prior | | | | | 86.33 60 | 92.61 69 | 69.59 96 | | 92.97 48 | | | | | 95.48 66 | | | 93.91 45 |
|
æ–°å‡ ä½•1 | | | | | 83.42 140 | 93.13 53 | 70.71 75 | | 85.48 249 | 57.43 326 | 81.80 100 | 91.98 79 | 63.28 129 | 92.27 199 | 64.60 219 | 92.99 67 | 87.27 265 |
|
旧先验1 | | | | | | 91.96 77 | 65.79 171 | | 86.37 240 | | | 93.08 66 | 69.31 76 | | | 92.74 71 | 88.74 235 |
|
原ACMM1 | | | | | 84.35 109 | 93.01 59 | 68.79 111 | | 92.44 69 | 63.96 275 | 81.09 111 | 91.57 89 | 66.06 104 | 95.45 68 | 67.19 198 | 94.82 47 | 88.81 232 |
|
testdata2 | | | | | | | | | | | | | | 91.01 240 | 62.37 234 | | |
|
segment_acmp | | | | | | | | | | | | | 73.08 40 | | | | |
|
testdata | | | | | 79.97 231 | 90.90 91 | 64.21 201 | | 84.71 256 | 59.27 313 | 85.40 44 | 92.91 67 | 62.02 154 | 89.08 269 | 68.95 183 | 91.37 85 | 86.63 282 |
|
test12 | | | | | 86.80 52 | 92.63 68 | 70.70 76 | | 91.79 102 | | 82.71 91 | | 71.67 52 | 96.16 44 | | 94.50 52 | 93.54 69 |
|
plane_prior7 | | | | | | 90.08 107 | 68.51 124 | | | | | | | | | | |
|
plane_prior6 | | | | | | 89.84 112 | 68.70 119 | | | | | | 60.42 182 | | | | |
|
plane_prior5 | | | | | | | | | 92.44 69 | | | | | 95.38 74 | 78.71 92 | 86.32 147 | 91.33 138 |
|
plane_prior4 | | | | | | | | | | | | 91.00 107 | | | | | |
|
plane_prior3 | | | | | | | 68.60 122 | | | 78.44 30 | 78.92 131 | | | | | | |
|
plane_prior1 | | | | | | 89.90 111 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 373 | | | | | | | | |
|
nn | | | | | | | | | 0.00 373 | | | | | | | | |
|
door-mid | | | | | | | | | 69.98 347 | | | | | | | | |
|
lessismore_v0 | | | | | 78.97 248 | 81.01 308 | 57.15 294 | | 65.99 354 | | 61.16 333 | 82.82 285 | 39.12 331 | 91.34 229 | 59.67 256 | 46.92 354 | 88.43 242 |
|
LGP-MVS_train | | | | | 84.50 102 | 89.23 134 | 68.76 113 | | 91.94 95 | 75.37 94 | 76.64 180 | 91.51 90 | 54.29 222 | 94.91 95 | 78.44 96 | 83.78 171 | 89.83 200 |
|
test11 | | | | | | | | | 92.23 80 | | | | | | | | |
|
door | | | | | | | | | 69.44 350 | | | | | | | | |
|
HQP5-MVS | | | | | | | 66.98 151 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.47 106 | | |
|
HQP4-MVS | | | | | | | | | | | 77.24 166 | | | 95.11 86 | | | 91.03 148 |
|
HQP3-MVS | | | | | | | | | 92.19 83 | | | | | | | 85.99 153 | |
|
HQP2-MVS | | | | | | | | | | | | | 60.17 185 | | | | |
|
NP-MVS | | | | | | 89.62 114 | 68.32 126 | | | | | 90.24 118 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 197 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 81.25 202 | |
|
Test By Simon | | | | | | | | | | | | | 64.33 119 | | | | |
|
ITE_SJBPF | | | | | 78.22 259 | 81.77 294 | 60.57 257 | | 83.30 279 | 69.25 205 | 67.54 292 | 87.20 202 | 36.33 340 | 87.28 291 | 54.34 293 | 74.62 286 | 86.80 277 |
|
DeepMVS_CX |  | | | | 27.40 346 | 40.17 367 | 26.90 364 | | 24.59 368 | 17.44 362 | 23.95 360 | 48.61 357 | 9.77 365 | 26.48 364 | 18.06 359 | 24.47 358 | 28.83 358 |
|