This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CP-MVS87.11 3486.92 3587.68 3494.20 3173.86 693.98 192.82 5876.62 6883.68 7794.46 2567.93 8495.95 5284.20 4494.39 5593.23 78
APDe-MVS89.15 589.63 587.73 2794.49 1871.69 5593.83 293.96 1475.70 8891.06 1296.03 176.84 1297.03 1289.09 395.65 2894.47 23
SteuartSystems-ACMMP88.72 988.86 988.32 692.14 7572.96 2493.73 393.67 1980.19 1488.10 2394.80 1473.76 3697.11 1087.51 1595.82 2094.90 6
Skip Steuart: Steuart Systems R&D Blog.
test072695.27 571.25 5993.60 494.11 677.33 4592.81 395.79 380.98 7
SED-MVS90.08 190.85 187.77 2395.30 270.98 6593.57 594.06 1077.24 4793.10 195.72 682.99 197.44 289.07 696.63 294.88 7
OPU-MVS89.06 194.62 1375.42 293.57 594.02 4582.45 396.87 1683.77 4896.48 694.88 7
DVP-MVS89.60 290.35 287.33 4295.27 571.25 5993.49 792.73 5977.33 4592.12 895.78 480.98 797.40 489.08 496.41 893.33 75
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND87.71 3195.34 171.43 5893.49 794.23 597.49 189.08 496.41 894.21 32
3Dnovator+77.84 485.48 5784.47 7288.51 491.08 8773.49 1593.18 993.78 1880.79 1076.66 17993.37 5760.40 18496.75 2277.20 10993.73 6395.29 2
HFP-MVS87.58 2287.47 2487.94 1594.58 1473.54 1393.04 1093.24 3376.78 6384.91 5294.44 2870.78 5896.61 2984.53 3794.89 4293.66 58
ACMMPR87.44 2587.23 3088.08 1194.64 1173.59 1093.04 1093.20 3576.78 6384.66 6194.52 2168.81 8096.65 2684.53 3794.90 4194.00 42
ZNCC-MVS87.94 1787.85 1988.20 994.39 2473.33 1893.03 1293.81 1776.81 6185.24 4794.32 3371.76 5196.93 1585.53 2695.79 2194.32 28
region2R87.42 2787.20 3188.09 1094.63 1273.55 1193.03 1293.12 3876.73 6684.45 6494.52 2169.09 7796.70 2384.37 4094.83 4694.03 39
MSP-MVS89.51 389.91 488.30 794.28 2773.46 1692.90 1494.11 680.27 1291.35 1194.16 3978.35 1096.77 2089.59 194.22 6094.67 16
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVS87.18 3386.91 3688.00 1394.42 2073.33 1892.78 1592.99 4579.14 2183.67 7894.17 3867.45 8996.60 3183.06 5594.50 5294.07 37
X-MVStestdata80.37 14177.83 17588.00 1394.42 2073.33 1892.78 1592.99 4579.14 2183.67 7812.47 36367.45 8996.60 3183.06 5594.50 5294.07 37
mPP-MVS86.67 4186.32 4387.72 2994.41 2273.55 1192.74 1792.22 8176.87 6082.81 9094.25 3666.44 9896.24 3982.88 5994.28 5893.38 72
ACMMPcopyleft85.89 5285.39 5787.38 4193.59 4672.63 3292.74 1793.18 3776.78 6380.73 11593.82 5064.33 11996.29 3782.67 6590.69 9293.23 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVScopyleft87.71 2087.64 2287.93 1894.36 2673.88 592.71 1992.65 6477.57 3883.84 7594.40 3272.24 4796.28 3885.65 2595.30 3693.62 65
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SF-MVS88.46 1088.74 1087.64 3592.78 6471.95 5092.40 2094.74 275.71 8689.16 1595.10 1175.65 1896.19 4287.07 1896.01 1394.79 11
SMA-MVScopyleft89.08 689.23 688.61 394.25 2873.73 892.40 2093.63 2074.77 10692.29 695.97 274.28 3197.24 888.58 1096.91 194.87 9
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GST-MVS87.42 2787.26 2887.89 2294.12 3472.97 2392.39 2293.43 2976.89 5984.68 5893.99 4770.67 6196.82 1884.18 4595.01 3893.90 47
HPM-MVS++copyleft89.02 789.15 788.63 295.01 876.03 192.38 2392.85 5480.26 1387.78 2694.27 3475.89 1696.81 1987.45 1696.44 793.05 86
SR-MVS86.73 3886.67 3986.91 4994.11 3572.11 4892.37 2492.56 6774.50 11186.84 3394.65 1867.31 9195.77 5684.80 3492.85 7092.84 94
#test#87.33 3087.13 3287.94 1594.58 1473.54 1392.34 2593.24 3375.23 9784.91 5294.44 2870.78 5896.61 2983.75 4994.89 4293.66 58
EPP-MVSNet83.40 8283.02 8284.57 10090.13 10564.47 19692.32 2690.73 13274.45 11479.35 12691.10 10169.05 7995.12 8572.78 15087.22 13494.13 34
PHI-MVS86.43 4486.17 4887.24 4390.88 9270.96 6792.27 2794.07 972.45 14685.22 4891.90 8169.47 7396.42 3583.28 5395.94 1694.35 26
testtj87.78 1987.78 2087.77 2394.55 1672.47 3792.23 2893.49 2674.75 10788.33 2194.43 3073.27 3997.02 1384.18 4594.84 4493.82 52
HPM-MVScopyleft87.11 3486.98 3487.50 3893.88 3872.16 4692.19 2993.33 3276.07 8083.81 7693.95 4869.77 7196.01 4985.15 2894.66 4894.32 28
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MTMP92.18 3032.83 366
HPM-MVS_fast85.35 6184.95 6786.57 5893.69 4370.58 8092.15 3191.62 10773.89 12682.67 9294.09 4262.60 14195.54 6480.93 7792.93 6893.57 67
CPTT-MVS83.73 7583.33 7884.92 9193.28 5070.86 7292.09 3290.38 14068.75 22079.57 12392.83 7060.60 18093.04 17980.92 7891.56 8390.86 155
APD-MVS_3200maxsize85.97 5085.88 5186.22 6492.69 6769.53 9891.93 3392.99 4573.54 13385.94 3794.51 2465.80 10895.61 5983.04 5792.51 7593.53 70
SR-MVS-dyc-post85.77 5385.61 5486.23 6393.06 5770.63 7791.88 3492.27 7773.53 13485.69 4294.45 2665.00 11695.56 6182.75 6091.87 7892.50 103
RE-MVS-def85.48 5593.06 5770.63 7791.88 3492.27 7773.53 13485.69 4294.45 2663.87 12382.75 6091.87 7892.50 103
APD-MVScopyleft87.44 2587.52 2387.19 4494.24 2972.39 4091.86 3692.83 5573.01 14388.58 1994.52 2173.36 3796.49 3484.26 4295.01 3892.70 96
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS88.06 1388.50 1286.71 5492.60 7172.71 2891.81 3793.19 3677.87 3390.32 1394.00 4674.83 2493.78 14087.63 1494.27 5993.65 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test117286.20 4986.22 4586.12 6793.95 3769.89 9191.79 3892.28 7675.07 10186.40 3594.58 2065.00 11695.56 6184.34 4192.60 7392.90 92
DPE-MVScopyleft89.48 489.98 388.01 1294.80 972.69 3091.59 3994.10 875.90 8492.29 695.66 881.67 497.38 687.44 1796.34 1193.95 44
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
QAPM80.88 12279.50 13885.03 8588.01 17768.97 10991.59 3992.00 9166.63 24175.15 21892.16 7657.70 19795.45 6863.52 22288.76 11590.66 161
IS-MVSNet83.15 8582.81 8584.18 11589.94 11063.30 22191.59 3988.46 20379.04 2579.49 12492.16 7665.10 11394.28 11467.71 19091.86 8094.95 5
9.1488.26 1492.84 6391.52 4294.75 173.93 12588.57 2094.67 1775.57 2095.79 5586.77 2095.76 24
ETH3D-3000-0.188.09 1288.29 1387.50 3892.76 6571.89 5391.43 4394.70 374.47 11288.86 1894.61 1975.23 2195.84 5486.62 2395.92 1794.78 13
TSAR-MVS + MP.88.02 1688.11 1587.72 2993.68 4472.13 4791.41 4492.35 7474.62 11088.90 1793.85 4975.75 1796.00 5087.80 1294.63 4995.04 3
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DeepC-MVS_fast79.65 386.91 3786.62 4087.76 2693.52 4772.37 4191.26 4593.04 3976.62 6884.22 6993.36 5871.44 5496.76 2180.82 7995.33 3494.16 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HQP_MVS83.64 7783.14 7985.14 8290.08 10768.71 11791.25 4692.44 6979.12 2378.92 13191.00 10760.42 18295.38 7478.71 9286.32 14791.33 138
plane_prior291.25 4679.12 23
NCCC88.06 1388.01 1788.24 894.41 2273.62 991.22 4892.83 5581.50 685.79 4193.47 5673.02 4297.00 1484.90 3094.94 4094.10 35
API-MVS81.99 10381.23 10784.26 11390.94 9070.18 8891.10 4989.32 17071.51 16478.66 13688.28 17265.26 11195.10 8964.74 21891.23 8887.51 259
EPNet83.72 7682.92 8486.14 6684.22 24669.48 9991.05 5085.27 25181.30 776.83 17491.65 8566.09 10395.56 6176.00 12193.85 6293.38 72
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_part182.78 9282.08 9684.89 9290.66 9566.97 15390.96 5192.93 5177.19 5080.53 11790.04 12463.44 12695.39 7376.04 12076.90 24892.31 110
ACMMP_NAP88.05 1588.08 1687.94 1593.70 4273.05 2190.86 5293.59 2176.27 7788.14 2295.09 1371.06 5696.67 2587.67 1396.37 1094.09 36
CSCG86.41 4686.19 4787.07 4792.91 6072.48 3690.81 5393.56 2373.95 12383.16 8391.07 10375.94 1595.19 8379.94 8794.38 5693.55 68
abl_685.23 6284.95 6786.07 6892.23 7470.48 8190.80 5492.08 8673.51 13685.26 4694.16 3962.75 14095.92 5382.46 6791.30 8791.81 126
MSLP-MVS++85.43 5985.76 5384.45 10491.93 7870.24 8290.71 5592.86 5377.46 4484.22 6992.81 7267.16 9392.94 18180.36 8394.35 5790.16 179
3Dnovator76.31 583.38 8382.31 9286.59 5787.94 17872.94 2790.64 5692.14 8577.21 4975.47 20492.83 7058.56 19194.72 10573.24 14692.71 7292.13 118
ETH3 D test640087.50 2487.44 2587.70 3293.71 4171.75 5490.62 5794.05 1370.80 17487.59 2993.51 5377.57 1196.63 2883.31 5095.77 2294.72 15
OpenMVScopyleft72.83 1079.77 15178.33 16484.09 11885.17 23169.91 8990.57 5890.97 12766.70 23772.17 25091.91 8054.70 21993.96 12861.81 24190.95 9088.41 243
CNVR-MVS88.93 889.13 888.33 594.77 1073.82 790.51 5993.00 4380.90 988.06 2494.06 4476.43 1396.84 1788.48 1195.99 1594.34 27
MVSFormer82.85 9182.05 9785.24 8087.35 19670.21 8390.50 6090.38 14068.55 22381.32 10689.47 14061.68 15693.46 15878.98 9090.26 9892.05 120
test_djsdf80.30 14279.32 14383.27 14683.98 25165.37 18090.50 6090.38 14068.55 22376.19 19088.70 15856.44 20993.46 15878.98 9080.14 21890.97 151
xxxxxxxxxxxxxcwj87.88 1887.92 1887.77 2393.80 3972.35 4290.47 6289.69 16274.31 11589.16 1595.10 1175.65 1896.19 4287.07 1896.01 1394.79 11
save fliter93.80 3972.35 4290.47 6291.17 12374.31 115
nrg03083.88 7383.53 7584.96 8886.77 21169.28 10490.46 6492.67 6174.79 10582.95 8591.33 9672.70 4393.09 17580.79 8179.28 22892.50 103
canonicalmvs85.91 5185.87 5286.04 6989.84 11269.44 10390.45 6593.00 4376.70 6788.01 2591.23 9773.28 3893.91 13581.50 7288.80 11494.77 14
plane_prior68.71 11790.38 6677.62 3686.16 150
DeepC-MVS79.81 287.08 3686.88 3787.69 3391.16 8672.32 4490.31 6793.94 1577.12 5382.82 8994.23 3772.13 4997.09 1184.83 3395.37 3193.65 63
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Vis-MVSNetpermissive83.46 8082.80 8685.43 7690.25 10368.74 11590.30 6890.13 15076.33 7680.87 11492.89 6861.00 17394.20 12072.45 15390.97 8993.35 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
zzz-MVS87.53 2387.41 2687.90 1994.18 3274.25 390.23 6992.02 8879.45 1985.88 3894.80 1468.07 8296.21 4086.69 2195.34 3293.23 78
PGM-MVS86.68 4086.27 4487.90 1994.22 3073.38 1790.22 7093.04 3975.53 9083.86 7494.42 3167.87 8696.64 2782.70 6494.57 5193.66 58
LPG-MVS_test82.08 10081.27 10684.50 10289.23 13468.76 11390.22 7091.94 9575.37 9476.64 18091.51 9054.29 22294.91 9578.44 9683.78 17189.83 200
Anonymous2023121178.97 17277.69 18282.81 17090.54 9864.29 20090.11 7291.51 11165.01 26076.16 19488.13 18250.56 26193.03 18069.68 17677.56 24191.11 145
ETH3D cwj APD-0.1687.31 3187.27 2787.44 4091.60 8272.45 3990.02 7394.37 471.76 15787.28 3094.27 3475.18 2296.08 4685.16 2795.77 2293.80 55
ACMM73.20 880.78 13279.84 13083.58 13589.31 13168.37 12589.99 7491.60 10870.28 18577.25 16589.66 13353.37 23093.53 15474.24 13482.85 18688.85 230
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP74.13 681.51 11580.57 11784.36 10889.42 12268.69 12089.97 7591.50 11474.46 11375.04 22290.41 11653.82 22794.54 10777.56 10582.91 18589.86 199
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LFMVS81.82 10681.23 10783.57 13691.89 7963.43 21989.84 7681.85 29777.04 5683.21 8193.10 6252.26 23893.43 16071.98 15489.95 10493.85 49
MCST-MVS87.37 2987.25 2987.73 2794.53 1772.46 3889.82 7793.82 1673.07 14184.86 5792.89 6876.22 1496.33 3684.89 3295.13 3794.40 24
MAR-MVS81.84 10580.70 11585.27 7991.32 8571.53 5789.82 7790.92 12869.77 19578.50 13986.21 23362.36 14794.52 10965.36 21292.05 7689.77 203
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4572.04 4989.80 7993.50 2475.17 10086.34 3695.29 1070.86 5796.00 5088.78 996.04 1294.58 19
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
UA-Net85.08 6684.96 6685.45 7592.07 7668.07 13289.78 8090.86 13182.48 284.60 6393.20 6069.35 7495.22 8171.39 15990.88 9193.07 85
alignmvs85.48 5785.32 5985.96 7189.51 11969.47 10089.74 8192.47 6876.17 7887.73 2891.46 9370.32 6393.78 14081.51 7188.95 11194.63 18
VDDNet81.52 11380.67 11684.05 12190.44 10064.13 20389.73 8285.91 24671.11 16983.18 8293.48 5450.54 26293.49 15573.40 14388.25 12294.54 22
CANet86.45 4386.10 4987.51 3790.09 10670.94 6989.70 8392.59 6681.78 481.32 10691.43 9470.34 6297.23 984.26 4293.36 6694.37 25
114514_t80.68 13379.51 13784.20 11494.09 3667.27 14789.64 8491.11 12558.75 31874.08 23290.72 11158.10 19395.04 9169.70 17589.42 10990.30 175
DeepPCF-MVS80.84 188.10 1188.56 1186.73 5392.24 7369.03 10589.57 8593.39 3177.53 4289.79 1494.12 4178.98 996.58 3385.66 2495.72 2594.58 19
UGNet80.83 12679.59 13684.54 10188.04 17568.09 13189.42 8688.16 20576.95 5776.22 18989.46 14249.30 27693.94 13168.48 18590.31 9691.60 129
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AdaColmapbinary80.58 13779.42 13984.06 12093.09 5668.91 11089.36 8788.97 18869.27 20475.70 20189.69 13257.20 20595.77 5663.06 22888.41 12187.50 260
mvs-test180.88 12279.40 14085.29 7885.13 23469.75 9489.28 8888.10 20774.99 10276.44 18586.72 21357.27 20394.26 11973.53 13983.18 18291.87 123
PS-MVSNAJss82.07 10181.31 10584.34 11086.51 21467.27 14789.27 8991.51 11171.75 15879.37 12590.22 12063.15 13494.27 11577.69 10482.36 19391.49 134
jajsoiax79.29 16377.96 17083.27 14684.68 24066.57 15889.25 9090.16 14969.20 20875.46 20689.49 13945.75 30093.13 17376.84 11480.80 20890.11 183
mvs_tets79.13 16777.77 17883.22 15184.70 23966.37 16089.17 9190.19 14869.38 20275.40 20989.46 14244.17 30893.15 17176.78 11580.70 21090.14 180
HQP-NCC89.33 12689.17 9176.41 7077.23 167
ACMP_Plane89.33 12689.17 9176.41 7077.23 167
HQP-MVS82.61 9582.02 9884.37 10789.33 12666.98 15189.17 9192.19 8376.41 7077.23 16790.23 11960.17 18595.11 8677.47 10685.99 15391.03 148
LS3D76.95 21674.82 22883.37 14390.45 9967.36 14689.15 9586.94 23261.87 29469.52 27990.61 11351.71 25094.53 10846.38 33386.71 14288.21 245
OPM-MVS83.50 7982.95 8385.14 8288.79 15170.95 6889.13 9691.52 11077.55 4180.96 11391.75 8360.71 17694.50 11079.67 8886.51 14589.97 195
TSAR-MVS + GP.85.71 5585.33 5886.84 5091.34 8472.50 3589.07 9787.28 22676.41 7085.80 4090.22 12074.15 3495.37 7781.82 7091.88 7792.65 100
test_prior472.60 3389.01 98
GeoE81.71 10881.01 11283.80 13289.51 11964.45 19788.97 9988.73 19871.27 16778.63 13789.76 13066.32 10093.20 16769.89 17386.02 15293.74 56
Anonymous2024052980.19 14578.89 15184.10 11790.60 9664.75 18988.95 10090.90 12965.97 24980.59 11691.17 10049.97 26793.73 14669.16 18182.70 19093.81 53
VDD-MVS83.01 9082.36 9184.96 8891.02 8966.40 15988.91 10188.11 20677.57 3884.39 6793.29 5952.19 23993.91 13577.05 11188.70 11694.57 21
Effi-MVS+83.62 7883.08 8085.24 8088.38 16667.45 14288.89 10289.15 17975.50 9182.27 9388.28 17269.61 7294.45 11177.81 10387.84 12493.84 51
ACMH+68.96 1476.01 23074.01 23782.03 18888.60 15865.31 18188.86 10387.55 22070.25 18667.75 29087.47 19441.27 32393.19 16958.37 27075.94 26487.60 256
test_prior386.73 3886.86 3886.33 6092.61 6969.59 9688.85 10492.97 4875.41 9284.91 5293.54 5174.28 3195.48 6683.31 5095.86 1893.91 45
test_prior288.85 10475.41 9284.91 5293.54 5174.28 3183.31 5095.86 18
CS-MVS84.53 7084.97 6583.23 15087.54 19563.27 22288.82 10693.50 2475.98 8383.07 8489.73 13170.29 6495.23 8082.07 6993.70 6491.18 142
DP-MVS Recon83.11 8882.09 9586.15 6594.44 1970.92 7188.79 10792.20 8270.53 18179.17 12791.03 10664.12 12196.03 4768.39 18790.14 10091.50 133
Effi-MVS+-dtu80.03 14778.57 15684.42 10585.13 23468.74 11588.77 10888.10 20774.99 10274.97 22383.49 27757.27 20393.36 16173.53 13980.88 20691.18 142
TEST993.26 5172.96 2488.75 10991.89 9768.44 22585.00 5093.10 6274.36 3095.41 71
train_agg86.43 4486.20 4687.13 4693.26 5172.96 2488.75 10991.89 9768.69 22185.00 5093.10 6274.43 2795.41 7184.97 2995.71 2693.02 88
ETV-MVS84.90 6984.67 7085.59 7489.39 12468.66 12188.74 11192.64 6579.97 1784.10 7185.71 24169.32 7595.38 7480.82 7991.37 8592.72 95
PVSNet_Blended_VisFu82.62 9481.83 10284.96 8890.80 9469.76 9388.74 11191.70 10669.39 20178.96 12988.46 16765.47 11094.87 10074.42 13188.57 11790.24 177
RRT_MVS79.88 15078.38 16184.38 10685.42 22870.60 7988.71 11388.75 19772.30 15178.83 13389.14 14844.44 30692.18 20478.50 9579.33 22790.35 173
test_893.13 5372.57 3488.68 11491.84 10068.69 22184.87 5693.10 6274.43 2795.16 84
CS-MVS-test84.27 7184.52 7183.55 13787.94 17864.55 19188.65 11593.57 2275.26 9681.78 10188.17 17670.27 6595.22 8181.41 7393.62 6590.87 154
ACMH67.68 1675.89 23173.93 23881.77 19388.71 15566.61 15788.62 11689.01 18569.81 19366.78 30286.70 21841.95 32291.51 22555.64 28978.14 23687.17 268
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
agg_prior186.22 4886.09 5086.62 5692.85 6171.94 5188.59 11791.78 10368.96 21684.41 6593.18 6174.94 2394.93 9384.75 3595.33 3493.01 89
CDPH-MVS85.76 5485.29 6187.17 4593.49 4871.08 6388.58 11892.42 7268.32 22684.61 6293.48 5472.32 4696.15 4579.00 8995.43 3094.28 30
DP-MVS76.78 21874.57 23083.42 14093.29 4969.46 10288.55 11983.70 27163.98 27470.20 26788.89 15554.01 22694.80 10246.66 33081.88 19886.01 292
Regformer-186.41 4686.33 4286.64 5589.33 12670.93 7088.43 12091.39 11682.14 386.65 3490.09 12274.39 2995.01 9283.97 4790.63 9393.97 43
Regformer-286.63 4286.53 4186.95 4889.33 12671.24 6288.43 12092.05 8782.50 186.88 3290.09 12274.45 2695.61 5984.38 3990.63 9394.01 41
WR-MVS_H78.51 18178.49 15778.56 25488.02 17656.38 30788.43 12092.67 6177.14 5273.89 23387.55 19166.25 10189.24 26658.92 26473.55 29690.06 189
F-COLMAP76.38 22674.33 23582.50 18089.28 13266.95 15588.41 12389.03 18364.05 27266.83 30188.61 16246.78 29092.89 18257.48 27778.55 23087.67 254
GBi-Net78.40 18277.40 18781.40 20187.60 19063.01 22888.39 12489.28 17171.63 16075.34 21187.28 19754.80 21591.11 23362.72 22979.57 22190.09 185
test178.40 18277.40 18781.40 20187.60 19063.01 22888.39 12489.28 17171.63 16075.34 21187.28 19754.80 21591.11 23362.72 22979.57 22190.09 185
FMVSNet177.44 20776.12 21381.40 20186.81 21063.01 22888.39 12489.28 17170.49 18274.39 22987.28 19749.06 27991.11 23360.91 24878.52 23190.09 185
tttt051779.40 16077.91 17283.90 13188.10 17363.84 20788.37 12784.05 26771.45 16576.78 17689.12 15049.93 27094.89 9870.18 16983.18 18292.96 91
v7n78.97 17277.58 18583.14 15483.45 25965.51 17588.32 12891.21 12173.69 12972.41 24786.32 23257.93 19493.81 13969.18 18075.65 26790.11 183
COLMAP_ROBcopyleft66.92 1773.01 26070.41 27180.81 21787.13 20565.63 17388.30 12984.19 26662.96 28263.80 32587.69 18738.04 33592.56 19046.66 33074.91 28384.24 311
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Regformer-385.23 6285.07 6385.70 7388.95 14369.01 10788.29 13089.91 15680.95 885.01 4990.01 12572.45 4594.19 12182.50 6687.57 12693.90 47
Regformer-485.68 5685.45 5686.35 5988.95 14369.67 9588.29 13091.29 11881.73 585.36 4590.01 12572.62 4495.35 7883.28 5387.57 12694.03 39
FIs82.07 10182.42 8881.04 21388.80 15058.34 27688.26 13293.49 2676.93 5878.47 14191.04 10469.92 6992.34 19869.87 17484.97 15992.44 107
EIA-MVS83.31 8482.80 8684.82 9489.59 11565.59 17488.21 13392.68 6074.66 10978.96 12986.42 22969.06 7895.26 7975.54 12690.09 10193.62 65
PLCcopyleft70.83 1178.05 19476.37 21183.08 15791.88 8067.80 13688.19 13489.46 16764.33 26869.87 27688.38 16953.66 22893.58 14958.86 26582.73 18887.86 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MG-MVS83.41 8183.45 7683.28 14592.74 6662.28 23888.17 13589.50 16675.22 9881.49 10592.74 7366.75 9495.11 8672.85 14991.58 8292.45 106
TAPA-MVS73.13 979.15 16677.94 17182.79 17389.59 11562.99 23188.16 13691.51 11165.77 25077.14 17191.09 10260.91 17493.21 16550.26 31387.05 13692.17 117
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
hse-mvs383.15 8582.19 9386.02 7090.56 9770.85 7388.15 13789.16 17876.02 8184.67 5991.39 9561.54 15995.50 6582.71 6275.48 27191.72 128
PS-CasMVS78.01 19678.09 16877.77 26687.71 18754.39 32188.02 13891.22 12077.50 4373.26 23788.64 16160.73 17588.41 28061.88 23973.88 29390.53 167
OMC-MVS82.69 9381.97 10084.85 9388.75 15367.42 14387.98 13990.87 13074.92 10479.72 12291.65 8562.19 15193.96 12875.26 12886.42 14693.16 83
v879.97 14979.02 14982.80 17184.09 24864.50 19587.96 14090.29 14774.13 12275.24 21686.81 21062.88 13993.89 13774.39 13275.40 27590.00 191
FC-MVSNet-test81.52 11382.02 9880.03 23088.42 16555.97 31287.95 14193.42 3077.10 5477.38 16290.98 10969.96 6891.79 21668.46 18684.50 16492.33 108
CP-MVSNet78.22 18778.34 16377.84 26487.83 18254.54 31987.94 14291.17 12377.65 3573.48 23588.49 16662.24 15088.43 27962.19 23574.07 28990.55 166
PAPM_NR83.02 8982.41 8984.82 9492.47 7266.37 16087.93 14391.80 10173.82 12777.32 16490.66 11267.90 8594.90 9770.37 16789.48 10893.19 82
PEN-MVS77.73 20177.69 18277.84 26487.07 20653.91 32487.91 14491.18 12277.56 4073.14 23988.82 15761.23 16889.17 26759.95 25472.37 30490.43 170
v1079.74 15278.67 15382.97 16484.06 24964.95 18687.88 14590.62 13473.11 14075.11 21986.56 22561.46 16294.05 12773.68 13775.55 26989.90 197
casdiffmvs85.11 6585.14 6285.01 8687.20 20365.77 17287.75 14692.83 5577.84 3484.36 6892.38 7472.15 4893.93 13481.27 7590.48 9595.33 1
TranMVSNet+NR-MVSNet80.84 12480.31 12382.42 18187.85 18162.33 23687.74 14791.33 11780.55 1177.99 15289.86 12765.23 11292.62 18767.05 20075.24 28192.30 111
EI-MVSNet-Vis-set84.19 7283.81 7485.31 7788.18 17067.85 13587.66 14889.73 16180.05 1682.95 8589.59 13770.74 6094.82 10180.66 8284.72 16293.28 77
UniMVSNet (Re)81.60 11281.11 10983.09 15688.38 16664.41 19887.60 14993.02 4278.42 3178.56 13888.16 17769.78 7093.26 16469.58 17776.49 25591.60 129
CNLPA78.08 19276.79 20181.97 19090.40 10171.07 6487.59 15084.55 25966.03 24872.38 24889.64 13457.56 19986.04 29859.61 25783.35 17988.79 233
DTE-MVSNet76.99 21476.80 20077.54 27186.24 21653.06 33187.52 15190.66 13377.08 5572.50 24588.67 16060.48 18189.52 26157.33 28070.74 31590.05 190
无先验87.48 15288.98 18660.00 30694.12 12467.28 19588.97 225
FMVSNet278.20 18977.21 19181.20 20887.60 19062.89 23287.47 15389.02 18471.63 16075.29 21587.28 19754.80 21591.10 23662.38 23379.38 22589.61 207
EI-MVSNet-UG-set83.81 7483.38 7785.09 8487.87 18067.53 14187.44 15489.66 16379.74 1882.23 9489.41 14670.24 6694.74 10479.95 8683.92 17092.99 90
thisisatest053079.40 16077.76 17984.31 11187.69 18965.10 18587.36 15584.26 26570.04 18877.42 16188.26 17449.94 26894.79 10370.20 16884.70 16393.03 87
CANet_DTU80.61 13479.87 12982.83 16885.60 22563.17 22787.36 15588.65 19976.37 7475.88 19888.44 16853.51 22993.07 17673.30 14489.74 10692.25 113
baseline84.93 6784.98 6484.80 9687.30 20165.39 17987.30 15792.88 5277.62 3684.04 7392.26 7571.81 5093.96 12881.31 7490.30 9795.03 4
UniMVSNet_ETH3D79.10 16878.24 16681.70 19486.85 20860.24 26287.28 15888.79 19274.25 11876.84 17390.53 11549.48 27391.56 22267.98 18882.15 19493.29 76
anonymousdsp78.60 17977.15 19282.98 16380.51 31367.08 14987.24 15989.53 16565.66 25275.16 21787.19 20352.52 23392.25 20177.17 11079.34 22689.61 207
UniMVSNet_NR-MVSNet81.88 10481.54 10482.92 16588.46 16363.46 21787.13 16092.37 7380.19 1478.38 14289.14 14871.66 5393.05 17770.05 17076.46 25692.25 113
DPM-MVS84.93 6784.29 7386.84 5090.20 10473.04 2287.12 16193.04 3969.80 19482.85 8891.22 9873.06 4196.02 4876.72 11694.63 4991.46 136
v114480.03 14779.03 14883.01 16183.78 25464.51 19387.11 16290.57 13671.96 15678.08 15186.20 23461.41 16393.94 13174.93 12977.23 24390.60 164
v2v48280.23 14379.29 14483.05 15983.62 25664.14 20287.04 16389.97 15373.61 13078.18 14887.22 20161.10 17193.82 13876.11 11876.78 25391.18 142
DU-MVS81.12 12080.52 11982.90 16687.80 18363.46 21787.02 16491.87 9979.01 2678.38 14289.07 15165.02 11493.05 17770.05 17076.46 25692.20 115
v14419279.47 15778.37 16282.78 17483.35 26063.96 20586.96 16590.36 14369.99 18977.50 15985.67 24360.66 17893.77 14274.27 13376.58 25490.62 162
Fast-Effi-MVS+-dtu78.02 19576.49 20882.62 17883.16 26866.96 15486.94 16687.45 22472.45 14671.49 25784.17 26654.79 21891.58 22167.61 19180.31 21589.30 213
v119279.59 15478.43 16083.07 15883.55 25864.52 19286.93 16790.58 13570.83 17377.78 15585.90 23759.15 18893.94 13173.96 13677.19 24590.76 157
EPNet_dtu75.46 23674.86 22777.23 27682.57 28354.60 31886.89 16883.09 28571.64 15966.25 30985.86 23955.99 21088.04 28454.92 29186.55 14489.05 220
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
原ACMM286.86 169
VPA-MVSNet80.60 13580.55 11880.76 21888.07 17460.80 25586.86 16991.58 10975.67 8980.24 11989.45 14463.34 12890.25 25070.51 16679.22 22991.23 141
v192192079.22 16478.03 16982.80 17183.30 26263.94 20686.80 17190.33 14469.91 19277.48 16085.53 24658.44 19293.75 14473.60 13876.85 25190.71 160
IterMVS-LS80.06 14679.38 14182.11 18585.89 22063.20 22586.79 17289.34 16974.19 11975.45 20786.72 21366.62 9592.39 19572.58 15176.86 25090.75 158
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TransMVSNet (Re)75.39 23974.56 23177.86 26385.50 22757.10 29586.78 17386.09 24572.17 15371.53 25687.34 19663.01 13889.31 26556.84 28461.83 33787.17 268
Baseline_NR-MVSNet78.15 19178.33 16477.61 26985.79 22156.21 31086.78 17385.76 24773.60 13177.93 15387.57 19065.02 11488.99 27067.14 19975.33 27787.63 255
PAPR81.66 11180.89 11483.99 12790.27 10264.00 20486.76 17591.77 10568.84 21977.13 17289.50 13867.63 8794.88 9967.55 19288.52 11993.09 84
Vis-MVSNet (Re-imp)78.36 18578.45 15878.07 26288.64 15751.78 33486.70 17679.63 31874.14 12175.11 21990.83 11061.29 16789.75 25758.10 27391.60 8192.69 98
pmmvs674.69 24273.39 24378.61 25381.38 30157.48 29186.64 17787.95 21264.99 26170.18 26886.61 22150.43 26389.52 26162.12 23770.18 31788.83 231
v124078.99 17177.78 17782.64 17783.21 26463.54 21486.62 17890.30 14669.74 19877.33 16385.68 24257.04 20693.76 14373.13 14776.92 24790.62 162
MTAPA87.23 3287.00 3387.90 1994.18 3274.25 386.58 17992.02 8879.45 1985.88 3894.80 1468.07 8296.21 4086.69 2195.34 3293.23 78
旧先验286.56 18058.10 32187.04 3188.98 27174.07 135
RRT_test8_iter0578.38 18477.40 18781.34 20486.00 21958.86 27186.55 18191.26 11972.13 15575.91 19687.42 19544.97 30393.73 14677.02 11275.30 27891.45 137
FMVSNet377.88 19976.85 19980.97 21486.84 20962.36 23586.52 18288.77 19371.13 16875.34 21186.66 22054.07 22591.10 23662.72 22979.57 22189.45 210
pm-mvs177.25 21176.68 20678.93 24984.22 24658.62 27486.41 18388.36 20471.37 16673.31 23688.01 18361.22 16989.15 26864.24 22073.01 30189.03 221
EI-MVSNet80.52 13879.98 12782.12 18484.28 24463.19 22686.41 18388.95 18974.18 12078.69 13487.54 19266.62 9592.43 19372.57 15280.57 21290.74 159
CVMVSNet72.99 26172.58 25074.25 30184.28 24450.85 34086.41 18383.45 27844.56 34873.23 23887.54 19249.38 27485.70 30065.90 20878.44 23386.19 287
NR-MVSNet80.23 14379.38 14182.78 17487.80 18363.34 22086.31 18691.09 12679.01 2672.17 25089.07 15167.20 9292.81 18666.08 20775.65 26792.20 115
v14878.72 17677.80 17681.47 19982.73 27961.96 24286.30 18788.08 20973.26 13976.18 19185.47 24862.46 14592.36 19771.92 15573.82 29490.09 185
新几何286.29 188
test_yl81.17 11880.47 12083.24 14889.13 13863.62 21086.21 18989.95 15472.43 14981.78 10189.61 13557.50 20093.58 14970.75 16286.90 13892.52 101
DCV-MVSNet81.17 11880.47 12083.24 14889.13 13863.62 21086.21 18989.95 15472.43 14981.78 10189.61 13557.50 20093.58 14970.75 16286.90 13892.52 101
PVSNet_BlendedMVS80.60 13580.02 12682.36 18388.85 14565.40 17786.16 19192.00 9169.34 20378.11 14986.09 23666.02 10594.27 11571.52 15682.06 19587.39 261
MVS_Test83.15 8583.06 8183.41 14286.86 20763.21 22486.11 19292.00 9174.31 11582.87 8789.44 14570.03 6793.21 16577.39 10888.50 12093.81 53
BH-untuned79.47 15778.60 15582.05 18789.19 13665.91 16886.07 19388.52 20272.18 15275.42 20887.69 18761.15 17093.54 15360.38 25186.83 14086.70 280
MVS_111021_HR85.14 6484.75 6986.32 6291.65 8172.70 2985.98 19490.33 14476.11 7982.08 9591.61 8871.36 5594.17 12381.02 7692.58 7492.08 119
jason81.39 11680.29 12484.70 9886.63 21369.90 9085.95 19586.77 23463.24 27781.07 11289.47 14061.08 17292.15 20578.33 9990.07 10392.05 120
jason: jason.
test_040272.79 26370.44 27079.84 23488.13 17165.99 16585.93 19684.29 26365.57 25367.40 29585.49 24746.92 28992.61 18835.88 35174.38 28880.94 335
OurMVSNet-221017-074.26 24572.42 25279.80 23583.76 25559.59 26785.92 19786.64 23566.39 24366.96 29887.58 18939.46 32991.60 22065.76 21069.27 31988.22 244
hse-mvs281.72 10780.94 11384.07 11988.72 15467.68 13985.87 19887.26 22776.02 8184.67 5988.22 17561.54 15993.48 15682.71 6273.44 29891.06 146
EG-PatchMatch MVS74.04 24871.82 25780.71 21984.92 23767.42 14385.86 19988.08 20966.04 24764.22 32183.85 27035.10 34392.56 19057.44 27880.83 20782.16 329
AUN-MVS79.21 16577.60 18484.05 12188.71 15567.61 14085.84 20087.26 22769.08 21177.23 16788.14 18153.20 23293.47 15775.50 12773.45 29791.06 146
thres100view90076.50 22175.55 21779.33 24389.52 11856.99 29685.83 20183.23 28173.94 12476.32 18787.12 20551.89 24791.95 21148.33 32183.75 17389.07 215
CLD-MVS82.31 9781.65 10384.29 11288.47 16267.73 13885.81 20292.35 7475.78 8578.33 14486.58 22464.01 12294.35 11276.05 11987.48 13190.79 156
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SixPastTwentyTwo73.37 25471.26 26479.70 23685.08 23657.89 28485.57 20383.56 27471.03 17165.66 31185.88 23842.10 32092.57 18959.11 26263.34 33688.65 237
xiu_mvs_v1_base_debu80.80 12979.72 13384.03 12487.35 19670.19 8585.56 20488.77 19369.06 21281.83 9788.16 17750.91 25692.85 18378.29 10087.56 12889.06 217
xiu_mvs_v1_base80.80 12979.72 13384.03 12487.35 19670.19 8585.56 20488.77 19369.06 21281.83 9788.16 17750.91 25692.85 18378.29 10087.56 12889.06 217
xiu_mvs_v1_base_debi80.80 12979.72 13384.03 12487.35 19670.19 8585.56 20488.77 19369.06 21281.83 9788.16 17750.91 25692.85 18378.29 10087.56 12889.06 217
V4279.38 16278.24 16682.83 16881.10 30765.50 17685.55 20789.82 15771.57 16378.21 14686.12 23560.66 17893.18 17075.64 12375.46 27389.81 202
lupinMVS81.39 11680.27 12584.76 9787.35 19670.21 8385.55 20786.41 23862.85 28481.32 10688.61 16261.68 15692.24 20278.41 9890.26 9891.83 124
Fast-Effi-MVS+80.81 12779.92 12883.47 13888.85 14564.51 19385.53 20989.39 16870.79 17578.49 14085.06 25767.54 8893.58 14967.03 20186.58 14392.32 109
thres600view776.50 22175.44 21979.68 23789.40 12357.16 29385.53 20983.23 28173.79 12876.26 18887.09 20651.89 24791.89 21448.05 32683.72 17690.00 191
DELS-MVS85.41 6085.30 6085.77 7288.49 16167.93 13485.52 21193.44 2878.70 2883.63 8089.03 15374.57 2595.71 5880.26 8594.04 6193.66 58
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
tfpn200view976.42 22475.37 22379.55 24289.13 13857.65 28885.17 21283.60 27273.41 13776.45 18286.39 23052.12 24091.95 21148.33 32183.75 17389.07 215
thres40076.50 22175.37 22379.86 23389.13 13857.65 28885.17 21283.60 27273.41 13776.45 18286.39 23052.12 24091.95 21148.33 32183.75 17390.00 191
MVS_111021_LR82.61 9582.11 9484.11 11688.82 14871.58 5685.15 21486.16 24374.69 10880.47 11891.04 10462.29 14890.55 24780.33 8490.08 10290.20 178
baseline176.98 21576.75 20477.66 26788.13 17155.66 31585.12 21581.89 29573.04 14276.79 17588.90 15462.43 14687.78 28763.30 22671.18 31389.55 209
WR-MVS79.49 15679.22 14680.27 22788.79 15158.35 27585.06 21688.61 20178.56 2977.65 15788.34 17063.81 12590.66 24664.98 21677.22 24491.80 127
ET-MVSNet_ETH3D78.63 17876.63 20784.64 9986.73 21269.47 10085.01 21784.61 25869.54 19966.51 30786.59 22250.16 26591.75 21776.26 11784.24 16892.69 98
OpenMVS_ROBcopyleft64.09 1970.56 27868.19 28377.65 26880.26 31459.41 26985.01 21782.96 28758.76 31765.43 31382.33 29037.63 33791.23 23245.34 33876.03 26382.32 327
BH-RMVSNet79.61 15378.44 15983.14 15489.38 12565.93 16784.95 21987.15 22973.56 13278.19 14789.79 12956.67 20893.36 16159.53 25886.74 14190.13 181
BH-w/o78.21 18877.33 19080.84 21688.81 14965.13 18484.87 22087.85 21669.75 19674.52 22884.74 26161.34 16593.11 17458.24 27285.84 15584.27 310
TDRefinement67.49 29764.34 30676.92 27873.47 35061.07 25184.86 22182.98 28659.77 30858.30 34185.13 25526.06 35387.89 28547.92 32760.59 34181.81 331
Anonymous20240521178.25 18677.01 19481.99 18991.03 8860.67 25684.77 22283.90 26970.65 18080.00 12091.20 9941.08 32591.43 22665.21 21385.26 15793.85 49
TAMVS78.89 17477.51 18683.03 16087.80 18367.79 13784.72 22385.05 25467.63 22876.75 17787.70 18662.25 14990.82 24258.53 26987.13 13590.49 168
131476.53 22075.30 22580.21 22883.93 25262.32 23784.66 22488.81 19160.23 30470.16 27084.07 26855.30 21390.73 24567.37 19483.21 18187.59 258
112180.84 12479.77 13184.05 12193.11 5570.78 7484.66 22485.42 25057.37 32781.76 10492.02 7863.41 12794.12 12467.28 19592.93 6887.26 266
MVS78.19 19076.99 19681.78 19285.66 22366.99 15084.66 22490.47 13855.08 33772.02 25285.27 25163.83 12494.11 12666.10 20689.80 10584.24 311
tfpnnormal74.39 24373.16 24678.08 26186.10 21858.05 27984.65 22787.53 22170.32 18471.22 25985.63 24454.97 21489.86 25543.03 34275.02 28286.32 284
TR-MVS77.44 20776.18 21281.20 20888.24 16963.24 22384.61 22886.40 23967.55 23077.81 15486.48 22854.10 22493.15 17157.75 27682.72 18987.20 267
AllTest70.96 27468.09 28679.58 24085.15 23263.62 21084.58 22979.83 31662.31 29060.32 33586.73 21132.02 34888.96 27350.28 31171.57 31186.15 288
EU-MVSNet68.53 29467.61 29471.31 31878.51 33147.01 34984.47 23084.27 26442.27 34966.44 30884.79 26040.44 32783.76 31358.76 26768.54 32483.17 320
VNet82.21 9882.41 8981.62 19590.82 9360.93 25284.47 23089.78 15876.36 7584.07 7291.88 8264.71 11890.26 24970.68 16488.89 11293.66 58
xiu_mvs_v2_base81.69 10981.05 11083.60 13489.15 13768.03 13384.46 23290.02 15270.67 17881.30 10986.53 22763.17 13394.19 12175.60 12588.54 11888.57 239
VPNet78.69 17778.66 15478.76 25188.31 16855.72 31484.45 23386.63 23676.79 6278.26 14590.55 11459.30 18789.70 25966.63 20277.05 24690.88 153
PVSNet_Blended80.98 12180.34 12282.90 16688.85 14565.40 17784.43 23492.00 9167.62 22978.11 14985.05 25866.02 10594.27 11571.52 15689.50 10789.01 222
MVP-Stereo76.12 22874.46 23481.13 21185.37 22969.79 9284.42 23587.95 21265.03 25967.46 29385.33 25053.28 23191.73 21958.01 27483.27 18081.85 330
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CDS-MVSNet79.07 16977.70 18183.17 15387.60 19068.23 12984.40 23686.20 24267.49 23176.36 18686.54 22661.54 15990.79 24361.86 24087.33 13290.49 168
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
K. test v371.19 27268.51 28079.21 24683.04 27157.78 28784.35 23776.91 33172.90 14562.99 32882.86 28439.27 33091.09 23861.65 24252.66 34988.75 234
PS-MVSNAJ81.69 10981.02 11183.70 13389.51 11968.21 13084.28 23890.09 15170.79 17581.26 11085.62 24563.15 13494.29 11375.62 12488.87 11388.59 238
test22291.50 8368.26 12884.16 23983.20 28354.63 33879.74 12191.63 8758.97 18991.42 8486.77 278
testdata184.14 24075.71 86
MVS_030472.48 26470.89 26777.24 27582.20 28959.68 26584.11 24183.49 27667.10 23366.87 30080.59 30735.00 34487.40 28959.07 26379.58 22084.63 308
cl_fuxian78.75 17577.91 17281.26 20682.89 27661.56 24784.09 24289.13 18169.97 19075.56 20284.29 26566.36 9992.09 20773.47 14275.48 27190.12 182
MVSTER79.01 17077.88 17482.38 18283.07 26964.80 18884.08 24388.95 18969.01 21578.69 13487.17 20454.70 21992.43 19374.69 13080.57 21289.89 198
ab-mvs79.51 15578.97 15081.14 21088.46 16360.91 25383.84 24489.24 17570.36 18379.03 12888.87 15663.23 13290.21 25165.12 21482.57 19192.28 112
PAPM77.68 20476.40 21081.51 19887.29 20261.85 24383.78 24589.59 16464.74 26271.23 25888.70 15862.59 14293.66 14852.66 30087.03 13789.01 222
diffmvs82.10 9981.88 10182.76 17683.00 27263.78 20983.68 24689.76 15972.94 14482.02 9689.85 12865.96 10790.79 24382.38 6887.30 13393.71 57
miper_ehance_all_eth78.59 18077.76 17981.08 21282.66 28161.56 24783.65 24789.15 17968.87 21875.55 20383.79 27366.49 9792.03 20873.25 14576.39 25889.64 206
1112_ss77.40 20976.43 20980.32 22689.11 14260.41 26183.65 24787.72 21862.13 29273.05 24086.72 21362.58 14389.97 25462.11 23880.80 20890.59 165
PCF-MVS73.52 780.38 14078.84 15285.01 8687.71 18768.99 10883.65 24791.46 11563.00 28177.77 15690.28 11766.10 10295.09 9061.40 24488.22 12390.94 152
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
XVG-ACMP-BASELINE76.11 22974.27 23681.62 19583.20 26564.67 19083.60 25089.75 16069.75 19671.85 25387.09 20632.78 34792.11 20669.99 17280.43 21488.09 246
cl-mvsnet278.07 19377.01 19481.23 20782.37 28861.83 24483.55 25187.98 21168.96 21675.06 22183.87 26961.40 16491.88 21573.53 13976.39 25889.98 194
XVG-OURS-SEG-HR80.81 12779.76 13283.96 12985.60 22568.78 11283.54 25290.50 13770.66 17976.71 17891.66 8460.69 17791.26 23076.94 11381.58 20091.83 124
IB-MVS68.01 1575.85 23273.36 24483.31 14484.76 23866.03 16383.38 25385.06 25370.21 18769.40 28081.05 30145.76 29994.66 10665.10 21575.49 27089.25 214
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS69.67 1277.95 19777.15 19280.36 22487.57 19460.21 26383.37 25487.78 21766.11 24575.37 21087.06 20863.27 13090.48 24861.38 24582.43 19290.40 172
Anonymous2024052168.80 29167.22 29773.55 30474.33 34554.11 32283.18 25585.61 24858.15 32061.68 33180.94 30430.71 35181.27 32557.00 28373.34 30085.28 299
eth_miper_zixun_eth77.92 19876.69 20581.61 19783.00 27261.98 24183.15 25689.20 17769.52 20074.86 22584.35 26461.76 15592.56 19071.50 15872.89 30290.28 176
cl-mvsnet____77.72 20276.76 20280.58 22082.49 28560.48 25983.09 25787.87 21469.22 20674.38 23085.22 25362.10 15291.53 22371.09 16075.41 27489.73 205
cl-mvsnet177.72 20276.76 20280.58 22082.48 28660.48 25983.09 25787.86 21569.22 20674.38 23085.24 25262.10 15291.53 22371.09 16075.40 27589.74 204
thres20075.55 23574.47 23378.82 25087.78 18657.85 28583.07 25983.51 27572.44 14875.84 19984.42 26352.08 24291.75 21747.41 32883.64 17786.86 276
XVG-OURS80.41 13979.23 14583.97 12885.64 22469.02 10683.03 26090.39 13971.09 17077.63 15891.49 9254.62 22191.35 22875.71 12283.47 17891.54 131
miper_enhance_ethall77.87 20076.86 19880.92 21581.65 29561.38 24982.68 26188.98 18665.52 25475.47 20482.30 29165.76 10992.00 21072.95 14876.39 25889.39 211
mvs_anonymous79.42 15979.11 14780.34 22584.45 24357.97 28282.59 26287.62 21967.40 23276.17 19388.56 16568.47 8189.59 26070.65 16586.05 15193.47 71
baseline275.70 23373.83 24181.30 20583.26 26361.79 24582.57 26380.65 30666.81 23466.88 29983.42 27857.86 19692.19 20363.47 22379.57 22189.91 196
DWT-MVSNet_test73.70 25171.86 25679.21 24682.91 27558.94 27082.34 26482.17 29265.21 25571.05 26178.31 32544.21 30790.17 25263.29 22777.28 24288.53 240
cascas76.72 21974.64 22982.99 16285.78 22265.88 16982.33 26589.21 17660.85 30072.74 24281.02 30247.28 28793.75 14467.48 19385.02 15889.34 212
RPSCF73.23 25871.46 25978.54 25582.50 28459.85 26482.18 26682.84 28858.96 31571.15 26089.41 14645.48 30284.77 30858.82 26671.83 30991.02 150
thisisatest051577.33 21075.38 22283.18 15285.27 23063.80 20882.11 26783.27 28065.06 25875.91 19683.84 27149.54 27294.27 11567.24 19786.19 14991.48 135
pmmvs-eth3d70.50 27967.83 29078.52 25677.37 33566.18 16281.82 26881.51 29958.90 31663.90 32480.42 30942.69 31586.28 29758.56 26865.30 33283.11 322
MS-PatchMatch73.83 25072.67 24977.30 27483.87 25366.02 16481.82 26884.66 25761.37 29868.61 28682.82 28547.29 28688.21 28159.27 25984.32 16777.68 344
pmmvs571.55 27070.20 27375.61 28777.83 33256.39 30681.74 27080.89 30257.76 32367.46 29384.49 26249.26 27785.32 30457.08 28275.29 27985.11 303
Test_1112_low_res76.40 22575.44 21979.27 24489.28 13258.09 27881.69 27187.07 23059.53 31172.48 24686.67 21961.30 16689.33 26460.81 25080.15 21790.41 171
IterMVS74.29 24472.94 24878.35 25881.53 29863.49 21681.58 27282.49 29068.06 22769.99 27383.69 27551.66 25185.54 30165.85 20971.64 31086.01 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT75.43 23773.87 24080.11 22982.69 28064.85 18781.57 27383.47 27769.16 20970.49 26484.15 26751.95 24588.15 28269.23 17972.14 30787.34 263
pmmvs474.03 24971.91 25580.39 22381.96 29268.32 12681.45 27482.14 29359.32 31269.87 27685.13 25552.40 23688.13 28360.21 25374.74 28584.73 307
GA-MVS76.87 21775.17 22681.97 19082.75 27862.58 23381.44 27586.35 24172.16 15474.74 22682.89 28346.20 29592.02 20968.85 18481.09 20491.30 140
bset_n11_16_dypcd77.12 21275.47 21882.06 18681.12 30665.99 16581.37 27683.20 28369.94 19176.09 19583.38 27947.75 28492.26 20078.51 9477.91 23787.95 247
CostFormer75.24 24073.90 23979.27 24482.65 28258.27 27780.80 27782.73 28961.57 29575.33 21483.13 28155.52 21191.07 23964.98 21678.34 23588.45 241
MIMVSNet168.58 29366.78 30073.98 30380.07 31751.82 33380.77 27884.37 26064.40 26659.75 33882.16 29436.47 33983.63 31542.73 34370.33 31686.48 283
CL-MVSNet_2432*160072.37 26771.46 25975.09 29379.49 32653.53 32680.76 27985.01 25569.12 21070.51 26382.05 29557.92 19584.13 31152.27 30166.00 33087.60 256
MSDG73.36 25670.99 26580.49 22284.51 24265.80 17080.71 28086.13 24465.70 25165.46 31283.74 27444.60 30490.91 24151.13 30676.89 24984.74 306
tpm273.26 25771.46 25978.63 25283.34 26156.71 30180.65 28180.40 31156.63 33173.55 23482.02 29651.80 24991.24 23156.35 28778.42 23487.95 247
XXY-MVS75.41 23875.56 21674.96 29483.59 25757.82 28680.59 28283.87 27066.54 24274.93 22488.31 17163.24 13180.09 32962.16 23676.85 25186.97 274
HyFIR lowres test77.53 20675.40 22183.94 13089.59 11566.62 15680.36 28388.64 20056.29 33376.45 18285.17 25457.64 19893.28 16361.34 24683.10 18491.91 122
D2MVS74.82 24173.21 24579.64 23979.81 32062.56 23480.34 28487.35 22564.37 26768.86 28382.66 28746.37 29290.10 25367.91 18981.24 20386.25 285
TinyColmap67.30 30064.81 30474.76 29781.92 29356.68 30280.29 28581.49 30060.33 30256.27 34783.22 28024.77 35487.66 28845.52 33669.47 31879.95 339
LCM-MVSNet-Re77.05 21376.94 19777.36 27287.20 20351.60 33580.06 28680.46 31075.20 9967.69 29186.72 21362.48 14488.98 27163.44 22489.25 11091.51 132
FMVSNet569.50 28667.96 28774.15 30282.97 27455.35 31680.01 28782.12 29462.56 28863.02 32681.53 29836.92 33881.92 32248.42 32074.06 29085.17 302
SCA74.22 24672.33 25379.91 23284.05 25062.17 23979.96 28879.29 32066.30 24472.38 24880.13 31151.95 24588.60 27759.25 26077.67 24088.96 226
tpmrst72.39 26572.13 25473.18 30980.54 31249.91 34379.91 28979.08 32163.11 27971.69 25579.95 31355.32 21282.77 32065.66 21173.89 29286.87 275
PatchmatchNetpermissive73.12 25971.33 26278.49 25783.18 26660.85 25479.63 29078.57 32264.13 26971.73 25479.81 31651.20 25485.97 29957.40 27976.36 26188.66 236
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL72.38 26670.90 26676.80 28088.60 15867.38 14579.53 29176.17 33362.75 28669.36 28182.00 29745.51 30184.89 30753.62 29680.58 21178.12 343
CMPMVSbinary51.72 2170.19 28268.16 28476.28 28273.15 35257.55 29079.47 29283.92 26848.02 34756.48 34684.81 25943.13 31286.42 29662.67 23281.81 19984.89 304
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GG-mvs-BLEND75.38 29181.59 29755.80 31379.32 29369.63 34867.19 29673.67 34243.24 31188.90 27550.41 30884.50 16481.45 332
LTVRE_ROB69.57 1376.25 22774.54 23281.41 20088.60 15864.38 19979.24 29489.12 18270.76 17769.79 27887.86 18449.09 27893.20 16756.21 28880.16 21686.65 281
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpm72.37 26771.71 25874.35 30082.19 29052.00 33279.22 29577.29 32964.56 26472.95 24183.68 27651.35 25283.26 31858.33 27175.80 26587.81 252
ppachtmachnet_test70.04 28367.34 29678.14 26079.80 32161.13 25079.19 29680.59 30759.16 31465.27 31479.29 31746.75 29187.29 29049.33 31766.72 32686.00 294
USDC70.33 28068.37 28176.21 28380.60 31156.23 30979.19 29686.49 23760.89 29961.29 33285.47 24831.78 35089.47 26353.37 29776.21 26282.94 326
PM-MVS66.41 30564.14 30773.20 30873.92 34756.45 30478.97 29864.96 35763.88 27664.72 31880.24 31019.84 35883.44 31666.24 20364.52 33479.71 340
tpmvs71.09 27369.29 27676.49 28182.04 29156.04 31178.92 29981.37 30164.05 27267.18 29778.28 32649.74 27189.77 25649.67 31672.37 30483.67 316
test_post178.90 3005.43 36548.81 28185.44 30359.25 260
CHOSEN 1792x268877.63 20575.69 21483.44 13989.98 10968.58 12378.70 30187.50 22256.38 33275.80 20086.84 20958.67 19091.40 22761.58 24385.75 15690.34 174
test-LLR72.94 26272.43 25174.48 29881.35 30258.04 28078.38 30277.46 32766.66 23869.95 27479.00 32048.06 28279.24 33066.13 20484.83 16086.15 288
TESTMET0.1,169.89 28569.00 27872.55 31079.27 32956.85 29778.38 30274.71 33957.64 32468.09 28877.19 33337.75 33676.70 34163.92 22184.09 16984.10 314
test-mter71.41 27170.39 27274.48 29881.35 30258.04 28078.38 30277.46 32760.32 30369.95 27479.00 32036.08 34179.24 33066.13 20484.83 16086.15 288
Anonymous2023120668.60 29267.80 29171.02 31980.23 31550.75 34178.30 30580.47 30956.79 33066.11 31082.63 28846.35 29378.95 33243.62 34175.70 26683.36 319
tpm cat170.57 27768.31 28277.35 27382.41 28757.95 28378.08 30680.22 31452.04 34368.54 28777.66 33152.00 24487.84 28651.77 30272.07 30886.25 285
our_test_369.14 28867.00 29875.57 28879.80 32158.80 27277.96 30777.81 32559.55 31062.90 32978.25 32747.43 28583.97 31251.71 30367.58 32583.93 315
DIV-MVS_2432*160068.81 29067.59 29572.46 31174.29 34645.45 35077.93 30887.00 23163.12 27863.99 32378.99 32242.32 31784.77 30856.55 28664.09 33587.16 270
WTY-MVS75.65 23475.68 21575.57 28886.40 21556.82 29877.92 30982.40 29165.10 25776.18 19187.72 18563.13 13780.90 32660.31 25281.96 19689.00 224
test20.0367.45 29866.95 29968.94 32575.48 34244.84 35277.50 31077.67 32666.66 23863.01 32783.80 27247.02 28878.40 33442.53 34468.86 32383.58 317
EPMVS69.02 28968.16 28471.59 31379.61 32449.80 34577.40 31166.93 35362.82 28570.01 27179.05 31845.79 29877.86 33856.58 28575.26 28087.13 271
gg-mvs-nofinetune69.95 28467.96 28775.94 28483.07 26954.51 32077.23 31270.29 34663.11 27970.32 26662.33 34943.62 31088.69 27653.88 29587.76 12584.62 309
MDTV_nov1_ep1369.97 27483.18 26653.48 32777.10 31380.18 31560.45 30169.33 28280.44 30848.89 28086.90 29251.60 30478.51 232
LF4IMVS64.02 31462.19 31769.50 32470.90 35453.29 33076.13 31477.18 33052.65 34258.59 33980.98 30323.55 35576.52 34253.06 29966.66 32778.68 342
sss73.60 25273.64 24273.51 30582.80 27755.01 31776.12 31581.69 29862.47 28974.68 22785.85 24057.32 20278.11 33660.86 24980.93 20587.39 261
testgi66.67 30366.53 30167.08 33175.62 34141.69 35675.93 31676.50 33266.11 24565.20 31786.59 22235.72 34274.71 34943.71 34073.38 29984.84 305
CR-MVSNet73.37 25471.27 26379.67 23881.32 30465.19 18275.92 31780.30 31259.92 30772.73 24381.19 29952.50 23486.69 29359.84 25577.71 23887.11 272
RPMNet73.51 25370.49 26982.58 17981.32 30465.19 18275.92 31792.27 7757.60 32572.73 24376.45 33652.30 23795.43 7048.14 32577.71 23887.11 272
MIMVSNet70.69 27669.30 27574.88 29584.52 24156.35 30875.87 31979.42 31964.59 26367.76 28982.41 28941.10 32481.54 32446.64 33281.34 20186.75 279
test0.0.03 168.00 29667.69 29368.90 32677.55 33347.43 34775.70 32072.95 34366.66 23866.56 30382.29 29248.06 28275.87 34544.97 33974.51 28783.41 318
PMMVS69.34 28768.67 27971.35 31775.67 34062.03 24075.17 32173.46 34150.00 34668.68 28479.05 31852.07 24378.13 33561.16 24782.77 18773.90 347
UnsupCasMVSNet_eth67.33 29965.99 30271.37 31573.48 34951.47 33775.16 32285.19 25265.20 25660.78 33480.93 30642.35 31677.20 34057.12 28153.69 34885.44 297
MDTV_nov1_ep13_2view37.79 35875.16 32255.10 33666.53 30449.34 27553.98 29487.94 249
pmmvs357.79 31954.26 32368.37 32964.02 35856.72 30075.12 32465.17 35540.20 35152.93 35069.86 34720.36 35775.48 34745.45 33755.25 34772.90 348
dp66.80 30165.43 30370.90 32079.74 32348.82 34675.12 32474.77 33759.61 30964.08 32277.23 33242.89 31380.72 32748.86 31966.58 32883.16 321
Patchmtry70.74 27569.16 27775.49 29080.72 30954.07 32374.94 32680.30 31258.34 31970.01 27181.19 29952.50 23486.54 29453.37 29771.09 31485.87 295
PVSNet64.34 1872.08 26970.87 26875.69 28686.21 21756.44 30574.37 32780.73 30562.06 29370.17 26982.23 29342.86 31483.31 31754.77 29284.45 16687.32 264
MDA-MVSNet-bldmvs66.68 30263.66 31075.75 28579.28 32860.56 25873.92 32878.35 32364.43 26550.13 35279.87 31544.02 30983.67 31446.10 33456.86 34483.03 324
UnsupCasMVSNet_bld63.70 31561.53 31970.21 32273.69 34851.39 33872.82 32981.89 29555.63 33557.81 34271.80 34538.67 33278.61 33349.26 31852.21 35080.63 336
PatchT68.46 29567.85 28970.29 32180.70 31043.93 35372.47 33074.88 33660.15 30570.55 26276.57 33549.94 26881.59 32350.58 30774.83 28485.34 298
miper_lstm_enhance74.11 24773.11 24777.13 27780.11 31659.62 26672.23 33186.92 23366.76 23670.40 26582.92 28256.93 20782.92 31969.06 18272.63 30388.87 229
MVS-HIRNet59.14 31857.67 32163.57 33381.65 29543.50 35471.73 33265.06 35639.59 35351.43 35157.73 35338.34 33482.58 32139.53 34873.95 29164.62 352
Patchmatch-RL test70.24 28167.78 29277.61 26977.43 33459.57 26871.16 33370.33 34562.94 28368.65 28572.77 34350.62 26085.49 30269.58 17766.58 32887.77 253
test1236.12 3378.11 3400.14 3490.06 3710.09 37171.05 3340.03 3720.04 3670.25 3681.30 3680.05 3720.03 3680.21 3660.01 3660.29 363
ANet_high50.57 32546.10 32863.99 33248.67 36439.13 35770.99 33580.85 30361.39 29731.18 35757.70 35417.02 36073.65 35331.22 35315.89 36279.18 341
KD-MVS_2432*160066.22 30763.89 30873.21 30675.47 34353.42 32870.76 33684.35 26164.10 27066.52 30578.52 32334.55 34584.98 30550.40 30950.33 35281.23 333
miper_refine_blended66.22 30763.89 30873.21 30675.47 34353.42 32870.76 33684.35 26164.10 27066.52 30578.52 32334.55 34584.98 30550.40 30950.33 35281.23 333
testmvs6.04 3388.02 3410.10 3500.08 3700.03 37269.74 3380.04 3710.05 3660.31 3671.68 3670.02 3730.04 3670.24 3650.02 3650.25 364
N_pmnet52.79 32353.26 32451.40 34078.99 3307.68 36969.52 3393.89 36951.63 34557.01 34474.98 34040.83 32665.96 35737.78 35064.67 33380.56 338
FPMVS53.68 32251.64 32559.81 33665.08 35751.03 33969.48 34069.58 34941.46 35040.67 35472.32 34416.46 36170.00 35524.24 35765.42 33158.40 354
DSMNet-mixed57.77 32056.90 32260.38 33567.70 35635.61 35969.18 34153.97 36132.30 35857.49 34379.88 31440.39 32868.57 35638.78 34972.37 30476.97 345
new-patchmatchnet61.73 31661.73 31861.70 33472.74 35324.50 36669.16 34278.03 32461.40 29656.72 34575.53 33938.42 33376.48 34345.95 33557.67 34384.13 313
YYNet165.03 31062.91 31471.38 31475.85 33956.60 30369.12 34374.66 34057.28 32854.12 34877.87 32945.85 29774.48 35049.95 31461.52 33983.05 323
MDA-MVSNet_test_wron65.03 31062.92 31371.37 31575.93 33856.73 29969.09 34474.73 33857.28 32854.03 34977.89 32845.88 29674.39 35149.89 31561.55 33882.99 325
PVSNet_057.27 2061.67 31759.27 32068.85 32779.61 32457.44 29268.01 34573.44 34255.93 33458.54 34070.41 34644.58 30577.55 33947.01 32935.91 35571.55 349
ADS-MVSNet266.20 30963.33 31174.82 29679.92 31858.75 27367.55 34675.19 33553.37 34065.25 31575.86 33742.32 31780.53 32841.57 34568.91 32185.18 300
ADS-MVSNet64.36 31362.88 31568.78 32879.92 31847.17 34867.55 34671.18 34453.37 34065.25 31575.86 33742.32 31773.99 35241.57 34568.91 32185.18 300
LCM-MVSNet54.25 32149.68 32767.97 33053.73 36145.28 35166.85 34880.78 30435.96 35539.45 35562.23 3518.70 36778.06 33748.24 32451.20 35180.57 337
JIA-IIPM66.32 30662.82 31676.82 27977.09 33661.72 24665.34 34975.38 33458.04 32264.51 31962.32 35042.05 32186.51 29551.45 30569.22 32082.21 328
PMVScopyleft37.38 2244.16 32740.28 33055.82 33740.82 36642.54 35565.12 35063.99 35834.43 35624.48 35957.12 3553.92 36976.17 34417.10 36055.52 34648.75 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet50.91 32450.29 32652.78 33968.58 35534.94 36163.71 35156.63 36039.73 35244.95 35365.47 34821.93 35658.48 35834.98 35256.62 34564.92 351
Patchmatch-test64.82 31263.24 31269.57 32379.42 32749.82 34463.49 35269.05 35151.98 34459.95 33780.13 31150.91 25670.98 35440.66 34773.57 29587.90 250
ambc75.24 29273.16 35150.51 34263.05 35387.47 22364.28 32077.81 33017.80 35989.73 25857.88 27560.64 34085.49 296
CHOSEN 280x42066.51 30464.71 30571.90 31281.45 29963.52 21557.98 35468.95 35253.57 33962.59 33076.70 33446.22 29475.29 34855.25 29079.68 21976.88 346
E-PMN31.77 32930.64 33235.15 34452.87 36227.67 36357.09 35547.86 36324.64 35916.40 36433.05 36011.23 36454.90 36014.46 36218.15 36022.87 359
EMVS30.81 33129.65 33334.27 34550.96 36325.95 36556.58 35646.80 36424.01 36015.53 36530.68 36112.47 36354.43 36112.81 36317.05 36122.43 360
PMMVS240.82 32838.86 33146.69 34153.84 36016.45 36748.61 35749.92 36237.49 35431.67 35660.97 3528.14 36856.42 35928.42 35430.72 35767.19 350
wuyk23d16.82 33515.94 33819.46 34758.74 35931.45 36239.22 3583.74 3706.84 3636.04 3662.70 3661.27 37124.29 36510.54 36414.40 3642.63 362
tmp_tt18.61 33421.40 33710.23 3484.82 36910.11 36834.70 35930.74 3671.48 36523.91 36126.07 36228.42 35213.41 36627.12 35515.35 3637.17 361
Gipumacopyleft45.18 32641.86 32955.16 33877.03 33751.52 33632.50 36080.52 30832.46 35727.12 35835.02 3599.52 36675.50 34622.31 35860.21 34238.45 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive26.22 2330.37 33225.89 33643.81 34244.55 36535.46 36028.87 36139.07 36518.20 36118.58 36340.18 3582.68 37047.37 36317.07 36123.78 35948.60 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method31.52 33029.28 33438.23 34327.03 3686.50 37020.94 36262.21 3594.05 36422.35 36252.50 35613.33 36247.58 36227.04 35634.04 35660.62 353
uanet_test0.00 3400.00 3430.00 3510.00 3720.00 3730.00 3630.00 3730.00 3680.00 3690.00 3690.00 3740.00 3690.00 3670.00 3670.00 365
cdsmvs_eth3d_5k19.96 33326.61 3350.00 3510.00 3720.00 3730.00 36389.26 1740.00 3680.00 36988.61 16261.62 1580.00 3690.00 3670.00 3670.00 365
pcd_1.5k_mvsjas5.26 3397.02 3420.00 3510.00 3720.00 3730.00 3630.00 3730.00 3680.00 3690.00 36963.15 1340.00 3690.00 3670.00 3670.00 365
sosnet-low-res0.00 3400.00 3430.00 3510.00 3720.00 3730.00 3630.00 3730.00 3680.00 3690.00 3690.00 3740.00 3690.00 3670.00 3670.00 365
sosnet0.00 3400.00 3430.00 3510.00 3720.00 3730.00 3630.00 3730.00 3680.00 3690.00 3690.00 3740.00 3690.00 3670.00 3670.00 365
uncertanet0.00 3400.00 3430.00 3510.00 3720.00 3730.00 3630.00 3730.00 3680.00 3690.00 3690.00 3740.00 3690.00 3670.00 3670.00 365
Regformer0.00 3400.00 3430.00 3510.00 3720.00 3730.00 3630.00 3730.00 3680.00 3690.00 3690.00 3740.00 3690.00 3670.00 3670.00 365
ab-mvs-re7.23 3369.64 3390.00 3510.00 3720.00 3730.00 3630.00 3730.00 3680.00 36986.72 2130.00 3740.00 3690.00 3670.00 3670.00 365
uanet0.00 3400.00 3430.00 3510.00 3720.00 3730.00 3630.00 3730.00 3680.00 3690.00 3690.00 3740.00 3690.00 3670.00 3670.00 365
eth-test20.00 372
eth-test0.00 372
ZD-MVS94.38 2572.22 4592.67 6170.98 17287.75 2794.07 4374.01 3596.70 2384.66 3694.84 44
IU-MVS95.30 271.25 5992.95 5066.81 23492.39 588.94 896.63 294.85 10
test_241102_TWO94.06 1077.24 4792.78 495.72 681.26 697.44 289.07 696.58 494.26 31
test_241102_ONE95.30 270.98 6594.06 1077.17 5193.10 195.39 982.99 197.27 7
test_0728_THIRD78.38 3292.12 895.78 481.46 597.40 489.42 296.57 594.67 16
GSMVS88.96 226
test_part295.06 772.65 3191.80 10
sam_mvs151.32 25388.96 226
sam_mvs50.01 266
MTGPAbinary92.02 88
test_post5.46 36450.36 26484.24 310
patchmatchnet-post74.00 34151.12 25588.60 277
gm-plane-assit81.40 30053.83 32562.72 28780.94 30492.39 19563.40 225
test9_res84.90 3095.70 2792.87 93
agg_prior282.91 5895.45 2992.70 96
agg_prior92.85 6171.94 5191.78 10384.41 6594.93 93
TestCases79.58 24085.15 23263.62 21079.83 31662.31 29060.32 33586.73 21132.02 34888.96 27350.28 31171.57 31186.15 288
test_prior86.33 6092.61 6969.59 9692.97 4895.48 6693.91 45
新几何183.42 14093.13 5370.71 7585.48 24957.43 32681.80 10091.98 7963.28 12992.27 19964.60 21992.99 6787.27 265
旧先验191.96 7765.79 17186.37 24093.08 6669.31 7692.74 7188.74 235
原ACMM184.35 10993.01 5968.79 11192.44 6963.96 27581.09 11191.57 8966.06 10495.45 6867.19 19894.82 4788.81 232
testdata291.01 24062.37 234
segment_acmp73.08 40
testdata79.97 23190.90 9164.21 20184.71 25659.27 31385.40 4492.91 6762.02 15489.08 26968.95 18391.37 8586.63 282
test1286.80 5292.63 6870.70 7691.79 10282.71 9171.67 5296.16 4494.50 5293.54 69
plane_prior790.08 10768.51 124
plane_prior689.84 11268.70 11960.42 182
plane_prior592.44 6995.38 7478.71 9286.32 14791.33 138
plane_prior491.00 107
plane_prior368.60 12278.44 3078.92 131
plane_prior189.90 111
n20.00 373
nn0.00 373
door-mid69.98 347
lessismore_v078.97 24881.01 30857.15 29465.99 35461.16 33382.82 28539.12 33191.34 22959.67 25646.92 35488.43 242
LGP-MVS_train84.50 10289.23 13468.76 11391.94 9575.37 9476.64 18091.51 9054.29 22294.91 9578.44 9683.78 17189.83 200
test1192.23 80
door69.44 350
HQP5-MVS66.98 151
BP-MVS77.47 106
HQP4-MVS77.24 16695.11 8691.03 148
HQP3-MVS92.19 8385.99 153
HQP2-MVS60.17 185
NP-MVS89.62 11468.32 12690.24 118
ACMMP++_ref81.95 197
ACMMP++81.25 202
Test By Simon64.33 119
ITE_SJBPF78.22 25981.77 29460.57 25783.30 27969.25 20567.54 29287.20 20236.33 34087.28 29154.34 29374.62 28686.80 277
DeepMVS_CXcopyleft27.40 34640.17 36726.90 36424.59 36817.44 36223.95 36048.61 3579.77 36526.48 36418.06 35924.47 35828.83 358