This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19699.65 5799.50 16499.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17999.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
CHOSEN 280x42099.12 9599.13 7399.08 17999.66 12097.89 25198.43 38099.71 1398.88 5999.62 10199.76 13396.63 14799.70 22799.46 4499.99 199.66 125
patch_mono-299.26 6999.62 598.16 29899.81 4694.59 36199.52 14999.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
dcpmvs_299.23 7599.58 798.16 29899.83 3994.68 35999.76 3899.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
CANet99.25 7399.14 7299.59 8799.41 20499.16 12799.35 23699.57 6498.82 6599.51 12699.61 20596.46 15499.95 5999.59 2599.98 499.65 129
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12399.63 3999.47 499.98 699.82 7598.75 5599.99 499.97 199.97 799.94 11
MM99.40 5099.28 5599.74 6199.67 11199.31 10899.52 14998.87 34299.55 199.74 6099.80 10296.47 15399.98 1399.97 199.97 799.94 11
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11499.52 14997.57 38999.51 299.82 3599.78 12098.09 10099.96 3099.97 199.97 799.94 11
CHOSEN 1792x268899.19 7799.10 7699.45 12599.89 898.52 21199.39 22099.94 198.73 7699.11 21999.89 3095.50 18899.94 6999.50 3699.97 799.89 20
DeepC-MVS98.35 299.30 6199.19 6899.64 7899.82 4299.23 12099.62 8899.55 7798.94 5499.63 9699.95 395.82 17899.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12399.63 3999.48 399.98 699.83 6798.75 5599.99 499.97 199.96 1299.94 11
fmvsm_s_conf0.1_n99.29 6399.10 7699.86 2199.70 10199.65 5799.53 14899.62 4198.74 7599.99 299.95 394.53 23599.94 6999.89 1399.96 1299.97 4
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15799.67 2399.13 2299.98 699.92 1496.60 14899.96 3099.95 899.96 1299.95 9
CSCG99.32 5999.32 4099.32 14699.85 2698.29 22799.71 5299.66 2898.11 14399.41 14899.80 10298.37 8899.96 3098.99 9199.96 1299.72 103
test_fmvsmconf0.01_n99.22 7699.03 8799.79 4998.42 36599.48 8999.55 13599.51 11599.39 1099.78 4799.93 994.80 21399.95 5999.93 1199.95 1699.94 11
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 11099.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
iter_conf05_1198.35 17897.99 20299.41 13199.37 21699.13 13698.96 33498.23 37798.50 9699.63 9699.46 25888.83 34999.87 13899.00 8999.95 1699.23 218
CANet_DTU98.97 12098.87 11599.25 16299.33 22898.42 22499.08 30599.30 27599.16 1999.43 14199.75 13695.27 19699.97 2198.56 16099.95 1699.36 205
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13399.60 9699.45 19599.01 4099.90 1899.83 6798.98 2399.93 8499.59 2599.95 1699.86 33
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13299.61 9599.45 19599.01 4099.89 1999.82 7599.01 1899.92 9599.56 2899.95 1699.85 36
UGNet98.87 12798.69 13699.40 13399.22 25798.72 19199.44 19599.68 2099.24 1799.18 21099.42 26592.74 28399.96 3099.34 5599.94 2299.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21399.37 10099.58 11099.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2399.94 11
SD-MVS99.41 4799.52 1199.05 18499.74 8099.68 4899.46 18899.52 10199.11 2699.88 2099.91 2099.43 197.70 38798.72 13299.93 2399.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
fmvsm_s_conf0.1_n_a99.26 6999.06 8299.85 2899.52 16799.62 6599.54 14099.62 4198.69 7999.99 299.96 194.47 23799.94 6999.88 1499.92 2599.98 2
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14999.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2599.95 9
test_vis1_n_192098.63 16098.40 16799.31 14799.86 2097.94 25099.67 6599.62 4199.43 799.99 299.91 2087.29 367100.00 199.92 1299.92 2599.98 2
test_fmvs198.88 12698.79 12899.16 17299.69 10697.61 26599.55 13599.49 14399.32 1499.98 699.91 2091.41 32099.96 3099.82 1699.92 2599.90 17
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4299.56 6999.02 3899.88 2099.85 5399.18 1099.96 3099.22 7099.92 2599.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3899.56 6997.72 19099.76 5699.75 13699.13 1299.92 9599.07 8399.92 2599.85 36
3Dnovator97.25 999.24 7499.05 8399.81 4499.12 28299.66 5399.84 1399.74 1099.09 3298.92 25399.90 2695.94 17299.98 1398.95 9599.92 2599.79 74
test_cas_vis1_n_192099.16 8399.01 9599.61 8499.81 4698.86 17799.65 7699.64 3699.39 1099.97 1399.94 693.20 27399.98 1399.55 2999.91 3299.99 1
MP-MVS-pluss99.37 5499.20 6799.88 599.90 499.87 1299.30 24799.52 10197.18 24799.60 10799.79 11498.79 4799.95 5998.83 12099.91 3299.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18599.48 15598.05 15699.76 5699.86 4898.82 4399.93 8498.82 12499.91 3299.84 40
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2199.54 8597.59 20399.68 7499.63 19698.91 3499.94 6998.58 15499.91 3299.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
114514_t98.93 12298.67 13899.72 6599.85 2699.53 8299.62 8899.59 5792.65 37999.71 6899.78 12098.06 10299.90 11698.84 11799.91 3299.74 92
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5699.52 10198.07 15199.53 12299.63 19698.93 3399.97 2198.74 12999.91 3299.83 49
PHI-MVS99.30 6199.17 7099.70 6799.56 15699.52 8599.58 11099.80 897.12 25399.62 10199.73 14798.58 7299.90 11698.61 14899.91 3299.68 119
DeepPCF-MVS98.18 398.81 14199.37 3097.12 34599.60 14691.75 38598.61 37099.44 20399.35 1299.83 3499.85 5398.70 6399.81 18099.02 8799.91 3299.81 61
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7999.67 2398.08 15099.55 11999.64 19098.91 3499.96 3098.72 13299.90 4099.82 54
test_0728_THIRD98.99 4599.81 3799.80 10299.09 1499.96 3098.85 11499.90 4099.88 26
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 7099.47 17598.79 7099.68 7499.81 8998.43 8399.97 2198.88 10499.90 4099.83 49
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16499.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 10099.90 4099.89 20
jason99.13 8999.03 8799.45 12599.46 19098.87 17499.12 29699.26 28598.03 15999.79 4299.65 18497.02 13499.85 14899.02 8799.90 4099.65 129
jason: jason.
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10299.51 11598.62 8499.79 4299.83 6799.28 499.97 2198.48 16799.90 4099.84 40
Skip Steuart: Steuart Systems R&D Blog.
DP-MVS99.16 8398.95 10599.78 5299.77 6299.53 8299.41 20899.50 13597.03 26599.04 23599.88 3697.39 11699.92 9598.66 14199.90 4099.87 31
MSDG98.98 11898.80 12599.53 10599.76 6599.19 12298.75 35999.55 7797.25 24199.47 13299.77 12897.82 10799.87 13896.93 29699.90 4099.54 161
COLMAP_ROBcopyleft97.56 698.86 13098.75 13199.17 17199.88 1198.53 20799.34 23999.59 5797.55 20998.70 28699.89 3095.83 17799.90 11698.10 19799.90 4099.08 231
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12399.47 17597.45 22299.78 4799.82 7599.18 1099.91 10598.79 12599.89 4999.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5699.48 15598.12 14199.50 12799.75 13698.78 4899.97 2198.57 15799.89 4999.83 49
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 34099.85 698.82 6599.65 8999.74 14198.51 7899.80 18698.83 12099.89 4999.64 136
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8399.39 22398.91 5899.78 4799.85 5399.36 299.94 6998.84 11799.88 5299.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
QAPM98.67 15698.30 17499.80 4699.20 26099.67 5199.77 3599.72 1194.74 35998.73 27899.90 2695.78 17999.98 1396.96 29399.88 5299.76 87
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 33899.85 698.82 6599.54 12099.73 14798.51 7899.74 20598.91 10199.88 5299.77 82
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23199.51 11598.73 7699.88 2099.84 6398.72 6199.96 3098.16 19599.87 5599.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 7099.67 2398.15 13699.68 7499.69 16699.06 1699.96 3098.69 13799.87 5599.84 40
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7699.66 2898.13 14099.66 8399.68 17298.96 2499.96 3098.62 14599.87 5599.84 40
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 7099.67 2398.15 13699.67 7899.69 16698.95 2799.96 3098.69 13799.87 5599.84 40
MP-MVScopyleft99.33 5899.15 7199.87 1199.88 1199.82 2299.66 7099.46 18498.09 14699.48 13199.74 14198.29 9199.96 3097.93 21399.87 5599.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 11099.65 3397.84 17599.71 6899.80 10299.12 1399.97 2198.33 18299.87 5599.83 49
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23199.46 18499.07 3599.79 4299.82 7598.85 3999.92 9598.68 13999.87 5599.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TAPA-MVS97.07 1597.74 26397.34 28398.94 19899.70 10197.53 26699.25 27399.51 11591.90 38199.30 17799.63 19698.78 4899.64 24688.09 39199.87 5599.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11799.37 23999.10 2799.81 3799.80 10298.94 2999.96 3098.93 9899.86 6399.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3299.89 499.57 11799.51 11599.96 3098.93 9899.86 6399.88 26
GST-MVS99.40 5099.24 6399.85 2899.86 2099.79 3099.60 9699.67 2397.97 16299.63 9699.68 17298.52 7799.95 5998.38 17699.86 6399.81 61
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16199.74 14198.81 4499.94 6998.79 12599.86 6399.84 40
X-MVStestdata96.55 31995.45 33799.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16164.01 40998.81 4499.94 6998.79 12599.86 6399.84 40
APD-MVScopyleft99.27 6799.08 8099.84 3999.75 7399.79 3099.50 16499.50 13597.16 24999.77 5199.82 7598.78 4899.94 6997.56 25299.86 6399.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
3Dnovator+97.12 1399.18 7998.97 10199.82 4199.17 27499.68 4899.81 2199.51 11599.20 1898.72 27999.89 3095.68 18399.97 2198.86 11299.86 6399.81 61
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9699.48 15599.08 3399.91 1699.81 8999.20 799.96 3098.91 10199.85 7099.79 74
IU-MVS99.84 3299.88 899.32 26798.30 11699.84 2998.86 11299.85 7099.89 20
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 11099.89 299.58 6198.56 8999.73 6299.69 16698.55 7599.82 17599.69 1999.85 7099.48 178
MVSFormer99.17 8199.12 7499.29 15599.51 17098.94 16799.88 499.46 18497.55 20999.80 4099.65 18497.39 11699.28 30099.03 8599.85 7099.65 129
lupinMVS99.13 8999.01 9599.46 12499.51 17098.94 16799.05 31199.16 30197.86 17099.80 4099.56 22197.39 11699.86 14298.94 9699.85 7099.58 154
PVSNet_Blended99.08 10598.97 10199.42 13099.76 6598.79 18698.78 35699.91 396.74 28299.67 7899.49 24697.53 11399.88 13398.98 9299.85 7099.60 146
MVS-HIRNet95.75 33595.16 34097.51 33599.30 23693.69 37398.88 34695.78 40085.09 39598.78 27492.65 39891.29 32399.37 28294.85 34799.85 7099.46 188
PCF-MVS97.08 1497.66 27797.06 30299.47 12299.61 14199.09 13998.04 39399.25 28791.24 38498.51 30799.70 15694.55 23399.91 10592.76 37399.85 7099.42 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_fmvs1_n98.41 17298.14 18399.21 16799.82 4297.71 26299.74 4599.49 14399.32 1499.99 299.95 385.32 37699.97 2199.82 1699.84 7899.96 7
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10799.84 7899.89 20
No_MVS99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10799.84 7899.89 20
test_241102_TWO99.48 15599.08 3399.88 2099.81 8998.94 2999.96 3098.91 10199.84 7899.88 26
SF-MVS99.38 5399.24 6399.79 4999.79 5499.68 4899.57 11799.54 8597.82 18099.71 6899.80 10298.95 2799.93 8498.19 19199.84 7899.74 92
MSLP-MVS++99.46 3199.47 1799.44 12999.60 14699.16 12799.41 20899.71 1398.98 4899.45 13599.78 12099.19 999.54 26099.28 6399.84 7899.63 140
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 31199.66 2899.14 2199.57 11499.80 10298.46 8199.94 6999.57 2799.84 7899.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CPTT-MVS99.11 9998.90 11099.74 6199.80 5299.46 9299.59 10299.49 14397.03 26599.63 9699.69 16697.27 12499.96 3097.82 22499.84 7899.81 61
LS3D99.27 6799.12 7499.74 6199.18 26699.75 3999.56 12399.57 6498.45 10099.49 13099.85 5397.77 10999.94 6998.33 18299.84 7899.52 167
AllTest98.87 12798.72 13299.31 14799.86 2098.48 21799.56 12399.61 4897.85 17399.36 16599.85 5395.95 17099.85 14896.66 30999.83 8799.59 150
TestCases99.31 14799.86 2098.48 21799.61 4897.85 17399.36 16599.85 5395.95 17099.85 14896.66 30999.83 8799.59 150
CDPH-MVS99.13 8998.91 10999.80 4699.75 7399.71 4499.15 29099.41 21496.60 29699.60 10799.55 22498.83 4299.90 11697.48 25999.83 8799.78 80
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 14199.63 9699.84 6398.73 6099.96 3098.55 16399.83 8799.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
9.1499.10 7699.72 9199.40 21699.51 11597.53 21399.64 9399.78 12098.84 4199.91 10597.63 24399.82 91
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8499.86 2099.07 14599.47 18599.93 297.66 19999.71 6899.86 4897.73 11099.96 3099.47 4399.82 9199.79 74
EC-MVSNet99.44 3799.39 2799.58 9099.56 15699.49 8799.88 499.58 6198.38 10699.73 6299.69 16698.20 9599.70 22799.64 2499.82 9199.54 161
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8399.52 10198.38 10699.76 5699.82 7598.53 7699.95 5998.61 14899.81 9499.77 82
RE-MVS-def99.34 3699.76 6599.82 2299.63 8399.52 10198.38 10699.76 5699.82 7598.75 5598.61 14899.81 9499.77 82
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8399.54 8598.36 11099.79 4299.82 7598.86 3899.95 5998.62 14599.81 9499.78 80
OMC-MVS99.08 10599.04 8599.20 16899.67 11198.22 23199.28 25799.52 10198.07 15199.66 8399.81 8997.79 10899.78 19497.79 22699.81 9499.60 146
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 999.51 11598.99 4599.88 2099.81 8999.27 599.96 3098.85 11499.80 9899.81 61
PC_three_145298.18 13499.84 2999.70 15699.31 398.52 37098.30 18699.80 9899.81 61
OPU-MVS99.64 7899.56 15699.72 4299.60 9699.70 15699.27 599.42 27598.24 18899.80 9899.79 74
MS-PatchMatch97.24 30697.32 28696.99 34798.45 36493.51 37698.82 35299.32 26797.41 22898.13 33099.30 30088.99 34699.56 25795.68 33199.80 9897.90 376
HPM-MVS++copyleft99.39 5299.23 6599.87 1199.75 7399.84 1599.43 19999.51 11598.68 8199.27 18699.53 23398.64 6999.96 3098.44 17399.80 9899.79 74
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 27199.52 10198.82 6599.39 15799.71 15298.96 2499.85 14898.59 15399.80 9899.77 82
MG-MVS99.13 8999.02 9199.45 12599.57 15298.63 19899.07 30699.34 25098.99 4599.61 10499.82 7597.98 10499.87 13897.00 28999.80 9899.85 36
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8999.78 4799.70 15698.65 6899.79 18999.65 2399.78 10599.41 197
MVP-Stereo97.81 25297.75 23397.99 31197.53 37896.60 31698.96 33498.85 34497.22 24597.23 35699.36 28395.28 19599.46 26495.51 33499.78 10597.92 375
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
API-MVS99.04 10999.03 8799.06 18299.40 20999.31 10899.55 13599.56 6998.54 9199.33 17299.39 27698.76 5299.78 19496.98 29199.78 10598.07 363
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10299.62 4198.21 12899.73 6299.79 11498.68 6499.96 3098.44 17399.77 10899.79 74
MSP-MVS99.42 4299.27 5899.88 599.89 899.80 2799.67 6599.50 13598.70 7899.77 5199.49 24698.21 9499.95 5998.46 17199.77 10899.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AdaColmapbinary99.01 11698.80 12599.66 6999.56 15699.54 7999.18 28599.70 1598.18 13499.35 16899.63 19696.32 15999.90 11697.48 25999.77 10899.55 159
test_vis1_n97.92 23397.44 26899.34 14099.53 16398.08 23899.74 4599.49 14399.15 20100.00 199.94 679.51 39399.98 1399.88 1499.76 11199.97 4
OpenMVScopyleft96.50 1698.47 16698.12 18699.52 11199.04 30199.53 8299.82 1799.72 1194.56 36298.08 33199.88 3694.73 22199.98 1397.47 26199.76 11199.06 237
ZD-MVS99.71 9699.79 3099.61 4896.84 27899.56 11599.54 22998.58 7299.96 3096.93 29699.75 113
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25299.40 22098.79 7099.52 12499.62 20198.91 3499.90 11698.64 14399.75 11399.82 54
CNLPA99.14 8798.99 9799.59 8799.58 15099.41 9899.16 28799.44 20398.45 10099.19 20699.49 24698.08 10199.89 12797.73 23599.75 11399.48 178
test_prior298.96 33498.34 11299.01 23899.52 23698.68 6497.96 21199.74 116
test1299.75 5899.64 12899.61 6799.29 27999.21 20098.38 8799.89 12799.74 11699.74 92
agg_prior297.21 27699.73 11899.75 88
test9_res97.49 25899.72 11999.75 88
train_agg99.02 11298.77 12999.77 5599.67 11199.65 5799.05 31199.41 21496.28 31698.95 24899.49 24698.76 5299.91 10597.63 24399.72 11999.75 88
EPNet98.86 13098.71 13499.30 15297.20 38598.18 23299.62 8898.91 33599.28 1698.63 29799.81 8995.96 16999.99 499.24 6999.72 11999.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DP-MVS Recon99.12 9598.95 10599.65 7399.74 8099.70 4699.27 26299.57 6496.40 31299.42 14499.68 17298.75 5599.80 18697.98 21099.72 11999.44 193
PVSNet96.02 1798.85 13798.84 12298.89 21199.73 8797.28 27298.32 38699.60 5497.86 17099.50 12799.57 21896.75 14499.86 14298.56 16099.70 12399.54 161
原ACMM199.65 7399.73 8799.33 10399.47 17597.46 21999.12 21799.66 18398.67 6699.91 10597.70 24099.69 12499.71 112
test22299.75 7399.49 8798.91 34499.49 14396.42 31099.34 17199.65 18498.28 9299.69 12499.72 103
F-COLMAP99.19 7799.04 8599.64 7899.78 5699.27 11499.42 20699.54 8597.29 23899.41 14899.59 21098.42 8599.93 8498.19 19199.69 12499.73 97
DPM-MVS98.95 12198.71 13499.66 6999.63 13199.55 7798.64 36999.10 30797.93 16599.42 14499.55 22498.67 6699.80 18695.80 32799.68 12799.61 144
旧先验199.74 8099.59 7099.54 8599.69 16698.47 8099.68 12799.73 97
PS-MVSNAJ99.32 5999.32 4099.30 15299.57 15298.94 16798.97 33399.46 18498.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12998.97 246
新几何199.75 5899.75 7399.59 7099.54 8596.76 28199.29 18099.64 19098.43 8399.94 6996.92 29899.66 12999.72 103
EPNet_dtu98.03 21597.96 20698.23 29498.27 36795.54 34299.23 27698.75 35399.02 3897.82 34399.71 15296.11 16499.48 26293.04 36899.65 13199.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testdata99.54 9799.75 7398.95 16499.51 11597.07 25999.43 14199.70 15698.87 3799.94 6997.76 23199.64 13299.72 103
PatchMatch-RL98.84 14098.62 14999.52 11199.71 9699.28 11299.06 30999.77 997.74 18999.50 12799.53 23395.41 19099.84 15597.17 28399.64 13299.44 193
NCCC99.34 5799.19 6899.79 4999.61 14199.65 5799.30 24799.48 15598.86 6099.21 20099.63 19698.72 6199.90 11698.25 18799.63 13499.80 70
EIA-MVS99.18 7999.09 7999.45 12599.49 18199.18 12499.67 6599.53 9697.66 19999.40 15399.44 26198.10 9999.81 18098.94 9699.62 13599.35 206
PLCcopyleft97.94 499.02 11298.85 12099.53 10599.66 12099.01 15299.24 27599.52 10196.85 27799.27 18699.48 25198.25 9399.91 10597.76 23199.62 13599.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ETV-MVS99.26 6999.21 6699.40 13399.46 19099.30 11099.56 12399.52 10198.52 9499.44 14099.27 30798.41 8699.86 14299.10 8099.59 13799.04 238
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 13998.94 34099.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13899.82 54
thisisatest053098.35 17898.03 19899.31 14799.63 13198.56 20499.54 14096.75 39597.53 21399.73 6299.65 18491.25 32499.89 12798.62 14599.56 13999.48 178
tttt051798.42 17098.14 18399.28 15999.66 12098.38 22599.74 4596.85 39397.68 19699.79 4299.74 14191.39 32199.89 12798.83 12099.56 13999.57 156
BH-RMVSNet98.41 17298.08 19299.40 13399.41 20498.83 18299.30 24798.77 35297.70 19498.94 25099.65 18492.91 27999.74 20596.52 31299.55 14199.64 136
MAR-MVS98.86 13098.63 14499.54 9799.37 21699.66 5399.45 18999.54 8596.61 29499.01 23899.40 27297.09 12999.86 14297.68 24299.53 14299.10 226
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
thisisatest051598.14 19897.79 22399.19 16999.50 17998.50 21498.61 37096.82 39496.95 27199.54 12099.43 26391.66 31699.86 14298.08 20299.51 14399.22 220
FA-MVS(test-final)98.75 14898.53 16099.41 13199.55 16099.05 14899.80 2699.01 31996.59 29899.58 11199.59 21095.39 19199.90 11697.78 22799.49 14499.28 214
FE-MVS98.48 16598.17 17999.40 13399.54 16298.96 16199.68 6298.81 34995.54 34399.62 10199.70 15693.82 26099.93 8497.35 27099.46 14599.32 211
Fast-Effi-MVS+-dtu98.77 14798.83 12498.60 24899.41 20496.99 29599.52 14999.49 14398.11 14399.24 19299.34 29096.96 13899.79 18997.95 21299.45 14699.02 241
PAPM_NR99.04 10998.84 12299.66 6999.74 8099.44 9499.39 22099.38 23197.70 19499.28 18199.28 30498.34 8999.85 14896.96 29399.45 14699.69 115
TSAR-MVS + GP.99.36 5599.36 3299.36 13999.67 11198.61 20199.07 30699.33 25799.00 4399.82 3599.81 8999.06 1699.84 15599.09 8199.42 14899.65 129
Vis-MVSNetpermissive99.12 9598.97 10199.56 9499.78 5699.10 13899.68 6299.66 2898.49 9799.86 2799.87 4494.77 21899.84 15599.19 7299.41 14999.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test250696.81 31696.65 31297.29 34199.74 8092.21 38499.60 9685.06 41399.13 2299.77 5199.93 987.82 36599.85 14899.38 4899.38 15099.80 70
test111198.04 21398.11 18797.83 32199.74 8093.82 36999.58 11095.40 40299.12 2599.65 8999.93 990.73 32999.84 15599.43 4699.38 15099.82 54
ECVR-MVScopyleft98.04 21398.05 19698.00 31099.74 8094.37 36499.59 10294.98 40399.13 2299.66 8399.93 990.67 33099.84 15599.40 4799.38 15099.80 70
Effi-MVS+-dtu98.78 14598.89 11398.47 26999.33 22896.91 30199.57 11799.30 27598.47 9899.41 14898.99 33896.78 14299.74 20598.73 13199.38 15098.74 268
test-LLR98.06 20797.90 21398.55 25898.79 33297.10 28298.67 36597.75 38597.34 23398.61 30098.85 35094.45 23899.45 26597.25 27499.38 15099.10 226
TESTMET0.1,197.55 28497.27 29498.40 27998.93 31696.53 31798.67 36597.61 38896.96 26998.64 29699.28 30488.63 35599.45 26597.30 27299.38 15099.21 221
test-mter97.49 29497.13 29998.55 25898.79 33297.10 28298.67 36597.75 38596.65 28998.61 30098.85 35088.23 35999.45 26597.25 27499.38 15099.10 226
PAPR98.63 16098.34 17099.51 11399.40 20999.03 14998.80 35499.36 24096.33 31399.00 24299.12 32698.46 8199.84 15595.23 34299.37 15799.66 125
xiu_mvs_v1_base_debu99.29 6399.27 5899.34 14099.63 13198.97 15799.12 29699.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 231
xiu_mvs_v1_base99.29 6399.27 5899.34 14099.63 13198.97 15799.12 29699.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 231
xiu_mvs_v1_base_debi99.29 6399.27 5899.34 14099.63 13198.97 15799.12 29699.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 231
131498.68 15598.54 15999.11 17898.89 32098.65 19699.27 26299.49 14396.89 27597.99 33699.56 22197.72 11199.83 16897.74 23499.27 16198.84 254
xiu_mvs_v2_base99.26 6999.25 6299.29 15599.53 16398.91 17199.02 31999.45 19598.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16298.98 245
PatchmatchNetpermissive98.31 18198.36 16898.19 29699.16 27695.32 34899.27 26298.92 33197.37 23199.37 16199.58 21494.90 20899.70 22797.43 26599.21 16399.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA98.19 19298.16 18098.27 29399.30 23695.55 34099.07 30698.97 32397.57 20699.43 14199.57 21892.72 28499.74 20597.58 24799.20 16499.52 167
sss99.17 8199.05 8399.53 10599.62 13798.97 15799.36 23199.62 4197.83 17699.67 7899.65 18497.37 11999.95 5999.19 7299.19 16599.68 119
MVS97.28 30296.55 31499.48 11998.78 33598.95 16499.27 26299.39 22383.53 39698.08 33199.54 22996.97 13799.87 13894.23 35599.16 16699.63 140
casdiffmvspermissive99.13 8998.98 10099.56 9499.65 12699.16 12799.56 12399.50 13598.33 11499.41 14899.86 4895.92 17399.83 16899.45 4599.16 16699.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned98.42 17098.36 16898.59 24999.49 18196.70 30999.27 26299.13 30597.24 24398.80 27199.38 27795.75 18099.74 20597.07 28799.16 16699.33 210
casdiffmvs_mvgpermissive99.15 8599.02 9199.55 9699.66 12099.09 13999.64 7999.56 6998.26 12099.45 13599.87 4496.03 16799.81 18099.54 3099.15 16999.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 8599.02 9199.53 10599.66 12099.14 13399.72 5099.48 15598.35 11199.42 14499.84 6396.07 16599.79 18999.51 3599.14 17099.67 122
IS-MVSNet99.05 10898.87 11599.57 9299.73 8799.32 10499.75 4299.20 29698.02 16099.56 11599.86 4896.54 15199.67 23598.09 19899.13 17199.73 97
Patchmatch-test97.93 23097.65 24298.77 23699.18 26697.07 28699.03 31699.14 30496.16 32798.74 27799.57 21894.56 23199.72 21593.36 36499.11 17299.52 167
diffmvspermissive99.14 8799.02 9199.51 11399.61 14198.96 16199.28 25799.49 14398.46 9999.72 6799.71 15296.50 15299.88 13399.31 5899.11 17299.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNet (Re-imp)98.87 12798.72 13299.31 14799.71 9698.88 17399.80 2699.44 20397.91 16799.36 16599.78 12095.49 18999.43 27497.91 21499.11 17299.62 142
RPSCF98.22 18898.62 14996.99 34799.82 4291.58 38699.72 5099.44 20396.61 29499.66 8399.89 3095.92 17399.82 17597.46 26299.10 17599.57 156
gg-mvs-nofinetune96.17 32895.32 33998.73 23898.79 33298.14 23599.38 22594.09 40691.07 38698.07 33491.04 40289.62 34399.35 28996.75 30399.09 17698.68 286
EPMVS97.82 25097.65 24298.35 28398.88 32195.98 33299.49 17594.71 40597.57 20699.26 19099.48 25192.46 29899.71 22197.87 21899.08 17799.35 206
MVS_Test99.10 10398.97 10199.48 11999.49 18199.14 13399.67 6599.34 25097.31 23699.58 11199.76 13397.65 11299.82 17598.87 10799.07 17899.46 188
ADS-MVSNet298.02 21798.07 19597.87 31799.33 22895.19 35199.23 27699.08 31096.24 32099.10 22299.67 17894.11 24998.93 35796.81 30199.05 17999.48 178
ADS-MVSNet98.20 19198.08 19298.56 25699.33 22896.48 31999.23 27699.15 30296.24 32099.10 22299.67 17894.11 24999.71 22196.81 30199.05 17999.48 178
GeoE98.85 13798.62 14999.53 10599.61 14199.08 14399.80 2699.51 11597.10 25799.31 17499.78 12095.23 20099.77 19698.21 18999.03 18199.75 88
baseline297.87 23997.55 25098.82 22899.18 26698.02 24199.41 20896.58 39996.97 26896.51 36699.17 31893.43 26799.57 25697.71 23899.03 18198.86 252
HyFIR lowres test99.11 9998.92 10799.65 7399.90 499.37 10099.02 31999.91 397.67 19899.59 11099.75 13695.90 17599.73 21199.53 3299.02 18399.86 33
LCM-MVSNet-Re97.83 24798.15 18296.87 35399.30 23692.25 38399.59 10298.26 37497.43 22596.20 36999.13 32396.27 16198.73 36698.17 19498.99 18499.64 136
mvs_anonymous99.03 11198.99 9799.16 17299.38 21398.52 21199.51 15799.38 23197.79 18199.38 15999.81 8997.30 12299.45 26599.35 5198.99 18499.51 173
EPP-MVSNet99.13 8998.99 9799.53 10599.65 12699.06 14699.81 2199.33 25797.43 22599.60 10799.88 3697.14 12699.84 15599.13 7798.94 18699.69 115
MIMVSNet97.73 26497.45 26398.57 25399.45 19597.50 26799.02 31998.98 32296.11 33299.41 14899.14 32290.28 33298.74 36595.74 32898.93 18799.47 184
TAMVS99.12 9599.08 8099.24 16499.46 19098.55 20599.51 15799.46 18498.09 14699.45 13599.82 7598.34 8999.51 26198.70 13498.93 18799.67 122
CDS-MVSNet99.09 10499.03 8799.25 16299.42 19998.73 19099.45 18999.46 18498.11 14399.46 13499.77 12898.01 10399.37 28298.70 13498.92 18999.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PAPM97.59 28297.09 30199.07 18199.06 29798.26 22998.30 38799.10 30794.88 35598.08 33199.34 29096.27 16199.64 24689.87 38498.92 18999.31 212
XVG-OURS-SEG-HR98.69 15498.62 14998.89 21199.71 9697.74 25799.12 29699.54 8598.44 10399.42 14499.71 15294.20 24599.92 9598.54 16498.90 19199.00 242
PMMVS98.80 14498.62 14999.34 14099.27 24598.70 19298.76 35899.31 27197.34 23399.21 20099.07 32897.20 12599.82 17598.56 16098.87 19299.52 167
DSMNet-mixed97.25 30497.35 28096.95 35097.84 37393.61 37599.57 11796.63 39796.13 33198.87 26298.61 36394.59 22997.70 38795.08 34498.86 19399.55 159
test_vis1_rt95.81 33495.65 33496.32 36099.67 11191.35 38799.49 17596.74 39698.25 12195.24 37598.10 37974.96 39499.90 11699.53 3298.85 19497.70 379
APD_test195.87 33296.49 31694.00 36699.53 16384.01 39499.54 14099.32 26795.91 33997.99 33699.85 5385.49 37499.88 13391.96 37698.84 19598.12 361
XVG-OURS98.73 15198.68 13798.88 21399.70 10197.73 25898.92 34299.55 7798.52 9499.45 13599.84 6395.27 19699.91 10598.08 20298.84 19599.00 242
Fast-Effi-MVS+98.70 15298.43 16499.51 11399.51 17099.28 11299.52 14999.47 17596.11 33299.01 23899.34 29096.20 16399.84 15597.88 21698.82 19799.39 200
ab-mvs98.86 13098.63 14499.54 9799.64 12899.19 12299.44 19599.54 8597.77 18499.30 17799.81 8994.20 24599.93 8499.17 7598.82 19799.49 177
MDTV_nov1_ep1398.32 17299.11 28494.44 36399.27 26298.74 35697.51 21699.40 15399.62 20194.78 21599.76 20097.59 24698.81 199
Test_1112_low_res98.89 12598.66 14199.57 9299.69 10698.95 16499.03 31699.47 17596.98 26799.15 21399.23 31296.77 14399.89 12798.83 12098.78 20099.86 33
1112_ss98.98 11898.77 12999.59 8799.68 11099.02 15099.25 27399.48 15597.23 24499.13 21599.58 21496.93 13999.90 11698.87 10798.78 20099.84 40
PatchT97.03 31296.44 31798.79 23498.99 30898.34 22699.16 28799.07 31392.13 38099.52 12497.31 38994.54 23498.98 34788.54 38998.73 20299.03 239
UWE-MVS97.58 28397.29 29098.48 26499.09 29096.25 32799.01 32496.61 39897.86 17099.19 20699.01 33688.72 35099.90 11697.38 26898.69 20399.28 214
WB-MVSnew97.65 27897.65 24297.63 33098.78 33597.62 26499.13 29398.33 37397.36 23299.07 22798.94 34495.64 18599.15 32292.95 36998.68 20496.12 394
tpmrst98.33 18098.48 16297.90 31699.16 27694.78 35799.31 24599.11 30697.27 23999.45 13599.59 21095.33 19499.84 15598.48 16798.61 20599.09 230
BH-w/o98.00 22297.89 21798.32 28699.35 22296.20 32999.01 32498.90 33796.42 31098.38 31499.00 33795.26 19899.72 21596.06 32098.61 20599.03 239
cascas97.69 27197.43 27298.48 26498.60 35797.30 27198.18 39199.39 22392.96 37798.41 31298.78 35793.77 26299.27 30398.16 19598.61 20598.86 252
CR-MVSNet98.17 19597.93 21198.87 21799.18 26698.49 21599.22 28099.33 25796.96 26999.56 11599.38 27794.33 24199.00 34594.83 34898.58 20899.14 223
RPMNet96.72 31795.90 32999.19 16999.18 26698.49 21599.22 28099.52 10188.72 39299.56 11597.38 38694.08 25199.95 5986.87 39698.58 20899.14 223
dp97.75 26197.80 22297.59 33399.10 28793.71 37299.32 24298.88 34096.48 30599.08 22699.55 22492.67 28999.82 17596.52 31298.58 20899.24 217
testing397.28 30296.76 31198.82 22899.37 21698.07 23999.45 18999.36 24097.56 20897.89 34098.95 34383.70 38498.82 36196.03 32198.56 21199.58 154
CVMVSNet98.57 16298.67 13898.30 28899.35 22295.59 33999.50 16499.55 7798.60 8699.39 15799.83 6794.48 23699.45 26598.75 12898.56 21199.85 36
Effi-MVS+98.81 14198.59 15599.48 11999.46 19099.12 13798.08 39299.50 13597.50 21799.38 15999.41 26996.37 15899.81 18099.11 7998.54 21399.51 173
testgi97.65 27897.50 25798.13 30299.36 22196.45 32099.42 20699.48 15597.76 18597.87 34199.45 26091.09 32598.81 36294.53 35098.52 21499.13 225
tpm cat197.39 29897.36 27897.50 33699.17 27493.73 37199.43 19999.31 27191.27 38398.71 28099.08 32794.31 24399.77 19696.41 31698.50 21599.00 242
WTY-MVS99.06 10798.88 11499.61 8499.62 13799.16 12799.37 22799.56 6998.04 15799.53 12299.62 20196.84 14099.94 6998.85 11498.49 21699.72 103
tpmvs97.98 22498.02 20097.84 32099.04 30194.73 35899.31 24599.20 29696.10 33698.76 27699.42 26594.94 20499.81 18096.97 29298.45 21798.97 246
LFMVS97.90 23697.35 28099.54 9799.52 16799.01 15299.39 22098.24 37697.10 25799.65 8999.79 11484.79 37999.91 10599.28 6398.38 21899.69 115
Syy-MVS97.09 31197.14 29796.95 35099.00 30592.73 38199.29 25299.39 22397.06 26197.41 35098.15 37593.92 25798.68 36791.71 37798.34 21999.45 191
myMVS_eth3d96.89 31396.37 31898.43 27699.00 30597.16 27999.29 25299.39 22397.06 26197.41 35098.15 37583.46 38598.68 36795.27 34198.34 21999.45 191
test_yl98.86 13098.63 14499.54 9799.49 18199.18 12499.50 16499.07 31398.22 12699.61 10499.51 23995.37 19299.84 15598.60 15198.33 22199.59 150
Anonymous2024052998.09 20397.68 23999.34 14099.66 12098.44 22199.40 21699.43 20993.67 36999.22 19799.89 3090.23 33699.93 8499.26 6898.33 22199.66 125
DCV-MVSNet98.86 13098.63 14499.54 9799.49 18199.18 12499.50 16499.07 31398.22 12699.61 10499.51 23995.37 19299.84 15598.60 15198.33 22199.59 150
GA-MVS97.85 24297.47 26099.00 19099.38 21397.99 24398.57 37399.15 30297.04 26498.90 25699.30 30089.83 33999.38 27896.70 30698.33 22199.62 142
VDD-MVS97.73 26497.35 28098.88 21399.47 18997.12 28199.34 23998.85 34498.19 13199.67 7899.85 5382.98 38699.92 9599.49 4098.32 22599.60 146
Anonymous20240521198.30 18397.98 20499.26 16199.57 15298.16 23399.41 20898.55 36996.03 33799.19 20699.74 14191.87 30799.92 9599.16 7698.29 22699.70 113
SDMVSNet99.11 9998.90 11099.75 5899.81 4699.59 7099.81 2199.65 3398.78 7399.64 9399.88 3694.56 23199.93 8499.67 2198.26 22799.72 103
sd_testset98.75 14898.57 15699.29 15599.81 4698.26 22999.56 12399.62 4198.78 7399.64 9399.88 3692.02 30499.88 13399.54 3098.26 22799.72 103
EGC-MVSNET82.80 36777.86 37397.62 33197.91 37196.12 33099.33 24199.28 2818.40 41025.05 41199.27 30784.11 38299.33 29289.20 38698.22 22997.42 384
GG-mvs-BLEND98.45 27198.55 36098.16 23399.43 19993.68 40797.23 35698.46 36589.30 34499.22 31295.43 33798.22 22997.98 371
thres20097.61 28197.28 29198.62 24799.64 12898.03 24099.26 27198.74 35697.68 19699.09 22598.32 37191.66 31699.81 18092.88 37098.22 22998.03 366
HY-MVS97.30 798.85 13798.64 14399.47 12299.42 19999.08 14399.62 8899.36 24097.39 23099.28 18199.68 17296.44 15699.92 9598.37 17898.22 22999.40 199
thres600view797.86 24197.51 25698.92 20299.72 9197.95 24899.59 10298.74 35697.94 16499.27 18698.62 36191.75 31099.86 14293.73 36098.19 23398.96 248
thres100view90097.76 25797.45 26398.69 24399.72 9197.86 25499.59 10298.74 35697.93 16599.26 19098.62 36191.75 31099.83 16893.22 36598.18 23498.37 350
tfpn200view997.72 26697.38 27698.72 23999.69 10697.96 24699.50 16498.73 36197.83 17699.17 21198.45 36691.67 31499.83 16893.22 36598.18 23498.37 350
VNet99.11 9998.90 11099.73 6499.52 16799.56 7599.41 20899.39 22399.01 4099.74 6099.78 12095.56 18699.92 9599.52 3498.18 23499.72 103
thres40097.77 25697.38 27698.92 20299.69 10697.96 24699.50 16498.73 36197.83 17699.17 21198.45 36691.67 31499.83 16893.22 36598.18 23498.96 248
VDDNet97.55 28497.02 30399.16 17299.49 18198.12 23799.38 22599.30 27595.35 34599.68 7499.90 2682.62 38899.93 8499.31 5898.13 23899.42 195
alignmvs98.81 14198.56 15899.58 9099.43 19799.42 9699.51 15798.96 32598.61 8599.35 16898.92 34894.78 21599.77 19699.35 5198.11 23999.54 161
tpm297.44 29697.34 28397.74 32799.15 28094.36 36599.45 18998.94 32693.45 37498.90 25699.44 26191.35 32299.59 25597.31 27198.07 24099.29 213
testing1197.50 28997.10 30098.71 24199.20 26096.91 30199.29 25298.82 34797.89 16898.21 32698.40 36885.63 37399.83 16898.45 17298.04 24199.37 204
JIA-IIPM97.50 28997.02 30398.93 20098.73 34297.80 25699.30 24798.97 32391.73 38298.91 25494.86 39695.10 20299.71 22197.58 24797.98 24299.28 214
testing9197.44 29697.02 30398.71 24199.18 26696.89 30399.19 28399.04 31697.78 18398.31 31898.29 37285.41 37599.85 14898.01 20897.95 24399.39 200
CostFormer97.72 26697.73 23597.71 32899.15 28094.02 36899.54 14099.02 31894.67 36099.04 23599.35 28692.35 30199.77 19698.50 16697.94 24499.34 209
sasdasda99.02 11298.86 11899.51 11399.42 19999.32 10499.80 2699.48 15598.63 8299.31 17498.81 35397.09 12999.75 20399.27 6697.90 24599.47 184
canonicalmvs99.02 11298.86 11899.51 11399.42 19999.32 10499.80 2699.48 15598.63 8299.31 17498.81 35397.09 12999.75 20399.27 6697.90 24599.47 184
ETVMVS97.50 28996.90 30799.29 15599.23 25398.78 18899.32 24298.90 33797.52 21598.56 30498.09 38084.72 38099.69 23297.86 21997.88 24799.39 200
MGCFI-Net99.01 11698.85 12099.50 11899.42 19999.26 11699.82 1799.48 15598.60 8699.28 18198.81 35397.04 13399.76 20099.29 6297.87 24899.47 184
OpenMVS_ROBcopyleft92.34 2094.38 34993.70 35596.41 35997.38 38093.17 37899.06 30998.75 35386.58 39394.84 38198.26 37381.53 39199.32 29589.01 38797.87 24896.76 387
testing9997.36 29996.94 30698.63 24699.18 26696.70 30999.30 24798.93 32897.71 19198.23 32398.26 37384.92 37899.84 15598.04 20797.85 25099.35 206
TR-MVS97.76 25797.41 27498.82 22899.06 29797.87 25298.87 34898.56 36896.63 29398.68 28899.22 31392.49 29499.65 24395.40 33897.79 25198.95 250
DeepMVS_CXcopyleft93.34 36999.29 24082.27 39799.22 29285.15 39496.33 36899.05 33190.97 32799.73 21193.57 36297.77 25298.01 367
tt080597.97 22797.77 22898.57 25399.59 14896.61 31599.45 18999.08 31098.21 12898.88 25999.80 10288.66 35399.70 22798.58 15497.72 25399.39 200
CLD-MVS98.16 19698.10 18898.33 28499.29 24096.82 30698.75 35999.44 20397.83 17699.13 21599.55 22492.92 27799.67 23598.32 18497.69 25498.48 336
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
testing22297.16 30796.50 31599.16 17299.16 27698.47 21999.27 26298.66 36597.71 19198.23 32398.15 37582.28 39099.84 15597.36 26997.66 25599.18 222
bld_raw_dy_0_6498.26 18797.88 21899.40 13399.37 21699.09 13999.62 8898.94 32698.53 9299.40 15399.51 23988.93 34799.89 12799.00 8997.64 25699.23 218
HQP_MVS98.27 18698.22 17898.44 27499.29 24096.97 29799.39 22099.47 17598.97 5199.11 21999.61 20592.71 28699.69 23297.78 22797.63 25798.67 293
plane_prior599.47 17599.69 23297.78 22797.63 25798.67 293
test_djsdf98.67 15698.57 15698.98 19298.70 34798.91 17199.88 499.46 18497.55 20999.22 19799.88 3695.73 18199.28 30099.03 8597.62 25998.75 265
anonymousdsp98.44 16898.28 17598.94 19898.50 36298.96 16199.77 3599.50 13597.07 25998.87 26299.77 12894.76 21999.28 30098.66 14197.60 26098.57 330
plane_prior96.97 29799.21 28298.45 10097.60 260
HQP3-MVS99.39 22397.58 262
HQP-MVS98.02 21797.90 21398.37 28299.19 26396.83 30498.98 33099.39 22398.24 12298.66 28999.40 27292.47 29599.64 24697.19 28097.58 26298.64 305
EI-MVSNet98.67 15698.67 13898.68 24499.35 22297.97 24499.50 16499.38 23196.93 27499.20 20399.83 6797.87 10599.36 28698.38 17697.56 26498.71 273
MVSTER98.49 16498.32 17299.00 19099.35 22299.02 15099.54 14099.38 23197.41 22899.20 20399.73 14793.86 25999.36 28698.87 10797.56 26498.62 315
OPM-MVS98.19 19298.10 18898.45 27198.88 32197.07 28699.28 25799.38 23198.57 8899.22 19799.81 8992.12 30299.66 23898.08 20297.54 26698.61 324
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet_ETH3D97.32 30196.81 30998.87 21799.40 20997.46 26899.51 15799.53 9695.86 34098.54 30699.77 12882.44 38999.66 23898.68 13997.52 26799.50 176
LPG-MVS_test98.22 18898.13 18598.49 26299.33 22897.05 28899.58 11099.55 7797.46 21999.24 19299.83 6792.58 29199.72 21598.09 19897.51 26898.68 286
LGP-MVS_train98.49 26299.33 22897.05 28899.55 7797.46 21999.24 19299.83 6792.58 29199.72 21598.09 19897.51 26898.68 286
jajsoiax98.43 16998.28 17598.88 21398.60 35798.43 22299.82 1799.53 9698.19 13198.63 29799.80 10293.22 27299.44 27099.22 7097.50 27098.77 261
EG-PatchMatch MVS95.97 33195.69 33396.81 35497.78 37492.79 38099.16 28798.93 32896.16 32794.08 38399.22 31382.72 38799.47 26395.67 33297.50 27098.17 359
test_040296.64 31896.24 32197.85 31898.85 32896.43 32199.44 19599.26 28593.52 37196.98 36399.52 23688.52 35699.20 31992.58 37597.50 27097.93 374
ACMP97.20 1198.06 20797.94 21098.45 27199.37 21697.01 29399.44 19599.49 14397.54 21298.45 31199.79 11491.95 30699.72 21597.91 21497.49 27398.62 315
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
iter_conf0598.55 16398.44 16398.87 21799.34 22698.60 20299.55 13599.42 21198.21 12899.37 16199.77 12893.55 26699.38 27899.30 6197.48 27498.63 312
mvs_tets98.40 17598.23 17798.91 20698.67 35098.51 21399.66 7099.53 9698.19 13198.65 29599.81 8992.75 28199.44 27099.31 5897.48 27498.77 261
test_fmvs297.25 30497.30 28897.09 34699.43 19793.31 37799.73 4898.87 34298.83 6499.28 18199.80 10284.45 38199.66 23897.88 21697.45 27698.30 352
ACMM97.58 598.37 17798.34 17098.48 26499.41 20497.10 28299.56 12399.45 19598.53 9299.04 23599.85 5393.00 27599.71 22198.74 12997.45 27698.64 305
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH97.28 898.10 20297.99 20298.44 27499.41 20496.96 29999.60 9699.56 6998.09 14698.15 32999.91 2090.87 32899.70 22798.88 10497.45 27698.67 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB97.16 1298.02 21797.90 21398.40 27999.23 25396.80 30799.70 5399.60 5497.12 25398.18 32899.70 15691.73 31299.72 21598.39 17597.45 27698.68 286
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMMP++97.43 280
D2MVS98.41 17298.50 16198.15 30199.26 24796.62 31499.40 21699.61 4897.71 19198.98 24499.36 28396.04 16699.67 23598.70 13497.41 28198.15 360
mvsmamba98.92 12398.87 11599.08 17999.07 29499.16 12799.88 499.51 11598.15 13699.40 15399.89 3097.12 12799.33 29299.38 4897.40 28298.73 270
ITE_SJBPF98.08 30399.29 24096.37 32298.92 33198.34 11298.83 26799.75 13691.09 32599.62 25295.82 32597.40 28298.25 356
XVG-ACMP-BASELINE97.83 24797.71 23798.20 29599.11 28496.33 32499.41 20899.52 10198.06 15599.05 23499.50 24389.64 34299.73 21197.73 23597.38 28498.53 332
USDC97.34 30097.20 29597.75 32699.07 29495.20 35098.51 37799.04 31697.99 16198.31 31899.86 4889.02 34599.55 25995.67 33297.36 28598.49 335
PVSNet_BlendedMVS98.86 13098.80 12599.03 18699.76 6598.79 18699.28 25799.91 397.42 22799.67 7899.37 28097.53 11399.88 13398.98 9297.29 28698.42 344
dmvs_re98.08 20598.16 18097.85 31899.55 16094.67 36099.70 5398.92 33198.15 13699.06 23299.35 28693.67 26599.25 30597.77 23097.25 28799.64 136
PS-MVSNAJss98.92 12398.92 10798.90 20898.78 33598.53 20799.78 3399.54 8598.07 15199.00 24299.76 13399.01 1899.37 28299.13 7797.23 28898.81 255
TinyColmap97.12 30996.89 30897.83 32199.07 29495.52 34398.57 37398.74 35697.58 20597.81 34499.79 11488.16 36099.56 25795.10 34397.21 28998.39 348
ACMMP++_ref97.19 290
ACMH+97.24 1097.92 23397.78 22698.32 28699.46 19096.68 31299.56 12399.54 8598.41 10497.79 34599.87 4490.18 33799.66 23898.05 20697.18 29198.62 315
test0.0.03 197.71 26997.42 27398.56 25698.41 36697.82 25598.78 35698.63 36697.34 23398.05 33598.98 34094.45 23898.98 34795.04 34597.15 29298.89 251
CMPMVSbinary69.68 2394.13 35094.90 34291.84 37397.24 38480.01 40398.52 37699.48 15589.01 39091.99 39199.67 17885.67 37299.13 32695.44 33697.03 29396.39 391
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
RRT_MVS98.70 15298.66 14198.83 22798.90 31898.45 22099.89 299.28 28197.76 18598.94 25099.92 1496.98 13699.25 30599.28 6397.00 29498.80 256
OurMVSNet-221017-097.88 23797.77 22898.19 29698.71 34696.53 31799.88 499.00 32097.79 18198.78 27499.94 691.68 31399.35 28997.21 27696.99 29598.69 281
LF4IMVS97.52 28697.46 26297.70 32998.98 31195.55 34099.29 25298.82 34798.07 15198.66 28999.64 19089.97 33899.61 25397.01 28896.68 29697.94 373
GBi-Net97.68 27397.48 25898.29 28999.51 17097.26 27599.43 19999.48 15596.49 30299.07 22799.32 29790.26 33398.98 34797.10 28496.65 29798.62 315
test197.68 27397.48 25898.29 28999.51 17097.26 27599.43 19999.48 15596.49 30299.07 22799.32 29790.26 33398.98 34797.10 28496.65 29798.62 315
FMVSNet398.03 21597.76 23298.84 22599.39 21298.98 15499.40 21699.38 23196.67 28799.07 22799.28 30492.93 27698.98 34797.10 28496.65 29798.56 331
FMVSNet297.72 26697.36 27898.80 23399.51 17098.84 17999.45 18999.42 21196.49 30298.86 26699.29 30290.26 33398.98 34796.44 31496.56 30098.58 329
K. test v397.10 31096.79 31098.01 30898.72 34496.33 32499.87 997.05 39297.59 20396.16 37099.80 10288.71 35199.04 33896.69 30796.55 30198.65 303
tpm97.67 27697.55 25098.03 30599.02 30395.01 35499.43 19998.54 37096.44 30899.12 21799.34 29091.83 30999.60 25497.75 23396.46 30299.48 178
SixPastTwentyTwo97.50 28997.33 28598.03 30598.65 35196.23 32899.77 3598.68 36497.14 25097.90 33999.93 990.45 33199.18 32097.00 28996.43 30398.67 293
FIs98.78 14598.63 14499.23 16699.18 26699.54 7999.83 1699.59 5798.28 11798.79 27399.81 8996.75 14499.37 28299.08 8296.38 30498.78 258
FC-MVSNet-test98.75 14898.62 14999.15 17699.08 29399.45 9399.86 1299.60 5498.23 12598.70 28699.82 7596.80 14199.22 31299.07 8396.38 30498.79 257
XXY-MVS98.38 17698.09 19199.24 16499.26 24799.32 10499.56 12399.55 7797.45 22298.71 28099.83 6793.23 27099.63 25198.88 10496.32 30698.76 263
FMVSNet196.84 31596.36 31998.29 28999.32 23497.26 27599.43 19999.48 15595.11 34998.55 30599.32 29783.95 38398.98 34795.81 32696.26 30798.62 315
N_pmnet94.95 34495.83 33192.31 37298.47 36379.33 40499.12 29692.81 41093.87 36797.68 34699.13 32393.87 25899.01 34491.38 37996.19 30898.59 328
Anonymous2024052196.20 32795.89 33097.13 34497.72 37794.96 35699.79 3299.29 27993.01 37697.20 35899.03 33389.69 34198.36 37391.16 38096.13 30998.07 363
pmmvs498.13 19997.90 21398.81 23198.61 35698.87 17498.99 32799.21 29596.44 30899.06 23299.58 21495.90 17599.11 33197.18 28296.11 31098.46 341
our_test_397.65 27897.68 23997.55 33498.62 35494.97 35598.84 35099.30 27596.83 28098.19 32799.34 29097.01 13599.02 34295.00 34696.01 31198.64 305
IterMVS97.83 24797.77 22898.02 30799.58 15096.27 32699.02 31999.48 15597.22 24598.71 28099.70 15692.75 28199.13 32697.46 26296.00 31298.67 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2297.85 24297.64 24598.48 26499.09 29097.87 25298.60 37299.33 25797.11 25698.87 26299.22 31392.38 30099.17 32198.21 18995.99 31398.42 344
miper_ehance_all_eth98.18 19498.10 18898.41 27799.23 25397.72 25998.72 36299.31 27196.60 29698.88 25999.29 30297.29 12399.13 32697.60 24595.99 31398.38 349
miper_enhance_ethall98.16 19698.08 19298.41 27798.96 31497.72 25998.45 37999.32 26796.95 27198.97 24699.17 31897.06 13299.22 31297.86 21995.99 31398.29 353
ppachtmachnet_test97.49 29497.45 26397.61 33298.62 35495.24 34998.80 35499.46 18496.11 33298.22 32599.62 20196.45 15598.97 35493.77 35995.97 31698.61 324
pmmvs597.52 28697.30 28898.16 29898.57 35996.73 30899.27 26298.90 33796.14 33098.37 31599.53 23391.54 31999.14 32397.51 25695.87 31798.63 312
IterMVS-SCA-FT97.82 25097.75 23398.06 30499.57 15296.36 32399.02 31999.49 14397.18 24798.71 28099.72 15192.72 28499.14 32397.44 26495.86 31898.67 293
cl____98.01 22097.84 22198.55 25899.25 25197.97 24498.71 36399.34 25096.47 30798.59 30399.54 22995.65 18499.21 31797.21 27695.77 31998.46 341
DIV-MVS_self_test98.01 22097.85 22098.48 26499.24 25297.95 24898.71 36399.35 24696.50 30198.60 30299.54 22995.72 18299.03 34097.21 27695.77 31998.46 341
new_pmnet96.38 32496.03 32697.41 33798.13 37095.16 35399.05 31199.20 29693.94 36697.39 35398.79 35691.61 31899.04 33890.43 38295.77 31998.05 365
FMVSNet596.43 32396.19 32297.15 34299.11 28495.89 33499.32 24299.52 10194.47 36498.34 31799.07 32887.54 36697.07 39192.61 37495.72 32298.47 338
Gipumacopyleft90.99 36090.15 36593.51 36898.73 34290.12 38993.98 40099.45 19579.32 39892.28 39094.91 39569.61 39697.98 38187.42 39395.67 32392.45 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
IterMVS-LS98.46 16798.42 16598.58 25299.59 14898.00 24299.37 22799.43 20996.94 27399.07 22799.59 21097.87 10599.03 34098.32 18495.62 32498.71 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry97.75 26197.40 27598.81 23199.10 28798.87 17499.11 30299.33 25794.83 35798.81 26999.38 27794.33 24199.02 34296.10 31995.57 32598.53 332
MIMVSNet195.51 33695.04 34196.92 35297.38 38095.60 33899.52 14999.50 13593.65 37096.97 36499.17 31885.28 37796.56 39588.36 39095.55 32698.60 327
eth_miper_zixun_eth98.05 21297.96 20698.33 28499.26 24797.38 27098.56 37599.31 27196.65 28998.88 25999.52 23696.58 14999.12 33097.39 26795.53 32798.47 338
miper_lstm_enhance98.00 22297.91 21298.28 29299.34 22697.43 26998.88 34699.36 24096.48 30598.80 27199.55 22495.98 16898.91 35897.27 27395.50 32898.51 334
tfpnnormal97.84 24597.47 26098.98 19299.20 26099.22 12199.64 7999.61 4896.32 31498.27 32299.70 15693.35 26999.44 27095.69 33095.40 32998.27 354
c3_l98.12 20198.04 19798.38 28199.30 23697.69 26398.81 35399.33 25796.67 28798.83 26799.34 29097.11 12898.99 34697.58 24795.34 33098.48 336
EU-MVSNet97.98 22498.03 19897.81 32498.72 34496.65 31399.66 7099.66 2898.09 14698.35 31699.82 7595.25 19998.01 38097.41 26695.30 33198.78 258
v124097.69 27197.32 28698.79 23498.85 32898.43 22299.48 17999.36 24096.11 33299.27 18699.36 28393.76 26399.24 30894.46 35195.23 33298.70 277
v119297.81 25297.44 26898.91 20698.88 32198.68 19399.51 15799.34 25096.18 32599.20 20399.34 29094.03 25299.36 28695.32 34095.18 33398.69 281
v114497.98 22497.69 23898.85 22498.87 32498.66 19599.54 14099.35 24696.27 31899.23 19699.35 28694.67 22699.23 30996.73 30495.16 33498.68 286
v192192097.80 25497.45 26398.84 22598.80 33198.53 20799.52 14999.34 25096.15 32999.24 19299.47 25493.98 25499.29 29995.40 33895.13 33598.69 281
Anonymous2023120696.22 32596.03 32696.79 35597.31 38394.14 36799.63 8399.08 31096.17 32697.04 36299.06 33093.94 25597.76 38686.96 39595.06 33698.47 338
v14419297.92 23397.60 24898.87 21798.83 33098.65 19699.55 13599.34 25096.20 32399.32 17399.40 27294.36 24099.26 30496.37 31795.03 33798.70 277
v2v48298.06 20797.77 22898.92 20298.90 31898.82 18399.57 11799.36 24096.65 28999.19 20699.35 28694.20 24599.25 30597.72 23794.97 33898.69 281
FPMVS84.93 36685.65 36782.75 38786.77 40863.39 41398.35 38298.92 33174.11 39983.39 39898.98 34050.85 40692.40 40284.54 40094.97 33892.46 397
lessismore_v097.79 32598.69 34895.44 34694.75 40495.71 37499.87 4488.69 35299.32 29595.89 32494.93 34098.62 315
dmvs_testset95.02 34196.12 32391.72 37499.10 28780.43 40299.58 11097.87 38497.47 21895.22 37698.82 35293.99 25395.18 39988.09 39194.91 34199.56 158
test_method91.10 35991.36 36190.31 37895.85 39173.72 41194.89 39999.25 28768.39 40295.82 37399.02 33580.50 39298.95 35693.64 36194.89 34298.25 356
V4298.06 20797.79 22398.86 22198.98 31198.84 17999.69 5699.34 25096.53 30099.30 17799.37 28094.67 22699.32 29597.57 25194.66 34398.42 344
v1097.85 24297.52 25498.86 22198.99 30898.67 19499.75 4299.41 21495.70 34198.98 24499.41 26994.75 22099.23 30996.01 32394.63 34498.67 293
nrg03098.64 15998.42 16599.28 15999.05 30099.69 4799.81 2199.46 18498.04 15799.01 23899.82 7596.69 14699.38 27899.34 5594.59 34598.78 258
VPA-MVSNet98.29 18497.95 20899.30 15299.16 27699.54 7999.50 16499.58 6198.27 11999.35 16899.37 28092.53 29399.65 24399.35 5194.46 34698.72 271
MDA-MVSNet_test_wron95.45 33794.60 34498.01 30898.16 36997.21 27899.11 30299.24 28993.49 37280.73 40298.98 34093.02 27498.18 37594.22 35694.45 34798.64 305
Anonymous2023121197.88 23797.54 25398.90 20899.71 9698.53 20799.48 17999.57 6494.16 36598.81 26999.68 17293.23 27099.42 27598.84 11794.42 34898.76 263
MDA-MVSNet-bldmvs94.96 34393.98 35097.92 31498.24 36897.27 27399.15 29099.33 25793.80 36880.09 40399.03 33388.31 35897.86 38493.49 36394.36 34998.62 315
WR-MVS98.06 20797.73 23599.06 18298.86 32799.25 11899.19 28399.35 24697.30 23798.66 28999.43 26393.94 25599.21 31798.58 15494.28 35098.71 273
test20.0396.12 32995.96 32896.63 35697.44 37995.45 34599.51 15799.38 23196.55 29996.16 37099.25 31093.76 26396.17 39687.35 39494.22 35198.27 354
YYNet195.36 33994.51 34697.92 31497.89 37297.10 28299.10 30499.23 29093.26 37580.77 40199.04 33292.81 28098.02 37994.30 35294.18 35298.64 305
CP-MVSNet98.09 20397.78 22699.01 18898.97 31399.24 11999.67 6599.46 18497.25 24198.48 31099.64 19093.79 26199.06 33698.63 14494.10 35398.74 268
v897.95 22997.63 24698.93 20098.95 31598.81 18599.80 2699.41 21496.03 33799.10 22299.42 26594.92 20799.30 29896.94 29594.08 35498.66 301
PS-CasMVS97.93 23097.59 24998.95 19798.99 30899.06 14699.68 6299.52 10197.13 25198.31 31899.68 17292.44 29999.05 33798.51 16594.08 35498.75 265
WB-MVS93.10 35494.10 34890.12 37995.51 39781.88 39999.73 4899.27 28495.05 35293.09 38898.91 34994.70 22491.89 40376.62 40294.02 35696.58 389
v7n97.87 23997.52 25498.92 20298.76 34098.58 20399.84 1399.46 18496.20 32398.91 25499.70 15694.89 20999.44 27096.03 32193.89 35798.75 265
SSC-MVS92.73 35693.73 35289.72 38095.02 39981.38 40099.76 3899.23 29094.87 35692.80 38998.93 34594.71 22391.37 40474.49 40493.80 35896.42 390
WR-MVS_H98.13 19997.87 21998.90 20899.02 30398.84 17999.70 5399.59 5797.27 23998.40 31399.19 31795.53 18799.23 30998.34 18193.78 35998.61 324
NR-MVSNet97.97 22797.61 24799.02 18798.87 32499.26 11699.47 18599.42 21197.63 20197.08 36199.50 24395.07 20399.13 32697.86 21993.59 36098.68 286
pm-mvs197.68 27397.28 29198.88 21399.06 29798.62 19999.50 16499.45 19596.32 31497.87 34199.79 11492.47 29599.35 28997.54 25493.54 36198.67 293
UniMVSNet (Re)98.29 18498.00 20199.13 17799.00 30599.36 10299.49 17599.51 11597.95 16398.97 24699.13 32396.30 16099.38 27898.36 18093.34 36298.66 301
baseline198.31 18197.95 20899.38 13899.50 17998.74 18999.59 10298.93 32898.41 10499.14 21499.60 20894.59 22999.79 18998.48 16793.29 36399.61 144
VPNet97.84 24597.44 26899.01 18899.21 25898.94 16799.48 17999.57 6498.38 10699.28 18199.73 14788.89 34899.39 27799.19 7293.27 36498.71 273
PEN-MVS97.76 25797.44 26898.72 23998.77 33998.54 20699.78 3399.51 11597.06 26198.29 32199.64 19092.63 29098.89 36098.09 19893.16 36598.72 271
v14897.79 25597.55 25098.50 26198.74 34197.72 25999.54 14099.33 25796.26 31998.90 25699.51 23994.68 22599.14 32397.83 22393.15 36698.63 312
TranMVSNet+NR-MVSNet97.93 23097.66 24198.76 23798.78 33598.62 19999.65 7699.49 14397.76 18598.49 30999.60 20894.23 24498.97 35498.00 20992.90 36798.70 277
Baseline_NR-MVSNet97.76 25797.45 26398.68 24499.09 29098.29 22799.41 20898.85 34495.65 34298.63 29799.67 17894.82 21199.10 33398.07 20592.89 36898.64 305
UniMVSNet_NR-MVSNet98.22 18897.97 20598.96 19598.92 31798.98 15499.48 17999.53 9697.76 18598.71 28099.46 25896.43 15799.22 31298.57 15792.87 36998.69 281
DU-MVS98.08 20597.79 22398.96 19598.87 32498.98 15499.41 20899.45 19597.87 16998.71 28099.50 24394.82 21199.22 31298.57 15792.87 36998.68 286
pmmvs696.53 32096.09 32597.82 32398.69 34895.47 34499.37 22799.47 17593.46 37397.41 35099.78 12087.06 36899.33 29296.92 29892.70 37198.65 303
DTE-MVSNet97.51 28897.19 29698.46 27098.63 35398.13 23699.84 1399.48 15596.68 28697.97 33899.67 17892.92 27798.56 36996.88 30092.60 37298.70 277
ET-MVSNet_ETH3D96.49 32195.64 33599.05 18499.53 16398.82 18398.84 35097.51 39097.63 20184.77 39699.21 31692.09 30398.91 35898.98 9292.21 37399.41 197
TransMVSNet (Re)97.15 30896.58 31398.86 22199.12 28298.85 17899.49 17598.91 33595.48 34497.16 35999.80 10293.38 26899.11 33194.16 35791.73 37498.62 315
ambc93.06 37192.68 40282.36 39698.47 37898.73 36195.09 37997.41 38555.55 40399.10 33396.42 31591.32 37597.71 377
testf190.42 36190.68 36389.65 38197.78 37473.97 40999.13 29398.81 34989.62 38891.80 39298.93 34562.23 40198.80 36386.61 39791.17 37696.19 392
APD_test290.42 36190.68 36389.65 38197.78 37473.97 40999.13 29398.81 34989.62 38891.80 39298.93 34562.23 40198.80 36386.61 39791.17 37696.19 392
PMVScopyleft70.75 2275.98 37374.97 37479.01 38970.98 41255.18 41493.37 40198.21 37865.08 40661.78 40793.83 39721.74 41492.53 40178.59 40191.12 37889.34 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_f91.90 35891.26 36293.84 36795.52 39685.92 39399.69 5698.53 37195.31 34693.87 38496.37 39355.33 40498.27 37495.70 32990.98 37997.32 385
test_fmvs392.10 35791.77 36093.08 37096.19 38986.25 39299.82 1798.62 36796.65 28995.19 37896.90 39055.05 40595.93 39896.63 31190.92 38097.06 386
mvsany_test393.77 35293.45 35694.74 36595.78 39288.01 39199.64 7998.25 37598.28 11794.31 38297.97 38268.89 39798.51 37197.50 25790.37 38197.71 377
UnsupCasMVSNet_eth96.44 32296.12 32397.40 33898.65 35195.65 33799.36 23199.51 11597.13 25196.04 37298.99 33888.40 35798.17 37696.71 30590.27 38298.40 347
Patchmatch-RL test95.84 33395.81 33295.95 36295.61 39390.57 38898.24 38898.39 37295.10 35195.20 37798.67 36094.78 21597.77 38596.28 31890.02 38399.51 173
PM-MVS92.96 35592.23 35995.14 36495.61 39389.98 39099.37 22798.21 37894.80 35895.04 38097.69 38365.06 39897.90 38394.30 35289.98 38497.54 383
pmmvs-eth3d95.34 34094.73 34397.15 34295.53 39595.94 33399.35 23699.10 30795.13 34793.55 38597.54 38488.15 36197.91 38294.58 34989.69 38597.61 380
new-patchmatchnet94.48 34894.08 34995.67 36395.08 39892.41 38299.18 28599.28 28194.55 36393.49 38697.37 38787.86 36497.01 39291.57 37888.36 38697.61 380
test_vis3_rt87.04 36385.81 36690.73 37793.99 40181.96 39899.76 3890.23 41292.81 37881.35 40091.56 40040.06 40999.07 33594.27 35488.23 38791.15 400
UnsupCasMVSNet_bld93.53 35392.51 35896.58 35897.38 38093.82 36998.24 38899.48 15591.10 38593.10 38796.66 39174.89 39598.37 37294.03 35887.71 38897.56 382
pmmvs394.09 35193.25 35796.60 35794.76 40094.49 36298.92 34298.18 38089.66 38796.48 36798.06 38186.28 36997.33 38989.68 38587.20 38997.97 372
IB-MVS95.67 1896.22 32595.44 33898.57 25399.21 25896.70 30998.65 36897.74 38796.71 28497.27 35598.54 36486.03 37099.92 9598.47 17086.30 39099.10 226
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
LCM-MVSNet86.80 36585.22 36991.53 37587.81 40780.96 40198.23 39098.99 32171.05 40090.13 39596.51 39248.45 40896.88 39390.51 38185.30 39196.76 387
h-mvs3397.70 27097.28 29198.97 19499.70 10197.27 27399.36 23199.45 19598.94 5499.66 8399.64 19094.93 20599.99 499.48 4184.36 39299.65 129
AUN-MVS96.88 31496.31 32098.59 24999.48 18897.04 29199.27 26299.22 29297.44 22498.51 30799.41 26991.97 30599.66 23897.71 23883.83 39399.07 236
hse-mvs297.50 28997.14 29798.59 24999.49 18197.05 28899.28 25799.22 29298.94 5499.66 8399.42 26594.93 20599.65 24399.48 4183.80 39499.08 231
TDRefinement95.42 33894.57 34597.97 31289.83 40696.11 33199.48 17998.75 35396.74 28296.68 36599.88 3688.65 35499.71 22198.37 17882.74 39598.09 362
PVSNet_094.43 1996.09 33095.47 33697.94 31399.31 23594.34 36697.81 39499.70 1597.12 25397.46 34998.75 35889.71 34099.79 18997.69 24181.69 39699.68 119
KD-MVS_self_test95.00 34294.34 34796.96 34997.07 38895.39 34799.56 12399.44 20395.11 34997.13 36097.32 38891.86 30897.27 39090.35 38381.23 39798.23 358
CL-MVSNet_self_test94.49 34793.97 35196.08 36196.16 39093.67 37498.33 38599.38 23195.13 34797.33 35498.15 37592.69 28896.57 39488.67 38879.87 39897.99 370
PMMVS286.87 36485.37 36891.35 37690.21 40583.80 39598.89 34597.45 39183.13 39791.67 39495.03 39448.49 40794.70 40085.86 39977.62 39995.54 395
KD-MVS_2432*160094.62 34593.72 35397.31 33997.19 38695.82 33598.34 38399.20 29695.00 35397.57 34798.35 36987.95 36298.10 37792.87 37177.00 40098.01 367
miper_refine_blended94.62 34593.72 35397.31 33997.19 38695.82 33598.34 38399.20 29695.00 35397.57 34798.35 36987.95 36298.10 37792.87 37177.00 40098.01 367
MVEpermissive76.82 2176.91 37274.31 37684.70 38485.38 41076.05 40896.88 39893.17 40867.39 40371.28 40589.01 40421.66 41587.69 40571.74 40572.29 40290.35 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN80.61 36979.88 37182.81 38690.75 40476.38 40797.69 39595.76 40166.44 40483.52 39792.25 39962.54 40087.16 40668.53 40661.40 40384.89 404
EMVS80.02 37079.22 37282.43 38891.19 40376.40 40697.55 39792.49 41166.36 40583.01 39991.27 40164.63 39985.79 40765.82 40760.65 40485.08 403
ANet_high77.30 37174.86 37584.62 38575.88 41177.61 40597.63 39693.15 40988.81 39164.27 40689.29 40336.51 41083.93 40875.89 40352.31 40592.33 399
tmp_tt82.80 36781.52 37086.66 38366.61 41368.44 41292.79 40297.92 38268.96 40180.04 40499.85 5385.77 37196.15 39797.86 21943.89 40695.39 396
testmvs39.17 37543.78 37725.37 39236.04 41516.84 41798.36 38126.56 41420.06 40838.51 40967.32 40529.64 41215.30 41137.59 40939.90 40743.98 406
test12339.01 37642.50 37828.53 39139.17 41420.91 41698.75 35919.17 41619.83 40938.57 40866.67 40633.16 41115.42 41037.50 41029.66 40849.26 405
wuyk23d40.18 37441.29 37936.84 39086.18 40949.12 41579.73 40322.81 41527.64 40725.46 41028.45 41021.98 41348.89 40955.80 40823.56 40912.51 407
test_blank0.13 3800.17 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4121.57 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k24.64 37732.85 3800.00 3930.00 4160.00 4180.00 40499.51 1150.00 4110.00 41299.56 22196.58 1490.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas8.27 37911.03 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 41299.01 180.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.30 37811.06 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41299.58 2140.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS97.16 27995.47 335
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 8999.09 14
eth-test20.00 416
eth-test0.00 416
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14199.20 799.76 200
save fliter99.76 6599.59 7099.14 29299.40 22099.00 43
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7598.94 29
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 21099.52 167
sam_mvs94.72 222
MTGPAbinary99.47 175
test_post199.23 27665.14 40894.18 24899.71 22197.58 247
test_post65.99 40794.65 22899.73 211
patchmatchnet-post98.70 35994.79 21499.74 205
MTMP99.54 14098.88 340
gm-plane-assit98.54 36192.96 37994.65 36199.15 32199.64 24697.56 252
TEST999.67 11199.65 5799.05 31199.41 21496.22 32298.95 24899.49 24698.77 5199.91 105
test_899.67 11199.61 6799.03 31699.41 21496.28 31698.93 25299.48 25198.76 5299.91 105
agg_prior99.67 11199.62 6599.40 22098.87 26299.91 105
test_prior499.56 7598.99 327
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16899.74 92
旧先验298.96 33496.70 28599.47 13299.94 6998.19 191
新几何299.01 324
无先验98.99 32799.51 11596.89 27599.93 8497.53 25599.72 103
原ACMM298.95 338
testdata299.95 5996.67 308
segment_acmp98.96 24
testdata198.85 34998.32 115
plane_prior799.29 24097.03 292
plane_prior699.27 24596.98 29692.71 286
plane_prior499.61 205
plane_prior397.00 29498.69 7999.11 219
plane_prior299.39 22098.97 51
plane_prior199.26 247
n20.00 417
nn0.00 417
door-mid98.05 381
test1199.35 246
door97.92 382
HQP5-MVS96.83 304
HQP-NCC99.19 26398.98 33098.24 12298.66 289
ACMP_Plane99.19 26398.98 33098.24 12298.66 289
BP-MVS97.19 280
HQP4-MVS98.66 28999.64 24698.64 305
HQP2-MVS92.47 295
NP-MVS99.23 25396.92 30099.40 272
MDTV_nov1_ep13_2view95.18 35299.35 23696.84 27899.58 11195.19 20197.82 22499.46 188
Test By Simon98.75 55