This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
patch_mono-298.36 4998.87 696.82 21299.53 3690.68 31798.64 16999.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1699.86 199.82 16
dcpmvs_298.08 5998.59 1496.56 23699.57 3390.34 32499.15 4798.38 19396.82 7399.29 3499.49 1795.78 4399.57 14298.94 1999.86 199.77 27
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 3899.86 199.85 10
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6299.34 1898.87 6995.96 10998.60 8199.13 8296.05 3399.94 897.77 7799.86 199.77 27
CHOSEN 280x42097.18 11097.18 9597.20 18498.81 13393.27 27195.78 36699.15 2895.25 14796.79 17398.11 20292.29 11699.07 20598.56 2999.85 599.25 133
SD-MVS98.64 1698.68 1198.53 8599.33 5998.36 4098.90 9998.85 7897.28 4599.72 1299.39 3296.63 2097.60 34398.17 5299.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1298.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2199.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS_fast98.38 4698.13 5399.12 5099.75 397.86 6299.44 1198.82 8194.46 18498.94 5399.20 6795.16 6899.74 11197.58 9199.85 599.77 27
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5898.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 7799.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20398.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 8799.84 1099.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVScopyleft98.36 4998.10 5699.13 4899.74 797.82 6699.53 898.80 9394.63 17698.61 8098.97 10595.13 7099.77 10697.65 8699.83 1199.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7498.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4299.81 1299.70 53
IU-MVS99.71 1999.23 798.64 13695.28 14599.63 1898.35 4799.81 1299.83 13
ZNCC-MVS98.49 3498.20 5199.35 2299.73 1198.39 3499.19 4298.86 7595.77 11998.31 9999.10 8695.46 5199.93 2597.57 9499.81 1299.74 37
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8498.58 14997.62 2499.45 2599.46 2497.42 999.94 898.47 3899.81 1299.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 6299.94 898.47 3899.81 1299.84 12
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9098.80 9393.67 22499.37 3199.52 1196.52 2299.89 4798.06 5799.81 1299.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5799.28 2498.81 8696.24 9798.35 9699.23 6295.46 5199.94 897.42 10299.81 1299.77 27
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7698.88 10899.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 1999.89 5
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12597.25 8898.82 12699.34 1098.75 399.80 599.61 495.16 6899.95 799.70 699.80 1999.93 1
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
No_MVS99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4299.80 1999.83 13
MP-MVS-pluss98.31 5597.92 6399.49 1299.72 1298.88 1898.43 20198.78 10094.10 19297.69 13599.42 2995.25 6499.92 3198.09 5699.80 1999.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 22597.15 9398.84 12298.97 4298.75 399.43 2799.54 893.29 10299.93 2599.64 999.79 2599.89 5
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 9998.74 10897.27 4998.02 11199.39 3294.81 7799.96 497.91 6699.79 2599.77 27
region2R98.61 1898.38 2899.29 2999.74 798.16 5199.23 3198.93 5096.15 10198.94 5399.17 7495.91 3999.94 897.55 9599.79 2599.78 21
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5299.23 3198.95 4696.10 10498.93 5799.19 7295.70 4599.94 897.62 8899.79 2599.78 21
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4499.23 3198.96 4596.10 10498.94 5399.17 7496.06 3299.92 3197.62 8899.78 2999.75 35
MP-MVScopyleft98.33 5498.01 6099.28 3299.75 398.18 4999.22 3598.79 9896.13 10297.92 12299.23 6294.54 8099.94 896.74 13699.78 2999.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS98.49 3498.23 4799.27 3499.72 1298.08 5698.99 8199.49 595.43 13599.03 4799.32 4995.56 4899.94 896.80 13399.77 3199.78 21
APD-MVScopyleft98.35 5198.00 6199.42 1699.51 3998.72 2198.80 13598.82 8194.52 18199.23 3799.25 6195.54 5099.80 8896.52 14199.77 3199.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
114514_t96.93 11996.27 13598.92 6399.50 4197.63 7098.85 11898.90 5784.80 37397.77 12699.11 8492.84 10699.66 12894.85 19199.77 3199.47 100
CPTT-MVS97.72 7597.32 9098.92 6399.64 2897.10 9499.12 5398.81 8692.34 27798.09 10499.08 9493.01 10599.92 3196.06 15599.77 3199.75 35
DeepPCF-MVS96.37 297.93 6698.48 2396.30 26299.00 11389.54 33697.43 29798.87 6998.16 1199.26 3699.38 3796.12 3199.64 13198.30 4999.77 3199.72 45
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5798.50 19298.78 10097.72 1798.92 5999.28 5495.27 6299.82 7697.55 9599.77 3199.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS98.40 4598.20 5198.99 5799.00 11397.66 6897.75 27698.89 5997.71 1998.33 9798.97 10594.97 7499.88 5698.42 4499.76 3799.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR98.47 3798.34 3598.88 6699.22 8997.32 8197.91 25899.58 397.20 5398.33 9799.00 10395.99 3699.64 13198.05 5999.76 3799.69 56
PHI-MVS98.34 5298.06 5799.18 4299.15 10098.12 5599.04 6899.09 3193.32 23898.83 6499.10 8696.54 2199.83 6997.70 8499.76 3799.59 79
DeepC-MVS95.98 397.88 6797.58 7298.77 6999.25 8196.93 9998.83 12498.75 10696.96 6796.89 16799.50 1590.46 16499.87 5897.84 7399.76 3799.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsm_n_192098.87 1099.01 398.45 9399.42 5596.43 12698.96 8999.36 998.63 599.86 299.51 1395.91 3999.97 199.72 599.75 4198.94 174
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12698.81 8695.80 11899.16 4499.47 2095.37 5699.92 3197.89 6899.75 4199.79 19
MVS_111021_LR98.34 5298.23 4798.67 7499.27 7896.90 10197.95 25499.58 397.14 5898.44 9199.01 10295.03 7399.62 13797.91 6699.75 4199.50 91
3Dnovator94.51 597.46 9196.93 10599.07 5397.78 21997.64 6999.35 1799.06 3497.02 6493.75 27299.16 7789.25 18799.92 3197.22 10999.75 4199.64 71
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7498.89 10399.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 4599.90 3
XVS98.70 1498.49 2199.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8699.20 6795.90 4199.89 4797.85 7199.74 4599.78 21
X-MVStestdata94.06 28192.30 30499.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8643.50 39695.90 4199.89 4797.85 7199.74 4599.78 21
OPU-MVS99.37 2099.24 8799.05 1499.02 7499.16 7797.81 399.37 17097.24 10799.73 4899.70 53
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15399.32 3399.39 3296.22 2699.84 6797.72 8099.73 4899.67 65
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4599.14 4998.66 13196.84 7199.56 2099.31 5196.34 2599.70 11998.32 4899.73 4899.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 3899.72 5199.74 37
PC_three_145295.08 15899.60 1999.16 7797.86 298.47 27597.52 9899.72 5199.74 37
9.1498.06 5799.47 4798.71 15598.82 8194.36 18699.16 4499.29 5396.05 3399.81 8197.00 11499.71 53
MVS_030498.47 3798.22 4999.21 3999.00 11397.80 6798.88 10895.32 36898.86 298.53 8499.44 2794.38 8799.94 899.86 199.70 5499.90 3
MSLP-MVS++98.56 2998.57 1598.55 8199.26 8096.80 10598.71 15599.05 3697.28 4598.84 6299.28 5496.47 2399.40 16898.52 3699.70 5499.47 100
MM99.33 2698.14 5498.93 9597.02 33398.96 199.17 4199.47 2091.97 12999.94 899.85 499.69 5699.91 2
test_vis1_n_192096.71 12896.84 10996.31 26199.11 10389.74 33199.05 6598.58 14998.08 1299.87 199.37 3878.48 34199.93 2599.29 1499.69 5699.27 129
CDPH-MVS97.94 6597.49 7999.28 3299.47 4798.44 3197.91 25898.67 12892.57 26998.77 6798.85 12295.93 3899.72 11395.56 17399.69 5699.68 61
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15498.66 13197.51 3098.15 10098.83 12595.70 4599.92 3197.53 9799.67 5999.66 68
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6199.15 4798.81 8696.24 9799.20 3899.37 3895.30 6099.80 8897.73 7999.67 5999.72 45
test_fmvsmvis_n_192098.44 4098.51 1898.23 11398.33 17796.15 14198.97 8499.15 2898.55 798.45 8999.55 694.26 9199.97 199.65 799.66 6198.57 204
test_cas_vis1_n_192097.38 10097.36 8897.45 17098.95 12093.25 27399.00 7898.53 15997.70 2099.77 799.35 4484.71 28899.85 6398.57 2799.66 6199.26 131
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19598.81 8697.72 1798.76 6899.16 7797.05 1399.78 10198.06 5799.66 6199.69 56
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.34 5899.82 7697.72 8099.65 6499.71 49
RE-MVS-def98.34 3599.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.29 6197.72 8099.65 6499.71 49
CANet98.05 6197.76 6698.90 6598.73 13797.27 8398.35 20698.78 10097.37 4197.72 13398.96 11091.53 14199.92 3198.79 2399.65 6499.51 89
EI-MVSNet-Vis-set98.47 3798.39 2798.69 7299.46 4996.49 12398.30 21598.69 12097.21 5298.84 6299.36 4295.41 5399.78 10198.62 2699.65 6499.80 18
CSCG97.85 7097.74 6798.20 11699.67 2595.16 19199.22 3599.32 1193.04 25297.02 16098.92 11695.36 5799.91 3997.43 10199.64 6899.52 86
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 4999.09 5998.82 8196.58 8399.10 4699.32 4995.39 5499.82 7697.70 8499.63 6999.72 45
GST-MVS98.43 4298.12 5499.34 2399.72 1298.38 3599.09 5998.82 8195.71 12398.73 7199.06 9695.27 6299.93 2597.07 11399.63 6999.72 45
QAPM96.29 14795.40 17098.96 6197.85 21697.60 7299.23 3198.93 5089.76 33993.11 29699.02 9889.11 19299.93 2591.99 28099.62 7199.34 116
test_fmvsmconf0.01_n97.86 6897.54 7798.83 6795.48 34896.83 10498.95 9098.60 14198.58 698.93 5799.55 688.57 20699.91 3999.54 1199.61 7299.77 27
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20498.68 12397.04 6398.52 8598.80 12896.78 1699.83 6997.93 6499.61 7299.74 37
test_prior297.80 27296.12 10397.89 12498.69 14195.96 3796.89 12399.60 74
jason97.32 10397.08 9998.06 13097.45 25095.59 16997.87 26697.91 27294.79 16998.55 8398.83 12591.12 15199.23 18197.58 9199.60 7499.34 116
jason: jason.
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4699.26 2798.88 6297.52 2999.41 2898.78 13096.00 3599.79 9897.79 7699.59 7699.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVSFormer97.57 8797.49 7997.84 14098.07 20195.76 16599.47 998.40 18894.98 16198.79 6598.83 12592.34 11498.41 28996.91 11999.59 7699.34 116
lupinMVS97.44 9597.22 9498.12 12598.07 20195.76 16597.68 28197.76 27894.50 18298.79 6598.61 14892.34 11499.30 17597.58 9199.59 7699.31 122
ZD-MVS99.46 4998.70 2398.79 9893.21 24398.67 7398.97 10595.70 4599.83 6996.07 15299.58 79
test_fmvs196.42 14096.67 12095.66 28798.82 13288.53 35398.80 13598.20 22296.39 9399.64 1799.20 6780.35 33199.67 12699.04 1799.57 8098.78 186
test9_res96.39 14699.57 8099.69 56
train_agg97.97 6297.52 7899.33 2699.31 6498.50 2997.92 25698.73 11192.98 25497.74 13098.68 14296.20 2899.80 8896.59 13799.57 8099.68 61
agg_prior295.87 16299.57 8099.68 61
3Dnovator+94.38 697.43 9696.78 11399.38 1897.83 21798.52 2899.37 1498.71 11697.09 6292.99 29999.13 8289.36 18399.89 4796.97 11699.57 8099.71 49
LS3D97.16 11196.66 12198.68 7398.53 15897.19 9198.93 9598.90 5792.83 26195.99 20099.37 3892.12 12399.87 5893.67 23399.57 8098.97 170
CS-MVS-test98.49 3498.50 2098.46 9299.20 9297.05 9599.64 498.50 16997.45 3598.88 6099.14 8195.25 6499.15 19198.83 2299.56 8699.20 139
test1299.18 4299.16 9898.19 4898.53 15998.07 10595.13 7099.72 11399.56 8699.63 73
CHOSEN 1792x268897.12 11396.80 11098.08 12899.30 6894.56 22498.05 24599.71 193.57 22997.09 15498.91 11788.17 21699.89 4796.87 12899.56 8699.81 17
fmvsm_s_conf0.1_n98.18 5898.21 5098.11 12698.54 15795.24 18898.87 11399.24 1797.50 3199.70 1399.67 191.33 14599.89 4799.47 1299.54 8999.21 138
EI-MVSNet-UG-set98.41 4498.34 3598.61 7799.45 5296.32 13498.28 21898.68 12397.17 5598.74 6999.37 3895.25 6499.79 9898.57 2799.54 8999.73 42
test22299.23 8897.17 9297.40 29898.66 13188.68 35398.05 10698.96 11094.14 9399.53 9199.61 75
fmvsm_s_conf0.5_n98.42 4398.51 1898.13 12299.30 6895.25 18798.85 11899.39 797.94 1499.74 999.62 392.59 11099.91 3999.65 799.52 9299.25 133
MG-MVS97.81 7197.60 7198.44 9599.12 10295.97 15197.75 27698.78 10096.89 7098.46 8699.22 6493.90 9799.68 12594.81 19499.52 9299.67 65
test_fmvs1_n95.90 16795.99 14795.63 28898.67 14688.32 35799.26 2798.22 21996.40 9299.67 1499.26 5773.91 36899.70 11999.02 1899.50 9498.87 178
EC-MVSNet98.21 5798.11 5598.49 8998.34 17597.26 8799.61 598.43 18496.78 7498.87 6198.84 12393.72 9899.01 21598.91 2099.50 9499.19 143
CS-MVS98.44 4098.49 2198.31 10599.08 10696.73 10999.67 398.47 17597.17 5598.94 5399.10 8695.73 4499.13 19498.71 2499.49 9699.09 157
UGNet96.78 12696.30 13498.19 11898.24 18395.89 16198.88 10898.93 5097.39 3896.81 17197.84 22682.60 31599.90 4596.53 14099.49 9698.79 183
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
API-MVS97.41 9897.25 9297.91 13798.70 14296.80 10598.82 12698.69 12094.53 17998.11 10298.28 18794.50 8499.57 14294.12 21899.49 9697.37 244
新几何199.16 4599.34 5798.01 5998.69 12090.06 33498.13 10198.95 11294.60 7999.89 4791.97 28199.47 9999.59 79
旧先验199.29 7397.48 7698.70 11999.09 9295.56 4899.47 9999.61 75
OpenMVScopyleft93.04 1395.83 17195.00 19598.32 10497.18 27197.32 8199.21 3898.97 4289.96 33591.14 33299.05 9786.64 24899.92 3193.38 23999.47 9997.73 231
原ACMM198.65 7599.32 6296.62 11298.67 12893.27 24297.81 12598.97 10595.18 6799.83 6993.84 22799.46 10299.50 91
testdata98.26 11099.20 9295.36 18198.68 12391.89 29198.60 8199.10 8694.44 8699.82 7694.27 21399.44 10399.58 83
fmvsm_s_conf0.5_n_a98.38 4698.42 2598.27 10799.09 10595.41 17898.86 11699.37 897.69 2199.78 699.61 492.38 11399.91 3999.58 1099.43 10499.49 96
DP-MVS Recon97.86 6897.46 8299.06 5499.53 3698.35 4198.33 20898.89 5992.62 26698.05 10698.94 11395.34 5899.65 12996.04 15699.42 10599.19 143
fmvsm_s_conf0.1_n_a98.08 5998.04 5998.21 11497.66 23195.39 17998.89 10399.17 2697.24 5099.76 899.67 191.13 15099.88 5699.39 1399.41 10699.35 115
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19698.76 10497.82 1698.45 8998.93 11496.65 1999.83 6997.38 10499.41 10699.71 49
TAPA-MVS93.98 795.35 20094.56 21597.74 15199.13 10194.83 21098.33 20898.64 13686.62 36196.29 19298.61 14894.00 9699.29 17680.00 37599.41 10699.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_vis1_n95.47 18895.13 18896.49 24597.77 22090.41 32299.27 2698.11 24296.58 8399.66 1599.18 7367.00 38099.62 13799.21 1599.40 10999.44 107
PVSNet_Blended97.38 10097.12 9698.14 11999.25 8195.35 18397.28 31199.26 1593.13 24897.94 11998.21 19592.74 10899.81 8196.88 12599.40 10999.27 129
MS-PatchMatch93.84 28593.63 27394.46 32896.18 32389.45 33797.76 27598.27 21292.23 28292.13 32297.49 25679.50 33598.69 25189.75 31799.38 11195.25 354
CANet_DTU96.96 11896.55 12498.21 11498.17 19596.07 14497.98 25298.21 22097.24 5097.13 15398.93 11486.88 24599.91 3995.00 18999.37 11298.66 195
DPM-MVS97.55 8996.99 10399.23 3899.04 10898.55 2797.17 32198.35 19794.85 16897.93 12198.58 15395.07 7299.71 11892.60 26199.34 11399.43 109
MVP-Stereo94.28 26693.92 25195.35 29894.95 35792.60 28497.97 25397.65 28391.61 29990.68 33797.09 28486.32 25598.42 28189.70 31999.34 11395.02 361
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CNLPA97.45 9497.03 10198.73 7099.05 10797.44 8098.07 24398.53 15995.32 14396.80 17298.53 15793.32 10199.72 11394.31 21299.31 11599.02 165
AdaColmapbinary97.15 11296.70 11798.48 9099.16 9896.69 11198.01 24998.89 5994.44 18596.83 16898.68 14290.69 16199.76 10794.36 20899.29 11698.98 169
Vis-MVSNetpermissive97.42 9797.11 9798.34 10398.66 14796.23 13799.22 3599.00 3996.63 8298.04 10899.21 6588.05 22199.35 17196.01 15899.21 11799.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EIA-MVS97.75 7397.58 7298.27 10798.38 16796.44 12599.01 7698.60 14195.88 11597.26 14997.53 25594.97 7499.33 17397.38 10499.20 11899.05 163
EPNet97.28 10496.87 10898.51 8694.98 35696.14 14298.90 9997.02 33398.28 1095.99 20099.11 8491.36 14399.89 4796.98 11599.19 11999.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PS-MVSNAJ97.73 7497.77 6597.62 16398.68 14595.58 17097.34 30698.51 16497.29 4498.66 7797.88 22294.51 8199.90 4597.87 7099.17 12097.39 242
PVSNet_Blended_VisFu97.70 7797.46 8298.44 9599.27 7895.91 15998.63 17299.16 2794.48 18397.67 13698.88 11992.80 10799.91 3997.11 11199.12 12199.50 91
BH-RMVSNet95.92 16695.32 17997.69 15698.32 18094.64 21698.19 22997.45 30794.56 17796.03 19898.61 14885.02 27999.12 19690.68 30399.06 12299.30 125
test250694.44 25693.91 25396.04 27099.02 11088.99 34699.06 6379.47 40396.96 6798.36 9499.26 5777.21 35399.52 15696.78 13499.04 12399.59 79
test111195.94 16495.78 15496.41 25498.99 11790.12 32699.04 6892.45 38996.99 6698.03 10999.27 5681.40 32099.48 16296.87 12899.04 12399.63 73
ECVR-MVScopyleft95.95 16295.71 16196.65 22299.02 11090.86 31299.03 7191.80 39096.96 6798.10 10399.26 5781.31 32199.51 15796.90 12299.04 12399.59 79
PVSNet91.96 1896.35 14596.15 13996.96 20299.17 9492.05 29196.08 35998.68 12393.69 22097.75 12997.80 23288.86 20199.69 12494.26 21499.01 12699.15 150
PatchMatch-RL96.59 13296.03 14598.27 10799.31 6496.51 12297.91 25899.06 3493.72 21696.92 16598.06 20588.50 21199.65 12991.77 28599.00 12798.66 195
PCF-MVS93.45 1194.68 23593.43 28298.42 9998.62 15196.77 10795.48 37098.20 22284.63 37493.34 28798.32 18488.55 20999.81 8184.80 36198.96 12898.68 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MAR-MVS96.91 12096.40 13098.45 9398.69 14496.90 10198.66 16798.68 12392.40 27697.07 15797.96 21591.54 14099.75 10993.68 23198.92 12998.69 191
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
F-COLMAP97.09 11596.80 11097.97 13499.45 5294.95 20498.55 18598.62 14093.02 25396.17 19598.58 15394.01 9599.81 8193.95 22398.90 13099.14 152
ETV-MVS97.96 6397.81 6498.40 10098.42 16497.27 8398.73 15098.55 15596.84 7198.38 9397.44 26195.39 5499.35 17197.62 8898.89 13198.58 203
DP-MVS96.59 13295.93 14998.57 7999.34 5796.19 14098.70 15998.39 19089.45 34594.52 22999.35 4491.85 13099.85 6392.89 25798.88 13299.68 61
OMC-MVS97.55 8997.34 8998.20 11699.33 5995.92 15898.28 21898.59 14495.52 13197.97 11699.10 8693.28 10399.49 15895.09 18798.88 13299.19 143
PAPM_NR97.46 9197.11 9798.50 8799.50 4196.41 12998.63 17298.60 14195.18 15097.06 15898.06 20594.26 9199.57 14293.80 22998.87 13499.52 86
ACMMPcopyleft98.23 5697.95 6299.09 5299.74 797.62 7199.03 7199.41 695.98 10797.60 14399.36 4294.45 8599.93 2597.14 11098.85 13599.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net97.96 6397.62 7098.98 5998.86 12897.47 7898.89 10399.08 3296.67 8098.72 7299.54 893.15 10499.81 8194.87 19098.83 13699.65 69
MSDG95.93 16595.30 18297.83 14198.90 12395.36 18196.83 34698.37 19491.32 30994.43 23698.73 13890.27 16899.60 13990.05 31298.82 13798.52 205
EPNet_dtu95.21 20894.95 19995.99 27296.17 32490.45 32198.16 23497.27 31996.77 7593.14 29598.33 18390.34 16698.42 28185.57 35498.81 13899.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft95.07 497.20 10996.78 11398.44 9599.29 7396.31 13698.14 23598.76 10492.41 27596.39 19098.31 18594.92 7699.78 10194.06 22198.77 13999.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu97.60 8397.56 7497.72 15298.35 17095.98 14697.86 26798.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 244
xiu_mvs_v1_base97.60 8397.56 7497.72 15298.35 17095.98 14697.86 26798.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 244
xiu_mvs_v1_base_debi97.60 8397.56 7497.72 15298.35 17095.98 14697.86 26798.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 244
MVS-HIRNet89.46 33588.40 33592.64 34797.58 23682.15 37994.16 38393.05 38875.73 38590.90 33482.52 38879.42 33698.33 29783.53 36698.68 14097.43 239
xiu_mvs_v2_base97.66 8097.70 6897.56 16798.61 15295.46 17697.44 29598.46 17697.15 5798.65 7898.15 19994.33 8899.80 8897.84 7398.66 14497.41 240
mvsany_test197.69 7897.70 6897.66 16198.24 18394.18 24097.53 29297.53 29795.52 13199.66 1599.51 1394.30 8999.56 14598.38 4598.62 14599.23 135
Vis-MVSNet (Re-imp)96.87 12296.55 12497.83 14198.73 13795.46 17699.20 4098.30 20994.96 16396.60 17998.87 12090.05 17098.59 26193.67 23398.60 14699.46 104
IS-MVSNet97.22 10696.88 10798.25 11198.85 13096.36 13299.19 4297.97 26595.39 13797.23 15098.99 10491.11 15298.93 22794.60 20198.59 14799.47 100
PAPR96.84 12496.24 13798.65 7598.72 14196.92 10097.36 30498.57 15193.33 23796.67 17597.57 25294.30 8999.56 14591.05 29898.59 14799.47 100
TSAR-MVS + GP.98.38 4698.24 4698.81 6899.22 8997.25 8898.11 24098.29 21197.19 5498.99 5299.02 9896.22 2699.67 12698.52 3698.56 14999.51 89
diffmvspermissive97.58 8697.40 8698.13 12298.32 18095.81 16498.06 24498.37 19496.20 9998.74 6998.89 11891.31 14799.25 17898.16 5398.52 15099.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned95.95 16295.72 15896.65 22298.55 15692.26 28798.23 22297.79 27793.73 21594.62 22698.01 21088.97 19999.00 21693.04 25098.51 15198.68 192
test-LLR95.10 21494.87 20395.80 28296.77 29389.70 33296.91 33695.21 36995.11 15494.83 22195.72 34887.71 22998.97 21793.06 24898.50 15298.72 188
TESTMET0.1,194.18 27293.69 27195.63 28896.92 28589.12 34296.91 33694.78 37493.17 24594.88 21896.45 32878.52 34098.92 22893.09 24798.50 15298.85 179
test-mter94.08 27993.51 27995.80 28296.77 29389.70 33296.91 33695.21 36992.89 25894.83 22195.72 34877.69 34898.97 21793.06 24898.50 15298.72 188
131496.25 15195.73 15797.79 14597.13 27495.55 17398.19 22998.59 14493.47 23292.03 32497.82 23091.33 14599.49 15894.62 20098.44 15598.32 214
LCM-MVSNet-Re95.22 20795.32 17994.91 31098.18 19387.85 36398.75 14395.66 36595.11 15488.96 35096.85 31290.26 16997.65 34195.65 17198.44 15599.22 137
EPP-MVSNet97.46 9197.28 9197.99 13398.64 14995.38 18099.33 2198.31 20393.61 22897.19 15199.07 9594.05 9499.23 18196.89 12398.43 15799.37 114
casdiffmvs_mvgpermissive97.72 7597.48 8198.44 9598.42 16496.59 11798.92 9798.44 18096.20 9997.76 12799.20 6791.66 13599.23 18198.27 5198.41 15899.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive97.63 8297.41 8598.28 10698.33 17796.14 14298.82 12698.32 20196.38 9497.95 11799.21 6591.23 14999.23 18198.12 5498.37 15999.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PatchmatchNetpermissive95.71 17795.52 16896.29 26397.58 23690.72 31696.84 34597.52 29894.06 19397.08 15596.96 30389.24 18898.90 23292.03 27998.37 15999.26 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS94.67 23893.54 27898.08 12896.88 28996.56 11998.19 22998.50 16978.05 38392.69 30798.02 20891.07 15499.63 13490.09 30998.36 16198.04 222
FE-MVS95.62 18394.90 20197.78 14698.37 16994.92 20597.17 32197.38 31390.95 32097.73 13297.70 23885.32 27699.63 13491.18 29398.33 16298.79 183
gg-mvs-nofinetune92.21 31190.58 31997.13 19096.75 29695.09 19595.85 36489.40 39685.43 37194.50 23081.98 38980.80 32898.40 29592.16 27398.33 16297.88 225
SCA95.46 18995.13 18896.46 25197.67 22991.29 30597.33 30797.60 28794.68 17396.92 16597.10 28083.97 30598.89 23392.59 26398.32 16499.20 139
baseline97.64 8197.44 8498.25 11198.35 17096.20 13899.00 7898.32 20196.33 9698.03 10999.17 7491.35 14499.16 18898.10 5598.29 16599.39 112
MVS_Test97.28 10497.00 10298.13 12298.33 17795.97 15198.74 14698.07 25294.27 18898.44 9198.07 20492.48 11199.26 17796.43 14498.19 16699.16 149
sss97.39 9996.98 10498.61 7798.60 15396.61 11498.22 22398.93 5093.97 20098.01 11498.48 16291.98 12799.85 6396.45 14398.15 16799.39 112
Patchmatch-test94.42 25793.68 27296.63 22697.60 23591.76 29594.83 37697.49 30289.45 34594.14 25297.10 28088.99 19598.83 24185.37 35798.13 16899.29 127
COLMAP_ROBcopyleft93.27 1295.33 20294.87 20396.71 21799.29 7393.24 27498.58 17898.11 24289.92 33693.57 27699.10 8686.37 25499.79 9890.78 30198.10 16997.09 249
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE96.58 13496.07 14298.10 12798.35 17095.89 16199.34 1898.12 23993.12 24996.09 19698.87 12089.71 17698.97 21792.95 25398.08 17099.43 109
FA-MVS(test-final)96.41 14495.94 14897.82 14398.21 18795.20 19097.80 27297.58 28893.21 24397.36 14797.70 23889.47 18099.56 14594.12 21897.99 17198.71 190
Effi-MVS+-dtu96.29 14796.56 12395.51 29197.89 21590.22 32598.80 13598.10 24596.57 8596.45 18996.66 31990.81 15798.91 22995.72 16797.99 17197.40 241
Fast-Effi-MVS+96.28 14995.70 16398.03 13198.29 18295.97 15198.58 17898.25 21791.74 29495.29 21197.23 27491.03 15599.15 19192.90 25597.96 17398.97 170
mvs_anonymous96.70 12996.53 12697.18 18698.19 19193.78 24998.31 21398.19 22494.01 19794.47 23198.27 19092.08 12598.46 27697.39 10397.91 17499.31 122
PMMVS96.60 13196.33 13297.41 17497.90 21493.93 24597.35 30598.41 18692.84 26097.76 12797.45 26091.10 15399.20 18596.26 14897.91 17499.11 155
AllTest95.24 20694.65 21196.99 19899.25 8193.21 27598.59 17698.18 22791.36 30593.52 27898.77 13284.67 28999.72 11389.70 31997.87 17698.02 223
TestCases96.99 19899.25 8193.21 27598.18 22791.36 30593.52 27898.77 13284.67 28999.72 11389.70 31997.87 17698.02 223
TAMVS97.02 11696.79 11297.70 15598.06 20495.31 18598.52 18798.31 20393.95 20197.05 15998.61 14893.49 10098.52 26995.33 17997.81 17899.29 127
Effi-MVS+97.12 11396.69 11898.39 10198.19 19196.72 11097.37 30298.43 18493.71 21797.65 13998.02 20892.20 12199.25 17896.87 12897.79 17999.19 143
Fast-Effi-MVS+-dtu95.87 16895.85 15195.91 27797.74 22491.74 29798.69 16198.15 23595.56 12994.92 21797.68 24388.98 19898.79 24593.19 24597.78 18097.20 248
DSMNet-mixed92.52 30992.58 29992.33 35094.15 36582.65 37898.30 21594.26 38089.08 35092.65 30895.73 34685.01 28095.76 37486.24 34997.76 18198.59 201
CDS-MVSNet96.99 11796.69 11897.90 13898.05 20595.98 14698.20 22698.33 20093.67 22496.95 16198.49 16193.54 9998.42 28195.24 18597.74 18299.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thisisatest051595.61 18694.89 20297.76 14998.15 19795.15 19396.77 34794.41 37792.95 25697.18 15297.43 26284.78 28599.45 16694.63 19897.73 18398.68 192
thisisatest053096.01 15895.36 17597.97 13498.38 16795.52 17498.88 10894.19 38194.04 19497.64 14098.31 18583.82 31099.46 16595.29 18297.70 18498.93 175
BH-w/o95.38 19695.08 19296.26 26498.34 17591.79 29497.70 28097.43 30992.87 25994.24 24797.22 27588.66 20498.84 23991.55 28997.70 18498.16 220
PAPM94.95 22494.00 24697.78 14697.04 27895.65 16896.03 36298.25 21791.23 31494.19 25097.80 23291.27 14898.86 23882.61 36997.61 18698.84 181
tttt051796.07 15695.51 16997.78 14698.41 16694.84 20899.28 2494.33 37994.26 18997.64 14098.64 14684.05 30399.47 16495.34 17897.60 18799.03 164
HyFIR lowres test96.90 12196.49 12798.14 11999.33 5995.56 17197.38 30099.65 292.34 27797.61 14298.20 19689.29 18599.10 20296.97 11697.60 18799.77 27
CVMVSNet95.43 19296.04 14493.57 33697.93 21283.62 37498.12 23898.59 14495.68 12496.56 18099.02 9887.51 23397.51 34893.56 23797.44 18999.60 77
MDTV_nov1_ep1395.40 17097.48 24588.34 35696.85 34497.29 31793.74 21497.48 14697.26 27089.18 18999.05 20691.92 28297.43 190
baseline295.11 21394.52 21796.87 20996.65 30293.56 25898.27 22094.10 38393.45 23392.02 32597.43 26287.45 23799.19 18693.88 22697.41 19197.87 226
EPMVS94.99 22094.48 21996.52 24397.22 26591.75 29697.23 31391.66 39194.11 19197.28 14896.81 31485.70 26698.84 23993.04 25097.28 19298.97 170
LFMVS95.86 16994.98 19798.47 9198.87 12796.32 13498.84 12296.02 35993.40 23598.62 7999.20 6774.99 36399.63 13497.72 8097.20 19399.46 104
testing393.19 29992.48 30195.30 30098.07 20192.27 28698.64 16997.17 32493.94 20393.98 26097.04 29367.97 37796.01 37288.40 33597.14 19497.63 235
ADS-MVSNet294.58 24494.40 22795.11 30598.00 20688.74 34996.04 36097.30 31690.15 33296.47 18796.64 32287.89 22497.56 34690.08 31097.06 19599.02 165
ADS-MVSNet95.00 21994.45 22396.63 22698.00 20691.91 29396.04 36097.74 28090.15 33296.47 18796.64 32287.89 22498.96 22190.08 31097.06 19599.02 165
Syy-MVS92.55 30792.61 29892.38 34997.39 25683.41 37597.91 25897.46 30393.16 24693.42 28495.37 35384.75 28696.12 37077.00 38396.99 19797.60 236
myMVS_eth3d92.73 30592.01 30794.89 31297.39 25690.94 31097.91 25897.46 30393.16 24693.42 28495.37 35368.09 37696.12 37088.34 33696.99 19797.60 236
GG-mvs-BLEND96.59 23296.34 31894.98 20196.51 35688.58 39793.10 29794.34 36780.34 33298.05 32189.53 32296.99 19796.74 285
cascas94.63 24093.86 25796.93 20496.91 28794.27 23596.00 36398.51 16485.55 37094.54 22896.23 33484.20 30198.87 23695.80 16596.98 20097.66 234
WTY-MVS97.37 10296.92 10698.72 7198.86 12896.89 10398.31 21398.71 11695.26 14697.67 13698.56 15692.21 12099.78 10195.89 16096.85 20199.48 98
VDD-MVS95.82 17295.23 18497.61 16498.84 13193.98 24498.68 16297.40 31195.02 16097.95 11799.34 4874.37 36799.78 10198.64 2596.80 20299.08 161
test_yl97.22 10696.78 11398.54 8398.73 13796.60 11598.45 19698.31 20394.70 17098.02 11198.42 17090.80 15899.70 11996.81 13196.79 20399.34 116
DCV-MVSNet97.22 10696.78 11398.54 8398.73 13796.60 11598.45 19698.31 20394.70 17098.02 11198.42 17090.80 15899.70 11996.81 13196.79 20399.34 116
PatchT93.06 30291.97 30896.35 25896.69 29992.67 28394.48 38097.08 32686.62 36197.08 15592.23 38087.94 22397.90 33178.89 37996.69 20598.49 206
VNet97.79 7297.40 8698.96 6198.88 12597.55 7398.63 17298.93 5096.74 7799.02 4898.84 12390.33 16799.83 6998.53 3096.66 20699.50 91
CR-MVSNet94.76 23294.15 23796.59 23297.00 27993.43 26494.96 37297.56 29092.46 27096.93 16396.24 33288.15 21797.88 33587.38 34396.65 20798.46 207
RPMNet92.81 30491.34 31397.24 18297.00 27993.43 26494.96 37298.80 9382.27 37896.93 16392.12 38186.98 24399.82 7676.32 38496.65 20798.46 207
VDDNet95.36 19994.53 21697.86 13998.10 20095.13 19498.85 11897.75 27990.46 32698.36 9499.39 3273.27 37099.64 13197.98 6096.58 20998.81 182
alignmvs97.56 8897.07 10099.01 5698.66 14798.37 3998.83 12498.06 25796.74 7798.00 11597.65 24490.80 15899.48 16298.37 4696.56 21099.19 143
HY-MVS93.96 896.82 12596.23 13898.57 7998.46 16297.00 9698.14 23598.21 22093.95 20196.72 17497.99 21291.58 13699.76 10794.51 20596.54 21198.95 173
1112_ss96.63 13096.00 14698.50 8798.56 15496.37 13198.18 23398.10 24592.92 25794.84 21998.43 16892.14 12299.58 14194.35 20996.51 21299.56 85
thres20095.25 20594.57 21497.28 18198.81 13394.92 20598.20 22697.11 32595.24 14996.54 18496.22 33684.58 29299.53 15387.93 34196.50 21397.39 242
Test_1112_low_res96.34 14695.66 16698.36 10298.56 15495.94 15497.71 27998.07 25292.10 28694.79 22397.29 26991.75 13299.56 14594.17 21696.50 21399.58 83
tpmrst95.63 18295.69 16495.44 29597.54 24188.54 35296.97 33197.56 29093.50 23197.52 14596.93 30789.49 17899.16 18895.25 18496.42 21598.64 197
ab-mvs96.42 14095.71 16198.55 8198.63 15096.75 10897.88 26598.74 10893.84 20796.54 18498.18 19885.34 27499.75 10995.93 15996.35 21699.15 150
thres600view795.49 18794.77 20597.67 15898.98 11895.02 19798.85 11896.90 34095.38 13896.63 17796.90 30884.29 29599.59 14088.65 33496.33 21798.40 209
RPSCF94.87 22895.40 17093.26 34298.89 12482.06 38098.33 20898.06 25790.30 33196.56 18099.26 5787.09 24099.49 15893.82 22896.32 21898.24 215
thres100view90095.38 19694.70 20997.41 17498.98 11894.92 20598.87 11396.90 34095.38 13896.61 17896.88 30984.29 29599.56 14588.11 33796.29 21997.76 228
tfpn200view995.32 20394.62 21297.43 17298.94 12194.98 20198.68 16296.93 33895.33 14196.55 18296.53 32584.23 29999.56 14588.11 33796.29 21997.76 228
thres40095.38 19694.62 21297.65 16298.94 12194.98 20198.68 16296.93 33895.33 14196.55 18296.53 32584.23 29999.56 14588.11 33796.29 21998.40 209
canonicalmvs97.67 7997.23 9398.98 5998.70 14298.38 3599.34 1898.39 19096.76 7697.67 13697.40 26492.26 11799.49 15898.28 5096.28 22299.08 161
XVG-OURS96.55 13696.41 12996.99 19898.75 13693.76 25097.50 29498.52 16295.67 12596.83 16899.30 5288.95 20099.53 15395.88 16196.26 22397.69 233
GA-MVS94.81 22994.03 24297.14 18997.15 27393.86 24796.76 34897.58 28894.00 19894.76 22497.04 29380.91 32598.48 27291.79 28496.25 22499.09 157
tpm294.19 27093.76 26695.46 29497.23 26489.04 34497.31 30996.85 34687.08 36096.21 19496.79 31583.75 31198.74 24892.43 27196.23 22598.59 201
MIMVSNet93.26 29692.21 30596.41 25497.73 22593.13 27795.65 36797.03 33191.27 31394.04 25796.06 33975.33 36197.19 35386.56 34796.23 22598.92 176
TR-MVS94.94 22694.20 23297.17 18797.75 22194.14 24197.59 28997.02 33392.28 28195.75 20597.64 24683.88 30798.96 22189.77 31696.15 22798.40 209
CostFormer94.95 22494.73 20895.60 29097.28 26189.06 34397.53 29296.89 34289.66 34196.82 17096.72 31786.05 25998.95 22695.53 17596.13 22898.79 183
tpmvs94.60 24194.36 22895.33 29997.46 24788.60 35196.88 34297.68 28191.29 31193.80 27096.42 32988.58 20599.24 18091.06 29696.04 22998.17 219
tpm cat193.36 29192.80 29395.07 30797.58 23687.97 36196.76 34897.86 27482.17 37993.53 27796.04 34086.13 25799.13 19489.24 32795.87 23098.10 221
XVG-OURS-SEG-HR96.51 13796.34 13197.02 19798.77 13593.76 25097.79 27498.50 16995.45 13496.94 16299.09 9287.87 22699.55 15296.76 13595.83 23197.74 230
SDMVSNet96.85 12396.42 12898.14 11999.30 6896.38 13099.21 3899.23 2095.92 11095.96 20298.76 13685.88 26299.44 16797.93 6495.59 23298.60 199
sd_testset96.17 15295.76 15697.42 17399.30 6894.34 23398.82 12699.08 3295.92 11095.96 20298.76 13682.83 31499.32 17495.56 17395.59 23298.60 199
test_vis1_rt91.29 31790.65 31793.19 34497.45 25086.25 36998.57 18390.90 39493.30 24086.94 36293.59 37162.07 38499.11 19897.48 10095.58 23494.22 368
JIA-IIPM93.35 29292.49 30095.92 27696.48 31190.65 31895.01 37196.96 33685.93 36796.08 19787.33 38687.70 23198.78 24691.35 29195.58 23498.34 212
Anonymous20240521195.28 20494.49 21897.67 15899.00 11393.75 25298.70 15997.04 33090.66 32296.49 18698.80 12878.13 34599.83 6996.21 15195.36 23699.44 107
Anonymous2024052995.10 21494.22 23197.75 15099.01 11294.26 23698.87 11398.83 8085.79 36996.64 17698.97 10578.73 33999.85 6396.27 14794.89 23799.12 154
CLD-MVS95.62 18395.34 17696.46 25197.52 24493.75 25297.27 31298.46 17695.53 13094.42 23798.00 21186.21 25698.97 21796.25 15094.37 23896.66 298
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
dp94.15 27393.90 25494.90 31197.31 26086.82 36896.97 33197.19 32391.22 31596.02 19996.61 32485.51 27099.02 21390.00 31494.30 23998.85 179
HQP_MVS96.14 15495.90 15096.85 21097.42 25294.60 22298.80 13598.56 15397.28 4595.34 20998.28 18787.09 24099.03 21096.07 15294.27 24096.92 260
plane_prior598.56 15399.03 21096.07 15294.27 24096.92 260
plane_prior94.60 22298.44 19996.74 7794.22 242
OPM-MVS95.69 18095.33 17896.76 21596.16 32694.63 21798.43 20198.39 19096.64 8195.02 21698.78 13085.15 27899.05 20695.21 18694.20 24396.60 303
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP3-MVS98.46 17694.18 244
HQP-MVS95.72 17695.40 17096.69 22097.20 26794.25 23798.05 24598.46 17696.43 8994.45 23297.73 23586.75 24698.96 22195.30 18094.18 24496.86 274
LPG-MVS_test95.62 18395.34 17696.47 24897.46 24793.54 25998.99 8198.54 15794.67 17494.36 24098.77 13285.39 27199.11 19895.71 16894.15 24696.76 283
LGP-MVS_train96.47 24897.46 24793.54 25998.54 15794.67 17494.36 24098.77 13285.39 27199.11 19895.71 16894.15 24696.76 283
test_djsdf96.00 15995.69 16496.93 20495.72 34095.49 17599.47 998.40 18894.98 16194.58 22797.86 22389.16 19098.41 28996.91 11994.12 24896.88 269
jajsoiax95.45 19195.03 19496.73 21695.42 35294.63 21799.14 4998.52 16295.74 12093.22 29098.36 17783.87 30898.65 25696.95 11894.04 24996.91 265
anonymousdsp95.42 19394.91 20096.94 20395.10 35595.90 16099.14 4998.41 18693.75 21293.16 29297.46 25887.50 23598.41 28995.63 17294.03 25096.50 322
mvs_tets95.41 19595.00 19596.65 22295.58 34494.42 22899.00 7898.55 15595.73 12293.21 29198.38 17583.45 31298.63 25797.09 11294.00 25196.91 265
ACMP93.49 1095.34 20194.98 19796.43 25397.67 22993.48 26398.73 15098.44 18094.94 16692.53 31298.53 15784.50 29499.14 19395.48 17794.00 25196.66 298
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM93.85 995.69 18095.38 17496.61 22997.61 23493.84 24898.91 9898.44 18095.25 14794.28 24498.47 16486.04 26199.12 19695.50 17693.95 25396.87 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D94.24 26793.33 28496.97 20197.19 27093.38 26898.74 14698.57 15191.21 31693.81 26998.58 15372.85 37198.77 24795.05 18893.93 25498.77 187
XVG-ACMP-BASELINE94.54 24694.14 23895.75 28596.55 30691.65 29998.11 24098.44 18094.96 16394.22 24897.90 21979.18 33899.11 19894.05 22293.85 25596.48 325
EG-PatchMatch MVS91.13 32090.12 32394.17 33394.73 36289.00 34598.13 23797.81 27689.22 34985.32 37396.46 32767.71 37898.42 28187.89 34293.82 25695.08 359
iter_conf_final96.42 14096.12 14097.34 17998.46 16296.55 12199.08 6198.06 25796.03 10695.63 20698.46 16687.72 22898.59 26197.84 7393.80 25796.87 271
iter_conf0596.13 15595.79 15397.15 18898.16 19695.99 14598.88 10897.98 26395.91 11295.58 20798.46 16685.53 26998.59 26197.88 6993.75 25896.86 274
test_fmvs293.43 29093.58 27592.95 34696.97 28283.91 37399.19 4297.24 32195.74 12095.20 21298.27 19069.65 37398.72 25096.26 14893.73 25996.24 335
testgi93.06 30292.45 30294.88 31396.43 31489.90 32898.75 14397.54 29695.60 12791.63 32997.91 21874.46 36697.02 35586.10 35093.67 26097.72 232
test0.0.03 194.08 27993.51 27995.80 28295.53 34692.89 28297.38 30095.97 36195.11 15492.51 31496.66 31987.71 22996.94 35787.03 34593.67 26097.57 238
mvsmamba96.57 13596.32 13397.32 18096.60 30396.43 12699.54 797.98 26396.49 8695.20 21298.64 14690.82 15698.55 26597.97 6193.65 26296.98 255
CMPMVSbinary66.06 2189.70 33189.67 32789.78 35793.19 37276.56 38397.00 33098.35 19780.97 38081.57 37997.75 23474.75 36498.61 25889.85 31593.63 26394.17 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMMP++93.61 264
D2MVS95.18 21095.08 19295.48 29297.10 27692.07 29098.30 21599.13 3094.02 19692.90 30096.73 31689.48 17998.73 24994.48 20693.60 26595.65 350
bld_raw_dy_0_6495.74 17595.31 18197.03 19696.35 31795.76 16599.12 5397.37 31495.97 10894.70 22598.48 16285.80 26498.49 27196.55 13993.48 26696.84 276
EI-MVSNet95.96 16195.83 15296.36 25797.93 21293.70 25698.12 23898.27 21293.70 21995.07 21499.02 9892.23 11998.54 26794.68 19693.46 26796.84 276
MVSTER96.06 15795.72 15897.08 19498.23 18595.93 15798.73 15098.27 21294.86 16795.07 21498.09 20388.21 21598.54 26796.59 13793.46 26796.79 280
PS-MVSNAJss96.43 13996.26 13696.92 20795.84 33895.08 19699.16 4698.50 16995.87 11693.84 26898.34 18294.51 8198.61 25896.88 12593.45 26997.06 250
LTVRE_ROB92.95 1594.60 24193.90 25496.68 22197.41 25594.42 22898.52 18798.59 14491.69 29791.21 33198.35 17884.87 28299.04 20991.06 29693.44 27096.60 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ITE_SJBPF95.44 29597.42 25291.32 30497.50 30095.09 15793.59 27498.35 17881.70 31898.88 23589.71 31893.39 27196.12 339
PVSNet_BlendedMVS96.73 12796.60 12297.12 19199.25 8195.35 18398.26 22199.26 1594.28 18797.94 11997.46 25892.74 10899.81 8196.88 12593.32 27296.20 337
ACMH92.88 1694.55 24593.95 25096.34 25997.63 23393.26 27298.81 13498.49 17493.43 23489.74 34498.53 15781.91 31799.08 20493.69 23093.30 27396.70 292
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVS_ROBcopyleft86.42 2089.00 33687.43 34493.69 33593.08 37389.42 33897.91 25896.89 34278.58 38285.86 36894.69 36069.48 37498.29 30577.13 38293.29 27493.36 377
USDC93.33 29492.71 29595.21 30196.83 29290.83 31496.91 33697.50 30093.84 20790.72 33698.14 20077.69 34898.82 24289.51 32393.21 27595.97 343
RRT_MVS95.98 16095.78 15496.56 23696.48 31194.22 23999.57 697.92 27095.89 11393.95 26198.70 14089.27 18698.42 28197.23 10893.02 27697.04 251
ACMMP++_ref92.97 277
test_040291.32 31690.27 32294.48 32696.60 30391.12 30798.50 19297.22 32286.10 36688.30 35696.98 30077.65 35097.99 32678.13 38192.94 27894.34 365
tt080594.54 24693.85 25896.63 22697.98 21093.06 28098.77 14297.84 27593.67 22493.80 27098.04 20776.88 35698.96 22194.79 19592.86 27997.86 227
dmvs_re94.48 25394.18 23595.37 29797.68 22890.11 32798.54 18697.08 32694.56 17794.42 23797.24 27384.25 29797.76 33991.02 29992.83 28098.24 215
FIs96.51 13796.12 14097.67 15897.13 27497.54 7499.36 1599.22 2395.89 11394.03 25898.35 17891.98 12798.44 27996.40 14592.76 28197.01 253
FC-MVSNet-test96.42 14096.05 14397.53 16896.95 28397.27 8399.36 1599.23 2095.83 11793.93 26298.37 17692.00 12698.32 29896.02 15792.72 28297.00 254
TinyColmap92.31 31091.53 31194.65 32196.92 28589.75 33096.92 33496.68 35090.45 32789.62 34597.85 22576.06 35998.81 24386.74 34692.51 28395.41 352
ACMH+92.99 1494.30 26393.77 26495.88 28097.81 21892.04 29298.71 15598.37 19493.99 19990.60 33898.47 16480.86 32799.05 20692.75 25992.40 28496.55 311
GBi-Net94.49 25193.80 26196.56 23698.21 18795.00 19898.82 12698.18 22792.46 27094.09 25497.07 28781.16 32297.95 32792.08 27592.14 28596.72 288
test194.49 25193.80 26196.56 23698.21 18795.00 19898.82 12698.18 22792.46 27094.09 25497.07 28781.16 32297.95 32792.08 27592.14 28596.72 288
FMVSNet394.97 22394.26 23097.11 19298.18 19396.62 11298.56 18498.26 21693.67 22494.09 25497.10 28084.25 29798.01 32392.08 27592.14 28596.70 292
FMVSNet294.47 25493.61 27497.04 19598.21 18796.43 12698.79 14098.27 21292.46 27093.50 28197.09 28481.16 32298.00 32591.09 29491.93 28896.70 292
LF4IMVS93.14 30192.79 29494.20 33195.88 33688.67 35097.66 28397.07 32893.81 21091.71 32797.65 24477.96 34798.81 24391.47 29091.92 28995.12 357
OurMVSNet-221017-094.21 26894.00 24694.85 31495.60 34389.22 34198.89 10397.43 30995.29 14492.18 32198.52 16082.86 31398.59 26193.46 23891.76 29096.74 285
EGC-MVSNET75.22 35769.54 36092.28 35194.81 36089.58 33597.64 28596.50 3541.82 4015.57 40295.74 34468.21 37596.26 36973.80 38691.71 29190.99 381
pmmvs494.69 23393.99 24896.81 21395.74 33995.94 15497.40 29897.67 28290.42 32893.37 28697.59 25089.08 19398.20 30992.97 25291.67 29296.30 334
tpm94.13 27493.80 26195.12 30496.50 30987.91 36297.44 29595.89 36492.62 26696.37 19196.30 33184.13 30298.30 30293.24 24391.66 29399.14 152
our_test_393.65 28893.30 28594.69 31995.45 35089.68 33496.91 33697.65 28391.97 28991.66 32896.88 30989.67 17797.93 33088.02 34091.49 29496.48 325
IterMVS94.09 27893.85 25894.80 31797.99 20890.35 32397.18 31998.12 23993.68 22292.46 31697.34 26584.05 30397.41 35092.51 26891.33 29596.62 301
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 27693.87 25694.85 31497.98 21090.56 32097.18 31998.11 24293.75 21292.58 31097.48 25783.97 30597.41 35092.48 27091.30 29696.58 305
FMVSNet193.19 29992.07 30696.56 23697.54 24195.00 19898.82 12698.18 22790.38 32992.27 31997.07 28773.68 36997.95 32789.36 32691.30 29696.72 288
XXY-MVS95.20 20994.45 22397.46 16996.75 29696.56 11998.86 11698.65 13593.30 24093.27 28998.27 19084.85 28398.87 23694.82 19391.26 29896.96 257
cl2294.68 23594.19 23396.13 26898.11 19993.60 25796.94 33398.31 20392.43 27493.32 28896.87 31186.51 24998.28 30694.10 22091.16 29996.51 320
miper_ehance_all_eth95.01 21894.69 21095.97 27497.70 22793.31 27097.02 32998.07 25292.23 28293.51 28096.96 30391.85 13098.15 31293.68 23191.16 29996.44 328
miper_enhance_ethall95.10 21494.75 20796.12 26997.53 24393.73 25496.61 35398.08 25092.20 28593.89 26496.65 32192.44 11298.30 30294.21 21591.16 29996.34 331
pmmvs593.65 28892.97 29195.68 28695.49 34792.37 28598.20 22697.28 31889.66 34192.58 31097.26 27082.14 31698.09 31893.18 24690.95 30296.58 305
ET-MVSNet_ETH3D94.13 27492.98 29097.58 16598.22 18696.20 13897.31 30995.37 36794.53 17979.56 38297.63 24886.51 24997.53 34796.91 11990.74 30399.02 165
SixPastTwentyTwo93.34 29392.86 29294.75 31895.67 34189.41 33998.75 14396.67 35193.89 20490.15 34298.25 19380.87 32698.27 30790.90 30090.64 30496.57 307
N_pmnet87.12 34487.77 34285.17 36595.46 34961.92 39997.37 30270.66 40485.83 36888.73 35596.04 34085.33 27597.76 33980.02 37490.48 30595.84 345
ppachtmachnet_test93.22 29792.63 29794.97 30995.45 35090.84 31396.88 34297.88 27390.60 32392.08 32397.26 27088.08 22097.86 33685.12 35890.33 30696.22 336
DIV-MVS_self_test94.52 24994.03 24295.99 27297.57 24093.38 26897.05 32797.94 26891.74 29492.81 30297.10 28089.12 19198.07 32092.60 26190.30 30796.53 314
cl____94.51 25094.01 24596.02 27197.58 23693.40 26797.05 32797.96 26791.73 29692.76 30497.08 28689.06 19498.13 31492.61 26090.29 30896.52 317
APD_test188.22 33988.01 33988.86 35995.98 33274.66 38997.21 31596.44 35583.96 37686.66 36597.90 21960.95 38597.84 33782.73 36790.23 30994.09 371
IterMVS-LS95.46 18995.21 18596.22 26598.12 19893.72 25598.32 21298.13 23893.71 21794.26 24597.31 26892.24 11898.10 31694.63 19890.12 31096.84 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry93.22 29792.35 30395.84 28196.77 29393.09 27994.66 37997.56 29087.37 35992.90 30096.24 33288.15 21797.90 33187.37 34490.10 31196.53 314
EU-MVSNet93.66 28694.14 23892.25 35295.96 33483.38 37698.52 18798.12 23994.69 17292.61 30998.13 20187.36 23896.39 36891.82 28390.00 31296.98 255
Anonymous2023120691.66 31491.10 31493.33 34094.02 36987.35 36598.58 17897.26 32090.48 32590.16 34196.31 33083.83 30996.53 36679.36 37789.90 31396.12 339
eth_miper_zixun_eth94.68 23594.41 22695.47 29397.64 23291.71 29896.73 35098.07 25292.71 26493.64 27397.21 27690.54 16398.17 31193.38 23989.76 31496.54 312
FMVSNet591.81 31290.92 31594.49 32597.21 26692.09 28998.00 25197.55 29589.31 34890.86 33595.61 35174.48 36595.32 37885.57 35489.70 31596.07 341
miper_lstm_enhance94.33 26194.07 24195.11 30597.75 22190.97 30997.22 31498.03 26091.67 29892.76 30496.97 30190.03 17197.78 33892.51 26889.64 31696.56 309
v119294.32 26293.58 27596.53 24296.10 32794.45 22698.50 19298.17 23291.54 30094.19 25097.06 29086.95 24498.43 28090.14 30889.57 31796.70 292
v114494.59 24393.92 25196.60 23196.21 32194.78 21498.59 17698.14 23791.86 29394.21 24997.02 29687.97 22298.41 28991.72 28689.57 31796.61 302
Anonymous2024052191.18 31990.44 32093.42 33793.70 37088.47 35498.94 9397.56 29088.46 35489.56 34795.08 35877.15 35596.97 35683.92 36489.55 31994.82 363
VPA-MVSNet95.75 17495.11 19197.69 15697.24 26397.27 8398.94 9399.23 2095.13 15295.51 20897.32 26785.73 26598.91 22997.33 10689.55 31996.89 268
v124094.06 28193.29 28696.34 25996.03 33193.90 24698.44 19998.17 23291.18 31794.13 25397.01 29886.05 25998.42 28189.13 32989.50 32196.70 292
K. test v392.55 30791.91 31094.48 32695.64 34289.24 34099.07 6294.88 37394.04 19486.78 36397.59 25077.64 35197.64 34292.08 27589.43 32296.57 307
v192192094.20 26993.47 28196.40 25695.98 33294.08 24298.52 18798.15 23591.33 30894.25 24697.20 27786.41 25398.42 28190.04 31389.39 32396.69 297
new_pmnet90.06 32989.00 33393.22 34394.18 36488.32 35796.42 35896.89 34286.19 36485.67 37093.62 37077.18 35497.10 35481.61 37189.29 32494.23 367
c3_l94.79 23094.43 22595.89 27997.75 22193.12 27897.16 32398.03 26092.23 28293.46 28397.05 29291.39 14298.01 32393.58 23689.21 32596.53 314
v14419294.39 25993.70 27096.48 24796.06 32994.35 23298.58 17898.16 23491.45 30294.33 24297.02 29687.50 23598.45 27791.08 29589.11 32696.63 300
nrg03096.28 14995.72 15897.96 13696.90 28898.15 5299.39 1298.31 20395.47 13394.42 23798.35 17892.09 12498.69 25197.50 9989.05 32797.04 251
DeepMVS_CXcopyleft86.78 36297.09 27772.30 39095.17 37275.92 38484.34 37595.19 35570.58 37295.35 37679.98 37689.04 32892.68 380
tfpnnormal93.66 28692.70 29696.55 24196.94 28495.94 15498.97 8499.19 2491.04 31891.38 33097.34 26584.94 28198.61 25885.45 35689.02 32995.11 358
Anonymous2023121194.10 27793.26 28796.61 22999.11 10394.28 23499.01 7698.88 6286.43 36392.81 30297.57 25281.66 31998.68 25494.83 19289.02 32996.88 269
v2v48294.69 23394.03 24296.65 22296.17 32494.79 21398.67 16598.08 25092.72 26394.00 25997.16 27887.69 23298.45 27792.91 25488.87 33196.72 288
V4294.78 23194.14 23896.70 21996.33 31995.22 18998.97 8498.09 24992.32 27994.31 24397.06 29088.39 21298.55 26592.90 25588.87 33196.34 331
WR-MVS95.15 21194.46 22197.22 18396.67 30196.45 12498.21 22498.81 8694.15 19093.16 29297.69 24087.51 23398.30 30295.29 18288.62 33396.90 267
FPMVS77.62 35677.14 35679.05 37579.25 39760.97 40095.79 36595.94 36265.96 38967.93 39194.40 36437.73 39588.88 39468.83 39088.46 33487.29 387
v1094.29 26493.55 27796.51 24496.39 31594.80 21298.99 8198.19 22491.35 30793.02 29896.99 29988.09 21998.41 28990.50 30588.41 33596.33 333
CP-MVSNet94.94 22694.30 22996.83 21196.72 29895.56 17199.11 5598.95 4693.89 20492.42 31797.90 21987.19 23998.12 31594.32 21188.21 33696.82 279
MIMVSNet189.67 33288.28 33793.82 33492.81 37591.08 30898.01 24997.45 30787.95 35687.90 35895.87 34367.63 37994.56 38278.73 38088.18 33795.83 346
PS-CasMVS94.67 23893.99 24896.71 21796.68 30095.26 18699.13 5299.03 3793.68 22292.33 31897.95 21685.35 27398.10 31693.59 23588.16 33896.79 280
WR-MVS_H95.05 21794.46 22196.81 21396.86 29095.82 16399.24 3099.24 1793.87 20692.53 31296.84 31390.37 16598.24 30893.24 24387.93 33996.38 330
v894.47 25493.77 26496.57 23596.36 31694.83 21099.05 6598.19 22491.92 29093.16 29296.97 30188.82 20398.48 27291.69 28787.79 34096.39 329
v7n94.19 27093.43 28296.47 24895.90 33594.38 23199.26 2798.34 19991.99 28892.76 30497.13 27988.31 21398.52 26989.48 32487.70 34196.52 317
UniMVSNet (Re)95.78 17395.19 18697.58 16596.99 28197.47 7898.79 14099.18 2595.60 12793.92 26397.04 29391.68 13398.48 27295.80 16587.66 34296.79 280
baseline195.84 17095.12 19098.01 13298.49 16195.98 14698.73 15097.03 33195.37 14096.22 19398.19 19789.96 17299.16 18894.60 20187.48 34398.90 177
Gipumacopyleft78.40 35476.75 35783.38 36995.54 34580.43 38279.42 39397.40 31164.67 39073.46 38780.82 39145.65 39093.14 38766.32 39187.43 34476.56 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
NR-MVSNet94.98 22294.16 23697.44 17196.53 30797.22 9098.74 14698.95 4694.96 16389.25 34997.69 24089.32 18498.18 31094.59 20387.40 34596.92 260
dmvs_testset87.64 34188.93 33483.79 36795.25 35363.36 39897.20 31691.17 39293.07 25085.64 37195.98 34285.30 27791.52 39069.42 38987.33 34696.49 323
VPNet94.99 22094.19 23397.40 17697.16 27296.57 11898.71 15598.97 4295.67 12594.84 21998.24 19480.36 33098.67 25596.46 14287.32 34796.96 257
UniMVSNet_NR-MVSNet95.71 17795.15 18797.40 17696.84 29196.97 9798.74 14699.24 1795.16 15193.88 26597.72 23791.68 13398.31 30095.81 16387.25 34896.92 260
DU-MVS95.42 19394.76 20697.40 17696.53 30796.97 9798.66 16798.99 4195.43 13593.88 26597.69 24088.57 20698.31 30095.81 16387.25 34896.92 260
v14894.29 26493.76 26695.91 27796.10 32792.93 28198.58 17897.97 26592.59 26893.47 28296.95 30588.53 21098.32 29892.56 26587.06 35096.49 323
Baseline_NR-MVSNet94.35 26093.81 26095.96 27596.20 32294.05 24398.61 17596.67 35191.44 30393.85 26797.60 24988.57 20698.14 31394.39 20786.93 35195.68 349
PEN-MVS94.42 25793.73 26896.49 24596.28 32094.84 20899.17 4599.00 3993.51 23092.23 32097.83 22986.10 25897.90 33192.55 26686.92 35296.74 285
TranMVSNet+NR-MVSNet95.14 21294.48 21997.11 19296.45 31396.36 13299.03 7199.03 3795.04 15993.58 27597.93 21788.27 21498.03 32294.13 21786.90 35396.95 259
MDA-MVSNet_test_wron90.71 32489.38 32994.68 32094.83 35990.78 31597.19 31897.46 30387.60 35772.41 38995.72 34886.51 24996.71 36385.92 35286.80 35496.56 309
YYNet190.70 32589.39 32894.62 32294.79 36190.65 31897.20 31697.46 30387.54 35872.54 38895.74 34486.51 24996.66 36486.00 35186.76 35596.54 312
MDA-MVSNet-bldmvs89.97 33088.35 33694.83 31695.21 35491.34 30397.64 28597.51 29988.36 35571.17 39096.13 33879.22 33796.63 36583.65 36586.27 35696.52 317
test20.0390.89 32390.38 32192.43 34893.48 37188.14 36098.33 20897.56 29093.40 23587.96 35796.71 31880.69 32994.13 38379.15 37886.17 35795.01 362
DTE-MVSNet93.98 28393.26 28796.14 26796.06 32994.39 23099.20 4098.86 7593.06 25191.78 32697.81 23185.87 26397.58 34590.53 30486.17 35796.46 327
pm-mvs193.94 28493.06 28996.59 23296.49 31095.16 19198.95 9098.03 26092.32 27991.08 33397.84 22684.54 29398.41 28992.16 27386.13 35996.19 338
lessismore_v094.45 32994.93 35888.44 35591.03 39386.77 36497.64 24676.23 35898.42 28190.31 30785.64 36096.51 320
test_fmvs387.17 34287.06 34587.50 36191.21 37975.66 38599.05 6596.61 35392.79 26288.85 35392.78 37643.72 39193.49 38493.95 22384.56 36193.34 378
pmmvs691.77 31390.63 31895.17 30394.69 36391.24 30698.67 16597.92 27086.14 36589.62 34597.56 25475.79 36098.34 29690.75 30284.56 36195.94 344
test_f86.07 34685.39 34788.10 36089.28 38575.57 38697.73 27896.33 35789.41 34785.35 37291.56 38243.31 39395.53 37591.32 29284.23 36393.21 379
mvsany_test388.80 33788.04 33891.09 35689.78 38381.57 38197.83 27195.49 36693.81 21087.53 35993.95 36956.14 38797.43 34994.68 19683.13 36494.26 366
IB-MVS91.98 1793.27 29591.97 30897.19 18597.47 24693.41 26697.09 32695.99 36093.32 23892.47 31595.73 34678.06 34699.53 15394.59 20382.98 36598.62 198
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ambc89.49 35886.66 39075.78 38492.66 38596.72 34886.55 36692.50 37946.01 38997.90 33190.32 30682.09 36694.80 364
Patchmatch-RL test91.49 31590.85 31693.41 33891.37 37884.40 37192.81 38495.93 36391.87 29287.25 36094.87 35988.99 19596.53 36692.54 26782.00 36799.30 125
PM-MVS87.77 34086.55 34691.40 35591.03 38183.36 37796.92 33495.18 37191.28 31286.48 36793.42 37253.27 38896.74 36089.43 32581.97 36894.11 370
pmmvs-eth3d90.36 32789.05 33294.32 33091.10 38092.12 28897.63 28896.95 33788.86 35284.91 37493.13 37578.32 34296.74 36088.70 33281.81 36994.09 371
h-mvs3396.17 15295.62 16797.81 14499.03 10994.45 22698.64 16998.75 10697.48 3298.67 7398.72 13989.76 17499.86 6297.95 6281.59 37099.11 155
TransMVSNet (Re)92.67 30691.51 31296.15 26696.58 30594.65 21598.90 9996.73 34790.86 32189.46 34897.86 22385.62 26798.09 31886.45 34881.12 37195.71 348
PMVScopyleft61.03 2365.95 36063.57 36473.09 37857.90 40251.22 40585.05 39193.93 38454.45 39244.32 39883.57 38713.22 40289.15 39358.68 39381.00 37278.91 392
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
AUN-MVS94.53 24893.73 26896.92 20798.50 15993.52 26298.34 20798.10 24593.83 20995.94 20497.98 21485.59 26899.03 21094.35 20980.94 37398.22 217
hse-mvs295.71 17795.30 18296.93 20498.50 15993.53 26198.36 20598.10 24597.48 3298.67 7397.99 21289.76 17499.02 21397.95 6280.91 37498.22 217
WB-MVS84.86 34785.33 34883.46 36889.48 38469.56 39398.19 22996.42 35689.55 34381.79 37894.67 36184.80 28490.12 39152.44 39480.64 37590.69 382
test_vis3_rt79.22 34977.40 35584.67 36686.44 39174.85 38897.66 28381.43 40184.98 37267.12 39281.91 39028.09 40197.60 34388.96 33080.04 37681.55 390
SSC-MVS84.27 34884.71 35182.96 37289.19 38668.83 39498.08 24296.30 35889.04 35181.37 38094.47 36284.60 29189.89 39249.80 39679.52 37790.15 383
UnsupCasMVSNet_eth90.99 32289.92 32594.19 33294.08 36689.83 32997.13 32598.67 12893.69 22085.83 36996.19 33775.15 36296.74 36089.14 32879.41 37896.00 342
test_method79.03 35078.17 35281.63 37386.06 39254.40 40482.75 39296.89 34239.54 39680.98 38195.57 35258.37 38694.73 38184.74 36278.61 37995.75 347
testf179.02 35177.70 35382.99 37088.10 38866.90 39594.67 37793.11 38571.08 38774.02 38593.41 37334.15 39793.25 38572.25 38778.50 38088.82 385
APD_test279.02 35177.70 35382.99 37088.10 38866.90 39594.67 37793.11 38571.08 38774.02 38593.41 37334.15 39793.25 38572.25 38778.50 38088.82 385
TDRefinement91.06 32189.68 32695.21 30185.35 39391.49 30298.51 19197.07 32891.47 30188.83 35497.84 22677.31 35299.09 20392.79 25877.98 38295.04 360
new-patchmatchnet88.50 33887.45 34391.67 35490.31 38285.89 37097.16 32397.33 31589.47 34483.63 37692.77 37776.38 35795.06 38082.70 36877.29 38394.06 373
KD-MVS_self_test90.38 32689.38 32993.40 33992.85 37488.94 34797.95 25497.94 26890.35 33090.25 34093.96 36879.82 33395.94 37384.62 36376.69 38495.33 353
pmmvs386.67 34584.86 35092.11 35388.16 38787.19 36796.63 35294.75 37579.88 38187.22 36192.75 37866.56 38195.20 37981.24 37276.56 38593.96 374
CL-MVSNet_self_test90.11 32889.14 33193.02 34591.86 37788.23 35996.51 35698.07 25290.49 32490.49 33994.41 36384.75 28695.34 37780.79 37374.95 38695.50 351
LCM-MVSNet78.70 35376.24 35886.08 36377.26 39971.99 39194.34 38196.72 34861.62 39176.53 38389.33 38433.91 39992.78 38881.85 37074.60 38793.46 376
UnsupCasMVSNet_bld87.17 34285.12 34993.31 34191.94 37688.77 34894.92 37498.30 20984.30 37582.30 37790.04 38363.96 38397.25 35285.85 35374.47 38893.93 375
PVSNet_088.72 1991.28 31890.03 32495.00 30897.99 20887.29 36694.84 37598.50 16992.06 28789.86 34395.19 35579.81 33499.39 16992.27 27269.79 38998.33 213
KD-MVS_2432*160089.61 33387.96 34094.54 32394.06 36791.59 30095.59 36897.63 28589.87 33788.95 35194.38 36578.28 34396.82 35884.83 35968.05 39095.21 355
miper_refine_blended89.61 33387.96 34094.54 32394.06 36791.59 30095.59 36897.63 28589.87 33788.95 35194.38 36578.28 34396.82 35884.83 35968.05 39095.21 355
PMMVS277.95 35575.44 35985.46 36482.54 39474.95 38794.23 38293.08 38772.80 38674.68 38487.38 38536.36 39691.56 38973.95 38563.94 39289.87 384
MVEpermissive62.14 2263.28 36359.38 36674.99 37674.33 40065.47 39785.55 39080.50 40252.02 39451.10 39675.00 39510.91 40580.50 39651.60 39553.40 39378.99 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN64.94 36164.25 36367.02 37982.28 39559.36 40291.83 38785.63 39852.69 39360.22 39477.28 39341.06 39480.12 39746.15 39741.14 39461.57 395
EMVS64.07 36263.26 36566.53 38081.73 39658.81 40391.85 38684.75 39951.93 39559.09 39575.13 39443.32 39279.09 39842.03 39839.47 39561.69 394
ANet_high69.08 35865.37 36280.22 37465.99 40171.96 39290.91 38890.09 39582.62 37749.93 39778.39 39229.36 40081.75 39562.49 39238.52 39686.95 389
tmp_tt68.90 35966.97 36174.68 37750.78 40359.95 40187.13 38983.47 40038.80 39762.21 39396.23 33464.70 38276.91 39988.91 33130.49 39787.19 388
wuyk23d30.17 36430.18 36830.16 38178.61 39843.29 40666.79 39414.21 40517.31 39814.82 40111.93 40111.55 40441.43 40037.08 39919.30 3985.76 398
testmvs21.48 36624.95 36911.09 38314.89 4046.47 40896.56 3549.87 4067.55 39917.93 39939.02 3979.43 4065.90 40216.56 40112.72 39920.91 397
test12320.95 36723.72 37012.64 38213.54 4058.19 40796.55 3556.13 4077.48 40016.74 40037.98 39812.97 4036.05 40116.69 4005.43 40023.68 396
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k23.98 36531.98 3670.00 3840.00 4060.00 4090.00 39598.59 1440.00 4020.00 40398.61 14890.60 1620.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.88 36910.50 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40294.51 810.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.20 36810.94 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40398.43 1680.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS90.94 31088.66 333
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
eth-test20.00 406
eth-test0.00 406
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
save fliter99.46 4998.38 3598.21 22498.71 11697.95 13
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
GSMVS99.20 139
test_part299.63 2999.18 1099.27 35
sam_mvs189.45 18199.20 139
sam_mvs88.99 195
MTGPAbinary98.74 108
test_post196.68 35130.43 40087.85 22798.69 25192.59 263
test_post31.83 39988.83 20298.91 229
patchmatchnet-post95.10 35789.42 18298.89 233
MTMP98.89 10394.14 382
gm-plane-assit95.88 33687.47 36489.74 34096.94 30699.19 18693.32 242
TEST999.31 6498.50 2997.92 25698.73 11192.63 26597.74 13098.68 14296.20 2899.80 88
test_899.29 7398.44 3197.89 26498.72 11392.98 25497.70 13498.66 14596.20 2899.80 88
agg_prior99.30 6898.38 3598.72 11397.57 14499.81 81
test_prior498.01 5997.86 267
test_prior99.19 4099.31 6498.22 4798.84 7999.70 11999.65 69
旧先验297.57 29191.30 31098.67 7399.80 8895.70 170
新几何297.64 285
无先验97.58 29098.72 11391.38 30499.87 5893.36 24199.60 77
原ACMM297.67 282
testdata299.89 4791.65 288
segment_acmp96.85 14
testdata197.32 30896.34 95
plane_prior797.42 25294.63 217
plane_prior697.35 25994.61 22087.09 240
plane_prior498.28 187
plane_prior394.61 22097.02 6495.34 209
plane_prior298.80 13597.28 45
plane_prior197.37 258
n20.00 408
nn0.00 408
door-mid94.37 378
test1198.66 131
door94.64 376
HQP5-MVS94.25 237
HQP-NCC97.20 26798.05 24596.43 8994.45 232
ACMP_Plane97.20 26798.05 24596.43 8994.45 232
BP-MVS95.30 180
HQP4-MVS94.45 23298.96 22196.87 271
HQP2-MVS86.75 246
NP-MVS97.28 26194.51 22597.73 235
MDTV_nov1_ep13_2view84.26 37296.89 34190.97 31997.90 12389.89 17393.91 22599.18 148
Test By Simon94.64 78