This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
patch_mono-298.36 5098.87 696.82 21999.53 3690.68 32598.64 17099.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1699.86 199.82 16
dcpmvs_298.08 6098.59 1496.56 24399.57 3390.34 33299.15 4998.38 19496.82 7399.29 3499.49 1795.78 4399.57 14298.94 1999.86 199.77 27
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 3899.86 199.85 10
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6499.34 1898.87 6995.96 11198.60 8199.13 8296.05 3399.94 897.77 7899.86 199.77 27
CHOSEN 280x42097.18 11397.18 9897.20 18998.81 13493.27 27795.78 37599.15 2895.25 14996.79 17698.11 20292.29 11699.07 21398.56 2999.85 599.25 133
SD-MVS98.64 1698.68 1198.53 8799.33 5998.36 4198.90 10098.85 7897.28 4599.72 1299.39 3296.63 2097.60 35298.17 5499.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1298.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2199.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS_fast98.38 4798.13 5499.12 5099.75 397.86 6499.44 1198.82 8194.46 19098.94 5399.20 6795.16 6899.74 11197.58 9299.85 599.77 27
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5998.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 7899.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
iter_conf05_1196.28 15195.69 16698.03 13398.29 18495.88 16497.43 30596.24 36596.50 8998.26 10098.30 18678.78 34099.44 16997.58 9299.84 1098.78 189
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20498.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 8899.84 1099.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVScopyleft98.36 5098.10 5799.13 4899.74 797.82 6899.53 898.80 9394.63 18198.61 8098.97 10595.13 7099.77 10697.65 8799.83 1299.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7598.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4299.81 1399.70 53
IU-MVS99.71 1999.23 798.64 13695.28 14799.63 1898.35 4799.81 1399.83 13
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4498.86 7595.77 12198.31 9999.10 8695.46 5199.93 2597.57 9799.81 1399.74 37
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8598.58 14997.62 2499.45 2599.46 2497.42 999.94 898.47 3899.81 1399.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1299.35 198.97 8598.88 6299.94 898.47 3899.81 1399.84 12
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9198.80 9393.67 23299.37 3199.52 1196.52 2299.89 4798.06 5999.81 1399.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5999.28 2698.81 8696.24 10198.35 9699.23 6295.46 5199.94 897.42 10599.81 1399.77 27
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7898.88 10999.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 2099.89 5
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12697.25 9098.82 12799.34 1098.75 399.80 599.61 495.16 6899.95 799.70 699.80 2099.93 1
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 2099.86 8
No_MVS99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 2099.86 8
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4299.80 2099.83 13
MP-MVS-pluss98.31 5697.92 6499.49 1299.72 1298.88 1898.43 20298.78 10094.10 19997.69 13699.42 2995.25 6499.92 3198.09 5899.80 2099.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23597.15 9598.84 12398.97 4298.75 399.43 2799.54 893.29 10299.93 2599.64 999.79 2699.89 5
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 10098.74 10897.27 4998.02 11299.39 3294.81 7799.96 497.91 6899.79 2699.77 27
region2R98.61 1898.38 2899.29 2999.74 798.16 5399.23 3398.93 5096.15 10598.94 5399.17 7495.91 3999.94 897.55 9899.79 2699.78 21
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5499.23 3398.95 4696.10 10898.93 5799.19 7295.70 4599.94 897.62 8999.79 2699.78 21
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4599.23 3398.96 4596.10 10898.94 5399.17 7496.06 3299.92 3197.62 8999.78 3099.75 35
MP-MVScopyleft98.33 5598.01 6199.28 3299.75 398.18 5199.22 3798.79 9896.13 10697.92 12399.23 6294.54 8099.94 896.74 13999.78 3099.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5898.99 8299.49 595.43 13799.03 4799.32 4995.56 4899.94 896.80 13699.77 3299.78 21
APD-MVScopyleft98.35 5298.00 6299.42 1699.51 3998.72 2198.80 13698.82 8194.52 18799.23 3799.25 6195.54 5099.80 8896.52 14399.77 3299.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
114514_t96.93 12296.27 13898.92 6499.50 4197.63 7298.85 11998.90 5784.80 38297.77 12799.11 8492.84 10699.66 12894.85 19699.77 3299.47 100
CPTT-MVS97.72 7697.32 9198.92 6499.64 2897.10 9699.12 5598.81 8692.34 28698.09 10599.08 9493.01 10599.92 3196.06 15799.77 3299.75 35
DeepPCF-MVS96.37 297.93 6798.48 2396.30 26999.00 11489.54 34497.43 30598.87 6998.16 1199.26 3699.38 3796.12 3199.64 13198.30 4999.77 3299.72 45
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5998.50 19398.78 10097.72 1798.92 5999.28 5495.27 6299.82 7697.55 9899.77 3299.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 7097.75 28398.89 5997.71 1998.33 9798.97 10594.97 7499.88 5698.42 4499.76 3899.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR98.47 3898.34 3598.88 6899.22 8997.32 8397.91 26499.58 397.20 5398.33 9799.00 10395.99 3699.64 13198.05 6199.76 3899.69 56
PHI-MVS98.34 5398.06 5899.18 4299.15 10098.12 5799.04 6899.09 3193.32 24798.83 6499.10 8696.54 2199.83 6997.70 8599.76 3899.59 79
DeepC-MVS95.98 397.88 6897.58 7398.77 7199.25 8196.93 10198.83 12598.75 10696.96 6796.89 17099.50 1590.46 16699.87 5897.84 7599.76 3899.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsm_n_192098.87 1099.01 398.45 9599.42 5596.43 12798.96 9099.36 998.63 599.86 299.51 1395.91 3999.97 199.72 599.75 4298.94 176
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12798.81 8695.80 12099.16 4499.47 2095.37 5699.92 3197.89 7099.75 4299.79 19
MVS_111021_LR98.34 5398.23 4898.67 7699.27 7896.90 10397.95 25999.58 397.14 5898.44 9199.01 10295.03 7399.62 13797.91 6899.75 4299.50 91
3Dnovator94.51 597.46 9496.93 10899.07 5397.78 22997.64 7199.35 1799.06 3497.02 6493.75 28199.16 7789.25 18999.92 3197.22 11299.75 4299.64 71
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7698.89 10499.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 4699.90 3
XVS98.70 1498.49 2199.34 2399.70 2298.35 4299.29 2498.88 6297.40 3698.46 8699.20 6795.90 4199.89 4797.85 7399.74 4699.78 21
X-MVStestdata94.06 29192.30 31499.34 2399.70 2298.35 4299.29 2498.88 6297.40 3698.46 8643.50 40595.90 4199.89 4797.85 7399.74 4699.78 21
OPU-MVS99.37 2099.24 8799.05 1499.02 7599.16 7797.81 399.37 17797.24 11099.73 4999.70 53
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15599.32 3399.39 3296.22 2699.84 6797.72 8199.73 4999.67 65
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4699.14 5198.66 13196.84 7199.56 2099.31 5196.34 2599.70 11998.32 4899.73 4999.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 3899.72 5299.74 37
PC_three_145295.08 16099.60 1999.16 7797.86 298.47 28397.52 10199.72 5299.74 37
9.1498.06 5899.47 4798.71 15698.82 8194.36 19399.16 4499.29 5396.05 3399.81 8197.00 11799.71 54
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6998.88 10995.32 37698.86 298.53 8499.44 2794.38 8799.94 899.86 199.70 5599.90 3
MSLP-MVS++98.56 2998.57 1598.55 8399.26 8096.80 10798.71 15699.05 3697.28 4598.84 6299.28 5496.47 2399.40 17398.52 3699.70 5599.47 100
MM98.51 3398.24 4699.33 2699.12 10298.14 5698.93 9697.02 33798.96 199.17 4199.47 2091.97 13199.94 899.85 499.69 5799.91 2
test_vis1_n_192096.71 13196.84 11296.31 26899.11 10489.74 33999.05 6598.58 14998.08 1299.87 199.37 3878.48 34599.93 2599.29 1499.69 5799.27 129
CDPH-MVS97.94 6697.49 8099.28 3299.47 4798.44 3197.91 26498.67 12892.57 27898.77 6798.85 12295.93 3899.72 11395.56 17699.69 5799.68 61
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15598.66 13197.51 3098.15 10198.83 12595.70 4599.92 3197.53 10099.67 6099.66 68
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6399.15 4998.81 8696.24 10199.20 3899.37 3895.30 6099.80 8897.73 8099.67 6099.72 45
test_fmvsmvis_n_192098.44 4198.51 1898.23 11598.33 17996.15 14298.97 8599.15 2898.55 798.45 8999.55 694.26 9199.97 199.65 799.66 6298.57 212
test_cas_vis1_n_192097.38 10397.36 8997.45 17598.95 12193.25 27999.00 7998.53 15997.70 2099.77 799.35 4484.71 28999.85 6398.57 2799.66 6299.26 131
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19698.81 8697.72 1798.76 6899.16 7797.05 1399.78 10198.06 5999.66 6299.69 56
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6499.11 5698.80 9396.49 9099.17 4199.35 4495.34 5899.82 7697.72 8199.65 6599.71 49
RE-MVS-def98.34 3599.49 4597.86 6499.11 5698.80 9396.49 9099.17 4199.35 4495.29 6197.72 8199.65 6599.71 49
CANet98.05 6297.76 6798.90 6798.73 13897.27 8598.35 20798.78 10097.37 4197.72 13498.96 11091.53 14399.92 3198.79 2399.65 6599.51 89
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7499.46 4996.49 12498.30 21698.69 12097.21 5298.84 6299.36 4295.41 5399.78 10198.62 2699.65 6599.80 18
CSCG97.85 7197.74 6898.20 11899.67 2595.16 19499.22 3799.32 1193.04 26197.02 16398.92 11695.36 5799.91 3997.43 10499.64 6999.52 86
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 5199.09 6098.82 8196.58 8599.10 4699.32 4995.39 5499.82 7697.70 8599.63 7099.72 45
GST-MVS98.43 4398.12 5599.34 2399.72 1298.38 3599.09 6098.82 8195.71 12598.73 7199.06 9695.27 6299.93 2597.07 11699.63 7099.72 45
QAPM96.29 14995.40 17398.96 6297.85 22597.60 7499.23 3398.93 5089.76 34893.11 30599.02 9889.11 19499.93 2591.99 28599.62 7299.34 116
test_fmvsmconf0.01_n97.86 6997.54 7898.83 6995.48 35896.83 10698.95 9198.60 14198.58 698.93 5799.55 688.57 20899.91 3999.54 1199.61 7399.77 27
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20598.68 12397.04 6398.52 8598.80 12896.78 1699.83 6997.93 6699.61 7399.74 37
test_prior297.80 27996.12 10797.89 12598.69 14195.96 3796.89 12699.60 75
jason97.32 10697.08 10298.06 13297.45 26095.59 17197.87 27297.91 27394.79 17498.55 8398.83 12591.12 15399.23 18997.58 9299.60 7599.34 116
jason: jason.
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4799.26 2998.88 6297.52 2999.41 2898.78 13096.00 3599.79 9897.79 7799.59 7799.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVSFormer97.57 9097.49 8097.84 14498.07 20695.76 16799.47 998.40 18894.98 16498.79 6598.83 12592.34 11498.41 29796.91 12299.59 7799.34 116
lupinMVS97.44 9897.22 9698.12 12798.07 20695.76 16797.68 28897.76 27994.50 18898.79 6598.61 14892.34 11499.30 18297.58 9299.59 7799.31 122
ZD-MVS99.46 4998.70 2398.79 9893.21 25298.67 7398.97 10595.70 4599.83 6996.07 15499.58 80
test_fmvs196.42 14396.67 12395.66 29498.82 13388.53 36298.80 13698.20 22496.39 9799.64 1799.20 6780.35 33299.67 12699.04 1799.57 8198.78 189
test9_res96.39 14899.57 8199.69 56
train_agg97.97 6397.52 7999.33 2699.31 6498.50 2997.92 26298.73 11192.98 26397.74 13198.68 14296.20 2899.80 8896.59 14099.57 8199.68 61
agg_prior295.87 16499.57 8199.68 61
3Dnovator+94.38 697.43 9996.78 11699.38 1897.83 22698.52 2899.37 1498.71 11697.09 6292.99 30899.13 8289.36 18599.89 4796.97 11999.57 8199.71 49
LS3D97.16 11496.66 12498.68 7598.53 16197.19 9398.93 9698.90 5792.83 27095.99 20599.37 3892.12 12499.87 5893.67 23899.57 8198.97 172
CS-MVS-test98.49 3598.50 2098.46 9499.20 9297.05 9799.64 498.50 16997.45 3598.88 6099.14 8195.25 6499.15 19998.83 2299.56 8799.20 139
test1299.18 4299.16 9898.19 5098.53 15998.07 10695.13 7099.72 11399.56 8799.63 73
CHOSEN 1792x268897.12 11696.80 11398.08 13099.30 6894.56 22898.05 24999.71 193.57 23797.09 15798.91 11788.17 21899.89 4796.87 13199.56 8799.81 17
fmvsm_s_conf0.1_n98.18 5998.21 5198.11 12898.54 16095.24 19198.87 11499.24 1797.50 3199.70 1399.67 191.33 14799.89 4799.47 1299.54 9099.21 138
EI-MVSNet-UG-set98.41 4598.34 3598.61 7999.45 5296.32 13598.28 21998.68 12397.17 5598.74 6999.37 3895.25 6499.79 9898.57 2799.54 9099.73 42
test22299.23 8897.17 9497.40 30798.66 13188.68 36298.05 10798.96 11094.14 9399.53 9299.61 75
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12499.30 6895.25 19098.85 11999.39 797.94 1499.74 999.62 392.59 11099.91 3999.65 799.52 9399.25 133
MG-MVS97.81 7297.60 7298.44 9799.12 10295.97 15297.75 28398.78 10096.89 7098.46 8699.22 6493.90 9799.68 12594.81 19999.52 9399.67 65
test_fmvs1_n95.90 17095.99 14995.63 29598.67 14888.32 36699.26 2998.22 22196.40 9699.67 1499.26 5773.91 37699.70 11999.02 1899.50 9598.87 180
EC-MVSNet98.21 5898.11 5698.49 9198.34 17797.26 8999.61 598.43 18496.78 7498.87 6198.84 12393.72 9899.01 22398.91 2099.50 9599.19 143
CS-MVS98.44 4198.49 2198.31 10799.08 10796.73 11199.67 398.47 17597.17 5598.94 5399.10 8695.73 4499.13 20298.71 2499.49 9799.09 157
UGNet96.78 12996.30 13798.19 12098.24 18795.89 16298.88 10998.93 5097.39 3896.81 17497.84 22682.60 31699.90 4596.53 14299.49 9798.79 186
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
API-MVS97.41 10197.25 9397.91 14198.70 14396.80 10798.82 12798.69 12094.53 18598.11 10398.28 18794.50 8499.57 14294.12 22399.49 9797.37 254
新几何199.16 4599.34 5798.01 6198.69 12090.06 34398.13 10298.95 11294.60 7999.89 4791.97 28799.47 10099.59 79
旧先验199.29 7397.48 7898.70 11999.09 9295.56 4899.47 10099.61 75
OpenMVScopyleft93.04 1395.83 17495.00 19798.32 10697.18 28197.32 8399.21 4098.97 4289.96 34491.14 34199.05 9786.64 25099.92 3193.38 24499.47 10097.73 241
原ACMM198.65 7799.32 6296.62 11498.67 12893.27 25197.81 12698.97 10595.18 6799.83 6993.84 23299.46 10399.50 91
testdata98.26 11299.20 9295.36 18398.68 12391.89 30098.60 8199.10 8694.44 8699.82 7694.27 21899.44 10499.58 83
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 10999.09 10695.41 18098.86 11799.37 897.69 2199.78 699.61 492.38 11399.91 3999.58 1099.43 10599.49 96
DP-MVS Recon97.86 6997.46 8399.06 5499.53 3698.35 4298.33 20998.89 5992.62 27598.05 10798.94 11395.34 5899.65 12996.04 15899.42 10699.19 143
fmvsm_s_conf0.1_n_a98.08 6098.04 6098.21 11697.66 24195.39 18198.89 10499.17 2697.24 5099.76 899.67 191.13 15299.88 5699.39 1399.41 10799.35 115
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19798.76 10497.82 1698.45 8998.93 11496.65 1999.83 6997.38 10799.41 10799.71 49
TAPA-MVS93.98 795.35 20394.56 21897.74 15599.13 10194.83 21398.33 20998.64 13686.62 37096.29 19798.61 14894.00 9699.29 18380.00 38499.41 10799.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_vis1_n95.47 19195.13 19096.49 25297.77 23090.41 33099.27 2898.11 24496.58 8599.66 1599.18 7367.00 38999.62 13799.21 1599.40 11099.44 107
PVSNet_Blended97.38 10397.12 9998.14 12199.25 8195.35 18597.28 32099.26 1593.13 25797.94 12098.21 19592.74 10899.81 8196.88 12899.40 11099.27 129
MS-PatchMatch93.84 29593.63 28194.46 33796.18 33389.45 34597.76 28298.27 21492.23 29192.13 33197.49 25679.50 33698.69 26189.75 32599.38 11295.25 362
CANet_DTU96.96 12196.55 12798.21 11698.17 20096.07 14597.98 25798.21 22297.24 5097.13 15698.93 11486.88 24799.91 3995.00 19399.37 11398.66 203
DPM-MVS97.55 9296.99 10699.23 3899.04 10998.55 2797.17 33098.35 19994.85 17397.93 12298.58 15395.07 7299.71 11892.60 26699.34 11499.43 109
MVP-Stereo94.28 27493.92 25895.35 30694.95 36792.60 29197.97 25897.65 28491.61 30890.68 34697.09 28686.32 25798.42 28989.70 32799.34 11495.02 369
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CNLPA97.45 9797.03 10498.73 7299.05 10897.44 8298.07 24798.53 15995.32 14596.80 17598.53 15793.32 10199.72 11394.31 21799.31 11699.02 167
AdaColmapbinary97.15 11596.70 12098.48 9299.16 9896.69 11398.01 25398.89 5994.44 19196.83 17198.68 14290.69 16399.76 10794.36 21399.29 11798.98 171
Vis-MVSNetpermissive97.42 10097.11 10098.34 10598.66 14996.23 13899.22 3799.00 3996.63 8498.04 10999.21 6588.05 22499.35 17896.01 16099.21 11899.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EIA-MVS97.75 7497.58 7398.27 10998.38 16996.44 12699.01 7798.60 14195.88 11797.26 15297.53 25594.97 7499.33 18097.38 10799.20 11999.05 165
EPNet97.28 10796.87 11198.51 8894.98 36696.14 14398.90 10097.02 33798.28 1095.99 20599.11 8491.36 14599.89 4796.98 11899.19 12099.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PS-MVSNAJ97.73 7597.77 6697.62 16898.68 14795.58 17297.34 31598.51 16497.29 4498.66 7797.88 22294.51 8199.90 4597.87 7299.17 12197.39 252
PVSNet_Blended_VisFu97.70 7897.46 8398.44 9799.27 7895.91 16098.63 17399.16 2794.48 18997.67 13798.88 11992.80 10799.91 3997.11 11499.12 12299.50 91
BH-RMVSNet95.92 16995.32 18297.69 16098.32 18294.64 22098.19 23097.45 30994.56 18396.03 20398.61 14885.02 28099.12 20490.68 31199.06 12399.30 125
test250694.44 26393.91 26096.04 27799.02 11188.99 35499.06 6379.47 41296.96 6798.36 9499.26 5777.21 35799.52 15696.78 13799.04 12499.59 79
test111195.94 16795.78 15696.41 26198.99 11890.12 33499.04 6892.45 39896.99 6698.03 11099.27 5681.40 32199.48 16496.87 13199.04 12499.63 73
ECVR-MVScopyleft95.95 16595.71 16396.65 22999.02 11190.86 32099.03 7291.80 39996.96 6798.10 10499.26 5781.31 32299.51 15796.90 12599.04 12499.59 79
PVSNet91.96 1896.35 14796.15 14296.96 20999.17 9492.05 29996.08 36898.68 12393.69 22897.75 13097.80 23288.86 20399.69 12494.26 21999.01 12799.15 150
PatchMatch-RL96.59 13596.03 14798.27 10999.31 6496.51 12397.91 26499.06 3493.72 22496.92 16898.06 20588.50 21399.65 12991.77 29199.00 12898.66 203
PCF-MVS93.45 1194.68 24193.43 29198.42 10198.62 15496.77 10995.48 37998.20 22484.63 38393.34 29698.32 18388.55 21199.81 8184.80 37098.96 12998.68 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MAR-MVS96.91 12396.40 13398.45 9598.69 14696.90 10398.66 16898.68 12392.40 28597.07 16097.96 21591.54 14299.75 10993.68 23698.92 13098.69 198
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
F-COLMAP97.09 11896.80 11397.97 13799.45 5294.95 20798.55 18698.62 14093.02 26296.17 20098.58 15394.01 9599.81 8193.95 22898.90 13199.14 152
ETV-MVS97.96 6497.81 6598.40 10298.42 16697.27 8598.73 15198.55 15596.84 7198.38 9397.44 26195.39 5499.35 17897.62 8998.89 13298.58 211
DP-MVS96.59 13595.93 15198.57 8199.34 5796.19 14198.70 16098.39 19089.45 35494.52 23899.35 4491.85 13299.85 6392.89 26298.88 13399.68 61
OMC-MVS97.55 9297.34 9098.20 11899.33 5995.92 15998.28 21998.59 14495.52 13397.97 11799.10 8693.28 10399.49 15995.09 19098.88 13399.19 143
PAPM_NR97.46 9497.11 10098.50 8999.50 4196.41 13098.63 17398.60 14195.18 15297.06 16198.06 20594.26 9199.57 14293.80 23498.87 13599.52 86
ACMMPcopyleft98.23 5797.95 6399.09 5299.74 797.62 7399.03 7299.41 695.98 11097.60 14599.36 4294.45 8599.93 2597.14 11398.85 13699.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net97.96 6497.62 7198.98 5998.86 12997.47 8098.89 10499.08 3296.67 8298.72 7299.54 893.15 10499.81 8194.87 19598.83 13799.65 69
MSDG95.93 16895.30 18497.83 14598.90 12495.36 18396.83 35598.37 19691.32 31894.43 24598.73 13890.27 17099.60 13990.05 32098.82 13898.52 213
EPNet_dtu95.21 21194.95 20295.99 27996.17 33490.45 32998.16 23697.27 32096.77 7593.14 30498.33 18290.34 16898.42 28985.57 36298.81 13999.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft95.07 497.20 11296.78 11698.44 9799.29 7396.31 13798.14 23798.76 10492.41 28496.39 19598.31 18494.92 7699.78 10194.06 22698.77 14099.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu97.60 8697.56 7597.72 15698.35 17295.98 14797.86 27398.51 16497.13 5999.01 4998.40 17191.56 13999.80 8898.53 3098.68 14197.37 254
xiu_mvs_v1_base97.60 8697.56 7597.72 15698.35 17295.98 14797.86 27398.51 16497.13 5999.01 4998.40 17191.56 13999.80 8898.53 3098.68 14197.37 254
xiu_mvs_v1_base_debi97.60 8697.56 7597.72 15698.35 17295.98 14797.86 27398.51 16497.13 5999.01 4998.40 17191.56 13999.80 8898.53 3098.68 14197.37 254
MVS-HIRNet89.46 34588.40 34592.64 35697.58 24682.15 38894.16 39293.05 39775.73 39490.90 34382.52 39779.42 33798.33 30583.53 37598.68 14197.43 249
xiu_mvs_v2_base97.66 8297.70 6997.56 17298.61 15595.46 17897.44 30398.46 17697.15 5798.65 7898.15 19994.33 8899.80 8897.84 7598.66 14597.41 250
mvsany_test197.69 7997.70 6997.66 16698.24 18794.18 24497.53 29997.53 29995.52 13399.66 1599.51 1394.30 8999.56 14598.38 4598.62 14699.23 135
Vis-MVSNet (Re-imp)96.87 12596.55 12797.83 14598.73 13895.46 17899.20 4298.30 21194.96 16696.60 18398.87 12090.05 17298.59 27193.67 23898.60 14799.46 104
IS-MVSNet97.22 10996.88 11098.25 11398.85 13196.36 13399.19 4497.97 26695.39 13997.23 15398.99 10491.11 15498.93 23594.60 20698.59 14899.47 100
PAPR96.84 12796.24 14098.65 7798.72 14296.92 10297.36 31398.57 15193.33 24696.67 17897.57 25294.30 8999.56 14591.05 30698.59 14899.47 100
TSAR-MVS + GP.98.38 4798.24 4698.81 7099.22 8997.25 9098.11 24298.29 21397.19 5498.99 5299.02 9896.22 2699.67 12698.52 3698.56 15099.51 89
diffmvspermissive97.58 8997.40 8798.13 12498.32 18295.81 16698.06 24898.37 19696.20 10398.74 6998.89 11891.31 14999.25 18698.16 5598.52 15199.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned95.95 16595.72 16096.65 22998.55 15992.26 29498.23 22397.79 27893.73 22294.62 23598.01 21088.97 20199.00 22493.04 25598.51 15298.68 199
test-LLR95.10 21794.87 20695.80 28996.77 30489.70 34096.91 34595.21 37795.11 15694.83 23195.72 35687.71 23198.97 22593.06 25398.50 15398.72 194
TESTMET0.1,194.18 28193.69 27995.63 29596.92 29589.12 35096.91 34594.78 38293.17 25494.88 22896.45 33278.52 34498.92 23693.09 25298.50 15398.85 181
test-mter94.08 28993.51 28795.80 28996.77 30489.70 34096.91 34595.21 37792.89 26794.83 23195.72 35677.69 35298.97 22593.06 25398.50 15398.72 194
131496.25 15495.73 15997.79 14997.13 28495.55 17598.19 23098.59 14493.47 24192.03 33397.82 23091.33 14799.49 15994.62 20598.44 15698.32 224
LCM-MVSNet-Re95.22 21095.32 18294.91 31898.18 19787.85 37298.75 14495.66 37395.11 15688.96 35996.85 31590.26 17197.65 35095.65 17498.44 15699.22 137
EPP-MVSNet97.46 9497.28 9297.99 13698.64 15295.38 18299.33 2298.31 20593.61 23697.19 15499.07 9594.05 9499.23 18996.89 12698.43 15899.37 114
casdiffmvs_mvgpermissive97.72 7697.48 8298.44 9798.42 16696.59 11998.92 9898.44 18096.20 10397.76 12899.20 6791.66 13799.23 18998.27 5398.41 15999.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive97.63 8497.41 8698.28 10898.33 17996.14 14398.82 12798.32 20396.38 9897.95 11899.21 6591.23 15199.23 18998.12 5698.37 16099.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PatchmatchNetpermissive95.71 18095.52 17196.29 27097.58 24690.72 32496.84 35497.52 30094.06 20097.08 15896.96 30689.24 19098.90 24192.03 28498.37 16099.26 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS94.67 24493.54 28698.08 13096.88 29996.56 12198.19 23098.50 16978.05 39292.69 31698.02 20891.07 15699.63 13490.09 31798.36 16298.04 232
FE-MVS95.62 18694.90 20497.78 15098.37 17194.92 20897.17 33097.38 31590.95 32997.73 13397.70 23885.32 27799.63 13491.18 29998.33 16398.79 186
gg-mvs-nofinetune92.21 32190.58 32997.13 19796.75 30795.09 19895.85 37389.40 40585.43 38094.50 23981.98 39880.80 32998.40 30392.16 27898.33 16397.88 235
SCA95.46 19295.13 19096.46 25897.67 23991.29 31397.33 31697.60 28894.68 17896.92 16897.10 28283.97 30698.89 24292.59 26898.32 16599.20 139
baseline97.64 8397.44 8598.25 11398.35 17296.20 13999.00 7998.32 20396.33 10098.03 11099.17 7491.35 14699.16 19698.10 5798.29 16699.39 112
MVS_Test97.28 10797.00 10598.13 12498.33 17995.97 15298.74 14798.07 25494.27 19598.44 9198.07 20492.48 11199.26 18596.43 14698.19 16799.16 149
sss97.39 10296.98 10798.61 7998.60 15696.61 11698.22 22498.93 5093.97 20798.01 11598.48 16291.98 12999.85 6396.45 14598.15 16899.39 112
Patchmatch-test94.42 26493.68 28096.63 23397.60 24591.76 30394.83 38597.49 30489.45 35494.14 26197.10 28288.99 19798.83 25185.37 36598.13 16999.29 127
COLMAP_ROBcopyleft93.27 1295.33 20594.87 20696.71 22499.29 7393.24 28098.58 17998.11 24489.92 34593.57 28599.10 8686.37 25699.79 9890.78 30998.10 17097.09 259
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE96.58 13796.07 14498.10 12998.35 17295.89 16299.34 1898.12 24193.12 25896.09 20198.87 12089.71 17898.97 22592.95 25898.08 17199.43 109
FA-MVS(test-final)96.41 14695.94 15097.82 14798.21 19195.20 19397.80 27997.58 28993.21 25297.36 15097.70 23889.47 18299.56 14594.12 22397.99 17298.71 197
Effi-MVS+-dtu96.29 14996.56 12695.51 29997.89 22490.22 33398.80 13698.10 24796.57 8796.45 19396.66 32390.81 15998.91 23895.72 17097.99 17297.40 251
Fast-Effi-MVS+96.28 15195.70 16598.03 13398.29 18495.97 15298.58 17998.25 21991.74 30395.29 22197.23 27691.03 15799.15 19992.90 26097.96 17498.97 172
mvs_anonymous96.70 13296.53 12997.18 19298.19 19593.78 25398.31 21498.19 22694.01 20494.47 24098.27 19092.08 12798.46 28497.39 10697.91 17599.31 122
PMMVS96.60 13496.33 13597.41 17997.90 22393.93 24997.35 31498.41 18692.84 26997.76 12897.45 26091.10 15599.20 19396.26 15097.91 17599.11 155
AllTest95.24 20994.65 21496.99 20599.25 8193.21 28198.59 17798.18 22991.36 31493.52 28798.77 13284.67 29099.72 11389.70 32797.87 17798.02 233
TestCases96.99 20599.25 8193.21 28198.18 22991.36 31493.52 28798.77 13284.67 29099.72 11389.70 32797.87 17798.02 233
TAMVS97.02 11996.79 11597.70 15998.06 20995.31 18898.52 18898.31 20593.95 20897.05 16298.61 14893.49 10098.52 27895.33 18297.81 17999.29 127
Effi-MVS+97.12 11696.69 12198.39 10398.19 19596.72 11297.37 31198.43 18493.71 22597.65 14198.02 20892.20 12299.25 18696.87 13197.79 18099.19 143
Fast-Effi-MVS+-dtu95.87 17195.85 15395.91 28497.74 23491.74 30598.69 16298.15 23795.56 13194.92 22797.68 24388.98 20098.79 25593.19 25097.78 18197.20 258
DSMNet-mixed92.52 31992.58 30992.33 35994.15 37582.65 38798.30 21694.26 38889.08 35992.65 31795.73 35485.01 28195.76 38386.24 35797.76 18298.59 209
CDS-MVSNet96.99 12096.69 12197.90 14298.05 21095.98 14798.20 22798.33 20293.67 23296.95 16498.49 16193.54 9998.42 28995.24 18897.74 18399.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thisisatest051595.61 18994.89 20597.76 15398.15 20295.15 19696.77 35694.41 38592.95 26597.18 15597.43 26284.78 28699.45 16894.63 20397.73 18498.68 199
thisisatest053096.01 16195.36 17897.97 13798.38 16995.52 17698.88 10994.19 38994.04 20197.64 14298.31 18483.82 31199.46 16795.29 18597.70 18598.93 177
BH-w/o95.38 19995.08 19496.26 27198.34 17791.79 30297.70 28797.43 31192.87 26894.24 25697.22 27788.66 20698.84 24891.55 29597.70 18598.16 230
PAPM94.95 22994.00 25397.78 15097.04 28895.65 17096.03 37198.25 21991.23 32394.19 25997.80 23291.27 15098.86 24782.61 37897.61 18798.84 183
tttt051796.07 15995.51 17297.78 15098.41 16894.84 21199.28 2694.33 38794.26 19697.64 14298.64 14684.05 30499.47 16695.34 18197.60 18899.03 166
HyFIR lowres test96.90 12496.49 13098.14 12199.33 5995.56 17397.38 30999.65 292.34 28697.61 14498.20 19689.29 18799.10 21096.97 11997.60 18899.77 27
UWE-MVS94.30 27093.89 26395.53 29897.83 22688.95 35597.52 30193.25 39394.44 19196.63 18097.07 28978.70 34399.28 18491.99 28597.56 19098.36 221
CVMVSNet95.43 19596.04 14693.57 34597.93 22183.62 38398.12 24098.59 14495.68 12696.56 18499.02 9887.51 23597.51 35793.56 24297.44 19199.60 77
MDTV_nov1_ep1395.40 17397.48 25588.34 36596.85 35397.29 31893.74 22197.48 14997.26 27289.18 19199.05 21491.92 28897.43 192
baseline295.11 21694.52 22096.87 21696.65 31393.56 26298.27 22194.10 39193.45 24292.02 33497.43 26287.45 23999.19 19493.88 23197.41 19397.87 236
EPMVS94.99 22494.48 22296.52 25097.22 27591.75 30497.23 32291.66 40094.11 19897.28 15196.81 31785.70 26798.84 24893.04 25597.28 19498.97 172
LFMVS95.86 17294.98 19998.47 9398.87 12896.32 13598.84 12396.02 36693.40 24498.62 7999.20 6774.99 37099.63 13497.72 8197.20 19599.46 104
testing393.19 30992.48 31195.30 30898.07 20692.27 29398.64 17097.17 32593.94 21093.98 26997.04 29667.97 38696.01 38188.40 34397.14 19697.63 245
ADS-MVSNet294.58 25094.40 23095.11 31398.00 21288.74 35896.04 36997.30 31790.15 34196.47 19196.64 32687.89 22797.56 35590.08 31897.06 19799.02 167
ADS-MVSNet95.00 22294.45 22696.63 23398.00 21291.91 30196.04 36997.74 28190.15 34196.47 19196.64 32687.89 22798.96 22990.08 31897.06 19799.02 167
Syy-MVS92.55 31792.61 30892.38 35897.39 26683.41 38497.91 26497.46 30593.16 25593.42 29395.37 36284.75 28796.12 37977.00 39296.99 19997.60 246
myMVS_eth3d92.73 31592.01 31794.89 32097.39 26690.94 31897.91 26497.46 30593.16 25593.42 29395.37 36268.09 38596.12 37988.34 34496.99 19997.60 246
GG-mvs-BLEND96.59 23996.34 32894.98 20496.51 36588.58 40693.10 30694.34 37680.34 33398.05 32989.53 33096.99 19996.74 293
cascas94.63 24693.86 26596.93 21196.91 29794.27 23996.00 37298.51 16485.55 37994.54 23796.23 33884.20 30298.87 24595.80 16796.98 20297.66 244
WB-MVSnew94.19 27894.04 24894.66 32996.82 30392.14 29597.86 27395.96 36993.50 23995.64 21396.77 31988.06 22397.99 33484.87 36796.86 20393.85 384
WTY-MVS97.37 10596.92 10998.72 7398.86 12996.89 10598.31 21498.71 11695.26 14897.67 13798.56 15692.21 12199.78 10195.89 16296.85 20499.48 98
VDD-MVS95.82 17595.23 18697.61 16998.84 13293.98 24898.68 16397.40 31395.02 16297.95 11899.34 4874.37 37599.78 10198.64 2596.80 20599.08 161
test_yl97.22 10996.78 11698.54 8598.73 13896.60 11798.45 19798.31 20594.70 17598.02 11298.42 16990.80 16099.70 11996.81 13496.79 20699.34 116
DCV-MVSNet97.22 10996.78 11698.54 8598.73 13896.60 11798.45 19798.31 20594.70 17598.02 11298.42 16990.80 16099.70 11996.81 13496.79 20699.34 116
PatchT93.06 31291.97 31896.35 26596.69 31092.67 29094.48 38997.08 32986.62 37097.08 15892.23 38987.94 22697.90 34078.89 38896.69 20898.49 215
VNet97.79 7397.40 8798.96 6298.88 12697.55 7598.63 17398.93 5096.74 7899.02 4898.84 12390.33 16999.83 6998.53 3096.66 20999.50 91
CR-MVSNet94.76 23894.15 24296.59 23997.00 28993.43 26894.96 38197.56 29292.46 27996.93 16696.24 33688.15 21997.88 34487.38 35196.65 21098.46 216
RPMNet92.81 31491.34 32397.24 18797.00 28993.43 26894.96 38198.80 9382.27 38796.93 16692.12 39086.98 24599.82 7676.32 39396.65 21098.46 216
VDDNet95.36 20294.53 21997.86 14398.10 20595.13 19798.85 11997.75 28090.46 33598.36 9499.39 3273.27 37899.64 13197.98 6296.58 21298.81 185
alignmvs97.56 9197.07 10399.01 5698.66 14998.37 4098.83 12598.06 25996.74 7898.00 11697.65 24490.80 16099.48 16498.37 4696.56 21399.19 143
HY-MVS93.96 896.82 12896.23 14198.57 8198.46 16597.00 9898.14 23798.21 22293.95 20896.72 17797.99 21291.58 13899.76 10794.51 21096.54 21498.95 175
1112_ss96.63 13396.00 14898.50 8998.56 15796.37 13298.18 23598.10 24792.92 26694.84 22998.43 16792.14 12399.58 14194.35 21496.51 21599.56 85
thres20095.25 20894.57 21797.28 18698.81 13494.92 20898.20 22797.11 32795.24 15196.54 18896.22 34084.58 29399.53 15387.93 34996.50 21697.39 252
Test_1112_low_res96.34 14895.66 16998.36 10498.56 15795.94 15597.71 28698.07 25492.10 29594.79 23397.29 27191.75 13499.56 14594.17 22196.50 21699.58 83
tpmrst95.63 18595.69 16695.44 30397.54 25188.54 36196.97 34097.56 29293.50 23997.52 14896.93 31089.49 18099.16 19695.25 18796.42 21898.64 205
ab-mvs96.42 14395.71 16398.55 8398.63 15396.75 11097.88 27198.74 10893.84 21496.54 18898.18 19885.34 27599.75 10995.93 16196.35 21999.15 150
thres600view795.49 19094.77 20897.67 16398.98 11995.02 20098.85 11996.90 34495.38 14096.63 18096.90 31184.29 29699.59 14088.65 34296.33 22098.40 218
RPSCF94.87 23395.40 17393.26 35198.89 12582.06 38998.33 20998.06 25990.30 34096.56 18499.26 5787.09 24299.49 15993.82 23396.32 22198.24 225
ETVMVS94.50 25793.44 29097.68 16298.18 19795.35 18598.19 23097.11 32793.73 22296.40 19495.39 36174.53 37298.84 24891.10 30196.31 22298.84 183
testing1195.00 22294.28 23397.16 19497.96 21893.36 27598.09 24597.06 33394.94 16995.33 22096.15 34276.89 36199.40 17395.77 16996.30 22398.72 194
thres100view90095.38 19994.70 21297.41 17998.98 11994.92 20898.87 11496.90 34495.38 14096.61 18296.88 31284.29 29699.56 14588.11 34596.29 22497.76 238
tfpn200view995.32 20694.62 21597.43 17798.94 12294.98 20498.68 16396.93 34295.33 14396.55 18696.53 32984.23 30099.56 14588.11 34596.29 22497.76 238
thres40095.38 19994.62 21597.65 16798.94 12294.98 20498.68 16396.93 34295.33 14396.55 18696.53 32984.23 30099.56 14588.11 34596.29 22498.40 218
sasdasda97.67 8097.23 9498.98 5998.70 14398.38 3599.34 1898.39 19096.76 7697.67 13797.40 26592.26 11799.49 15998.28 5096.28 22799.08 161
canonicalmvs97.67 8097.23 9498.98 5998.70 14398.38 3599.34 1898.39 19096.76 7697.67 13797.40 26592.26 11799.49 15998.28 5096.28 22799.08 161
XVG-OURS96.55 13996.41 13296.99 20598.75 13793.76 25497.50 30298.52 16295.67 12796.83 17199.30 5288.95 20299.53 15395.88 16396.26 22997.69 243
MGCFI-Net97.62 8597.19 9798.92 6498.66 14998.20 4999.32 2398.38 19496.69 8197.58 14697.42 26492.10 12599.50 15898.28 5096.25 23099.08 161
GA-MVS94.81 23594.03 24997.14 19697.15 28393.86 25196.76 35797.58 28994.00 20594.76 23497.04 29680.91 32698.48 28091.79 29096.25 23099.09 157
tpm294.19 27893.76 27495.46 30297.23 27489.04 35297.31 31896.85 35087.08 36996.21 19996.79 31883.75 31298.74 25892.43 27696.23 23298.59 209
MIMVSNet93.26 30692.21 31596.41 26197.73 23593.13 28395.65 37697.03 33591.27 32294.04 26696.06 34475.33 36897.19 36286.56 35596.23 23298.92 178
TR-MVS94.94 23194.20 23797.17 19397.75 23194.14 24597.59 29697.02 33792.28 29095.75 21297.64 24683.88 30898.96 22989.77 32496.15 23498.40 218
CostFormer94.95 22994.73 21195.60 29797.28 27189.06 35197.53 29996.89 34689.66 35096.82 17396.72 32186.05 26198.95 23495.53 17896.13 23598.79 186
tpmvs94.60 24794.36 23195.33 30797.46 25788.60 36096.88 35197.68 28291.29 32093.80 27996.42 33388.58 20799.24 18891.06 30496.04 23698.17 229
testing9194.98 22694.25 23597.20 18997.94 21993.41 27098.00 25597.58 28994.99 16395.45 21696.04 34577.20 35899.42 17294.97 19496.02 23798.78 189
testing9994.83 23494.08 24697.07 20297.94 21993.13 28398.10 24497.17 32594.86 17195.34 21796.00 34876.31 36499.40 17395.08 19195.90 23898.68 199
testing22294.12 28593.03 29997.37 18498.02 21194.66 21897.94 26196.65 35794.63 18195.78 21195.76 35171.49 38098.92 23691.17 30095.88 23998.52 213
tpm cat193.36 30192.80 30395.07 31597.58 24687.97 37096.76 35797.86 27582.17 38893.53 28696.04 34586.13 25999.13 20289.24 33595.87 24098.10 231
XVG-OURS-SEG-HR96.51 14096.34 13497.02 20498.77 13693.76 25497.79 28198.50 16995.45 13696.94 16599.09 9287.87 22999.55 15296.76 13895.83 24197.74 240
SDMVSNet96.85 12696.42 13198.14 12199.30 6896.38 13199.21 4099.23 2095.92 11295.96 20798.76 13685.88 26499.44 16997.93 6695.59 24298.60 207
sd_testset96.17 15595.76 15897.42 17899.30 6894.34 23798.82 12799.08 3295.92 11295.96 20798.76 13682.83 31599.32 18195.56 17695.59 24298.60 207
test_vis1_rt91.29 32790.65 32793.19 35397.45 26086.25 37898.57 18490.90 40393.30 24986.94 37193.59 38062.07 39399.11 20697.48 10395.58 24494.22 376
JIA-IIPM93.35 30292.49 31095.92 28396.48 32290.65 32695.01 38096.96 34085.93 37696.08 20287.33 39587.70 23398.78 25691.35 29795.58 24498.34 222
Anonymous20240521195.28 20794.49 22197.67 16399.00 11493.75 25698.70 16097.04 33490.66 33196.49 19098.80 12878.13 34999.83 6996.21 15395.36 24699.44 107
Anonymous2024052995.10 21794.22 23697.75 15499.01 11394.26 24098.87 11498.83 8085.79 37896.64 17998.97 10578.73 34199.85 6396.27 14994.89 24799.12 154
CLD-MVS95.62 18695.34 17996.46 25897.52 25493.75 25697.27 32198.46 17695.53 13294.42 24698.00 21186.21 25898.97 22596.25 15294.37 24896.66 306
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
dp94.15 28293.90 26194.90 31997.31 27086.82 37796.97 34097.19 32491.22 32496.02 20496.61 32885.51 27199.02 22190.00 32294.30 24998.85 181
HQP_MVS96.14 15795.90 15296.85 21797.42 26294.60 22698.80 13698.56 15397.28 4595.34 21798.28 18787.09 24299.03 21896.07 15494.27 25096.92 270
plane_prior598.56 15399.03 21896.07 15494.27 25096.92 270
plane_prior94.60 22698.44 20096.74 7894.22 252
OPM-MVS95.69 18395.33 18196.76 22296.16 33694.63 22198.43 20298.39 19096.64 8395.02 22698.78 13085.15 27999.05 21495.21 18994.20 25396.60 311
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP3-MVS98.46 17694.18 254
HQP-MVS95.72 17895.40 17396.69 22797.20 27794.25 24198.05 24998.46 17696.43 9394.45 24197.73 23586.75 24898.96 22995.30 18394.18 25496.86 283
LPG-MVS_test95.62 18695.34 17996.47 25597.46 25793.54 26398.99 8298.54 15794.67 17994.36 24998.77 13285.39 27299.11 20695.71 17194.15 25696.76 291
LGP-MVS_train96.47 25597.46 25793.54 26398.54 15794.67 17994.36 24998.77 13285.39 27299.11 20695.71 17194.15 25696.76 291
test_djsdf96.00 16295.69 16696.93 21195.72 35095.49 17799.47 998.40 18894.98 16494.58 23697.86 22389.16 19298.41 29796.91 12294.12 25896.88 279
jajsoiax95.45 19495.03 19696.73 22395.42 36294.63 22199.14 5198.52 16295.74 12293.22 29998.36 17683.87 30998.65 26696.95 12194.04 25996.91 275
anonymousdsp95.42 19694.91 20396.94 21095.10 36595.90 16199.14 5198.41 18693.75 21993.16 30197.46 25887.50 23798.41 29795.63 17594.03 26096.50 330
mvs_tets95.41 19895.00 19796.65 22995.58 35494.42 23299.00 7998.55 15595.73 12493.21 30098.38 17483.45 31398.63 26797.09 11594.00 26196.91 275
ACMP93.49 1095.34 20494.98 19996.43 26097.67 23993.48 26798.73 15198.44 18094.94 16992.53 32198.53 15784.50 29599.14 20195.48 18094.00 26196.66 306
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
bld_raw_dy_0_6495.72 17894.98 19997.97 13798.29 18495.68 16999.04 6896.34 36296.51 8895.86 21098.44 16678.73 34199.44 16997.58 9293.99 26398.78 189
ACMM93.85 995.69 18395.38 17796.61 23697.61 24493.84 25298.91 9998.44 18095.25 14994.28 25398.47 16386.04 26399.12 20495.50 17993.95 26496.87 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D94.24 27593.33 29396.97 20897.19 28093.38 27398.74 14798.57 15191.21 32593.81 27898.58 15372.85 37998.77 25795.05 19293.93 26598.77 193
XVG-ACMP-BASELINE94.54 25294.14 24395.75 29296.55 31791.65 30798.11 24298.44 18094.96 16694.22 25797.90 21979.18 33999.11 20694.05 22793.85 26696.48 333
EG-PatchMatch MVS91.13 33090.12 33394.17 34294.73 37289.00 35398.13 23997.81 27789.22 35885.32 38296.46 33167.71 38798.42 28987.89 35093.82 26795.08 367
iter_conf0596.13 15895.79 15597.15 19598.16 20195.99 14698.88 10997.98 26495.91 11495.58 21498.46 16585.53 27098.59 27197.88 7193.75 26896.86 283
test_fmvs293.43 30093.58 28392.95 35596.97 29283.91 38299.19 4497.24 32295.74 12295.20 22298.27 19069.65 38298.72 26096.26 15093.73 26996.24 343
testgi93.06 31292.45 31294.88 32196.43 32589.90 33698.75 14497.54 29895.60 12991.63 33897.91 21874.46 37497.02 36486.10 35893.67 27097.72 242
test0.0.03 194.08 28993.51 28795.80 28995.53 35692.89 28997.38 30995.97 36895.11 15692.51 32396.66 32387.71 23196.94 36687.03 35393.67 27097.57 248
mvsmamba96.57 13896.32 13697.32 18596.60 31496.43 12799.54 797.98 26496.49 9095.20 22298.64 14690.82 15898.55 27497.97 6393.65 27296.98 265
CMPMVSbinary66.06 2189.70 34189.67 33789.78 36693.19 38276.56 39297.00 33998.35 19980.97 38981.57 38897.75 23474.75 37198.61 26889.85 32393.63 27394.17 377
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMMP++93.61 274
D2MVS95.18 21395.08 19495.48 30097.10 28692.07 29898.30 21699.13 3094.02 20392.90 30996.73 32089.48 18198.73 25994.48 21193.60 27595.65 358
EI-MVSNet95.96 16495.83 15496.36 26497.93 22193.70 26098.12 24098.27 21493.70 22795.07 22499.02 9892.23 12098.54 27694.68 20193.46 27696.84 285
MVSTER96.06 16095.72 16097.08 20198.23 18995.93 15898.73 15198.27 21494.86 17195.07 22498.09 20388.21 21798.54 27696.59 14093.46 27696.79 288
PS-MVSNAJss96.43 14296.26 13996.92 21495.84 34895.08 19999.16 4898.50 16995.87 11893.84 27798.34 18194.51 8198.61 26896.88 12893.45 27897.06 260
LTVRE_ROB92.95 1594.60 24793.90 26196.68 22897.41 26594.42 23298.52 18898.59 14491.69 30691.21 34098.35 17784.87 28399.04 21791.06 30493.44 27996.60 311
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ITE_SJBPF95.44 30397.42 26291.32 31297.50 30295.09 15993.59 28398.35 17781.70 31998.88 24489.71 32693.39 28096.12 347
PVSNet_BlendedMVS96.73 13096.60 12597.12 19899.25 8195.35 18598.26 22299.26 1594.28 19497.94 12097.46 25892.74 10899.81 8196.88 12893.32 28196.20 345
ACMH92.88 1694.55 25193.95 25796.34 26697.63 24393.26 27898.81 13598.49 17493.43 24389.74 35398.53 15781.91 31899.08 21293.69 23593.30 28296.70 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVS_ROBcopyleft86.42 2089.00 34687.43 35493.69 34493.08 38389.42 34697.91 26496.89 34678.58 39185.86 37794.69 36969.48 38398.29 31377.13 39193.29 28393.36 386
USDC93.33 30492.71 30595.21 30996.83 30290.83 32296.91 34597.50 30293.84 21490.72 34598.14 20077.69 35298.82 25289.51 33193.21 28495.97 351
RRT_MVS95.98 16395.78 15696.56 24396.48 32294.22 24399.57 697.92 27195.89 11593.95 27098.70 14089.27 18898.42 28997.23 11193.02 28597.04 261
ACMMP++_ref92.97 286
test_040291.32 32690.27 33294.48 33596.60 31491.12 31598.50 19397.22 32386.10 37588.30 36596.98 30377.65 35497.99 33478.13 39092.94 28794.34 373
tt080594.54 25293.85 26696.63 23397.98 21693.06 28798.77 14397.84 27693.67 23293.80 27998.04 20776.88 36298.96 22994.79 20092.86 28897.86 237
dmvs_re94.48 26094.18 24095.37 30597.68 23890.11 33598.54 18797.08 32994.56 18394.42 24697.24 27584.25 29897.76 34891.02 30792.83 28998.24 225
FIs96.51 14096.12 14397.67 16397.13 28497.54 7699.36 1599.22 2395.89 11594.03 26798.35 17791.98 12998.44 28796.40 14792.76 29097.01 263
FC-MVSNet-test96.42 14396.05 14597.53 17396.95 29397.27 8599.36 1599.23 2095.83 11993.93 27198.37 17592.00 12898.32 30696.02 15992.72 29197.00 264
TinyColmap92.31 32091.53 32194.65 33096.92 29589.75 33896.92 34396.68 35490.45 33689.62 35497.85 22576.06 36698.81 25386.74 35492.51 29295.41 360
ACMH+92.99 1494.30 27093.77 27295.88 28797.81 22892.04 30098.71 15698.37 19693.99 20690.60 34798.47 16380.86 32899.05 21492.75 26492.40 29396.55 319
GBi-Net94.49 25893.80 26996.56 24398.21 19195.00 20198.82 12798.18 22992.46 27994.09 26397.07 28981.16 32397.95 33692.08 28092.14 29496.72 296
test194.49 25893.80 26996.56 24398.21 19195.00 20198.82 12798.18 22992.46 27994.09 26397.07 28981.16 32397.95 33692.08 28092.14 29496.72 296
FMVSNet394.97 22894.26 23497.11 19998.18 19796.62 11498.56 18598.26 21893.67 23294.09 26397.10 28284.25 29898.01 33192.08 28092.14 29496.70 300
FMVSNet294.47 26193.61 28297.04 20398.21 19196.43 12798.79 14198.27 21492.46 27993.50 29097.09 28681.16 32398.00 33391.09 30291.93 29796.70 300
LF4IMVS93.14 31192.79 30494.20 34095.88 34688.67 35997.66 29097.07 33193.81 21791.71 33697.65 24477.96 35198.81 25391.47 29691.92 29895.12 365
OurMVSNet-221017-094.21 27694.00 25394.85 32295.60 35389.22 34998.89 10497.43 31195.29 14692.18 33098.52 16082.86 31498.59 27193.46 24391.76 29996.74 293
EGC-MVSNET75.22 36769.54 37092.28 36094.81 37089.58 34397.64 29296.50 3591.82 4105.57 41195.74 35268.21 38496.26 37873.80 39591.71 30090.99 390
pmmvs494.69 23993.99 25596.81 22095.74 34995.94 15597.40 30797.67 28390.42 33793.37 29597.59 25089.08 19598.20 31792.97 25791.67 30196.30 342
tpm94.13 28393.80 26995.12 31296.50 32087.91 37197.44 30395.89 37292.62 27596.37 19696.30 33584.13 30398.30 31093.24 24891.66 30299.14 152
our_test_393.65 29893.30 29494.69 32795.45 36089.68 34296.91 34597.65 28491.97 29891.66 33796.88 31289.67 17997.93 33988.02 34891.49 30396.48 333
IterMVS94.09 28893.85 26694.80 32597.99 21490.35 33197.18 32898.12 24193.68 23092.46 32597.34 26784.05 30497.41 35992.51 27391.33 30496.62 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 28693.87 26494.85 32297.98 21690.56 32897.18 32898.11 24493.75 21992.58 31997.48 25783.97 30697.41 35992.48 27591.30 30596.58 313
FMVSNet193.19 30992.07 31696.56 24397.54 25195.00 20198.82 12798.18 22990.38 33892.27 32897.07 28973.68 37797.95 33689.36 33491.30 30596.72 296
XXY-MVS95.20 21294.45 22697.46 17496.75 30796.56 12198.86 11798.65 13593.30 24993.27 29898.27 19084.85 28498.87 24594.82 19891.26 30796.96 267
cl2294.68 24194.19 23896.13 27598.11 20493.60 26196.94 34298.31 20592.43 28393.32 29796.87 31486.51 25198.28 31494.10 22591.16 30896.51 328
miper_ehance_all_eth95.01 22194.69 21395.97 28197.70 23793.31 27697.02 33898.07 25492.23 29193.51 28996.96 30691.85 13298.15 32093.68 23691.16 30896.44 336
miper_enhance_ethall95.10 21794.75 21096.12 27697.53 25393.73 25896.61 36298.08 25292.20 29493.89 27396.65 32592.44 11298.30 31094.21 22091.16 30896.34 339
pmmvs593.65 29892.97 30195.68 29395.49 35792.37 29298.20 22797.28 31989.66 35092.58 31997.26 27282.14 31798.09 32693.18 25190.95 31196.58 313
ET-MVSNet_ETH3D94.13 28392.98 30097.58 17098.22 19096.20 13997.31 31895.37 37594.53 18579.56 39197.63 24886.51 25197.53 35696.91 12290.74 31299.02 167
SixPastTwentyTwo93.34 30392.86 30294.75 32695.67 35189.41 34798.75 14496.67 35593.89 21190.15 35198.25 19380.87 32798.27 31590.90 30890.64 31396.57 315
N_pmnet87.12 35487.77 35285.17 37495.46 35961.92 40897.37 31170.66 41385.83 37788.73 36496.04 34585.33 27697.76 34880.02 38390.48 31495.84 353
ppachtmachnet_test93.22 30792.63 30794.97 31795.45 36090.84 32196.88 35197.88 27490.60 33292.08 33297.26 27288.08 22297.86 34585.12 36690.33 31596.22 344
DIV-MVS_self_test94.52 25594.03 24995.99 27997.57 25093.38 27397.05 33697.94 26991.74 30392.81 31197.10 28289.12 19398.07 32892.60 26690.30 31696.53 322
cl____94.51 25694.01 25296.02 27897.58 24693.40 27297.05 33697.96 26891.73 30592.76 31397.08 28889.06 19698.13 32292.61 26590.29 31796.52 325
APD_test188.22 34988.01 34988.86 36895.98 34274.66 39897.21 32496.44 36083.96 38586.66 37497.90 21960.95 39497.84 34682.73 37690.23 31894.09 379
IterMVS-LS95.46 19295.21 18796.22 27298.12 20393.72 25998.32 21398.13 24093.71 22594.26 25497.31 27092.24 11998.10 32494.63 20390.12 31996.84 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry93.22 30792.35 31395.84 28896.77 30493.09 28694.66 38897.56 29287.37 36892.90 30996.24 33688.15 21997.90 34087.37 35290.10 32096.53 322
EU-MVSNet93.66 29694.14 24392.25 36195.96 34483.38 38598.52 18898.12 24194.69 17792.61 31898.13 20187.36 24096.39 37791.82 28990.00 32196.98 265
Anonymous2023120691.66 32491.10 32493.33 34994.02 37987.35 37498.58 17997.26 32190.48 33490.16 35096.31 33483.83 31096.53 37579.36 38689.90 32296.12 347
eth_miper_zixun_eth94.68 24194.41 22995.47 30197.64 24291.71 30696.73 35998.07 25492.71 27393.64 28297.21 27890.54 16598.17 31993.38 24489.76 32396.54 320
FMVSNet591.81 32290.92 32594.49 33497.21 27692.09 29798.00 25597.55 29789.31 35790.86 34495.61 35974.48 37395.32 38785.57 36289.70 32496.07 349
miper_lstm_enhance94.33 26894.07 24795.11 31397.75 23190.97 31797.22 32398.03 26191.67 30792.76 31396.97 30490.03 17397.78 34792.51 27389.64 32596.56 317
v119294.32 26993.58 28396.53 24996.10 33794.45 23098.50 19398.17 23491.54 30994.19 25997.06 29386.95 24698.43 28890.14 31689.57 32696.70 300
v114494.59 24993.92 25896.60 23896.21 33194.78 21798.59 17798.14 23991.86 30294.21 25897.02 29987.97 22598.41 29791.72 29289.57 32696.61 310
Anonymous2024052191.18 32990.44 33093.42 34693.70 38088.47 36398.94 9497.56 29288.46 36389.56 35695.08 36777.15 36096.97 36583.92 37389.55 32894.82 371
VPA-MVSNet95.75 17795.11 19397.69 16097.24 27397.27 8598.94 9499.23 2095.13 15495.51 21597.32 26985.73 26698.91 23897.33 10989.55 32896.89 278
v124094.06 29193.29 29596.34 26696.03 34193.90 25098.44 20098.17 23491.18 32694.13 26297.01 30186.05 26198.42 28989.13 33789.50 33096.70 300
K. test v392.55 31791.91 32094.48 33595.64 35289.24 34899.07 6294.88 38194.04 20186.78 37297.59 25077.64 35597.64 35192.08 28089.43 33196.57 315
v192192094.20 27793.47 28996.40 26395.98 34294.08 24698.52 18898.15 23791.33 31794.25 25597.20 27986.41 25598.42 28990.04 32189.39 33296.69 305
new_pmnet90.06 33989.00 34393.22 35294.18 37488.32 36696.42 36796.89 34686.19 37385.67 37993.62 37977.18 35997.10 36381.61 38089.29 33394.23 375
c3_l94.79 23694.43 22895.89 28697.75 23193.12 28597.16 33298.03 26192.23 29193.46 29297.05 29591.39 14498.01 33193.58 24189.21 33496.53 322
v14419294.39 26693.70 27896.48 25496.06 33994.35 23698.58 17998.16 23691.45 31194.33 25197.02 29987.50 23798.45 28591.08 30389.11 33596.63 308
nrg03096.28 15195.72 16097.96 14096.90 29898.15 5499.39 1298.31 20595.47 13594.42 24698.35 17792.09 12698.69 26197.50 10289.05 33697.04 261
DeepMVS_CXcopyleft86.78 37197.09 28772.30 39995.17 38075.92 39384.34 38495.19 36470.58 38195.35 38579.98 38589.04 33792.68 389
tfpnnormal93.66 29692.70 30696.55 24896.94 29495.94 15598.97 8599.19 2491.04 32791.38 33997.34 26784.94 28298.61 26885.45 36489.02 33895.11 366
Anonymous2023121194.10 28793.26 29696.61 23699.11 10494.28 23899.01 7798.88 6286.43 37292.81 31197.57 25281.66 32098.68 26494.83 19789.02 33896.88 279
v2v48294.69 23994.03 24996.65 22996.17 33494.79 21698.67 16698.08 25292.72 27294.00 26897.16 28087.69 23498.45 28592.91 25988.87 34096.72 296
V4294.78 23794.14 24396.70 22696.33 32995.22 19298.97 8598.09 25192.32 28894.31 25297.06 29388.39 21498.55 27492.90 26088.87 34096.34 339
WR-MVS95.15 21494.46 22497.22 18896.67 31296.45 12598.21 22598.81 8694.15 19793.16 30197.69 24087.51 23598.30 31095.29 18588.62 34296.90 277
FPMVS77.62 36677.14 36679.05 38479.25 40760.97 40995.79 37495.94 37065.96 39867.93 40094.40 37337.73 40488.88 40368.83 39988.46 34387.29 396
v1094.29 27293.55 28596.51 25196.39 32694.80 21598.99 8298.19 22691.35 31693.02 30796.99 30288.09 22198.41 29790.50 31388.41 34496.33 341
CP-MVSNet94.94 23194.30 23296.83 21896.72 30995.56 17399.11 5698.95 4693.89 21192.42 32697.90 21987.19 24198.12 32394.32 21688.21 34596.82 287
MIMVSNet189.67 34288.28 34793.82 34392.81 38591.08 31698.01 25397.45 30987.95 36587.90 36795.87 35067.63 38894.56 39178.73 38988.18 34695.83 354
PS-CasMVS94.67 24493.99 25596.71 22496.68 31195.26 18999.13 5499.03 3793.68 23092.33 32797.95 21685.35 27498.10 32493.59 24088.16 34796.79 288
WR-MVS_H95.05 22094.46 22496.81 22096.86 30095.82 16599.24 3299.24 1793.87 21392.53 32196.84 31690.37 16798.24 31693.24 24887.93 34896.38 338
v894.47 26193.77 27296.57 24296.36 32794.83 21399.05 6598.19 22691.92 29993.16 30196.97 30488.82 20598.48 28091.69 29387.79 34996.39 337
v7n94.19 27893.43 29196.47 25595.90 34594.38 23599.26 2998.34 20191.99 29792.76 31397.13 28188.31 21598.52 27889.48 33287.70 35096.52 325
UniMVSNet (Re)95.78 17695.19 18897.58 17096.99 29197.47 8098.79 14199.18 2595.60 12993.92 27297.04 29691.68 13598.48 28095.80 16787.66 35196.79 288
baseline195.84 17395.12 19298.01 13598.49 16495.98 14798.73 15197.03 33595.37 14296.22 19898.19 19789.96 17499.16 19694.60 20687.48 35298.90 179
Gipumacopyleft78.40 36476.75 36783.38 37895.54 35580.43 39179.42 40297.40 31364.67 39973.46 39680.82 40045.65 39993.14 39666.32 40087.43 35376.56 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
NR-MVSNet94.98 22694.16 24197.44 17696.53 31897.22 9298.74 14798.95 4694.96 16689.25 35897.69 24089.32 18698.18 31894.59 20887.40 35496.92 270
dmvs_testset87.64 35188.93 34483.79 37695.25 36363.36 40797.20 32591.17 40193.07 25985.64 38095.98 34985.30 27891.52 39969.42 39887.33 35596.49 331
VPNet94.99 22494.19 23897.40 18197.16 28296.57 12098.71 15698.97 4295.67 12794.84 22998.24 19480.36 33198.67 26596.46 14487.32 35696.96 267
UniMVSNet_NR-MVSNet95.71 18095.15 18997.40 18196.84 30196.97 9998.74 14799.24 1795.16 15393.88 27497.72 23791.68 13598.31 30895.81 16587.25 35796.92 270
DU-MVS95.42 19694.76 20997.40 18196.53 31896.97 9998.66 16898.99 4195.43 13793.88 27497.69 24088.57 20898.31 30895.81 16587.25 35796.92 270
v14894.29 27293.76 27495.91 28496.10 33792.93 28898.58 17997.97 26692.59 27793.47 29196.95 30888.53 21298.32 30692.56 27087.06 35996.49 331
Baseline_NR-MVSNet94.35 26793.81 26895.96 28296.20 33294.05 24798.61 17696.67 35591.44 31293.85 27697.60 24988.57 20898.14 32194.39 21286.93 36095.68 357
PEN-MVS94.42 26493.73 27696.49 25296.28 33094.84 21199.17 4799.00 3993.51 23892.23 32997.83 22986.10 26097.90 34092.55 27186.92 36196.74 293
TranMVSNet+NR-MVSNet95.14 21594.48 22297.11 19996.45 32496.36 13399.03 7299.03 3795.04 16193.58 28497.93 21788.27 21698.03 33094.13 22286.90 36296.95 269
MDA-MVSNet_test_wron90.71 33489.38 33994.68 32894.83 36990.78 32397.19 32797.46 30587.60 36672.41 39895.72 35686.51 25196.71 37285.92 36086.80 36396.56 317
YYNet190.70 33589.39 33894.62 33194.79 37190.65 32697.20 32597.46 30587.54 36772.54 39795.74 35286.51 25196.66 37386.00 35986.76 36496.54 320
MDA-MVSNet-bldmvs89.97 34088.35 34694.83 32495.21 36491.34 31197.64 29297.51 30188.36 36471.17 39996.13 34379.22 33896.63 37483.65 37486.27 36596.52 325
test20.0390.89 33390.38 33192.43 35793.48 38188.14 36998.33 20997.56 29293.40 24487.96 36696.71 32280.69 33094.13 39279.15 38786.17 36695.01 370
DTE-MVSNet93.98 29393.26 29696.14 27496.06 33994.39 23499.20 4298.86 7593.06 26091.78 33597.81 23185.87 26597.58 35490.53 31286.17 36696.46 335
pm-mvs193.94 29493.06 29896.59 23996.49 32195.16 19498.95 9198.03 26192.32 28891.08 34297.84 22684.54 29498.41 29792.16 27886.13 36896.19 346
lessismore_v094.45 33894.93 36888.44 36491.03 40286.77 37397.64 24676.23 36598.42 28990.31 31585.64 36996.51 328
test_fmvs387.17 35287.06 35587.50 37091.21 38975.66 39499.05 6596.61 35892.79 27188.85 36292.78 38543.72 40093.49 39393.95 22884.56 37093.34 387
pmmvs691.77 32390.63 32895.17 31194.69 37391.24 31498.67 16697.92 27186.14 37489.62 35497.56 25475.79 36798.34 30490.75 31084.56 37095.94 352
test_f86.07 35685.39 35788.10 36989.28 39575.57 39597.73 28596.33 36389.41 35685.35 38191.56 39143.31 40295.53 38491.32 29884.23 37293.21 388
mvsany_test388.80 34788.04 34891.09 36589.78 39381.57 39097.83 27895.49 37493.81 21787.53 36893.95 37856.14 39697.43 35894.68 20183.13 37394.26 374
IB-MVS91.98 1793.27 30591.97 31897.19 19197.47 25693.41 27097.09 33595.99 36793.32 24792.47 32495.73 35478.06 35099.53 15394.59 20882.98 37498.62 206
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ambc89.49 36786.66 40075.78 39392.66 39496.72 35286.55 37592.50 38846.01 39897.90 34090.32 31482.09 37594.80 372
Patchmatch-RL test91.49 32590.85 32693.41 34791.37 38884.40 38092.81 39395.93 37191.87 30187.25 36994.87 36888.99 19796.53 37592.54 27282.00 37699.30 125
PM-MVS87.77 35086.55 35691.40 36491.03 39183.36 38696.92 34395.18 37991.28 32186.48 37693.42 38153.27 39796.74 36989.43 33381.97 37794.11 378
pmmvs-eth3d90.36 33789.05 34294.32 33991.10 39092.12 29697.63 29596.95 34188.86 36184.91 38393.13 38478.32 34696.74 36988.70 34081.81 37894.09 379
h-mvs3396.17 15595.62 17097.81 14899.03 11094.45 23098.64 17098.75 10697.48 3298.67 7398.72 13989.76 17699.86 6297.95 6481.59 37999.11 155
TransMVSNet (Re)92.67 31691.51 32296.15 27396.58 31694.65 21998.90 10096.73 35190.86 33089.46 35797.86 22385.62 26898.09 32686.45 35681.12 38095.71 356
PMVScopyleft61.03 2365.95 37063.57 37473.09 38757.90 41251.22 41485.05 40093.93 39254.45 40144.32 40783.57 39613.22 41189.15 40258.68 40281.00 38178.91 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
AUN-MVS94.53 25493.73 27696.92 21498.50 16293.52 26698.34 20898.10 24793.83 21695.94 20997.98 21485.59 26999.03 21894.35 21480.94 38298.22 227
hse-mvs295.71 18095.30 18496.93 21198.50 16293.53 26598.36 20698.10 24797.48 3298.67 7397.99 21289.76 17699.02 22197.95 6480.91 38398.22 227
WB-MVS84.86 35785.33 35883.46 37789.48 39469.56 40298.19 23096.42 36189.55 35281.79 38794.67 37084.80 28590.12 40052.44 40380.64 38490.69 391
test_vis3_rt79.22 35977.40 36584.67 37586.44 40174.85 39797.66 29081.43 41084.98 38167.12 40181.91 39928.09 41097.60 35288.96 33880.04 38581.55 399
SSC-MVS84.27 35884.71 36182.96 38189.19 39668.83 40398.08 24696.30 36489.04 36081.37 38994.47 37184.60 29289.89 40149.80 40579.52 38690.15 392
UnsupCasMVSNet_eth90.99 33289.92 33594.19 34194.08 37689.83 33797.13 33498.67 12893.69 22885.83 37896.19 34175.15 36996.74 36989.14 33679.41 38796.00 350
test_method79.03 36078.17 36281.63 38286.06 40254.40 41382.75 40196.89 34639.54 40580.98 39095.57 36058.37 39594.73 39084.74 37178.61 38895.75 355
testf179.02 36177.70 36382.99 37988.10 39866.90 40494.67 38693.11 39471.08 39674.02 39493.41 38234.15 40693.25 39472.25 39678.50 38988.82 394
APD_test279.02 36177.70 36382.99 37988.10 39866.90 40494.67 38693.11 39471.08 39674.02 39493.41 38234.15 40693.25 39472.25 39678.50 38988.82 394
TDRefinement91.06 33189.68 33695.21 30985.35 40391.49 31098.51 19297.07 33191.47 31088.83 36397.84 22677.31 35699.09 21192.79 26377.98 39195.04 368
new-patchmatchnet88.50 34887.45 35391.67 36390.31 39285.89 37997.16 33297.33 31689.47 35383.63 38592.77 38676.38 36395.06 38982.70 37777.29 39294.06 381
KD-MVS_self_test90.38 33689.38 33993.40 34892.85 38488.94 35697.95 25997.94 26990.35 33990.25 34993.96 37779.82 33495.94 38284.62 37276.69 39395.33 361
pmmvs386.67 35584.86 36092.11 36288.16 39787.19 37696.63 36194.75 38379.88 39087.22 37092.75 38766.56 39095.20 38881.24 38176.56 39493.96 382
CL-MVSNet_self_test90.11 33889.14 34193.02 35491.86 38788.23 36896.51 36598.07 25490.49 33390.49 34894.41 37284.75 28795.34 38680.79 38274.95 39595.50 359
LCM-MVSNet78.70 36376.24 36886.08 37277.26 40971.99 40094.34 39096.72 35261.62 40076.53 39289.33 39333.91 40892.78 39781.85 37974.60 39693.46 385
UnsupCasMVSNet_bld87.17 35285.12 35993.31 35091.94 38688.77 35794.92 38398.30 21184.30 38482.30 38690.04 39263.96 39297.25 36185.85 36174.47 39793.93 383
PVSNet_088.72 1991.28 32890.03 33495.00 31697.99 21487.29 37594.84 38498.50 16992.06 29689.86 35295.19 36479.81 33599.39 17692.27 27769.79 39898.33 223
KD-MVS_2432*160089.61 34387.96 35094.54 33294.06 37791.59 30895.59 37797.63 28689.87 34688.95 36094.38 37478.28 34796.82 36784.83 36868.05 39995.21 363
miper_refine_blended89.61 34387.96 35094.54 33294.06 37791.59 30895.59 37797.63 28689.87 34688.95 36094.38 37478.28 34796.82 36784.83 36868.05 39995.21 363
PMMVS277.95 36575.44 36985.46 37382.54 40474.95 39694.23 39193.08 39672.80 39574.68 39387.38 39436.36 40591.56 39873.95 39463.94 40189.87 393
MVEpermissive62.14 2263.28 37359.38 37674.99 38574.33 41065.47 40685.55 39980.50 41152.02 40351.10 40575.00 40410.91 41480.50 40551.60 40453.40 40278.99 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN64.94 37164.25 37367.02 38882.28 40559.36 41191.83 39685.63 40752.69 40260.22 40377.28 40241.06 40380.12 40646.15 40641.14 40361.57 404
EMVS64.07 37263.26 37566.53 38981.73 40658.81 41291.85 39584.75 40851.93 40459.09 40475.13 40343.32 40179.09 40742.03 40739.47 40461.69 403
ANet_high69.08 36865.37 37280.22 38365.99 41171.96 40190.91 39790.09 40482.62 38649.93 40678.39 40129.36 40981.75 40462.49 40138.52 40586.95 398
tmp_tt68.90 36966.97 37174.68 38650.78 41359.95 41087.13 39883.47 40938.80 40662.21 40296.23 33864.70 39176.91 40888.91 33930.49 40687.19 397
wuyk23d30.17 37430.18 37830.16 39078.61 40843.29 41566.79 40314.21 41417.31 40714.82 41011.93 41011.55 41341.43 40937.08 40819.30 4075.76 407
testmvs21.48 37624.95 37911.09 39214.89 4146.47 41796.56 3639.87 4157.55 40817.93 40839.02 4069.43 4155.90 41116.56 41012.72 40820.91 406
test12320.95 37723.72 38012.64 39113.54 4158.19 41696.55 3646.13 4167.48 40916.74 40937.98 40712.97 4126.05 41016.69 4095.43 40923.68 405
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k23.98 37531.98 3770.00 3930.00 4160.00 4180.00 40498.59 1440.00 4110.00 41298.61 14890.60 1640.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.88 37910.50 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41194.51 810.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.20 37810.94 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41298.43 1670.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS90.94 31888.66 341
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
eth-test20.00 416
eth-test0.00 416
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
save fliter99.46 4998.38 3598.21 22598.71 11697.95 13
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
GSMVS99.20 139
test_part299.63 2999.18 1099.27 35
sam_mvs189.45 18399.20 139
sam_mvs88.99 197
MTGPAbinary98.74 108
test_post196.68 36030.43 40987.85 23098.69 26192.59 268
test_post31.83 40888.83 20498.91 238
patchmatchnet-post95.10 36689.42 18498.89 242
MTMP98.89 10494.14 390
gm-plane-assit95.88 34687.47 37389.74 34996.94 30999.19 19493.32 247
TEST999.31 6498.50 2997.92 26298.73 11192.63 27497.74 13198.68 14296.20 2899.80 88
test_899.29 7398.44 3197.89 27098.72 11392.98 26397.70 13598.66 14596.20 2899.80 88
agg_prior99.30 6898.38 3598.72 11397.57 14799.81 81
test_prior498.01 6197.86 273
test_prior99.19 4099.31 6498.22 4898.84 7999.70 11999.65 69
旧先验297.57 29891.30 31998.67 7399.80 8895.70 173
新几何297.64 292
无先验97.58 29798.72 11391.38 31399.87 5893.36 24699.60 77
原ACMM297.67 289
testdata299.89 4791.65 294
segment_acmp96.85 14
testdata197.32 31796.34 99
plane_prior797.42 26294.63 221
plane_prior697.35 26994.61 22487.09 242
plane_prior498.28 187
plane_prior394.61 22497.02 6495.34 217
plane_prior298.80 13697.28 45
plane_prior197.37 268
n20.00 417
nn0.00 417
door-mid94.37 386
test1198.66 131
door94.64 384
HQP5-MVS94.25 241
HQP-NCC97.20 27798.05 24996.43 9394.45 241
ACMP_Plane97.20 27798.05 24996.43 9394.45 241
BP-MVS95.30 183
HQP4-MVS94.45 24198.96 22996.87 281
HQP2-MVS86.75 248
NP-MVS97.28 27194.51 22997.73 235
MDTV_nov1_ep13_2view84.26 38196.89 35090.97 32897.90 12489.89 17593.91 23099.18 148
Test By Simon94.64 78