This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
balanced_conf0398.45 4398.35 3598.74 7698.65 15697.55 7899.19 4498.60 14696.72 8599.35 3298.77 13995.06 7899.55 15798.95 2299.87 199.12 162
patch_mono-298.36 5398.87 696.82 22599.53 3690.68 33298.64 17899.29 1497.88 1899.19 4499.52 1496.80 1599.97 199.11 1899.86 299.82 16
dcpmvs_298.08 6598.59 1796.56 24999.57 3390.34 34199.15 5198.38 20296.82 7799.29 3699.49 2095.78 4799.57 14798.94 2399.86 299.77 29
test_0728_THIRD97.32 4699.45 2599.46 2797.88 199.94 998.47 4699.86 299.85 9
CP-MVS98.57 3098.36 3399.19 4399.66 2697.86 6899.34 1698.87 6995.96 11598.60 8899.13 8596.05 3799.94 997.77 8599.86 299.77 29
CHOSEN 280x42097.18 12197.18 10697.20 19598.81 13893.27 28195.78 38799.15 2895.25 15396.79 18698.11 20792.29 12299.07 22398.56 3799.85 699.25 140
SD-MVS98.64 1998.68 1498.53 9499.33 6298.36 4398.90 10698.85 7897.28 4999.72 1299.39 3496.63 2097.60 36498.17 6299.85 699.64 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1098.93 5097.38 4399.41 2899.54 1196.66 1899.84 7098.86 2599.85 699.87 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS_fast98.38 5098.13 5899.12 5399.75 397.86 6899.44 998.82 8494.46 19898.94 5899.20 7095.16 7399.74 11497.58 10199.85 699.77 29
SteuartSystems-ACMMP98.90 1298.75 1399.36 2399.22 9298.43 3399.10 6398.87 6997.38 4399.35 3299.40 3397.78 599.87 6197.77 8599.85 699.78 23
Skip Steuart: Steuart Systems R&D Blog.
MVSMamba_PlusPlus98.31 5998.19 5798.67 8298.96 12497.36 8899.24 3098.57 15794.81 18098.99 5698.90 12395.22 7199.59 14499.15 1799.84 1199.07 174
DPE-MVScopyleft98.92 1098.67 1599.65 299.58 3299.20 998.42 21498.91 5697.58 3099.54 2299.46 2797.10 1299.94 997.64 9799.84 1199.83 12
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVScopyleft98.36 5398.10 6299.13 5199.74 797.82 7299.53 698.80 9694.63 18898.61 8798.97 11095.13 7599.77 10997.65 9699.83 1399.79 21
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
reproduce_model98.94 798.81 1099.34 2599.52 3998.26 4998.94 9898.84 7998.06 1399.35 3299.61 496.39 2799.94 998.77 2899.82 1499.83 12
reproduce-ours98.93 898.78 1199.38 1899.49 4698.38 3598.86 12198.83 8198.06 1399.29 3699.58 796.40 2599.94 998.68 3099.81 1599.81 17
our_new_method98.93 898.78 1199.38 1899.49 4698.38 3598.86 12198.83 8198.06 1399.29 3699.58 796.40 2599.94 998.68 3099.81 1599.81 17
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7998.87 6997.65 2599.73 1099.48 2197.53 799.94 998.43 5099.81 1599.70 56
IU-MVS99.71 1999.23 798.64 14095.28 15199.63 1898.35 5599.81 1599.83 12
ZNCC-MVS98.49 3898.20 5599.35 2499.73 1198.39 3499.19 4498.86 7595.77 12598.31 10699.10 8995.46 5599.93 2897.57 10499.81 1599.74 39
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8998.58 15597.62 2799.45 2599.46 2797.42 999.94 998.47 4699.81 1599.69 59
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.71 199.72 1299.35 198.97 8998.88 6299.94 998.47 4699.81 1599.84 11
SMA-MVScopyleft98.58 2698.25 4899.56 899.51 4099.04 1598.95 9598.80 9693.67 24299.37 3199.52 1496.52 2299.89 5098.06 6799.81 1599.76 36
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mPP-MVS98.51 3698.26 4799.25 3899.75 398.04 6299.28 2498.81 8996.24 10598.35 10399.23 6595.46 5599.94 997.42 11299.81 1599.77 29
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5499.43 5797.48 8298.88 11599.30 1398.47 999.85 499.43 3096.71 1799.96 499.86 199.80 2499.89 4
test_fmvsmconf_n98.92 1098.87 699.04 5898.88 13097.25 9798.82 13399.34 1098.75 299.80 599.61 495.16 7399.95 799.70 599.80 2499.93 1
MSC_two_6792asdad99.62 699.17 9799.08 1198.63 14399.94 998.53 3899.80 2499.86 7
No_MVS99.62 699.17 9799.08 1198.63 14399.94 998.53 3899.80 2499.86 7
test_241102_TWO98.87 6997.65 2599.53 2399.48 2197.34 1199.94 998.43 5099.80 2499.83 12
MP-MVS-pluss98.31 5997.92 6999.49 1299.72 1298.88 1898.43 21298.78 10394.10 20797.69 14699.42 3195.25 6899.92 3498.09 6699.80 2499.67 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_fmvsmconf0.1_n98.58 2698.44 2798.99 6097.73 24597.15 10298.84 12998.97 4298.75 299.43 2799.54 1193.29 10799.93 2899.64 899.79 3099.89 4
MTAPA98.58 2698.29 4699.46 1499.76 298.64 2598.90 10698.74 11197.27 5398.02 12099.39 3494.81 8399.96 497.91 7699.79 3099.77 29
region2R98.61 2198.38 3199.29 3299.74 798.16 5699.23 3298.93 5096.15 10998.94 5899.17 7795.91 4399.94 997.55 10599.79 3099.78 23
ACMMPR98.59 2498.36 3399.29 3299.74 798.15 5799.23 3298.95 4696.10 11298.93 6299.19 7595.70 4999.94 997.62 9899.79 3099.78 23
HFP-MVS98.63 2098.40 2999.32 3199.72 1298.29 4799.23 3298.96 4596.10 11298.94 5899.17 7796.06 3699.92 3497.62 9899.78 3499.75 37
MP-MVScopyleft98.33 5898.01 6699.28 3599.75 398.18 5499.22 3698.79 10196.13 11097.92 13199.23 6594.54 8699.94 996.74 14699.78 3499.73 44
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS98.49 3898.23 5299.27 3799.72 1298.08 6198.99 8699.49 595.43 14199.03 5199.32 5195.56 5299.94 996.80 14399.77 3699.78 23
APD-MVScopyleft98.35 5598.00 6799.42 1699.51 4098.72 2198.80 14298.82 8494.52 19599.23 4199.25 6495.54 5499.80 9196.52 15099.77 3699.74 39
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
114514_t96.93 13296.27 14798.92 6799.50 4297.63 7598.85 12598.90 5784.80 39497.77 13699.11 8792.84 11299.66 13194.85 20599.77 3699.47 103
CPTT-MVS97.72 8297.32 9898.92 6799.64 2897.10 10399.12 5898.81 8992.34 29798.09 11299.08 9893.01 11099.92 3496.06 16599.77 3699.75 37
DeepPCF-MVS96.37 297.93 7298.48 2696.30 27499.00 11789.54 35597.43 31898.87 6998.16 1199.26 4099.38 3996.12 3599.64 13498.30 5799.77 3699.72 48
DeepC-MVS_fast96.70 198.55 3398.34 3999.18 4599.25 8498.04 6298.50 20398.78 10397.72 2098.92 6499.28 5695.27 6699.82 7997.55 10599.77 3699.69 59
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mamv497.13 12498.11 6094.17 35398.97 12383.70 39598.66 17598.71 11994.63 18897.83 13498.90 12396.25 2999.55 15799.27 1599.76 4299.27 135
DELS-MVS98.40 4998.20 5598.99 6099.00 11797.66 7397.75 29698.89 5997.71 2298.33 10498.97 11094.97 8099.88 5998.42 5299.76 4299.42 114
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR98.47 4198.34 3998.88 7199.22 9297.32 9097.91 27599.58 397.20 5798.33 10499.00 10895.99 4099.64 13498.05 6999.76 4299.69 59
PHI-MVS98.34 5698.06 6399.18 4599.15 10398.12 6099.04 7399.09 3193.32 25798.83 7099.10 8996.54 2199.83 7297.70 9399.76 4299.59 82
DeepC-MVS95.98 397.88 7397.58 7998.77 7499.25 8496.93 10898.83 13198.75 10996.96 7196.89 18099.50 1890.46 17199.87 6197.84 8299.76 4299.52 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsm_n_192098.87 1399.01 398.45 10299.42 5896.43 13498.96 9499.36 998.63 499.86 299.51 1695.91 4399.97 199.72 499.75 4798.94 186
ACMMP_NAP98.61 2198.30 4599.55 999.62 3098.95 1798.82 13398.81 8995.80 12399.16 4899.47 2395.37 6099.92 3497.89 7899.75 4799.79 21
MVS_111021_LR98.34 5698.23 5298.67 8299.27 8196.90 11097.95 27099.58 397.14 6298.44 9899.01 10795.03 7999.62 14197.91 7699.75 4799.50 94
3Dnovator94.51 597.46 10196.93 11799.07 5697.78 23997.64 7499.35 1599.06 3497.02 6893.75 29099.16 8089.25 19799.92 3497.22 11899.75 4799.64 74
fmvsm_l_conf0.5_n99.07 499.05 299.14 5099.41 5997.54 8098.89 11099.31 1298.49 899.86 299.42 3196.45 2499.96 499.86 199.74 5199.90 3
XVS98.70 1798.49 2499.34 2599.70 2298.35 4499.29 2298.88 6297.40 4098.46 9399.20 7095.90 4599.89 5097.85 8099.74 5199.78 23
X-MVStestdata94.06 30092.30 32499.34 2599.70 2298.35 4499.29 2298.88 6297.40 4098.46 9343.50 42095.90 4599.89 5097.85 8099.74 5199.78 23
OPU-MVS99.37 2299.24 9099.05 1499.02 7999.16 8097.81 399.37 18597.24 11799.73 5499.70 56
SF-MVS98.59 2498.32 4499.41 1799.54 3598.71 2299.04 7398.81 8995.12 15999.32 3599.39 3496.22 3099.84 7097.72 8899.73 5499.67 68
TSAR-MVS + MP.98.78 1498.62 1699.24 3999.69 2498.28 4899.14 5498.66 13596.84 7599.56 2099.31 5396.34 2899.70 12298.32 5699.73 5499.73 44
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DVP-MVS++99.08 398.89 599.64 399.17 9799.23 799.69 198.88 6297.32 4699.53 2399.47 2397.81 399.94 998.47 4699.72 5799.74 39
PC_three_145295.08 16499.60 1999.16 8097.86 298.47 29397.52 10899.72 5799.74 39
9.1498.06 6399.47 5098.71 16398.82 8494.36 20199.16 4899.29 5596.05 3799.81 8497.00 12399.71 59
MSLP-MVS++98.56 3298.57 1898.55 9099.26 8396.80 11498.71 16399.05 3697.28 4998.84 6899.28 5696.47 2399.40 18198.52 4499.70 6099.47 103
MM98.51 3698.24 5099.33 2999.12 10598.14 5998.93 10197.02 35098.96 199.17 4599.47 2391.97 13799.94 999.85 399.69 6199.91 2
test_vis1_n_192096.71 14196.84 12196.31 27399.11 10789.74 34999.05 6998.58 15598.08 1299.87 199.37 4078.48 35599.93 2899.29 1499.69 6199.27 135
CDPH-MVS97.94 7197.49 8799.28 3599.47 5098.44 3197.91 27598.67 13292.57 28998.77 7498.85 12995.93 4299.72 11695.56 18499.69 6199.68 64
MVS_030498.23 6197.91 7099.21 4298.06 21597.96 6698.58 18795.51 38798.58 598.87 6699.26 5992.99 11199.95 799.62 999.67 6499.73 44
HPM-MVS++copyleft98.58 2698.25 4899.55 999.50 4299.08 1198.72 16298.66 13597.51 3498.15 10798.83 13295.70 4999.92 3497.53 10799.67 6499.66 71
APD-MVS_3200maxsize98.53 3598.33 4399.15 4999.50 4297.92 6799.15 5198.81 8996.24 10599.20 4299.37 4095.30 6499.80 9197.73 8799.67 6499.72 48
test_fmvsmvis_n_192098.44 4498.51 2198.23 12298.33 18696.15 14898.97 8999.15 2898.55 798.45 9699.55 994.26 9699.97 199.65 699.66 6798.57 221
test_cas_vis1_n_192097.38 11097.36 9697.45 18298.95 12593.25 28499.00 8398.53 16697.70 2399.77 799.35 4684.71 29799.85 6698.57 3599.66 6799.26 138
CNVR-MVS98.78 1498.56 1999.45 1599.32 6598.87 1998.47 20698.81 8997.72 2098.76 7599.16 8097.05 1399.78 10498.06 6799.66 6799.69 59
SR-MVS-dyc-post98.54 3498.35 3599.13 5199.49 4697.86 6899.11 6098.80 9696.49 9499.17 4599.35 4695.34 6299.82 7997.72 8899.65 7099.71 52
RE-MVS-def98.34 3999.49 4697.86 6899.11 6098.80 9696.49 9499.17 4599.35 4695.29 6597.72 8899.65 7099.71 52
CANet98.05 6797.76 7398.90 7098.73 14297.27 9298.35 21798.78 10397.37 4597.72 14398.96 11591.53 14999.92 3498.79 2799.65 7099.51 92
EI-MVSNet-Vis-set98.47 4198.39 3098.69 8099.46 5296.49 13198.30 22698.69 12497.21 5698.84 6899.36 4495.41 5799.78 10498.62 3399.65 7099.80 20
CSCG97.85 7697.74 7498.20 12599.67 2595.16 19899.22 3699.32 1193.04 27197.02 17398.92 12195.36 6199.91 4297.43 11199.64 7499.52 89
SR-MVS98.57 3098.35 3599.24 3999.53 3698.18 5499.09 6498.82 8496.58 9199.10 5099.32 5195.39 5899.82 7997.70 9399.63 7599.72 48
GST-MVS98.43 4698.12 5999.34 2599.72 1298.38 3599.09 6498.82 8495.71 12998.73 7899.06 10095.27 6699.93 2897.07 12299.63 7599.72 48
QAPM96.29 15895.40 18098.96 6597.85 23597.60 7799.23 3298.93 5089.76 36093.11 31599.02 10389.11 20299.93 2891.99 29599.62 7799.34 121
test_fmvsmconf0.01_n97.86 7497.54 8498.83 7295.48 36896.83 11398.95 9598.60 14698.58 598.93 6299.55 988.57 21699.91 4299.54 1199.61 7899.77 29
MCST-MVS98.65 1898.37 3299.48 1399.60 3198.87 1998.41 21598.68 12797.04 6798.52 9198.80 13596.78 1699.83 7297.93 7499.61 7899.74 39
test_prior297.80 29296.12 11197.89 13398.69 14995.96 4196.89 13299.60 80
jason97.32 11397.08 11098.06 13997.45 27195.59 17497.87 28397.91 28094.79 18198.55 9098.83 13291.12 15999.23 19997.58 10199.60 8099.34 121
jason: jason.
MSP-MVS98.74 1698.55 2099.29 3299.75 398.23 5099.26 2798.88 6297.52 3399.41 2898.78 13796.00 3999.79 10197.79 8499.59 8299.85 9
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVSFormer97.57 9797.49 8797.84 15098.07 21295.76 17199.47 798.40 19694.98 16998.79 7298.83 13292.34 12098.41 30696.91 12899.59 8299.34 121
lupinMVS97.44 10597.22 10498.12 13498.07 21295.76 17197.68 30197.76 28694.50 19698.79 7298.61 15592.34 12099.30 19297.58 10199.59 8299.31 127
ZD-MVS99.46 5298.70 2398.79 10193.21 26298.67 8098.97 11095.70 4999.83 7296.07 16299.58 85
test_fmvs196.42 15296.67 13395.66 30198.82 13788.53 37498.80 14298.20 23396.39 10099.64 1799.20 7080.35 34399.67 12999.04 2099.57 8698.78 199
test9_res96.39 15699.57 8699.69 59
train_agg97.97 6897.52 8599.33 2999.31 6798.50 2997.92 27398.73 11492.98 27397.74 14098.68 15096.20 3299.80 9196.59 14799.57 8699.68 64
agg_prior295.87 17299.57 8699.68 64
3Dnovator+94.38 697.43 10696.78 12599.38 1897.83 23698.52 2899.37 1298.71 11997.09 6692.99 31899.13 8589.36 19499.89 5096.97 12599.57 8699.71 52
LS3D97.16 12296.66 13498.68 8198.53 16697.19 10098.93 10198.90 5792.83 28095.99 21699.37 4092.12 13099.87 6193.67 24899.57 8698.97 182
SPE-MVS-test98.49 3898.50 2398.46 10199.20 9597.05 10499.64 498.50 17797.45 3998.88 6599.14 8495.25 6899.15 20998.83 2699.56 9299.20 147
test1299.18 4599.16 10198.19 5398.53 16698.07 11395.13 7599.72 11699.56 9299.63 76
CHOSEN 1792x268897.12 12596.80 12298.08 13799.30 7194.56 23298.05 26099.71 193.57 24797.09 16798.91 12288.17 22699.89 5096.87 13799.56 9299.81 17
fmvsm_s_conf0.1_n98.18 6498.21 5498.11 13598.54 16595.24 19598.87 11899.24 1797.50 3599.70 1399.67 191.33 15399.89 5099.47 1299.54 9599.21 146
EI-MVSNet-UG-set98.41 4898.34 3998.61 8699.45 5596.32 14198.28 22998.68 12797.17 5998.74 7699.37 4095.25 6899.79 10198.57 3599.54 9599.73 44
test22299.23 9197.17 10197.40 31998.66 13588.68 37498.05 11598.96 11594.14 9899.53 9799.61 78
fmvsm_s_conf0.5_n98.42 4798.51 2198.13 13199.30 7195.25 19498.85 12599.39 797.94 1799.74 999.62 392.59 11699.91 4299.65 699.52 9899.25 140
MG-MVS97.81 7897.60 7898.44 10499.12 10595.97 15797.75 29698.78 10396.89 7498.46 9399.22 6793.90 10299.68 12894.81 20899.52 9899.67 68
test_fmvs1_n95.90 17695.99 15895.63 30298.67 15288.32 37899.26 2798.22 23096.40 9999.67 1499.26 5973.91 38999.70 12299.02 2199.50 10098.87 190
EC-MVSNet98.21 6398.11 6098.49 9898.34 18397.26 9699.61 598.43 19296.78 7898.87 6698.84 13093.72 10399.01 23398.91 2499.50 10099.19 151
CS-MVS98.44 4498.49 2498.31 11499.08 11096.73 11899.67 398.47 18397.17 5998.94 5899.10 8995.73 4899.13 21298.71 2999.49 10299.09 166
UGNet96.78 13996.30 14698.19 12798.24 19495.89 16798.88 11598.93 5097.39 4296.81 18497.84 23282.60 32499.90 4896.53 14999.49 10298.79 196
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
API-MVS97.41 10897.25 10197.91 14798.70 14796.80 11498.82 13398.69 12494.53 19398.11 11098.28 19294.50 9099.57 14794.12 23399.49 10297.37 264
新几何199.16 4899.34 6098.01 6498.69 12490.06 35598.13 10998.95 11794.60 8599.89 5091.97 29799.47 10599.59 82
旧先验199.29 7697.48 8298.70 12399.09 9695.56 5299.47 10599.61 78
OpenMVScopyleft93.04 1395.83 18095.00 20498.32 11397.18 29297.32 9099.21 3998.97 4289.96 35691.14 35299.05 10186.64 25899.92 3493.38 25499.47 10597.73 251
原ACMM198.65 8499.32 6596.62 12198.67 13293.27 26197.81 13598.97 11095.18 7299.83 7293.84 24299.46 10899.50 94
testdata98.26 11999.20 9595.36 18798.68 12791.89 31198.60 8899.10 8994.44 9299.82 7994.27 22899.44 10999.58 86
fmvsm_s_conf0.5_n_a98.38 5098.42 2898.27 11699.09 10995.41 18498.86 12199.37 897.69 2499.78 699.61 492.38 11999.91 4299.58 1099.43 11099.49 99
DP-MVS Recon97.86 7497.46 9099.06 5799.53 3698.35 4498.33 21998.89 5992.62 28698.05 11598.94 11895.34 6299.65 13296.04 16699.42 11199.19 151
fmvsm_s_conf0.1_n_a98.08 6598.04 6598.21 12397.66 25195.39 18598.89 11099.17 2697.24 5499.76 899.67 191.13 15899.88 5999.39 1399.41 11299.35 119
NCCC98.61 2198.35 3599.38 1899.28 8098.61 2698.45 20798.76 10797.82 1998.45 9698.93 11996.65 1999.83 7297.38 11499.41 11299.71 52
TAPA-MVS93.98 795.35 20994.56 22697.74 16299.13 10494.83 21798.33 21998.64 14086.62 38296.29 20798.61 15594.00 10199.29 19380.00 39799.41 11299.09 166
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_vis1_n95.47 19795.13 19796.49 25797.77 24090.41 33999.27 2698.11 25496.58 9199.66 1599.18 7667.00 40299.62 14199.21 1699.40 11599.44 110
PVSNet_Blended97.38 11097.12 10798.14 12899.25 8495.35 18997.28 33299.26 1593.13 26797.94 12898.21 20092.74 11499.81 8496.88 13499.40 11599.27 135
MS-PatchMatch93.84 30493.63 29094.46 34796.18 34289.45 35797.76 29598.27 22392.23 30292.13 34197.49 26379.50 34898.69 27289.75 33699.38 11795.25 372
CANet_DTU96.96 13196.55 13798.21 12398.17 20796.07 15197.98 26898.21 23197.24 5497.13 16698.93 11986.88 25599.91 4295.00 20299.37 11898.66 212
BP-MVS197.82 7797.51 8698.76 7598.25 19397.39 8799.15 5197.68 28996.69 8698.47 9299.10 8990.29 17599.51 16498.60 3499.35 11999.37 117
DPM-MVS97.55 9996.99 11499.23 4199.04 11298.55 2797.17 34298.35 20794.85 17997.93 13098.58 16095.07 7799.71 12192.60 27699.34 12099.43 112
MVP-Stereo94.28 28393.92 26795.35 31394.95 37892.60 29797.97 26997.65 29291.61 31990.68 35797.09 29586.32 26698.42 29989.70 33899.34 12095.02 380
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CNLPA97.45 10497.03 11298.73 7799.05 11197.44 8698.07 25898.53 16695.32 14996.80 18598.53 16593.32 10699.72 11694.31 22799.31 12299.02 177
AdaColmapbinary97.15 12396.70 13098.48 9999.16 10196.69 12098.01 26498.89 5994.44 19996.83 18198.68 15090.69 16899.76 11094.36 22399.29 12398.98 181
Vis-MVSNetpermissive97.42 10797.11 10898.34 11298.66 15396.23 14499.22 3699.00 3996.63 9098.04 11799.21 6888.05 23299.35 18696.01 16899.21 12499.45 109
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EIA-MVS97.75 8097.58 7998.27 11698.38 17596.44 13399.01 8198.60 14695.88 11997.26 16297.53 26294.97 8099.33 18997.38 11499.20 12599.05 175
EPNet97.28 11496.87 12098.51 9594.98 37796.14 14998.90 10697.02 35098.28 1095.99 21699.11 8791.36 15199.89 5096.98 12499.19 12699.50 94
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PS-MVSNAJ97.73 8197.77 7297.62 17598.68 15195.58 17597.34 32798.51 17297.29 4898.66 8497.88 22894.51 8799.90 4897.87 7999.17 12797.39 262
PVSNet_Blended_VisFu97.70 8497.46 9098.44 10499.27 8195.91 16598.63 18199.16 2794.48 19797.67 14798.88 12692.80 11399.91 4297.11 12099.12 12899.50 94
BH-RMVSNet95.92 17595.32 18997.69 16798.32 18994.64 22498.19 24197.45 31894.56 19196.03 21498.61 15585.02 28899.12 21490.68 32299.06 12999.30 130
test250694.44 27293.91 26996.04 28399.02 11488.99 36699.06 6779.47 42596.96 7198.36 10199.26 5977.21 36799.52 16396.78 14499.04 13099.59 82
test111195.94 17395.78 16496.41 26698.99 12090.12 34399.04 7392.45 41196.99 7098.03 11899.27 5881.40 32999.48 17396.87 13799.04 13099.63 76
ECVR-MVScopyleft95.95 17195.71 17096.65 23599.02 11490.86 32799.03 7691.80 41296.96 7198.10 11199.26 5981.31 33099.51 16496.90 13199.04 13099.59 82
mvsmamba97.25 11696.99 11498.02 14198.34 18395.54 17999.18 4897.47 31395.04 16598.15 10798.57 16389.46 19199.31 19197.68 9599.01 13399.22 144
PVSNet91.96 1896.35 15696.15 15196.96 21599.17 9792.05 30596.08 38098.68 12793.69 23897.75 13997.80 23888.86 21199.69 12794.26 22999.01 13399.15 158
PatchMatch-RL96.59 14596.03 15698.27 11699.31 6796.51 13097.91 27599.06 3493.72 23496.92 17898.06 21088.50 22199.65 13291.77 30199.00 13598.66 212
PCF-MVS93.45 1194.68 24993.43 30098.42 10898.62 15996.77 11695.48 39198.20 23384.63 39593.34 30598.32 18988.55 21999.81 8484.80 38398.96 13698.68 208
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MAR-MVS96.91 13396.40 14398.45 10298.69 15096.90 11098.66 17598.68 12792.40 29697.07 17097.96 22091.54 14899.75 11293.68 24698.92 13798.69 207
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
F-COLMAP97.09 12796.80 12297.97 14499.45 5594.95 21198.55 19598.62 14593.02 27296.17 21198.58 16094.01 10099.81 8493.95 23898.90 13899.14 160
ETV-MVS97.96 6997.81 7198.40 10998.42 17197.27 9298.73 15898.55 16296.84 7598.38 10097.44 26895.39 5899.35 18697.62 9898.89 13998.58 220
DP-MVS96.59 14595.93 16098.57 8899.34 6096.19 14798.70 16798.39 19889.45 36694.52 24799.35 4691.85 13899.85 6692.89 27298.88 14099.68 64
OMC-MVS97.55 9997.34 9798.20 12599.33 6295.92 16498.28 22998.59 15095.52 13797.97 12599.10 8993.28 10899.49 16895.09 19998.88 14099.19 151
PAPM_NR97.46 10197.11 10898.50 9699.50 4296.41 13698.63 18198.60 14695.18 15697.06 17198.06 21094.26 9699.57 14793.80 24498.87 14299.52 89
GDP-MVS97.64 8997.28 9998.71 7998.30 19197.33 8999.05 6998.52 16996.34 10298.80 7199.05 10189.74 18499.51 16496.86 14098.86 14399.28 134
ACMMPcopyleft98.23 6197.95 6899.09 5599.74 797.62 7699.03 7699.41 695.98 11497.60 15599.36 4494.45 9199.93 2897.14 11998.85 14499.70 56
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
UA-Net97.96 6997.62 7798.98 6298.86 13397.47 8498.89 11099.08 3296.67 8898.72 7999.54 1193.15 10999.81 8494.87 20498.83 14599.65 72
MSDG95.93 17495.30 19197.83 15198.90 12895.36 18796.83 36798.37 20491.32 32994.43 25498.73 14690.27 17699.60 14390.05 33198.82 14698.52 222
EPNet_dtu95.21 21894.95 20895.99 28596.17 34390.45 33798.16 24797.27 33296.77 7993.14 31498.33 18890.34 17398.42 29985.57 37498.81 14799.09 166
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PLCcopyleft95.07 497.20 12096.78 12598.44 10499.29 7696.31 14398.14 24898.76 10792.41 29596.39 20598.31 19094.92 8299.78 10494.06 23698.77 14899.23 142
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu97.60 9397.56 8197.72 16398.35 17895.98 15297.86 28598.51 17297.13 6399.01 5398.40 17791.56 14599.80 9198.53 3898.68 14997.37 264
xiu_mvs_v1_base97.60 9397.56 8197.72 16398.35 17895.98 15297.86 28598.51 17297.13 6399.01 5398.40 17791.56 14599.80 9198.53 3898.68 14997.37 264
xiu_mvs_v1_base_debi97.60 9397.56 8197.72 16398.35 17895.98 15297.86 28598.51 17297.13 6399.01 5398.40 17791.56 14599.80 9198.53 3898.68 14997.37 264
MVS-HIRNet89.46 35888.40 35792.64 36997.58 25782.15 40194.16 40793.05 41075.73 40990.90 35482.52 41279.42 34998.33 31583.53 38898.68 14997.43 259
xiu_mvs_v2_base97.66 8897.70 7597.56 17998.61 16095.46 18297.44 31698.46 18497.15 6198.65 8598.15 20494.33 9399.80 9197.84 8298.66 15397.41 260
mvsany_test197.69 8597.70 7597.66 17398.24 19494.18 24897.53 31297.53 30795.52 13799.66 1599.51 1694.30 9499.56 15098.38 5398.62 15499.23 142
Vis-MVSNet (Re-imp)96.87 13596.55 13797.83 15198.73 14295.46 18299.20 4298.30 22094.96 17196.60 19398.87 12790.05 17898.59 28393.67 24898.60 15599.46 107
IS-MVSNet97.22 11796.88 11998.25 12098.85 13596.36 13999.19 4497.97 27495.39 14397.23 16398.99 10991.11 16098.93 24594.60 21598.59 15699.47 103
PAPR96.84 13796.24 14998.65 8498.72 14696.92 10997.36 32598.57 15793.33 25696.67 18897.57 25994.30 9499.56 15091.05 31798.59 15699.47 103
TSAR-MVS + GP.98.38 5098.24 5098.81 7399.22 9297.25 9798.11 25398.29 22297.19 5898.99 5699.02 10396.22 3099.67 12998.52 4498.56 15899.51 92
RRT-MVS97.03 12896.78 12597.77 15997.90 23294.34 24199.12 5898.35 20795.87 12098.06 11498.70 14886.45 26399.63 13798.04 7098.54 15999.35 119
diffmvspermissive97.58 9697.40 9498.13 13198.32 18995.81 17098.06 25998.37 20496.20 10798.74 7698.89 12591.31 15599.25 19698.16 6398.52 16099.34 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned95.95 17195.72 16796.65 23598.55 16492.26 30098.23 23497.79 28593.73 23294.62 24498.01 21588.97 20999.00 23493.04 26598.51 16198.68 208
test-LLR95.10 22494.87 21295.80 29596.77 31589.70 35096.91 35795.21 39095.11 16094.83 24095.72 36887.71 23998.97 23593.06 26398.50 16298.72 203
TESTMET0.1,194.18 29093.69 28895.63 30296.92 30689.12 36296.91 35794.78 39593.17 26494.88 23796.45 34378.52 35498.92 24693.09 26298.50 16298.85 191
test-mter94.08 29893.51 29695.80 29596.77 31589.70 35096.91 35795.21 39092.89 27794.83 24095.72 36877.69 36298.97 23593.06 26398.50 16298.72 203
131496.25 16295.73 16697.79 15597.13 29595.55 17898.19 24198.59 15093.47 25192.03 34397.82 23691.33 15399.49 16894.62 21498.44 16598.32 234
LCM-MVSNet-Re95.22 21795.32 18994.91 32698.18 20487.85 38498.75 15195.66 38695.11 16088.96 37196.85 32590.26 17797.65 36295.65 18298.44 16599.22 144
EPP-MVSNet97.46 10197.28 9997.99 14398.64 15795.38 18699.33 2098.31 21493.61 24697.19 16499.07 9994.05 9999.23 19996.89 13298.43 16799.37 117
casdiffmvs_mvgpermissive97.72 8297.48 8998.44 10498.42 17196.59 12698.92 10398.44 18896.20 10797.76 13799.20 7091.66 14399.23 19998.27 6198.41 16899.49 99
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive97.63 9197.41 9398.28 11598.33 18696.14 14998.82 13398.32 21296.38 10197.95 12699.21 6891.23 15799.23 19998.12 6498.37 16999.48 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PatchmatchNetpermissive95.71 18595.52 17796.29 27597.58 25790.72 33196.84 36697.52 30894.06 20897.08 16896.96 31689.24 19898.90 25192.03 29498.37 16999.26 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS94.67 25293.54 29598.08 13796.88 31096.56 12898.19 24198.50 17778.05 40692.69 32698.02 21391.07 16299.63 13790.09 32898.36 17198.04 242
FE-MVS95.62 19194.90 21097.78 15698.37 17794.92 21297.17 34297.38 32490.95 34097.73 14297.70 24485.32 28599.63 13791.18 30998.33 17298.79 196
gg-mvs-nofinetune92.21 33290.58 34097.13 20296.75 31895.09 20295.85 38589.40 41885.43 39294.50 24881.98 41380.80 33998.40 31292.16 28898.33 17297.88 245
SCA95.46 19895.13 19796.46 26397.67 24991.29 31997.33 32897.60 29694.68 18596.92 17897.10 29183.97 31498.89 25292.59 27898.32 17499.20 147
baseline97.64 8997.44 9298.25 12098.35 17896.20 14599.00 8398.32 21296.33 10498.03 11899.17 7791.35 15299.16 20698.10 6598.29 17599.39 115
MVS_Test97.28 11497.00 11398.13 13198.33 18695.97 15798.74 15498.07 26494.27 20398.44 9898.07 20992.48 11799.26 19596.43 15398.19 17699.16 157
sss97.39 10996.98 11698.61 8698.60 16196.61 12398.22 23598.93 5093.97 21798.01 12398.48 17091.98 13599.85 6696.45 15298.15 17799.39 115
Patchmatch-test94.42 27393.68 28996.63 23997.60 25591.76 30994.83 39897.49 31289.45 36694.14 27097.10 29188.99 20598.83 26185.37 37798.13 17899.29 132
COLMAP_ROBcopyleft93.27 1295.33 21194.87 21296.71 23099.29 7693.24 28598.58 18798.11 25489.92 35793.57 29499.10 8986.37 26599.79 10190.78 32098.10 17997.09 269
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE96.58 14796.07 15398.10 13698.35 17895.89 16799.34 1698.12 25193.12 26896.09 21298.87 12789.71 18598.97 23592.95 26898.08 18099.43 112
FA-MVS(test-final)96.41 15595.94 15997.82 15398.21 19895.20 19797.80 29297.58 29793.21 26297.36 16097.70 24489.47 19099.56 15094.12 23397.99 18198.71 206
Effi-MVS+-dtu96.29 15896.56 13695.51 30697.89 23490.22 34298.80 14298.10 25796.57 9396.45 20396.66 33490.81 16498.91 24895.72 17897.99 18197.40 261
Fast-Effi-MVS+96.28 16095.70 17298.03 14098.29 19295.97 15798.58 18798.25 22891.74 31495.29 23197.23 28591.03 16399.15 20992.90 27097.96 18398.97 182
mvs_anonymous96.70 14296.53 13997.18 19898.19 20293.78 25798.31 22498.19 23594.01 21494.47 24998.27 19592.08 13398.46 29497.39 11397.91 18499.31 127
PMMVS96.60 14496.33 14597.41 18697.90 23293.93 25397.35 32698.41 19492.84 27997.76 13797.45 26791.10 16199.20 20396.26 15897.91 18499.11 164
AllTest95.24 21694.65 22296.99 21199.25 8493.21 28698.59 18598.18 23891.36 32593.52 29698.77 13984.67 29899.72 11689.70 33897.87 18698.02 243
TestCases96.99 21199.25 8493.21 28698.18 23891.36 32593.52 29698.77 13984.67 29899.72 11689.70 33897.87 18698.02 243
TAMVS97.02 12996.79 12497.70 16698.06 21595.31 19298.52 19798.31 21493.95 21897.05 17298.61 15593.49 10598.52 28895.33 19197.81 18899.29 132
Effi-MVS+97.12 12596.69 13198.39 11098.19 20296.72 11997.37 32398.43 19293.71 23597.65 15198.02 21392.20 12899.25 19696.87 13797.79 18999.19 151
Fast-Effi-MVS+-dtu95.87 17795.85 16295.91 29097.74 24491.74 31198.69 16998.15 24795.56 13594.92 23697.68 24988.98 20898.79 26693.19 26097.78 19097.20 268
DSMNet-mixed92.52 33092.58 31992.33 37294.15 38782.65 40098.30 22694.26 40189.08 37192.65 32795.73 36685.01 28995.76 39686.24 36997.76 19198.59 218
CDS-MVSNet96.99 13096.69 13197.90 14898.05 21795.98 15298.20 23898.33 21193.67 24296.95 17498.49 16993.54 10498.42 29995.24 19797.74 19299.31 127
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thisisatest051595.61 19494.89 21197.76 16098.15 20895.15 20096.77 36894.41 39892.95 27597.18 16597.43 26984.78 29499.45 17794.63 21297.73 19398.68 208
thisisatest053096.01 16895.36 18597.97 14498.38 17595.52 18098.88 11594.19 40294.04 20997.64 15298.31 19083.82 31999.46 17695.29 19497.70 19498.93 187
BH-w/o95.38 20595.08 20196.26 27698.34 18391.79 30897.70 30097.43 32092.87 27894.24 26597.22 28688.66 21498.84 25891.55 30597.70 19498.16 240
PAPM94.95 23694.00 26297.78 15697.04 29995.65 17396.03 38398.25 22891.23 33494.19 26897.80 23891.27 15698.86 25782.61 39197.61 19698.84 193
tttt051796.07 16695.51 17897.78 15698.41 17394.84 21599.28 2494.33 40094.26 20497.64 15298.64 15484.05 31299.47 17595.34 19097.60 19799.03 176
HyFIR lowres test96.90 13496.49 14098.14 12899.33 6295.56 17697.38 32199.65 292.34 29797.61 15498.20 20189.29 19699.10 22096.97 12597.60 19799.77 29
UWE-MVS94.30 27993.89 27295.53 30597.83 23688.95 36797.52 31493.25 40694.44 19996.63 19097.07 29878.70 35399.28 19491.99 29597.56 19998.36 231
CVMVSNet95.43 20196.04 15593.57 35897.93 23083.62 39698.12 25198.59 15095.68 13096.56 19499.02 10387.51 24397.51 36993.56 25297.44 20099.60 80
MDTV_nov1_ep1395.40 18097.48 26688.34 37796.85 36597.29 32993.74 23197.48 15997.26 28189.18 19999.05 22491.92 29897.43 201
baseline295.11 22394.52 22896.87 22296.65 32493.56 26698.27 23194.10 40493.45 25292.02 34497.43 26987.45 24799.19 20493.88 24197.41 20297.87 246
EPMVS94.99 23194.48 23096.52 25597.22 28691.75 31097.23 33491.66 41394.11 20697.28 16196.81 32885.70 27698.84 25893.04 26597.28 20398.97 182
LFMVS95.86 17894.98 20698.47 10098.87 13296.32 14198.84 12996.02 37993.40 25498.62 8699.20 7074.99 38399.63 13797.72 8897.20 20499.46 107
testing393.19 31892.48 32195.30 31598.07 21292.27 29998.64 17897.17 33893.94 22093.98 27897.04 30667.97 39996.01 39488.40 35497.14 20597.63 255
UBG95.32 21294.72 21897.13 20298.05 21793.26 28297.87 28397.20 33694.96 17196.18 21095.66 37180.97 33599.35 18694.47 22197.08 20698.78 199
ADS-MVSNet294.58 25894.40 23895.11 32098.00 22188.74 37096.04 38197.30 32890.15 35396.47 20196.64 33787.89 23597.56 36790.08 32997.06 20799.02 177
ADS-MVSNet95.00 22994.45 23496.63 23998.00 22191.91 30796.04 38197.74 28890.15 35396.47 20196.64 33787.89 23598.96 23990.08 32997.06 20799.02 177
Syy-MVS92.55 32892.61 31792.38 37197.39 27783.41 39797.91 27597.46 31493.16 26593.42 30295.37 37584.75 29596.12 39277.00 40596.99 20997.60 256
myMVS_eth3d92.73 32592.01 32794.89 32897.39 27790.94 32497.91 27597.46 31493.16 26593.42 30295.37 37568.09 39896.12 39288.34 35596.99 20997.60 256
GG-mvs-BLEND96.59 24596.34 33794.98 20896.51 37788.58 41993.10 31694.34 39080.34 34498.05 33989.53 34196.99 20996.74 302
cascas94.63 25493.86 27496.93 21796.91 30894.27 24496.00 38498.51 17285.55 39194.54 24696.23 34984.20 31098.87 25595.80 17596.98 21297.66 254
WB-MVSnew94.19 28794.04 25694.66 33796.82 31492.14 30197.86 28595.96 38293.50 24995.64 22396.77 33088.06 23197.99 34484.87 38096.86 21393.85 397
WTY-MVS97.37 11296.92 11898.72 7898.86 13396.89 11298.31 22498.71 11995.26 15297.67 14798.56 16492.21 12799.78 10495.89 17096.85 21499.48 101
VDD-MVS95.82 18195.23 19397.61 17698.84 13693.98 25298.68 17097.40 32295.02 16797.95 12699.34 5074.37 38899.78 10498.64 3296.80 21599.08 170
test_yl97.22 11796.78 12598.54 9298.73 14296.60 12498.45 20798.31 21494.70 18298.02 12098.42 17590.80 16599.70 12296.81 14196.79 21699.34 121
DCV-MVSNet97.22 11796.78 12598.54 9298.73 14296.60 12498.45 20798.31 21494.70 18298.02 12098.42 17590.80 16599.70 12296.81 14196.79 21699.34 121
PatchT93.06 32291.97 32896.35 27096.69 32192.67 29694.48 40497.08 34286.62 38297.08 16892.23 40487.94 23497.90 35078.89 40196.69 21898.49 224
VNet97.79 7997.40 9498.96 6598.88 13097.55 7898.63 18198.93 5096.74 8299.02 5298.84 13090.33 17499.83 7298.53 3896.66 21999.50 94
CR-MVSNet94.76 24694.15 25096.59 24597.00 30093.43 27294.96 39497.56 30092.46 29096.93 17696.24 34788.15 22797.88 35487.38 36396.65 22098.46 226
RPMNet92.81 32491.34 33497.24 19397.00 30093.43 27294.96 39498.80 9682.27 40196.93 17692.12 40586.98 25399.82 7976.32 40696.65 22098.46 226
VDDNet95.36 20894.53 22797.86 14998.10 21195.13 20198.85 12597.75 28790.46 34798.36 10199.39 3473.27 39199.64 13497.98 7196.58 22298.81 195
alignmvs97.56 9897.07 11199.01 5998.66 15398.37 4298.83 13198.06 26996.74 8298.00 12497.65 25090.80 16599.48 17398.37 5496.56 22399.19 151
HY-MVS93.96 896.82 13896.23 15098.57 8898.46 17097.00 10598.14 24898.21 23193.95 21896.72 18797.99 21791.58 14499.76 11094.51 21996.54 22498.95 185
1112_ss96.63 14396.00 15798.50 9698.56 16296.37 13898.18 24698.10 25792.92 27694.84 23898.43 17392.14 12999.58 14694.35 22496.51 22599.56 88
thres20095.25 21594.57 22597.28 19298.81 13894.92 21298.20 23897.11 34095.24 15596.54 19896.22 35184.58 30199.53 16087.93 36196.50 22697.39 262
Test_1112_low_res96.34 15795.66 17598.36 11198.56 16295.94 16097.71 29998.07 26492.10 30694.79 24297.29 28091.75 14099.56 15094.17 23196.50 22699.58 86
tpmrst95.63 19095.69 17395.44 31097.54 26288.54 37396.97 35297.56 30093.50 24997.52 15896.93 32089.49 18899.16 20695.25 19696.42 22898.64 214
ab-mvs96.42 15295.71 17098.55 9098.63 15896.75 11797.88 28298.74 11193.84 22496.54 19898.18 20385.34 28399.75 11295.93 16996.35 22999.15 158
thres600view795.49 19694.77 21497.67 17098.98 12195.02 20498.85 12596.90 35795.38 14496.63 19096.90 32184.29 30499.59 14488.65 35396.33 23098.40 228
RPSCF94.87 24095.40 18093.26 36498.89 12982.06 40298.33 21998.06 26990.30 35296.56 19499.26 5987.09 25099.49 16893.82 24396.32 23198.24 235
ETVMVS94.50 26693.44 29997.68 16998.18 20495.35 18998.19 24197.11 34093.73 23296.40 20495.39 37474.53 38598.84 25891.10 31196.31 23298.84 193
testing1195.00 22994.28 24197.16 20097.96 22793.36 27998.09 25697.06 34694.94 17595.33 23096.15 35376.89 37399.40 18195.77 17796.30 23398.72 203
thres100view90095.38 20594.70 21997.41 18698.98 12194.92 21298.87 11896.90 35795.38 14496.61 19296.88 32284.29 30499.56 15088.11 35696.29 23497.76 248
tfpn200view995.32 21294.62 22397.43 18498.94 12694.98 20898.68 17096.93 35595.33 14796.55 19696.53 34084.23 30899.56 15088.11 35696.29 23497.76 248
thres40095.38 20594.62 22397.65 17498.94 12694.98 20898.68 17096.93 35595.33 14796.55 19696.53 34084.23 30899.56 15088.11 35696.29 23498.40 228
sasdasda97.67 8697.23 10298.98 6298.70 14798.38 3599.34 1698.39 19896.76 8097.67 14797.40 27292.26 12399.49 16898.28 5896.28 23799.08 170
canonicalmvs97.67 8697.23 10298.98 6298.70 14798.38 3599.34 1698.39 19896.76 8097.67 14797.40 27292.26 12399.49 16898.28 5896.28 23799.08 170
XVG-OURS96.55 14896.41 14296.99 21198.75 14193.76 25897.50 31598.52 16995.67 13196.83 18199.30 5488.95 21099.53 16095.88 17196.26 23997.69 253
MGCFI-Net97.62 9297.19 10598.92 6798.66 15398.20 5299.32 2198.38 20296.69 8697.58 15697.42 27192.10 13199.50 16798.28 5896.25 24099.08 170
GA-MVS94.81 24294.03 25897.14 20197.15 29493.86 25596.76 36997.58 29794.00 21594.76 24397.04 30680.91 33698.48 29091.79 30096.25 24099.09 166
tpm294.19 28793.76 28395.46 30997.23 28589.04 36497.31 33096.85 36387.08 38196.21 20996.79 32983.75 32098.74 26992.43 28696.23 24298.59 218
MIMVSNet93.26 31592.21 32596.41 26697.73 24593.13 28895.65 38897.03 34891.27 33394.04 27596.06 35675.33 38197.19 37486.56 36796.23 24298.92 188
TR-MVS94.94 23894.20 24597.17 19997.75 24194.14 24997.59 30997.02 35092.28 30195.75 22297.64 25383.88 31698.96 23989.77 33596.15 24498.40 228
CostFormer94.95 23694.73 21795.60 30497.28 28289.06 36397.53 31296.89 35989.66 36296.82 18396.72 33286.05 27098.95 24495.53 18696.13 24598.79 196
tpmvs94.60 25594.36 23995.33 31497.46 26888.60 37296.88 36397.68 28991.29 33193.80 28796.42 34488.58 21599.24 19891.06 31596.04 24698.17 239
testing9194.98 23394.25 24397.20 19597.94 22893.41 27498.00 26697.58 29794.99 16895.45 22696.04 35777.20 36899.42 18094.97 20396.02 24798.78 199
testing9994.83 24194.08 25497.07 20897.94 22893.13 28898.10 25597.17 33894.86 17795.34 22796.00 36076.31 37699.40 18195.08 20095.90 24898.68 208
testing22294.12 29493.03 30897.37 19198.02 22094.66 22297.94 27296.65 37194.63 18895.78 22195.76 36371.49 39398.92 24691.17 31095.88 24998.52 222
tpm cat193.36 31092.80 31295.07 32397.58 25787.97 38296.76 36997.86 28282.17 40293.53 29596.04 35786.13 26899.13 21289.24 34695.87 25098.10 241
XVG-OURS-SEG-HR96.51 14996.34 14497.02 21098.77 14093.76 25897.79 29498.50 17795.45 14096.94 17599.09 9687.87 23799.55 15796.76 14595.83 25197.74 250
SDMVSNet96.85 13696.42 14198.14 12899.30 7196.38 13799.21 3999.23 2095.92 11695.96 21898.76 14485.88 27399.44 17897.93 7495.59 25298.60 216
sd_testset96.17 16395.76 16597.42 18599.30 7194.34 24198.82 13399.08 3295.92 11695.96 21898.76 14482.83 32399.32 19095.56 18495.59 25298.60 216
test_vis1_rt91.29 33890.65 33893.19 36697.45 27186.25 39098.57 19390.90 41693.30 25986.94 38493.59 39462.07 40899.11 21697.48 11095.58 25494.22 389
JIA-IIPM93.35 31192.49 32095.92 28996.48 33290.65 33395.01 39396.96 35385.93 38896.08 21387.33 41087.70 24198.78 26791.35 30795.58 25498.34 232
Anonymous20240521195.28 21494.49 22997.67 17099.00 11793.75 26098.70 16797.04 34790.66 34396.49 20098.80 13578.13 35999.83 7296.21 16195.36 25699.44 110
Anonymous2024052995.10 22494.22 24497.75 16199.01 11694.26 24598.87 11898.83 8185.79 39096.64 18998.97 11078.73 35299.85 6696.27 15794.89 25799.12 162
CLD-MVS95.62 19195.34 18696.46 26397.52 26593.75 26097.27 33398.46 18495.53 13694.42 25598.00 21686.21 26798.97 23596.25 16094.37 25896.66 315
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
dp94.15 29193.90 27094.90 32797.31 28186.82 38996.97 35297.19 33791.22 33596.02 21596.61 33985.51 27999.02 23190.00 33394.30 25998.85 191
HQP_MVS96.14 16595.90 16196.85 22397.42 27394.60 23098.80 14298.56 16097.28 4995.34 22798.28 19287.09 25099.03 22896.07 16294.27 26096.92 279
plane_prior598.56 16099.03 22896.07 16294.27 26096.92 279
plane_prior94.60 23098.44 21096.74 8294.22 262
OPM-MVS95.69 18895.33 18896.76 22896.16 34594.63 22598.43 21298.39 19896.64 8995.02 23598.78 13785.15 28799.05 22495.21 19894.20 26396.60 320
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP3-MVS98.46 18494.18 264
HQP-MVS95.72 18495.40 18096.69 23397.20 28894.25 24698.05 26098.46 18496.43 9694.45 25097.73 24186.75 25698.96 23995.30 19294.18 26496.86 293
LPG-MVS_test95.62 19195.34 18696.47 26097.46 26893.54 26798.99 8698.54 16494.67 18694.36 25898.77 13985.39 28099.11 21695.71 17994.15 26696.76 300
LGP-MVS_train96.47 26097.46 26893.54 26798.54 16494.67 18694.36 25898.77 13985.39 28099.11 21695.71 17994.15 26696.76 300
test_djsdf96.00 16995.69 17396.93 21795.72 35995.49 18199.47 798.40 19694.98 16994.58 24597.86 22989.16 20098.41 30696.91 12894.12 26896.88 288
jajsoiax95.45 20095.03 20396.73 22995.42 37294.63 22599.14 5498.52 16995.74 12693.22 30898.36 18283.87 31798.65 27796.95 12794.04 26996.91 284
anonymousdsp95.42 20294.91 20996.94 21695.10 37695.90 16699.14 5498.41 19493.75 22993.16 31197.46 26587.50 24598.41 30695.63 18394.03 27096.50 339
mvs_tets95.41 20495.00 20496.65 23595.58 36394.42 23699.00 8398.55 16295.73 12893.21 30998.38 18083.45 32198.63 27897.09 12194.00 27196.91 284
ACMP93.49 1095.34 21094.98 20696.43 26597.67 24993.48 27198.73 15898.44 18894.94 17592.53 33198.53 16584.50 30399.14 21195.48 18894.00 27196.66 315
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM93.85 995.69 18895.38 18496.61 24297.61 25493.84 25698.91 10598.44 18895.25 15394.28 26298.47 17186.04 27299.12 21495.50 18793.95 27396.87 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D94.24 28493.33 30296.97 21497.19 29193.38 27798.74 15498.57 15791.21 33693.81 28698.58 16072.85 39298.77 26895.05 20193.93 27498.77 202
XVG-ACMP-BASELINE94.54 26194.14 25195.75 29896.55 32791.65 31398.11 25398.44 18894.96 17194.22 26697.90 22579.18 35199.11 21694.05 23793.85 27596.48 342
EG-PatchMatch MVS91.13 34290.12 34594.17 35394.73 38389.00 36598.13 25097.81 28489.22 37085.32 39596.46 34267.71 40098.42 29987.89 36293.82 27695.08 377
test_fmvs293.43 30993.58 29292.95 36896.97 30383.91 39499.19 4497.24 33495.74 12695.20 23298.27 19569.65 39598.72 27196.26 15893.73 27796.24 352
testgi93.06 32292.45 32294.88 32996.43 33489.90 34598.75 15197.54 30695.60 13391.63 34997.91 22474.46 38797.02 37686.10 37093.67 27897.72 252
test0.0.03 194.08 29893.51 29695.80 29595.53 36692.89 29597.38 32195.97 38195.11 16092.51 33396.66 33487.71 23996.94 37887.03 36593.67 27897.57 258
CMPMVSbinary66.06 2189.70 35389.67 34989.78 37993.19 39576.56 40597.00 35198.35 20780.97 40381.57 40197.75 24074.75 38498.61 28089.85 33493.63 28094.17 390
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMMP++93.61 281
D2MVS95.18 22095.08 20195.48 30797.10 29792.07 30498.30 22699.13 3094.02 21192.90 31996.73 33189.48 18998.73 27094.48 22093.60 28295.65 367
EI-MVSNet95.96 17095.83 16396.36 26997.93 23093.70 26498.12 25198.27 22393.70 23795.07 23399.02 10392.23 12698.54 28694.68 21093.46 28396.84 294
MVSTER96.06 16795.72 16797.08 20798.23 19695.93 16398.73 15898.27 22394.86 17795.07 23398.09 20888.21 22598.54 28696.59 14793.46 28396.79 297
PS-MVSNAJss96.43 15196.26 14896.92 22095.84 35795.08 20399.16 5098.50 17795.87 12093.84 28598.34 18794.51 8798.61 28096.88 13493.45 28597.06 270
LTVRE_ROB92.95 1594.60 25593.90 27096.68 23497.41 27694.42 23698.52 19798.59 15091.69 31791.21 35198.35 18384.87 29199.04 22791.06 31593.44 28696.60 320
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ITE_SJBPF95.44 31097.42 27391.32 31897.50 31095.09 16393.59 29298.35 18381.70 32798.88 25489.71 33793.39 28796.12 356
PVSNet_BlendedMVS96.73 14096.60 13597.12 20499.25 8495.35 18998.26 23299.26 1594.28 20297.94 12897.46 26592.74 11499.81 8496.88 13493.32 28896.20 354
ACMH92.88 1694.55 26093.95 26696.34 27197.63 25393.26 28298.81 14198.49 18293.43 25389.74 36598.53 16581.91 32699.08 22293.69 24593.30 28996.70 309
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVS_ROBcopyleft86.42 2089.00 35987.43 36793.69 35793.08 39689.42 35897.91 27596.89 35978.58 40585.86 39094.69 38269.48 39698.29 32377.13 40493.29 29093.36 399
USDC93.33 31392.71 31495.21 31696.83 31390.83 32996.91 35797.50 31093.84 22490.72 35698.14 20577.69 36298.82 26389.51 34293.21 29195.97 360
ACMMP++_ref92.97 292
test_040291.32 33790.27 34394.48 34596.60 32591.12 32198.50 20397.22 33586.10 38788.30 37796.98 31377.65 36497.99 34478.13 40392.94 29394.34 386
tt080594.54 26193.85 27596.63 23997.98 22593.06 29398.77 15097.84 28393.67 24293.80 28798.04 21276.88 37498.96 23994.79 20992.86 29497.86 247
dmvs_re94.48 26994.18 24895.37 31297.68 24890.11 34498.54 19697.08 34294.56 19194.42 25597.24 28484.25 30697.76 35991.02 31892.83 29598.24 235
FIs96.51 14996.12 15297.67 17097.13 29597.54 8099.36 1399.22 2395.89 11894.03 27698.35 18391.98 13598.44 29796.40 15492.76 29697.01 272
FC-MVSNet-test96.42 15296.05 15497.53 18096.95 30497.27 9299.36 1399.23 2095.83 12293.93 27998.37 18192.00 13498.32 31696.02 16792.72 29797.00 273
MonoMVSNet95.51 19595.45 17995.68 29995.54 36490.87 32698.92 10397.37 32595.79 12495.53 22497.38 27489.58 18797.68 36196.40 15492.59 29898.49 224
TinyColmap92.31 33191.53 33294.65 33896.92 30689.75 34896.92 35596.68 36890.45 34889.62 36697.85 23176.06 37998.81 26486.74 36692.51 29995.41 369
ACMH+92.99 1494.30 27993.77 28195.88 29397.81 23892.04 30698.71 16398.37 20493.99 21690.60 35898.47 17180.86 33899.05 22492.75 27492.40 30096.55 328
GBi-Net94.49 26793.80 27896.56 24998.21 19895.00 20598.82 13398.18 23892.46 29094.09 27297.07 29881.16 33297.95 34692.08 29092.14 30196.72 305
test194.49 26793.80 27896.56 24998.21 19895.00 20598.82 13398.18 23892.46 29094.09 27297.07 29881.16 33297.95 34692.08 29092.14 30196.72 305
FMVSNet394.97 23594.26 24297.11 20598.18 20496.62 12198.56 19498.26 22793.67 24294.09 27297.10 29184.25 30698.01 34192.08 29092.14 30196.70 309
FMVSNet294.47 27093.61 29197.04 20998.21 19896.43 13498.79 14898.27 22392.46 29093.50 29997.09 29581.16 33298.00 34391.09 31291.93 30496.70 309
LF4IMVS93.14 32092.79 31394.20 35195.88 35588.67 37197.66 30397.07 34493.81 22791.71 34697.65 25077.96 36198.81 26491.47 30691.92 30595.12 375
OurMVSNet-221017-094.21 28594.00 26294.85 33095.60 36289.22 36198.89 11097.43 32095.29 15092.18 34098.52 16882.86 32298.59 28393.46 25391.76 30696.74 302
EGC-MVSNET75.22 38269.54 38592.28 37394.81 38189.58 35497.64 30596.50 3731.82 4255.57 42695.74 36468.21 39796.26 39173.80 40891.71 30790.99 403
pmmvs494.69 24793.99 26496.81 22695.74 35895.94 16097.40 31997.67 29190.42 34993.37 30497.59 25789.08 20398.20 32792.97 26791.67 30896.30 351
tpm94.13 29293.80 27895.12 31996.50 33087.91 38397.44 31695.89 38592.62 28696.37 20696.30 34684.13 31198.30 32093.24 25891.66 30999.14 160
our_test_393.65 30793.30 30394.69 33595.45 37089.68 35296.91 35797.65 29291.97 30991.66 34896.88 32289.67 18697.93 34988.02 35991.49 31096.48 342
IterMVS94.09 29793.85 27594.80 33397.99 22390.35 34097.18 34098.12 25193.68 24092.46 33597.34 27584.05 31297.41 37192.51 28391.33 31196.62 318
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 29593.87 27394.85 33097.98 22590.56 33697.18 34098.11 25493.75 22992.58 32997.48 26483.97 31497.41 37192.48 28591.30 31296.58 322
FMVSNet193.19 31892.07 32696.56 24997.54 26295.00 20598.82 13398.18 23890.38 35092.27 33897.07 29873.68 39097.95 34689.36 34591.30 31296.72 305
XXY-MVS95.20 21994.45 23497.46 18196.75 31896.56 12898.86 12198.65 13993.30 25993.27 30798.27 19584.85 29298.87 25594.82 20791.26 31496.96 275
cl2294.68 24994.19 24696.13 28098.11 21093.60 26596.94 35498.31 21492.43 29493.32 30696.87 32486.51 25998.28 32494.10 23591.16 31596.51 337
miper_ehance_all_eth95.01 22894.69 22095.97 28797.70 24793.31 28097.02 35098.07 26492.23 30293.51 29896.96 31691.85 13898.15 33093.68 24691.16 31596.44 345
miper_enhance_ethall95.10 22494.75 21696.12 28197.53 26493.73 26296.61 37498.08 26292.20 30593.89 28196.65 33692.44 11898.30 32094.21 23091.16 31596.34 348
WBMVS94.56 25994.04 25696.10 28298.03 21993.08 29297.82 29198.18 23894.02 21193.77 28996.82 32781.28 33198.34 31395.47 18991.00 31896.88 288
pmmvs593.65 30792.97 31095.68 29995.49 36792.37 29898.20 23897.28 33189.66 36292.58 32997.26 28182.14 32598.09 33693.18 26190.95 31996.58 322
ET-MVSNet_ETH3D94.13 29292.98 30997.58 17798.22 19796.20 14597.31 33095.37 38994.53 19379.56 40697.63 25586.51 25997.53 36896.91 12890.74 32099.02 177
SixPastTwentyTwo93.34 31292.86 31194.75 33495.67 36089.41 35998.75 15196.67 36993.89 22190.15 36398.25 19880.87 33798.27 32590.90 31990.64 32196.57 324
N_pmnet87.12 36787.77 36585.17 38795.46 36961.92 42397.37 32370.66 42885.83 38988.73 37696.04 35785.33 28497.76 35980.02 39690.48 32295.84 362
ppachtmachnet_test93.22 31692.63 31694.97 32595.45 37090.84 32896.88 36397.88 28190.60 34492.08 34297.26 28188.08 23097.86 35585.12 37990.33 32396.22 353
DIV-MVS_self_test94.52 26494.03 25895.99 28597.57 26193.38 27797.05 34897.94 27791.74 31492.81 32197.10 29189.12 20198.07 33892.60 27690.30 32496.53 331
cl____94.51 26594.01 26196.02 28497.58 25793.40 27697.05 34897.96 27691.73 31692.76 32397.08 29789.06 20498.13 33292.61 27590.29 32596.52 334
APD_test188.22 36288.01 36188.86 38195.98 35174.66 41397.21 33696.44 37583.96 39786.66 38797.90 22560.95 40997.84 35682.73 38990.23 32694.09 392
IterMVS-LS95.46 19895.21 19496.22 27798.12 20993.72 26398.32 22398.13 25093.71 23594.26 26397.31 27992.24 12598.10 33494.63 21290.12 32796.84 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry93.22 31692.35 32395.84 29496.77 31593.09 29194.66 40197.56 30087.37 38092.90 31996.24 34788.15 22797.90 35087.37 36490.10 32896.53 331
EU-MVSNet93.66 30594.14 25192.25 37495.96 35383.38 39898.52 19798.12 25194.69 18492.61 32898.13 20687.36 24896.39 39091.82 29990.00 32996.98 274
Anonymous2023120691.66 33591.10 33593.33 36294.02 39287.35 38698.58 18797.26 33390.48 34690.16 36296.31 34583.83 31896.53 38879.36 39989.90 33096.12 356
eth_miper_zixun_eth94.68 24994.41 23795.47 30897.64 25291.71 31296.73 37198.07 26492.71 28393.64 29197.21 28790.54 17098.17 32993.38 25489.76 33196.54 329
FMVSNet591.81 33390.92 33694.49 34497.21 28792.09 30398.00 26697.55 30589.31 36990.86 35595.61 37274.48 38695.32 40085.57 37489.70 33296.07 358
miper_lstm_enhance94.33 27794.07 25595.11 32097.75 24190.97 32397.22 33598.03 27191.67 31892.76 32396.97 31490.03 17997.78 35892.51 28389.64 33396.56 326
v119294.32 27893.58 29296.53 25496.10 34694.45 23498.50 20398.17 24491.54 32094.19 26897.06 30286.95 25498.43 29890.14 32789.57 33496.70 309
v114494.59 25793.92 26796.60 24496.21 34094.78 22198.59 18598.14 24991.86 31394.21 26797.02 30987.97 23398.41 30691.72 30289.57 33496.61 319
Anonymous2024052191.18 34190.44 34193.42 35993.70 39388.47 37598.94 9897.56 30088.46 37589.56 36895.08 38077.15 37096.97 37783.92 38689.55 33694.82 382
VPA-MVSNet95.75 18395.11 20097.69 16797.24 28497.27 9298.94 9899.23 2095.13 15895.51 22597.32 27885.73 27598.91 24897.33 11689.55 33696.89 287
v124094.06 30093.29 30496.34 27196.03 35093.90 25498.44 21098.17 24491.18 33794.13 27197.01 31186.05 27098.42 29989.13 34889.50 33896.70 309
reproduce_monomvs94.77 24594.67 22195.08 32298.40 17489.48 35698.80 14298.64 14097.57 3193.21 30997.65 25080.57 34198.83 26197.72 8889.47 33996.93 278
K. test v392.55 32891.91 33194.48 34595.64 36189.24 36099.07 6694.88 39494.04 20986.78 38597.59 25777.64 36597.64 36392.08 29089.43 34096.57 324
v192192094.20 28693.47 29896.40 26895.98 35194.08 25098.52 19798.15 24791.33 32894.25 26497.20 28886.41 26498.42 29990.04 33289.39 34196.69 314
new_pmnet90.06 35189.00 35593.22 36594.18 38688.32 37896.42 37996.89 35986.19 38585.67 39293.62 39377.18 36997.10 37581.61 39389.29 34294.23 388
c3_l94.79 24394.43 23695.89 29297.75 24193.12 29097.16 34498.03 27192.23 30293.46 30197.05 30591.39 15098.01 34193.58 25189.21 34396.53 331
v14419294.39 27593.70 28796.48 25996.06 34894.35 24098.58 18798.16 24691.45 32294.33 26097.02 30987.50 24598.45 29591.08 31489.11 34496.63 317
nrg03096.28 16095.72 16797.96 14696.90 30998.15 5799.39 1098.31 21495.47 13994.42 25598.35 18392.09 13298.69 27297.50 10989.05 34597.04 271
DeepMVS_CXcopyleft86.78 38497.09 29872.30 41495.17 39375.92 40884.34 39795.19 37770.58 39495.35 39879.98 39889.04 34692.68 402
tfpnnormal93.66 30592.70 31596.55 25396.94 30595.94 16098.97 8999.19 2491.04 33891.38 35097.34 27584.94 29098.61 28085.45 37689.02 34795.11 376
Anonymous2023121194.10 29693.26 30596.61 24299.11 10794.28 24399.01 8198.88 6286.43 38492.81 32197.57 25981.66 32898.68 27594.83 20689.02 34796.88 288
v2v48294.69 24794.03 25896.65 23596.17 34394.79 22098.67 17398.08 26292.72 28294.00 27797.16 28987.69 24298.45 29592.91 26988.87 34996.72 305
V4294.78 24494.14 25196.70 23296.33 33895.22 19698.97 8998.09 26192.32 29994.31 26197.06 30288.39 22298.55 28592.90 27088.87 34996.34 348
WR-MVS95.15 22194.46 23297.22 19496.67 32396.45 13298.21 23698.81 8994.15 20593.16 31197.69 24687.51 24398.30 32095.29 19488.62 35196.90 286
FPMVS77.62 38177.14 38179.05 39979.25 42260.97 42495.79 38695.94 38365.96 41367.93 41594.40 38737.73 41988.88 41668.83 41288.46 35287.29 410
v1094.29 28193.55 29496.51 25696.39 33594.80 21998.99 8698.19 23591.35 32793.02 31796.99 31288.09 22998.41 30690.50 32488.41 35396.33 350
CP-MVSNet94.94 23894.30 24096.83 22496.72 32095.56 17699.11 6098.95 4693.89 22192.42 33697.90 22587.19 24998.12 33394.32 22688.21 35496.82 296
MIMVSNet189.67 35488.28 35993.82 35692.81 39891.08 32298.01 26497.45 31887.95 37787.90 37995.87 36267.63 40194.56 40478.73 40288.18 35595.83 363
PS-CasMVS94.67 25293.99 26496.71 23096.68 32295.26 19399.13 5799.03 3793.68 24092.33 33797.95 22185.35 28298.10 33493.59 25088.16 35696.79 297
WR-MVS_H95.05 22794.46 23296.81 22696.86 31195.82 16999.24 3099.24 1793.87 22392.53 33196.84 32690.37 17298.24 32693.24 25887.93 35796.38 347
v894.47 27093.77 28196.57 24896.36 33694.83 21799.05 6998.19 23591.92 31093.16 31196.97 31488.82 21398.48 29091.69 30387.79 35896.39 346
v7n94.19 28793.43 30096.47 26095.90 35494.38 23999.26 2798.34 21091.99 30892.76 32397.13 29088.31 22398.52 28889.48 34387.70 35996.52 334
UniMVSNet (Re)95.78 18295.19 19597.58 17796.99 30297.47 8498.79 14899.18 2595.60 13393.92 28097.04 30691.68 14198.48 29095.80 17587.66 36096.79 297
baseline195.84 17995.12 19998.01 14298.49 16995.98 15298.73 15897.03 34895.37 14696.22 20898.19 20289.96 18099.16 20694.60 21587.48 36198.90 189
Gipumacopyleft78.40 37976.75 38283.38 39295.54 36480.43 40479.42 41797.40 32264.67 41473.46 41180.82 41545.65 41493.14 40966.32 41387.43 36276.56 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
NR-MVSNet94.98 23394.16 24997.44 18396.53 32897.22 9998.74 15498.95 4694.96 17189.25 37097.69 24689.32 19598.18 32894.59 21787.40 36396.92 279
dmvs_testset87.64 36488.93 35683.79 39095.25 37363.36 42297.20 33791.17 41493.07 26985.64 39395.98 36185.30 28691.52 41269.42 41187.33 36496.49 340
VPNet94.99 23194.19 24697.40 18897.16 29396.57 12798.71 16398.97 4295.67 13194.84 23898.24 19980.36 34298.67 27696.46 15187.32 36596.96 275
UniMVSNet_NR-MVSNet95.71 18595.15 19697.40 18896.84 31296.97 10698.74 15499.24 1795.16 15793.88 28297.72 24391.68 14198.31 31895.81 17387.25 36696.92 279
DU-MVS95.42 20294.76 21597.40 18896.53 32896.97 10698.66 17598.99 4195.43 14193.88 28297.69 24688.57 21698.31 31895.81 17387.25 36696.92 279
v14894.29 28193.76 28395.91 29096.10 34692.93 29498.58 18797.97 27492.59 28893.47 30096.95 31888.53 22098.32 31692.56 28087.06 36896.49 340
Baseline_NR-MVSNet94.35 27693.81 27795.96 28896.20 34194.05 25198.61 18496.67 36991.44 32393.85 28497.60 25688.57 21698.14 33194.39 22286.93 36995.68 366
PEN-MVS94.42 27393.73 28596.49 25796.28 33994.84 21599.17 4999.00 3993.51 24892.23 33997.83 23586.10 26997.90 35092.55 28186.92 37096.74 302
TranMVSNet+NR-MVSNet95.14 22294.48 23097.11 20596.45 33396.36 13999.03 7699.03 3795.04 16593.58 29397.93 22288.27 22498.03 34094.13 23286.90 37196.95 277
MDA-MVSNet_test_wron90.71 34689.38 35194.68 33694.83 38090.78 33097.19 33997.46 31487.60 37872.41 41395.72 36886.51 25996.71 38585.92 37286.80 37296.56 326
YYNet190.70 34789.39 35094.62 34094.79 38290.65 33397.20 33797.46 31487.54 37972.54 41295.74 36486.51 25996.66 38686.00 37186.76 37396.54 329
MDA-MVSNet-bldmvs89.97 35288.35 35894.83 33295.21 37491.34 31797.64 30597.51 30988.36 37671.17 41496.13 35479.22 35096.63 38783.65 38786.27 37496.52 334
test20.0390.89 34590.38 34292.43 37093.48 39488.14 38198.33 21997.56 30093.40 25487.96 37896.71 33380.69 34094.13 40579.15 40086.17 37595.01 381
DTE-MVSNet93.98 30293.26 30596.14 27996.06 34894.39 23899.20 4298.86 7593.06 27091.78 34597.81 23785.87 27497.58 36690.53 32386.17 37596.46 344
ttmdpeth92.61 32791.96 33094.55 34194.10 38890.60 33598.52 19797.29 32992.67 28490.18 36197.92 22379.75 34797.79 35791.09 31286.15 37795.26 371
pm-mvs193.94 30393.06 30796.59 24596.49 33195.16 19898.95 9598.03 27192.32 29991.08 35397.84 23284.54 30298.41 30692.16 28886.13 37896.19 355
lessismore_v094.45 34894.93 37988.44 37691.03 41586.77 38697.64 25376.23 37798.42 29990.31 32685.64 37996.51 337
test_fmvs387.17 36587.06 36887.50 38391.21 40475.66 40899.05 6996.61 37292.79 28188.85 37492.78 40043.72 41593.49 40693.95 23884.56 38093.34 400
pmmvs691.77 33490.63 33995.17 31894.69 38491.24 32098.67 17397.92 27986.14 38689.62 36697.56 26175.79 38098.34 31390.75 32184.56 38095.94 361
test_f86.07 36985.39 37088.10 38289.28 41075.57 40997.73 29896.33 37789.41 36885.35 39491.56 40643.31 41795.53 39791.32 30884.23 38293.21 401
mvs5depth91.23 34090.17 34494.41 34992.09 40089.79 34795.26 39296.50 37390.73 34291.69 34797.06 30276.12 37898.62 27988.02 35984.11 38394.82 382
dongtai82.47 37281.88 37584.22 38995.19 37576.03 40694.59 40374.14 42782.63 39987.19 38396.09 35564.10 40587.85 41758.91 41584.11 38388.78 409
mvsany_test388.80 36088.04 36091.09 37889.78 40881.57 40397.83 29095.49 38893.81 22787.53 38093.95 39256.14 41197.43 37094.68 21083.13 38594.26 387
IB-MVS91.98 1793.27 31491.97 32897.19 19797.47 26793.41 27497.09 34795.99 38093.32 25792.47 33495.73 36678.06 36099.53 16094.59 21782.98 38698.62 215
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ambc89.49 38086.66 41575.78 40792.66 40996.72 36686.55 38892.50 40346.01 41397.90 35090.32 32582.09 38794.80 384
Patchmatch-RL test91.49 33690.85 33793.41 36091.37 40384.40 39292.81 40895.93 38491.87 31287.25 38194.87 38188.99 20596.53 38892.54 28282.00 38899.30 130
PM-MVS87.77 36386.55 36991.40 37791.03 40683.36 39996.92 35595.18 39291.28 33286.48 38993.42 39553.27 41296.74 38289.43 34481.97 38994.11 391
pmmvs-eth3d90.36 34989.05 35494.32 35091.10 40592.12 30297.63 30896.95 35488.86 37384.91 39693.13 39978.32 35696.74 38288.70 35181.81 39094.09 392
h-mvs3396.17 16395.62 17697.81 15499.03 11394.45 23498.64 17898.75 10997.48 3698.67 8098.72 14789.76 18299.86 6597.95 7281.59 39199.11 164
kuosan78.45 37877.69 37980.72 39792.73 39975.32 41094.63 40274.51 42675.96 40780.87 40593.19 39863.23 40779.99 42142.56 42181.56 39286.85 413
TransMVSNet (Re)92.67 32691.51 33396.15 27896.58 32694.65 22398.90 10696.73 36590.86 34189.46 36997.86 22985.62 27798.09 33686.45 36881.12 39395.71 365
PMVScopyleft61.03 2365.95 38563.57 38973.09 40257.90 42751.22 42985.05 41593.93 40554.45 41644.32 42283.57 41113.22 42689.15 41558.68 41681.00 39478.91 416
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
AUN-MVS94.53 26393.73 28596.92 22098.50 16793.52 27098.34 21898.10 25793.83 22695.94 22097.98 21985.59 27899.03 22894.35 22480.94 39598.22 237
hse-mvs295.71 18595.30 19196.93 21798.50 16793.53 26998.36 21698.10 25797.48 3698.67 8097.99 21789.76 18299.02 23197.95 7280.91 39698.22 237
WB-MVS84.86 37085.33 37183.46 39189.48 40969.56 41798.19 24196.42 37689.55 36481.79 40094.67 38384.80 29390.12 41352.44 41780.64 39790.69 404
test_vis3_rt79.22 37377.40 38084.67 38886.44 41674.85 41297.66 30381.43 42384.98 39367.12 41681.91 41428.09 42597.60 36488.96 34980.04 39881.55 414
SSC-MVS84.27 37184.71 37482.96 39589.19 41168.83 41898.08 25796.30 37889.04 37281.37 40294.47 38484.60 30089.89 41449.80 41979.52 39990.15 405
UnsupCasMVSNet_eth90.99 34489.92 34794.19 35294.08 38989.83 34697.13 34698.67 13293.69 23885.83 39196.19 35275.15 38296.74 38289.14 34779.41 40096.00 359
MVStest189.53 35787.99 36294.14 35594.39 38590.42 33898.25 23396.84 36482.81 39881.18 40397.33 27777.09 37196.94 37885.27 37878.79 40195.06 378
test_method79.03 37478.17 37681.63 39686.06 41754.40 42882.75 41696.89 35939.54 42080.98 40495.57 37358.37 41094.73 40384.74 38478.61 40295.75 364
testf179.02 37577.70 37782.99 39388.10 41366.90 41994.67 39993.11 40771.08 41174.02 40993.41 39634.15 42193.25 40772.25 40978.50 40388.82 407
APD_test279.02 37577.70 37782.99 39388.10 41366.90 41994.67 39993.11 40771.08 41174.02 40993.41 39634.15 42193.25 40772.25 40978.50 40388.82 407
TDRefinement91.06 34389.68 34895.21 31685.35 41891.49 31698.51 20297.07 34491.47 32188.83 37597.84 23277.31 36699.09 22192.79 27377.98 40595.04 379
new-patchmatchnet88.50 36187.45 36691.67 37690.31 40785.89 39197.16 34497.33 32689.47 36583.63 39892.77 40176.38 37595.06 40282.70 39077.29 40694.06 394
mmtdpeth93.12 32192.61 31794.63 33997.60 25589.68 35299.21 3997.32 32794.02 21197.72 14394.42 38577.01 37299.44 17899.05 1977.18 40794.78 385
KD-MVS_self_test90.38 34889.38 35193.40 36192.85 39788.94 36897.95 27097.94 27790.35 35190.25 36093.96 39179.82 34595.94 39584.62 38576.69 40895.33 370
pmmvs386.67 36884.86 37392.11 37588.16 41287.19 38896.63 37394.75 39679.88 40487.22 38292.75 40266.56 40395.20 40181.24 39476.56 40993.96 395
CL-MVSNet_self_test90.11 35089.14 35393.02 36791.86 40288.23 38096.51 37798.07 26490.49 34590.49 35994.41 38684.75 29595.34 39980.79 39574.95 41095.50 368
LCM-MVSNet78.70 37776.24 38386.08 38577.26 42471.99 41594.34 40596.72 36661.62 41576.53 40789.33 40833.91 42392.78 41081.85 39274.60 41193.46 398
UnsupCasMVSNet_bld87.17 36585.12 37293.31 36391.94 40188.77 36994.92 39698.30 22084.30 39682.30 39990.04 40763.96 40697.25 37385.85 37374.47 41293.93 396
PVSNet_088.72 1991.28 33990.03 34695.00 32497.99 22387.29 38794.84 39798.50 17792.06 30789.86 36495.19 37779.81 34699.39 18492.27 28769.79 41398.33 233
KD-MVS_2432*160089.61 35587.96 36394.54 34294.06 39091.59 31495.59 38997.63 29489.87 35888.95 37294.38 38878.28 35796.82 38084.83 38168.05 41495.21 373
miper_refine_blended89.61 35587.96 36394.54 34294.06 39091.59 31495.59 38997.63 29489.87 35888.95 37294.38 38878.28 35796.82 38084.83 38168.05 41495.21 373
PMMVS277.95 38075.44 38485.46 38682.54 41974.95 41194.23 40693.08 40972.80 41074.68 40887.38 40936.36 42091.56 41173.95 40763.94 41689.87 406
MVEpermissive62.14 2263.28 38859.38 39174.99 40074.33 42565.47 42185.55 41480.50 42452.02 41851.10 42075.00 41910.91 42980.50 41951.60 41853.40 41778.99 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN64.94 38664.25 38867.02 40382.28 42059.36 42691.83 41185.63 42052.69 41760.22 41877.28 41741.06 41880.12 42046.15 42041.14 41861.57 419
EMVS64.07 38763.26 39066.53 40481.73 42158.81 42791.85 41084.75 42151.93 41959.09 41975.13 41843.32 41679.09 42242.03 42239.47 41961.69 418
ANet_high69.08 38365.37 38780.22 39865.99 42671.96 41690.91 41290.09 41782.62 40049.93 42178.39 41629.36 42481.75 41862.49 41438.52 42086.95 412
tmp_tt68.90 38466.97 38674.68 40150.78 42859.95 42587.13 41383.47 42238.80 42162.21 41796.23 34964.70 40476.91 42388.91 35030.49 42187.19 411
wuyk23d30.17 38930.18 39330.16 40578.61 42343.29 43066.79 41814.21 42917.31 42214.82 42511.93 42511.55 42841.43 42437.08 42319.30 4225.76 422
testmvs21.48 39124.95 39411.09 40714.89 4296.47 43296.56 3759.87 4307.55 42317.93 42339.02 4219.43 4305.90 42616.56 42512.72 42320.91 421
test12320.95 39223.72 39512.64 40613.54 4308.19 43196.55 3766.13 4317.48 42416.74 42437.98 42212.97 4276.05 42516.69 4245.43 42423.68 420
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k23.98 39031.98 3920.00 4080.00 4310.00 4330.00 41998.59 1500.00 4260.00 42798.61 15590.60 1690.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas7.88 39410.50 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42694.51 870.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.20 39310.94 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42798.43 1730.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS90.94 32488.66 352
FOURS199.82 198.66 2499.69 198.95 4697.46 3899.39 30
test_one_060199.66 2699.25 298.86 7597.55 3299.20 4299.47 2397.57 6
eth-test20.00 431
eth-test0.00 431
test_241102_ONE99.71 1999.24 598.87 6997.62 2799.73 1099.39 3497.53 799.74 114
save fliter99.46 5298.38 3598.21 23698.71 11997.95 16
test072699.72 1299.25 299.06 6798.88 6297.62 2799.56 2099.50 1897.42 9
GSMVS99.20 147
test_part299.63 2999.18 1099.27 39
sam_mvs189.45 19299.20 147
sam_mvs88.99 205
MTGPAbinary98.74 111
test_post196.68 37230.43 42487.85 23898.69 27292.59 278
test_post31.83 42388.83 21298.91 248
patchmatchnet-post95.10 37989.42 19398.89 252
MTMP98.89 11094.14 403
gm-plane-assit95.88 35587.47 38589.74 36196.94 31999.19 20493.32 257
TEST999.31 6798.50 2997.92 27398.73 11492.63 28597.74 14098.68 15096.20 3299.80 91
test_899.29 7698.44 3197.89 28198.72 11692.98 27397.70 14598.66 15396.20 3299.80 91
agg_prior99.30 7198.38 3598.72 11697.57 15799.81 84
test_prior498.01 6497.86 285
test_prior99.19 4399.31 6798.22 5198.84 7999.70 12299.65 72
旧先验297.57 31191.30 33098.67 8099.80 9195.70 181
新几何297.64 305
无先验97.58 31098.72 11691.38 32499.87 6193.36 25699.60 80
原ACMM297.67 302
testdata299.89 5091.65 304
segment_acmp96.85 14
testdata197.32 32996.34 102
plane_prior797.42 27394.63 225
plane_prior697.35 28094.61 22887.09 250
plane_prior498.28 192
plane_prior394.61 22897.02 6895.34 227
plane_prior298.80 14297.28 49
plane_prior197.37 279
n20.00 432
nn0.00 432
door-mid94.37 399
test1198.66 135
door94.64 397
HQP5-MVS94.25 246
HQP-NCC97.20 28898.05 26096.43 9694.45 250
ACMP_Plane97.20 28898.05 26096.43 9694.45 250
BP-MVS95.30 192
HQP4-MVS94.45 25098.96 23996.87 291
HQP2-MVS86.75 256
NP-MVS97.28 28294.51 23397.73 241
MDTV_nov1_ep13_2view84.26 39396.89 36290.97 33997.90 13289.89 18193.91 24099.18 156
Test By Simon94.64 84