This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
HPM-MVS++copyleft89.02 889.15 888.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
MTAPA87.23 2787.00 2887.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVS87.11 2986.92 3187.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
CNVR-MVS88.93 989.13 988.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
SMA-MVScopyleft89.08 789.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MM88.97 473.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
ACMMPR87.44 2287.23 2688.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
region2R87.42 2487.20 2788.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
mPP-MVS86.67 3686.32 3887.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
HFP-MVS87.58 2187.47 2387.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
3Dnovator+77.84 485.48 5384.47 6888.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS86.68 3586.27 3987.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
XVS87.18 2886.91 3288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
X-MVStestdata80.37 14477.83 18188.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 39667.45 9596.60 3383.06 6394.50 5094.07 47
ACMMP_NAP88.05 1688.08 1687.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
DPM-MVS84.93 6284.29 6986.84 4790.20 9973.04 2387.12 16993.04 3869.80 20482.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 148
GST-MVS87.42 2487.26 2487.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
TEST993.26 5072.96 2588.75 11591.89 9368.44 23785.00 5793.10 6774.36 2895.41 67
train_agg86.43 3886.20 4087.13 4493.26 5072.96 2588.75 11591.89 9368.69 23285.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
SteuartSystems-ACMMP88.72 1088.86 1088.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator76.31 583.38 8482.31 9486.59 5287.94 18072.94 2890.64 5992.14 8477.21 5275.47 22092.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
SD-MVS88.06 1488.50 1386.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVS_111021_HR85.14 5984.75 6386.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part295.06 872.65 3291.80 13
ACMMPcopyleft85.89 4785.39 5387.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_prior472.60 3489.01 105
test_893.13 5272.57 3588.68 12091.84 9768.69 23284.87 6193.10 6774.43 2695.16 76
TSAR-MVS + GP.85.71 5085.33 5586.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
CSCG86.41 4086.19 4187.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
MCST-MVS87.37 2687.25 2587.73 2894.53 1772.46 3889.82 7793.82 1673.07 14784.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
APD-MVScopyleft87.44 2287.52 2287.19 4294.24 3272.39 3991.86 4192.83 5573.01 14988.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
DeepC-MVS79.81 287.08 3186.88 3387.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZD-MVS94.38 2572.22 4492.67 6170.98 17987.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
HPM-MVScopyleft87.11 2986.98 2987.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TSAR-MVS + MP.88.02 1788.11 1587.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SR-MVS86.73 3386.67 3486.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
MVS_030488.08 1388.08 1688.08 1489.67 11372.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
MP-MVS-pluss87.67 2087.72 2087.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS88.46 1188.74 1187.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
APDe-MVScopyleft89.15 689.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MVS_111021_LR82.61 9682.11 9684.11 11788.82 14871.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 192
MAR-MVS81.84 10680.70 11785.27 7491.32 7971.53 5489.82 7790.92 12269.77 20678.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 217
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
IU-MVS95.30 271.25 5792.95 5166.81 25092.39 688.94 1696.63 494.85 19
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
CDPH-MVS85.76 4985.29 5887.17 4393.49 4771.08 6188.58 12392.42 7268.32 23984.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
CNLPA78.08 19876.79 20881.97 19590.40 9671.07 6287.59 15784.55 26666.03 26672.38 26789.64 14557.56 20486.04 30759.61 27683.35 19488.79 248
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
PHI-MVS86.43 3886.17 4287.24 4190.88 8770.96 6592.27 3294.07 972.45 15285.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
OPM-MVS83.50 8082.95 8585.14 7788.79 15170.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 209
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CANet86.45 3786.10 4487.51 3790.09 10170.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
DP-MVS Recon83.11 9082.09 9786.15 5894.44 1970.92 6888.79 11392.20 8170.53 18879.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 145
CPTT-MVS83.73 7383.33 7984.92 8793.28 4970.86 6992.09 3790.38 13768.75 23179.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 167
h-mvs3383.15 8782.19 9586.02 6190.56 9270.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29191.72 139
新几何183.42 14793.13 5270.71 7185.48 25657.43 34781.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 278
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
SR-MVS-dyc-post85.77 4885.61 5186.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
RE-MVS-def85.48 5293.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
HPM-MVS_fast85.35 5784.95 6286.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
MSLP-MVS++85.43 5585.76 4984.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 193
MVSFormer82.85 9382.05 9885.24 7587.35 20070.21 7790.50 6290.38 13768.55 23481.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
lupinMVS81.39 11880.27 12784.76 9387.35 20070.21 7785.55 21586.41 24262.85 30181.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
xiu_mvs_v1_base_debu80.80 13079.72 13684.03 13087.35 20070.19 7985.56 21288.77 19469.06 22481.83 10488.16 19050.91 26492.85 18278.29 10887.56 13289.06 232
xiu_mvs_v1_base80.80 13079.72 13684.03 13087.35 20070.19 7985.56 21288.77 19469.06 22481.83 10488.16 19050.91 26492.85 18278.29 10887.56 13289.06 232
xiu_mvs_v1_base_debi80.80 13079.72 13684.03 13087.35 20070.19 7985.56 21288.77 19469.06 22481.83 10488.16 19050.91 26492.85 18278.29 10887.56 13289.06 232
API-MVS81.99 10481.23 10884.26 11490.94 8570.18 8291.10 5389.32 16971.51 16978.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 272
test_fmvsm_n_192085.29 5885.34 5485.13 7986.12 22569.93 8388.65 12190.78 12769.97 20088.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
OpenMVScopyleft72.83 1079.77 15578.33 17084.09 12185.17 23969.91 8490.57 6090.97 12166.70 25372.17 26991.91 9154.70 22493.96 12461.81 26090.95 9188.41 257
jason81.39 11880.29 12684.70 9486.63 21969.90 8585.95 20386.77 23863.24 29481.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
MVP-Stereo76.12 23774.46 24481.13 21785.37 23769.79 8684.42 24387.95 21365.03 27667.46 31585.33 26453.28 23891.73 22158.01 29383.27 19581.85 352
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PVSNet_Blended_VisFu82.62 9581.83 10384.96 8490.80 8969.76 8788.74 11791.70 10269.39 21278.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 191
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
APD-MVS_3200maxsize85.97 4485.88 4786.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
test_fmvsmconf_n85.92 4586.04 4685.57 6885.03 24669.51 9089.62 8690.58 13173.42 13887.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
EPNet83.72 7482.92 8686.14 5984.22 25969.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D78.63 18576.63 21484.64 9586.73 21769.47 9285.01 22584.61 26569.54 21066.51 33086.59 23450.16 27391.75 21976.26 12884.24 17892.69 107
alignmvs85.48 5385.32 5685.96 6289.51 11969.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
DP-MVS76.78 22774.57 24083.42 14793.29 4869.46 9488.55 12483.70 27963.98 29170.20 28588.89 16854.01 23294.80 9646.66 35481.88 21286.01 305
canonicalmvs85.91 4685.87 4886.04 6089.84 11169.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
test_fmvsmconf0.1_n85.61 5285.65 5085.50 6982.99 29069.39 9689.65 8490.29 14473.31 14187.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
test_fmvsmvis_n_192084.02 6983.87 7184.49 10184.12 26169.37 9788.15 14087.96 21270.01 19883.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
nrg03083.88 7083.53 7484.96 8486.77 21669.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 24492.50 114
test_fmvsmconf0.01_n84.73 6584.52 6785.34 7280.25 33069.03 9989.47 8889.65 16173.24 14486.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
XVG-OURS80.41 14179.23 14983.97 13485.64 23169.02 10183.03 27190.39 13671.09 17677.63 17391.49 10454.62 22691.35 23775.71 13483.47 19291.54 142
PCF-MVS73.52 780.38 14278.84 15885.01 8287.71 18968.99 10283.65 25591.46 11163.00 29877.77 17190.28 13166.10 10995.09 8461.40 26388.22 12990.94 165
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
QAPM80.88 12579.50 14185.03 8188.01 17968.97 10391.59 4392.00 8766.63 25975.15 23592.16 8857.70 20295.45 6363.52 24088.76 12190.66 174
AdaColmapbinary80.58 13979.42 14284.06 12593.09 5468.91 10489.36 9488.97 18869.27 21575.70 21789.69 14357.20 20995.77 5463.06 24588.41 12787.50 273
fmvsm_l_conf0.5_n84.47 6684.54 6584.27 11385.42 23568.81 10588.49 12587.26 22968.08 24188.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29281.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 247
XVG-OURS-SEG-HR80.81 12879.76 13583.96 13585.60 23268.78 10783.54 26090.50 13470.66 18676.71 19491.66 9660.69 18091.26 23976.94 12081.58 21591.83 136
LPG-MVS_test82.08 10181.27 10784.50 9989.23 13468.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18189.83 214
LGP-MVS_train84.50 9989.23 13468.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18189.83 214
Effi-MVS+-dtu80.03 15178.57 16384.42 10485.13 24368.74 11088.77 11488.10 20874.99 10274.97 24083.49 29657.27 20893.36 15673.53 15380.88 22291.18 154
Vis-MVSNetpermissive83.46 8182.80 8885.43 7190.25 9868.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HQP_MVS83.64 7683.14 8085.14 7790.08 10268.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 149
plane_prior68.71 11290.38 6777.62 3986.16 155
plane_prior689.84 11168.70 11460.42 186
ACMP74.13 681.51 11780.57 11984.36 10689.42 12268.69 11589.97 7491.50 11074.46 11475.04 23990.41 13053.82 23394.54 10477.56 11382.91 19989.86 213
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ETV-MVS84.90 6484.67 6485.59 6789.39 12468.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
plane_prior368.60 11778.44 3178.92 141
CHOSEN 1792x268877.63 21375.69 22483.44 14689.98 10868.58 11878.70 31887.50 22456.38 35275.80 21686.84 22258.67 19491.40 23661.58 26285.75 16290.34 186
plane_prior790.08 10268.51 119
fmvsm_l_conf0.5_n_a84.13 6884.16 7084.06 12585.38 23668.40 12088.34 13286.85 23767.48 24887.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
ACMM73.20 880.78 13379.84 13483.58 14389.31 13068.37 12189.99 7391.60 10470.28 19377.25 18089.66 14453.37 23793.53 14974.24 14882.85 20088.85 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs474.03 25971.91 26680.39 23281.96 30768.32 12281.45 28582.14 30359.32 33069.87 29485.13 27052.40 24388.13 29260.21 27274.74 30684.73 324
NP-MVS89.62 11468.32 12290.24 132
test22291.50 7768.26 12484.16 24883.20 29054.63 35879.74 12991.63 9958.97 19391.42 8586.77 291
CDS-MVSNet79.07 17577.70 18883.17 15987.60 19468.23 12584.40 24486.20 24667.49 24776.36 20486.54 23861.54 16290.79 25261.86 25987.33 13690.49 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PS-MVSNAJ81.69 11081.02 11283.70 14189.51 11968.21 12684.28 24690.09 14970.79 18181.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 253
fmvsm_s_conf0.5_n_a83.63 7783.41 7684.28 11186.14 22468.12 12789.43 9082.87 29670.27 19487.27 3793.80 5469.09 7891.58 22488.21 2683.65 18793.14 93
UGNet80.83 12779.59 13984.54 9888.04 17768.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28593.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
fmvsm_s_conf0.1_n_a83.32 8582.99 8484.28 11183.79 26868.07 12989.34 9582.85 29769.80 20487.36 3694.06 4268.34 8891.56 22687.95 2783.46 19393.21 90
UA-Net85.08 6184.96 6185.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
xiu_mvs_v2_base81.69 11081.05 11183.60 14289.15 13768.03 13184.46 24090.02 15070.67 18481.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 254
DELS-MVS85.41 5685.30 5785.77 6488.49 16167.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-Vis-set84.19 6783.81 7285.31 7388.18 17167.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 16893.28 86
PLCcopyleft70.83 1178.05 20076.37 21983.08 16391.88 7467.80 13488.19 13789.46 16564.33 28569.87 29488.38 18353.66 23493.58 14458.86 28482.73 20287.86 264
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAMVS78.89 18077.51 19383.03 16687.80 18567.79 13584.72 23185.05 26067.63 24476.75 19387.70 19962.25 15290.82 25158.53 28887.13 13990.49 181
CLD-MVS82.31 9881.65 10484.29 11088.47 16267.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 168
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
iter_conf_final80.63 13579.35 14584.46 10289.36 12667.70 13789.85 7584.49 26773.19 14578.30 15788.94 16545.98 31194.56 10279.59 9684.48 17491.11 156
hse-mvs281.72 10880.94 11484.07 12388.72 15467.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 31991.06 159
AUN-MVS79.21 17177.60 19184.05 12888.71 15567.61 13985.84 20887.26 22969.08 22377.23 18288.14 19453.20 23993.47 15275.50 13973.45 31891.06 159
CS-MVS86.69 3486.95 3085.90 6390.76 9067.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
EI-MVSNet-UG-set83.81 7183.38 7785.09 8087.87 18167.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18092.99 100
Effi-MVS+83.62 7883.08 8185.24 7588.38 16667.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
EG-PatchMatch MVS74.04 25871.82 26780.71 22784.92 24767.42 14385.86 20788.08 20966.04 26564.22 34483.85 28935.10 36292.56 18957.44 29780.83 22382.16 351
OMC-MVS82.69 9481.97 10184.85 8988.75 15367.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
PatchMatch-RL72.38 27570.90 27676.80 29088.60 15867.38 14579.53 30776.17 35162.75 30469.36 29982.00 31745.51 31784.89 31853.62 31880.58 22778.12 365
LS3D76.95 22574.82 23883.37 15090.45 9467.36 14689.15 10286.94 23561.87 31269.52 29790.61 12651.71 25894.53 10546.38 35786.71 14688.21 259
fmvsm_s_conf0.5_n83.80 7283.71 7384.07 12386.69 21867.31 14789.46 8983.07 29271.09 17686.96 4193.70 5569.02 8391.47 23388.79 1884.62 17093.44 80
fmvsm_s_conf0.1_n83.56 7983.38 7784.10 11884.86 24867.28 14889.40 9383.01 29370.67 18487.08 3893.96 5068.38 8791.45 23488.56 2284.50 17193.56 75
PS-MVSNAJss82.07 10281.31 10684.34 10886.51 22067.27 14989.27 9691.51 10771.75 16179.37 13490.22 13463.15 13894.27 11377.69 11282.36 20791.49 146
114514_t80.68 13479.51 14084.20 11594.09 3867.27 14989.64 8591.11 11958.75 33774.08 25090.72 12458.10 19895.04 8569.70 19189.42 11390.30 189
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6687.65 19267.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test86.29 4186.48 3685.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
anonymousdsp78.60 18677.15 19982.98 16980.51 32867.08 15387.24 16789.53 16365.66 27075.16 23487.19 21652.52 24092.25 20277.17 11879.34 24389.61 221
MVS78.19 19676.99 20381.78 19785.66 23066.99 15484.66 23290.47 13555.08 35772.02 27185.27 26563.83 13094.11 12266.10 22489.80 10984.24 328
HQP5-MVS66.98 155
HQP-MVS82.61 9682.02 9984.37 10589.33 12766.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15891.03 161
Fast-Effi-MVS+-dtu78.02 20176.49 21582.62 18483.16 28466.96 15786.94 17487.45 22672.45 15271.49 27684.17 28554.79 22391.58 22467.61 21080.31 23189.30 228
F-COLMAP76.38 23574.33 24582.50 18689.28 13266.95 15888.41 12789.03 18364.05 28966.83 32288.61 17646.78 30392.89 18157.48 29678.55 24987.67 267
mvsmamba81.69 11080.74 11684.56 9787.45 19966.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19192.04 134
HyFIR lowres test77.53 21475.40 23183.94 13689.59 11566.62 16080.36 29888.64 20156.29 35376.45 20085.17 26957.64 20393.28 15861.34 26583.10 19891.91 135
ACMH67.68 1675.89 24073.93 24881.77 19888.71 15566.61 16188.62 12289.01 18569.81 20366.78 32386.70 23041.95 34091.51 23155.64 31078.14 25687.17 280
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
jajsoiax79.29 16977.96 17683.27 15384.68 25166.57 16289.25 9790.16 14769.20 21975.46 22289.49 15045.75 31693.13 17276.84 12180.80 22490.11 197
VDD-MVS83.01 9282.36 9384.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24693.91 13177.05 11988.70 12294.57 29
mvs_tets79.13 17377.77 18583.22 15784.70 25066.37 16489.17 9890.19 14669.38 21375.40 22589.46 15344.17 32493.15 17076.78 12480.70 22690.14 194
PAPM_NR83.02 9182.41 9184.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
EC-MVSNet86.01 4286.38 3784.91 8889.31 13066.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
pmmvs-eth3d70.50 29167.83 30478.52 26777.37 35366.18 16781.82 27881.51 30958.90 33563.90 34780.42 32942.69 33286.28 30658.56 28765.30 35683.11 341
IB-MVS68.01 1575.85 24173.36 25583.31 15184.76 24966.03 16883.38 26185.06 25970.21 19669.40 29881.05 32145.76 31594.66 10165.10 23375.49 29089.25 229
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MS-PatchMatch73.83 26072.67 26077.30 28583.87 26766.02 16981.82 27884.66 26461.37 31668.61 30682.82 30547.29 29888.21 29059.27 27884.32 17677.68 366
FE-MVS77.78 20775.68 22584.08 12288.09 17566.00 17083.13 26687.79 21868.42 23878.01 16685.23 26745.50 31895.12 7859.11 28185.83 16191.11 156
test_040272.79 27370.44 28179.84 24488.13 17265.99 17185.93 20484.29 27165.57 27167.40 31785.49 26146.92 30292.61 18735.88 37874.38 30980.94 357
BH-RMVSNet79.61 15778.44 16683.14 16089.38 12565.93 17284.95 22787.15 23273.56 13478.19 16189.79 14156.67 21293.36 15659.53 27786.74 14590.13 195
BH-untuned79.47 16278.60 16282.05 19289.19 13665.91 17386.07 20188.52 20372.18 15775.42 22487.69 20061.15 17393.54 14860.38 27086.83 14486.70 293
cascas76.72 22874.64 23982.99 16885.78 22965.88 17482.33 27589.21 17660.85 31872.74 26181.02 32247.28 29993.75 14067.48 21285.02 16489.34 226
patch_mono-283.65 7584.54 6580.99 22090.06 10665.83 17584.21 24788.74 19871.60 16785.01 5592.44 8474.51 2583.50 32782.15 7592.15 7593.64 71
iter_conf0580.00 15378.70 15983.91 13787.84 18365.83 17588.84 11284.92 26271.61 16678.70 14488.94 16543.88 32694.56 10279.28 9784.28 17791.33 149
MSDG73.36 26670.99 27580.49 23184.51 25565.80 17780.71 29286.13 24865.70 26965.46 33583.74 29344.60 32190.91 25051.13 33076.89 26784.74 323
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 250
casdiffmvspermissive85.11 6085.14 5985.01 8287.20 20865.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
COLMAP_ROBcopyleft66.92 1773.01 27070.41 28280.81 22587.13 21065.63 18088.30 13484.19 27462.96 29963.80 34887.69 20038.04 35492.56 18946.66 35474.91 30484.24 328
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EIA-MVS83.31 8682.80 8884.82 9089.59 11565.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
v7n78.97 17877.58 19283.14 16083.45 27565.51 18288.32 13391.21 11473.69 13072.41 26686.32 24457.93 19993.81 13569.18 19675.65 28790.11 197
V4279.38 16878.24 17282.83 17481.10 32265.50 18385.55 21589.82 15571.57 16878.21 16086.12 24860.66 18193.18 16975.64 13575.46 29389.81 216
bld_raw_dy_0_6477.29 22075.98 22281.22 21385.04 24565.47 18488.14 14277.56 34069.20 21973.77 25289.40 15942.24 33788.85 28476.78 12481.64 21489.33 227
RRT_MVS80.35 14579.22 15083.74 14087.63 19365.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29094.25 11776.84 12179.20 24691.51 143
PVSNet_BlendedMVS80.60 13780.02 12982.36 18988.85 14565.40 18686.16 19992.00 8769.34 21478.11 16386.09 24966.02 11294.27 11371.52 17182.06 20987.39 274
PVSNet_Blended80.98 12380.34 12482.90 17288.85 14565.40 18684.43 24292.00 8767.62 24578.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 237
baseline84.93 6284.98 6084.80 9287.30 20665.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
test_djsdf80.30 14679.32 14683.27 15383.98 26565.37 18990.50 6290.38 13768.55 23476.19 20888.70 17256.44 21393.46 15378.98 9980.14 23490.97 164
ACMH+68.96 1476.01 23974.01 24782.03 19388.60 15865.31 19088.86 11087.55 22270.25 19567.75 31187.47 20841.27 34193.19 16858.37 28975.94 28487.60 269
CR-MVSNet73.37 26471.27 27379.67 24981.32 32065.19 19175.92 33780.30 32259.92 32572.73 26281.19 31952.50 24186.69 30259.84 27477.71 25887.11 284
RPMNet73.51 26370.49 28082.58 18581.32 32065.19 19175.92 33792.27 7657.60 34572.73 26276.45 35852.30 24495.43 6548.14 34977.71 25887.11 284
BH-w/o78.21 19477.33 19780.84 22488.81 14965.13 19384.87 22887.85 21769.75 20774.52 24684.74 27761.34 16893.11 17358.24 29185.84 16084.27 327
thisisatest053079.40 16677.76 18684.31 10987.69 19165.10 19487.36 16284.26 27370.04 19777.42 17688.26 18849.94 27694.79 9770.20 18484.70 16993.03 97
FA-MVS(test-final)80.96 12479.91 13284.10 11888.30 16965.01 19584.55 23790.01 15173.25 14379.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
v1079.74 15678.67 16082.97 17084.06 26364.95 19687.88 15190.62 13073.11 14675.11 23686.56 23761.46 16594.05 12373.68 15175.55 28989.90 211
SDMVSNet80.38 14280.18 12880.99 22089.03 14364.94 19780.45 29789.40 16675.19 9876.61 19889.98 13760.61 18387.69 29776.83 12383.55 18990.33 187
dcpmvs_285.63 5186.15 4384.06 12591.71 7564.94 19786.47 19091.87 9573.63 13186.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
IterMVS-SCA-FT75.43 24773.87 25080.11 23982.69 29664.85 19981.57 28383.47 28469.16 22170.49 28284.15 28651.95 25388.15 29169.23 19572.14 32887.34 276
MVSTER79.01 17677.88 18082.38 18883.07 28564.80 20084.08 25188.95 18969.01 22778.69 14587.17 21754.70 22492.43 19374.69 14280.57 22889.89 212
Anonymous2024052980.19 14978.89 15784.10 11890.60 9164.75 20188.95 10790.90 12365.97 26780.59 12291.17 11349.97 27593.73 14269.16 19782.70 20493.81 60
XVG-ACMP-BASELINE76.11 23874.27 24681.62 20083.20 28164.67 20283.60 25889.75 15869.75 20771.85 27287.09 21932.78 36592.11 20669.99 18880.43 23088.09 260
v119279.59 15978.43 16783.07 16483.55 27364.52 20386.93 17590.58 13170.83 18077.78 17085.90 25059.15 19293.94 12773.96 15077.19 26490.76 170
Fast-Effi-MVS+80.81 12879.92 13183.47 14588.85 14564.51 20485.53 21789.39 16770.79 18178.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
v114480.03 15179.03 15483.01 16783.78 26964.51 20487.11 17090.57 13371.96 16078.08 16586.20 24661.41 16693.94 12774.93 14177.23 26290.60 177
v879.97 15479.02 15582.80 17784.09 26264.50 20687.96 14590.29 14474.13 12275.24 23386.81 22362.88 14393.89 13374.39 14675.40 29690.00 205
EPP-MVSNet83.40 8383.02 8384.57 9690.13 10064.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
GeoE81.71 10981.01 11383.80 13989.51 11964.45 20888.97 10688.73 19971.27 17278.63 14889.76 14266.32 10793.20 16669.89 18986.02 15793.74 63
UniMVSNet (Re)81.60 11481.11 11083.09 16288.38 16664.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 27391.60 140
LTVRE_ROB69.57 1376.25 23674.54 24281.41 20688.60 15864.38 21079.24 31089.12 18270.76 18369.79 29687.86 19749.09 28893.20 16656.21 30980.16 23286.65 294
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023121178.97 17877.69 18982.81 17690.54 9364.29 21190.11 7291.51 10765.01 27776.16 21288.13 19550.56 26993.03 17969.68 19277.56 26191.11 156
testdata79.97 24190.90 8664.21 21284.71 26359.27 33185.40 5192.91 7362.02 15789.08 27768.95 19991.37 8686.63 295
v2v48280.23 14779.29 14783.05 16583.62 27164.14 21387.04 17189.97 15273.61 13278.18 16287.22 21461.10 17493.82 13476.11 12976.78 27191.18 154
VDDNet81.52 11580.67 11884.05 12890.44 9564.13 21489.73 8285.91 25071.11 17583.18 9093.48 5850.54 27093.49 15073.40 15688.25 12894.54 30
PAPR81.66 11380.89 11583.99 13390.27 9764.00 21586.76 18391.77 10168.84 23077.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
v14419279.47 16278.37 16882.78 18083.35 27663.96 21686.96 17390.36 14069.99 19977.50 17485.67 25760.66 18193.77 13874.27 14776.58 27290.62 175
v192192079.22 17078.03 17582.80 17783.30 27863.94 21786.80 17990.33 14169.91 20277.48 17585.53 26058.44 19693.75 14073.60 15276.85 26990.71 173
tttt051779.40 16677.91 17883.90 13888.10 17463.84 21888.37 13184.05 27571.45 17076.78 19289.12 16149.93 27894.89 9270.18 18583.18 19792.96 101
thisisatest051577.33 21875.38 23283.18 15885.27 23863.80 21982.11 27783.27 28765.06 27575.91 21383.84 29049.54 28094.27 11367.24 21586.19 15491.48 147
diffmvspermissive82.10 10081.88 10282.76 18283.00 28863.78 22083.68 25489.76 15772.94 15082.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_yl81.17 12080.47 12283.24 15589.13 13863.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12080.47 12283.24 15589.13 13863.62 22186.21 19789.95 15372.43 15581.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
AllTest70.96 28468.09 29979.58 25185.15 24163.62 22184.58 23679.83 32662.31 30860.32 35986.73 22432.02 36688.96 28150.28 33571.57 33286.15 301
TestCases79.58 25185.15 24163.62 22179.83 32662.31 30860.32 35986.73 22432.02 36688.96 28150.28 33571.57 33286.15 301
v124078.99 17777.78 18482.64 18383.21 28063.54 22586.62 18690.30 14369.74 20977.33 17885.68 25657.04 21093.76 13973.13 16076.92 26690.62 175
CHOSEN 280x42066.51 32164.71 32271.90 32781.45 31563.52 22657.98 38668.95 37453.57 35962.59 35376.70 35646.22 30975.29 37355.25 31179.68 23776.88 368
IterMVS74.29 25472.94 25978.35 26981.53 31463.49 22781.58 28282.49 30068.06 24269.99 29183.69 29451.66 25985.54 31165.85 22771.64 33186.01 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet81.88 10581.54 10582.92 17188.46 16363.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 27492.25 123
DU-MVS81.12 12280.52 12182.90 17287.80 18563.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 27492.20 126
LFMVS81.82 10781.23 10883.57 14491.89 7363.43 23089.84 7681.85 30777.04 5883.21 8993.10 6752.26 24593.43 15571.98 16989.95 10793.85 57
NR-MVSNet80.23 14779.38 14382.78 18087.80 18563.34 23186.31 19491.09 12079.01 2672.17 26989.07 16267.20 9892.81 18566.08 22575.65 28792.20 126
IS-MVSNet83.15 8782.81 8784.18 11689.94 10963.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
TR-MVS77.44 21576.18 22081.20 21488.24 17063.24 23384.61 23586.40 24367.55 24677.81 16986.48 24054.10 23093.15 17057.75 29582.72 20387.20 279
MVS_Test83.15 8783.06 8283.41 14986.86 21263.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
IterMVS-LS80.06 15079.38 14382.11 19185.89 22763.20 23586.79 18089.34 16874.19 11975.45 22386.72 22666.62 10192.39 19572.58 16576.86 26890.75 171
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet80.52 14079.98 13082.12 19084.28 25763.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 22890.74 172
CANet_DTU80.61 13679.87 13382.83 17485.60 23263.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
GBi-Net78.40 18977.40 19481.40 20787.60 19463.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 23890.09 199
test178.40 18977.40 19481.40 20787.60 19463.01 23888.39 12889.28 17071.63 16375.34 22787.28 21054.80 22091.11 24262.72 24779.57 23890.09 199
FMVSNet177.44 21576.12 22181.40 20786.81 21563.01 23888.39 12889.28 17070.49 18974.39 24787.28 21049.06 28991.11 24260.91 26778.52 25090.09 199
TAPA-MVS73.13 979.15 17277.94 17782.79 17989.59 11562.99 24188.16 13991.51 10765.77 26877.14 18791.09 11560.91 17793.21 16350.26 33787.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FMVSNet278.20 19577.21 19881.20 21487.60 19462.89 24287.47 16089.02 18471.63 16375.29 23287.28 21054.80 22091.10 24562.38 25279.38 24289.61 221
GA-MVS76.87 22675.17 23681.97 19582.75 29462.58 24381.44 28686.35 24572.16 15974.74 24382.89 30346.20 31092.02 20968.85 20181.09 22091.30 152
D2MVS74.82 25173.21 25679.64 25079.81 33762.56 24480.34 29987.35 22764.37 28468.86 30382.66 30746.37 30690.10 26167.91 20881.24 21886.25 298
FMVSNet377.88 20576.85 20680.97 22286.84 21462.36 24586.52 18988.77 19471.13 17475.34 22786.66 23254.07 23191.10 24562.72 24779.57 23889.45 224
TranMVSNet+NR-MVSNet80.84 12680.31 12582.42 18787.85 18262.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30192.30 121
131476.53 22975.30 23580.21 23783.93 26662.32 24784.66 23288.81 19260.23 32270.16 28884.07 28755.30 21790.73 25467.37 21383.21 19687.59 271
MG-MVS83.41 8283.45 7583.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
SCA74.22 25672.33 26479.91 24284.05 26462.17 24979.96 30479.29 33266.30 26272.38 26780.13 33151.95 25388.60 28659.25 27977.67 26088.96 241
PMMVS69.34 30068.67 29271.35 33375.67 35962.03 25075.17 34373.46 36050.00 36968.68 30479.05 34052.07 25178.13 35161.16 26682.77 20173.90 372
eth_miper_zixun_eth77.92 20476.69 21281.61 20283.00 28861.98 25183.15 26589.20 17769.52 21174.86 24284.35 28361.76 15892.56 18971.50 17372.89 32390.28 190
v14878.72 18377.80 18381.47 20482.73 29561.96 25286.30 19588.08 20973.26 14276.18 20985.47 26262.46 14892.36 19771.92 17073.82 31590.09 199
PAPM77.68 21276.40 21881.51 20387.29 20761.85 25383.78 25389.59 16264.74 27971.23 27788.70 17262.59 14593.66 14352.66 32387.03 14189.01 237
cl2278.07 19977.01 20181.23 21282.37 30461.83 25483.55 25987.98 21168.96 22875.06 23883.87 28861.40 16791.88 21573.53 15376.39 27689.98 208
baseline275.70 24273.83 25181.30 21083.26 27961.79 25582.57 27480.65 31666.81 25066.88 32183.42 29757.86 20192.19 20463.47 24179.57 23889.91 210
JIA-IIPM66.32 32362.82 33476.82 28977.09 35461.72 25665.34 37975.38 35258.04 34264.51 34262.32 38042.05 33986.51 30451.45 32969.22 34282.21 349
miper_ehance_all_eth78.59 18777.76 18681.08 21882.66 29761.56 25783.65 25589.15 17968.87 22975.55 21983.79 29266.49 10492.03 20873.25 15876.39 27689.64 220
c3_l78.75 18177.91 17881.26 21182.89 29261.56 25784.09 25089.13 18169.97 20075.56 21884.29 28466.36 10692.09 20773.47 15575.48 29190.12 196
miper_enhance_ethall77.87 20676.86 20580.92 22381.65 31161.38 25982.68 27288.98 18665.52 27275.47 22082.30 31165.76 11692.00 21072.95 16176.39 27689.39 225
ppachtmachnet_test70.04 29567.34 31278.14 27179.80 33861.13 26079.19 31280.59 31759.16 33265.27 33779.29 33946.75 30487.29 29949.33 34166.72 34986.00 307
TDRefinement67.49 31364.34 32376.92 28873.47 37161.07 26184.86 22982.98 29459.77 32658.30 36685.13 27026.06 37687.89 29447.92 35160.59 36781.81 353
VNet82.21 9982.41 9181.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
ab-mvs79.51 16078.97 15681.14 21688.46 16360.91 26383.84 25289.24 17570.36 19079.03 13888.87 16963.23 13690.21 26065.12 23282.57 20592.28 122
PatchmatchNetpermissive73.12 26971.33 27278.49 26883.18 28260.85 26479.63 30678.57 33564.13 28671.73 27379.81 33651.20 26285.97 30857.40 29876.36 28188.66 251
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VPA-MVSNet80.60 13780.55 12080.76 22688.07 17660.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 24591.23 153
EGC-MVSNET52.07 35047.05 35467.14 35283.51 27460.71 26680.50 29667.75 3750.07 3990.43 40075.85 36324.26 37981.54 33828.82 38462.25 36159.16 384
Anonymous20240521178.25 19277.01 20181.99 19491.03 8260.67 26784.77 23083.90 27770.65 18780.00 12891.20 11141.08 34391.43 23565.21 23185.26 16393.85 57
ITE_SJBPF78.22 27081.77 31060.57 26883.30 28669.25 21667.54 31387.20 21536.33 35987.28 30054.34 31574.62 30786.80 290
MDA-MVSNet-bldmvs66.68 31963.66 32875.75 29579.28 34560.56 26973.92 35178.35 33664.43 28250.13 38079.87 33544.02 32583.67 32546.10 35856.86 37083.03 343
cl____77.72 20976.76 20980.58 22982.49 30160.48 27083.09 26787.87 21569.22 21774.38 24885.22 26862.10 15591.53 22971.09 17675.41 29589.73 219
DIV-MVS_self_test77.72 20976.76 20980.58 22982.48 30260.48 27083.09 26787.86 21669.22 21774.38 24885.24 26662.10 15591.53 22971.09 17675.40 29689.74 218
1112_ss77.40 21776.43 21780.32 23589.11 14260.41 27283.65 25587.72 22062.13 31073.05 25986.72 22662.58 14689.97 26262.11 25780.80 22490.59 178
tt080578.73 18277.83 18181.43 20585.17 23960.30 27389.41 9290.90 12371.21 17377.17 18688.73 17146.38 30593.21 16372.57 16678.96 24790.79 168
UniMVSNet_ETH3D79.10 17478.24 17281.70 19986.85 21360.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28191.56 22667.98 20782.15 20893.29 85
HY-MVS69.67 1277.95 20377.15 19980.36 23387.57 19860.21 27583.37 26287.78 21966.11 26375.37 22687.06 22163.27 13490.48 25761.38 26482.43 20690.40 185
sd_testset77.70 21177.40 19478.60 26489.03 14360.02 27679.00 31485.83 25275.19 9876.61 19889.98 13754.81 21985.46 31362.63 25183.55 18990.33 187
RPSCF73.23 26871.46 26978.54 26682.50 30059.85 27782.18 27682.84 29858.96 33471.15 27989.41 15745.48 31984.77 31958.82 28571.83 33091.02 163
test_cas_vis1_n_192073.76 26173.74 25273.81 31575.90 35759.77 27880.51 29582.40 30158.30 33981.62 11085.69 25544.35 32376.41 36376.29 12778.61 24885.23 315
dmvs_re71.14 28270.58 27872.80 32281.96 30759.68 27975.60 34179.34 33168.55 23469.27 30180.72 32749.42 28276.54 36052.56 32477.79 25782.19 350
miper_lstm_enhance74.11 25773.11 25877.13 28780.11 33259.62 28072.23 35586.92 23666.76 25270.40 28382.92 30256.93 21182.92 33169.06 19872.63 32488.87 244
OurMVSNet-221017-074.26 25572.42 26379.80 24583.76 27059.59 28185.92 20586.64 23966.39 26166.96 32087.58 20239.46 34791.60 22365.76 22869.27 34188.22 258
Patchmatch-RL test70.24 29367.78 30677.61 28077.43 35259.57 28271.16 35870.33 36762.94 30068.65 30572.77 37050.62 26885.49 31269.58 19366.58 35187.77 266
OpenMVS_ROBcopyleft64.09 1970.56 29068.19 29677.65 27980.26 32959.41 28385.01 22582.96 29558.76 33665.43 33682.33 31037.63 35691.23 24145.34 36276.03 28382.32 348
our_test_369.14 30167.00 31475.57 29879.80 33858.80 28477.96 32677.81 33859.55 32862.90 35278.25 34947.43 29783.97 32351.71 32767.58 34883.93 333
ADS-MVSNet266.20 32663.33 32974.82 30679.92 33458.75 28567.55 37275.19 35353.37 36065.25 33875.86 36142.32 33480.53 34341.57 36968.91 34385.18 316
pm-mvs177.25 22176.68 21378.93 25984.22 25958.62 28686.41 19188.36 20571.37 17173.31 25588.01 19661.22 17289.15 27664.24 23873.01 32289.03 236
WR-MVS79.49 16179.22 15080.27 23688.79 15158.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 26391.80 138
FIs82.07 10282.42 9081.04 21988.80 15058.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16592.44 118
CostFormer75.24 25073.90 24979.27 25582.65 29858.27 28980.80 28982.73 29961.57 31375.33 23083.13 30155.52 21591.07 24864.98 23478.34 25588.45 255
Test_1112_low_res76.40 23475.44 22979.27 25589.28 13258.09 29081.69 28187.07 23359.53 32972.48 26586.67 23161.30 16989.33 27260.81 26980.15 23390.41 184
tfpnnormal74.39 25373.16 25778.08 27286.10 22658.05 29184.65 23487.53 22370.32 19271.22 27885.63 25854.97 21889.86 26343.03 36675.02 30386.32 297
test-LLR72.94 27272.43 26274.48 30981.35 31858.04 29278.38 32177.46 34166.66 25469.95 29279.00 34248.06 29579.24 34666.13 22284.83 16686.15 301
test-mter71.41 28070.39 28374.48 30981.35 31858.04 29278.38 32177.46 34160.32 32169.95 29279.00 34236.08 36079.24 34666.13 22284.83 16686.15 301
mvs_anonymous79.42 16579.11 15380.34 23484.45 25657.97 29482.59 27387.62 22167.40 24976.17 21188.56 17968.47 8689.59 26870.65 18186.05 15693.47 79
tpm cat170.57 28968.31 29577.35 28482.41 30357.95 29578.08 32580.22 32452.04 36368.54 30777.66 35352.00 25287.84 29551.77 32672.07 32986.25 298
SixPastTwentyTwo73.37 26471.26 27479.70 24785.08 24457.89 29685.57 21183.56 28271.03 17865.66 33485.88 25142.10 33892.57 18859.11 28163.34 36088.65 252
thres20075.55 24474.47 24378.82 26087.78 18857.85 29783.07 26983.51 28372.44 15475.84 21584.42 27952.08 25091.75 21947.41 35283.64 18886.86 289
XXY-MVS75.41 24875.56 22774.96 30483.59 27257.82 29880.59 29483.87 27866.54 26074.93 24188.31 18563.24 13580.09 34462.16 25576.85 26986.97 287
K. test v371.19 28168.51 29379.21 25783.04 28757.78 29984.35 24576.91 34772.90 15162.99 35182.86 30439.27 34891.09 24761.65 26152.66 37888.75 249
tfpn200view976.42 23375.37 23379.55 25389.13 13857.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24791.95 21148.33 34583.75 18389.07 230
thres40076.50 23075.37 23379.86 24389.13 13857.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24791.95 21148.33 34583.75 18390.00 205
CMPMVSbinary51.72 2170.19 29468.16 29776.28 29273.15 37357.55 30279.47 30883.92 27648.02 37156.48 37284.81 27543.13 32986.42 30562.67 25081.81 21384.89 321
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs674.69 25273.39 25478.61 26381.38 31757.48 30386.64 18587.95 21364.99 27870.18 28686.61 23350.43 27189.52 26962.12 25670.18 33888.83 246
test_vis1_n_192075.52 24575.78 22374.75 30879.84 33657.44 30483.26 26385.52 25562.83 30279.34 13686.17 24745.10 32079.71 34578.75 10181.21 21987.10 286
PVSNet_057.27 2061.67 33759.27 34068.85 34679.61 34157.44 30468.01 37173.44 36155.93 35458.54 36570.41 37544.58 32277.55 35547.01 35335.91 38771.55 375
thres600view776.50 23075.44 22979.68 24889.40 12357.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25591.89 21448.05 35083.72 18690.00 205
lessismore_v078.97 25881.01 32357.15 30765.99 37861.16 35682.82 30539.12 34991.34 23859.67 27546.92 38488.43 256
TransMVSNet (Re)75.39 24974.56 24177.86 27485.50 23457.10 30886.78 18186.09 24972.17 15871.53 27587.34 20963.01 14289.31 27356.84 30461.83 36287.17 280
thres100view90076.50 23075.55 22879.33 25489.52 11856.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25591.95 21148.33 34583.75 18389.07 230
TESTMET0.1,169.89 29769.00 29172.55 32479.27 34656.85 31078.38 32174.71 35757.64 34468.09 30977.19 35537.75 35576.70 35963.92 23984.09 17984.10 331
WTY-MVS75.65 24375.68 22575.57 29886.40 22156.82 31177.92 32882.40 30165.10 27476.18 20987.72 19863.13 14180.90 34160.31 27181.96 21089.00 239
MDA-MVSNet_test_wron65.03 32762.92 33171.37 33175.93 35656.73 31269.09 37074.73 35657.28 34854.03 37677.89 35045.88 31274.39 37649.89 33961.55 36382.99 344
pmmvs357.79 34054.26 34568.37 34964.02 38656.72 31375.12 34665.17 38040.20 37952.93 37769.86 37620.36 38375.48 37045.45 36155.25 37672.90 374
tpm273.26 26771.46 26978.63 26283.34 27756.71 31480.65 29380.40 32156.63 35173.55 25382.02 31651.80 25791.24 24056.35 30878.42 25387.95 261
TinyColmap67.30 31664.81 32174.76 30781.92 30956.68 31580.29 30081.49 31060.33 32056.27 37383.22 29824.77 37887.66 29845.52 36069.47 34079.95 361
YYNet165.03 32762.91 33271.38 33075.85 35856.60 31669.12 36974.66 35857.28 34854.12 37577.87 35145.85 31374.48 37549.95 33861.52 36483.05 342
PM-MVS66.41 32264.14 32473.20 32073.92 36656.45 31778.97 31564.96 38263.88 29364.72 34180.24 33019.84 38483.44 32866.24 22164.52 35879.71 362
PVSNet64.34 1872.08 27870.87 27775.69 29686.21 22356.44 31874.37 34980.73 31562.06 31170.17 28782.23 31342.86 33183.31 32954.77 31384.45 17587.32 277
pmmvs571.55 27970.20 28575.61 29777.83 35056.39 31981.74 28080.89 31257.76 34367.46 31584.49 27849.26 28685.32 31557.08 30175.29 29985.11 319
WR-MVS_H78.51 18878.49 16478.56 26588.02 17856.38 32088.43 12692.67 6177.14 5473.89 25187.55 20566.25 10889.24 27458.92 28373.55 31790.06 203
MIMVSNet70.69 28869.30 28774.88 30584.52 25456.35 32175.87 33979.42 33064.59 28067.76 31082.41 30941.10 34281.54 33846.64 35681.34 21686.75 292
USDC70.33 29268.37 29476.21 29380.60 32656.23 32279.19 31286.49 24160.89 31761.29 35585.47 26231.78 36889.47 27153.37 32076.21 28282.94 345
Baseline_NR-MVSNet78.15 19778.33 17077.61 28085.79 22856.21 32386.78 18185.76 25373.60 13377.93 16887.57 20365.02 12188.99 27867.14 21775.33 29887.63 268
tpmvs71.09 28369.29 28876.49 29182.04 30656.04 32478.92 31681.37 31164.05 28967.18 31978.28 34849.74 27989.77 26449.67 34072.37 32583.67 335
FC-MVSNet-test81.52 11582.02 9980.03 24088.42 16555.97 32587.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17192.33 119
GG-mvs-BLEND75.38 30181.59 31355.80 32679.32 30969.63 37067.19 31873.67 36843.24 32888.90 28350.41 33284.50 17181.45 354
VPNet78.69 18478.66 16178.76 26188.31 16855.72 32784.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 26766.63 22077.05 26590.88 166
baseline176.98 22476.75 21177.66 27888.13 17255.66 32885.12 22381.89 30573.04 14876.79 19188.90 16762.43 14987.78 29663.30 24471.18 33489.55 223
test_vis1_rt60.28 33858.42 34165.84 35467.25 38355.60 32970.44 36360.94 38744.33 37559.00 36366.64 37724.91 37768.67 38562.80 24669.48 33973.25 373
FMVSNet569.50 29967.96 30074.15 31382.97 29155.35 33080.01 30382.12 30462.56 30663.02 34981.53 31836.92 35781.92 33648.42 34474.06 31185.17 318
test_fmvs1_n70.86 28670.24 28472.73 32372.51 37755.28 33181.27 28779.71 32851.49 36778.73 14384.87 27427.54 37577.02 35776.06 13079.97 23685.88 308
test_vis1_n69.85 29869.21 28971.77 32872.66 37655.27 33281.48 28476.21 35052.03 36475.30 23183.20 30028.97 37376.22 36574.60 14378.41 25483.81 334
test_fmvs170.93 28570.52 27972.16 32673.71 36755.05 33380.82 28878.77 33451.21 36878.58 14984.41 28031.20 37076.94 35875.88 13380.12 23584.47 326
sss73.60 26273.64 25373.51 31782.80 29355.01 33476.12 33581.69 30862.47 30774.68 24485.85 25357.32 20778.11 35260.86 26880.93 22187.39 274
mvsany_test162.30 33561.26 33965.41 35569.52 37954.86 33566.86 37449.78 39546.65 37268.50 30883.21 29949.15 28766.28 38756.93 30360.77 36575.11 371
ECVR-MVScopyleft79.61 15779.26 14880.67 22890.08 10254.69 33687.89 15077.44 34374.88 10480.27 12492.79 7948.96 29292.45 19268.55 20392.50 7294.86 17
EPNet_dtu75.46 24674.86 23777.23 28682.57 29954.60 33786.89 17683.09 29171.64 16266.25 33285.86 25255.99 21488.04 29354.92 31286.55 14889.05 235
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CP-MVSNet78.22 19378.34 16977.84 27587.83 18454.54 33887.94 14791.17 11677.65 3873.48 25488.49 18062.24 15388.43 28862.19 25474.07 31090.55 179
gg-mvs-nofinetune69.95 29667.96 30075.94 29483.07 28554.51 33977.23 33270.29 36863.11 29670.32 28462.33 37943.62 32788.69 28553.88 31787.76 13184.62 325
PS-CasMVS78.01 20278.09 17477.77 27787.71 18954.39 34088.02 14391.22 11377.50 4673.26 25688.64 17560.73 17888.41 28961.88 25873.88 31490.53 180
Anonymous2024052168.80 30467.22 31373.55 31674.33 36454.11 34183.18 26485.61 25458.15 34061.68 35480.94 32430.71 37181.27 34057.00 30273.34 32185.28 314
Patchmtry70.74 28769.16 29075.49 30080.72 32454.07 34274.94 34880.30 32258.34 33870.01 28981.19 31952.50 24186.54 30353.37 32071.09 33585.87 309
PEN-MVS77.73 20877.69 18977.84 27587.07 21153.91 34387.91 14991.18 11577.56 4373.14 25888.82 17061.23 17189.17 27559.95 27372.37 32590.43 183
gm-plane-assit81.40 31653.83 34462.72 30580.94 32492.39 19563.40 243
CL-MVSNet_self_test72.37 27671.46 26975.09 30379.49 34353.53 34580.76 29185.01 26169.12 22270.51 28182.05 31557.92 20084.13 32252.27 32566.00 35487.60 269
MDTV_nov1_ep1369.97 28683.18 28253.48 34677.10 33380.18 32560.45 31969.33 30080.44 32848.89 29386.90 30151.60 32878.51 251
KD-MVS_2432*160066.22 32463.89 32673.21 31875.47 36253.42 34770.76 36184.35 26964.10 28766.52 32878.52 34634.55 36384.98 31650.40 33350.33 38181.23 355
miper_refine_blended66.22 32463.89 32673.21 31875.47 36253.42 34770.76 36184.35 26964.10 28766.52 32878.52 34634.55 36384.98 31650.40 33350.33 38181.23 355
test111179.43 16479.18 15280.15 23889.99 10753.31 34987.33 16477.05 34675.04 10180.23 12692.77 8148.97 29192.33 20068.87 20092.40 7494.81 20
LF4IMVS64.02 33162.19 33569.50 34270.90 37853.29 35076.13 33477.18 34552.65 36258.59 36480.98 32323.55 38076.52 36153.06 32266.66 35078.68 364
DTE-MVSNet76.99 22376.80 20777.54 28286.24 22253.06 35187.52 15890.66 12977.08 5772.50 26488.67 17460.48 18589.52 26957.33 29970.74 33690.05 204
test250677.30 21976.49 21579.74 24690.08 10252.02 35287.86 15263.10 38474.88 10480.16 12792.79 7938.29 35392.35 19868.74 20292.50 7294.86 17
tpm72.37 27671.71 26874.35 31182.19 30552.00 35379.22 31177.29 34464.56 28172.95 26083.68 29551.35 26083.26 33058.33 29075.80 28587.81 265
test_fmvs268.35 31067.48 31170.98 33769.50 38051.95 35480.05 30276.38 34949.33 37074.65 24584.38 28123.30 38175.40 37274.51 14475.17 30285.60 310
MIMVSNet168.58 30666.78 31673.98 31480.07 33351.82 35580.77 29084.37 26864.40 28359.75 36282.16 31436.47 35883.63 32642.73 36770.33 33786.48 296
Vis-MVSNet (Re-imp)78.36 19178.45 16578.07 27388.64 15751.78 35686.70 18479.63 32974.14 12175.11 23690.83 12361.29 17089.75 26558.10 29291.60 8292.69 107
LCM-MVSNet-Re77.05 22276.94 20477.36 28387.20 20851.60 35780.06 30180.46 32075.20 9767.69 31286.72 22662.48 14788.98 27963.44 24289.25 11491.51 143
Gipumacopyleft45.18 35641.86 35955.16 37077.03 35551.52 35832.50 39280.52 31832.46 38827.12 39135.02 3929.52 39575.50 36922.31 39160.21 36838.45 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UnsupCasMVSNet_eth67.33 31565.99 31971.37 33173.48 37051.47 35975.16 34485.19 25865.20 27360.78 35780.93 32642.35 33377.20 35657.12 30053.69 37785.44 312
UnsupCasMVSNet_bld63.70 33261.53 33870.21 34073.69 36851.39 36072.82 35381.89 30555.63 35557.81 36871.80 37238.67 35078.61 34949.26 34252.21 37980.63 358
FPMVS53.68 34651.64 34859.81 36265.08 38551.03 36169.48 36669.58 37141.46 37840.67 38472.32 37116.46 38870.00 38424.24 39065.42 35558.40 386
CVMVSNet72.99 27172.58 26174.25 31284.28 25750.85 36286.41 19183.45 28544.56 37473.23 25787.54 20649.38 28385.70 30965.90 22678.44 25286.19 300
Anonymous2023120668.60 30567.80 30571.02 33680.23 33150.75 36378.30 32480.47 31956.79 35066.11 33382.63 30846.35 30778.95 34843.62 36575.70 28683.36 338
ambc75.24 30273.16 37250.51 36463.05 38487.47 22564.28 34377.81 35217.80 38689.73 26657.88 29460.64 36685.49 311
APD_test153.31 34749.93 35263.42 35865.68 38450.13 36571.59 35766.90 37734.43 38640.58 38571.56 3738.65 39776.27 36434.64 38055.36 37563.86 382
tpmrst72.39 27472.13 26573.18 32180.54 32749.91 36679.91 30579.08 33363.11 29671.69 27479.95 33355.32 21682.77 33265.66 22973.89 31386.87 288
Patchmatch-test64.82 32963.24 33069.57 34179.42 34449.82 36763.49 38369.05 37351.98 36559.95 36180.13 33150.91 26470.98 38140.66 37173.57 31687.90 263
EPMVS69.02 30268.16 29771.59 32979.61 34149.80 36877.40 33066.93 37662.82 30370.01 28979.05 34045.79 31477.86 35456.58 30675.26 30087.13 283
dp66.80 31865.43 32070.90 33879.74 34048.82 36975.12 34674.77 35559.61 32764.08 34577.23 35442.89 33080.72 34248.86 34366.58 35183.16 340
test0.0.03 168.00 31267.69 30768.90 34577.55 35147.43 37075.70 34072.95 36466.66 25466.56 32682.29 31248.06 29575.87 36744.97 36374.51 30883.41 337
ADS-MVSNet64.36 33062.88 33368.78 34779.92 33447.17 37167.55 37271.18 36653.37 36065.25 33875.86 36142.32 33473.99 37741.57 36968.91 34385.18 316
EU-MVSNet68.53 30867.61 30971.31 33478.51 34947.01 37284.47 23884.27 27242.27 37766.44 33184.79 27640.44 34583.76 32458.76 28668.54 34683.17 339
test_fmvs363.36 33361.82 33667.98 35062.51 38746.96 37377.37 33174.03 35945.24 37367.50 31478.79 34512.16 39272.98 38072.77 16466.02 35383.99 332
KD-MVS_self_test68.81 30367.59 31072.46 32574.29 36545.45 37477.93 32787.00 23463.12 29563.99 34678.99 34442.32 33484.77 31956.55 30764.09 35987.16 282
testf145.72 35441.96 35757.00 36456.90 38945.32 37566.14 37759.26 38926.19 39030.89 38960.96 3834.14 40070.64 38226.39 38846.73 38555.04 387
APD_test245.72 35441.96 35757.00 36456.90 38945.32 37566.14 37759.26 38926.19 39030.89 38960.96 3834.14 40070.64 38226.39 38846.73 38555.04 387
LCM-MVSNet54.25 34349.68 35367.97 35153.73 39545.28 37766.85 37580.78 31435.96 38539.45 38662.23 3818.70 39678.06 35348.24 34851.20 38080.57 359
test_vis3_rt49.26 35347.02 35556.00 36654.30 39245.27 37866.76 37648.08 39636.83 38344.38 38353.20 3887.17 39964.07 38956.77 30555.66 37358.65 385
test20.0367.45 31466.95 31568.94 34475.48 36144.84 37977.50 32977.67 33966.66 25463.01 35083.80 29147.02 30178.40 35042.53 36868.86 34583.58 336
mvsany_test353.99 34451.45 34961.61 36055.51 39144.74 38063.52 38245.41 39943.69 37658.11 36776.45 35817.99 38563.76 39054.77 31347.59 38376.34 369
PatchT68.46 30967.85 30270.29 33980.70 32543.93 38172.47 35474.88 35460.15 32370.55 28076.57 35749.94 27681.59 33750.58 33174.83 30585.34 313
MVS-HIRNet59.14 33957.67 34263.57 35781.65 31143.50 38271.73 35665.06 38139.59 38151.43 37857.73 38538.34 35282.58 33339.53 37273.95 31264.62 381
testing368.56 30767.67 30871.22 33587.33 20542.87 38383.06 27071.54 36570.36 19069.08 30284.38 28130.33 37285.69 31037.50 37775.45 29485.09 320
WAC-MVS42.58 38439.46 373
myMVS_eth3d67.02 31766.29 31869.21 34384.68 25142.58 38478.62 31973.08 36266.65 25766.74 32479.46 33731.53 36982.30 33439.43 37476.38 27982.75 346
PMVScopyleft37.38 2244.16 35740.28 36055.82 36840.82 40042.54 38665.12 38063.99 38334.43 38624.48 39257.12 3873.92 40276.17 36617.10 39455.52 37448.75 389
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_f52.09 34950.82 35055.90 36753.82 39442.31 38759.42 38558.31 39136.45 38456.12 37470.96 37412.18 39157.79 39253.51 31956.57 37267.60 378
testgi66.67 32066.53 31767.08 35375.62 36041.69 38875.93 33676.50 34866.11 26365.20 34086.59 23435.72 36174.71 37443.71 36473.38 32084.84 322
Syy-MVS68.05 31167.85 30268.67 34884.68 25140.97 38978.62 31973.08 36266.65 25766.74 32479.46 33752.11 24982.30 33432.89 38176.38 27982.75 346
ANet_high50.57 35246.10 35663.99 35648.67 39839.13 39070.99 36080.85 31361.39 31531.18 38857.70 38617.02 38773.65 37931.22 38315.89 39679.18 363
MDTV_nov1_ep13_2view37.79 39175.16 34455.10 35666.53 32749.34 28453.98 31687.94 262
DSMNet-mixed57.77 34156.90 34360.38 36167.70 38235.61 39269.18 36753.97 39332.30 38957.49 36979.88 33440.39 34668.57 38638.78 37572.37 32576.97 367
MVEpermissive26.22 2330.37 36225.89 36643.81 37544.55 39935.46 39328.87 39339.07 40018.20 39418.58 39640.18 3912.68 40347.37 39717.07 39523.78 39348.60 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
new_pmnet50.91 35150.29 35152.78 37268.58 38134.94 39463.71 38156.63 39239.73 38044.95 38265.47 37821.93 38258.48 39134.98 37956.62 37164.92 380
wuyk23d16.82 36515.94 36819.46 38058.74 38831.45 39539.22 3903.74 4056.84 3966.04 3992.70 3991.27 40424.29 39910.54 39914.40 3982.63 396
E-PMN31.77 35930.64 36235.15 37752.87 39627.67 39657.09 38747.86 39724.64 39216.40 39733.05 39311.23 39354.90 39414.46 39718.15 39422.87 393
DeepMVS_CXcopyleft27.40 37940.17 40126.90 39724.59 40317.44 39523.95 39348.61 3909.77 39426.48 39818.06 39224.47 39228.83 392
EMVS30.81 36129.65 36334.27 37850.96 39725.95 39856.58 38846.80 39824.01 39315.53 39830.68 39412.47 39054.43 39512.81 39817.05 39522.43 394
dmvs_testset62.63 33464.11 32558.19 36378.55 34824.76 39975.28 34265.94 37967.91 24360.34 35876.01 36053.56 23573.94 37831.79 38267.65 34775.88 370
new-patchmatchnet61.73 33661.73 33761.70 35972.74 37524.50 40069.16 36878.03 33761.40 31456.72 37175.53 36438.42 35176.48 36245.95 35957.67 36984.13 330
WB-MVS54.94 34254.72 34455.60 36973.50 36920.90 40174.27 35061.19 38659.16 33250.61 37974.15 36647.19 30075.78 36817.31 39335.07 38870.12 376
SSC-MVS53.88 34553.59 34654.75 37172.87 37419.59 40273.84 35260.53 38857.58 34649.18 38173.45 36946.34 30875.47 37116.20 39632.28 39069.20 377
PMMVS240.82 35838.86 36146.69 37453.84 39316.45 40348.61 38949.92 39437.49 38231.67 38760.97 3828.14 39856.42 39328.42 38530.72 39167.19 379
tmp_tt18.61 36421.40 36710.23 3814.82 40310.11 40434.70 39130.74 4021.48 39823.91 39426.07 39528.42 37413.41 40027.12 38615.35 3977.17 395
N_pmnet52.79 34853.26 34751.40 37378.99 3477.68 40569.52 3653.89 40451.63 36657.01 37074.98 36540.83 34465.96 38837.78 37664.67 35780.56 360
test_method31.52 36029.28 36438.23 37627.03 4026.50 40620.94 39462.21 3854.05 39722.35 39552.50 38913.33 38947.58 39627.04 38734.04 38960.62 383
test1236.12 3678.11 3700.14 3820.06 4050.09 40771.05 3590.03 4070.04 4010.25 4021.30 4010.05 4050.03 4020.21 4010.01 4000.29 397
testmvs6.04 3688.02 3710.10 3830.08 4040.03 40869.74 3640.04 4060.05 4000.31 4011.68 4000.02 4060.04 4010.24 4000.02 3990.25 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k19.96 36326.61 3650.00 3840.00 4060.00 4090.00 39589.26 1730.00 4020.00 40388.61 17661.62 1610.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas5.26 3697.02 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40263.15 1380.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re7.23 3669.64 3690.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40386.72 2260.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
PC_three_145268.21 24092.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
eth-test20.00 406
eth-test0.00 406
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
9.1488.26 1492.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
GSMVS88.96 241
sam_mvs151.32 26188.96 241
sam_mvs50.01 274
MTGPAbinary92.02 85
test_post178.90 3175.43 39848.81 29485.44 31459.25 279
test_post5.46 39750.36 27284.24 321
patchmatchnet-post74.00 36751.12 26388.60 286
MTMP92.18 3532.83 401
test9_res84.90 4295.70 2692.87 102
agg_prior282.91 6695.45 3092.70 105
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
旧先验286.56 18858.10 34187.04 3988.98 27974.07 149
新几何286.29 196
无先验87.48 15988.98 18660.00 32494.12 12167.28 21488.97 240
原ACMM286.86 177
testdata291.01 24962.37 253
segment_acmp73.08 37
testdata184.14 24975.71 87
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 149
plane_prior491.00 120
plane_prior291.25 5079.12 23
plane_prior189.90 110
n20.00 408
nn0.00 408
door-mid69.98 369
test1192.23 79
door69.44 372
HQP-NCC89.33 12789.17 9876.41 7277.23 182
ACMP_Plane89.33 12789.17 9876.41 7277.23 182
BP-MVS77.47 114
HQP4-MVS77.24 18195.11 8091.03 161
HQP3-MVS92.19 8285.99 158
HQP2-MVS60.17 189
ACMMP++_ref81.95 211
ACMMP++81.25 217
Test By Simon64.33 125