This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
No_MVS98.86 198.67 5896.94 197.93 10599.86 897.68 1699.67 699.77 2
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 6696.04 299.24 12495.36 8999.59 1799.56 29
HPM-MVS++copyleft97.34 1796.97 2698.47 599.08 3696.16 497.55 12297.97 10195.59 1196.61 7297.89 9092.57 3499.84 2395.95 6699.51 3199.40 54
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 3699.86 897.52 2299.67 699.75 6
CNVR-MVS97.68 697.44 1398.37 798.90 5095.86 697.27 15198.08 7495.81 997.87 3698.31 6094.26 1399.68 5497.02 3399.49 3699.57 26
DPE-MVScopyleft97.86 497.65 898.47 599.17 3295.78 797.21 15998.35 2795.16 2298.71 2098.80 2295.05 1099.89 396.70 4199.73 199.73 10
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.28 2595.74 898.10 29
DPM-MVS95.69 7494.92 8798.01 1998.08 10495.71 995.27 28597.62 14190.43 19395.55 11397.07 14491.72 4699.50 9989.62 20498.94 8998.82 111
SMA-MVScopyleft97.35 1697.03 2498.30 899.06 3895.42 1097.94 7198.18 5790.57 19098.85 1598.94 993.33 2399.83 2696.72 4099.68 499.63 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 3694.78 4198.93 998.87 1596.04 299.86 897.45 2699.58 2199.59 22
IU-MVS99.42 795.39 1197.94 10490.40 19498.94 897.41 2999.66 1099.74 8
DVP-MVScopyleft97.91 397.81 498.22 1399.45 395.36 1398.21 4397.85 11694.92 3298.73 1898.87 1595.08 899.84 2397.52 2299.67 699.48 44
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.45 395.36 1398.31 2998.29 3494.92 3298.99 798.92 1095.08 8
MCST-MVS97.18 2096.84 3298.20 1499.30 2495.35 1597.12 16698.07 7993.54 8396.08 9497.69 10693.86 1699.71 4696.50 4699.39 5299.55 32
3Dnovator+91.43 495.40 8194.48 10398.16 1696.90 16595.34 1698.48 2197.87 11194.65 4988.53 27998.02 8283.69 16799.71 4693.18 13698.96 8899.44 49
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3995.13 2399.19 498.89 1395.54 599.85 1897.52 2299.66 1099.56 29
test_241102_ONE99.42 795.30 1798.27 3995.09 2699.19 498.81 2195.54 599.65 58
SF-MVS97.39 1597.13 1698.17 1599.02 4295.28 1998.23 4098.27 3992.37 12998.27 2798.65 2993.33 2399.72 4596.49 4799.52 2899.51 37
test_one_060199.32 2295.20 2098.25 4595.13 2398.48 2498.87 1595.16 7
alignmvs95.87 7295.23 8197.78 3197.56 13795.19 2197.86 7997.17 19394.39 5796.47 8096.40 18785.89 13899.20 12796.21 5795.11 18998.95 96
ACMMP_NAP97.20 1996.86 3098.23 1199.09 3495.16 2297.60 11598.19 5592.82 11897.93 3498.74 2691.60 5199.86 896.26 5099.52 2899.67 13
canonicalmvs96.02 6795.45 7497.75 3597.59 13495.15 2398.28 3297.60 14294.52 5296.27 8896.12 20087.65 11199.18 13096.20 5894.82 19398.91 101
NCCC97.30 1897.03 2498.11 1798.77 5395.06 2497.34 14498.04 8995.96 697.09 5597.88 9293.18 2599.71 4695.84 7199.17 7399.56 29
MM98.23 1195.03 2598.07 5295.76 28197.78 197.52 4098.80 2288.09 10299.86 899.44 199.37 5699.80 1
APD-MVScopyleft96.95 3196.60 4698.01 1999.03 4194.93 2697.72 9898.10 7291.50 15198.01 3198.32 5992.33 3899.58 7794.85 10099.51 3199.53 36
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
APDe-MVScopyleft97.82 597.73 798.08 1899.15 3394.82 2798.81 798.30 3294.76 4398.30 2698.90 1293.77 1799.68 5497.93 1499.69 399.75 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MP-MVS-pluss96.70 4696.27 6097.98 2199.23 3094.71 2896.96 17898.06 8290.67 18195.55 11398.78 2591.07 6399.86 896.58 4499.55 2499.38 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZD-MVS99.05 3994.59 2998.08 7489.22 22297.03 5798.10 7392.52 3599.65 5894.58 11199.31 60
nrg03094.05 12293.31 13496.27 10595.22 26294.59 2998.34 2797.46 16192.93 11591.21 21296.64 16887.23 12298.22 22394.99 9885.80 30795.98 240
SD-MVS97.41 1497.53 1197.06 6698.57 6994.46 3197.92 7398.14 6494.82 3899.01 698.55 3394.18 1497.41 31996.94 3499.64 1399.32 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CDPH-MVS95.97 6995.38 7797.77 3398.93 4794.44 3296.35 23197.88 10986.98 28996.65 7097.89 9091.99 4499.47 10292.26 14999.46 3999.39 56
MTAPA97.08 2496.78 3897.97 2299.37 1694.42 3397.24 15398.08 7495.07 2796.11 9298.59 3090.88 6899.90 296.18 5999.50 3399.58 25
MVS_030497.04 2796.73 4197.96 2397.60 13394.36 3498.01 5794.09 34497.33 296.29 8698.79 2489.73 8299.86 899.36 299.42 4699.67 13
DeepC-MVS_fast93.89 296.93 3396.64 4597.78 3198.64 6494.30 3597.41 13498.04 8994.81 3996.59 7498.37 4991.24 5999.64 6695.16 9399.52 2899.42 53
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter98.91 4994.28 3697.02 17198.02 9495.35 16
test1297.65 4198.46 7094.26 3797.66 13495.52 11690.89 6799.46 10399.25 6699.22 70
SteuartSystems-ACMMP97.62 997.53 1197.87 2498.39 7794.25 3898.43 2498.27 3995.34 1798.11 2898.56 3194.53 1299.71 4696.57 4599.62 1599.65 15
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.97.42 1397.33 1597.69 4099.25 2794.24 3998.07 5297.85 11693.72 7598.57 2198.35 5193.69 1899.40 11097.06 3299.46 3999.44 49
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TEST998.70 5694.19 4096.41 22398.02 9488.17 25896.03 9597.56 12192.74 3099.59 74
train_agg96.30 6195.83 6897.72 3798.70 5694.19 4096.41 22398.02 9488.58 24596.03 9597.56 12192.73 3199.59 7495.04 9599.37 5699.39 56
DP-MVS Recon95.68 7595.12 8597.37 4999.19 3194.19 4097.03 16998.08 7488.35 25495.09 12397.65 11189.97 7999.48 10192.08 15898.59 10298.44 140
GST-MVS96.85 3896.52 5097.82 2799.36 1894.14 4398.29 3198.13 6592.72 12196.70 6698.06 7791.35 5799.86 894.83 10199.28 6199.47 46
ZNCC-MVS96.96 3096.67 4497.85 2599.37 1694.12 4498.49 2098.18 5792.64 12496.39 8498.18 7091.61 5099.88 495.59 8599.55 2499.57 26
HFP-MVS97.14 2296.92 2997.83 2699.42 794.12 4498.52 1698.32 3093.21 9697.18 5098.29 6392.08 4299.83 2695.63 8099.59 1799.54 33
PHI-MVS96.77 4396.46 5597.71 3998.40 7594.07 4698.21 4398.45 2289.86 20397.11 5498.01 8392.52 3599.69 5296.03 6499.53 2799.36 60
test_898.67 5894.06 4796.37 23098.01 9788.58 24595.98 9997.55 12392.73 3199.58 77
XVS97.18 2096.96 2797.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7498.29 6391.70 4899.80 3095.66 7599.40 5099.62 18
X-MVStestdata91.71 21389.67 27297.81 2899.38 1494.03 4898.59 1298.20 5294.85 3496.59 7432.69 39691.70 4899.80 3095.66 7599.40 5099.62 18
ACMMPR97.07 2596.84 3297.79 3099.44 693.88 5098.52 1698.31 3193.21 9697.15 5198.33 5791.35 5799.86 895.63 8099.59 1799.62 18
MP-MVScopyleft96.77 4396.45 5697.72 3799.39 1393.80 5198.41 2598.06 8293.37 9195.54 11598.34 5490.59 7299.88 494.83 10199.54 2699.49 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
agg_prior98.67 5893.79 5298.00 9895.68 10999.57 84
region2R97.07 2596.84 3297.77 3399.46 293.79 5298.52 1698.24 4793.19 9997.14 5298.34 5491.59 5299.87 795.46 8799.59 1799.64 16
MSP-MVS97.59 1097.54 1097.73 3699.40 1193.77 5498.53 1598.29 3495.55 1398.56 2297.81 9993.90 1599.65 5896.62 4299.21 6999.77 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_prior493.66 5596.42 222
新几何197.32 5198.60 6593.59 5697.75 12381.58 35695.75 10697.85 9690.04 7799.67 5686.50 26799.13 7798.69 119
CP-MVS97.02 2896.81 3697.64 4399.33 2193.54 5798.80 898.28 3692.99 10796.45 8298.30 6291.90 4599.85 1895.61 8299.68 499.54 33
PGM-MVS96.81 4196.53 4997.65 4199.35 2093.53 5897.65 10698.98 292.22 13197.14 5298.44 4491.17 6299.85 1894.35 11399.46 3999.57 26
mPP-MVS96.86 3696.60 4697.64 4399.40 1193.44 5998.50 1998.09 7393.27 9595.95 10098.33 5791.04 6499.88 495.20 9299.57 2399.60 21
TSAR-MVS + GP.96.69 4896.49 5197.27 5698.31 8193.39 6096.79 19096.72 23494.17 6297.44 4397.66 11092.76 2899.33 11596.86 3797.76 13199.08 83
CANet96.39 5896.02 6397.50 4597.62 13093.38 6197.02 17197.96 10295.42 1594.86 12597.81 9987.38 11999.82 2896.88 3699.20 7199.29 63
旧先验198.38 7893.38 6197.75 12398.09 7592.30 4199.01 8699.16 73
3Dnovator91.36 595.19 9094.44 10597.44 4796.56 18993.36 6398.65 1198.36 2494.12 6389.25 26498.06 7782.20 20399.77 3793.41 13399.32 5999.18 72
FOURS199.55 193.34 6499.29 198.35 2794.98 2998.49 23
UniMVSNet (Re)93.31 14992.55 16395.61 14395.39 24593.34 6497.39 13998.71 1193.14 10390.10 23494.83 26087.71 10998.03 25491.67 16983.99 33495.46 268
SR-MVS97.01 2996.86 3097.47 4699.09 3493.27 6697.98 6198.07 7993.75 7497.45 4298.48 4191.43 5599.59 7496.22 5399.27 6299.54 33
DELS-MVS96.61 5196.38 5897.30 5297.79 11993.19 6795.96 25598.18 5795.23 1995.87 10197.65 11191.45 5399.70 5195.87 6799.44 4599.00 92
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DeepC-MVS93.07 396.06 6595.66 6997.29 5397.96 10893.17 6897.30 14998.06 8293.92 6993.38 15898.66 2786.83 12599.73 4295.60 8499.22 6898.96 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVScopyleft96.69 4896.45 5697.40 4899.36 1893.11 6998.87 698.06 8291.17 16696.40 8397.99 8490.99 6599.58 7795.61 8299.61 1699.49 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
NR-MVSNet92.34 19191.27 20895.53 14894.95 27693.05 7097.39 13998.07 7992.65 12384.46 33695.71 22285.00 14997.77 28889.71 20083.52 34195.78 250
test_prior97.23 5898.67 5892.99 7198.00 9899.41 10999.29 63
UA-Net95.95 7095.53 7197.20 6197.67 12492.98 7297.65 10698.13 6594.81 3996.61 7298.35 5188.87 9099.51 9690.36 18997.35 14299.11 81
VNet95.89 7195.45 7497.21 6098.07 10592.94 7397.50 12598.15 6293.87 7197.52 4097.61 11785.29 14599.53 9195.81 7295.27 18599.16 73
UniMVSNet_NR-MVSNet93.37 14792.67 15795.47 15495.34 25192.83 7497.17 16298.58 1792.98 11290.13 23095.80 21588.37 10097.85 27991.71 16683.93 33595.73 257
DU-MVS92.90 17192.04 17895.49 15194.95 27692.83 7497.16 16398.24 4793.02 10690.13 23095.71 22283.47 17197.85 27991.71 16683.93 33595.78 250
fmvsm_l_conf0.5_n97.65 797.75 697.34 5098.21 9292.75 7697.83 8498.73 995.04 2899.30 198.84 2093.34 2299.78 3599.32 399.13 7799.50 40
HPM-MVS_fast96.51 5496.27 6097.22 5999.32 2292.74 7798.74 998.06 8290.57 19096.77 6398.35 5190.21 7599.53 9194.80 10499.63 1499.38 58
OpenMVScopyleft89.19 1292.86 17391.68 19296.40 9395.34 25192.73 7898.27 3398.12 6784.86 32485.78 32597.75 10378.89 26399.74 4187.50 25198.65 9896.73 217
EPNet95.20 8994.56 9797.14 6392.80 34692.68 7997.85 8294.87 32996.64 392.46 17497.80 10186.23 13299.65 5893.72 12798.62 10099.10 82
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM93.45 14592.27 17396.98 6996.77 17592.62 8098.39 2698.12 6784.50 32988.27 28697.77 10282.39 20099.81 2985.40 28698.81 9398.51 129
ACMMPcopyleft96.27 6295.93 6497.28 5599.24 2892.62 8098.25 3698.81 592.99 10794.56 13198.39 4888.96 8999.85 1894.57 11297.63 13299.36 60
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_l_conf0.5_n_a97.63 897.76 597.26 5798.25 8692.59 8297.81 8898.68 1394.93 3099.24 398.87 1593.52 2099.79 3399.32 399.21 6999.40 54
CNLPA94.28 11093.53 12296.52 8098.38 7892.55 8396.59 21496.88 22590.13 19991.91 18997.24 13585.21 14699.09 14287.64 24797.83 12797.92 169
PCF-MVS89.48 1191.56 22189.95 26096.36 9896.60 18492.52 8492.51 35897.26 18879.41 36888.90 26896.56 17984.04 16499.55 8777.01 35397.30 14597.01 207
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS89.66 993.87 12992.95 14396.63 7497.10 15292.49 8595.64 26996.64 24289.05 22793.00 16695.79 21885.77 14199.45 10589.16 21994.35 19997.96 167
ETV-MVS96.02 6795.89 6696.40 9397.16 14792.44 8697.47 13197.77 12294.55 5096.48 7994.51 27491.23 6198.92 16195.65 7898.19 11897.82 177
VPA-MVSNet93.24 15192.48 16895.51 14995.70 23092.39 8797.86 7998.66 1692.30 13092.09 18795.37 23880.49 23098.40 20793.95 12085.86 30695.75 255
test_fmvsmconf_n97.49 1297.56 997.29 5397.44 13992.37 8897.91 7598.88 495.83 898.92 1299.05 591.45 5399.80 3099.12 699.46 3999.69 12
SR-MVS-dyc-post96.88 3596.80 3797.11 6599.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3691.40 5699.56 8596.05 6199.26 6499.43 51
RE-MVS-def96.72 4299.02 4292.34 8997.98 6198.03 9193.52 8597.43 4598.51 3690.71 7096.05 6199.26 6499.43 51
APD-MVS_3200maxsize96.81 4196.71 4397.12 6499.01 4592.31 9197.98 6198.06 8293.11 10497.44 4398.55 3390.93 6699.55 8796.06 6099.25 6699.51 37
MVS_111021_HR96.68 5096.58 4896.99 6898.46 7092.31 9196.20 24498.90 394.30 6095.86 10297.74 10492.33 3899.38 11396.04 6399.42 4699.28 65
FMVSNet391.78 21190.69 23095.03 17196.53 19292.27 9397.02 17196.93 21789.79 20889.35 25894.65 26977.01 28497.47 31386.12 27488.82 27995.35 277
test_fmvsmconf0.1_n97.09 2397.06 1997.19 6295.67 23292.21 9497.95 7098.27 3995.78 1098.40 2599.00 689.99 7899.78 3599.06 799.41 4999.59 22
test22298.24 8792.21 9495.33 28097.60 14279.22 36995.25 11897.84 9888.80 9299.15 7598.72 116
FMVSNet291.31 23690.08 25494.99 17396.51 19392.21 9497.41 13496.95 21588.82 23888.62 27694.75 26473.87 31297.42 31885.20 28988.55 28495.35 277
MAR-MVS94.22 11193.46 12796.51 8398.00 10792.19 9797.67 10397.47 15988.13 26193.00 16695.84 21284.86 15199.51 9687.99 23498.17 12097.83 176
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CANet_DTU94.37 10893.65 11796.55 7896.46 19792.13 9896.21 24396.67 24194.38 5893.53 15497.03 14779.34 25099.71 4690.76 18398.45 10997.82 177
TranMVSNet+NR-MVSNet92.50 18291.63 19395.14 16494.76 28892.07 9997.53 12398.11 7092.90 11689.56 25296.12 20083.16 17797.60 30289.30 21183.20 34495.75 255
WTY-MVS94.71 10594.02 10996.79 7097.71 12392.05 10096.59 21497.35 18290.61 18794.64 12996.93 15086.41 13199.39 11191.20 17894.71 19798.94 97
FIs94.09 12093.70 11595.27 15995.70 23092.03 10198.10 4998.68 1393.36 9390.39 22296.70 16287.63 11297.94 26992.25 15190.50 26595.84 244
API-MVS94.84 10194.49 10295.90 12697.90 11492.00 10297.80 8997.48 15689.19 22394.81 12696.71 16088.84 9199.17 13188.91 22398.76 9596.53 220
sss94.51 10693.80 11396.64 7297.07 15391.97 10396.32 23498.06 8288.94 23294.50 13296.78 15784.60 15399.27 12291.90 15996.02 16998.68 120
ab-mvs93.57 14192.55 16396.64 7297.28 14291.96 10495.40 27797.45 16689.81 20793.22 16496.28 19279.62 24799.46 10390.74 18493.11 21798.50 130
MSLP-MVS++96.94 3297.06 1996.59 7798.72 5591.86 10597.67 10398.49 1994.66 4897.24 4998.41 4792.31 4098.94 15996.61 4399.46 3998.96 94
test_fmvsmconf0.01_n96.15 6495.85 6797.03 6792.66 34991.83 10697.97 6797.84 12095.57 1297.53 3999.00 684.20 16199.76 3898.82 1199.08 8199.48 44
test_fmvsmvis_n_192096.70 4696.84 3296.31 10096.62 18291.73 10797.98 6198.30 3296.19 596.10 9398.95 889.42 8399.76 3898.90 1099.08 8197.43 194
test_fmvsm_n_192097.55 1197.89 396.53 7998.41 7491.73 10798.01 5799.02 196.37 499.30 198.92 1092.39 3799.79 3399.16 599.46 3998.08 165
xiu_mvs_v1_base_debu95.01 9294.76 9095.75 13396.58 18691.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 236
xiu_mvs_v1_base95.01 9294.76 9095.75 13396.58 18691.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 236
xiu_mvs_v1_base_debi95.01 9294.76 9095.75 13396.58 18691.71 10996.25 23997.35 18292.99 10796.70 6696.63 17482.67 19199.44 10696.22 5397.46 13596.11 236
AdaColmapbinary94.34 10993.68 11696.31 10098.59 6691.68 11296.59 21497.81 12189.87 20292.15 18397.06 14583.62 17099.54 8989.34 21098.07 12297.70 181
CS-MVS-test96.89 3497.04 2396.45 9098.29 8291.66 11399.03 497.85 11695.84 796.90 5997.97 8691.24 5998.75 17696.92 3599.33 5898.94 97
114514_t93.95 12593.06 14096.63 7499.07 3791.61 11497.46 13397.96 10277.99 37393.00 16697.57 11986.14 13799.33 11589.22 21599.15 7598.94 97
LS3D93.57 14192.61 16196.47 8797.59 13491.61 11497.67 10397.72 12885.17 31990.29 22498.34 5484.60 15399.73 4283.85 30698.27 11598.06 166
MVS91.71 21390.44 23795.51 14995.20 26491.59 11696.04 25097.45 16673.44 38187.36 30595.60 22985.42 14499.10 13985.97 27897.46 13595.83 245
Vis-MVSNetpermissive95.23 8794.81 8996.51 8397.18 14691.58 11798.26 3598.12 6794.38 5894.90 12498.15 7282.28 20198.92 16191.45 17398.58 10399.01 89
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ET-MVSNet_ETH3D91.49 22590.11 25395.63 14196.40 20091.57 11895.34 27993.48 35590.60 18975.58 37595.49 23580.08 23896.79 34094.25 11589.76 27298.52 127
EC-MVSNet96.42 5696.47 5296.26 10697.01 16191.52 11998.89 597.75 12394.42 5596.64 7197.68 10789.32 8498.60 19297.45 2699.11 8098.67 121
casdiffmvs_mvgpermissive95.81 7395.57 7096.51 8396.87 16691.49 12097.50 12597.56 14993.99 6795.13 12297.92 8987.89 10798.78 17195.97 6597.33 14399.26 67
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CPTT-MVS95.57 7995.19 8296.70 7199.27 2691.48 12198.33 2898.11 7087.79 27095.17 12198.03 8087.09 12399.61 6993.51 12999.42 4699.02 86
Effi-MVS+94.93 9794.45 10496.36 9896.61 18391.47 12296.41 22397.41 17591.02 17194.50 13295.92 20887.53 11498.78 17193.89 12396.81 15598.84 110
CDS-MVSNet94.14 11893.54 12195.93 12596.18 21091.46 12396.33 23397.04 20888.97 23193.56 15196.51 18187.55 11397.89 27789.80 19895.95 17198.44 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FC-MVSNet-test93.94 12693.57 11995.04 16995.48 24091.45 12498.12 4898.71 1193.37 9190.23 22596.70 16287.66 11097.85 27991.49 17190.39 26695.83 245
PAPR94.18 11293.42 13296.48 8697.64 12891.42 12595.55 27197.71 13288.99 22992.34 18095.82 21489.19 8599.11 13886.14 27397.38 14098.90 102
SDMVSNet94.17 11393.61 11895.86 12898.09 10191.37 12697.35 14398.20 5293.18 10091.79 19297.28 13179.13 25498.93 16094.61 11092.84 22097.28 201
MVS_111021_LR96.24 6396.19 6296.39 9598.23 9191.35 12796.24 24298.79 693.99 6795.80 10497.65 11189.92 8099.24 12495.87 6799.20 7198.58 123
iter_conf_final93.60 13893.11 13895.04 16997.13 15091.30 12897.92 7395.65 29092.98 11291.60 19596.64 16879.28 25298.13 23295.34 9091.49 24395.70 258
OMC-MVS95.09 9194.70 9396.25 10998.46 7091.28 12996.43 22197.57 14692.04 14094.77 12797.96 8787.01 12499.09 14291.31 17596.77 15698.36 147
LFMVS93.60 13892.63 15896.52 8098.13 10091.27 13097.94 7193.39 35690.57 19096.29 8698.31 6069.00 34199.16 13294.18 11695.87 17399.12 80
test_yl94.78 10394.23 10796.43 9197.74 12191.22 13196.85 18597.10 19891.23 16395.71 10796.93 15084.30 15899.31 11993.10 13795.12 18798.75 113
DCV-MVSNet94.78 10394.23 10796.43 9197.74 12191.22 13196.85 18597.10 19891.23 16395.71 10796.93 15084.30 15899.31 11993.10 13795.12 18798.75 113
MVSFormer95.37 8295.16 8395.99 12496.34 20391.21 13398.22 4197.57 14691.42 15596.22 8997.32 12986.20 13597.92 27394.07 11799.05 8398.85 108
lupinMVS94.99 9694.56 9796.29 10496.34 20391.21 13395.83 26096.27 26188.93 23396.22 8996.88 15586.20 13598.85 16695.27 9199.05 8398.82 111
EI-MVSNet-Vis-set96.51 5496.47 5296.63 7498.24 8791.20 13596.89 18297.73 12694.74 4496.49 7898.49 3890.88 6899.58 7796.44 4898.32 11399.13 77
UGNet94.04 12393.28 13596.31 10096.85 16791.19 13697.88 7897.68 13394.40 5693.00 16696.18 19673.39 31899.61 6991.72 16598.46 10898.13 159
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GBi-Net91.35 23390.27 24594.59 19596.51 19391.18 13797.50 12596.93 21788.82 23889.35 25894.51 27473.87 31297.29 32586.12 27488.82 27995.31 280
test191.35 23390.27 24594.59 19596.51 19391.18 13797.50 12596.93 21788.82 23889.35 25894.51 27473.87 31297.29 32586.12 27488.82 27995.31 280
FMVSNet189.88 28288.31 29294.59 19595.41 24491.18 13797.50 12596.93 21786.62 29587.41 30394.51 27465.94 36197.29 32583.04 31087.43 29395.31 280
CS-MVS96.86 3697.06 1996.26 10698.16 9891.16 14099.09 397.87 11195.30 1897.06 5698.03 8091.72 4698.71 18297.10 3199.17 7398.90 102
PLCcopyleft91.00 694.11 11993.43 13096.13 11498.58 6891.15 14196.69 20197.39 17687.29 28491.37 20296.71 16088.39 9999.52 9587.33 25497.13 15197.73 179
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
原ACMM196.38 9698.59 6691.09 14297.89 10787.41 28195.22 12097.68 10790.25 7499.54 8987.95 23599.12 7998.49 132
1112_ss93.37 14792.42 17096.21 11097.05 15890.99 14396.31 23596.72 23486.87 29289.83 24396.69 16486.51 12999.14 13588.12 23293.67 21198.50 130
DP-MVS92.76 17891.51 20096.52 8098.77 5390.99 14397.38 14196.08 27082.38 34989.29 26197.87 9383.77 16699.69 5281.37 32796.69 16098.89 105
VPNet92.23 19991.31 20594.99 17395.56 23690.96 14597.22 15897.86 11592.96 11490.96 21496.62 17775.06 30398.20 22591.90 15983.65 34095.80 248
XXY-MVS92.16 20191.23 21094.95 17894.75 29090.94 14697.47 13197.43 17389.14 22488.90 26896.43 18579.71 24598.24 22189.56 20587.68 29095.67 261
EI-MVSNet-UG-set96.34 6096.30 5996.47 8798.20 9390.93 14796.86 18497.72 12894.67 4796.16 9198.46 4290.43 7399.58 7796.23 5297.96 12598.90 102
jason94.84 10194.39 10696.18 11295.52 23890.93 14796.09 24896.52 25089.28 22096.01 9897.32 12984.70 15298.77 17495.15 9498.91 9198.85 108
jason: jason.
PVSNet_Blended_VisFu95.27 8594.91 8896.38 9698.20 9390.86 14997.27 15198.25 4590.21 19594.18 13997.27 13387.48 11699.73 4293.53 12897.77 13098.55 124
mvsmamba93.83 13193.46 12794.93 18194.88 28390.85 15098.55 1495.49 29794.24 6191.29 20996.97 14983.04 18298.14 23195.56 8691.17 25195.78 250
WR-MVS92.34 19191.53 19794.77 19195.13 26990.83 15196.40 22797.98 10091.88 14489.29 26195.54 23382.50 19697.80 28489.79 19985.27 31595.69 259
PatchMatch-RL92.90 17192.02 18095.56 14598.19 9590.80 15295.27 28597.18 19187.96 26391.86 19195.68 22580.44 23198.99 15684.01 30297.54 13496.89 213
pmmvs490.93 25489.85 26494.17 21693.34 33790.79 15394.60 30096.02 27184.62 32787.45 30195.15 24681.88 21097.45 31587.70 24287.87 28994.27 335
OPM-MVS93.28 15092.76 15194.82 18494.63 29690.77 15496.65 20597.18 19193.72 7591.68 19497.26 13479.33 25198.63 18992.13 15592.28 22895.07 293
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
baseline192.82 17691.90 18495.55 14797.20 14590.77 15497.19 16094.58 33492.20 13392.36 17896.34 19084.16 16298.21 22489.20 21783.90 33897.68 182
fmvsm_s_conf0.5_n_a96.75 4596.93 2896.20 11197.64 12890.72 15698.00 5998.73 994.55 5098.91 1399.08 388.22 10199.63 6798.91 998.37 11198.25 151
fmvsm_s_conf0.1_n_a96.40 5796.47 5296.16 11395.48 24090.69 15797.91 7598.33 2994.07 6498.93 999.14 187.44 11799.61 6998.63 1398.32 11398.18 155
iter_conf0593.18 15792.63 15894.83 18396.64 18190.69 15797.60 11595.53 29692.52 12591.58 19696.64 16876.35 29298.13 23295.43 8891.42 24695.68 260
PAPM_NR95.01 9294.59 9596.26 10698.89 5190.68 15997.24 15397.73 12691.80 14592.93 17196.62 17789.13 8799.14 13589.21 21697.78 12998.97 93
PS-MVSNAJ95.37 8295.33 7995.49 15197.35 14190.66 16095.31 28297.48 15693.85 7296.51 7795.70 22488.65 9599.65 5894.80 10498.27 11596.17 231
IS-MVSNet94.90 9894.52 10196.05 11897.67 12490.56 16198.44 2396.22 26493.21 9693.99 14397.74 10485.55 14398.45 20489.98 19397.86 12699.14 76
MG-MVS95.61 7795.38 7796.31 10098.42 7390.53 16296.04 25097.48 15693.47 8795.67 11098.10 7389.17 8699.25 12391.27 17698.77 9499.13 77
xiu_mvs_v2_base95.32 8495.29 8095.40 15697.22 14390.50 16395.44 27697.44 17093.70 7796.46 8196.18 19688.59 9899.53 9194.79 10697.81 12896.17 231
CSCG96.05 6695.91 6596.46 8999.24 2890.47 16498.30 3098.57 1889.01 22893.97 14597.57 11992.62 3399.76 3894.66 10799.27 6299.15 75
casdiffmvspermissive95.64 7695.49 7296.08 11596.76 17890.45 16597.29 15097.44 17094.00 6695.46 11797.98 8587.52 11598.73 17895.64 7997.33 14399.08 83
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TAMVS94.01 12493.46 12795.64 14096.16 21290.45 16596.71 19896.89 22489.27 22193.46 15696.92 15387.29 12097.94 26988.70 22795.74 17698.53 126
baseline95.58 7895.42 7696.08 11596.78 17390.41 16797.16 16397.45 16693.69 7895.65 11197.85 9687.29 12098.68 18495.66 7597.25 14799.13 77
VDDNet93.05 16392.07 17796.02 12196.84 16890.39 16898.08 5195.85 27886.22 30395.79 10598.46 4267.59 34899.19 12894.92 9994.85 19198.47 135
fmvsm_s_conf0.5_n96.85 3897.13 1696.04 11998.07 10590.28 16997.97 6798.76 894.93 3098.84 1699.06 488.80 9299.65 5899.06 798.63 9998.18 155
fmvsm_s_conf0.1_n96.58 5396.77 3996.01 12396.67 18090.25 17097.91 7598.38 2394.48 5398.84 1699.14 188.06 10399.62 6898.82 1198.60 10198.15 158
h-mvs3394.15 11593.52 12496.04 11997.81 11890.22 17197.62 11497.58 14595.19 2096.74 6497.45 12483.67 16899.61 6995.85 6979.73 35898.29 150
tfpnnormal89.70 28688.40 29193.60 24995.15 26790.10 17297.56 11998.16 6187.28 28586.16 32394.63 27077.57 28198.05 25074.48 36184.59 32792.65 356
Fast-Effi-MVS+93.46 14492.75 15395.59 14496.77 17590.03 17396.81 18997.13 19588.19 25791.30 20694.27 29086.21 13498.63 18987.66 24696.46 16698.12 160
plane_prior696.10 21890.00 17481.32 217
plane_prior390.00 17494.46 5491.34 203
HQP_MVS93.78 13493.43 13094.82 18496.21 20789.99 17697.74 9397.51 15394.85 3491.34 20396.64 16881.32 21798.60 19293.02 14292.23 22995.86 241
plane_prior89.99 17697.24 15394.06 6592.16 233
plane_prior796.21 20789.98 178
Test_1112_low_res92.84 17591.84 18695.85 12997.04 15989.97 17995.53 27396.64 24285.38 31489.65 24995.18 24585.86 13999.10 13987.70 24293.58 21698.49 132
VDD-MVS93.82 13293.08 13996.02 12197.88 11589.96 18097.72 9895.85 27892.43 12795.86 10298.44 4468.42 34599.39 11196.31 4994.85 19198.71 118
HyFIR lowres test93.66 13792.92 14495.87 12798.24 8789.88 18194.58 30198.49 1985.06 32193.78 14895.78 21982.86 18798.67 18591.77 16495.71 17899.07 85
PAPM91.52 22490.30 24395.20 16195.30 25789.83 18293.38 34496.85 22886.26 30288.59 27795.80 21584.88 15098.15 23075.67 35795.93 17297.63 183
NP-MVS95.99 22289.81 18395.87 210
GeoE93.89 12893.28 13595.72 13796.96 16489.75 18498.24 3996.92 22189.47 21592.12 18597.21 13784.42 15698.39 21187.71 24196.50 16399.01 89
bld_raw_dy_0_6492.37 18991.69 19194.39 20694.28 31089.73 18597.71 10093.65 35392.78 12090.46 22096.67 16675.88 29597.97 26192.92 14690.89 25995.48 264
EIA-MVS95.53 8095.47 7395.71 13897.06 15689.63 18697.82 8697.87 11193.57 7993.92 14695.04 25090.61 7198.95 15894.62 10998.68 9798.54 125
pm-mvs190.72 26189.65 27493.96 22994.29 30989.63 18697.79 9096.82 23089.07 22586.12 32495.48 23678.61 26697.78 28686.97 26281.67 35094.46 326
TAPA-MVS90.10 792.30 19491.22 21195.56 14598.33 8089.60 18896.79 19097.65 13681.83 35391.52 19897.23 13687.94 10698.91 16371.31 37498.37 11198.17 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVSTER93.20 15392.81 15094.37 20796.56 18989.59 18997.06 16897.12 19691.24 16291.30 20695.96 20682.02 20698.05 25093.48 13090.55 26395.47 267
EPP-MVSNet95.22 8895.04 8695.76 13197.49 13889.56 19098.67 1097.00 21290.69 17994.24 13797.62 11689.79 8198.81 16993.39 13496.49 16498.92 100
anonymousdsp92.16 20191.55 19693.97 22892.58 35189.55 19197.51 12497.42 17489.42 21788.40 28194.84 25980.66 22697.88 27891.87 16191.28 24994.48 325
MVS_Test94.89 9994.62 9495.68 13996.83 17089.55 19196.70 19997.17 19391.17 16695.60 11296.11 20387.87 10898.76 17593.01 14497.17 15098.72 116
LTVRE_ROB88.41 1390.99 25089.92 26294.19 21596.18 21089.55 19196.31 23597.09 20087.88 26685.67 32695.91 20978.79 26498.57 19681.50 32289.98 26994.44 328
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
131492.81 17792.03 17995.14 16495.33 25489.52 19496.04 25097.44 17087.72 27486.25 32295.33 23983.84 16598.79 17089.26 21397.05 15297.11 206
thres600view792.49 18491.60 19495.18 16297.91 11389.47 19597.65 10694.66 33192.18 13793.33 15994.91 25578.06 27699.10 13981.61 32194.06 20896.98 208
WR-MVS_H92.00 20691.35 20293.95 23095.09 27189.47 19598.04 5598.68 1391.46 15388.34 28294.68 26785.86 13997.56 30485.77 28184.24 33294.82 310
PVSNet_BlendedMVS94.06 12193.92 11194.47 20298.27 8389.46 19796.73 19598.36 2490.17 19694.36 13495.24 24488.02 10499.58 7793.44 13190.72 26194.36 330
PVSNet_Blended94.87 10094.56 9795.81 13098.27 8389.46 19795.47 27598.36 2488.84 23694.36 13496.09 20488.02 10499.58 7793.44 13198.18 11998.40 143
Anonymous2024052991.98 20790.73 22895.73 13698.14 9989.40 19997.99 6097.72 12879.63 36793.54 15397.41 12769.94 33899.56 8591.04 18091.11 25398.22 153
CHOSEN 1792x268894.15 11593.51 12596.06 11798.27 8389.38 20095.18 28998.48 2185.60 31193.76 14997.11 14283.15 17899.61 6991.33 17498.72 9699.19 71
thres100view90092.43 18591.58 19594.98 17597.92 11289.37 20197.71 10094.66 33192.20 13393.31 16094.90 25678.06 27699.08 14481.40 32494.08 20596.48 223
diffmvspermissive95.25 8695.13 8495.63 14196.43 19989.34 20295.99 25497.35 18292.83 11796.31 8597.37 12886.44 13098.67 18596.26 5097.19 14998.87 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP5-MVS89.33 203
HQP-MVS93.19 15492.74 15494.54 20195.86 22389.33 20396.65 20597.39 17693.55 8090.14 22695.87 21080.95 22098.50 20092.13 15592.10 23495.78 250
tfpn200view992.38 18891.52 19894.95 17897.85 11689.29 20597.41 13494.88 32692.19 13593.27 16294.46 27978.17 27299.08 14481.40 32494.08 20596.48 223
thres40092.42 18691.52 19895.12 16697.85 11689.29 20597.41 13494.88 32692.19 13593.27 16294.46 27978.17 27299.08 14481.40 32494.08 20596.98 208
PS-MVSNAJss93.74 13593.51 12594.44 20393.91 31889.28 20797.75 9297.56 14992.50 12689.94 23996.54 18088.65 9598.18 22893.83 12690.90 25895.86 241
gg-mvs-nofinetune87.82 30585.61 31794.44 20394.46 30189.27 20891.21 36784.61 39380.88 35989.89 24274.98 38771.50 32597.53 30885.75 28297.21 14896.51 221
sd_testset93.10 15992.45 16995.05 16898.09 10189.21 20996.89 18297.64 13893.18 10091.79 19297.28 13175.35 30298.65 18788.99 22192.84 22097.28 201
GG-mvs-BLEND93.62 24893.69 32589.20 21092.39 36083.33 39587.98 29489.84 36371.00 32996.87 33882.08 32095.40 18394.80 313
CLD-MVS92.98 16692.53 16594.32 21096.12 21789.20 21095.28 28397.47 15992.66 12289.90 24095.62 22880.58 22898.40 20792.73 14792.40 22795.38 275
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023121190.63 26489.42 27794.27 21498.24 8789.19 21298.05 5497.89 10779.95 36588.25 28794.96 25272.56 32198.13 23289.70 20185.14 31795.49 263
cascas91.20 24190.08 25494.58 19994.97 27489.16 21393.65 33897.59 14479.90 36689.40 25692.92 32875.36 30198.36 21392.14 15494.75 19596.23 227
thisisatest053093.03 16492.21 17595.49 15197.07 15389.11 21497.49 13092.19 36690.16 19794.09 14196.41 18676.43 29199.05 15190.38 18895.68 17998.31 149
thres20092.23 19991.39 20194.75 19397.61 13189.03 21596.60 21395.09 31692.08 13993.28 16194.00 30278.39 27099.04 15481.26 32894.18 20196.19 230
F-COLMAP93.58 14092.98 14295.37 15798.40 7588.98 21697.18 16197.29 18787.75 27390.49 21997.10 14385.21 14699.50 9986.70 26496.72 15997.63 183
MSDG91.42 22890.24 24794.96 17797.15 14988.91 21793.69 33696.32 25985.72 31086.93 31696.47 18380.24 23598.98 15780.57 33095.05 19096.98 208
thisisatest051592.29 19591.30 20695.25 16096.60 18488.90 21894.36 31192.32 36587.92 26493.43 15794.57 27277.28 28399.00 15589.42 20895.86 17497.86 173
testdata95.46 15598.18 9788.90 21897.66 13482.73 34797.03 5798.07 7690.06 7698.85 16689.67 20298.98 8798.64 122
Anonymous20240521192.07 20490.83 22495.76 13198.19 9588.75 22097.58 11795.00 31986.00 30693.64 15097.45 12466.24 35999.53 9190.68 18692.71 22399.01 89
ACMM89.79 892.96 16792.50 16794.35 20896.30 20588.71 22197.58 11797.36 18191.40 15790.53 21896.65 16779.77 24498.75 17691.24 17791.64 23995.59 262
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_djsdf93.07 16292.76 15194.00 22593.49 33288.70 22298.22 4197.57 14691.42 15590.08 23695.55 23282.85 18897.92 27394.07 11791.58 24195.40 273
XVG-OURS93.72 13693.35 13394.80 18997.07 15388.61 22394.79 29697.46 16191.97 14393.99 14397.86 9581.74 21298.88 16592.64 14892.67 22596.92 212
hse-mvs293.45 14592.99 14194.81 18697.02 16088.59 22496.69 20196.47 25395.19 2096.74 6496.16 19983.67 16898.48 20395.85 6979.13 36297.35 198
AUN-MVS91.76 21290.75 22794.81 18697.00 16288.57 22596.65 20596.49 25289.63 20992.15 18396.12 20078.66 26598.50 20090.83 18179.18 36197.36 196
CP-MVSNet91.89 20991.24 20993.82 23895.05 27288.57 22597.82 8698.19 5591.70 14788.21 28895.76 22081.96 20797.52 31087.86 23684.65 32495.37 276
FA-MVS(test-final)93.52 14392.92 14495.31 15896.77 17588.54 22794.82 29596.21 26689.61 21094.20 13895.25 24383.24 17599.14 13590.01 19296.16 16898.25 151
XVG-OURS-SEG-HR93.86 13093.55 12094.81 18697.06 15688.53 22895.28 28397.45 16691.68 14894.08 14297.68 10782.41 19998.90 16493.84 12592.47 22696.98 208
jajsoiax92.42 18691.89 18594.03 22493.33 33888.50 22997.73 9597.53 15192.00 14288.85 27196.50 18275.62 30098.11 23893.88 12491.56 24295.48 264
V4291.58 22090.87 21993.73 24294.05 31588.50 22997.32 14796.97 21388.80 24189.71 24594.33 28582.54 19598.05 25089.01 22085.07 31994.64 323
TransMVSNet (Re)88.94 29287.56 29893.08 27094.35 30588.45 23197.73 9595.23 31087.47 27984.26 33995.29 24079.86 24397.33 32379.44 34074.44 37393.45 346
tt080591.09 24590.07 25794.16 21795.61 23388.31 23297.56 11996.51 25189.56 21189.17 26595.64 22767.08 35598.38 21291.07 17988.44 28595.80 248
mvs_tets92.31 19391.76 18793.94 23293.41 33588.29 23397.63 11297.53 15192.04 14088.76 27496.45 18474.62 30898.09 24293.91 12291.48 24495.45 269
PS-CasMVS91.55 22290.84 22393.69 24694.96 27588.28 23497.84 8398.24 4791.46 15388.04 29295.80 21579.67 24697.48 31287.02 26184.54 32995.31 280
LPG-MVS_test92.94 16992.56 16294.10 21996.16 21288.26 23597.65 10697.46 16191.29 15890.12 23297.16 13979.05 25698.73 17892.25 15191.89 23795.31 280
LGP-MVS_train94.10 21996.16 21288.26 23597.46 16191.29 15890.12 23297.16 13979.05 25698.73 17892.25 15191.89 23795.31 280
v114491.37 23290.60 23293.68 24793.89 31988.23 23796.84 18797.03 21088.37 25389.69 24794.39 28182.04 20597.98 25887.80 23885.37 31294.84 307
MVP-Stereo90.74 26090.08 25492.71 28393.19 34088.20 23895.86 25996.27 26186.07 30584.86 33494.76 26377.84 27997.75 28983.88 30598.01 12392.17 364
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMP89.59 1092.62 18192.14 17694.05 22296.40 20088.20 23897.36 14297.25 19091.52 15088.30 28496.64 16878.46 26898.72 18191.86 16291.48 24495.23 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v2v48291.59 21890.85 22293.80 23993.87 32088.17 24096.94 17996.88 22589.54 21289.53 25394.90 25681.70 21398.02 25589.25 21485.04 32195.20 288
v1091.04 24890.23 24893.49 25494.12 31288.16 24197.32 14797.08 20188.26 25688.29 28594.22 29582.17 20497.97 26186.45 26884.12 33394.33 331
v891.29 23890.53 23693.57 25294.15 31188.12 24297.34 14497.06 20588.99 22988.32 28394.26 29283.08 18098.01 25687.62 24883.92 33794.57 324
RRT_MVS93.10 15992.83 14893.93 23494.76 28888.04 24398.47 2296.55 24993.44 8890.01 23897.04 14680.64 22797.93 27294.33 11490.21 26895.83 245
Baseline_NR-MVSNet91.20 24190.62 23192.95 27493.83 32188.03 24497.01 17495.12 31588.42 25289.70 24695.13 24883.47 17197.44 31689.66 20383.24 34393.37 347
BH-RMVSNet92.72 18091.97 18294.97 17697.16 14787.99 24596.15 24695.60 29190.62 18691.87 19097.15 14178.41 26998.57 19683.16 30897.60 13398.36 147
FE-MVS92.05 20591.05 21595.08 16796.83 17087.93 24693.91 32995.70 28486.30 30094.15 14094.97 25176.59 28799.21 12684.10 30096.86 15398.09 164
Vis-MVSNet (Re-imp)94.15 11593.88 11294.95 17897.61 13187.92 24798.10 4995.80 28092.22 13193.02 16597.45 12484.53 15597.91 27688.24 23197.97 12499.02 86
ACMH87.59 1690.53 26689.42 27793.87 23696.21 20787.92 24797.24 15396.94 21688.45 25183.91 34696.27 19371.92 32298.62 19184.43 29789.43 27595.05 295
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS91.20 24190.44 23793.48 25594.49 30087.91 24997.76 9198.18 5791.29 15887.78 29695.74 22180.35 23397.33 32385.46 28582.96 34595.19 291
UniMVSNet_ETH3D91.34 23590.22 25094.68 19494.86 28487.86 25097.23 15797.46 16187.99 26289.90 24096.92 15366.35 35798.23 22290.30 19090.99 25697.96 167
v119291.07 24690.23 24893.58 25193.70 32487.82 25196.73 19597.07 20387.77 27189.58 25094.32 28780.90 22497.97 26186.52 26685.48 31094.95 297
MIMVSNet88.50 29986.76 30993.72 24494.84 28587.77 25291.39 36394.05 34586.41 29987.99 29392.59 33363.27 36695.82 35377.44 34792.84 22097.57 190
IB-MVS87.33 1789.91 28088.28 29394.79 19095.26 26187.70 25395.12 29193.95 34889.35 21987.03 31192.49 33470.74 33199.19 12889.18 21881.37 35297.49 192
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GA-MVS91.38 23090.31 24294.59 19594.65 29587.62 25494.34 31296.19 26790.73 17790.35 22393.83 30671.84 32397.96 26687.22 25693.61 21498.21 154
v7n90.76 25889.86 26393.45 25793.54 32987.60 25597.70 10297.37 17988.85 23587.65 29894.08 30081.08 21998.10 23984.68 29483.79 33994.66 322
TR-MVS91.48 22690.59 23394.16 21796.40 20087.33 25695.67 26695.34 30587.68 27591.46 20095.52 23476.77 28698.35 21482.85 31293.61 21496.79 216
FMVSNet587.29 31085.79 31691.78 30794.80 28787.28 25795.49 27495.28 30684.09 33383.85 34791.82 34762.95 36894.17 37078.48 34385.34 31493.91 340
CHOSEN 280x42093.12 15892.72 15694.34 20996.71 17987.27 25890.29 37297.72 12886.61 29691.34 20395.29 24084.29 16098.41 20693.25 13598.94 8997.35 198
pmmvs-eth3d86.22 32184.45 32891.53 31288.34 37887.25 25994.47 30595.01 31883.47 34279.51 36789.61 36469.75 33995.71 35483.13 30976.73 36991.64 365
DTE-MVSNet90.56 26589.75 27093.01 27193.95 31687.25 25997.64 11097.65 13690.74 17687.12 30895.68 22579.97 24197.00 33583.33 30781.66 35194.78 317
v14419291.06 24790.28 24493.39 25893.66 32787.23 26196.83 18897.07 20387.43 28089.69 24794.28 28981.48 21598.00 25787.18 25884.92 32394.93 301
CR-MVSNet90.82 25789.77 26893.95 23094.45 30287.19 26290.23 37395.68 28886.89 29192.40 17592.36 33980.91 22297.05 33181.09 32993.95 20997.60 188
RPMNet88.98 29187.05 30594.77 19194.45 30287.19 26290.23 37398.03 9177.87 37592.40 17587.55 37880.17 23799.51 9668.84 37993.95 20997.60 188
tttt051792.96 16792.33 17294.87 18297.11 15187.16 26497.97 6792.09 36790.63 18593.88 14797.01 14876.50 28899.06 15090.29 19195.45 18298.38 145
COLMAP_ROBcopyleft87.81 1590.40 26989.28 28093.79 24097.95 10987.13 26596.92 18095.89 27782.83 34686.88 31897.18 13873.77 31599.29 12178.44 34493.62 21394.95 297
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
miper_enhance_ethall91.54 22391.01 21693.15 26795.35 25087.07 26693.97 32496.90 22286.79 29389.17 26593.43 32486.55 12897.64 29789.97 19486.93 29794.74 319
EI-MVSNet93.03 16492.88 14693.48 25595.77 22886.98 26796.44 21997.12 19690.66 18391.30 20697.64 11486.56 12798.05 25089.91 19590.55 26395.41 270
IterMVS-LS92.29 19591.94 18393.34 26096.25 20686.97 26896.57 21797.05 20690.67 18189.50 25594.80 26286.59 12697.64 29789.91 19586.11 30595.40 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192090.85 25690.03 25993.29 26293.55 32886.96 26996.74 19497.04 20887.36 28289.52 25494.34 28480.23 23697.97 26186.27 26985.21 31694.94 299
mvsany_test193.93 12793.98 11093.78 24194.94 27886.80 27094.62 29992.55 36488.77 24296.85 6098.49 3888.98 8898.08 24395.03 9695.62 18096.46 225
cl2291.21 24090.56 23593.14 26896.09 21986.80 27094.41 30996.58 24887.80 26988.58 27893.99 30380.85 22597.62 30089.87 19786.93 29794.99 296
v124090.70 26289.85 26493.23 26493.51 33186.80 27096.61 21197.02 21187.16 28789.58 25094.31 28879.55 24897.98 25885.52 28485.44 31194.90 304
PMMVS92.86 17392.34 17194.42 20594.92 27986.73 27394.53 30396.38 25784.78 32694.27 13695.12 24983.13 17998.40 20791.47 17296.49 16498.12 160
AllTest90.23 27388.98 28493.98 22697.94 11086.64 27496.51 21895.54 29485.38 31485.49 32896.77 15870.28 33399.15 13380.02 33492.87 21896.15 233
TestCases93.98 22697.94 11086.64 27495.54 29485.38 31485.49 32896.77 15870.28 33399.15 13380.02 33492.87 21896.15 233
Patchmtry88.64 29887.25 30192.78 28194.09 31386.64 27489.82 37695.68 28880.81 36187.63 29992.36 33980.91 22297.03 33278.86 34285.12 31894.67 321
DeepPCF-MVS93.97 196.61 5197.09 1895.15 16398.09 10186.63 27796.00 25398.15 6295.43 1497.95 3398.56 3193.40 2199.36 11496.77 3899.48 3799.45 47
miper_ehance_all_eth91.59 21891.13 21492.97 27395.55 23786.57 27894.47 30596.88 22587.77 27188.88 27094.01 30186.22 13397.54 30689.49 20686.93 29794.79 315
test_cas_vis1_n_192094.48 10794.55 10094.28 21396.78 17386.45 27997.63 11297.64 13893.32 9497.68 3898.36 5073.75 31699.08 14496.73 3999.05 8397.31 200
ACMH+87.92 1490.20 27589.18 28293.25 26396.48 19686.45 27996.99 17596.68 23988.83 23784.79 33596.22 19570.16 33598.53 19884.42 29888.04 28794.77 318
baseline291.63 21690.86 22093.94 23294.33 30686.32 28195.92 25791.64 37189.37 21886.94 31594.69 26681.62 21498.69 18388.64 22894.57 19896.81 215
c3_l91.38 23090.89 21892.88 27795.58 23586.30 28294.68 29896.84 22988.17 25888.83 27394.23 29385.65 14297.47 31389.36 20984.63 32594.89 305
pmmvs687.81 30686.19 31392.69 28491.32 36186.30 28297.34 14496.41 25680.59 36484.05 34594.37 28367.37 35097.67 29484.75 29379.51 36094.09 338
pmmvs589.86 28388.87 28692.82 27992.86 34486.23 28496.26 23895.39 29984.24 33187.12 30894.51 27474.27 31097.36 32287.61 24987.57 29194.86 306
cl____90.96 25390.32 24192.89 27695.37 24886.21 28594.46 30796.64 24287.82 26788.15 29094.18 29682.98 18497.54 30687.70 24285.59 30894.92 303
DIV-MVS_self_test90.97 25290.33 24092.88 27795.36 24986.19 28694.46 30796.63 24587.82 26788.18 28994.23 29382.99 18397.53 30887.72 23985.57 30994.93 301
BH-untuned92.94 16992.62 16093.92 23597.22 14386.16 28796.40 22796.25 26390.06 20089.79 24496.17 19883.19 17698.35 21487.19 25797.27 14697.24 203
XVG-ACMP-BASELINE90.93 25490.21 25193.09 26994.31 30885.89 28895.33 28097.26 18891.06 17089.38 25795.44 23768.61 34398.60 19289.46 20791.05 25494.79 315
v14890.99 25090.38 23992.81 28093.83 32185.80 28996.78 19296.68 23989.45 21688.75 27593.93 30582.96 18697.82 28387.83 23783.25 34294.80 313
BH-w/o92.14 20391.75 18893.31 26196.99 16385.73 29095.67 26695.69 28688.73 24389.26 26394.82 26182.97 18598.07 24785.26 28896.32 16796.13 235
test0.0.03 189.37 28988.70 28791.41 31692.47 35385.63 29195.22 28892.70 36291.11 16886.91 31793.65 31679.02 25893.19 37978.00 34689.18 27795.41 270
test_040286.46 31784.79 32691.45 31495.02 27385.55 29296.29 23794.89 32580.90 35882.21 35493.97 30468.21 34697.29 32562.98 38388.68 28391.51 368
D2MVS91.30 23790.95 21792.35 28994.71 29385.52 29396.18 24598.21 5188.89 23486.60 31993.82 30879.92 24297.95 26889.29 21290.95 25793.56 343
Fast-Effi-MVS+-dtu92.29 19591.99 18193.21 26695.27 25885.52 29397.03 16996.63 24592.09 13889.11 26795.14 24780.33 23498.08 24387.54 25094.74 19696.03 239
ECVR-MVScopyleft93.19 15492.73 15594.57 20097.66 12685.41 29598.21 4388.23 38493.43 8994.70 12898.21 6772.57 32099.07 14893.05 14198.49 10599.25 68
mvs_anonymous93.82 13293.74 11494.06 22196.44 19885.41 29595.81 26197.05 20689.85 20590.09 23596.36 18987.44 11797.75 28993.97 11996.69 16099.02 86
patch_mono-296.83 4097.44 1395.01 17299.05 3985.39 29796.98 17698.77 794.70 4597.99 3298.66 2793.61 1999.91 197.67 1899.50 3399.72 11
ITE_SJBPF92.43 28895.34 25185.37 29895.92 27391.47 15287.75 29796.39 18871.00 32997.96 26682.36 31889.86 27193.97 339
KD-MVS_2432*160084.81 33282.64 33691.31 31791.07 36385.34 29991.22 36595.75 28285.56 31283.09 35090.21 35967.21 35195.89 34977.18 35162.48 38992.69 354
miper_refine_blended84.81 33282.64 33691.31 31791.07 36385.34 29991.22 36595.75 28285.56 31283.09 35090.21 35967.21 35195.89 34977.18 35162.48 38992.69 354
dmvs_re90.21 27489.50 27692.35 28995.47 24385.15 30195.70 26594.37 33990.94 17288.42 28093.57 31874.63 30795.67 35682.80 31389.57 27496.22 228
Patchmatch-test89.42 28887.99 29593.70 24595.27 25885.11 30288.98 37994.37 33981.11 35787.10 31093.69 31282.28 20197.50 31174.37 36394.76 19498.48 134
PatchT88.87 29587.42 29993.22 26594.08 31485.10 30389.51 37794.64 33381.92 35292.36 17888.15 37480.05 23997.01 33472.43 37093.65 21297.54 191
EG-PatchMatch MVS87.02 31485.44 31891.76 30992.67 34885.00 30496.08 24996.45 25483.41 34379.52 36693.49 32057.10 37697.72 29179.34 34190.87 26092.56 357
USDC88.94 29287.83 29792.27 29394.66 29484.96 30593.86 33095.90 27587.34 28383.40 34895.56 23167.43 34998.19 22782.64 31789.67 27393.66 342
SCA91.84 21091.18 21393.83 23795.59 23484.95 30694.72 29795.58 29390.82 17392.25 18193.69 31275.80 29798.10 23986.20 27195.98 17098.45 137
ADS-MVSNet89.89 28188.68 28893.53 25395.86 22384.89 30790.93 36895.07 31783.23 34491.28 21091.81 34879.01 26097.85 27979.52 33691.39 24797.84 174
MIMVSNet184.93 33183.05 33390.56 33089.56 37284.84 30895.40 27795.35 30283.91 33480.38 36292.21 34357.23 37593.34 37870.69 37782.75 34893.50 344
MS-PatchMatch90.27 27189.77 26891.78 30794.33 30684.72 30995.55 27196.73 23386.17 30486.36 32195.28 24271.28 32797.80 28484.09 30198.14 12192.81 353
test111193.19 15492.82 14994.30 21297.58 13684.56 31098.21 4389.02 38293.53 8494.58 13098.21 6772.69 31999.05 15193.06 14098.48 10799.28 65
eth_miper_zixun_eth91.02 24990.59 23392.34 29195.33 25484.35 31194.10 32196.90 22288.56 24788.84 27294.33 28584.08 16397.60 30288.77 22684.37 33195.06 294
TDRefinement86.53 31684.76 32791.85 30282.23 38984.25 31296.38 22995.35 30284.97 32384.09 34394.94 25365.76 36298.34 21784.60 29674.52 37292.97 350
EPMVS90.70 26289.81 26693.37 25994.73 29284.21 31393.67 33788.02 38589.50 21492.38 17793.49 32077.82 28097.78 28686.03 27792.68 22498.11 163
IterMVS-SCA-FT90.31 27089.81 26691.82 30495.52 23884.20 31494.30 31596.15 26890.61 18787.39 30494.27 29075.80 29796.44 34387.34 25386.88 30194.82 310
dcpmvs_296.37 5997.05 2294.31 21198.96 4684.11 31597.56 11997.51 15393.92 6997.43 4598.52 3592.75 2999.32 11797.32 3099.50 3399.51 37
PatchmatchNetpermissive91.91 20891.35 20293.59 25095.38 24684.11 31593.15 34895.39 29989.54 21292.10 18693.68 31482.82 18998.13 23284.81 29295.32 18498.52 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
OpenMVS_ROBcopyleft81.14 2084.42 33482.28 34090.83 32490.06 36884.05 31795.73 26494.04 34673.89 38080.17 36591.53 35159.15 37297.64 29766.92 38189.05 27890.80 374
test250691.60 21790.78 22594.04 22397.66 12683.81 31898.27 3375.53 39993.43 8995.23 11998.21 6767.21 35199.07 14893.01 14498.49 10599.25 68
miper_lstm_enhance90.50 26890.06 25891.83 30395.33 25483.74 31993.86 33096.70 23887.56 27887.79 29593.81 30983.45 17396.92 33787.39 25284.62 32694.82 310
IterMVS90.15 27789.67 27291.61 31195.48 24083.72 32094.33 31396.12 26989.99 20187.31 30794.15 29875.78 29996.27 34686.97 26286.89 30094.83 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPNet_dtu91.71 21391.28 20792.99 27293.76 32383.71 32196.69 20195.28 30693.15 10287.02 31295.95 20783.37 17497.38 32179.46 33996.84 15497.88 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet86.66 1892.24 19891.74 19093.73 24297.77 12083.69 32292.88 35396.72 23487.91 26593.00 16694.86 25878.51 26799.05 15186.53 26597.45 13998.47 135
ppachtmachnet_test88.35 30187.29 30091.53 31292.45 35483.57 32393.75 33395.97 27284.28 33085.32 33194.18 29679.00 26296.93 33675.71 35684.99 32294.10 336
MDA-MVSNet-bldmvs85.00 33082.95 33591.17 32193.13 34283.33 32494.56 30295.00 31984.57 32865.13 38692.65 33070.45 33295.85 35173.57 36777.49 36594.33 331
Effi-MVS+-dtu93.08 16193.21 13792.68 28596.02 22183.25 32597.14 16596.72 23493.85 7291.20 21393.44 32283.08 18098.30 21891.69 16895.73 17796.50 222
TinyColmap86.82 31585.35 32191.21 31994.91 28182.99 32693.94 32694.02 34783.58 34081.56 35694.68 26762.34 37098.13 23275.78 35587.35 29692.52 358
test_vis1_n92.37 18992.26 17492.72 28294.75 29082.64 32798.02 5696.80 23191.18 16597.77 3797.93 8858.02 37498.29 21997.63 1998.21 11797.23 204
MDA-MVSNet_test_wron85.87 32684.23 33090.80 32792.38 35682.57 32893.17 34695.15 31382.15 35067.65 38292.33 34278.20 27195.51 36077.33 34879.74 35794.31 333
our_test_388.78 29687.98 29691.20 32092.45 35482.53 32993.61 34095.69 28685.77 30984.88 33393.71 31179.99 24096.78 34179.47 33886.24 30294.28 334
UnsupCasMVSNet_bld82.13 34179.46 34690.14 33588.00 37982.47 33090.89 37096.62 24778.94 37075.61 37484.40 38356.63 37796.31 34577.30 35066.77 38691.63 366
YYNet185.87 32684.23 33090.78 32892.38 35682.46 33193.17 34695.14 31482.12 35167.69 38192.36 33978.16 27495.50 36177.31 34979.73 35894.39 329
UnsupCasMVSNet_eth85.99 32484.45 32890.62 32989.97 36982.40 33293.62 33997.37 17989.86 20378.59 37092.37 33665.25 36395.35 36382.27 31970.75 37994.10 336
ADS-MVSNet289.45 28788.59 28992.03 29895.86 22382.26 33390.93 36894.32 34283.23 34491.28 21091.81 34879.01 26095.99 34879.52 33691.39 24797.84 174
EGC-MVSNET68.77 35563.01 36086.07 35892.49 35282.24 33493.96 32590.96 3760.71 4012.62 40290.89 35453.66 38093.46 37657.25 38884.55 32882.51 384
test_vis1_n_192094.17 11394.58 9692.91 27597.42 14082.02 33597.83 8497.85 11694.68 4698.10 2998.49 3870.15 33699.32 11797.91 1598.82 9297.40 195
LCM-MVSNet-Re92.50 18292.52 16692.44 28796.82 17281.89 33696.92 18093.71 35292.41 12884.30 33894.60 27185.08 14897.03 33291.51 17097.36 14198.40 143
CostFormer91.18 24490.70 22992.62 28694.84 28581.76 33794.09 32294.43 33684.15 33292.72 17393.77 31079.43 24998.20 22590.70 18592.18 23297.90 170
CL-MVSNet_self_test86.31 32085.15 32289.80 33988.83 37681.74 33893.93 32796.22 26486.67 29485.03 33290.80 35578.09 27594.50 36674.92 36071.86 37893.15 349
JIA-IIPM88.26 30287.04 30691.91 30093.52 33081.42 33989.38 37894.38 33880.84 36090.93 21580.74 38579.22 25397.92 27382.76 31491.62 24096.38 226
OurMVSNet-221017-090.51 26790.19 25291.44 31593.41 33581.25 34096.98 17696.28 26091.68 14886.55 32096.30 19174.20 31197.98 25888.96 22287.40 29595.09 292
tpm289.96 27989.21 28192.23 29594.91 28181.25 34093.78 33294.42 33780.62 36391.56 19793.44 32276.44 29097.94 26985.60 28392.08 23697.49 192
test_fmvs193.21 15293.53 12292.25 29496.55 19181.20 34297.40 13896.96 21490.68 18096.80 6198.04 7969.25 34098.40 20797.58 2198.50 10497.16 205
test_fmvs1_n92.73 17992.88 14692.29 29296.08 22081.05 34397.98 6197.08 20190.72 17896.79 6298.18 7063.07 36798.45 20497.62 2098.42 11097.36 196
testgi87.97 30387.21 30390.24 33492.86 34480.76 34496.67 20494.97 32191.74 14685.52 32795.83 21362.66 36994.47 36876.25 35488.36 28695.48 264
testing387.67 30786.88 30890.05 33696.14 21580.71 34597.10 16792.85 36090.15 19887.54 30094.55 27355.70 37994.10 37173.77 36694.10 20495.35 277
test-LLR91.42 22891.19 21292.12 29694.59 29780.66 34694.29 31692.98 35891.11 16890.76 21692.37 33679.02 25898.07 24788.81 22496.74 15797.63 183
test-mter90.19 27689.54 27592.12 29694.59 29780.66 34694.29 31692.98 35887.68 27590.76 21692.37 33667.67 34798.07 24788.81 22496.74 15797.63 183
TESTMET0.1,190.06 27889.42 27791.97 29994.41 30480.62 34894.29 31691.97 36987.28 28590.44 22192.47 33568.79 34297.67 29488.50 23096.60 16297.61 187
tpm cat188.36 30087.21 30391.81 30595.13 26980.55 34992.58 35795.70 28474.97 37887.45 30191.96 34678.01 27898.17 22980.39 33288.74 28296.72 218
test_vis1_rt86.16 32285.06 32389.46 34293.47 33480.46 35096.41 22386.61 39085.22 31779.15 36888.64 36952.41 38297.06 33093.08 13990.57 26290.87 373
Anonymous2023120687.09 31386.14 31489.93 33891.22 36280.35 35196.11 24795.35 30283.57 34184.16 34093.02 32773.54 31795.61 35772.16 37186.14 30493.84 341
MDTV_nov1_ep1390.76 22695.22 26280.33 35293.03 35195.28 30688.14 26092.84 17293.83 30681.34 21698.08 24382.86 31194.34 200
tpmvs89.83 28489.15 28391.89 30194.92 27980.30 35393.11 34995.46 29886.28 30188.08 29192.65 33080.44 23198.52 19981.47 32389.92 27096.84 214
SixPastTwentyTwo89.15 29088.54 29090.98 32293.49 33280.28 35496.70 19994.70 33090.78 17484.15 34195.57 23071.78 32497.71 29284.63 29585.07 31994.94 299
new_pmnet82.89 33981.12 34488.18 34989.63 37180.18 35591.77 36292.57 36376.79 37775.56 37688.23 37361.22 37194.48 36771.43 37382.92 34689.87 377
test20.0386.14 32385.40 32088.35 34690.12 36780.06 35695.90 25895.20 31188.59 24481.29 35793.62 31771.43 32692.65 38071.26 37581.17 35392.34 360
LF4IMVS87.94 30487.25 30189.98 33792.38 35680.05 35794.38 31095.25 30987.59 27784.34 33794.74 26564.31 36497.66 29684.83 29187.45 29292.23 361
Anonymous2024052186.42 31885.44 31889.34 34390.33 36679.79 35896.73 19595.92 27383.71 33983.25 34991.36 35263.92 36596.01 34778.39 34585.36 31392.22 362
tpm90.25 27289.74 27191.76 30993.92 31779.73 35993.98 32393.54 35488.28 25591.99 18893.25 32577.51 28297.44 31687.30 25587.94 28898.12 160
WAC-MVS79.53 36075.56 358
myMVS_eth3d87.18 31186.38 31189.58 34195.16 26579.53 36095.00 29293.93 34988.55 24886.96 31391.99 34456.23 37894.00 37275.47 35994.11 20295.20 288
PVSNet_082.17 1985.46 32983.64 33290.92 32395.27 25879.49 36290.55 37195.60 29183.76 33883.00 35289.95 36171.09 32897.97 26182.75 31560.79 39195.31 280
K. test v387.64 30886.75 31090.32 33393.02 34379.48 36396.61 21192.08 36890.66 18380.25 36494.09 29967.21 35196.65 34285.96 27980.83 35494.83 308
pmmvs379.97 34477.50 34987.39 35282.80 38879.38 36492.70 35690.75 37870.69 38278.66 36987.47 37951.34 38393.40 37773.39 36869.65 38189.38 378
tpmrst91.44 22791.32 20491.79 30695.15 26779.20 36593.42 34395.37 30188.55 24893.49 15593.67 31582.49 19798.27 22090.41 18789.34 27697.90 170
KD-MVS_self_test85.95 32584.95 32488.96 34589.55 37379.11 36695.13 29096.42 25585.91 30784.07 34490.48 35670.03 33794.82 36580.04 33372.94 37692.94 351
lessismore_v090.45 33191.96 35979.09 36787.19 38880.32 36394.39 28166.31 35897.55 30584.00 30376.84 36794.70 320
gm-plane-assit93.22 33978.89 36884.82 32593.52 31998.64 18887.72 239
Patchmatch-RL test87.38 30986.24 31290.81 32588.74 37778.40 36988.12 38393.17 35787.11 28882.17 35589.29 36681.95 20895.60 35888.64 22877.02 36698.41 142
PM-MVS83.48 33681.86 34288.31 34787.83 38077.59 37093.43 34291.75 37086.91 29080.63 36089.91 36244.42 38695.84 35285.17 29076.73 36991.50 369
dp88.90 29488.26 29490.81 32594.58 29976.62 37192.85 35494.93 32385.12 32090.07 23793.07 32675.81 29698.12 23780.53 33187.42 29497.71 180
test_fmvs289.77 28589.93 26189.31 34493.68 32676.37 37297.64 11095.90 27589.84 20691.49 19996.26 19458.77 37397.10 32994.65 10891.13 25294.46 326
RPSCF90.75 25990.86 22090.42 33296.84 16876.29 37395.61 27096.34 25883.89 33591.38 20197.87 9376.45 28998.78 17187.16 25992.23 22996.20 229
new-patchmatchnet83.18 33881.87 34187.11 35386.88 38175.99 37493.70 33495.18 31285.02 32277.30 37388.40 37165.99 36093.88 37574.19 36570.18 38091.47 370
CVMVSNet91.23 23991.75 18889.67 34095.77 22874.69 37596.44 21994.88 32685.81 30892.18 18297.64 11479.07 25595.58 35988.06 23395.86 17498.74 115
EU-MVSNet88.72 29788.90 28588.20 34893.15 34174.21 37696.63 21094.22 34385.18 31887.32 30695.97 20576.16 29394.98 36485.27 28786.17 30395.41 270
mvsany_test383.59 33582.44 33987.03 35483.80 38573.82 37793.70 33490.92 37786.42 29882.51 35390.26 35846.76 38595.71 35490.82 18276.76 36891.57 367
Gipumacopyleft67.86 35665.41 35875.18 37392.66 34973.45 37866.50 39294.52 33553.33 39157.80 39266.07 39230.81 39289.20 38648.15 39278.88 36462.90 392
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Syy-MVS87.13 31287.02 30787.47 35195.16 26573.21 37995.00 29293.93 34988.55 24886.96 31391.99 34475.90 29494.00 37261.59 38594.11 20295.20 288
CMPMVSbinary62.92 2185.62 32884.92 32587.74 35089.14 37473.12 38094.17 31996.80 23173.98 37973.65 37894.93 25466.36 35697.61 30183.95 30491.28 24992.48 359
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
DSMNet-mixed86.34 31986.12 31587.00 35589.88 37070.43 38194.93 29490.08 37977.97 37485.42 33092.78 32974.44 30993.96 37474.43 36295.14 18696.62 219
MDTV_nov1_ep13_2view70.35 38293.10 35083.88 33693.55 15282.47 19886.25 27098.38 145
ambc86.56 35683.60 38670.00 38385.69 38594.97 32180.60 36188.45 37037.42 38996.84 33982.69 31675.44 37192.86 352
MVS-HIRNet82.47 34081.21 34386.26 35795.38 24669.21 38488.96 38089.49 38066.28 38480.79 35974.08 38968.48 34497.39 32071.93 37295.47 18192.18 363
APD_test179.31 34577.70 34884.14 35989.11 37569.07 38592.36 36191.50 37269.07 38373.87 37792.63 33239.93 38894.32 36970.54 37880.25 35689.02 379
test_fmvs383.21 33783.02 33483.78 36086.77 38268.34 38696.76 19394.91 32486.49 29784.14 34289.48 36536.04 39091.73 38291.86 16280.77 35591.26 372
test_vis3_rt72.73 34970.55 35279.27 36480.02 39068.13 38793.92 32874.30 40176.90 37658.99 39073.58 39020.29 39995.37 36284.16 29972.80 37774.31 389
test_f80.57 34379.62 34583.41 36183.38 38767.80 38893.57 34193.72 35180.80 36277.91 37287.63 37733.40 39192.08 38187.14 26079.04 36390.34 376
ANet_high63.94 35859.58 36177.02 36861.24 40166.06 38985.66 38687.93 38678.53 37242.94 39471.04 39125.42 39780.71 39452.60 39130.83 39584.28 383
PMMVS270.19 35266.92 35580.01 36376.35 39365.67 39086.22 38487.58 38764.83 38662.38 38780.29 38626.78 39688.49 39063.79 38254.07 39285.88 380
LCM-MVSNet72.55 35069.39 35482.03 36270.81 39965.42 39190.12 37594.36 34155.02 39065.88 38481.72 38424.16 39889.96 38374.32 36468.10 38490.71 375
DeepMVS_CXcopyleft74.68 37490.84 36564.34 39281.61 39765.34 38567.47 38388.01 37648.60 38480.13 39562.33 38473.68 37579.58 386
testf169.31 35366.76 35676.94 36978.61 39161.93 39388.27 38186.11 39155.62 38859.69 38885.31 38120.19 40089.32 38457.62 38669.44 38279.58 386
APD_test269.31 35366.76 35676.94 36978.61 39161.93 39388.27 38186.11 39155.62 38859.69 38885.31 38120.19 40089.32 38457.62 38669.44 38279.58 386
FPMVS71.27 35169.85 35375.50 37274.64 39459.03 39591.30 36491.50 37258.80 38757.92 39188.28 37229.98 39485.53 39253.43 39082.84 34781.95 385
MVEpermissive50.73 2353.25 36148.81 36666.58 37765.34 40057.50 39672.49 39170.94 40240.15 39539.28 39763.51 3936.89 40473.48 39838.29 39442.38 39368.76 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVS76.77 34776.63 35077.18 36785.32 38356.82 39794.53 30389.39 38182.66 34871.35 37989.18 36775.03 30488.88 38735.42 39566.79 38585.84 381
SSC-MVS76.05 34875.83 35176.72 37184.77 38456.22 39894.32 31488.96 38381.82 35470.52 38088.91 36874.79 30688.71 38833.69 39664.71 38785.23 382
dmvs_testset81.38 34282.60 33877.73 36691.74 36051.49 39993.03 35184.21 39489.07 22578.28 37191.25 35376.97 28588.53 38956.57 38982.24 34993.16 348
PMVScopyleft53.92 2258.58 35955.40 36268.12 37651.00 40248.64 40078.86 38987.10 38946.77 39235.84 39874.28 3888.76 40286.34 39142.07 39373.91 37469.38 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN53.28 36052.56 36455.43 37874.43 39547.13 40183.63 38876.30 39842.23 39342.59 39562.22 39428.57 39574.40 39631.53 39731.51 39444.78 393
N_pmnet78.73 34678.71 34778.79 36592.80 34646.50 40294.14 32043.71 40478.61 37180.83 35891.66 35074.94 30596.36 34467.24 38084.45 33093.50 344
EMVS52.08 36251.31 36554.39 37972.62 39745.39 40383.84 38775.51 40041.13 39440.77 39659.65 39530.08 39373.60 39728.31 39829.90 39644.18 394
tmp_tt51.94 36353.82 36346.29 38033.73 40345.30 40478.32 39067.24 40318.02 39750.93 39387.05 38052.99 38153.11 39970.76 37625.29 39740.46 395
wuyk23d25.11 36424.57 36826.74 38173.98 39639.89 40557.88 3949.80 40512.27 39810.39 3996.97 4017.03 40336.44 40025.43 39917.39 3983.89 398
test_method66.11 35764.89 35969.79 37572.62 39735.23 40665.19 39392.83 36120.35 39665.20 38588.08 37543.14 38782.70 39373.12 36963.46 38891.45 371
test12313.04 36715.66 3705.18 3824.51 4053.45 40792.50 3591.81 4072.50 4007.58 40120.15 3983.67 4052.18 4027.13 4011.07 4009.90 396
testmvs13.36 36616.33 3694.48 3835.04 4042.26 40893.18 3453.28 4062.70 3998.24 40021.66 3972.29 4062.19 4017.58 4002.96 3999.00 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k23.24 36530.99 3670.00 3840.00 4060.00 4090.00 39597.63 1400.00 4020.00 40396.88 15584.38 1570.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.39 3699.85 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40288.65 950.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.06 36810.74 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40396.69 1640.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
PC_three_145290.77 17598.89 1498.28 6596.24 198.35 21495.76 7399.58 2199.59 22
eth-test20.00 406
eth-test0.00 406
test_241102_TWO98.27 3995.13 2398.93 998.89 1394.99 1199.85 1897.52 2299.65 1299.74 8
9.1496.75 4098.93 4797.73 9598.23 5091.28 16197.88 3598.44 4493.00 2699.65 5895.76 7399.47 38
test_0728_THIRD94.78 4198.73 1898.87 1595.87 499.84 2397.45 2699.72 299.77 2
GSMVS98.45 137
sam_mvs182.76 19098.45 137
sam_mvs81.94 209
MTGPAbinary98.08 74
test_post192.81 35516.58 40080.53 22997.68 29386.20 271
test_post17.58 39981.76 21198.08 243
patchmatchnet-post90.45 35782.65 19498.10 239
MTMP97.86 7982.03 396
test9_res94.81 10399.38 5399.45 47
agg_prior293.94 12199.38 5399.50 40
test_prior296.35 23192.80 11996.03 9597.59 11892.01 4395.01 9799.38 53
旧先验295.94 25681.66 35597.34 4898.82 16892.26 149
新几何295.79 262
无先验95.79 26297.87 11183.87 33799.65 5887.68 24598.89 105
原ACMM295.67 266
testdata299.67 5685.96 279
segment_acmp92.89 27
testdata195.26 28793.10 105
plane_prior597.51 15398.60 19293.02 14292.23 22995.86 241
plane_prior496.64 168
plane_prior297.74 9394.85 34
plane_prior196.14 215
n20.00 408
nn0.00 408
door-mid91.06 375
test1197.88 109
door91.13 374
HQP-NCC95.86 22396.65 20593.55 8090.14 226
ACMP_Plane95.86 22396.65 20593.55 8090.14 226
BP-MVS92.13 155
HQP4-MVS90.14 22698.50 20095.78 250
HQP3-MVS97.39 17692.10 234
HQP2-MVS80.95 220
ACMMP++_ref90.30 267
ACMMP++91.02 255
Test By Simon88.73 94