HPM-MVS++ |  | | 79.88 8 | 80.14 8 | 79.10 20 | 88.17 1 | 64.80 1 | 86.59 12 | 83.70 60 | 65.37 11 | 78.78 22 | 90.64 17 | 58.63 24 | 87.24 49 | 79.00 10 | 90.37 14 | 85.26 118 |
|
MTAPA | | | 76.90 32 | 76.42 33 | 78.35 33 | 86.08 37 | 63.57 2 | 74.92 195 | 80.97 121 | 65.13 13 | 75.77 33 | 90.88 15 | 48.63 109 | 86.66 68 | 77.23 19 | 88.17 33 | 84.81 130 |
|
mPP-MVS | | | 76.54 34 | 75.93 38 | 78.34 34 | 86.47 26 | 63.50 3 | 85.74 24 | 82.28 89 | 62.90 50 | 71.77 82 | 90.26 29 | 46.61 139 | 86.55 72 | 71.71 50 | 85.66 57 | 84.97 126 |
|
MP-MVS |  | | 78.35 18 | 78.26 19 | 78.64 29 | 86.54 25 | 63.47 4 | 86.02 19 | 83.55 64 | 63.89 35 | 73.60 57 | 90.60 18 | 54.85 46 | 86.72 66 | 77.20 20 | 88.06 35 | 85.74 97 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CP-MVS | | | 77.12 30 | 76.68 30 | 78.43 31 | 86.05 38 | 63.18 5 | 87.55 10 | 83.45 67 | 62.44 62 | 72.68 72 | 90.50 22 | 48.18 114 | 87.34 48 | 73.59 39 | 85.71 56 | 84.76 133 |
|
region2R | | | 77.67 25 | 77.18 27 | 79.15 17 | 86.76 17 | 62.95 6 | 86.29 14 | 84.16 47 | 62.81 55 | 73.30 60 | 90.58 19 | 49.90 94 | 88.21 32 | 73.78 37 | 87.03 43 | 86.29 77 |
|
ACMMPR | | | 77.71 23 | 77.23 26 | 79.16 16 | 86.75 18 | 62.93 7 | 86.29 14 | 84.24 45 | 62.82 53 | 73.55 58 | 90.56 20 | 49.80 96 | 88.24 31 | 74.02 35 | 87.03 43 | 86.32 74 |
|
HFP-MVS | | | 78.01 22 | 77.65 23 | 79.10 20 | 86.71 19 | 62.81 8 | 86.29 14 | 84.32 44 | 62.82 53 | 73.96 53 | 90.50 22 | 53.20 63 | 88.35 29 | 74.02 35 | 87.05 42 | 86.13 80 |
|
MSP-MVS | | | 81.06 3 | 81.40 4 | 80.02 1 | 86.21 31 | 62.73 9 | 86.09 17 | 86.83 8 | 65.51 10 | 83.81 10 | 90.51 21 | 63.71 12 | 89.23 18 | 81.51 1 | 88.44 27 | 88.09 19 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PGM-MVS | | | 76.77 33 | 76.06 36 | 78.88 26 | 86.14 35 | 62.73 9 | 82.55 65 | 83.74 59 | 61.71 74 | 72.45 78 | 90.34 27 | 48.48 112 | 88.13 33 | 72.32 45 | 86.85 48 | 85.78 91 |
|
XVS | | | 77.17 29 | 76.56 32 | 79.00 22 | 86.32 29 | 62.62 11 | 85.83 21 | 83.92 51 | 64.55 21 | 72.17 79 | 90.01 38 | 47.95 116 | 88.01 36 | 71.55 52 | 86.74 50 | 86.37 68 |
|
X-MVStestdata | | | 70.21 110 | 67.28 157 | 79.00 22 | 86.32 29 | 62.62 11 | 85.83 21 | 83.92 51 | 64.55 21 | 72.17 79 | 6.49 374 | 47.95 116 | 88.01 36 | 71.55 52 | 86.74 50 | 86.37 68 |
|
NCCC | | | 78.58 15 | 78.31 17 | 79.39 11 | 87.51 12 | 62.61 13 | 85.20 29 | 84.42 42 | 66.73 6 | 74.67 46 | 89.38 47 | 55.30 41 | 89.18 19 | 74.19 33 | 87.34 41 | 86.38 66 |
|
test_prior4 | | | | | | | 62.51 14 | 82.08 75 | | | | | | | | | |
|
Effi-MVS+-dtu | | | 69.64 126 | 67.53 146 | 75.95 62 | 76.10 210 | 62.29 15 | 80.20 96 | 76.06 204 | 59.83 108 | 65.26 195 | 77.09 263 | 41.56 191 | 84.02 128 | 60.60 135 | 71.09 215 | 81.53 207 |
|
SteuartSystems-ACMMP | | | 79.48 10 | 79.31 10 | 79.98 2 | 83.01 72 | 62.18 16 | 87.60 9 | 85.83 19 | 66.69 7 | 78.03 26 | 90.98 14 | 54.26 50 | 90.06 12 | 78.42 17 | 89.02 23 | 87.69 31 |
Skip Steuart: Steuart Systems R&D Blog. |
CNVR-MVS | | | 79.84 9 | 79.97 9 | 79.45 10 | 87.90 2 | 62.17 17 | 84.37 34 | 85.03 34 | 66.96 3 | 77.58 27 | 90.06 34 | 59.47 20 | 89.13 20 | 78.67 12 | 89.73 16 | 87.03 51 |
|
ZNCC-MVS | | | 78.82 12 | 78.67 15 | 79.30 13 | 86.43 28 | 62.05 18 | 86.62 11 | 86.01 18 | 63.32 41 | 75.08 37 | 90.47 24 | 53.96 54 | 88.68 25 | 76.48 23 | 89.63 20 | 87.16 49 |
|
SMA-MVS |  | | 80.28 6 | 80.39 7 | 79.95 3 | 86.60 23 | 61.95 19 | 86.33 13 | 85.75 21 | 62.49 60 | 82.20 15 | 92.28 1 | 56.53 33 | 89.70 15 | 79.85 3 | 91.48 1 | 88.19 16 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMMP |  | | 76.02 41 | 75.33 44 | 78.07 36 | 85.20 49 | 61.91 20 | 85.49 28 | 84.44 41 | 63.04 47 | 69.80 106 | 89.74 44 | 45.43 152 | 87.16 53 | 72.01 47 | 82.87 81 | 85.14 119 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SD-MVS | | | 77.70 24 | 77.62 24 | 77.93 40 | 84.47 59 | 61.88 21 | 84.55 32 | 83.87 56 | 60.37 94 | 79.89 18 | 89.38 47 | 54.97 44 | 85.58 95 | 76.12 25 | 84.94 60 | 86.33 72 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
GST-MVS | | | 78.14 20 | 77.85 22 | 78.99 24 | 86.05 38 | 61.82 22 | 85.84 20 | 85.21 29 | 63.56 39 | 74.29 50 | 90.03 36 | 52.56 66 | 88.53 27 | 74.79 29 | 88.34 29 | 86.63 63 |
|
DeepC-MVS | | 69.38 2 | 78.56 16 | 78.14 20 | 79.83 6 | 83.60 63 | 61.62 23 | 84.17 40 | 86.85 6 | 63.23 44 | 73.84 55 | 90.25 30 | 57.68 27 | 89.96 13 | 74.62 30 | 89.03 22 | 87.89 22 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TEST9 | | | | | | 85.58 43 | 61.59 24 | 81.62 80 | 81.26 113 | 55.65 182 | 74.93 39 | 88.81 54 | 53.70 58 | 84.68 116 | | | |
|
train_agg | | | 76.27 37 | 76.15 35 | 76.64 53 | 85.58 43 | 61.59 24 | 81.62 80 | 81.26 113 | 55.86 173 | 74.93 39 | 88.81 54 | 53.70 58 | 84.68 116 | 75.24 28 | 88.33 30 | 83.65 169 |
|
TSAR-MVS + MP. | | | 78.44 17 | 78.28 18 | 78.90 25 | 84.96 52 | 61.41 26 | 84.03 43 | 83.82 58 | 59.34 115 | 79.37 19 | 89.76 43 | 59.84 16 | 87.62 45 | 76.69 22 | 86.74 50 | 87.68 32 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CPTT-MVS | | | 72.78 69 | 72.08 73 | 74.87 84 | 84.88 57 | 61.41 26 | 84.15 41 | 77.86 177 | 55.27 188 | 67.51 150 | 88.08 62 | 41.93 185 | 81.85 174 | 69.04 64 | 80.01 109 | 81.35 212 |
|
save fliter | | | | | | 86.17 33 | 61.30 28 | 83.98 45 | 79.66 138 | 59.00 118 | | | | | | | |
|
SR-MVS | | | 76.13 40 | 75.70 41 | 77.40 46 | 85.87 40 | 61.20 29 | 85.52 26 | 82.19 90 | 59.99 103 | 75.10 36 | 90.35 26 | 47.66 120 | 86.52 73 | 71.64 51 | 82.99 76 | 84.47 139 |
|
新几何1 | | | | | 70.76 182 | 85.66 41 | 61.13 30 | | 66.43 288 | 44.68 300 | 70.29 94 | 86.64 84 | 41.29 195 | 75.23 266 | 49.72 215 | 81.75 94 | 75.93 277 |
|
MSC_two_6792asdad | | | | | 79.95 3 | 87.24 14 | 61.04 31 | | 85.62 23 | | | | | 90.96 1 | 79.31 7 | 90.65 8 | 87.85 25 |
|
No_MVS | | | | | 79.95 3 | 87.24 14 | 61.04 31 | | 85.62 23 | | | | | 90.96 1 | 79.31 7 | 90.65 8 | 87.85 25 |
|
ACMMP_NAP | | | 78.77 14 | 78.78 13 | 78.74 28 | 85.44 45 | 61.04 31 | 83.84 47 | 85.16 30 | 62.88 51 | 78.10 24 | 91.26 13 | 52.51 67 | 88.39 28 | 79.34 6 | 90.52 13 | 86.78 60 |
|
test_8 | | | | | | 85.40 46 | 60.96 34 | 81.54 83 | 81.18 116 | 55.86 173 | 74.81 42 | 88.80 56 | 53.70 58 | 84.45 120 | | | |
|
OPU-MVS | | | | | 79.83 6 | 87.54 11 | 60.93 35 | 87.82 7 | | | | 89.89 40 | 67.01 1 | 90.33 11 | 73.16 41 | 91.15 4 | 88.23 14 |
|
DeepC-MVS_fast | | 68.24 3 | 77.25 28 | 76.63 31 | 79.12 19 | 86.15 34 | 60.86 36 | 84.71 31 | 84.85 38 | 61.98 72 | 73.06 67 | 88.88 53 | 53.72 57 | 89.06 21 | 68.27 65 | 88.04 36 | 87.42 41 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
FOURS1 | | | | | | 86.12 36 | 60.82 37 | 88.18 1 | 83.61 62 | 60.87 82 | 81.50 16 | | | | | | |
|
HPM-MVS |  | | 77.28 27 | 76.85 28 | 78.54 30 | 85.00 51 | 60.81 38 | 82.91 58 | 85.08 31 | 62.57 58 | 73.09 66 | 89.97 39 | 50.90 90 | 87.48 47 | 75.30 26 | 86.85 48 | 87.33 47 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
APD-MVS |  | | 78.02 21 | 78.04 21 | 77.98 39 | 86.44 27 | 60.81 38 | 85.52 26 | 84.36 43 | 60.61 87 | 79.05 21 | 90.30 28 | 55.54 40 | 88.32 30 | 73.48 40 | 87.03 43 | 84.83 129 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MVS_111021_HR | | | 74.02 59 | 73.46 63 | 75.69 68 | 83.01 72 | 60.63 40 | 77.29 147 | 78.40 170 | 61.18 80 | 70.58 91 | 85.97 102 | 54.18 52 | 84.00 129 | 67.52 76 | 82.98 78 | 82.45 194 |
|
DPE-MVS |  | | 80.56 5 | 80.98 5 | 79.29 14 | 87.27 13 | 60.56 41 | 85.71 25 | 86.42 14 | 63.28 42 | 83.27 13 | 91.83 10 | 64.96 7 | 90.47 10 | 76.41 24 | 89.67 18 | 86.84 57 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
test_part2 | | | | | | 87.58 9 | 60.47 42 | | | | 83.42 12 | | | | | | |
|
ZD-MVS | | | | | | 86.64 21 | 60.38 43 | | 82.70 85 | 57.95 138 | 78.10 24 | 90.06 34 | 56.12 37 | 88.84 24 | 74.05 34 | 87.00 46 | |
|
DeepPCF-MVS | | 69.58 1 | 79.03 11 | 79.00 12 | 79.13 18 | 84.92 56 | 60.32 44 | 83.03 55 | 85.33 27 | 62.86 52 | 80.17 17 | 90.03 36 | 61.76 14 | 88.95 22 | 74.21 32 | 88.67 26 | 88.12 18 |
|
APDe-MVS | | | 80.16 7 | 80.59 6 | 78.86 27 | 86.64 21 | 60.02 45 | 88.12 3 | 86.42 14 | 62.94 49 | 82.40 14 | 92.12 2 | 59.64 18 | 89.76 14 | 78.70 11 | 88.32 31 | 86.79 59 |
|
agg_prior | | | | | | 85.04 50 | 59.96 46 | | 81.04 119 | | 74.68 45 | | | 84.04 126 | | | |
|
3Dnovator+ | | 66.72 4 | 75.84 43 | 74.57 51 | 79.66 8 | 82.40 76 | 59.92 47 | 85.83 21 | 86.32 16 | 66.92 5 | 67.80 144 | 89.24 49 | 42.03 183 | 89.38 17 | 64.07 103 | 86.50 53 | 89.69 2 |
|
SR-MVS-dyc-post | | | 74.57 54 | 73.90 57 | 76.58 54 | 83.49 65 | 59.87 48 | 84.29 35 | 81.36 106 | 58.07 135 | 73.14 64 | 90.07 32 | 44.74 159 | 85.84 89 | 68.20 66 | 81.76 92 | 84.03 149 |
|
RE-MVS-def | | | | 73.71 61 | | 83.49 65 | 59.87 48 | 84.29 35 | 81.36 106 | 58.07 135 | 73.14 64 | 90.07 32 | 43.06 174 | | 68.20 66 | 81.76 92 | 84.03 149 |
|
CSCG | | | 76.92 31 | 76.75 29 | 77.41 44 | 83.96 62 | 59.60 50 | 82.95 56 | 86.50 13 | 60.78 85 | 75.27 35 | 84.83 120 | 60.76 15 | 86.56 71 | 67.86 71 | 87.87 39 | 86.06 82 |
|
h-mvs33 | | | 72.71 71 | 71.49 78 | 76.40 56 | 81.99 81 | 59.58 51 | 76.92 156 | 76.74 197 | 60.40 91 | 74.81 42 | 85.95 104 | 45.54 148 | 85.76 91 | 70.41 57 | 70.61 219 | 83.86 157 |
|
MP-MVS-pluss | | | 78.35 18 | 78.46 16 | 78.03 38 | 84.96 52 | 59.52 52 | 82.93 57 | 85.39 26 | 62.15 65 | 76.41 31 | 91.51 11 | 52.47 69 | 86.78 65 | 80.66 2 | 89.64 19 | 87.80 28 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
原ACMM1 | | | | | 74.69 87 | 85.39 47 | 59.40 53 | | 83.42 68 | 51.47 237 | 70.27 95 | 86.61 86 | 48.61 110 | 86.51 74 | 53.85 182 | 87.96 37 | 78.16 253 |
|
MAR-MVS | | | 71.51 89 | 70.15 101 | 75.60 72 | 81.84 83 | 59.39 54 | 81.38 84 | 82.90 82 | 54.90 201 | 68.08 135 | 78.70 242 | 47.73 118 | 85.51 97 | 51.68 202 | 84.17 68 | 81.88 204 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MVS_111021_LR | | | 69.50 129 | 68.78 123 | 71.65 161 | 78.38 153 | 59.33 55 | 74.82 197 | 70.11 263 | 58.08 134 | 67.83 143 | 84.68 122 | 41.96 184 | 76.34 262 | 65.62 93 | 77.54 141 | 79.30 245 |
|
test_one_0601 | | | | | | 87.58 9 | 59.30 56 | | 86.84 7 | 65.01 18 | 83.80 11 | 91.86 6 | 64.03 11 | | | | |
|
MSLP-MVS++ | | | 73.77 62 | 73.47 62 | 74.66 89 | 83.02 71 | 59.29 57 | 82.30 72 | 81.88 94 | 59.34 115 | 71.59 85 | 86.83 77 | 45.94 143 | 83.65 135 | 65.09 97 | 85.22 59 | 81.06 219 |
|
DPM-MVS | | | 75.47 46 | 75.00 47 | 76.88 49 | 81.38 91 | 59.16 58 | 79.94 100 | 85.71 22 | 56.59 161 | 72.46 76 | 86.76 79 | 56.89 31 | 87.86 41 | 66.36 84 | 88.91 25 | 83.64 170 |
|
DVP-MVS++ | | | 81.67 1 | 82.40 1 | 79.47 9 | 87.24 14 | 59.15 59 | 88.18 1 | 87.15 3 | 65.04 14 | 84.26 5 | 91.86 6 | 67.01 1 | 90.84 3 | 79.48 4 | 91.38 2 | 88.42 9 |
|
IU-MVS | | | | | | 87.77 4 | 59.15 59 | | 85.53 25 | 53.93 212 | 84.64 3 | | | | 79.07 9 | 90.87 5 | 88.37 11 |
|
CDPH-MVS | | | 76.31 36 | 75.67 42 | 78.22 35 | 85.35 48 | 59.14 61 | 81.31 85 | 84.02 48 | 56.32 165 | 74.05 51 | 88.98 52 | 53.34 62 | 87.92 39 | 69.23 63 | 88.42 28 | 87.59 36 |
|
test_0728_SECOND | | | | | 79.19 15 | 87.82 3 | 59.11 62 | 87.85 5 | 87.15 3 | | | | | 90.84 3 | 78.66 13 | 90.61 11 | 87.62 35 |
|
DVP-MVS |  | | 80.84 4 | 81.64 3 | 78.42 32 | 87.75 7 | 59.07 63 | 87.85 5 | 85.03 34 | 64.26 27 | 83.82 8 | 92.00 3 | 64.82 8 | 90.75 8 | 78.66 13 | 90.61 11 | 85.45 108 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 87.75 7 | 59.07 63 | 87.86 4 | 86.83 8 | 64.26 27 | 84.19 7 | 91.92 5 | 64.82 8 | | | | |
|
HPM-MVS_fast | | | 74.30 58 | 73.46 63 | 76.80 50 | 84.45 60 | 59.04 65 | 83.65 50 | 81.05 118 | 60.15 100 | 70.43 92 | 89.84 41 | 41.09 198 | 85.59 94 | 67.61 75 | 82.90 80 | 85.77 94 |
|
OPM-MVS | | | 74.73 51 | 74.25 54 | 76.19 59 | 80.81 100 | 59.01 66 | 82.60 64 | 83.64 61 | 63.74 37 | 72.52 75 | 87.49 69 | 47.18 130 | 85.88 88 | 69.47 61 | 80.78 97 | 83.66 168 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
3Dnovator | | 64.47 5 | 72.49 74 | 71.39 81 | 75.79 64 | 77.70 174 | 58.99 67 | 80.66 92 | 83.15 78 | 62.24 64 | 65.46 188 | 86.59 87 | 42.38 181 | 85.52 96 | 59.59 144 | 84.72 61 | 82.85 188 |
|
SED-MVS | | | 81.56 2 | 82.30 2 | 79.32 12 | 87.77 4 | 58.90 68 | 87.82 7 | 86.78 10 | 64.18 30 | 85.97 1 | 91.84 8 | 66.87 3 | 90.83 5 | 78.63 15 | 90.87 5 | 88.23 14 |
|
test_241102_ONE | | | | | | 87.77 4 | 58.90 68 | | 86.78 10 | 64.20 29 | 85.97 1 | 91.34 12 | 66.87 3 | 90.78 7 | | | |
|
PVSNet_Blended_VisFu | | | 71.45 91 | 70.39 97 | 74.65 90 | 82.01 79 | 58.82 70 | 79.93 101 | 80.35 131 | 55.09 193 | 65.82 183 | 82.16 179 | 49.17 103 | 82.64 161 | 60.34 136 | 78.62 133 | 82.50 193 |
|
TSAR-MVS + GP. | | | 74.90 48 | 74.15 55 | 77.17 47 | 82.00 80 | 58.77 71 | 81.80 77 | 78.57 159 | 58.58 126 | 74.32 49 | 84.51 130 | 55.94 38 | 87.22 50 | 67.11 79 | 84.48 65 | 85.52 104 |
|
test222 | | | | | | 83.14 68 | 58.68 72 | 72.57 234 | 63.45 306 | 41.78 320 | 67.56 149 | 86.12 96 | 37.13 235 | | | 78.73 131 | 74.98 288 |
|
ACMM | | 61.98 7 | 70.80 100 | 69.73 106 | 74.02 104 | 80.59 106 | 58.59 73 | 82.68 62 | 82.02 93 | 55.46 185 | 67.18 155 | 84.39 132 | 38.51 216 | 83.17 144 | 60.65 134 | 76.10 157 | 80.30 230 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test12 | | | | | 77.76 41 | 84.52 58 | 58.41 74 | | 83.36 71 | | 72.93 69 | | 54.61 48 | 88.05 35 | | 88.12 34 | 86.81 58 |
|
MCST-MVS | | | 77.48 26 | 77.45 25 | 77.54 43 | 86.67 20 | 58.36 75 | 83.22 53 | 86.93 5 | 56.91 153 | 74.91 41 | 88.19 59 | 59.15 22 | 87.68 44 | 73.67 38 | 87.45 40 | 86.57 64 |
|
APD-MVS_3200maxsize | | | 74.96 47 | 74.39 53 | 76.67 52 | 82.20 78 | 58.24 76 | 83.67 49 | 83.29 74 | 58.41 129 | 73.71 56 | 90.14 31 | 45.62 145 | 85.99 85 | 69.64 59 | 82.85 82 | 85.78 91 |
|
CNLPA | | | 65.43 204 | 64.02 203 | 69.68 202 | 78.73 145 | 58.07 77 | 77.82 133 | 70.71 260 | 51.49 236 | 61.57 244 | 83.58 151 | 38.23 221 | 70.82 284 | 43.90 264 | 70.10 229 | 80.16 232 |
|
DP-MVS Recon | | | 72.15 82 | 70.73 92 | 76.40 56 | 86.57 24 | 57.99 78 | 81.15 87 | 82.96 80 | 57.03 150 | 66.78 161 | 85.56 111 | 44.50 162 | 88.11 34 | 51.77 200 | 80.23 108 | 83.10 183 |
|
SF-MVS | | | 78.82 12 | 79.22 11 | 77.60 42 | 82.88 74 | 57.83 79 | 84.99 30 | 88.13 2 | 61.86 73 | 79.16 20 | 90.75 16 | 57.96 25 | 87.09 58 | 77.08 21 | 90.18 15 | 87.87 24 |
|
AdaColmap |  | | 69.99 114 | 68.66 125 | 73.97 106 | 84.94 54 | 57.83 79 | 82.63 63 | 78.71 155 | 56.28 167 | 64.34 208 | 84.14 135 | 41.57 190 | 87.06 59 | 46.45 240 | 78.88 126 | 77.02 268 |
|
Fast-Effi-MVS+-dtu | | | 67.37 171 | 65.33 194 | 73.48 126 | 72.94 255 | 57.78 81 | 77.47 141 | 76.88 193 | 57.60 144 | 61.97 238 | 76.85 267 | 39.31 208 | 80.49 206 | 54.72 174 | 70.28 226 | 82.17 199 |
|
ACMP | | 63.53 6 | 72.30 77 | 71.20 86 | 75.59 73 | 80.28 107 | 57.54 82 | 82.74 61 | 82.84 84 | 60.58 88 | 65.24 196 | 86.18 95 | 39.25 209 | 86.03 84 | 66.95 82 | 76.79 152 | 83.22 178 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
CANet | | | 76.46 35 | 75.93 38 | 78.06 37 | 81.29 92 | 57.53 83 | 82.35 67 | 83.31 73 | 67.78 1 | 70.09 96 | 86.34 93 | 54.92 45 | 88.90 23 | 72.68 44 | 84.55 63 | 87.76 30 |
|
LPG-MVS_test | | | 72.74 70 | 71.74 75 | 75.76 65 | 80.22 109 | 57.51 84 | 82.55 65 | 83.40 69 | 61.32 77 | 66.67 165 | 87.33 72 | 39.15 211 | 86.59 69 | 67.70 73 | 77.30 146 | 83.19 180 |
|
LGP-MVS_train | | | | | 75.76 65 | 80.22 109 | 57.51 84 | | 83.40 69 | 61.32 77 | 66.67 165 | 87.33 72 | 39.15 211 | 86.59 69 | 67.70 73 | 77.30 146 | 83.19 180 |
|
test_prior | | | | | 76.69 51 | 84.20 61 | 57.27 86 | | 84.88 37 | | | | | 86.43 76 | | | 86.38 66 |
|
XVG-OURS | | | 68.76 144 | 67.37 153 | 72.90 139 | 74.32 241 | 57.22 87 | 70.09 268 | 78.81 152 | 55.24 189 | 67.79 145 | 85.81 109 | 36.54 241 | 78.28 238 | 62.04 123 | 75.74 160 | 83.19 180 |
|
API-MVS | | | 72.17 80 | 71.41 80 | 74.45 98 | 81.95 82 | 57.22 87 | 84.03 43 | 80.38 130 | 59.89 107 | 68.40 126 | 82.33 173 | 49.64 97 | 87.83 42 | 51.87 198 | 84.16 69 | 78.30 251 |
|
xiu_mvs_v1_base_debu | | | 68.58 147 | 67.28 157 | 72.48 147 | 78.19 160 | 57.19 89 | 75.28 184 | 75.09 220 | 51.61 232 | 70.04 97 | 81.41 195 | 32.79 274 | 79.02 229 | 63.81 107 | 77.31 143 | 81.22 214 |
|
xiu_mvs_v1_base | | | 68.58 147 | 67.28 157 | 72.48 147 | 78.19 160 | 57.19 89 | 75.28 184 | 75.09 220 | 51.61 232 | 70.04 97 | 81.41 195 | 32.79 274 | 79.02 229 | 63.81 107 | 77.31 143 | 81.22 214 |
|
xiu_mvs_v1_base_debi | | | 68.58 147 | 67.28 157 | 72.48 147 | 78.19 160 | 57.19 89 | 75.28 184 | 75.09 220 | 51.61 232 | 70.04 97 | 81.41 195 | 32.79 274 | 79.02 229 | 63.81 107 | 77.31 143 | 81.22 214 |
|
MVSFormer | | | 71.50 90 | 70.38 98 | 74.88 83 | 78.76 143 | 57.15 92 | 82.79 59 | 78.48 163 | 51.26 241 | 69.49 109 | 83.22 155 | 43.99 167 | 83.24 142 | 66.06 86 | 79.37 117 | 84.23 144 |
|
lupinMVS | | | 69.57 127 | 68.28 133 | 73.44 128 | 78.76 143 | 57.15 92 | 76.57 161 | 73.29 243 | 46.19 289 | 69.49 109 | 82.18 176 | 43.99 167 | 79.23 221 | 64.66 100 | 79.37 117 | 83.93 152 |
|
hse-mvs2 | | | 71.04 95 | 69.86 104 | 74.60 93 | 79.58 122 | 57.12 94 | 73.96 211 | 75.25 214 | 60.40 91 | 74.81 42 | 81.95 184 | 45.54 148 | 82.90 149 | 70.41 57 | 66.83 267 | 83.77 162 |
|
AUN-MVS | | | 68.45 152 | 66.41 174 | 74.57 95 | 79.53 124 | 57.08 95 | 73.93 214 | 75.23 215 | 54.44 209 | 66.69 164 | 81.85 186 | 37.10 236 | 82.89 150 | 62.07 122 | 66.84 266 | 83.75 163 |
|
jason | | | 69.65 125 | 68.39 132 | 73.43 129 | 78.27 158 | 56.88 96 | 77.12 150 | 73.71 239 | 46.53 286 | 69.34 113 | 83.22 155 | 43.37 171 | 79.18 222 | 64.77 99 | 79.20 122 | 84.23 144 |
jason: jason. |
XVG-OURS-SEG-HR | | | 68.81 141 | 67.47 150 | 72.82 142 | 74.40 239 | 56.87 97 | 70.59 261 | 79.04 147 | 54.77 202 | 66.99 157 | 86.01 101 | 39.57 206 | 78.21 239 | 62.54 118 | 73.33 184 | 83.37 174 |
|
DP-MVS | | | 65.68 200 | 63.66 209 | 71.75 157 | 84.93 55 | 56.87 97 | 80.74 91 | 73.16 244 | 53.06 219 | 59.09 267 | 82.35 172 | 36.79 240 | 85.94 87 | 32.82 329 | 69.96 232 | 72.45 312 |
|
HQP_MVS | | | 74.31 57 | 73.73 60 | 76.06 60 | 81.41 89 | 56.31 99 | 84.22 38 | 84.01 49 | 64.52 23 | 69.27 114 | 86.10 97 | 45.26 156 | 87.21 51 | 68.16 68 | 80.58 101 | 84.65 134 |
|
plane_prior | | | | | | | 56.31 99 | 83.58 51 | | 63.19 46 | | | | | | 80.48 104 | |
|
EPNet | | | 73.09 67 | 72.16 71 | 75.90 63 | 75.95 212 | 56.28 101 | 83.05 54 | 72.39 249 | 66.53 8 | 65.27 192 | 87.00 76 | 50.40 92 | 85.47 100 | 62.48 119 | 86.32 54 | 85.94 84 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CHOSEN 1792x2688 | | | 65.08 211 | 62.84 220 | 71.82 156 | 81.49 88 | 56.26 102 | 66.32 288 | 74.20 233 | 40.53 329 | 63.16 222 | 78.65 244 | 41.30 194 | 77.80 245 | 45.80 246 | 74.09 171 | 81.40 209 |
|
plane_prior6 | | | | | | 81.20 96 | 56.24 103 | | | | | | 45.26 156 | | | | |
|
anonymousdsp | | | 67.00 182 | 64.82 199 | 73.57 124 | 70.09 293 | 56.13 104 | 76.35 165 | 77.35 188 | 48.43 266 | 64.99 202 | 80.84 209 | 33.01 271 | 80.34 207 | 64.66 100 | 67.64 262 | 84.23 144 |
|
plane_prior3 | | | | | | | 56.09 105 | | | 63.92 34 | 69.27 114 | | | | | | |
|
PatchMatch-RL | | | 56.25 278 | 54.55 283 | 61.32 286 | 77.06 193 | 56.07 106 | 65.57 293 | 54.10 342 | 44.13 307 | 53.49 317 | 71.27 313 | 25.20 329 | 66.78 304 | 36.52 313 | 63.66 289 | 61.12 346 |
|
NP-MVS | | | | | | 80.98 99 | 56.05 107 | | | | | 85.54 113 | | | | | |
|
plane_prior7 | | | | | | 81.41 89 | 55.96 108 | | | | | | | | | | |
|
PS-MVSNAJss | | | 72.24 78 | 71.21 85 | 75.31 76 | 78.50 149 | 55.93 109 | 81.63 79 | 82.12 91 | 56.24 168 | 70.02 100 | 85.68 110 | 47.05 132 | 84.34 122 | 65.27 96 | 74.41 169 | 85.67 98 |
|
PHI-MVS | | | 75.87 42 | 75.36 43 | 77.41 44 | 80.62 105 | 55.91 110 | 84.28 37 | 85.78 20 | 56.08 171 | 73.41 59 | 86.58 88 | 50.94 89 | 88.54 26 | 70.79 55 | 89.71 17 | 87.79 29 |
|
PS-MVSNAJ | | | 70.51 104 | 69.70 107 | 72.93 138 | 81.52 86 | 55.79 111 | 74.92 195 | 79.00 148 | 55.04 198 | 69.88 104 | 78.66 243 | 47.05 132 | 82.19 169 | 61.61 127 | 79.58 114 | 80.83 222 |
|
PCF-MVS | | 61.88 8 | 70.95 97 | 69.49 111 | 75.35 75 | 77.63 177 | 55.71 112 | 76.04 174 | 81.81 96 | 50.30 250 | 69.66 107 | 85.40 116 | 52.51 67 | 84.89 112 | 51.82 199 | 80.24 107 | 85.45 108 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
LS3D | | | 64.71 214 | 62.50 224 | 71.34 171 | 79.72 121 | 55.71 112 | 79.82 103 | 74.72 225 | 48.50 265 | 56.62 284 | 84.62 125 | 33.59 266 | 82.34 168 | 29.65 348 | 75.23 165 | 75.97 276 |
|
HyFIR lowres test | | | 65.67 201 | 63.01 218 | 73.67 117 | 79.97 117 | 55.65 114 | 69.07 276 | 75.52 210 | 42.68 318 | 63.53 218 | 77.95 251 | 40.43 200 | 81.64 177 | 46.01 244 | 71.91 206 | 83.73 164 |
|
CS-MVS | | | 76.25 38 | 75.98 37 | 77.06 48 | 80.15 114 | 55.63 115 | 84.51 33 | 83.90 53 | 63.24 43 | 73.30 60 | 87.27 74 | 55.06 43 | 86.30 81 | 71.78 49 | 84.58 62 | 89.25 4 |
|
xiu_mvs_v2_base | | | 70.52 103 | 69.75 105 | 72.84 140 | 81.21 95 | 55.63 115 | 75.11 189 | 78.92 150 | 54.92 200 | 69.96 103 | 79.68 228 | 47.00 136 | 82.09 171 | 61.60 128 | 79.37 117 | 80.81 223 |
|
ET-MVSNet_ETH3D | | | 67.96 161 | 65.72 188 | 74.68 88 | 76.67 200 | 55.62 117 | 75.11 189 | 74.74 224 | 52.91 221 | 60.03 253 | 80.12 219 | 33.68 264 | 82.64 161 | 61.86 125 | 76.34 155 | 85.78 91 |
|
MVP-Stereo | | | 65.41 205 | 63.80 207 | 70.22 190 | 77.62 181 | 55.53 118 | 76.30 166 | 78.53 161 | 50.59 249 | 56.47 286 | 78.65 244 | 39.84 203 | 82.68 159 | 44.10 262 | 72.12 205 | 72.44 313 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
jajsoiax | | | 68.25 155 | 66.45 170 | 73.66 118 | 75.62 216 | 55.49 119 | 80.82 89 | 78.51 162 | 52.33 227 | 64.33 209 | 84.11 136 | 28.28 309 | 81.81 176 | 63.48 111 | 70.62 218 | 83.67 166 |
|
Vis-MVSNet |  | | 72.18 79 | 71.37 82 | 74.61 92 | 81.29 92 | 55.41 120 | 80.90 88 | 78.28 172 | 60.73 86 | 69.23 117 | 88.09 61 | 44.36 164 | 82.65 160 | 57.68 151 | 81.75 94 | 85.77 94 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
mvs_tets | | | 68.18 157 | 66.36 176 | 73.63 121 | 75.61 217 | 55.35 121 | 80.77 90 | 78.56 160 | 52.48 226 | 64.27 211 | 84.10 137 | 27.45 315 | 81.84 175 | 63.45 112 | 70.56 220 | 83.69 165 |
|
ETV-MVS | | | 74.46 56 | 73.84 59 | 76.33 58 | 79.27 130 | 55.24 122 | 79.22 113 | 85.00 36 | 64.97 19 | 72.65 73 | 79.46 233 | 53.65 61 | 87.87 40 | 67.45 77 | 82.91 79 | 85.89 88 |
|
CS-MVS-test | | | 75.62 45 | 75.31 45 | 76.56 55 | 80.63 104 | 55.13 123 | 83.88 46 | 85.22 28 | 62.05 69 | 71.49 86 | 86.03 100 | 53.83 56 | 86.36 79 | 67.74 72 | 86.91 47 | 88.19 16 |
|
HQP5-MVS | | | | | | | 54.94 124 | | | | | | | | | | |
|
HQP-MVS | | | 73.45 63 | 72.80 67 | 75.40 74 | 80.66 101 | 54.94 124 | 82.31 69 | 83.90 53 | 62.10 66 | 67.85 139 | 85.54 113 | 45.46 150 | 86.93 60 | 67.04 80 | 80.35 105 | 84.32 141 |
|
test_djsdf | | | 69.45 131 | 67.74 138 | 74.58 94 | 74.57 235 | 54.92 126 | 82.79 59 | 78.48 163 | 51.26 241 | 65.41 189 | 83.49 153 | 38.37 218 | 83.24 142 | 66.06 86 | 69.25 246 | 85.56 103 |
|
PLC |  | 56.13 14 | 65.09 210 | 63.21 216 | 70.72 184 | 81.04 98 | 54.87 127 | 78.57 121 | 77.47 184 | 48.51 264 | 55.71 289 | 81.89 185 | 33.71 263 | 79.71 213 | 41.66 284 | 70.37 223 | 77.58 260 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
patch_mono-2 | | | 69.85 117 | 71.09 87 | 66.16 245 | 79.11 136 | 54.80 128 | 71.97 243 | 74.31 230 | 53.50 217 | 70.90 89 | 84.17 134 | 57.63 29 | 63.31 316 | 66.17 85 | 82.02 89 | 80.38 229 |
|
114514_t | | | 70.83 98 | 69.56 108 | 74.64 91 | 86.21 31 | 54.63 129 | 82.34 68 | 81.81 96 | 48.22 268 | 63.01 223 | 85.83 107 | 40.92 199 | 87.10 57 | 57.91 150 | 79.79 110 | 82.18 197 |
|
UGNet | | | 68.81 141 | 67.39 152 | 73.06 136 | 78.33 156 | 54.47 130 | 79.77 104 | 75.40 212 | 60.45 90 | 63.22 220 | 84.40 131 | 32.71 278 | 80.91 197 | 51.71 201 | 80.56 103 | 83.81 158 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
test_0402 | | | 63.25 228 | 61.01 241 | 69.96 195 | 80.00 116 | 54.37 131 | 76.86 158 | 72.02 251 | 54.58 206 | 58.71 270 | 80.79 210 | 35.00 251 | 84.36 121 | 26.41 357 | 64.71 282 | 71.15 328 |
|
EI-MVSNet-Vis-set | | | 72.42 76 | 71.59 76 | 74.91 82 | 78.47 151 | 54.02 132 | 77.05 152 | 79.33 145 | 65.03 16 | 71.68 84 | 79.35 236 | 52.75 65 | 84.89 112 | 66.46 83 | 74.23 170 | 85.83 90 |
|
OpenMVS |  | 61.03 9 | 68.85 140 | 67.56 143 | 72.70 144 | 74.26 242 | 53.99 133 | 81.21 86 | 81.34 110 | 52.70 223 | 62.75 226 | 85.55 112 | 38.86 214 | 84.14 124 | 48.41 227 | 83.01 75 | 79.97 235 |
|
pmmvs4 | | | 61.48 247 | 59.39 248 | 67.76 226 | 71.57 275 | 53.86 134 | 71.42 248 | 65.34 295 | 44.20 305 | 59.46 262 | 77.92 253 | 35.90 244 | 74.71 268 | 43.87 265 | 64.87 281 | 74.71 293 |
|
TAMVS | | | 66.78 187 | 65.27 195 | 71.33 172 | 79.16 135 | 53.67 135 | 73.84 218 | 69.59 267 | 52.32 228 | 65.28 191 | 81.72 189 | 44.49 163 | 77.40 251 | 42.32 278 | 78.66 132 | 82.92 185 |
|
Effi-MVS+ | | | 73.31 65 | 72.54 69 | 75.62 71 | 77.87 170 | 53.64 136 | 79.62 109 | 79.61 139 | 61.63 75 | 72.02 81 | 82.61 166 | 56.44 34 | 85.97 86 | 63.99 106 | 79.07 125 | 87.25 48 |
|
F-COLMAP | | | 63.05 231 | 60.87 244 | 69.58 206 | 76.99 196 | 53.63 137 | 78.12 128 | 76.16 201 | 47.97 272 | 52.41 320 | 81.61 191 | 27.87 311 | 78.11 240 | 40.07 290 | 66.66 268 | 77.00 269 |
|
EI-MVSNet-UG-set | | | 71.92 83 | 71.06 88 | 74.52 97 | 77.98 168 | 53.56 138 | 76.62 160 | 79.16 146 | 64.40 25 | 71.18 87 | 78.95 241 | 52.19 73 | 84.66 118 | 65.47 94 | 73.57 178 | 85.32 115 |
|
EIA-MVS | | | 71.78 85 | 70.60 93 | 75.30 77 | 79.85 118 | 53.54 139 | 77.27 148 | 83.26 76 | 57.92 139 | 66.49 167 | 79.39 234 | 52.07 75 | 86.69 67 | 60.05 138 | 79.14 124 | 85.66 99 |
|
EG-PatchMatch MVS | | | 64.71 214 | 62.87 219 | 70.22 190 | 77.68 175 | 53.48 140 | 77.99 129 | 78.82 151 | 53.37 218 | 56.03 288 | 77.41 262 | 24.75 332 | 84.04 126 | 46.37 241 | 73.42 183 | 73.14 304 |
|
mvsmamba | | | 71.15 93 | 69.54 109 | 75.99 61 | 77.61 182 | 53.46 141 | 81.95 76 | 75.11 219 | 57.73 143 | 66.95 159 | 85.96 103 | 37.14 234 | 87.56 46 | 67.94 70 | 75.49 163 | 86.97 52 |
|
QAPM | | | 70.05 112 | 68.81 122 | 73.78 110 | 76.54 204 | 53.43 142 | 83.23 52 | 83.48 65 | 52.89 222 | 65.90 179 | 86.29 94 | 41.55 192 | 86.49 75 | 51.01 205 | 78.40 135 | 81.42 208 |
|
PAPM_NR | | | 72.63 72 | 71.80 74 | 75.13 81 | 81.72 84 | 53.42 143 | 79.91 102 | 83.28 75 | 59.14 117 | 66.31 172 | 85.90 105 | 51.86 77 | 86.06 82 | 57.45 152 | 80.62 99 | 85.91 86 |
|
dcpmvs_2 | | | 74.55 55 | 75.23 46 | 72.48 147 | 82.34 77 | 53.34 144 | 77.87 130 | 81.46 102 | 57.80 142 | 75.49 34 | 86.81 78 | 62.22 13 | 77.75 246 | 71.09 54 | 82.02 89 | 86.34 70 |
|
CLD-MVS | | | 73.33 64 | 72.68 68 | 75.29 78 | 78.82 142 | 53.33 145 | 78.23 125 | 84.79 39 | 61.30 79 | 70.41 93 | 81.04 201 | 52.41 70 | 87.12 56 | 64.61 102 | 82.49 86 | 85.41 112 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
bld_raw_dy_0_64 | | | 64.87 212 | 63.22 215 | 69.83 201 | 74.79 230 | 53.32 146 | 78.15 127 | 62.02 316 | 51.20 243 | 60.17 251 | 83.12 159 | 24.15 334 | 74.20 273 | 63.08 113 | 72.33 200 | 81.96 201 |
|
BH-untuned | | | 68.27 154 | 67.29 156 | 71.21 173 | 79.74 119 | 53.22 147 | 76.06 172 | 77.46 186 | 57.19 148 | 66.10 174 | 81.61 191 | 45.37 154 | 83.50 138 | 45.42 254 | 76.68 154 | 76.91 272 |
|
旧先验1 | | | | | | 83.04 70 | 53.15 148 | | 67.52 279 | | | 87.85 67 | 44.08 165 | | | 80.76 98 | 78.03 258 |
|
OMC-MVS | | | 71.40 92 | 70.60 93 | 73.78 110 | 76.60 202 | 53.15 148 | 79.74 106 | 79.78 135 | 58.37 130 | 68.75 121 | 86.45 91 | 45.43 152 | 80.60 202 | 62.58 117 | 77.73 139 | 87.58 37 |
|
CDS-MVSNet | | | 66.80 186 | 65.37 192 | 71.10 177 | 78.98 138 | 53.13 150 | 73.27 224 | 71.07 257 | 52.15 229 | 64.72 204 | 80.23 218 | 43.56 170 | 77.10 253 | 45.48 252 | 78.88 126 | 83.05 184 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
testdata | | | | | 64.66 263 | 81.52 86 | 52.93 151 | | 65.29 296 | 46.09 290 | 73.88 54 | 87.46 70 | 38.08 223 | 66.26 308 | 53.31 187 | 78.48 134 | 74.78 292 |
|
iter_conf_final | | | 69.82 118 | 68.02 136 | 75.23 79 | 79.38 127 | 52.91 152 | 80.11 97 | 73.96 236 | 54.99 199 | 68.04 136 | 83.59 148 | 29.05 302 | 87.16 53 | 65.41 95 | 77.62 140 | 85.63 101 |
|
ACMH+ | | 57.40 11 | 66.12 196 | 64.06 202 | 72.30 153 | 77.79 173 | 52.83 153 | 80.39 93 | 78.03 175 | 57.30 146 | 57.47 280 | 82.55 168 | 27.68 313 | 84.17 123 | 45.54 250 | 69.78 236 | 79.90 236 |
|
IB-MVS | | 56.42 12 | 65.40 206 | 62.73 222 | 73.40 130 | 74.89 225 | 52.78 154 | 73.09 226 | 75.13 218 | 55.69 180 | 58.48 274 | 73.73 299 | 32.86 273 | 86.32 80 | 50.63 208 | 70.11 228 | 81.10 218 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
v7n | | | 69.01 139 | 67.36 154 | 73.98 105 | 72.51 263 | 52.65 155 | 78.54 123 | 81.30 111 | 60.26 99 | 62.67 227 | 81.62 190 | 43.61 169 | 84.49 119 | 57.01 154 | 68.70 254 | 84.79 131 |
|
DROMVSNet | | | 75.84 43 | 75.87 40 | 75.74 67 | 78.86 140 | 52.65 155 | 83.73 48 | 86.08 17 | 63.47 40 | 72.77 71 | 87.25 75 | 53.13 64 | 87.93 38 | 71.97 48 | 85.57 58 | 86.66 62 |
|
MSDG | | | 61.81 243 | 59.23 249 | 69.55 207 | 72.64 259 | 52.63 157 | 70.45 264 | 75.81 205 | 51.38 238 | 53.70 311 | 76.11 277 | 29.52 298 | 81.08 192 | 37.70 302 | 65.79 275 | 74.93 289 |
|
cascas | | | 65.98 197 | 63.42 212 | 73.64 120 | 77.26 190 | 52.58 158 | 72.26 239 | 77.21 190 | 48.56 263 | 61.21 246 | 74.60 293 | 32.57 282 | 85.82 90 | 50.38 210 | 76.75 153 | 82.52 192 |
|
RRT_MVS | | | 69.42 132 | 67.49 149 | 75.21 80 | 78.01 167 | 52.56 159 | 82.23 73 | 78.15 173 | 55.84 175 | 65.65 184 | 85.07 117 | 30.86 289 | 86.83 63 | 61.56 130 | 70.00 230 | 86.24 79 |
|
BH-RMVSNet | | | 68.81 141 | 67.42 151 | 72.97 137 | 80.11 115 | 52.53 160 | 74.26 206 | 76.29 200 | 58.48 128 | 68.38 127 | 84.20 133 | 42.59 177 | 83.83 131 | 46.53 239 | 75.91 158 | 82.56 189 |
|
COLMAP_ROB |  | 52.97 17 | 61.27 249 | 58.81 252 | 68.64 218 | 74.63 233 | 52.51 161 | 78.42 124 | 73.30 242 | 49.92 254 | 50.96 325 | 81.51 194 | 23.06 336 | 79.40 218 | 31.63 337 | 65.85 273 | 74.01 300 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
BH-w/o | | | 66.85 184 | 65.83 186 | 69.90 199 | 79.29 128 | 52.46 162 | 74.66 201 | 76.65 198 | 54.51 208 | 64.85 203 | 78.12 249 | 45.59 147 | 82.95 148 | 43.26 270 | 75.54 162 | 74.27 297 |
|
XVG-ACMP-BASELINE | | | 64.36 218 | 62.23 227 | 70.74 183 | 72.35 265 | 52.45 163 | 70.80 260 | 78.45 166 | 53.84 213 | 59.87 256 | 81.10 200 | 16.24 349 | 79.32 220 | 55.64 168 | 71.76 207 | 80.47 226 |
|
pmmvs-eth3d | | | 58.81 260 | 56.31 273 | 66.30 242 | 67.61 314 | 52.42 164 | 72.30 238 | 64.76 299 | 43.55 311 | 54.94 299 | 74.19 296 | 28.95 303 | 72.60 276 | 43.31 268 | 57.21 323 | 73.88 301 |
|
DELS-MVS | | | 74.76 50 | 74.46 52 | 75.65 70 | 77.84 171 | 52.25 165 | 75.59 179 | 84.17 46 | 63.76 36 | 73.15 63 | 82.79 161 | 59.58 19 | 86.80 64 | 67.24 78 | 86.04 55 | 87.89 22 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
GeoE | | | 71.01 96 | 70.15 101 | 73.60 123 | 79.57 123 | 52.17 166 | 78.93 115 | 78.12 174 | 58.02 137 | 67.76 147 | 83.87 142 | 52.36 71 | 82.72 158 | 56.90 155 | 75.79 159 | 85.92 85 |
|
MS-PatchMatch | | | 62.42 235 | 61.46 235 | 65.31 260 | 75.21 224 | 52.10 167 | 72.05 241 | 74.05 234 | 46.41 287 | 57.42 281 | 74.36 294 | 34.35 258 | 77.57 249 | 45.62 249 | 73.67 175 | 66.26 343 |
|
CR-MVSNet | | | 59.91 254 | 57.90 262 | 65.96 250 | 69.96 296 | 52.07 168 | 65.31 297 | 63.15 309 | 42.48 319 | 59.36 263 | 74.84 290 | 35.83 245 | 70.75 285 | 45.50 251 | 64.65 283 | 75.06 285 |
|
RPMNet | | | 61.53 245 | 58.42 256 | 70.86 180 | 69.96 296 | 52.07 168 | 65.31 297 | 81.36 106 | 43.20 314 | 59.36 263 | 70.15 321 | 35.37 247 | 85.47 100 | 36.42 314 | 64.65 283 | 75.06 285 |
|
IterMVS | | | 62.79 232 | 61.27 237 | 67.35 232 | 69.37 303 | 52.04 170 | 71.17 253 | 68.24 278 | 52.63 225 | 59.82 257 | 76.91 266 | 37.32 230 | 72.36 277 | 52.80 190 | 63.19 294 | 77.66 259 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
ACMH | | 55.70 15 | 65.20 209 | 63.57 210 | 70.07 194 | 78.07 164 | 52.01 171 | 79.48 111 | 79.69 136 | 55.75 179 | 56.59 285 | 80.98 203 | 27.12 317 | 80.94 194 | 42.90 275 | 71.58 210 | 77.25 266 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
FE-MVS | | | 65.91 198 | 63.33 214 | 73.63 121 | 77.36 188 | 51.95 172 | 72.62 232 | 75.81 205 | 53.70 214 | 65.31 190 | 78.96 240 | 28.81 306 | 86.39 77 | 43.93 263 | 73.48 181 | 82.55 190 |
|
casdiffmvs_mvg |  | | 76.14 39 | 76.30 34 | 75.66 69 | 76.46 206 | 51.83 173 | 79.67 107 | 85.08 31 | 65.02 17 | 75.84 32 | 88.58 58 | 59.42 21 | 85.08 106 | 72.75 43 | 83.93 70 | 90.08 1 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
UA-Net | | | 73.13 66 | 72.93 66 | 73.76 112 | 83.58 64 | 51.66 174 | 78.75 116 | 77.66 181 | 67.75 2 | 72.61 74 | 89.42 45 | 49.82 95 | 83.29 141 | 53.61 184 | 83.14 73 | 86.32 74 |
|
Fast-Effi-MVS+ | | | 70.28 109 | 69.12 118 | 73.73 115 | 78.50 149 | 51.50 175 | 75.01 192 | 79.46 143 | 56.16 170 | 68.59 122 | 79.55 231 | 53.97 53 | 84.05 125 | 53.34 186 | 77.53 142 | 85.65 100 |
|
PAPR | | | 71.72 87 | 70.82 91 | 74.41 99 | 81.20 96 | 51.17 176 | 79.55 110 | 83.33 72 | 55.81 177 | 66.93 160 | 84.61 126 | 50.95 88 | 86.06 82 | 55.79 164 | 79.20 122 | 86.00 83 |
|
iter_conf05 | | | 69.40 133 | 67.62 142 | 74.73 85 | 77.84 171 | 51.13 177 | 79.28 112 | 73.71 239 | 54.62 203 | 68.17 131 | 83.59 148 | 28.68 307 | 87.16 53 | 65.74 92 | 76.95 149 | 85.91 86 |
|
thisisatest0530 | | | 67.92 162 | 65.78 187 | 74.33 101 | 76.29 207 | 51.03 178 | 76.89 157 | 74.25 232 | 53.67 215 | 65.59 186 | 81.76 188 | 35.15 249 | 85.50 98 | 55.94 160 | 72.47 197 | 86.47 65 |
|
v1192 | | | 69.97 115 | 68.68 124 | 73.85 107 | 73.19 249 | 50.94 179 | 77.68 135 | 81.36 106 | 57.51 145 | 68.95 120 | 80.85 208 | 45.28 155 | 85.33 104 | 62.97 115 | 70.37 223 | 85.27 117 |
|
MVS | | | 67.37 171 | 66.33 177 | 70.51 188 | 75.46 220 | 50.94 179 | 73.95 212 | 81.85 95 | 41.57 324 | 62.54 231 | 78.57 247 | 47.98 115 | 85.47 100 | 52.97 189 | 82.05 88 | 75.14 284 |
|
v10 | | | 70.21 110 | 69.02 119 | 73.81 109 | 73.51 247 | 50.92 181 | 78.74 117 | 81.39 104 | 60.05 102 | 66.39 170 | 81.83 187 | 47.58 122 | 85.41 103 | 62.80 116 | 68.86 252 | 85.09 122 |
|
PMMVS | | | 53.96 289 | 53.26 295 | 56.04 308 | 62.60 340 | 50.92 181 | 61.17 317 | 56.09 336 | 32.81 343 | 53.51 316 | 66.84 338 | 34.04 260 | 59.93 328 | 44.14 261 | 68.18 257 | 57.27 352 |
|
tttt0517 | | | 67.83 164 | 65.66 189 | 74.33 101 | 76.69 199 | 50.82 183 | 77.86 131 | 73.99 235 | 54.54 207 | 64.64 206 | 82.53 169 | 35.06 250 | 85.50 98 | 55.71 165 | 69.91 233 | 86.67 61 |
|
IterMVS-SCA-FT | | | 62.49 233 | 61.52 234 | 65.40 258 | 71.99 270 | 50.80 184 | 71.15 255 | 69.63 266 | 45.71 295 | 60.61 248 | 77.93 252 | 37.45 227 | 65.99 309 | 55.67 166 | 63.50 291 | 79.42 243 |
|
JIA-IIPM | | | 51.56 302 | 47.68 315 | 63.21 272 | 64.61 331 | 50.73 185 | 47.71 352 | 58.77 325 | 42.90 316 | 48.46 335 | 51.72 358 | 24.97 330 | 70.24 290 | 36.06 316 | 53.89 335 | 68.64 341 |
|
v1144 | | | 70.42 106 | 69.31 114 | 73.76 112 | 73.22 248 | 50.64 186 | 77.83 132 | 81.43 103 | 58.58 126 | 69.40 112 | 81.16 198 | 47.53 123 | 85.29 105 | 64.01 105 | 70.64 217 | 85.34 114 |
|
PVSNet_BlendedMVS | | | 68.56 150 | 67.72 139 | 71.07 178 | 77.03 194 | 50.57 187 | 74.50 203 | 81.52 99 | 53.66 216 | 64.22 213 | 79.72 227 | 49.13 104 | 82.87 152 | 55.82 162 | 73.92 173 | 79.77 240 |
|
PVSNet_Blended | | | 68.59 146 | 67.72 139 | 71.19 174 | 77.03 194 | 50.57 187 | 72.51 235 | 81.52 99 | 51.91 230 | 64.22 213 | 77.77 259 | 49.13 104 | 82.87 152 | 55.82 162 | 79.58 114 | 80.14 233 |
|
canonicalmvs | | | 74.67 52 | 74.98 48 | 73.71 116 | 78.94 139 | 50.56 189 | 80.23 94 | 83.87 56 | 60.30 98 | 77.15 28 | 86.56 89 | 59.65 17 | 82.00 172 | 66.01 88 | 82.12 87 | 88.58 8 |
|
alignmvs | | | 73.86 61 | 73.99 56 | 73.45 127 | 78.20 159 | 50.50 190 | 78.57 121 | 82.43 87 | 59.40 113 | 76.57 29 | 86.71 83 | 56.42 35 | 81.23 188 | 65.84 90 | 81.79 91 | 88.62 6 |
|
casdiffmvs |  | | 74.80 49 | 74.89 49 | 74.53 96 | 75.59 218 | 50.37 191 | 78.17 126 | 85.06 33 | 62.80 56 | 74.40 48 | 87.86 66 | 57.88 26 | 83.61 136 | 69.46 62 | 82.79 83 | 89.59 3 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
nrg030 | | | 72.96 68 | 73.01 65 | 72.84 140 | 75.41 221 | 50.24 192 | 80.02 98 | 82.89 83 | 58.36 131 | 74.44 47 | 86.73 81 | 58.90 23 | 80.83 198 | 65.84 90 | 74.46 167 | 87.44 40 |
|
v8 | | | 70.33 108 | 69.28 115 | 73.49 125 | 73.15 250 | 50.22 193 | 78.62 120 | 80.78 124 | 60.79 84 | 66.45 169 | 82.11 182 | 49.35 99 | 84.98 109 | 63.58 110 | 68.71 253 | 85.28 116 |
|
V42 | | | 68.65 145 | 67.35 155 | 72.56 145 | 68.93 307 | 50.18 194 | 72.90 228 | 79.47 142 | 56.92 152 | 69.45 111 | 80.26 217 | 46.29 141 | 82.99 146 | 64.07 103 | 67.82 260 | 84.53 136 |
|
v144192 | | | 69.71 121 | 68.51 126 | 73.33 132 | 73.10 251 | 50.13 195 | 77.54 139 | 80.64 125 | 56.65 155 | 68.57 124 | 80.55 211 | 46.87 137 | 84.96 111 | 62.98 114 | 69.66 240 | 84.89 128 |
|
v1921920 | | | 69.47 130 | 68.17 134 | 73.36 131 | 73.06 252 | 50.10 196 | 77.39 142 | 80.56 126 | 56.58 162 | 68.59 122 | 80.37 213 | 44.72 160 | 84.98 109 | 62.47 120 | 69.82 235 | 85.00 124 |
|
FA-MVS(test-final) | | | 69.82 118 | 68.48 127 | 73.84 108 | 78.44 152 | 50.04 197 | 75.58 181 | 78.99 149 | 58.16 133 | 67.59 148 | 82.14 180 | 42.66 176 | 85.63 92 | 56.60 156 | 76.19 156 | 85.84 89 |
|
v2v482 | | | 70.50 105 | 69.45 113 | 73.66 118 | 72.62 260 | 50.03 198 | 77.58 136 | 80.51 128 | 59.90 104 | 69.52 108 | 82.14 180 | 47.53 123 | 84.88 114 | 65.07 98 | 70.17 227 | 86.09 81 |
|
baseline | | | 74.61 53 | 74.70 50 | 74.34 100 | 75.70 214 | 49.99 199 | 77.54 139 | 84.63 40 | 62.73 57 | 73.98 52 | 87.79 68 | 57.67 28 | 83.82 132 | 69.49 60 | 82.74 84 | 89.20 5 |
|
v1240 | | | 69.24 136 | 67.91 137 | 73.25 135 | 73.02 254 | 49.82 200 | 77.21 149 | 80.54 127 | 56.43 164 | 68.34 128 | 80.51 212 | 43.33 172 | 84.99 107 | 62.03 124 | 69.77 238 | 84.95 127 |
|
CHOSEN 280x420 | | | 47.83 313 | 46.36 317 | 52.24 330 | 67.37 316 | 49.78 201 | 38.91 364 | 43.11 363 | 35.00 341 | 43.27 351 | 63.30 347 | 28.95 303 | 49.19 358 | 36.53 312 | 60.80 310 | 57.76 351 |
|
MVSTER | | | 67.16 178 | 65.58 191 | 71.88 155 | 70.37 289 | 49.70 202 | 70.25 267 | 78.45 166 | 51.52 235 | 69.16 118 | 80.37 213 | 38.45 217 | 82.50 164 | 60.19 137 | 71.46 211 | 83.44 173 |
|
EPP-MVSNet | | | 72.16 81 | 71.31 84 | 74.71 86 | 78.68 146 | 49.70 202 | 82.10 74 | 81.65 98 | 60.40 91 | 65.94 177 | 85.84 106 | 51.74 79 | 86.37 78 | 55.93 161 | 79.55 116 | 88.07 21 |
|
VDD-MVS | | | 72.50 73 | 72.09 72 | 73.75 114 | 81.58 85 | 49.69 204 | 77.76 134 | 77.63 182 | 63.21 45 | 73.21 62 | 89.02 51 | 42.14 182 | 83.32 140 | 61.72 126 | 82.50 85 | 88.25 13 |
|
MG-MVS | | | 73.96 60 | 73.89 58 | 74.16 103 | 85.65 42 | 49.69 204 | 81.59 82 | 81.29 112 | 61.45 76 | 71.05 88 | 88.11 60 | 51.77 78 | 87.73 43 | 61.05 132 | 83.09 74 | 85.05 123 |
|
TR-MVS | | | 66.59 192 | 65.07 197 | 71.17 175 | 79.18 133 | 49.63 206 | 73.48 221 | 75.20 217 | 52.95 220 | 67.90 137 | 80.33 216 | 39.81 204 | 83.68 134 | 43.20 271 | 73.56 179 | 80.20 231 |
|
thisisatest0515 | | | 65.83 199 | 63.50 211 | 72.82 142 | 73.75 245 | 49.50 207 | 71.32 250 | 73.12 245 | 49.39 256 | 63.82 215 | 76.50 275 | 34.95 252 | 84.84 115 | 53.20 188 | 75.49 163 | 84.13 148 |
|
IterMVS-LS | | | 69.22 137 | 68.48 127 | 71.43 167 | 74.44 238 | 49.40 208 | 76.23 168 | 77.55 183 | 59.60 109 | 65.85 182 | 81.59 193 | 51.28 83 | 81.58 180 | 59.87 142 | 69.90 234 | 83.30 175 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 69.27 135 | 68.44 131 | 71.73 158 | 74.47 236 | 49.39 209 | 75.20 187 | 78.45 166 | 59.60 109 | 69.16 118 | 76.51 273 | 51.29 82 | 82.50 164 | 59.86 143 | 71.45 212 | 83.30 175 |
|
AllTest | | | 57.08 273 | 54.65 282 | 64.39 265 | 71.44 276 | 49.03 210 | 69.92 270 | 67.30 280 | 45.97 292 | 47.16 338 | 79.77 225 | 17.47 345 | 67.56 300 | 33.65 324 | 59.16 317 | 76.57 273 |
|
TestCases | | | | | 64.39 265 | 71.44 276 | 49.03 210 | | 67.30 280 | 45.97 292 | 47.16 338 | 79.77 225 | 17.47 345 | 67.56 300 | 33.65 324 | 59.16 317 | 76.57 273 |
|
PAPM | | | 67.92 162 | 66.69 167 | 71.63 162 | 78.09 163 | 49.02 212 | 77.09 151 | 81.24 115 | 51.04 244 | 60.91 247 | 83.98 140 | 47.71 119 | 84.99 107 | 40.81 287 | 79.32 120 | 80.90 221 |
|
ppachtmachnet_test | | | 58.06 267 | 55.38 278 | 66.10 248 | 69.51 300 | 48.99 213 | 68.01 280 | 66.13 290 | 44.50 302 | 54.05 309 | 70.74 315 | 32.09 285 | 72.34 278 | 36.68 310 | 56.71 327 | 76.99 271 |
|
diffmvs |  | | 70.69 101 | 70.43 96 | 71.46 164 | 69.45 302 | 48.95 214 | 72.93 227 | 78.46 165 | 57.27 147 | 71.69 83 | 83.97 141 | 51.48 81 | 77.92 243 | 70.70 56 | 77.95 138 | 87.53 38 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
Patchmatch-RL test | | | 58.16 265 | 55.49 277 | 66.15 246 | 67.92 313 | 48.89 215 | 60.66 320 | 51.07 348 | 47.86 273 | 59.36 263 | 62.71 348 | 34.02 261 | 72.27 279 | 56.41 158 | 59.40 316 | 77.30 263 |
|
TAPA-MVS | | 59.36 10 | 66.60 190 | 65.20 196 | 70.81 181 | 76.63 201 | 48.75 216 | 76.52 163 | 80.04 134 | 50.64 248 | 65.24 196 | 84.93 119 | 39.15 211 | 78.54 235 | 36.77 307 | 76.88 151 | 85.14 119 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
EGC-MVSNET | | | 42.47 320 | 38.48 327 | 54.46 316 | 74.33 240 | 48.73 217 | 70.33 266 | 51.10 347 | 0.03 377 | 0.18 378 | 67.78 334 | 13.28 354 | 66.49 306 | 18.91 363 | 50.36 344 | 48.15 359 |
|
MDA-MVSNet-bldmvs | | | 53.87 291 | 50.81 302 | 63.05 274 | 66.25 323 | 48.58 218 | 56.93 333 | 63.82 304 | 48.09 270 | 41.22 353 | 70.48 319 | 30.34 293 | 68.00 299 | 34.24 322 | 45.92 351 | 72.57 310 |
|
MVS_Test | | | 72.45 75 | 72.46 70 | 72.42 151 | 74.88 226 | 48.50 219 | 76.28 167 | 83.14 79 | 59.40 113 | 72.46 76 | 84.68 122 | 55.66 39 | 81.12 189 | 65.98 89 | 79.66 113 | 87.63 34 |
|
D2MVS | | | 62.30 237 | 60.29 246 | 68.34 223 | 66.46 322 | 48.42 220 | 65.70 291 | 73.42 241 | 47.71 274 | 58.16 276 | 75.02 289 | 30.51 291 | 77.71 247 | 53.96 181 | 71.68 209 | 78.90 249 |
|
eth_miper_zixun_eth | | | 67.63 167 | 66.28 180 | 71.67 160 | 71.60 274 | 48.33 221 | 73.68 220 | 77.88 176 | 55.80 178 | 65.91 178 | 78.62 246 | 47.35 129 | 82.88 151 | 59.45 145 | 66.25 271 | 83.81 158 |
|
K. test v3 | | | 60.47 252 | 57.11 265 | 70.56 186 | 73.74 246 | 48.22 222 | 75.10 191 | 62.55 312 | 58.27 132 | 53.62 314 | 76.31 276 | 27.81 312 | 81.59 179 | 47.42 231 | 39.18 359 | 81.88 204 |
|
GA-MVS | | | 65.53 203 | 63.70 208 | 71.02 179 | 70.87 282 | 48.10 223 | 70.48 263 | 74.40 228 | 56.69 154 | 64.70 205 | 76.77 268 | 33.66 265 | 81.10 190 | 55.42 170 | 70.32 225 | 83.87 156 |
|
SCA | | | 60.49 251 | 58.38 257 | 66.80 235 | 74.14 244 | 48.06 224 | 63.35 305 | 63.23 308 | 49.13 259 | 59.33 266 | 72.10 306 | 37.45 227 | 74.27 271 | 44.17 259 | 62.57 298 | 78.05 255 |
|
OurMVSNet-221017-0 | | | 61.37 248 | 58.63 255 | 69.61 203 | 72.05 269 | 48.06 224 | 73.93 214 | 72.51 248 | 47.23 282 | 54.74 301 | 80.92 205 | 21.49 343 | 81.24 187 | 48.57 226 | 56.22 328 | 79.53 242 |
|
lessismore_v0 | | | | | 69.91 198 | 71.42 278 | 47.80 226 | | 50.90 349 | | 50.39 331 | 75.56 284 | 27.43 316 | 81.33 184 | 45.91 245 | 34.10 365 | 80.59 225 |
|
LTVRE_ROB | | 55.42 16 | 63.15 230 | 61.23 239 | 68.92 215 | 76.57 203 | 47.80 226 | 59.92 322 | 76.39 199 | 54.35 210 | 58.67 271 | 82.46 171 | 29.44 300 | 81.49 181 | 42.12 280 | 71.14 213 | 77.46 261 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
v148 | | | 68.24 156 | 67.19 163 | 71.40 168 | 70.43 287 | 47.77 228 | 75.76 178 | 77.03 192 | 58.91 119 | 67.36 151 | 80.10 220 | 48.60 111 | 81.89 173 | 60.01 139 | 66.52 270 | 84.53 136 |
|
Anonymous20240529 | | | 69.91 116 | 69.02 119 | 72.56 145 | 80.19 112 | 47.65 229 | 77.56 138 | 80.99 120 | 55.45 186 | 69.88 104 | 86.76 79 | 39.24 210 | 82.18 170 | 54.04 179 | 77.10 148 | 87.85 25 |
|
baseline2 | | | 63.42 224 | 61.26 238 | 69.89 200 | 72.55 262 | 47.62 230 | 71.54 247 | 68.38 277 | 50.11 251 | 54.82 300 | 75.55 285 | 43.06 174 | 80.96 193 | 48.13 228 | 67.16 265 | 81.11 217 |
|
VDDNet | | | 71.81 84 | 71.33 83 | 73.26 134 | 82.80 75 | 47.60 231 | 78.74 117 | 75.27 213 | 59.59 112 | 72.94 68 | 89.40 46 | 41.51 193 | 83.91 130 | 58.75 148 | 82.99 76 | 88.26 12 |
|
1314 | | | 64.61 216 | 63.21 216 | 68.80 216 | 71.87 272 | 47.46 232 | 73.95 212 | 78.39 171 | 42.88 317 | 59.97 254 | 76.60 272 | 38.11 222 | 79.39 219 | 54.84 173 | 72.32 201 | 79.55 241 |
|
CMPMVS |  | 42.80 21 | 57.81 269 | 55.97 274 | 63.32 270 | 60.98 347 | 47.38 233 | 64.66 301 | 69.50 268 | 32.06 344 | 46.83 340 | 77.80 257 | 29.50 299 | 71.36 282 | 48.68 224 | 73.75 174 | 71.21 327 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
SixPastTwentyTwo | | | 61.65 244 | 58.80 253 | 70.20 192 | 75.80 213 | 47.22 234 | 75.59 179 | 69.68 265 | 54.61 204 | 54.11 308 | 79.26 237 | 27.07 318 | 82.96 147 | 43.27 269 | 49.79 346 | 80.41 228 |
|
Anonymous20231211 | | | 69.28 134 | 68.47 129 | 71.73 158 | 80.28 107 | 47.18 235 | 79.98 99 | 82.37 88 | 54.61 204 | 67.24 153 | 84.01 139 | 39.43 207 | 82.41 167 | 55.45 169 | 72.83 192 | 85.62 102 |
|
tpm cat1 | | | 59.25 258 | 56.95 268 | 66.15 246 | 72.19 267 | 46.96 236 | 68.09 279 | 65.76 291 | 40.03 333 | 57.81 278 | 70.56 316 | 38.32 219 | 74.51 269 | 38.26 300 | 61.50 306 | 77.00 269 |
|
TDRefinement | | | 53.44 295 | 50.72 303 | 61.60 283 | 64.31 333 | 46.96 236 | 70.89 259 | 65.27 297 | 41.78 320 | 44.61 347 | 77.98 250 | 11.52 359 | 66.36 307 | 28.57 352 | 51.59 340 | 71.49 325 |
|
PatchmatchNet |  | | 59.84 255 | 58.24 258 | 64.65 264 | 73.05 253 | 46.70 238 | 69.42 273 | 62.18 314 | 47.55 276 | 58.88 269 | 71.96 308 | 34.49 256 | 69.16 293 | 42.99 273 | 63.60 290 | 78.07 254 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
cl22 | | | 67.47 170 | 66.45 170 | 70.54 187 | 69.85 298 | 46.49 239 | 73.85 217 | 77.35 188 | 55.07 196 | 65.51 187 | 77.92 253 | 47.64 121 | 81.10 190 | 61.58 129 | 69.32 243 | 84.01 151 |
|
LFMVS | | | 71.78 85 | 71.59 76 | 72.32 152 | 83.40 67 | 46.38 240 | 79.75 105 | 71.08 256 | 64.18 30 | 72.80 70 | 88.64 57 | 42.58 178 | 83.72 133 | 57.41 153 | 84.49 64 | 86.86 56 |
|
miper_lstm_enhance | | | 62.03 240 | 60.88 243 | 65.49 257 | 66.71 320 | 46.25 241 | 56.29 335 | 75.70 207 | 50.68 246 | 61.27 245 | 75.48 286 | 40.21 201 | 68.03 298 | 56.31 159 | 65.25 278 | 82.18 197 |
|
CANet_DTU | | | 68.18 157 | 67.71 141 | 69.59 204 | 74.83 228 | 46.24 242 | 78.66 119 | 76.85 194 | 59.60 109 | 63.45 219 | 82.09 183 | 35.25 248 | 77.41 250 | 59.88 141 | 78.76 130 | 85.14 119 |
|
miper_ehance_all_eth | | | 68.03 159 | 67.24 161 | 70.40 189 | 70.54 285 | 46.21 243 | 73.98 210 | 78.68 157 | 55.07 196 | 66.05 175 | 77.80 257 | 52.16 74 | 81.31 185 | 61.53 131 | 69.32 243 | 83.67 166 |
|
c3_l | | | 68.33 153 | 67.56 143 | 70.62 185 | 70.87 282 | 46.21 243 | 74.47 204 | 78.80 153 | 56.22 169 | 66.19 173 | 78.53 248 | 51.88 76 | 81.40 182 | 62.08 121 | 69.04 249 | 84.25 143 |
|
miper_enhance_ethall | | | 67.11 179 | 66.09 183 | 70.17 193 | 69.21 304 | 45.98 245 | 72.85 229 | 78.41 169 | 51.38 238 | 65.65 184 | 75.98 281 | 51.17 85 | 81.25 186 | 60.82 133 | 69.32 243 | 83.29 177 |
|
CostFormer | | | 64.04 219 | 62.51 223 | 68.61 219 | 71.88 271 | 45.77 246 | 71.30 251 | 70.60 261 | 47.55 276 | 64.31 210 | 76.61 271 | 41.63 189 | 79.62 216 | 49.74 214 | 69.00 250 | 80.42 227 |
|
cl____ | | | 67.18 176 | 66.26 181 | 69.94 196 | 70.20 290 | 45.74 247 | 73.30 222 | 76.83 195 | 55.10 191 | 65.27 192 | 79.57 230 | 47.39 127 | 80.53 203 | 59.41 147 | 69.22 247 | 83.53 172 |
|
DIV-MVS_self_test | | | 67.18 176 | 66.26 181 | 69.94 196 | 70.20 290 | 45.74 247 | 73.29 223 | 76.83 195 | 55.10 191 | 65.27 192 | 79.58 229 | 47.38 128 | 80.53 203 | 59.43 146 | 69.22 247 | 83.54 171 |
|
test_yl | | | 69.69 122 | 69.13 116 | 71.36 169 | 78.37 154 | 45.74 247 | 74.71 199 | 80.20 132 | 57.91 140 | 70.01 101 | 83.83 143 | 42.44 179 | 82.87 152 | 54.97 171 | 79.72 111 | 85.48 106 |
|
DCV-MVSNet | | | 69.69 122 | 69.13 116 | 71.36 169 | 78.37 154 | 45.74 247 | 74.71 199 | 80.20 132 | 57.91 140 | 70.01 101 | 83.83 143 | 42.44 179 | 82.87 152 | 54.97 171 | 79.72 111 | 85.48 106 |
|
IS-MVSNet | | | 71.57 88 | 71.00 89 | 73.27 133 | 78.86 140 | 45.63 251 | 80.22 95 | 78.69 156 | 64.14 33 | 66.46 168 | 87.36 71 | 49.30 100 | 85.60 93 | 50.26 211 | 83.71 72 | 88.59 7 |
|
our_test_3 | | | 56.49 274 | 54.42 284 | 62.68 277 | 69.51 300 | 45.48 252 | 66.08 289 | 61.49 318 | 44.11 308 | 50.73 329 | 69.60 326 | 33.05 270 | 68.15 297 | 38.38 299 | 56.86 324 | 74.40 295 |
|
UniMVSNet (Re) | | | 70.63 102 | 70.20 99 | 71.89 154 | 78.55 148 | 45.29 253 | 75.94 176 | 82.92 81 | 63.68 38 | 68.16 132 | 83.59 148 | 53.89 55 | 83.49 139 | 53.97 180 | 71.12 214 | 86.89 55 |
|
PM-MVS | | | 52.33 299 | 50.19 306 | 58.75 296 | 62.10 341 | 45.14 254 | 65.75 290 | 40.38 365 | 43.60 310 | 53.52 315 | 72.65 303 | 9.16 365 | 65.87 310 | 50.41 209 | 54.18 334 | 65.24 345 |
|
OpenMVS_ROB |  | 52.78 18 | 60.03 253 | 58.14 260 | 65.69 255 | 70.47 286 | 44.82 255 | 75.33 183 | 70.86 259 | 45.04 297 | 56.06 287 | 76.00 278 | 26.89 320 | 79.65 214 | 35.36 319 | 67.29 263 | 72.60 309 |
|
test-LLR | | | 58.15 266 | 58.13 261 | 58.22 299 | 68.57 308 | 44.80 256 | 65.46 294 | 57.92 328 | 50.08 252 | 55.44 292 | 69.82 323 | 32.62 279 | 57.44 336 | 49.66 216 | 73.62 176 | 72.41 314 |
|
test-mter | | | 56.42 276 | 55.82 275 | 58.22 299 | 68.57 308 | 44.80 256 | 65.46 294 | 57.92 328 | 39.94 334 | 55.44 292 | 69.82 323 | 21.92 340 | 57.44 336 | 49.66 216 | 73.62 176 | 72.41 314 |
|
PVSNet_0 | | 43.31 20 | 47.46 315 | 45.64 318 | 52.92 325 | 67.60 315 | 44.65 258 | 54.06 340 | 54.64 338 | 41.59 323 | 46.15 343 | 58.75 351 | 30.99 288 | 58.66 332 | 32.18 330 | 24.81 367 | 55.46 354 |
|
ADS-MVSNet2 | | | 51.33 304 | 48.76 310 | 59.07 294 | 66.02 326 | 44.60 259 | 50.90 346 | 59.76 322 | 36.90 337 | 50.74 327 | 66.18 340 | 26.38 321 | 63.11 317 | 27.17 353 | 54.76 332 | 69.50 337 |
|
mvs_anonymous | | | 68.03 159 | 67.51 147 | 69.59 204 | 72.08 268 | 44.57 260 | 71.99 242 | 75.23 215 | 51.67 231 | 67.06 156 | 82.57 167 | 54.68 47 | 77.94 242 | 56.56 157 | 75.71 161 | 86.26 78 |
|
ITE_SJBPF | | | | | 62.09 280 | 66.16 324 | 44.55 261 | | 64.32 302 | 47.36 279 | 55.31 294 | 80.34 215 | 19.27 344 | 62.68 319 | 36.29 315 | 62.39 300 | 79.04 246 |
|
UniMVSNet_NR-MVSNet | | | 71.11 94 | 71.00 89 | 71.44 165 | 79.20 132 | 44.13 262 | 76.02 175 | 82.60 86 | 66.48 9 | 68.20 129 | 84.60 127 | 56.82 32 | 82.82 156 | 54.62 175 | 70.43 221 | 87.36 46 |
|
DU-MVS | | | 70.01 113 | 69.53 110 | 71.44 165 | 78.05 165 | 44.13 262 | 75.01 192 | 81.51 101 | 64.37 26 | 68.20 129 | 84.52 128 | 49.12 106 | 82.82 156 | 54.62 175 | 70.43 221 | 87.37 44 |
|
PVSNet | | 50.76 19 | 58.40 263 | 57.39 263 | 61.42 284 | 75.53 219 | 44.04 264 | 61.43 313 | 63.45 306 | 47.04 284 | 56.91 282 | 73.61 300 | 27.00 319 | 64.76 312 | 39.12 296 | 72.40 198 | 75.47 282 |
|
tpm2 | | | 62.07 239 | 60.10 247 | 67.99 225 | 72.79 257 | 43.86 265 | 71.05 258 | 66.85 286 | 43.14 315 | 62.77 224 | 75.39 287 | 38.32 219 | 80.80 199 | 41.69 283 | 68.88 251 | 79.32 244 |
|
NR-MVSNet | | | 69.54 128 | 68.85 121 | 71.59 163 | 78.05 165 | 43.81 266 | 74.20 207 | 80.86 123 | 65.18 12 | 62.76 225 | 84.52 128 | 52.35 72 | 83.59 137 | 50.96 207 | 70.78 216 | 87.37 44 |
|
TESTMET0.1,1 | | | 55.28 284 | 54.90 281 | 56.42 307 | 66.56 321 | 43.67 267 | 65.46 294 | 56.27 335 | 39.18 336 | 53.83 310 | 67.44 335 | 24.21 333 | 55.46 346 | 48.04 229 | 73.11 189 | 70.13 334 |
|
pmmvs3 | | | 44.92 317 | 41.95 322 | 53.86 318 | 52.58 359 | 43.55 268 | 62.11 311 | 46.90 359 | 26.05 354 | 40.63 354 | 60.19 350 | 11.08 362 | 57.91 335 | 31.83 336 | 46.15 350 | 60.11 347 |
|
GBi-Net | | | 67.21 173 | 66.55 168 | 69.19 210 | 77.63 177 | 43.33 269 | 77.31 144 | 77.83 178 | 56.62 158 | 65.04 199 | 82.70 162 | 41.85 186 | 80.33 208 | 47.18 234 | 72.76 193 | 83.92 153 |
|
test1 | | | 67.21 173 | 66.55 168 | 69.19 210 | 77.63 177 | 43.33 269 | 77.31 144 | 77.83 178 | 56.62 158 | 65.04 199 | 82.70 162 | 41.85 186 | 80.33 208 | 47.18 234 | 72.76 193 | 83.92 153 |
|
FMVSNet1 | | | 66.70 188 | 65.87 185 | 69.19 210 | 77.49 185 | 43.33 269 | 77.31 144 | 77.83 178 | 56.45 163 | 64.60 207 | 82.70 162 | 38.08 223 | 80.33 208 | 46.08 243 | 72.31 202 | 83.92 153 |
|
test_vis1_n_1920 | | | 58.86 259 | 59.06 251 | 58.25 298 | 63.76 334 | 43.14 272 | 67.49 283 | 66.36 289 | 40.22 331 | 65.89 180 | 71.95 309 | 31.04 287 | 59.75 329 | 59.94 140 | 64.90 280 | 71.85 321 |
|
FMVSNet2 | | | 66.93 183 | 66.31 179 | 68.79 217 | 77.63 177 | 42.98 273 | 76.11 170 | 77.47 184 | 56.62 158 | 65.22 198 | 82.17 178 | 41.85 186 | 80.18 211 | 47.05 237 | 72.72 196 | 83.20 179 |
|
TranMVSNet+NR-MVSNet | | | 70.36 107 | 70.10 103 | 71.17 175 | 78.64 147 | 42.97 274 | 76.53 162 | 81.16 117 | 66.95 4 | 68.53 125 | 85.42 115 | 51.61 80 | 83.07 145 | 52.32 192 | 69.70 239 | 87.46 39 |
|
RPSCF | | | 55.80 281 | 54.22 289 | 60.53 288 | 65.13 329 | 42.91 275 | 64.30 302 | 57.62 330 | 36.84 339 | 58.05 277 | 82.28 175 | 28.01 310 | 56.24 343 | 37.14 305 | 58.61 319 | 82.44 195 |
|
1112_ss | | | 64.00 220 | 63.36 213 | 65.93 251 | 79.28 129 | 42.58 276 | 71.35 249 | 72.36 250 | 46.41 287 | 60.55 249 | 77.89 255 | 46.27 142 | 73.28 274 | 46.18 242 | 69.97 231 | 81.92 203 |
|
FMVSNet3 | | | 66.32 195 | 65.61 190 | 68.46 220 | 76.48 205 | 42.34 277 | 74.98 194 | 77.15 191 | 55.83 176 | 65.04 199 | 81.16 198 | 39.91 202 | 80.14 212 | 47.18 234 | 72.76 193 | 82.90 187 |
|
UniMVSNet_ETH3D | | | 67.60 168 | 67.07 165 | 69.18 213 | 77.39 187 | 42.29 278 | 74.18 208 | 75.59 209 | 60.37 94 | 66.77 162 | 86.06 99 | 37.64 225 | 78.93 234 | 52.16 194 | 73.49 180 | 86.32 74 |
|
Anonymous202405211 | | | 66.84 185 | 65.99 184 | 69.40 208 | 80.19 112 | 42.21 279 | 71.11 256 | 71.31 255 | 58.80 121 | 67.90 137 | 86.39 92 | 29.83 297 | 79.65 214 | 49.60 218 | 78.78 129 | 86.33 72 |
|
TinyColmap | | | 54.14 288 | 51.72 298 | 61.40 285 | 66.84 319 | 41.97 280 | 66.52 286 | 68.51 276 | 44.81 298 | 42.69 352 | 75.77 282 | 11.66 357 | 72.94 275 | 31.96 331 | 56.77 326 | 69.27 339 |
|
MDA-MVSNet_test_wron | | | 50.71 307 | 48.95 308 | 56.00 310 | 61.17 345 | 41.84 281 | 51.90 345 | 56.45 332 | 40.96 327 | 44.79 346 | 67.84 332 | 30.04 296 | 55.07 348 | 36.71 309 | 50.69 343 | 71.11 329 |
|
MVS_0304 | | | 58.51 261 | 57.36 264 | 61.96 281 | 70.04 294 | 41.83 282 | 69.40 274 | 65.46 294 | 50.73 245 | 53.30 318 | 74.06 297 | 22.65 337 | 70.18 291 | 42.16 279 | 68.44 255 | 73.86 302 |
|
YYNet1 | | | 50.73 306 | 48.96 307 | 56.03 309 | 61.10 346 | 41.78 283 | 51.94 344 | 56.44 333 | 40.94 328 | 44.84 345 | 67.80 333 | 30.08 295 | 55.08 347 | 36.77 307 | 50.71 342 | 71.22 326 |
|
Anonymous20240521 | | | 55.30 283 | 54.41 285 | 57.96 302 | 60.92 349 | 41.73 284 | 71.09 257 | 71.06 258 | 41.18 325 | 48.65 334 | 73.31 301 | 16.93 347 | 59.25 331 | 42.54 276 | 64.01 286 | 72.90 306 |
|
ab-mvs | | | 66.65 189 | 66.42 173 | 67.37 231 | 76.17 209 | 41.73 284 | 70.41 265 | 76.14 202 | 53.99 211 | 65.98 176 | 83.51 152 | 49.48 98 | 76.24 263 | 48.60 225 | 73.46 182 | 84.14 147 |
|
gm-plane-assit | | | | | | 71.40 279 | 41.72 286 | | | 48.85 262 | | 73.31 301 | | 82.48 166 | 48.90 223 | | |
|
VNet | | | 69.68 124 | 70.19 100 | 68.16 224 | 79.73 120 | 41.63 287 | 70.53 262 | 77.38 187 | 60.37 94 | 70.69 90 | 86.63 85 | 51.08 86 | 77.09 254 | 53.61 184 | 81.69 96 | 85.75 96 |
|
tpmvs | | | 58.47 262 | 56.95 268 | 63.03 275 | 70.20 290 | 41.21 288 | 67.90 281 | 67.23 283 | 49.62 255 | 54.73 302 | 70.84 314 | 34.14 259 | 76.24 263 | 36.64 311 | 61.29 307 | 71.64 322 |
|
HY-MVS | | 56.14 13 | 64.55 217 | 63.89 204 | 66.55 239 | 74.73 232 | 41.02 289 | 69.96 269 | 74.43 227 | 49.29 257 | 61.66 242 | 80.92 205 | 47.43 126 | 76.68 258 | 44.91 257 | 71.69 208 | 81.94 202 |
|
FPMVS | | | 42.18 321 | 41.11 323 | 45.39 338 | 58.03 353 | 41.01 290 | 49.50 348 | 53.81 343 | 30.07 346 | 33.71 360 | 64.03 344 | 11.69 356 | 52.08 356 | 14.01 367 | 55.11 330 | 43.09 363 |
|
VPA-MVSNet | | | 69.02 138 | 69.47 112 | 67.69 227 | 77.42 186 | 41.00 291 | 74.04 209 | 79.68 137 | 60.06 101 | 69.26 116 | 84.81 121 | 51.06 87 | 77.58 248 | 54.44 178 | 74.43 168 | 84.48 138 |
|
USDC | | | 56.35 277 | 54.24 288 | 62.69 276 | 64.74 330 | 40.31 292 | 65.05 299 | 73.83 237 | 43.93 309 | 47.58 336 | 77.71 260 | 15.36 351 | 75.05 267 | 38.19 301 | 61.81 304 | 72.70 308 |
|
tt0805 | | | 67.77 165 | 67.24 161 | 69.34 209 | 74.87 227 | 40.08 293 | 77.36 143 | 81.37 105 | 55.31 187 | 66.33 171 | 84.65 124 | 37.35 229 | 82.55 163 | 55.65 167 | 72.28 203 | 85.39 113 |
|
thres200 | | | 62.20 238 | 61.16 240 | 65.34 259 | 75.38 222 | 39.99 294 | 69.60 271 | 69.29 271 | 55.64 183 | 61.87 240 | 76.99 264 | 37.07 237 | 78.96 233 | 31.28 341 | 73.28 185 | 77.06 267 |
|
WR-MVS | | | 68.47 151 | 68.47 129 | 68.44 221 | 80.20 111 | 39.84 295 | 73.75 219 | 76.07 203 | 64.68 20 | 68.11 134 | 83.63 147 | 50.39 93 | 79.14 227 | 49.78 212 | 69.66 240 | 86.34 70 |
|
EPNet_dtu | | | 61.90 241 | 61.97 230 | 61.68 282 | 72.89 256 | 39.78 296 | 75.85 177 | 65.62 293 | 55.09 193 | 54.56 304 | 79.36 235 | 37.59 226 | 67.02 303 | 39.80 293 | 76.95 149 | 78.25 252 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
tfpn200view9 | | | 63.18 229 | 62.18 228 | 66.21 244 | 76.85 197 | 39.62 297 | 71.96 244 | 69.44 269 | 56.63 156 | 62.61 229 | 79.83 223 | 37.18 231 | 79.17 223 | 31.84 333 | 73.25 186 | 79.83 238 |
|
thres400 | | | 63.31 225 | 62.18 228 | 66.72 236 | 76.85 197 | 39.62 297 | 71.96 244 | 69.44 269 | 56.63 156 | 62.61 229 | 79.83 223 | 37.18 231 | 79.17 223 | 31.84 333 | 73.25 186 | 81.36 210 |
|
Test_1112_low_res | | | 62.32 236 | 61.77 231 | 64.00 267 | 79.08 137 | 39.53 299 | 68.17 278 | 70.17 262 | 43.25 313 | 59.03 268 | 79.90 222 | 44.08 165 | 71.24 283 | 43.79 266 | 68.42 256 | 81.25 213 |
|
pm-mvs1 | | | 65.24 208 | 64.97 198 | 66.04 249 | 72.38 264 | 39.40 300 | 72.62 232 | 75.63 208 | 55.53 184 | 62.35 237 | 83.18 157 | 47.45 125 | 76.47 260 | 49.06 222 | 66.54 269 | 82.24 196 |
|
pmmvs6 | | | 63.69 222 | 62.82 221 | 66.27 243 | 70.63 284 | 39.27 301 | 73.13 225 | 75.47 211 | 52.69 224 | 59.75 260 | 82.30 174 | 39.71 205 | 77.03 255 | 47.40 232 | 64.35 285 | 82.53 191 |
|
tfpnnormal | | | 62.47 234 | 61.63 233 | 64.99 262 | 74.81 229 | 39.01 302 | 71.22 252 | 73.72 238 | 55.22 190 | 60.21 250 | 80.09 221 | 41.26 197 | 76.98 256 | 30.02 346 | 68.09 258 | 78.97 248 |
|
thres600view7 | | | 63.30 226 | 62.27 226 | 66.41 240 | 77.18 191 | 38.87 303 | 72.35 237 | 69.11 273 | 56.98 151 | 62.37 236 | 80.96 204 | 37.01 238 | 79.00 232 | 31.43 340 | 73.05 190 | 81.36 210 |
|
CVMVSNet | | | 59.63 257 | 59.14 250 | 61.08 287 | 74.47 236 | 38.84 304 | 75.20 187 | 68.74 275 | 31.15 345 | 58.24 275 | 76.51 273 | 32.39 283 | 68.58 296 | 49.77 213 | 65.84 274 | 75.81 278 |
|
thres100view900 | | | 63.28 227 | 62.41 225 | 65.89 252 | 77.31 189 | 38.66 305 | 72.65 230 | 69.11 273 | 57.07 149 | 62.45 234 | 81.03 202 | 37.01 238 | 79.17 223 | 31.84 333 | 73.25 186 | 79.83 238 |
|
TransMVSNet (Re) | | | 64.72 213 | 64.33 201 | 65.87 253 | 75.22 223 | 38.56 306 | 74.66 201 | 75.08 223 | 58.90 120 | 61.79 241 | 82.63 165 | 51.18 84 | 78.07 241 | 43.63 267 | 55.87 329 | 80.99 220 |
|
XXY-MVS | | | 60.68 250 | 61.67 232 | 57.70 305 | 70.43 287 | 38.45 307 | 64.19 303 | 66.47 287 | 48.05 271 | 63.22 220 | 80.86 207 | 49.28 101 | 60.47 325 | 45.25 256 | 67.28 264 | 74.19 298 |
|
MDTV_nov1_ep13 | | | | 57.00 267 | | 72.73 258 | 38.26 308 | 65.02 300 | 64.73 300 | 44.74 299 | 55.46 291 | 72.48 304 | 32.61 281 | 70.47 286 | 37.47 303 | 67.75 261 | |
|
FIs | | | 70.82 99 | 71.43 79 | 68.98 214 | 78.33 156 | 38.14 309 | 76.96 154 | 83.59 63 | 61.02 81 | 67.33 152 | 86.73 81 | 55.07 42 | 81.64 177 | 54.61 177 | 79.22 121 | 87.14 50 |
|
Gipuma |  | | 34.77 330 | 31.91 334 | 43.33 342 | 62.05 342 | 37.87 310 | 20.39 369 | 67.03 284 | 23.23 357 | 18.41 370 | 25.84 370 | 4.24 371 | 62.73 318 | 14.71 366 | 51.32 341 | 29.38 369 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test_vis1_rt | | | 41.35 323 | 39.45 325 | 47.03 337 | 46.65 366 | 37.86 311 | 47.76 351 | 38.65 366 | 23.10 358 | 44.21 349 | 51.22 360 | 11.20 361 | 44.08 363 | 39.27 295 | 53.02 337 | 59.14 348 |
|
WTY-MVS | | | 59.75 256 | 60.39 245 | 57.85 303 | 72.32 266 | 37.83 312 | 61.05 319 | 64.18 303 | 45.95 294 | 61.91 239 | 79.11 239 | 47.01 135 | 60.88 324 | 42.50 277 | 69.49 242 | 74.83 290 |
|
WR-MVS_H | | | 67.02 181 | 66.92 166 | 67.33 233 | 77.95 169 | 37.75 313 | 77.57 137 | 82.11 92 | 62.03 71 | 62.65 228 | 82.48 170 | 50.57 91 | 79.46 217 | 42.91 274 | 64.01 286 | 84.79 131 |
|
test_fmvs1_n | | | 51.37 303 | 50.35 305 | 54.42 317 | 52.85 357 | 37.71 314 | 61.16 318 | 51.93 344 | 28.15 349 | 63.81 216 | 69.73 325 | 13.72 352 | 53.95 349 | 51.16 204 | 60.65 312 | 71.59 323 |
|
Baseline_NR-MVSNet | | | 67.05 180 | 67.56 143 | 65.50 256 | 75.65 215 | 37.70 315 | 75.42 182 | 74.65 226 | 59.90 104 | 68.14 133 | 83.15 158 | 49.12 106 | 77.20 252 | 52.23 193 | 69.78 236 | 81.60 206 |
|
test_fmvs1 | | | 51.32 305 | 50.48 304 | 53.81 319 | 53.57 356 | 37.51 316 | 60.63 321 | 51.16 346 | 28.02 351 | 63.62 217 | 69.23 328 | 16.41 348 | 53.93 350 | 51.01 205 | 60.70 311 | 69.99 335 |
|
test_vis1_n | | | 49.89 309 | 48.69 311 | 53.50 322 | 53.97 355 | 37.38 317 | 61.53 312 | 47.33 357 | 28.54 348 | 59.62 261 | 67.10 337 | 13.52 353 | 52.27 354 | 49.07 221 | 57.52 322 | 70.84 330 |
|
MIMVSNet | | | 57.35 270 | 57.07 266 | 58.22 299 | 74.21 243 | 37.18 318 | 62.46 308 | 60.88 320 | 48.88 261 | 55.29 295 | 75.99 280 | 31.68 286 | 62.04 321 | 31.87 332 | 72.35 199 | 75.43 283 |
|
KD-MVS_2432*1600 | | | 53.45 293 | 51.50 300 | 59.30 289 | 62.82 337 | 37.14 319 | 55.33 336 | 71.79 253 | 47.34 280 | 55.09 297 | 70.52 317 | 21.91 341 | 70.45 287 | 35.72 317 | 42.97 354 | 70.31 332 |
|
miper_refine_blended | | | 53.45 293 | 51.50 300 | 59.30 289 | 62.82 337 | 37.14 319 | 55.33 336 | 71.79 253 | 47.34 280 | 55.09 297 | 70.52 317 | 21.91 341 | 70.45 287 | 35.72 317 | 42.97 354 | 70.31 332 |
|
ambc | | | | | 65.13 261 | 63.72 336 | 37.07 321 | 47.66 353 | 78.78 154 | | 54.37 307 | 71.42 311 | 11.24 360 | 80.94 194 | 45.64 248 | 53.85 336 | 77.38 262 |
|
GG-mvs-BLEND | | | | | 62.34 278 | 71.36 280 | 37.04 322 | 69.20 275 | 57.33 331 | | 54.73 302 | 65.48 342 | 30.37 292 | 77.82 244 | 34.82 320 | 74.93 166 | 72.17 318 |
|
CL-MVSNet_self_test | | | 61.53 245 | 60.94 242 | 63.30 271 | 68.95 306 | 36.93 323 | 67.60 282 | 72.80 247 | 55.67 181 | 59.95 255 | 76.63 269 | 45.01 158 | 72.22 280 | 39.74 294 | 62.09 302 | 80.74 224 |
|
VPNet | | | 67.52 169 | 68.11 135 | 65.74 254 | 79.18 133 | 36.80 324 | 72.17 240 | 72.83 246 | 62.04 70 | 67.79 145 | 85.83 107 | 48.88 108 | 76.60 259 | 51.30 203 | 72.97 191 | 83.81 158 |
|
pmmvs5 | | | 56.47 275 | 55.68 276 | 58.86 295 | 61.41 344 | 36.71 325 | 66.37 287 | 62.75 311 | 40.38 330 | 53.70 311 | 76.62 270 | 34.56 254 | 67.05 302 | 40.02 292 | 65.27 277 | 72.83 307 |
|
PEN-MVS | | | 66.60 190 | 66.45 170 | 67.04 234 | 77.11 192 | 36.56 326 | 77.03 153 | 80.42 129 | 62.95 48 | 62.51 233 | 84.03 138 | 46.69 138 | 79.07 228 | 44.22 258 | 63.08 295 | 85.51 105 |
|
baseline1 | | | 63.81 221 | 63.87 206 | 63.62 268 | 76.29 207 | 36.36 327 | 71.78 246 | 67.29 282 | 56.05 172 | 64.23 212 | 82.95 160 | 47.11 131 | 74.41 270 | 47.30 233 | 61.85 303 | 80.10 234 |
|
FMVSNet5 | | | 55.86 280 | 54.93 280 | 58.66 297 | 71.05 281 | 36.35 328 | 64.18 304 | 62.48 313 | 46.76 285 | 50.66 330 | 74.73 292 | 25.80 326 | 64.04 314 | 33.11 327 | 65.57 276 | 75.59 281 |
|
CP-MVSNet | | | 66.49 193 | 66.41 174 | 66.72 236 | 77.67 176 | 36.33 329 | 76.83 159 | 79.52 141 | 62.45 61 | 62.54 231 | 83.47 154 | 46.32 140 | 78.37 236 | 45.47 253 | 63.43 292 | 85.45 108 |
|
sss | | | 56.17 279 | 56.57 270 | 54.96 312 | 66.93 318 | 36.32 330 | 57.94 328 | 61.69 317 | 41.67 322 | 58.64 272 | 75.32 288 | 38.72 215 | 56.25 342 | 42.04 281 | 66.19 272 | 72.31 317 |
|
PS-CasMVS | | | 66.42 194 | 66.32 178 | 66.70 238 | 77.60 184 | 36.30 331 | 76.94 155 | 79.61 139 | 62.36 63 | 62.43 235 | 83.66 146 | 45.69 144 | 78.37 236 | 45.35 255 | 63.26 293 | 85.42 111 |
|
ECVR-MVS |  | | 67.72 166 | 67.51 147 | 68.35 222 | 79.46 125 | 36.29 332 | 74.79 198 | 66.93 285 | 58.72 122 | 67.19 154 | 88.05 63 | 36.10 242 | 81.38 183 | 52.07 195 | 84.25 66 | 87.39 42 |
|
PMVS |  | 28.69 22 | 36.22 329 | 33.29 333 | 45.02 340 | 36.82 375 | 35.98 333 | 54.68 339 | 48.74 352 | 26.31 353 | 21.02 368 | 51.61 359 | 2.88 377 | 60.10 327 | 9.99 373 | 47.58 349 | 38.99 368 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
gg-mvs-nofinetune | | | 57.86 268 | 56.43 272 | 62.18 279 | 72.62 260 | 35.35 334 | 66.57 285 | 56.33 334 | 50.65 247 | 57.64 279 | 57.10 354 | 30.65 290 | 76.36 261 | 37.38 304 | 78.88 126 | 74.82 291 |
|
DTE-MVSNet | | | 65.58 202 | 65.34 193 | 66.31 241 | 76.06 211 | 34.79 335 | 76.43 164 | 79.38 144 | 62.55 59 | 61.66 242 | 83.83 143 | 45.60 146 | 79.15 226 | 41.64 286 | 60.88 309 | 85.00 124 |
|
tpm | | | 57.34 271 | 58.16 259 | 54.86 313 | 71.80 273 | 34.77 336 | 67.47 284 | 56.04 337 | 48.20 269 | 60.10 252 | 76.92 265 | 37.17 233 | 53.41 351 | 40.76 288 | 65.01 279 | 76.40 275 |
|
test1111 | | | 67.21 173 | 67.14 164 | 67.42 230 | 79.24 131 | 34.76 337 | 73.89 216 | 65.65 292 | 58.71 124 | 66.96 158 | 87.95 65 | 36.09 243 | 80.53 203 | 52.03 196 | 83.79 71 | 86.97 52 |
|
FC-MVSNet-test | | | 69.80 120 | 70.58 95 | 67.46 229 | 77.61 182 | 34.73 338 | 76.05 173 | 83.19 77 | 60.84 83 | 65.88 181 | 86.46 90 | 54.52 49 | 80.76 201 | 52.52 191 | 78.12 136 | 86.91 54 |
|
Patchmtry | | | 57.16 272 | 56.47 271 | 59.23 291 | 69.17 305 | 34.58 339 | 62.98 306 | 63.15 309 | 44.53 301 | 56.83 283 | 74.84 290 | 35.83 245 | 68.71 295 | 40.03 291 | 60.91 308 | 74.39 296 |
|
tpmrst | | | 58.24 264 | 58.70 254 | 56.84 306 | 66.97 317 | 34.32 340 | 69.57 272 | 61.14 319 | 47.17 283 | 58.58 273 | 71.60 310 | 41.28 196 | 60.41 326 | 49.20 220 | 62.84 296 | 75.78 279 |
|
mvsany_test1 | | | 39.38 325 | 38.16 328 | 43.02 343 | 49.05 361 | 34.28 341 | 44.16 360 | 25.94 376 | 22.74 360 | 46.57 342 | 62.21 349 | 23.85 335 | 41.16 368 | 33.01 328 | 35.91 362 | 53.63 355 |
|
test2506 | | | 65.33 207 | 64.61 200 | 67.50 228 | 79.46 125 | 34.19 342 | 74.43 205 | 51.92 345 | 58.72 122 | 66.75 163 | 88.05 63 | 25.99 325 | 80.92 196 | 51.94 197 | 84.25 66 | 87.39 42 |
|
MVS-HIRNet | | | 45.52 316 | 44.48 319 | 48.65 335 | 68.49 310 | 34.05 343 | 59.41 325 | 44.50 361 | 27.03 352 | 37.96 359 | 50.47 362 | 26.16 324 | 64.10 313 | 26.74 356 | 59.52 315 | 47.82 361 |
|
Anonymous20231206 | | | 55.10 287 | 55.30 279 | 54.48 315 | 69.81 299 | 33.94 344 | 62.91 307 | 62.13 315 | 41.08 326 | 55.18 296 | 75.65 283 | 32.75 277 | 56.59 341 | 30.32 345 | 67.86 259 | 72.91 305 |
|
UnsupCasMVSNet_bld | | | 50.07 308 | 48.87 309 | 53.66 320 | 60.97 348 | 33.67 345 | 57.62 331 | 64.56 301 | 39.47 335 | 47.38 337 | 64.02 346 | 27.47 314 | 59.32 330 | 34.69 321 | 43.68 353 | 67.98 342 |
|
EU-MVSNet | | | 55.61 282 | 54.41 285 | 59.19 293 | 65.41 328 | 33.42 346 | 72.44 236 | 71.91 252 | 28.81 347 | 51.27 323 | 73.87 298 | 24.76 331 | 69.08 294 | 43.04 272 | 58.20 320 | 75.06 285 |
|
UnsupCasMVSNet_eth | | | 53.16 298 | 52.47 296 | 55.23 311 | 59.45 351 | 33.39 347 | 59.43 324 | 69.13 272 | 45.98 291 | 50.35 332 | 72.32 305 | 29.30 301 | 58.26 334 | 42.02 282 | 44.30 352 | 74.05 299 |
|
APD_test1 | | | 37.39 328 | 34.94 331 | 44.72 341 | 48.88 362 | 33.19 348 | 52.95 343 | 44.00 362 | 19.49 363 | 27.28 364 | 58.59 352 | 3.18 376 | 52.84 352 | 18.92 362 | 41.17 357 | 48.14 360 |
|
test_fmvs2 | | | 48.69 311 | 47.49 316 | 52.29 329 | 48.63 363 | 33.06 349 | 57.76 329 | 48.05 355 | 25.71 355 | 59.76 259 | 69.60 326 | 11.57 358 | 52.23 355 | 49.45 219 | 56.86 324 | 71.58 324 |
|
LF4IMVS | | | 42.95 319 | 42.26 321 | 45.04 339 | 48.30 364 | 32.50 350 | 54.80 338 | 48.49 353 | 28.03 350 | 40.51 355 | 70.16 320 | 9.24 364 | 43.89 364 | 31.63 337 | 49.18 348 | 58.72 349 |
|
dp | | | 51.89 301 | 51.60 299 | 52.77 326 | 68.44 311 | 32.45 351 | 62.36 309 | 54.57 339 | 44.16 306 | 49.31 333 | 67.91 331 | 28.87 305 | 56.61 340 | 33.89 323 | 54.89 331 | 69.24 340 |
|
MIMVSNet1 | | | 55.17 286 | 54.31 287 | 57.77 304 | 70.03 295 | 32.01 352 | 65.68 292 | 64.81 298 | 49.19 258 | 46.75 341 | 76.00 278 | 25.53 328 | 64.04 314 | 28.65 351 | 62.13 301 | 77.26 265 |
|
EPMVS | | | 53.96 289 | 53.69 292 | 54.79 314 | 66.12 325 | 31.96 353 | 62.34 310 | 49.05 351 | 44.42 304 | 55.54 290 | 71.33 312 | 30.22 294 | 56.70 339 | 41.65 285 | 62.54 299 | 75.71 280 |
|
LCM-MVSNet-Re | | | 61.88 242 | 61.35 236 | 63.46 269 | 74.58 234 | 31.48 354 | 61.42 314 | 58.14 327 | 58.71 124 | 53.02 319 | 79.55 231 | 43.07 173 | 76.80 257 | 45.69 247 | 77.96 137 | 82.11 200 |
|
Vis-MVSNet (Re-imp) | | | 63.69 222 | 63.88 205 | 63.14 273 | 74.75 231 | 31.04 355 | 71.16 254 | 63.64 305 | 56.32 165 | 59.80 258 | 84.99 118 | 44.51 161 | 75.46 265 | 39.12 296 | 80.62 99 | 82.92 185 |
|
Patchmatch-test | | | 49.08 310 | 48.28 312 | 51.50 331 | 64.40 332 | 30.85 356 | 45.68 356 | 48.46 354 | 35.60 340 | 46.10 344 | 72.10 306 | 34.47 257 | 46.37 361 | 27.08 355 | 60.65 312 | 77.27 264 |
|
ADS-MVSNet | | | 48.48 312 | 47.77 313 | 50.63 332 | 66.02 326 | 29.92 357 | 50.90 346 | 50.87 350 | 36.90 337 | 50.74 327 | 66.18 340 | 26.38 321 | 52.47 353 | 27.17 353 | 54.76 332 | 69.50 337 |
|
test0.0.03 1 | | | 53.32 296 | 53.59 293 | 52.50 327 | 62.81 339 | 29.45 358 | 59.51 323 | 54.11 341 | 50.08 252 | 54.40 306 | 74.31 295 | 32.62 279 | 55.92 344 | 30.50 344 | 63.95 288 | 72.15 319 |
|
LCM-MVSNet | | | 40.30 324 | 35.88 330 | 53.57 321 | 42.24 368 | 29.15 359 | 45.21 358 | 60.53 321 | 22.23 361 | 28.02 363 | 50.98 361 | 3.72 374 | 61.78 322 | 31.22 342 | 38.76 360 | 69.78 336 |
|
testf1 | | | 31.46 335 | 28.89 338 | 39.16 345 | 41.99 370 | 28.78 360 | 46.45 354 | 37.56 367 | 14.28 370 | 21.10 366 | 48.96 363 | 1.48 380 | 47.11 359 | 13.63 368 | 34.56 363 | 41.60 364 |
|
APD_test2 | | | 31.46 335 | 28.89 338 | 39.16 345 | 41.99 370 | 28.78 360 | 46.45 354 | 37.56 367 | 14.28 370 | 21.10 366 | 48.96 363 | 1.48 380 | 47.11 359 | 13.63 368 | 34.56 363 | 41.60 364 |
|
test20.03 | | | 53.87 291 | 54.02 290 | 53.41 323 | 61.47 343 | 28.11 362 | 61.30 315 | 59.21 323 | 51.34 240 | 52.09 321 | 77.43 261 | 33.29 269 | 58.55 333 | 29.76 347 | 60.27 314 | 73.58 303 |
|
test_vis3_rt | | | 32.09 333 | 30.20 337 | 37.76 348 | 35.36 377 | 27.48 363 | 40.60 363 | 28.29 375 | 16.69 367 | 32.52 361 | 40.53 366 | 1.96 378 | 37.40 370 | 33.64 326 | 42.21 356 | 48.39 358 |
|
KD-MVS_self_test | | | 55.22 285 | 53.89 291 | 59.21 292 | 57.80 354 | 27.47 364 | 57.75 330 | 74.32 229 | 47.38 278 | 50.90 326 | 70.00 322 | 28.45 308 | 70.30 289 | 40.44 289 | 57.92 321 | 79.87 237 |
|
test_fmvs3 | | | 44.30 318 | 42.55 320 | 49.55 334 | 42.83 367 | 27.15 365 | 53.03 342 | 44.93 360 | 22.03 362 | 53.69 313 | 64.94 343 | 4.21 372 | 49.63 357 | 47.47 230 | 49.82 345 | 71.88 320 |
|
wuyk23d | | | 13.32 343 | 12.52 346 | 15.71 357 | 47.54 365 | 26.27 366 | 31.06 368 | 1.98 382 | 4.93 374 | 5.18 377 | 1.94 377 | 0.45 382 | 18.54 376 | 6.81 376 | 12.83 373 | 2.33 374 |
|
MDTV_nov1_ep13_2view | | | | | | | 25.89 367 | 61.22 316 | | 40.10 332 | 51.10 324 | | 32.97 272 | | 38.49 298 | | 78.61 250 |
|
MVE |  | 17.77 23 | 21.41 340 | 17.77 345 | 32.34 352 | 34.34 378 | 25.44 368 | 16.11 370 | 24.11 377 | 11.19 372 | 13.22 372 | 31.92 368 | 1.58 379 | 30.95 374 | 10.47 371 | 17.03 370 | 40.62 367 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PatchT | | | 53.17 297 | 53.44 294 | 52.33 328 | 68.29 312 | 25.34 369 | 58.21 327 | 54.41 340 | 44.46 303 | 54.56 304 | 69.05 329 | 33.32 268 | 60.94 323 | 36.93 306 | 61.76 305 | 70.73 331 |
|
ANet_high | | | 41.38 322 | 37.47 329 | 53.11 324 | 39.73 373 | 24.45 370 | 56.94 332 | 69.69 264 | 47.65 275 | 26.04 365 | 52.32 357 | 12.44 355 | 62.38 320 | 21.80 360 | 10.61 374 | 72.49 311 |
|
mvsany_test3 | | | 32.62 332 | 30.57 336 | 38.77 347 | 36.16 376 | 24.20 371 | 38.10 365 | 20.63 378 | 19.14 364 | 40.36 356 | 57.43 353 | 5.06 369 | 36.63 371 | 29.59 349 | 28.66 366 | 55.49 353 |
|
testgi | | | 51.90 300 | 52.37 297 | 50.51 333 | 60.39 350 | 23.55 372 | 58.42 326 | 58.15 326 | 49.03 260 | 51.83 322 | 79.21 238 | 22.39 338 | 55.59 345 | 29.24 350 | 62.64 297 | 72.40 316 |
|
test_f | | | 31.86 334 | 31.05 335 | 34.28 350 | 32.33 379 | 21.86 373 | 32.34 366 | 30.46 373 | 16.02 368 | 39.78 358 | 55.45 355 | 4.80 370 | 32.36 373 | 30.61 343 | 37.66 361 | 48.64 357 |
|
E-PMN | | | 23.77 338 | 22.73 342 | 26.90 354 | 42.02 369 | 20.67 374 | 42.66 361 | 35.70 369 | 17.43 365 | 10.28 375 | 25.05 371 | 6.42 367 | 42.39 366 | 10.28 372 | 14.71 371 | 17.63 370 |
|
DSMNet-mixed | | | 39.30 327 | 38.72 326 | 41.03 344 | 51.22 360 | 19.66 375 | 45.53 357 | 31.35 372 | 15.83 369 | 39.80 357 | 67.42 336 | 22.19 339 | 45.13 362 | 22.43 359 | 52.69 338 | 58.31 350 |
|
EMVS | | | 22.97 339 | 21.84 343 | 26.36 355 | 40.20 372 | 19.53 376 | 41.95 362 | 34.64 370 | 17.09 366 | 9.73 376 | 22.83 372 | 7.29 366 | 42.22 367 | 9.18 374 | 13.66 372 | 17.32 371 |
|
new_pmnet | | | 34.13 331 | 34.29 332 | 33.64 351 | 52.63 358 | 18.23 377 | 44.43 359 | 33.90 371 | 22.81 359 | 30.89 362 | 53.18 356 | 10.48 363 | 35.72 372 | 20.77 361 | 39.51 358 | 46.98 362 |
|
DeepMVS_CX |  | | | | 12.03 358 | 17.97 380 | 10.91 378 | | 10.60 381 | 7.46 373 | 11.07 374 | 28.36 369 | 3.28 375 | 11.29 377 | 8.01 375 | 9.74 376 | 13.89 372 |
|
new-patchmatchnet | | | 47.56 314 | 47.73 314 | 47.06 336 | 58.81 352 | 9.37 379 | 48.78 350 | 59.21 323 | 43.28 312 | 44.22 348 | 68.66 330 | 25.67 327 | 57.20 338 | 31.57 339 | 49.35 347 | 74.62 294 |
|
PMMVS2 | | | 27.40 337 | 25.91 340 | 31.87 353 | 39.46 374 | 6.57 380 | 31.17 367 | 28.52 374 | 23.96 356 | 20.45 369 | 48.94 365 | 4.20 373 | 37.94 369 | 16.51 364 | 19.97 369 | 51.09 356 |
|
tmp_tt | | | 9.43 344 | 11.14 347 | 4.30 359 | 2.38 382 | 4.40 381 | 13.62 371 | 16.08 380 | 0.39 376 | 15.89 371 | 13.06 373 | 15.80 350 | 5.54 378 | 12.63 370 | 10.46 375 | 2.95 373 |
|
test_method | | | 19.68 341 | 18.10 344 | 24.41 356 | 13.68 381 | 3.11 382 | 12.06 372 | 42.37 364 | 2.00 375 | 11.97 373 | 36.38 367 | 5.77 368 | 29.35 375 | 15.06 365 | 23.65 368 | 40.76 366 |
|
N_pmnet | | | 39.35 326 | 40.28 324 | 36.54 349 | 63.76 334 | 1.62 383 | 49.37 349 | 0.76 383 | 34.62 342 | 43.61 350 | 66.38 339 | 26.25 323 | 42.57 365 | 26.02 358 | 51.77 339 | 65.44 344 |
|
test123 | | | 4.73 346 | 6.30 349 | 0.02 360 | 0.01 383 | 0.01 384 | 56.36 334 | 0.00 384 | 0.01 378 | 0.04 379 | 0.21 379 | 0.01 383 | 0.00 379 | 0.03 378 | 0.00 377 | 0.04 375 |
|
test_blank | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 385 | 0.00 373 | 0.00 384 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 384 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
uanet_test | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 385 | 0.00 373 | 0.00 384 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 384 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
DCPMVS | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 385 | 0.00 373 | 0.00 384 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 384 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
cdsmvs_eth3d_5k | | | 17.50 342 | 23.34 341 | 0.00 362 | 0.00 385 | 0.00 385 | 0.00 373 | 78.63 158 | 0.00 380 | 0.00 381 | 82.18 176 | 49.25 102 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
pcd_1.5k_mvsjas | | | 3.92 348 | 5.23 351 | 0.00 362 | 0.00 385 | 0.00 385 | 0.00 373 | 0.00 384 | 0.00 380 | 0.00 381 | 0.00 380 | 47.05 132 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
sosnet-low-res | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 385 | 0.00 373 | 0.00 384 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 384 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
sosnet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 385 | 0.00 373 | 0.00 384 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 384 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
uncertanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 385 | 0.00 373 | 0.00 384 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 384 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
Regformer | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 385 | 0.00 373 | 0.00 384 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 384 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
testmvs | | | 4.52 347 | 6.03 350 | 0.01 361 | 0.01 383 | 0.00 385 | 53.86 341 | 0.00 384 | 0.01 378 | 0.04 379 | 0.27 378 | 0.00 384 | 0.00 379 | 0.04 377 | 0.00 377 | 0.03 376 |
|
ab-mvs-re | | | 6.49 345 | 8.65 348 | 0.00 362 | 0.00 385 | 0.00 385 | 0.00 373 | 0.00 384 | 0.00 380 | 0.00 381 | 77.89 255 | 0.00 384 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
uanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 385 | 0.00 373 | 0.00 384 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 384 | 0.00 379 | 0.00 379 | 0.00 377 | 0.00 377 |
|
PC_three_1452 | | | | | | | | | | 55.09 193 | 84.46 4 | 89.84 41 | 66.68 5 | 89.41 16 | 74.24 31 | 91.38 2 | 88.42 9 |
|
eth-test2 | | | | | | 0.00 385 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 385 | | | | | | | | | | | |
|
test_241102_TWO | | | | | | | | | 86.73 12 | 64.18 30 | 84.26 5 | 91.84 8 | 65.19 6 | 90.83 5 | 78.63 15 | 90.70 7 | 87.65 33 |
|
9.14 | | | | 78.75 14 | | 83.10 69 | | 84.15 41 | 88.26 1 | 59.90 104 | 78.57 23 | 90.36 25 | 57.51 30 | 86.86 62 | 77.39 18 | 89.52 21 | |
|
test_0728_THIRD | | | | | | | | | | 65.04 14 | 83.82 8 | 92.00 3 | 64.69 10 | 90.75 8 | 79.48 4 | 90.63 10 | 88.09 19 |
|
GSMVS | | | | | | | | | | | | | | | | | 78.05 255 |
|
sam_mvs1 | | | | | | | | | | | | | 34.74 253 | | | | 78.05 255 |
|
sam_mvs | | | | | | | | | | | | | 33.43 267 | | | | |
|
MTGPA |  | | | | | | | | 80.97 121 | | | | | | | | |
|
test_post1 | | | | | | | | 68.67 277 | | | | 3.64 375 | 32.39 283 | 69.49 292 | 44.17 259 | | |
|
test_post | | | | | | | | | | | | 3.55 376 | 33.90 262 | 66.52 305 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 64.03 344 | 34.50 255 | 74.27 271 | | | |
|
MTMP | | | | | | | | 86.03 18 | 17.08 379 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 75.28 27 | 88.31 32 | 83.81 158 |
|
agg_prior2 | | | | | | | | | | | | | | | 73.09 42 | 87.93 38 | 84.33 140 |
|
test_prior2 | | | | | | | | 81.75 78 | | 60.37 94 | 75.01 38 | 89.06 50 | 56.22 36 | | 72.19 46 | 88.96 24 | |
|
旧先验2 | | | | | | | | 76.08 171 | | 45.32 296 | 76.55 30 | | | 65.56 311 | 58.75 148 | | |
|
新几何2 | | | | | | | | 76.12 169 | | | | | | | | | |
|
无先验 | | | | | | | | 79.66 108 | 74.30 231 | 48.40 267 | | | | 80.78 200 | 53.62 183 | | 79.03 247 |
|
原ACMM2 | | | | | | | | 79.02 114 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 72.18 281 | 46.95 238 | | |
|
segment_acmp | | | | | | | | | | | | | 54.23 51 | | | | |
|
testdata1 | | | | | | | | 72.65 230 | | 60.50 89 | | | | | | | |
|
plane_prior5 | | | | | | | | | 84.01 49 | | | | | 87.21 51 | 68.16 68 | 80.58 101 | 84.65 134 |
|
plane_prior4 | | | | | | | | | | | | 86.10 97 | | | | | |
|
plane_prior2 | | | | | | | | 84.22 38 | | 64.52 23 | | | | | | | |
|
plane_prior1 | | | | | | 81.27 94 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 384 | | | | | | | | |
|
nn | | | | | | | | | 0.00 384 | | | | | | | | |
|
door-mid | | | | | | | | | 47.19 358 | | | | | | | | |
|
test11 | | | | | | | | | 83.47 66 | | | | | | | | |
|
door | | | | | | | | | 47.60 356 | | | | | | | | |
|
HQP-NCC | | | | | | 80.66 101 | | 82.31 69 | | 62.10 66 | 67.85 139 | | | | | | |
|
ACMP_Plane | | | | | | 80.66 101 | | 82.31 69 | | 62.10 66 | 67.85 139 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.04 80 | | |
|
HQP4-MVS | | | | | | | | | | | 67.85 139 | | | 86.93 60 | | | 84.32 141 |
|
HQP3-MVS | | | | | | | | | 83.90 53 | | | | | | | 80.35 105 | |
|
HQP2-MVS | | | | | | | | | | | | | 45.46 150 | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 74.07 172 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 72.16 204 | |
|
Test By Simon | | | | | | | | | | | | | 48.33 113 | | | | |
|