This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS199.91 199.93 199.87 599.56 5799.10 899.81 24
SED-MVS99.61 299.52 699.88 699.84 3399.90 299.60 7799.48 14599.08 1299.91 199.81 6299.20 799.96 1998.91 7199.85 5899.79 57
test_241102_ONE99.84 3399.90 299.48 14599.07 1499.91 199.74 11999.20 799.76 178
DVP-MVScopyleft99.57 899.47 1099.88 699.85 2699.89 499.57 9599.37 23199.10 899.81 2499.80 7898.94 3499.96 1998.93 6899.86 5199.81 43
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.91 299.84 3399.89 499.57 9599.51 10499.96 1998.93 6899.86 5199.88 7
test072699.85 2699.89 499.62 7099.50 12499.10 899.86 1299.82 4998.94 34
APDe-MVS99.66 199.57 199.92 199.77 5199.89 499.75 3199.56 5799.02 1699.88 599.85 2999.18 1099.96 1999.22 3999.92 1199.90 1
DVP-MVS++.99.59 399.50 899.88 699.51 15499.88 899.87 599.51 10498.99 2699.88 599.81 6299.27 599.96 1998.85 8599.80 8799.81 43
test_one_060199.81 4199.88 899.49 13298.97 3299.65 7399.81 6299.09 14
IU-MVS99.84 3399.88 899.32 25898.30 9299.84 1498.86 8399.85 5899.89 2
DPE-MVScopyleft99.46 2599.32 3299.91 299.78 4699.88 899.36 19899.51 10498.73 5699.88 599.84 3898.72 6399.96 1998.16 17299.87 4099.88 7
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss99.37 5099.20 6399.88 699.90 499.87 1299.30 21399.52 9197.18 21599.60 8899.79 9098.79 5099.95 4698.83 9199.91 1699.83 31
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.47 2399.34 2899.88 699.87 1699.86 1399.47 15199.48 14598.05 12899.76 4099.86 2398.82 4799.93 7298.82 9599.91 1699.84 20
zzz-MVS99.49 1699.36 2399.89 499.90 499.86 1399.36 19899.47 16398.79 5299.68 5799.81 6298.43 8499.97 1198.88 7499.90 2399.83 31
MTAPA99.52 1499.39 1899.89 499.90 499.86 1399.66 5299.47 16398.79 5299.68 5799.81 6298.43 8499.97 1198.88 7499.90 2399.83 31
HPM-MVS++copyleft99.39 4899.23 6199.87 1299.75 6499.84 1699.43 16599.51 10498.68 6099.27 16399.53 21498.64 7199.96 1998.44 14899.80 8799.79 57
SR-MVS99.43 3599.29 4799.86 2199.75 6499.83 1799.59 8399.62 3398.21 10399.73 4699.79 9098.68 6699.96 1998.44 14899.77 9799.79 57
SMA-MVScopyleft99.44 3199.30 4399.85 2899.73 7799.83 1799.56 10299.47 16397.45 18999.78 3499.82 4999.18 1099.91 9498.79 9799.89 3399.81 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_part299.81 4199.83 1799.77 36
XVS99.53 1299.42 1499.87 1299.85 2699.83 1799.69 4099.68 1998.98 2999.37 14199.74 11998.81 4899.94 5798.79 9799.86 5199.84 20
X-MVStestdata96.55 29395.45 30899.87 1299.85 2699.83 1799.69 4099.68 1998.98 2999.37 14164.01 37198.81 4899.94 5798.79 9799.86 5199.84 20
APD-MVS_3200maxsize99.48 2099.35 2699.85 2899.76 5499.83 1799.63 6499.54 7498.36 8599.79 2999.82 4998.86 4399.95 4698.62 12099.81 8399.78 65
test117299.43 3599.29 4799.85 2899.75 6499.82 2399.60 7799.56 5798.28 9399.74 4499.79 9098.53 7599.95 4698.55 13799.78 9499.79 57
SR-MVS-dyc-post99.45 2799.31 3999.85 2899.76 5499.82 2399.63 6499.52 9198.38 8199.76 4099.82 4998.53 7599.95 4698.61 12399.81 8399.77 67
RE-MVS-def99.34 2899.76 5499.82 2399.63 6499.52 9198.38 8199.76 4099.82 4998.75 5998.61 12399.81 8399.77 67
MP-MVScopyleft99.33 5599.15 6799.87 1299.88 1299.82 2399.66 5299.46 17398.09 11899.48 11399.74 11998.29 9699.96 1997.93 19099.87 4099.82 38
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS99.47 2399.33 3099.87 1299.87 1699.81 2799.64 6299.67 2298.08 12299.55 10099.64 17098.91 3999.96 1998.72 10699.90 2399.82 38
SteuartSystems-ACMMP99.54 1099.42 1499.87 1299.82 3899.81 2799.59 8399.51 10498.62 6299.79 2999.83 4299.28 499.97 1198.48 14299.90 2399.84 20
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS99.42 4099.27 5399.88 699.89 999.80 2999.67 4899.50 12498.70 5899.77 3699.49 22798.21 9999.95 4698.46 14699.77 9799.88 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HFP-MVS99.49 1699.37 2199.86 2199.87 1699.80 2999.66 5299.67 2298.15 10999.68 5799.69 14399.06 1699.96 1998.69 11199.87 4099.84 20
region2R99.48 2099.35 2699.87 1299.88 1299.80 2999.65 5999.66 2798.13 11199.66 6899.68 15098.96 2899.96 1998.62 12099.87 4099.84 20
#test#99.43 3599.29 4799.86 2199.87 1699.80 2999.55 11199.67 2297.83 14699.68 5799.69 14399.06 1699.96 1998.39 15099.87 4099.84 20
ZD-MVS99.71 8899.79 3399.61 3596.84 24599.56 9699.54 21098.58 7399.96 1996.93 27099.75 102
testtj99.12 8898.87 10799.86 2199.72 8299.79 3399.44 15999.51 10497.29 20599.59 9199.74 11998.15 10599.96 1996.74 27899.69 11599.81 43
GST-MVS99.40 4799.24 5999.85 2899.86 2299.79 3399.60 7799.67 2297.97 13499.63 7799.68 15098.52 7799.95 4698.38 15299.86 5199.81 43
ACMMPR99.49 1699.36 2399.86 2199.87 1699.79 3399.66 5299.67 2298.15 10999.67 6399.69 14398.95 3199.96 1998.69 11199.87 4099.84 20
mPP-MVS99.44 3199.30 4399.86 2199.88 1299.79 3399.69 4099.48 14598.12 11399.50 10999.75 11398.78 5199.97 1198.57 13199.89 3399.83 31
HPM-MVS_fast99.51 1599.40 1799.85 2899.91 199.79 3399.76 3099.56 5797.72 16099.76 4099.75 11399.13 1299.92 8399.07 5599.92 1199.85 16
APD-MVScopyleft99.27 6499.08 7599.84 3599.75 6499.79 3399.50 13099.50 12497.16 21799.77 3699.82 4998.78 5199.94 5797.56 22699.86 5199.80 53
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS99.45 2799.31 3999.86 2199.87 1699.78 4099.58 9099.65 3297.84 14599.71 5099.80 7899.12 1399.97 1198.33 15899.87 4099.83 31
MSC_two_6792asdad99.87 1299.51 15499.76 4199.33 24899.96 1998.87 7899.84 6599.89 2
No_MVS99.87 1299.51 15499.76 4199.33 24899.96 1998.87 7899.84 6599.89 2
abl_699.44 3199.31 3999.83 3699.85 2699.75 4399.66 5299.59 4398.13 11199.82 2299.81 6298.60 7299.96 1998.46 14699.88 3699.79 57
CP-MVS99.45 2799.32 3299.85 2899.83 3799.75 4399.69 4099.52 9198.07 12399.53 10399.63 17698.93 3899.97 1198.74 10299.91 1699.83 31
LS3D99.27 6499.12 7099.74 5999.18 24599.75 4399.56 10299.57 5198.45 7499.49 11299.85 2997.77 11599.94 5798.33 15899.84 6599.52 153
MCST-MVS99.43 3599.30 4399.82 3899.79 4499.74 4699.29 21799.40 21298.79 5299.52 10699.62 18298.91 3999.90 10998.64 11899.75 10299.82 38
OPU-MVS99.64 8099.56 14699.72 4799.60 7799.70 13599.27 599.42 25198.24 16499.80 8799.79 57
HPM-MVScopyleft99.42 4099.28 5199.83 3699.90 499.72 4799.81 1599.54 7497.59 17299.68 5799.63 17698.91 3999.94 5798.58 12999.91 1699.84 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CDPH-MVS99.13 8298.91 10299.80 4399.75 6499.71 4999.15 25399.41 20696.60 26399.60 8899.55 20598.83 4699.90 10997.48 23399.83 7499.78 65
CNVR-MVS99.42 4099.30 4399.78 4899.62 12899.71 4999.26 23399.52 9198.82 4799.39 13699.71 13198.96 2899.85 13498.59 12899.80 8799.77 67
DP-MVS Recon99.12 8898.95 9899.65 7599.74 7299.70 5199.27 22499.57 5196.40 28099.42 12599.68 15098.75 5999.80 16497.98 18699.72 10999.44 174
ETH3D-3000-0.199.21 7099.02 8599.77 5099.73 7799.69 5299.38 19199.51 10497.45 18999.61 8499.75 11398.51 7899.91 9497.45 23899.83 7499.71 98
nrg03098.64 15098.42 15599.28 14999.05 27399.69 5299.81 1599.46 17398.04 12999.01 21699.82 4996.69 14899.38 25599.34 2894.59 31498.78 231
SF-MVS99.38 4999.24 5999.79 4699.79 4499.68 5499.57 9599.54 7497.82 15199.71 5099.80 7898.95 3199.93 7298.19 16799.84 6599.74 78
SD-MVS99.41 4499.52 699.05 17099.74 7299.68 5499.46 15499.52 9199.11 799.88 599.91 599.43 197.70 35398.72 10699.93 1099.77 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
3Dnovator+97.12 1399.18 7498.97 9499.82 3899.17 25199.68 5499.81 1599.51 10499.20 498.72 25899.89 1095.68 18299.97 1198.86 8399.86 5199.81 43
QAPM98.67 14798.30 16499.80 4399.20 24099.67 5799.77 2799.72 1194.74 32598.73 25799.90 795.78 17899.98 696.96 26799.88 3699.76 72
ACMMPcopyleft99.45 2799.32 3299.82 3899.89 999.67 5799.62 7099.69 1898.12 11399.63 7799.84 3898.73 6299.96 1998.55 13799.83 7499.81 43
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + MP.99.58 599.50 899.81 4199.91 199.66 5999.63 6499.39 21698.91 4199.78 3499.85 2999.36 299.94 5798.84 8899.88 3699.82 38
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MAR-MVS98.86 12298.63 13699.54 9699.37 19899.66 5999.45 15599.54 7496.61 26199.01 21699.40 25697.09 13399.86 12897.68 21699.53 13699.10 197
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
3Dnovator97.25 999.24 6999.05 7799.81 4199.12 25899.66 5999.84 999.74 1099.09 1198.92 23299.90 795.94 17199.98 698.95 6599.92 1199.79 57
TEST999.67 10399.65 6299.05 27299.41 20696.22 29198.95 22799.49 22798.77 5499.91 94
train_agg99.02 10798.77 12199.77 5099.67 10399.65 6299.05 27299.41 20696.28 28498.95 22799.49 22798.76 5699.91 9497.63 21799.72 10999.75 73
NCCC99.34 5399.19 6499.79 4699.61 13299.65 6299.30 21399.48 14598.86 4399.21 17999.63 17698.72 6399.90 10998.25 16399.63 12899.80 53
test_part197.75 24397.24 27699.29 14699.59 13899.63 6599.65 5999.49 13296.17 29598.44 29099.69 14389.80 32399.47 23898.68 11393.66 32798.78 231
agg_prior199.01 11098.76 12399.76 5399.67 10399.62 6698.99 28899.40 21296.26 28798.87 24099.49 22798.77 5499.91 9497.69 21499.72 10999.75 73
agg_prior99.67 10399.62 6699.40 21298.87 24099.91 94
test_899.67 10399.61 6899.03 27899.41 20696.28 28498.93 23199.48 23398.76 5699.91 94
test1299.75 5499.64 11999.61 6899.29 27099.21 17998.38 8999.89 11799.74 10599.74 78
ETH3D cwj APD-0.1699.06 10198.84 11399.72 6499.51 15499.60 7099.23 23899.44 19497.04 23099.39 13699.67 15698.30 9599.92 8397.27 24599.69 11599.64 124
ETH3 D test640098.70 14398.35 15999.73 6199.69 9899.60 7099.16 24999.45 18595.42 31399.27 16399.60 18997.39 12299.91 9495.36 31199.83 7499.70 100
112199.09 9798.87 10799.75 5499.74 7299.60 7099.27 22499.48 14596.82 24899.25 17099.65 16398.38 8999.93 7297.53 22999.67 12299.73 85
xxxxxxxxxxxxxcwj99.43 3599.32 3299.75 5499.76 5499.59 7399.14 25599.53 8599.00 2399.71 5099.80 7898.95 3199.93 7298.19 16799.84 6599.74 78
save fliter99.76 5499.59 7399.14 25599.40 21299.00 23
新几何199.75 5499.75 6499.59 7399.54 7496.76 24999.29 15899.64 17098.43 8499.94 5796.92 27299.66 12399.72 91
旧先验199.74 7299.59 7399.54 7499.69 14398.47 8199.68 12099.73 85
DeepC-MVS_fast98.69 199.49 1699.39 1899.77 5099.63 12299.59 7399.36 19899.46 17399.07 1499.79 2999.82 4998.85 4499.92 8398.68 11399.87 4099.82 38
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_prior499.56 7898.99 288
VNet99.11 9398.90 10399.73 6199.52 15299.56 7899.41 17499.39 21699.01 1999.74 4499.78 9795.56 18599.92 8399.52 798.18 21499.72 91
DPM-MVS98.95 11598.71 12799.66 7199.63 12299.55 8098.64 33099.10 29497.93 13799.42 12599.55 20598.67 6999.80 16495.80 30099.68 12099.61 132
UA-Net99.42 4099.29 4799.80 4399.62 12899.55 8099.50 13099.70 1598.79 5299.77 3699.96 197.45 12199.96 1998.92 7099.90 2399.89 2
FIs98.78 13898.63 13699.23 15699.18 24599.54 8299.83 1299.59 4398.28 9398.79 25299.81 6296.75 14699.37 25899.08 5496.38 27498.78 231
VPA-MVSNet98.29 17197.95 19399.30 14399.16 25399.54 8299.50 13099.58 4998.27 9699.35 14799.37 26492.53 28099.65 21899.35 2494.46 31598.72 245
AdaColmapbinary99.01 11098.80 11899.66 7199.56 14699.54 8299.18 24799.70 1598.18 10799.35 14799.63 17696.32 15999.90 10997.48 23399.77 9799.55 145
114514_t98.93 11698.67 13199.72 6499.85 2699.53 8599.62 7099.59 4392.65 34499.71 5099.78 9798.06 10899.90 10998.84 8899.91 1699.74 78
DP-MVS99.16 7898.95 9899.78 4899.77 5199.53 8599.41 17499.50 12497.03 23299.04 21399.88 1597.39 12299.92 8398.66 11699.90 2399.87 12
OpenMVScopyleft96.50 1698.47 15598.12 17399.52 10899.04 27499.53 8599.82 1399.72 1194.56 32898.08 30899.88 1594.73 21999.98 697.47 23599.76 10099.06 208
Regformer-299.54 1099.47 1099.75 5499.71 8899.52 8899.49 14099.49 13298.94 3699.83 1999.76 10899.01 1999.94 5799.15 4899.87 4099.80 53
PHI-MVS99.30 5899.17 6699.70 6799.56 14699.52 8899.58 9099.80 897.12 22199.62 8199.73 12698.58 7399.90 10998.61 12399.91 1699.68 107
MVS_111021_LR99.41 4499.33 3099.65 7599.77 5199.51 9098.94 30299.85 698.82 4799.65 7399.74 11998.51 7899.80 16498.83 9199.89 3399.64 124
test22299.75 6499.49 9198.91 30599.49 13296.42 27899.34 15099.65 16398.28 9799.69 11599.72 91
DROMVSNet99.44 3199.39 1899.58 9099.56 14699.49 9199.88 199.58 4998.38 8199.73 4699.69 14398.20 10099.70 20599.64 199.82 8099.54 147
test_prior399.21 7099.05 7799.68 6899.67 10399.48 9398.96 29699.56 5798.34 8799.01 21699.52 21798.68 6699.83 14897.96 18799.74 10599.74 78
test_prior99.68 6899.67 10399.48 9399.56 5799.83 14899.74 78
CS-MVS99.34 5399.31 3999.43 12699.44 18299.47 9599.68 4599.56 5798.41 7899.62 8199.41 25298.35 9299.76 17899.52 799.76 10099.05 209
MVS_111021_HR99.41 4499.32 3299.66 7199.72 8299.47 9598.95 30099.85 698.82 4799.54 10199.73 12698.51 7899.74 18298.91 7199.88 3699.77 67
CPTT-MVS99.11 9398.90 10399.74 5999.80 4399.46 9799.59 8399.49 13297.03 23299.63 7799.69 14397.27 12999.96 1997.82 19999.84 6599.81 43
FC-MVSNet-test98.75 14198.62 14199.15 16399.08 26799.45 9899.86 899.60 4098.23 10098.70 26599.82 4996.80 14299.22 28699.07 5596.38 27498.79 230
Regformer-199.53 1299.47 1099.72 6499.71 8899.44 9999.49 14099.46 17398.95 3599.83 1999.76 10899.01 1999.93 7299.17 4599.87 4099.80 53
PAPM_NR99.04 10498.84 11399.66 7199.74 7299.44 9999.39 18699.38 22297.70 16299.28 16099.28 28798.34 9399.85 13496.96 26799.45 13899.69 103
alignmvs98.81 13498.56 14999.58 9099.43 18399.42 10199.51 12498.96 30998.61 6399.35 14798.92 32594.78 21399.77 17499.35 2498.11 22099.54 147
Regformer-499.59 399.54 499.73 6199.76 5499.41 10299.58 9099.49 13299.02 1699.88 599.80 7899.00 2599.94 5799.45 1999.92 1199.84 20
CNLPA99.14 8098.99 9099.59 8799.58 14099.41 10299.16 24999.44 19498.45 7499.19 18599.49 22798.08 10799.89 11797.73 20899.75 10299.48 164
DELS-MVS99.48 2099.42 1499.65 7599.72 8299.40 10499.05 27299.66 2799.14 699.57 9599.80 7898.46 8299.94 5799.57 499.84 6599.60 134
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HyFIR lowres test99.11 9398.92 10099.65 7599.90 499.37 10599.02 28199.91 397.67 16799.59 9199.75 11395.90 17499.73 18999.53 699.02 17299.86 13
UniMVSNet (Re)98.29 17198.00 18699.13 16499.00 27999.36 10699.49 14099.51 10497.95 13598.97 22599.13 30596.30 16099.38 25598.36 15693.34 33098.66 275
原ACMM199.65 7599.73 7799.33 10799.47 16397.46 18699.12 19599.66 16298.67 6999.91 9497.70 21399.69 11599.71 98
canonicalmvs99.02 10798.86 11199.51 11099.42 18499.32 10899.80 1999.48 14598.63 6199.31 15398.81 32897.09 13399.75 18199.27 3697.90 22499.47 169
XXY-MVS98.38 16498.09 17799.24 15499.26 22699.32 10899.56 10299.55 6797.45 18998.71 25999.83 4293.23 25899.63 22698.88 7496.32 27698.76 237
IS-MVSNet99.05 10398.87 10799.57 9299.73 7799.32 10899.75 3199.20 28398.02 13299.56 9699.86 2396.54 15299.67 21198.09 17699.13 16099.73 85
API-MVS99.04 10499.03 8299.06 16899.40 19299.31 11199.55 11199.56 5798.54 6699.33 15199.39 26098.76 5699.78 17296.98 26599.78 9498.07 336
ETV-MVS99.26 6699.21 6299.40 12899.46 17599.30 11299.56 10299.52 9198.52 6899.44 12199.27 29098.41 8899.86 12899.10 5299.59 13299.04 210
Regformer-399.57 899.53 599.68 6899.76 5499.29 11399.58 9099.44 19499.01 1999.87 1199.80 7898.97 2799.91 9499.44 2199.92 1199.83 31
Fast-Effi-MVS+98.70 14398.43 15499.51 11099.51 15499.28 11499.52 12099.47 16396.11 30299.01 21699.34 27396.20 16399.84 13997.88 19398.82 18599.39 180
PatchMatch-RL98.84 13398.62 14199.52 10899.71 8899.28 11499.06 27099.77 997.74 15999.50 10999.53 21495.41 18999.84 13997.17 25699.64 12699.44 174
F-COLMAP99.19 7299.04 8099.64 8099.78 4699.27 11699.42 17299.54 7497.29 20599.41 12999.59 19298.42 8799.93 7298.19 16799.69 11599.73 85
NR-MVSNet97.97 21197.61 22999.02 17498.87 29699.26 11799.47 15199.42 20497.63 17097.08 33499.50 22495.07 20299.13 30097.86 19593.59 32898.68 260
WR-MVS98.06 19397.73 21899.06 16898.86 29999.25 11899.19 24699.35 23797.30 20498.66 26899.43 24593.94 24799.21 29198.58 12994.28 31998.71 247
CP-MVSNet98.09 19097.78 21099.01 17598.97 28599.24 11999.67 4899.46 17397.25 20998.48 28899.64 17093.79 25199.06 30998.63 11994.10 32298.74 243
CS-MVS-test99.30 5899.25 5799.45 12099.46 17599.23 12099.80 1999.57 5198.28 9399.53 10399.44 24298.16 10499.79 16799.38 2299.61 13199.34 184
DeepC-MVS98.35 299.30 5899.19 6499.64 8099.82 3899.23 12099.62 7099.55 6798.94 3699.63 7799.95 295.82 17799.94 5799.37 2399.97 399.73 85
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tfpnnormal97.84 22797.47 24398.98 17999.20 24099.22 12299.64 6299.61 3596.32 28298.27 30299.70 13593.35 25799.44 24695.69 30295.40 29998.27 328
ab-mvs98.86 12298.63 13699.54 9699.64 11999.19 12399.44 15999.54 7497.77 15499.30 15599.81 6294.20 23899.93 7299.17 4598.82 18599.49 163
MSDG98.98 11298.80 11899.53 10299.76 5499.19 12398.75 32099.55 6797.25 20999.47 11499.77 10497.82 11399.87 12596.93 27099.90 2399.54 147
EIA-MVS99.18 7499.09 7499.45 12099.49 16699.18 12599.67 4899.53 8597.66 16899.40 13499.44 24298.10 10699.81 15998.94 6699.62 12999.35 182
test_yl98.86 12298.63 13699.54 9699.49 16699.18 12599.50 13099.07 29998.22 10199.61 8499.51 22195.37 19199.84 13998.60 12698.33 20499.59 138
DCV-MVSNet98.86 12298.63 13699.54 9699.49 16699.18 12599.50 13099.07 29998.22 10199.61 8499.51 22195.37 19199.84 13998.60 12698.33 20499.59 138
CANet99.25 6899.14 6899.59 8799.41 18799.16 12899.35 20499.57 5198.82 4799.51 10899.61 18696.46 15499.95 4699.59 299.98 299.65 117
MSLP-MVS++99.46 2599.47 1099.44 12599.60 13699.16 12899.41 17499.71 1398.98 2999.45 11799.78 9799.19 999.54 23599.28 3499.84 6599.63 128
casdiffmvs99.13 8298.98 9399.56 9499.65 11799.16 12899.56 10299.50 12498.33 9099.41 12999.86 2395.92 17299.83 14899.45 1999.16 15699.70 100
WTY-MVS99.06 10198.88 10699.61 8599.62 12899.16 12899.37 19499.56 5798.04 12999.53 10399.62 18296.84 14199.94 5798.85 8598.49 20199.72 91
EI-MVSNet-Vis-set99.58 599.56 399.64 8099.78 4699.15 13299.61 7699.45 18599.01 1999.89 499.82 4999.01 1999.92 8399.56 599.95 699.85 16
RRT_MVS98.60 15298.44 15399.05 17098.88 29299.14 13399.49 14099.38 22297.76 15599.29 15899.86 2395.38 19099.36 26298.81 9697.16 26098.64 279
EI-MVSNet-UG-set99.58 599.57 199.64 8099.78 4699.14 13399.60 7799.45 18599.01 1999.90 399.83 4298.98 2699.93 7299.59 299.95 699.86 13
MVS_Test99.10 9698.97 9499.48 11499.49 16699.14 13399.67 4899.34 24197.31 20399.58 9399.76 10897.65 11899.82 15598.87 7899.07 16799.46 171
baseline99.15 7999.02 8599.53 10299.66 11299.14 13399.72 3599.48 14598.35 8699.42 12599.84 3896.07 16599.79 16799.51 999.14 15999.67 110
Effi-MVS+98.81 13498.59 14799.48 11499.46 17599.12 13798.08 35399.50 12497.50 18599.38 13999.41 25296.37 15899.81 15999.11 5198.54 19899.51 159
Vis-MVSNetpermissive99.12 8898.97 9499.56 9499.78 4699.10 13899.68 4599.66 2798.49 7099.86 1299.87 2094.77 21699.84 13999.19 4299.41 14199.74 78
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PCF-MVS97.08 1497.66 26197.06 28299.47 11799.61 13299.09 13998.04 35499.25 27591.24 34998.51 28599.70 13594.55 22899.91 9492.76 34299.85 5899.42 176
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GeoE98.85 13098.62 14199.53 10299.61 13299.08 14099.80 1999.51 10497.10 22599.31 15399.78 9795.23 19999.77 17498.21 16599.03 17099.75 73
HY-MVS97.30 798.85 13098.64 13599.47 11799.42 18499.08 14099.62 7099.36 23297.39 19899.28 16099.68 15096.44 15699.92 8398.37 15498.22 21099.40 179
PVSNet_Blended_VisFu99.36 5199.28 5199.61 8599.86 2299.07 14299.47 15199.93 297.66 16899.71 5099.86 2397.73 11699.96 1999.47 1799.82 8099.79 57
PS-CasMVS97.93 21397.59 23298.95 18498.99 28099.06 14399.68 4599.52 9197.13 21998.31 29999.68 15092.44 28699.05 31098.51 14094.08 32398.75 239
EPP-MVSNet99.13 8298.99 9099.53 10299.65 11799.06 14399.81 1599.33 24897.43 19399.60 8899.88 1597.14 13199.84 13999.13 4998.94 17699.69 103
PAPR98.63 15198.34 16099.51 11099.40 19299.03 14598.80 31599.36 23296.33 28199.00 22199.12 30898.46 8299.84 13995.23 31399.37 14699.66 113
MVSTER98.49 15498.32 16299.00 17799.35 20199.02 14699.54 11499.38 22297.41 19699.20 18299.73 12693.86 25099.36 26298.87 7897.56 23698.62 289
1112_ss98.98 11298.77 12199.59 8799.68 10299.02 14699.25 23599.48 14597.23 21299.13 19399.58 19596.93 14099.90 10998.87 7898.78 18899.84 20
LFMVS97.90 21897.35 26399.54 9699.52 15299.01 14899.39 18698.24 34697.10 22599.65 7399.79 9084.79 35499.91 9499.28 3498.38 20399.69 103
PLCcopyleft97.94 499.02 10798.85 11299.53 10299.66 11299.01 14899.24 23799.52 9196.85 24499.27 16399.48 23398.25 9899.91 9497.76 20499.62 12999.65 117
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UniMVSNet_NR-MVSNet98.22 17497.97 18998.96 18298.92 28998.98 15099.48 14699.53 8597.76 15598.71 25999.46 24096.43 15799.22 28698.57 13192.87 33798.69 255
DU-MVS98.08 19297.79 20798.96 18298.87 29698.98 15099.41 17499.45 18597.87 14098.71 25999.50 22494.82 21099.22 28698.57 13192.87 33798.68 260
FMVSNet398.03 19997.76 21598.84 21299.39 19598.98 15099.40 18299.38 22296.67 25599.07 20799.28 28792.93 26398.98 32097.10 25896.65 26598.56 305
xiu_mvs_v1_base_debu99.29 6199.27 5399.34 13399.63 12298.97 15399.12 25799.51 10498.86 4399.84 1499.47 23698.18 10199.99 199.50 1099.31 14799.08 202
xiu_mvs_v1_base99.29 6199.27 5399.34 13399.63 12298.97 15399.12 25799.51 10498.86 4399.84 1499.47 23698.18 10199.99 199.50 1099.31 14799.08 202
xiu_mvs_v1_base_debi99.29 6199.27 5399.34 13399.63 12298.97 15399.12 25799.51 10498.86 4399.84 1499.47 23698.18 10199.99 199.50 1099.31 14799.08 202
sss99.17 7699.05 7799.53 10299.62 12898.97 15399.36 19899.62 3397.83 14699.67 6399.65 16397.37 12699.95 4699.19 4299.19 15599.68 107
anonymousdsp98.44 15798.28 16598.94 18598.50 33398.96 15799.77 2799.50 12497.07 22798.87 24099.77 10494.76 21799.28 27698.66 11697.60 23298.57 304
diffmvs99.14 8099.02 8599.51 11099.61 13298.96 15799.28 21999.49 13298.46 7399.72 4999.71 13196.50 15399.88 12299.31 3199.11 16199.67 110
testdata99.54 9699.75 6498.95 15999.51 10497.07 22799.43 12299.70 13598.87 4299.94 5797.76 20499.64 12699.72 91
MVS97.28 28196.55 28999.48 11498.78 30798.95 15999.27 22499.39 21683.53 35998.08 30899.54 21096.97 13899.87 12594.23 32599.16 15699.63 128
Test_1112_low_res98.89 11898.66 13499.57 9299.69 9898.95 15999.03 27899.47 16396.98 23499.15 19199.23 29496.77 14599.89 11798.83 9198.78 18899.86 13
PS-MVSNAJ99.32 5699.32 3299.30 14399.57 14298.94 16298.97 29599.46 17398.92 4099.71 5099.24 29399.01 1999.98 699.35 2499.66 12398.97 218
VPNet97.84 22797.44 25199.01 17599.21 23898.94 16299.48 14699.57 5198.38 8199.28 16099.73 12688.89 33299.39 25399.19 4293.27 33298.71 247
MVSFormer99.17 7699.12 7099.29 14699.51 15498.94 16299.88 199.46 17397.55 17799.80 2799.65 16397.39 12299.28 27699.03 5799.85 5899.65 117
lupinMVS99.13 8299.01 8999.46 11999.51 15498.94 16299.05 27299.16 28897.86 14199.80 2799.56 20297.39 12299.86 12898.94 6699.85 5899.58 142
xiu_mvs_v2_base99.26 6699.25 5799.29 14699.53 15098.91 16699.02 28199.45 18598.80 5199.71 5099.26 29198.94 3499.98 699.34 2899.23 15298.98 217
test_djsdf98.67 14798.57 14898.98 17998.70 31898.91 16699.88 199.46 17397.55 17799.22 17699.88 1595.73 18099.28 27699.03 5797.62 23198.75 239
Vis-MVSNet (Re-imp)98.87 11998.72 12599.31 13999.71 8898.88 16899.80 1999.44 19497.91 13999.36 14499.78 9795.49 18899.43 25097.91 19199.11 16199.62 130
pmmvs498.13 18697.90 19898.81 21698.61 32798.87 16998.99 28899.21 28296.44 27699.06 21199.58 19595.90 17499.11 30597.18 25596.11 28098.46 316
jason99.13 8299.03 8299.45 12099.46 17598.87 16999.12 25799.26 27398.03 13199.79 2999.65 16397.02 13699.85 13499.02 5999.90 2399.65 117
jason: jason.
Patchmtry97.75 24397.40 25798.81 21699.10 26398.87 16999.11 26399.33 24894.83 32398.81 24899.38 26194.33 23499.02 31596.10 29395.57 29598.53 306
TransMVSNet (Re)97.15 28496.58 28898.86 20899.12 25898.85 17299.49 14098.91 31695.48 31297.16 33299.80 7893.38 25699.11 30594.16 32791.73 34298.62 289
V4298.06 19397.79 20798.86 20898.98 28398.84 17399.69 4099.34 24196.53 26799.30 15599.37 26494.67 22299.32 27197.57 22594.66 31298.42 319
WR-MVS_H98.13 18697.87 20398.90 19599.02 27798.84 17399.70 3899.59 4397.27 20798.40 29399.19 29995.53 18699.23 28398.34 15793.78 32698.61 298
FMVSNet297.72 24997.36 26198.80 21899.51 15498.84 17399.45 15599.42 20496.49 26998.86 24599.29 28590.26 31698.98 32096.44 28896.56 26898.58 303
BH-RMVSNet98.41 16198.08 17899.40 12899.41 18798.83 17699.30 21398.77 32697.70 16298.94 22999.65 16392.91 26699.74 18296.52 28699.55 13599.64 124
ET-MVSNet_ETH3D96.49 29595.64 30699.05 17099.53 15098.82 17798.84 31197.51 35897.63 17084.77 36099.21 29892.09 29098.91 33198.98 6292.21 34199.41 178
v2v48298.06 19397.77 21298.92 18998.90 29098.82 17799.57 9599.36 23296.65 25799.19 18599.35 27094.20 23899.25 28197.72 21094.97 30898.69 255
v897.95 21297.63 22898.93 18798.95 28798.81 17999.80 1999.41 20696.03 30799.10 20099.42 24894.92 20699.30 27496.94 26994.08 32398.66 275
PVSNet_BlendedMVS98.86 12298.80 11899.03 17399.76 5498.79 18099.28 21999.91 397.42 19599.67 6399.37 26497.53 11999.88 12298.98 6297.29 25598.42 319
PVSNet_Blended99.08 9998.97 9499.42 12799.76 5498.79 18098.78 31799.91 396.74 25099.67 6399.49 22797.53 11999.88 12298.98 6299.85 5899.60 134
baseline198.31 16897.95 19399.38 13199.50 16498.74 18299.59 8398.93 31198.41 7899.14 19299.60 18994.59 22599.79 16798.48 14293.29 33199.61 132
CDS-MVSNet99.09 9799.03 8299.25 15299.42 18498.73 18399.45 15599.46 17398.11 11599.46 11699.77 10498.01 10999.37 25898.70 10898.92 17999.66 113
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UGNet98.87 11998.69 12999.40 12899.22 23698.72 18499.44 15999.68 1999.24 399.18 18899.42 24892.74 27099.96 1999.34 2899.94 999.53 152
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PMMVS98.80 13798.62 14199.34 13399.27 22498.70 18598.76 31999.31 26197.34 20099.21 17999.07 31097.20 13099.82 15598.56 13498.87 18299.52 153
v119297.81 23497.44 25198.91 19398.88 29298.68 18699.51 12499.34 24196.18 29499.20 18299.34 27394.03 24599.36 26295.32 31295.18 30398.69 255
v1097.85 22497.52 23798.86 20898.99 28098.67 18799.75 3199.41 20695.70 31098.98 22399.41 25294.75 21899.23 28396.01 29694.63 31398.67 267
v114497.98 20897.69 22198.85 21198.87 29698.66 18899.54 11499.35 23796.27 28699.23 17599.35 27094.67 22299.23 28396.73 27995.16 30498.68 260
v14419297.92 21697.60 23098.87 20598.83 30298.65 18999.55 11199.34 24196.20 29299.32 15299.40 25694.36 23399.26 28096.37 29195.03 30798.70 251
131498.68 14698.54 15099.11 16598.89 29198.65 18999.27 22499.49 13296.89 24297.99 31399.56 20297.72 11799.83 14897.74 20799.27 15098.84 227
MG-MVS99.13 8299.02 8599.45 12099.57 14298.63 19199.07 26799.34 24198.99 2699.61 8499.82 4997.98 11099.87 12597.00 26399.80 8799.85 16
pm-mvs197.68 25797.28 27298.88 20199.06 27098.62 19299.50 13099.45 18596.32 28297.87 31699.79 9092.47 28299.35 26697.54 22893.54 32998.67 267
TranMVSNet+NR-MVSNet97.93 21397.66 22498.76 22298.78 30798.62 19299.65 5999.49 13297.76 15598.49 28799.60 18994.23 23798.97 32798.00 18592.90 33598.70 251
TSAR-MVS + GP.99.36 5199.36 2399.36 13299.67 10398.61 19499.07 26799.33 24899.00 2399.82 2299.81 6299.06 1699.84 13999.09 5399.42 14099.65 117
v7n97.87 22197.52 23798.92 18998.76 31198.58 19599.84 999.46 17396.20 29298.91 23399.70 13594.89 20899.44 24696.03 29593.89 32598.75 239
thisisatest053098.35 16698.03 18399.31 13999.63 12298.56 19699.54 11496.75 36397.53 18299.73 4699.65 16391.25 30999.89 11798.62 12099.56 13399.48 164
TAMVS99.12 8899.08 7599.24 15499.46 17598.55 19799.51 12499.46 17398.09 11899.45 11799.82 4998.34 9399.51 23698.70 10898.93 17799.67 110
PEN-MVS97.76 23997.44 25198.72 22598.77 31098.54 19899.78 2599.51 10497.06 22998.29 30199.64 17092.63 27798.89 33398.09 17693.16 33398.72 245
Anonymous2023121197.88 21997.54 23698.90 19599.71 8898.53 19999.48 14699.57 5194.16 33198.81 24899.68 15093.23 25899.42 25198.84 8894.42 31798.76 237
v192192097.80 23697.45 24698.84 21298.80 30398.53 19999.52 12099.34 24196.15 29999.24 17199.47 23693.98 24699.29 27595.40 30995.13 30598.69 255
PS-MVSNAJss98.92 11798.92 10098.90 19598.78 30798.53 19999.78 2599.54 7498.07 12399.00 22199.76 10899.01 1999.37 25899.13 4997.23 25698.81 228
COLMAP_ROBcopyleft97.56 698.86 12298.75 12499.17 16099.88 1298.53 19999.34 20799.59 4397.55 17798.70 26599.89 1095.83 17699.90 10998.10 17599.90 2399.08 202
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
mvs_anonymous99.03 10698.99 9099.16 16199.38 19698.52 20399.51 12499.38 22297.79 15299.38 13999.81 6297.30 12799.45 24199.35 2498.99 17499.51 159
CHOSEN 1792x268899.19 7299.10 7299.45 12099.89 998.52 20399.39 18699.94 198.73 5699.11 19799.89 1095.50 18799.94 5799.50 1099.97 399.89 2
mvs_tets98.40 16398.23 16798.91 19398.67 32198.51 20599.66 5299.53 8598.19 10498.65 27499.81 6292.75 26899.44 24699.31 3197.48 24698.77 235
thisisatest051598.14 18597.79 20799.19 15899.50 16498.50 20698.61 33196.82 36296.95 23899.54 10199.43 24591.66 30299.86 12898.08 18099.51 13799.22 191
CR-MVSNet98.17 18197.93 19698.87 20599.18 24598.49 20799.22 24399.33 24896.96 23699.56 9699.38 26194.33 23499.00 31894.83 31998.58 19499.14 194
RPMNet96.72 29195.90 30199.19 15899.18 24598.49 20799.22 24399.52 9188.72 35599.56 9697.38 35194.08 24499.95 4686.87 36198.58 19499.14 194
AllTest98.87 11998.72 12599.31 13999.86 2298.48 20999.56 10299.61 3597.85 14399.36 14499.85 2995.95 16999.85 13496.66 28499.83 7499.59 138
TestCases99.31 13999.86 2298.48 20999.61 3597.85 14399.36 14499.85 2995.95 16999.85 13496.66 28499.83 7499.59 138
Anonymous2024052998.09 19097.68 22299.34 13399.66 11298.44 21199.40 18299.43 20293.67 33599.22 17699.89 1090.23 31999.93 7299.26 3798.33 20499.66 113
jajsoiax98.43 15898.28 16598.88 20198.60 32898.43 21299.82 1399.53 8598.19 10498.63 27699.80 7893.22 26099.44 24699.22 3997.50 24298.77 235
v124097.69 25597.32 26998.79 21998.85 30098.43 21299.48 14699.36 23296.11 30299.27 16399.36 26793.76 25399.24 28294.46 32295.23 30298.70 251
CANet_DTU98.97 11498.87 10799.25 15299.33 20698.42 21499.08 26699.30 26599.16 599.43 12299.75 11395.27 19599.97 1198.56 13499.95 699.36 181
tttt051798.42 15998.14 17199.28 14999.66 11298.38 21599.74 3496.85 36197.68 16499.79 2999.74 11991.39 30699.89 11798.83 9199.56 13399.57 143
PatchT97.03 28796.44 29198.79 21998.99 28098.34 21699.16 24999.07 29992.13 34599.52 10697.31 35494.54 22998.98 32088.54 35598.73 19099.03 211
Baseline_NR-MVSNet97.76 23997.45 24698.68 22899.09 26598.29 21799.41 17498.85 32295.65 31198.63 27699.67 15694.82 21099.10 30798.07 18392.89 33698.64 279
CSCG99.32 5699.32 3299.32 13899.85 2698.29 21799.71 3799.66 2798.11 11599.41 12999.80 7898.37 9199.96 1998.99 6199.96 599.72 91
bset_n11_16_dypcd98.16 18297.97 18998.73 22398.26 33898.28 21997.99 35598.01 35197.68 16499.10 20099.63 17695.68 18299.15 29698.78 10096.55 26998.75 239
PAPM97.59 26597.09 28199.07 16799.06 27098.26 22098.30 34899.10 29494.88 32298.08 30899.34 27396.27 16199.64 22189.87 35198.92 17999.31 187
OMC-MVS99.08 9999.04 8099.20 15799.67 10398.22 22199.28 21999.52 9198.07 12399.66 6899.81 6297.79 11499.78 17297.79 20199.81 8399.60 134
EPNet98.86 12298.71 12799.30 14397.20 35398.18 22299.62 7098.91 31699.28 298.63 27699.81 6295.96 16899.99 199.24 3899.72 10999.73 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous20240521198.30 17097.98 18899.26 15199.57 14298.16 22399.41 17498.55 34296.03 30799.19 18599.74 11991.87 29399.92 8399.16 4798.29 20999.70 100
GG-mvs-BLEND98.45 25298.55 33198.16 22399.43 16593.68 37197.23 32998.46 33989.30 32999.22 28695.43 30898.22 21097.98 344
gg-mvs-nofinetune96.17 30295.32 31098.73 22398.79 30498.14 22599.38 19194.09 37091.07 35198.07 31191.04 36489.62 32799.35 26696.75 27799.09 16598.68 260
DTE-MVSNet97.51 27197.19 27898.46 25198.63 32498.13 22699.84 999.48 14596.68 25497.97 31499.67 15692.92 26498.56 33796.88 27492.60 34098.70 251
VDDNet97.55 26697.02 28399.16 16199.49 16698.12 22799.38 19199.30 26595.35 31499.68 5799.90 782.62 35899.93 7299.31 3198.13 21999.42 176
thres20097.61 26497.28 27298.62 23099.64 11998.03 22899.26 23398.74 33097.68 16499.09 20598.32 34491.66 30299.81 15992.88 33998.22 21098.03 339
baseline297.87 22197.55 23398.82 21499.18 24598.02 22999.41 17496.58 36596.97 23596.51 33999.17 30093.43 25599.57 23197.71 21199.03 17098.86 225
IterMVS-LS98.46 15698.42 15598.58 23599.59 13898.00 23099.37 19499.43 20296.94 24099.07 20799.59 19297.87 11199.03 31398.32 16095.62 29498.71 247
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GA-MVS97.85 22497.47 24399.00 17799.38 19697.99 23198.57 33499.15 28997.04 23098.90 23599.30 28389.83 32299.38 25596.70 28198.33 20499.62 130
cl-mvsnet____98.01 20497.84 20598.55 24099.25 23097.97 23298.71 32499.34 24196.47 27598.59 28299.54 21095.65 18499.21 29197.21 24995.77 28998.46 316
EI-MVSNet98.67 14798.67 13198.68 22899.35 20197.97 23299.50 13099.38 22296.93 24199.20 18299.83 4297.87 11199.36 26298.38 15297.56 23698.71 247
tfpn200view997.72 24997.38 25998.72 22599.69 9897.96 23499.50 13098.73 33597.83 14699.17 18998.45 34091.67 30099.83 14893.22 33598.18 21498.37 325
thres40097.77 23897.38 25998.92 18999.69 9897.96 23499.50 13098.73 33597.83 14699.17 18998.45 34091.67 30099.83 14893.22 33598.18 21498.96 220
cl-mvsnet198.01 20497.85 20498.48 24699.24 23197.95 23698.71 32499.35 23796.50 26898.60 28199.54 21095.72 18199.03 31397.21 24995.77 28998.46 316
thres600view797.86 22397.51 23998.92 18999.72 8297.95 23699.59 8398.74 33097.94 13699.27 16398.62 33591.75 29699.86 12893.73 33098.19 21398.96 220
CHOSEN 280x42099.12 8899.13 6999.08 16699.66 11297.89 23898.43 34199.71 1398.88 4299.62 8199.76 10896.63 14999.70 20599.46 1899.99 199.66 113
cl-mvsnet297.85 22497.64 22798.48 24699.09 26597.87 23998.60 33399.33 24897.11 22498.87 24099.22 29592.38 28799.17 29598.21 16595.99 28398.42 319
TR-MVS97.76 23997.41 25698.82 21499.06 27097.87 23998.87 30998.56 34196.63 26098.68 26799.22 29592.49 28199.65 21895.40 30997.79 22698.95 223
thres100view90097.76 23997.45 24698.69 22799.72 8297.86 24199.59 8398.74 33097.93 13799.26 16898.62 33591.75 29699.83 14893.22 33598.18 21498.37 325
test0.0.03 197.71 25397.42 25598.56 23898.41 33697.82 24298.78 31798.63 33997.34 20098.05 31298.98 32294.45 23198.98 32095.04 31697.15 26198.89 224
JIA-IIPM97.50 27297.02 28398.93 18798.73 31397.80 24399.30 21398.97 30791.73 34798.91 23394.86 35995.10 20199.71 19997.58 22197.98 22299.28 189
mvs-test198.86 12298.84 11398.89 19899.33 20697.77 24499.44 15999.30 26598.47 7199.10 20099.43 24596.78 14399.95 4698.73 10499.02 17298.96 220
XVG-OURS-SEG-HR98.69 14598.62 14198.89 19899.71 8897.74 24599.12 25799.54 7498.44 7799.42 12599.71 13194.20 23899.92 8398.54 13998.90 18199.00 214
XVG-OURS98.73 14298.68 13098.88 20199.70 9597.73 24698.92 30399.55 6798.52 6899.45 11799.84 3895.27 19599.91 9498.08 18098.84 18499.00 214
miper_ehance_all_eth98.18 18098.10 17498.41 25799.23 23297.72 24798.72 32399.31 26196.60 26398.88 23899.29 28597.29 12899.13 30097.60 21995.99 28398.38 324
miper_enhance_ethall98.16 18298.08 17898.41 25798.96 28697.72 24798.45 34099.32 25896.95 23898.97 22599.17 30097.06 13599.22 28697.86 19595.99 28398.29 327
v14897.79 23797.55 23398.50 24398.74 31297.72 24799.54 11499.33 24896.26 28798.90 23599.51 22194.68 22199.14 29797.83 19893.15 33498.63 287
cl_fuxian98.12 18898.04 18298.38 26199.30 21597.69 25098.81 31499.33 24896.67 25598.83 24699.34 27397.11 13298.99 31997.58 22195.34 30098.48 310
TAPA-MVS97.07 1597.74 24697.34 26698.94 18599.70 9597.53 25199.25 23599.51 10491.90 34699.30 15599.63 17698.78 5199.64 22188.09 35799.87 4099.65 117
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MIMVSNet97.73 24797.45 24698.57 23699.45 18197.50 25299.02 28198.98 30696.11 30299.41 12999.14 30490.28 31598.74 33595.74 30198.93 17799.47 169
UniMVSNet_ETH3D97.32 28096.81 28698.87 20599.40 19297.46 25399.51 12499.53 8595.86 30998.54 28499.77 10482.44 35999.66 21498.68 11397.52 23999.50 162
miper_lstm_enhance98.00 20697.91 19798.28 27299.34 20597.43 25498.88 30799.36 23296.48 27398.80 25099.55 20595.98 16798.91 33197.27 24595.50 29898.51 308
eth_miper_zixun_eth98.05 19897.96 19198.33 26499.26 22697.38 25598.56 33699.31 26196.65 25798.88 23899.52 21796.58 15099.12 30497.39 24295.53 29798.47 312
cascas97.69 25597.43 25498.48 24698.60 32897.30 25698.18 35299.39 21692.96 34398.41 29298.78 33193.77 25299.27 27998.16 17298.61 19198.86 225
PVSNet96.02 1798.85 13098.84 11398.89 19899.73 7797.28 25798.32 34799.60 4097.86 14199.50 10999.57 19996.75 14699.86 12898.56 13499.70 11499.54 147
hse-mvs397.70 25497.28 27298.97 18199.70 9597.27 25899.36 19899.45 18598.94 3699.66 6899.64 17094.93 20499.99 199.48 1584.36 35499.65 117
MDA-MVSNet-bldmvs94.96 31493.98 32097.92 29398.24 33997.27 25899.15 25399.33 24893.80 33480.09 36699.03 31588.31 33997.86 35093.49 33394.36 31898.62 289
GBi-Net97.68 25797.48 24198.29 26999.51 15497.26 26099.43 16599.48 14596.49 26999.07 20799.32 28090.26 31698.98 32097.10 25896.65 26598.62 289
test197.68 25797.48 24198.29 26999.51 15497.26 26099.43 16599.48 14596.49 26999.07 20799.32 28090.26 31698.98 32097.10 25896.65 26598.62 289
FMVSNet196.84 28996.36 29298.29 26999.32 21397.26 26099.43 16599.48 14595.11 31798.55 28399.32 28083.95 35598.98 32095.81 29996.26 27798.62 289
MDA-MVSNet_test_wron95.45 30994.60 31598.01 28798.16 34097.21 26399.11 26399.24 27793.49 33880.73 36598.98 32293.02 26198.18 34194.22 32694.45 31698.64 279
VDD-MVS97.73 24797.35 26398.88 20199.47 17497.12 26499.34 20798.85 32298.19 10499.67 6399.85 2982.98 35699.92 8399.49 1498.32 20899.60 134
test-LLR98.06 19397.90 19898.55 24098.79 30497.10 26598.67 32697.75 35497.34 20098.61 27998.85 32694.45 23199.45 24197.25 24799.38 14299.10 197
test-mter97.49 27597.13 28098.55 24098.79 30497.10 26598.67 32697.75 35496.65 25798.61 27998.85 32688.23 34099.45 24197.25 24799.38 14299.10 197
YYNet195.36 31194.51 31797.92 29397.89 34297.10 26599.10 26599.23 27893.26 34180.77 36499.04 31492.81 26798.02 34594.30 32394.18 32198.64 279
ACMM97.58 598.37 16598.34 16098.48 24699.41 18797.10 26599.56 10299.45 18598.53 6799.04 21399.85 2993.00 26299.71 19998.74 10297.45 24798.64 279
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS98.19 17898.10 17498.45 25298.88 29297.07 26999.28 21999.38 22298.57 6599.22 17699.81 6292.12 28999.66 21498.08 18097.54 23898.61 298
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Patchmatch-test97.93 21397.65 22598.77 22199.18 24597.07 26999.03 27899.14 29196.16 29798.74 25699.57 19994.56 22799.72 19393.36 33499.11 16199.52 153
hse-mvs297.50 27297.14 27998.59 23299.49 16697.05 27199.28 21999.22 27998.94 3699.66 6899.42 24894.93 20499.65 21899.48 1583.80 35699.08 202
LPG-MVS_test98.22 17498.13 17298.49 24499.33 20697.05 27199.58 9099.55 6797.46 18699.24 17199.83 4292.58 27899.72 19398.09 17697.51 24098.68 260
LGP-MVS_train98.49 24499.33 20697.05 27199.55 6797.46 18699.24 17199.83 4292.58 27899.72 19398.09 17697.51 24098.68 260
AUN-MVS96.88 28896.31 29398.59 23299.48 17397.04 27499.27 22499.22 27997.44 19298.51 28599.41 25291.97 29199.66 21497.71 21183.83 35599.07 207
plane_prior799.29 21997.03 275
ACMP97.20 1198.06 19397.94 19598.45 25299.37 19897.01 27699.44 15999.49 13297.54 18098.45 28999.79 9091.95 29299.72 19397.91 19197.49 24598.62 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
plane_prior397.00 27798.69 5999.11 197
Fast-Effi-MVS+-dtu98.77 14098.83 11798.60 23199.41 18796.99 27899.52 12099.49 13298.11 11599.24 17199.34 27396.96 13999.79 16797.95 18999.45 13899.02 213
plane_prior699.27 22496.98 27992.71 273
HQP_MVS98.27 17398.22 16898.44 25599.29 21996.97 28099.39 18699.47 16398.97 3299.11 19799.61 18692.71 27399.69 20997.78 20297.63 22998.67 267
plane_prior96.97 28099.21 24598.45 7497.60 232
ACMH97.28 898.10 18997.99 18798.44 25599.41 18796.96 28299.60 7799.56 5798.09 11898.15 30699.91 590.87 31399.70 20598.88 7497.45 24798.67 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
NP-MVS99.23 23296.92 28399.40 256
Effi-MVS+-dtu98.78 13898.89 10598.47 25099.33 20696.91 28499.57 9599.30 26598.47 7199.41 12998.99 31996.78 14399.74 18298.73 10499.38 14298.74 243
HQP5-MVS96.83 285
HQP-MVS98.02 20197.90 19898.37 26299.19 24296.83 28598.98 29299.39 21698.24 9798.66 26899.40 25692.47 28299.64 22197.19 25397.58 23498.64 279
CLD-MVS98.16 18298.10 17498.33 26499.29 21996.82 28798.75 32099.44 19497.83 14699.13 19399.55 20592.92 26499.67 21198.32 16097.69 22898.48 310
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LTVRE_ROB97.16 1298.02 20197.90 19898.40 25999.23 23296.80 28899.70 3899.60 4097.12 22198.18 30599.70 13591.73 29899.72 19398.39 15097.45 24798.68 260
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs597.52 26997.30 27198.16 27898.57 33096.73 28999.27 22498.90 31896.14 30098.37 29599.53 21491.54 30599.14 29797.51 23195.87 28798.63 287
BH-untuned98.42 15998.36 15798.59 23299.49 16696.70 29099.27 22499.13 29297.24 21198.80 25099.38 26195.75 17999.74 18297.07 26199.16 15699.33 186
IB-MVS95.67 1896.22 29995.44 30998.57 23699.21 23896.70 29098.65 32997.74 35696.71 25297.27 32898.54 33886.03 35099.92 8398.47 14586.30 35299.10 197
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ACMH+97.24 1097.92 21697.78 21098.32 26699.46 17596.68 29299.56 10299.54 7498.41 7897.79 32099.87 2090.18 32099.66 21498.05 18497.18 25998.62 289
EU-MVSNet97.98 20898.03 18397.81 30198.72 31596.65 29399.66 5299.66 2798.09 11898.35 29799.82 4995.25 19898.01 34697.41 24195.30 30198.78 231
D2MVS98.41 16198.50 15198.15 27999.26 22696.62 29499.40 18299.61 3597.71 16198.98 22399.36 26796.04 16699.67 21198.70 10897.41 25198.15 334
MVP-Stereo97.81 23497.75 21697.99 28997.53 34696.60 29598.96 29698.85 32297.22 21397.23 32999.36 26795.28 19499.46 24095.51 30699.78 9497.92 348
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TESTMET0.1,197.55 26697.27 27598.40 25998.93 28896.53 29698.67 32697.61 35796.96 23698.64 27599.28 28788.63 33699.45 24197.30 24499.38 14299.21 192
OurMVSNet-221017-097.88 21997.77 21298.19 27698.71 31796.53 29699.88 199.00 30497.79 15298.78 25399.94 391.68 29999.35 26697.21 24996.99 26398.69 255
ADS-MVSNet98.20 17798.08 17898.56 23899.33 20696.48 29899.23 23899.15 28996.24 28999.10 20099.67 15694.11 24299.71 19996.81 27599.05 16899.48 164
testgi97.65 26297.50 24098.13 28099.36 20096.45 29999.42 17299.48 14597.76 15597.87 31699.45 24191.09 31098.81 33494.53 32198.52 19999.13 196
test_040296.64 29296.24 29497.85 29798.85 30096.43 30099.44 15999.26 27393.52 33796.98 33699.52 21788.52 33799.20 29392.58 34497.50 24297.93 347
ITE_SJBPF98.08 28199.29 21996.37 30198.92 31398.34 8798.83 24699.75 11391.09 31099.62 22795.82 29897.40 25298.25 330
IterMVS-SCA-FT97.82 23297.75 21698.06 28399.57 14296.36 30299.02 28199.49 13297.18 21598.71 25999.72 13092.72 27199.14 29797.44 23995.86 28898.67 267
K. test v397.10 28696.79 28798.01 28798.72 31596.33 30399.87 597.05 36097.59 17296.16 34399.80 7888.71 33399.04 31196.69 28296.55 26998.65 277
XVG-ACMP-BASELINE97.83 22997.71 22098.20 27599.11 26096.33 30399.41 17499.52 9198.06 12799.05 21299.50 22489.64 32699.73 18997.73 20897.38 25398.53 306
IterMVS97.83 22997.77 21298.02 28699.58 14096.27 30599.02 28199.48 14597.22 21398.71 25999.70 13592.75 26899.13 30097.46 23696.00 28298.67 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SixPastTwentyTwo97.50 27297.33 26898.03 28498.65 32296.23 30699.77 2798.68 33897.14 21897.90 31599.93 490.45 31499.18 29497.00 26396.43 27398.67 267
BH-w/o98.00 20697.89 20298.32 26699.35 20196.20 30799.01 28698.90 31896.42 27898.38 29499.00 31895.26 19799.72 19396.06 29498.61 19199.03 211
TDRefinement95.42 31094.57 31697.97 29089.83 36896.11 30899.48 14698.75 32796.74 25096.68 33899.88 1588.65 33599.71 19998.37 15482.74 35798.09 335
RRT_test8_iter0597.72 24997.60 23098.08 28199.23 23296.08 30999.63 6499.49 13297.54 18098.94 22999.81 6287.99 34399.35 26699.21 4196.51 27198.81 228
EPMVS97.82 23297.65 22598.35 26398.88 29295.98 31099.49 14094.71 36997.57 17599.26 16899.48 23392.46 28599.71 19997.87 19499.08 16699.35 182
pmmvs-eth3d95.34 31294.73 31497.15 31795.53 36195.94 31199.35 20499.10 29495.13 31593.55 35397.54 34988.15 34297.91 34894.58 32089.69 34897.61 351
FMVSNet596.43 29796.19 29597.15 31799.11 26095.89 31299.32 20999.52 9194.47 33098.34 29899.07 31087.54 34797.07 35792.61 34395.72 29298.47 312
KD-MVS_2432*160094.62 31693.72 32297.31 31597.19 35495.82 31398.34 34499.20 28395.00 32097.57 32298.35 34287.95 34498.10 34392.87 34077.00 36298.01 340
miper_refine_blended94.62 31693.72 32297.31 31597.19 35495.82 31398.34 34499.20 28395.00 32097.57 32298.35 34287.95 34498.10 34392.87 34077.00 36298.01 340
UnsupCasMVSNet_eth96.44 29696.12 29697.40 31498.65 32295.65 31599.36 19899.51 10497.13 21996.04 34598.99 31988.40 33898.17 34296.71 28090.27 34598.40 322
MIMVSNet195.51 30895.04 31296.92 32597.38 34895.60 31699.52 12099.50 12493.65 33696.97 33799.17 30085.28 35396.56 36188.36 35695.55 29698.60 301
CVMVSNet98.57 15398.67 13198.30 26899.35 20195.59 31799.50 13099.55 6798.60 6499.39 13699.83 4294.48 23099.45 24198.75 10198.56 19799.85 16
SCA98.19 17898.16 16998.27 27399.30 21595.55 31899.07 26798.97 30797.57 17599.43 12299.57 19992.72 27199.74 18297.58 22199.20 15499.52 153
LF4IMVS97.52 26997.46 24597.70 30698.98 28395.55 31899.29 21798.82 32598.07 12398.66 26899.64 17089.97 32199.61 22897.01 26296.68 26497.94 346
EPNet_dtu98.03 19997.96 19198.23 27498.27 33795.54 32099.23 23898.75 32799.02 1697.82 31899.71 13196.11 16499.48 23793.04 33899.65 12599.69 103
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap97.12 28596.89 28597.83 29999.07 26895.52 32198.57 33498.74 33097.58 17497.81 31999.79 9088.16 34199.56 23295.10 31497.21 25798.39 323
pmmvs696.53 29496.09 29797.82 30098.69 31995.47 32299.37 19499.47 16393.46 33997.41 32599.78 9787.06 34899.33 27096.92 27292.70 33998.65 277
test20.0396.12 30395.96 30096.63 32997.44 34795.45 32399.51 12499.38 22296.55 26696.16 34399.25 29293.76 25396.17 36287.35 35994.22 32098.27 328
lessismore_v097.79 30298.69 31995.44 32494.75 36895.71 34799.87 2088.69 33499.32 27195.89 29794.93 31098.62 289
DIV-MVS_2432*160095.00 31394.34 31896.96 32397.07 35695.39 32599.56 10299.44 19495.11 31797.13 33397.32 35391.86 29497.27 35690.35 35081.23 35998.23 332
PatchmatchNetpermissive98.31 16898.36 15798.19 27699.16 25395.32 32699.27 22498.92 31397.37 19999.37 14199.58 19594.90 20799.70 20597.43 24099.21 15399.54 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ppachtmachnet_test97.49 27597.45 24697.61 30798.62 32595.24 32798.80 31599.46 17396.11 30298.22 30399.62 18296.45 15598.97 32793.77 32995.97 28698.61 298
USDC97.34 27997.20 27797.75 30399.07 26895.20 32898.51 33899.04 30297.99 13398.31 29999.86 2389.02 33099.55 23495.67 30497.36 25498.49 309
ADS-MVSNet298.02 20198.07 18197.87 29699.33 20695.19 32999.23 23899.08 29796.24 28999.10 20099.67 15694.11 24298.93 33096.81 27599.05 16899.48 164
MDTV_nov1_ep13_2view95.18 33099.35 20496.84 24599.58 9395.19 20097.82 19999.46 171
new_pmnet96.38 29896.03 29897.41 31398.13 34195.16 33199.05 27299.20 28393.94 33297.39 32698.79 32991.61 30499.04 31190.43 34995.77 28998.05 338
tpm97.67 26097.55 23398.03 28499.02 27795.01 33299.43 16598.54 34396.44 27699.12 19599.34 27391.83 29599.60 22997.75 20696.46 27299.48 164
our_test_397.65 26297.68 22297.55 31098.62 32594.97 33398.84 31199.30 26596.83 24798.19 30499.34 27397.01 13799.02 31595.00 31796.01 28198.64 279
Anonymous2024052196.20 30195.89 30297.13 31997.72 34594.96 33499.79 2499.29 27093.01 34297.20 33199.03 31589.69 32598.36 34091.16 34796.13 27998.07 336
MVS_030496.79 29096.52 29097.59 30899.22 23694.92 33599.04 27799.59 4396.49 26998.43 29198.99 31980.48 36299.39 25397.15 25799.27 15098.47 312
DWT-MVSNet_test97.53 26897.40 25797.93 29299.03 27694.86 33699.57 9598.63 33996.59 26598.36 29698.79 32989.32 32899.74 18298.14 17498.16 21899.20 193
tpmrst98.33 16798.48 15297.90 29599.16 25394.78 33799.31 21199.11 29397.27 20799.45 11799.59 19295.33 19399.84 13998.48 14298.61 19199.09 201
tpmvs97.98 20898.02 18597.84 29899.04 27494.73 33899.31 21199.20 28396.10 30698.76 25599.42 24894.94 20399.81 15996.97 26698.45 20298.97 218
pmmvs394.09 32293.25 32596.60 33094.76 36394.49 33998.92 30398.18 34989.66 35296.48 34098.06 34786.28 34997.33 35589.68 35287.20 35197.97 345
MDTV_nov1_ep1398.32 16299.11 26094.44 34099.27 22498.74 33097.51 18499.40 13499.62 18294.78 21399.76 17897.59 22098.81 187
tpm297.44 27797.34 26697.74 30499.15 25694.36 34199.45 15598.94 31093.45 34098.90 23599.44 24291.35 30799.59 23097.31 24398.07 22199.29 188
PVSNet_094.43 1996.09 30495.47 30797.94 29199.31 21494.34 34297.81 35699.70 1597.12 22197.46 32498.75 33289.71 32499.79 16797.69 21481.69 35899.68 107
Anonymous2023120696.22 29996.03 29896.79 32897.31 35194.14 34399.63 6499.08 29796.17 29597.04 33599.06 31293.94 24797.76 35286.96 36095.06 30698.47 312
CostFormer97.72 24997.73 21897.71 30599.15 25694.02 34499.54 11499.02 30394.67 32699.04 21399.35 27092.35 28899.77 17498.50 14197.94 22399.34 184
UnsupCasMVSNet_bld93.53 32392.51 32696.58 33197.38 34893.82 34598.24 34999.48 14591.10 35093.10 35596.66 35574.89 36398.37 33994.03 32887.71 35097.56 353
tpm cat197.39 27897.36 26197.50 31299.17 25193.73 34699.43 16599.31 26191.27 34898.71 25999.08 30994.31 23699.77 17496.41 29098.50 20099.00 214
dp97.75 24397.80 20697.59 30899.10 26393.71 34799.32 20998.88 32096.48 27399.08 20699.55 20592.67 27699.82 15596.52 28698.58 19499.24 190
MVS-HIRNet95.75 30795.16 31197.51 31199.30 21593.69 34898.88 30795.78 36685.09 35898.78 25392.65 36191.29 30899.37 25894.85 31899.85 5899.46 171
CL-MVSNet_2432*160094.49 31893.97 32196.08 33396.16 35793.67 34998.33 34699.38 22295.13 31597.33 32798.15 34692.69 27596.57 36088.67 35479.87 36097.99 343
DSMNet-mixed97.25 28297.35 26396.95 32497.84 34393.61 35099.57 9596.63 36496.13 30198.87 24098.61 33794.59 22597.70 35395.08 31598.86 18399.55 145
MS-PatchMatch97.24 28397.32 26996.99 32198.45 33593.51 35198.82 31399.32 25897.41 19698.13 30799.30 28388.99 33199.56 23295.68 30399.80 8797.90 349
OpenMVS_ROBcopyleft92.34 2094.38 32093.70 32496.41 33297.38 34893.17 35299.06 27098.75 32786.58 35694.84 35198.26 34581.53 36099.32 27189.01 35397.87 22596.76 355
gm-plane-assit98.54 33292.96 35394.65 32799.15 30399.64 22197.56 226
EG-PatchMatch MVS95.97 30595.69 30596.81 32797.78 34492.79 35499.16 24998.93 31196.16 29794.08 35299.22 29582.72 35799.47 23895.67 30497.50 24298.17 333
new-patchmatchnet94.48 31994.08 31995.67 33595.08 36292.41 35599.18 24799.28 27294.55 32993.49 35497.37 35287.86 34697.01 35891.57 34588.36 34997.61 351
LCM-MVSNet-Re97.83 22998.15 17096.87 32699.30 21592.25 35699.59 8398.26 34597.43 19396.20 34299.13 30596.27 16198.73 33698.17 17198.99 17499.64 124
DeepPCF-MVS98.18 398.81 13499.37 2197.12 32099.60 13691.75 35798.61 33199.44 19499.35 199.83 1999.85 2998.70 6599.81 15999.02 5999.91 1699.81 43
RPSCF98.22 17498.62 14196.99 32199.82 3891.58 35899.72 3599.44 19496.61 26199.66 6899.89 1095.92 17299.82 15597.46 23699.10 16499.57 143
Patchmatch-RL test95.84 30695.81 30495.95 33495.61 35990.57 35998.24 34998.39 34495.10 31995.20 34898.67 33494.78 21397.77 35196.28 29290.02 34699.51 159
Gipumacopyleft90.99 32690.15 32993.51 33798.73 31390.12 36093.98 36299.45 18579.32 36192.28 35694.91 35869.61 36497.98 34787.42 35895.67 29392.45 361
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PM-MVS92.96 32492.23 32795.14 33695.61 35989.98 36199.37 19498.21 34794.80 32495.04 35097.69 34865.06 36597.90 34994.30 32389.98 34797.54 354
PMMVS286.87 32785.37 33191.35 34390.21 36783.80 36298.89 30697.45 35983.13 36091.67 35895.03 35748.49 37094.70 36485.86 36277.62 36195.54 358
ambc93.06 33992.68 36482.36 36398.47 33998.73 33595.09 34997.41 35055.55 36899.10 30796.42 28991.32 34397.71 350
DeepMVS_CXcopyleft93.34 33899.29 21982.27 36499.22 27985.15 35796.33 34199.05 31390.97 31299.73 18993.57 33297.77 22798.01 340
LCM-MVSNet86.80 32885.22 33291.53 34287.81 36980.96 36598.23 35198.99 30571.05 36390.13 35996.51 35648.45 37196.88 35990.51 34885.30 35396.76 355
CMPMVSbinary69.68 2394.13 32194.90 31391.84 34197.24 35280.01 36698.52 33799.48 14589.01 35391.99 35799.67 15685.67 35299.13 30095.44 30797.03 26296.39 357
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
N_pmnet94.95 31595.83 30392.31 34098.47 33479.33 36799.12 25792.81 37493.87 33397.68 32199.13 30593.87 24999.01 31791.38 34696.19 27898.59 302
ANet_high77.30 33374.86 33784.62 34775.88 37377.61 36897.63 35893.15 37388.81 35464.27 36989.29 36536.51 37283.93 37075.89 36552.31 36792.33 362
EMVS80.02 33279.22 33582.43 35091.19 36576.40 36997.55 35992.49 37566.36 36883.01 36391.27 36364.63 36685.79 36965.82 36860.65 36685.08 365
E-PMN80.61 33179.88 33482.81 34890.75 36676.38 37097.69 35795.76 36766.44 36783.52 36192.25 36262.54 36787.16 36868.53 36761.40 36584.89 366
MVEpermissive76.82 2176.91 33474.31 33884.70 34685.38 37276.05 37196.88 36093.17 37267.39 36671.28 36889.01 36621.66 37787.69 36771.74 36672.29 36490.35 363
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method91.10 32591.36 32890.31 34495.85 35873.72 37294.89 36199.25 27568.39 36595.82 34699.02 31780.50 36198.95 32993.64 33194.89 31198.25 330
tmp_tt82.80 33081.52 33386.66 34566.61 37568.44 37392.79 36497.92 35268.96 36480.04 36799.85 2985.77 35196.15 36397.86 19543.89 36895.39 359
FPMVS84.93 32985.65 33082.75 34986.77 37063.39 37498.35 34398.92 31374.11 36283.39 36298.98 32250.85 36992.40 36684.54 36394.97 30892.46 360
PMVScopyleft70.75 2275.98 33574.97 33679.01 35170.98 37455.18 37593.37 36398.21 34765.08 36961.78 37093.83 36021.74 37692.53 36578.59 36491.12 34489.34 364
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d40.18 33641.29 34136.84 35286.18 37149.12 37679.73 36522.81 37727.64 37025.46 37328.45 37221.98 37548.89 37155.80 36923.56 37112.51 369
test12339.01 33842.50 34028.53 35339.17 37620.91 37798.75 32019.17 37819.83 37238.57 37166.67 36833.16 37315.42 37237.50 37129.66 37049.26 367
testmvs39.17 33743.78 33925.37 35436.04 37716.84 37898.36 34226.56 37620.06 37138.51 37267.32 36729.64 37415.30 37337.59 37039.90 36943.98 368
uanet_test0.02 3420.03 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 3730.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k24.64 33932.85 3420.00 3550.00 3780.00 3790.00 36699.51 1040.00 3730.00 37499.56 20296.58 1500.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas8.27 34111.03 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 37399.01 190.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.02 3420.03 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.02 3420.03 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.02 3420.03 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.02 3420.03 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.30 34011.06 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37499.58 1950.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.02 3420.03 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.27 3730.00 3780.00 3740.00 3720.00 3720.00 370
PC_three_145298.18 10799.84 1499.70 13599.31 398.52 33898.30 16299.80 8799.81 43
eth-test20.00 378
eth-test0.00 378
test_241102_TWO99.48 14599.08 1299.88 599.81 6298.94 3499.96 1998.91 7199.84 6599.88 7
9.1499.10 7299.72 8299.40 18299.51 10497.53 18299.64 7699.78 9798.84 4599.91 9497.63 21799.82 80
test_0728_THIRD98.99 2699.81 2499.80 7899.09 1499.96 1998.85 8599.90 2399.88 7
GSMVS99.52 153
sam_mvs194.86 20999.52 153
sam_mvs94.72 220
MTGPAbinary99.47 163
test_post199.23 23865.14 37094.18 24199.71 19997.58 221
test_post65.99 36994.65 22499.73 189
patchmatchnet-post98.70 33394.79 21299.74 182
MTMP99.54 11498.88 320
test9_res97.49 23299.72 10999.75 73
agg_prior297.21 24999.73 10899.75 73
test_prior298.96 29698.34 8799.01 21699.52 21798.68 6697.96 18799.74 105
旧先验298.96 29696.70 25399.47 11499.94 5798.19 167
新几何299.01 286
无先验98.99 28899.51 10496.89 24299.93 7297.53 22999.72 91
原ACMM298.95 300
testdata299.95 4696.67 283
segment_acmp98.96 28
testdata198.85 31098.32 91
plane_prior599.47 16399.69 20997.78 20297.63 22998.67 267
plane_prior499.61 186
plane_prior299.39 18698.97 32
plane_prior199.26 226
n20.00 379
nn0.00 379
door-mid98.05 350
test1199.35 237
door97.92 352
HQP-NCC99.19 24298.98 29298.24 9798.66 268
ACMP_Plane99.19 24298.98 29298.24 9798.66 268
BP-MVS97.19 253
HQP4-MVS98.66 26899.64 22198.64 279
HQP3-MVS99.39 21697.58 234
HQP2-MVS92.47 282
ACMMP++_ref97.19 258
ACMMP++97.43 250
Test By Simon98.75 59