This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND99.71 199.72 1299.35 198.97 8598.88 6299.94 898.47 3899.81 1399.84 12
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8598.58 14997.62 2499.45 2599.46 2497.42 999.94 898.47 3899.81 1399.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7598.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4299.81 1399.70 53
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 3899.72 5299.74 37
IU-MVS99.71 1999.23 798.64 13695.28 14799.63 1898.35 4799.81 1399.83 13
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20498.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 8899.84 1099.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.63 2999.18 1099.27 35
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 2099.86 8
No_MVS99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 2099.86 8
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15598.66 13197.51 3098.15 10198.83 12595.70 4599.92 3197.53 10099.67 6099.66 68
OPU-MVS99.37 2099.24 8799.05 1499.02 7599.16 7797.81 399.37 17797.24 11099.73 4999.70 53
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9198.80 9393.67 23299.37 3199.52 1196.52 2299.89 4798.06 5999.81 1399.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1298.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2199.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12798.81 8695.80 12099.16 4499.47 2095.37 5699.92 3197.89 7099.75 4299.79 19
MP-MVS-pluss98.31 5697.92 6499.49 1299.72 1298.88 1898.43 20298.78 10094.10 19997.69 13699.42 2995.25 6499.92 3198.09 5899.80 2099.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20598.68 12397.04 6398.52 8598.80 12896.78 1699.83 6997.93 6699.61 7399.74 37
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19698.81 8697.72 1798.76 6899.16 7797.05 1399.78 10198.06 5999.66 6299.69 56
APD-MVScopyleft98.35 5298.00 6299.42 1699.51 3998.72 2198.80 13698.82 8194.52 18799.23 3799.25 6195.54 5099.80 8896.52 14399.77 3299.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15599.32 3399.39 3296.22 2699.84 6797.72 8199.73 4999.67 65
ZD-MVS99.46 4998.70 2398.79 9893.21 25298.67 7398.97 10595.70 4599.83 6996.07 15499.58 80
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 10098.74 10897.27 4998.02 11299.39 3294.81 7799.96 497.91 6899.79 2699.77 27
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19798.76 10497.82 1698.45 8998.93 11496.65 1999.83 6997.38 10799.41 10799.71 49
DPM-MVS97.55 9296.99 10699.23 3899.04 10998.55 2797.17 33098.35 19994.85 17397.93 12298.58 15395.07 7299.71 11892.60 26699.34 11499.43 109
3Dnovator+94.38 697.43 9996.78 11699.38 1897.83 22698.52 2899.37 1498.71 11697.09 6292.99 30899.13 8289.36 18599.89 4796.97 11999.57 8199.71 49
TEST999.31 6498.50 2997.92 26298.73 11192.63 27497.74 13198.68 14296.20 2899.80 88
train_agg97.97 6397.52 7999.33 2699.31 6498.50 2997.92 26298.73 11192.98 26397.74 13198.68 14296.20 2899.80 8896.59 14099.57 8199.68 61
test_899.29 7398.44 3197.89 27098.72 11392.98 26397.70 13598.66 14596.20 2899.80 88
CDPH-MVS97.94 6697.49 8099.28 3299.47 4798.44 3197.91 26498.67 12892.57 27898.77 6798.85 12295.93 3899.72 11395.56 17699.69 5799.68 61
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5998.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 7899.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4498.86 7595.77 12198.31 9999.10 8695.46 5199.93 2597.57 9799.81 1399.74 37
sasdasda97.67 8097.23 9498.98 5998.70 14398.38 3599.34 1898.39 19096.76 7697.67 13797.40 26592.26 11799.49 15998.28 5096.28 22799.08 161
save fliter99.46 4998.38 3598.21 22598.71 11697.95 13
GST-MVS98.43 4398.12 5599.34 2399.72 1298.38 3599.09 6098.82 8195.71 12598.73 7199.06 9695.27 6299.93 2597.07 11699.63 7099.72 45
agg_prior99.30 6898.38 3598.72 11397.57 14799.81 81
canonicalmvs97.67 8097.23 9498.98 5998.70 14398.38 3599.34 1898.39 19096.76 7697.67 13797.40 26592.26 11799.49 15998.28 5096.28 22799.08 161
alignmvs97.56 9197.07 10399.01 5698.66 14998.37 4098.83 12598.06 25996.74 7898.00 11697.65 24490.80 16099.48 16498.37 4696.56 21399.19 143
SD-MVS98.64 1698.68 1198.53 8799.33 5998.36 4198.90 10098.85 7897.28 4599.72 1299.39 3296.63 2097.60 35298.17 5499.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVS98.70 1498.49 2199.34 2399.70 2298.35 4299.29 2498.88 6297.40 3698.46 8699.20 6795.90 4199.89 4797.85 7399.74 4699.78 21
X-MVStestdata94.06 29192.30 31499.34 2399.70 2298.35 4299.29 2498.88 6297.40 3698.46 8643.50 40595.90 4199.89 4797.85 7399.74 4699.78 21
DP-MVS Recon97.86 6997.46 8399.06 5499.53 3698.35 4298.33 20998.89 5992.62 27598.05 10798.94 11395.34 5899.65 12996.04 15899.42 10699.19 143
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4599.23 3398.96 4596.10 10898.94 5399.17 7496.06 3299.92 3197.62 8999.78 3099.75 35
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4699.14 5198.66 13196.84 7199.56 2099.31 5196.34 2599.70 11998.32 4899.73 4999.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4799.26 2998.88 6297.52 2999.41 2898.78 13096.00 3599.79 9897.79 7799.59 7799.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_prior99.19 4099.31 6498.22 4898.84 7999.70 11999.65 69
MGCFI-Net97.62 8597.19 9798.92 6498.66 14998.20 4999.32 2398.38 19496.69 8197.58 14697.42 26492.10 12599.50 15898.28 5096.25 23099.08 161
test1299.18 4299.16 9898.19 5098.53 15998.07 10695.13 7099.72 11399.56 8799.63 73
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 5199.09 6098.82 8196.58 8599.10 4699.32 4995.39 5499.82 7697.70 8599.63 7099.72 45
MP-MVScopyleft98.33 5598.01 6199.28 3299.75 398.18 5199.22 3798.79 9896.13 10697.92 12399.23 6294.54 8099.94 896.74 13999.78 3099.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
region2R98.61 1898.38 2899.29 2999.74 798.16 5399.23 3398.93 5096.15 10598.94 5399.17 7495.91 3999.94 897.55 9899.79 2699.78 21
nrg03096.28 15195.72 16097.96 14096.90 29898.15 5499.39 1298.31 20595.47 13594.42 24698.35 17792.09 12698.69 26197.50 10289.05 33697.04 261
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5499.23 3398.95 4696.10 10898.93 5799.19 7295.70 4599.94 897.62 8999.79 2699.78 21
MM98.51 3398.24 4699.33 2699.12 10298.14 5698.93 9697.02 33798.96 199.17 4199.47 2091.97 13199.94 899.85 499.69 5799.91 2
PHI-MVS98.34 5398.06 5899.18 4299.15 10098.12 5799.04 6899.09 3193.32 24798.83 6499.10 8696.54 2199.83 6997.70 8599.76 3899.59 79
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5898.99 8299.49 595.43 13799.03 4799.32 4995.56 4899.94 896.80 13699.77 3299.78 21
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5999.28 2698.81 8696.24 10198.35 9699.23 6295.46 5199.94 897.42 10599.81 1399.77 27
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5998.50 19398.78 10097.72 1798.92 5999.28 5495.27 6299.82 7697.55 9899.77 3299.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_prior498.01 6197.86 273
新几何199.16 4599.34 5798.01 6198.69 12090.06 34398.13 10298.95 11294.60 7999.89 4791.97 28799.47 10099.59 79
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6399.15 4998.81 8696.24 10199.20 3899.37 3895.30 6099.80 8897.73 8099.67 6099.72 45
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6499.11 5698.80 9396.49 9099.17 4199.35 4495.34 5899.82 7697.72 8199.65 6599.71 49
RE-MVS-def98.34 3599.49 4597.86 6499.11 5698.80 9396.49 9099.17 4199.35 4495.29 6197.72 8199.65 6599.71 49
HPM-MVS_fast98.38 4798.13 5499.12 5099.75 397.86 6499.44 1198.82 8194.46 19098.94 5399.20 6795.16 6899.74 11197.58 9299.85 599.77 27
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6499.34 1898.87 6995.96 11198.60 8199.13 8296.05 3399.94 897.77 7899.86 199.77 27
HPM-MVScopyleft98.36 5098.10 5799.13 4899.74 797.82 6899.53 898.80 9394.63 18198.61 8098.97 10595.13 7099.77 10697.65 8799.83 1299.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6998.88 10995.32 37698.86 298.53 8499.44 2794.38 8799.94 899.86 199.70 5599.90 3
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 7097.75 28398.89 5997.71 1998.33 9798.97 10594.97 7499.88 5698.42 4499.76 3899.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator94.51 597.46 9496.93 10899.07 5397.78 22997.64 7199.35 1799.06 3497.02 6493.75 28199.16 7789.25 18999.92 3197.22 11299.75 4299.64 71
114514_t96.93 12296.27 13898.92 6499.50 4197.63 7298.85 11998.90 5784.80 38297.77 12799.11 8492.84 10699.66 12894.85 19699.77 3299.47 100
ACMMPcopyleft98.23 5797.95 6399.09 5299.74 797.62 7399.03 7299.41 695.98 11097.60 14599.36 4294.45 8599.93 2597.14 11398.85 13699.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
QAPM96.29 14995.40 17398.96 6297.85 22597.60 7499.23 3398.93 5089.76 34893.11 30599.02 9889.11 19499.93 2591.99 28599.62 7299.34 116
VNet97.79 7397.40 8798.96 6298.88 12697.55 7598.63 17398.93 5096.74 7899.02 4898.84 12390.33 16999.83 6998.53 3096.66 20999.50 91
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7698.89 10499.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 4699.90 3
FIs96.51 14096.12 14397.67 16397.13 28497.54 7699.36 1599.22 2395.89 11594.03 26798.35 17791.98 12998.44 28796.40 14792.76 29097.01 263
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7898.88 10999.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 2099.89 5
旧先验199.29 7397.48 7898.70 11999.09 9295.56 4899.47 10099.61 75
UA-Net97.96 6497.62 7198.98 5998.86 12997.47 8098.89 10499.08 3296.67 8298.72 7299.54 893.15 10499.81 8194.87 19598.83 13799.65 69
UniMVSNet (Re)95.78 17695.19 18897.58 17096.99 29197.47 8098.79 14199.18 2595.60 12993.92 27297.04 29691.68 13598.48 28095.80 16787.66 35196.79 288
CNLPA97.45 9797.03 10498.73 7299.05 10897.44 8298.07 24798.53 15995.32 14596.80 17598.53 15793.32 10199.72 11394.31 21799.31 11699.02 167
MVS_111021_HR98.47 3898.34 3598.88 6899.22 8997.32 8397.91 26499.58 397.20 5398.33 9799.00 10395.99 3699.64 13198.05 6199.76 3899.69 56
OpenMVScopyleft93.04 1395.83 17495.00 19798.32 10697.18 28197.32 8399.21 4098.97 4289.96 34491.14 34199.05 9786.64 25099.92 3193.38 24499.47 10097.73 241
ETV-MVS97.96 6497.81 6598.40 10298.42 16697.27 8598.73 15198.55 15596.84 7198.38 9397.44 26195.39 5499.35 17897.62 8998.89 13298.58 211
CANet98.05 6297.76 6798.90 6798.73 13897.27 8598.35 20798.78 10097.37 4197.72 13498.96 11091.53 14399.92 3198.79 2399.65 6599.51 89
FC-MVSNet-test96.42 14396.05 14597.53 17396.95 29397.27 8599.36 1599.23 2095.83 11993.93 27198.37 17592.00 12898.32 30696.02 15992.72 29197.00 264
VPA-MVSNet95.75 17795.11 19397.69 16097.24 27397.27 8598.94 9499.23 2095.13 15495.51 21597.32 26985.73 26698.91 23897.33 10989.55 32896.89 278
EC-MVSNet98.21 5898.11 5698.49 9198.34 17797.26 8999.61 598.43 18496.78 7498.87 6198.84 12393.72 9899.01 22398.91 2099.50 9599.19 143
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12697.25 9098.82 12799.34 1098.75 399.80 599.61 495.16 6899.95 799.70 699.80 2099.93 1
TSAR-MVS + GP.98.38 4798.24 4698.81 7099.22 8997.25 9098.11 24298.29 21397.19 5498.99 5299.02 9896.22 2699.67 12698.52 3698.56 15099.51 89
NR-MVSNet94.98 22694.16 24197.44 17696.53 31897.22 9298.74 14798.95 4694.96 16689.25 35897.69 24089.32 18698.18 31894.59 20887.40 35496.92 270
LS3D97.16 11496.66 12498.68 7598.53 16197.19 9398.93 9698.90 5792.83 27095.99 20599.37 3892.12 12499.87 5893.67 23899.57 8198.97 172
test22299.23 8897.17 9497.40 30798.66 13188.68 36298.05 10798.96 11094.14 9399.53 9299.61 75
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23597.15 9598.84 12398.97 4298.75 399.43 2799.54 893.29 10299.93 2599.64 999.79 2699.89 5
CPTT-MVS97.72 7697.32 9198.92 6499.64 2897.10 9699.12 5598.81 8692.34 28698.09 10599.08 9493.01 10599.92 3196.06 15799.77 3299.75 35
CS-MVS-test98.49 3598.50 2098.46 9499.20 9297.05 9799.64 498.50 16997.45 3598.88 6099.14 8195.25 6499.15 19998.83 2299.56 8799.20 139
HY-MVS93.96 896.82 12896.23 14198.57 8198.46 16597.00 9898.14 23798.21 22293.95 20896.72 17797.99 21291.58 13899.76 10794.51 21096.54 21498.95 175
UniMVSNet_NR-MVSNet95.71 18095.15 18997.40 18196.84 30196.97 9998.74 14799.24 1795.16 15393.88 27497.72 23791.68 13598.31 30895.81 16587.25 35796.92 270
DU-MVS95.42 19694.76 20997.40 18196.53 31896.97 9998.66 16898.99 4195.43 13793.88 27497.69 24088.57 20898.31 30895.81 16587.25 35796.92 270
DeepC-MVS95.98 397.88 6897.58 7398.77 7199.25 8196.93 10198.83 12598.75 10696.96 6796.89 17099.50 1590.46 16699.87 5897.84 7599.76 3899.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPR96.84 12796.24 14098.65 7798.72 14296.92 10297.36 31398.57 15193.33 24696.67 17897.57 25294.30 8999.56 14591.05 30698.59 14899.47 100
MVS_111021_LR98.34 5398.23 4898.67 7699.27 7896.90 10397.95 25999.58 397.14 5898.44 9199.01 10295.03 7399.62 13797.91 6899.75 4299.50 91
MAR-MVS96.91 12396.40 13398.45 9598.69 14696.90 10398.66 16898.68 12392.40 28597.07 16097.96 21591.54 14299.75 10993.68 23698.92 13098.69 198
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WTY-MVS97.37 10596.92 10998.72 7398.86 12996.89 10598.31 21498.71 11695.26 14897.67 13798.56 15692.21 12199.78 10195.89 16296.85 20499.48 98
test_fmvsmconf0.01_n97.86 6997.54 7898.83 6995.48 35896.83 10698.95 9198.60 14198.58 698.93 5799.55 688.57 20899.91 3999.54 1199.61 7399.77 27
MSLP-MVS++98.56 2998.57 1598.55 8399.26 8096.80 10798.71 15699.05 3697.28 4598.84 6299.28 5496.47 2399.40 17398.52 3699.70 5599.47 100
API-MVS97.41 10197.25 9397.91 14198.70 14396.80 10798.82 12798.69 12094.53 18598.11 10398.28 18794.50 8499.57 14294.12 22399.49 9797.37 254
PCF-MVS93.45 1194.68 24193.43 29198.42 10198.62 15496.77 10995.48 37998.20 22484.63 38393.34 29698.32 18388.55 21199.81 8184.80 37098.96 12998.68 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ab-mvs96.42 14395.71 16398.55 8398.63 15396.75 11097.88 27198.74 10893.84 21496.54 18898.18 19885.34 27599.75 10995.93 16196.35 21999.15 150
CS-MVS98.44 4198.49 2198.31 10799.08 10796.73 11199.67 398.47 17597.17 5598.94 5399.10 8695.73 4499.13 20298.71 2499.49 9799.09 157
Effi-MVS+97.12 11696.69 12198.39 10398.19 19596.72 11297.37 31198.43 18493.71 22597.65 14198.02 20892.20 12299.25 18696.87 13197.79 18099.19 143
AdaColmapbinary97.15 11596.70 12098.48 9299.16 9896.69 11398.01 25398.89 5994.44 19196.83 17198.68 14290.69 16399.76 10794.36 21399.29 11798.98 171
原ACMM198.65 7799.32 6296.62 11498.67 12893.27 25197.81 12698.97 10595.18 6799.83 6993.84 23299.46 10399.50 91
FMVSNet394.97 22894.26 23497.11 19998.18 19796.62 11498.56 18598.26 21893.67 23294.09 26397.10 28284.25 29898.01 33192.08 28092.14 29496.70 300
sss97.39 10296.98 10798.61 7998.60 15696.61 11698.22 22498.93 5093.97 20798.01 11598.48 16291.98 12999.85 6396.45 14598.15 16899.39 112
test_yl97.22 10996.78 11698.54 8598.73 13896.60 11798.45 19798.31 20594.70 17598.02 11298.42 16990.80 16099.70 11996.81 13496.79 20699.34 116
DCV-MVSNet97.22 10996.78 11698.54 8598.73 13896.60 11798.45 19798.31 20594.70 17598.02 11298.42 16990.80 16099.70 11996.81 13496.79 20699.34 116
casdiffmvs_mvgpermissive97.72 7697.48 8298.44 9798.42 16696.59 11998.92 9898.44 18096.20 10397.76 12899.20 6791.66 13799.23 18998.27 5398.41 15999.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
VPNet94.99 22494.19 23897.40 18197.16 28296.57 12098.71 15698.97 4295.67 12794.84 22998.24 19480.36 33198.67 26596.46 14487.32 35696.96 267
MVS94.67 24493.54 28698.08 13096.88 29996.56 12198.19 23098.50 16978.05 39292.69 31698.02 20891.07 15699.63 13490.09 31798.36 16298.04 232
XXY-MVS95.20 21294.45 22697.46 17496.75 30796.56 12198.86 11798.65 13593.30 24993.27 29898.27 19084.85 28498.87 24594.82 19891.26 30796.96 267
PatchMatch-RL96.59 13596.03 14798.27 10999.31 6496.51 12397.91 26499.06 3493.72 22496.92 16898.06 20588.50 21399.65 12991.77 29199.00 12898.66 203
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7499.46 4996.49 12498.30 21698.69 12097.21 5298.84 6299.36 4295.41 5399.78 10198.62 2699.65 6599.80 18
WR-MVS95.15 21494.46 22497.22 18896.67 31296.45 12598.21 22598.81 8694.15 19793.16 30197.69 24087.51 23598.30 31095.29 18588.62 34296.90 277
EIA-MVS97.75 7497.58 7398.27 10998.38 16996.44 12699.01 7798.60 14195.88 11797.26 15297.53 25594.97 7499.33 18097.38 10799.20 11999.05 165
test_fmvsm_n_192098.87 1099.01 398.45 9599.42 5596.43 12798.96 9099.36 998.63 599.86 299.51 1395.91 3999.97 199.72 599.75 4298.94 176
mvsmamba96.57 13896.32 13697.32 18596.60 31496.43 12799.54 797.98 26496.49 9095.20 22298.64 14690.82 15898.55 27497.97 6393.65 27296.98 265
FMVSNet294.47 26193.61 28297.04 20398.21 19196.43 12798.79 14198.27 21492.46 27993.50 29097.09 28681.16 32398.00 33391.09 30291.93 29796.70 300
PAPM_NR97.46 9497.11 10098.50 8999.50 4196.41 13098.63 17398.60 14195.18 15297.06 16198.06 20594.26 9199.57 14293.80 23498.87 13599.52 86
SDMVSNet96.85 12696.42 13198.14 12199.30 6896.38 13199.21 4099.23 2095.92 11295.96 20798.76 13685.88 26499.44 16997.93 6695.59 24298.60 207
1112_ss96.63 13396.00 14898.50 8998.56 15796.37 13298.18 23598.10 24792.92 26694.84 22998.43 16792.14 12399.58 14194.35 21496.51 21599.56 85
TranMVSNet+NR-MVSNet95.14 21594.48 22297.11 19996.45 32496.36 13399.03 7299.03 3795.04 16193.58 28497.93 21788.27 21698.03 33094.13 22286.90 36296.95 269
IS-MVSNet97.22 10996.88 11098.25 11398.85 13196.36 13399.19 4497.97 26695.39 13997.23 15398.99 10491.11 15498.93 23594.60 20698.59 14899.47 100
EI-MVSNet-UG-set98.41 4598.34 3598.61 7999.45 5296.32 13598.28 21998.68 12397.17 5598.74 6999.37 3895.25 6499.79 9898.57 2799.54 9099.73 42
LFMVS95.86 17294.98 19998.47 9398.87 12896.32 13598.84 12396.02 36693.40 24498.62 7999.20 6774.99 37099.63 13497.72 8197.20 19599.46 104
PLCcopyleft95.07 497.20 11296.78 11698.44 9799.29 7396.31 13798.14 23798.76 10492.41 28496.39 19598.31 18494.92 7699.78 10194.06 22698.77 14099.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Vis-MVSNetpermissive97.42 10097.11 10098.34 10598.66 14996.23 13899.22 3799.00 3996.63 8498.04 10999.21 6588.05 22499.35 17896.01 16099.21 11899.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ET-MVSNet_ETH3D94.13 28392.98 30097.58 17098.22 19096.20 13997.31 31895.37 37594.53 18579.56 39197.63 24886.51 25197.53 35696.91 12290.74 31299.02 167
baseline97.64 8397.44 8598.25 11398.35 17296.20 13999.00 7998.32 20396.33 10098.03 11099.17 7491.35 14699.16 19698.10 5798.29 16699.39 112
DP-MVS96.59 13595.93 15198.57 8199.34 5796.19 14198.70 16098.39 19089.45 35494.52 23899.35 4491.85 13299.85 6392.89 26298.88 13399.68 61
test_fmvsmvis_n_192098.44 4198.51 1898.23 11598.33 17996.15 14298.97 8599.15 2898.55 798.45 8999.55 694.26 9199.97 199.65 799.66 6298.57 212
casdiffmvspermissive97.63 8497.41 8698.28 10898.33 17996.14 14398.82 12798.32 20396.38 9897.95 11899.21 6591.23 15199.23 18998.12 5698.37 16099.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet97.28 10796.87 11198.51 8894.98 36696.14 14398.90 10097.02 33798.28 1095.99 20599.11 8491.36 14599.89 4796.98 11899.19 12099.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet_DTU96.96 12196.55 12798.21 11698.17 20096.07 14597.98 25798.21 22297.24 5097.13 15698.93 11486.88 24799.91 3995.00 19399.37 11398.66 203
iter_conf0596.13 15895.79 15597.15 19598.16 20195.99 14698.88 10997.98 26495.91 11495.58 21498.46 16585.53 27098.59 27197.88 7193.75 26896.86 283
xiu_mvs_v1_base_debu97.60 8697.56 7597.72 15698.35 17295.98 14797.86 27398.51 16497.13 5999.01 4998.40 17191.56 13999.80 8898.53 3098.68 14197.37 254
xiu_mvs_v1_base97.60 8697.56 7597.72 15698.35 17295.98 14797.86 27398.51 16497.13 5999.01 4998.40 17191.56 13999.80 8898.53 3098.68 14197.37 254
xiu_mvs_v1_base_debi97.60 8697.56 7597.72 15698.35 17295.98 14797.86 27398.51 16497.13 5999.01 4998.40 17191.56 13999.80 8898.53 3098.68 14197.37 254
baseline195.84 17395.12 19298.01 13598.49 16495.98 14798.73 15197.03 33595.37 14296.22 19898.19 19789.96 17499.16 19694.60 20687.48 35298.90 179
CDS-MVSNet96.99 12096.69 12197.90 14298.05 21095.98 14798.20 22798.33 20293.67 23296.95 16498.49 16193.54 9998.42 28995.24 18897.74 18399.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+96.28 15195.70 16598.03 13398.29 18495.97 15298.58 17998.25 21991.74 30395.29 22197.23 27691.03 15799.15 19992.90 26097.96 17498.97 172
MVS_Test97.28 10797.00 10598.13 12498.33 17995.97 15298.74 14798.07 25494.27 19598.44 9198.07 20492.48 11199.26 18596.43 14698.19 16799.16 149
MG-MVS97.81 7297.60 7298.44 9799.12 10295.97 15297.75 28398.78 10096.89 7098.46 8699.22 6493.90 9799.68 12594.81 19999.52 9399.67 65
tfpnnormal93.66 29692.70 30696.55 24896.94 29495.94 15598.97 8599.19 2491.04 32791.38 33997.34 26784.94 28298.61 26885.45 36489.02 33895.11 366
pmmvs494.69 23993.99 25596.81 22095.74 34995.94 15597.40 30797.67 28390.42 33793.37 29597.59 25089.08 19598.20 31792.97 25791.67 30196.30 342
Test_1112_low_res96.34 14895.66 16998.36 10498.56 15795.94 15597.71 28698.07 25492.10 29594.79 23397.29 27191.75 13499.56 14594.17 22196.50 21699.58 83
MVSTER96.06 16095.72 16097.08 20198.23 18995.93 15898.73 15198.27 21494.86 17195.07 22498.09 20388.21 21798.54 27696.59 14093.46 27696.79 288
OMC-MVS97.55 9297.34 9098.20 11899.33 5995.92 15998.28 21998.59 14495.52 13397.97 11799.10 8693.28 10399.49 15995.09 19098.88 13399.19 143
PVSNet_Blended_VisFu97.70 7897.46 8398.44 9799.27 7895.91 16098.63 17399.16 2794.48 18997.67 13798.88 11992.80 10799.91 3997.11 11499.12 12299.50 91
anonymousdsp95.42 19694.91 20396.94 21095.10 36595.90 16199.14 5198.41 18693.75 21993.16 30197.46 25887.50 23798.41 29795.63 17594.03 26096.50 330
GeoE96.58 13796.07 14498.10 12998.35 17295.89 16299.34 1898.12 24193.12 25896.09 20198.87 12089.71 17898.97 22592.95 25898.08 17199.43 109
UGNet96.78 12996.30 13798.19 12098.24 18795.89 16298.88 10998.93 5097.39 3896.81 17497.84 22682.60 31699.90 4596.53 14299.49 9798.79 186
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
iter_conf05_1196.28 15195.69 16698.03 13398.29 18495.88 16497.43 30596.24 36596.50 8998.26 10098.30 18678.78 34099.44 16997.58 9299.84 1098.78 189
WR-MVS_H95.05 22094.46 22496.81 22096.86 30095.82 16599.24 3299.24 1793.87 21392.53 32196.84 31690.37 16798.24 31693.24 24887.93 34896.38 338
diffmvspermissive97.58 8997.40 8798.13 12498.32 18295.81 16698.06 24898.37 19696.20 10398.74 6998.89 11891.31 14999.25 18698.16 5598.52 15199.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSFormer97.57 9097.49 8097.84 14498.07 20695.76 16799.47 998.40 18894.98 16498.79 6598.83 12592.34 11498.41 29796.91 12299.59 7799.34 116
lupinMVS97.44 9897.22 9698.12 12798.07 20695.76 16797.68 28897.76 27994.50 18898.79 6598.61 14892.34 11499.30 18297.58 9299.59 7799.31 122
bld_raw_dy_0_6495.72 17894.98 19997.97 13798.29 18495.68 16999.04 6896.34 36296.51 8895.86 21098.44 16678.73 34199.44 16997.58 9293.99 26398.78 189
PAPM94.95 22994.00 25397.78 15097.04 28895.65 17096.03 37198.25 21991.23 32394.19 25997.80 23291.27 15098.86 24782.61 37897.61 18798.84 183
jason97.32 10697.08 10298.06 13297.45 26095.59 17197.87 27297.91 27394.79 17498.55 8398.83 12591.12 15399.23 18997.58 9299.60 7599.34 116
jason: jason.
PS-MVSNAJ97.73 7597.77 6697.62 16898.68 14795.58 17297.34 31598.51 16497.29 4498.66 7797.88 22294.51 8199.90 4597.87 7299.17 12197.39 252
CP-MVSNet94.94 23194.30 23296.83 21896.72 30995.56 17399.11 5698.95 4693.89 21192.42 32697.90 21987.19 24198.12 32394.32 21688.21 34596.82 287
HyFIR lowres test96.90 12496.49 13098.14 12199.33 5995.56 17397.38 30999.65 292.34 28697.61 14498.20 19689.29 18799.10 21096.97 11997.60 18899.77 27
131496.25 15495.73 15997.79 14997.13 28495.55 17598.19 23098.59 14493.47 24192.03 33397.82 23091.33 14799.49 15994.62 20598.44 15698.32 224
thisisatest053096.01 16195.36 17897.97 13798.38 16995.52 17698.88 10994.19 38994.04 20197.64 14298.31 18483.82 31199.46 16795.29 18597.70 18598.93 177
test_djsdf96.00 16295.69 16696.93 21195.72 35095.49 17799.47 998.40 18894.98 16494.58 23697.86 22389.16 19298.41 29796.91 12294.12 25896.88 279
xiu_mvs_v2_base97.66 8297.70 6997.56 17298.61 15595.46 17897.44 30398.46 17697.15 5798.65 7898.15 19994.33 8899.80 8897.84 7598.66 14597.41 250
Vis-MVSNet (Re-imp)96.87 12596.55 12797.83 14598.73 13895.46 17899.20 4298.30 21194.96 16696.60 18398.87 12090.05 17298.59 27193.67 23898.60 14799.46 104
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 10999.09 10695.41 18098.86 11799.37 897.69 2199.78 699.61 492.38 11399.91 3999.58 1099.43 10599.49 96
fmvsm_s_conf0.1_n_a98.08 6098.04 6098.21 11697.66 24195.39 18198.89 10499.17 2697.24 5099.76 899.67 191.13 15299.88 5699.39 1399.41 10799.35 115
EPP-MVSNet97.46 9497.28 9297.99 13698.64 15295.38 18299.33 2298.31 20593.61 23697.19 15499.07 9594.05 9499.23 18996.89 12698.43 15899.37 114
testdata98.26 11299.20 9295.36 18398.68 12391.89 30098.60 8199.10 8694.44 8699.82 7694.27 21899.44 10499.58 83
MSDG95.93 16895.30 18497.83 14598.90 12495.36 18396.83 35598.37 19691.32 31894.43 24598.73 13890.27 17099.60 13990.05 32098.82 13898.52 213
ETVMVS94.50 25793.44 29097.68 16298.18 19795.35 18598.19 23097.11 32793.73 22296.40 19495.39 36174.53 37298.84 24891.10 30196.31 22298.84 183
PVSNet_BlendedMVS96.73 13096.60 12597.12 19899.25 8195.35 18598.26 22299.26 1594.28 19497.94 12097.46 25892.74 10899.81 8196.88 12893.32 28196.20 345
PVSNet_Blended97.38 10397.12 9998.14 12199.25 8195.35 18597.28 32099.26 1593.13 25797.94 12098.21 19592.74 10899.81 8196.88 12899.40 11099.27 129
TAMVS97.02 11996.79 11597.70 15998.06 20995.31 18898.52 18898.31 20593.95 20897.05 16298.61 14893.49 10098.52 27895.33 18297.81 17999.29 127
PS-CasMVS94.67 24493.99 25596.71 22496.68 31195.26 18999.13 5499.03 3793.68 23092.33 32797.95 21685.35 27498.10 32493.59 24088.16 34796.79 288
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12499.30 6895.25 19098.85 11999.39 797.94 1499.74 999.62 392.59 11099.91 3999.65 799.52 9399.25 133
fmvsm_s_conf0.1_n98.18 5998.21 5198.11 12898.54 16095.24 19198.87 11499.24 1797.50 3199.70 1399.67 191.33 14799.89 4799.47 1299.54 9099.21 138
V4294.78 23794.14 24396.70 22696.33 32995.22 19298.97 8598.09 25192.32 28894.31 25297.06 29388.39 21498.55 27492.90 26088.87 34096.34 339
FA-MVS(test-final)96.41 14695.94 15097.82 14798.21 19195.20 19397.80 27997.58 28993.21 25297.36 15097.70 23889.47 18299.56 14594.12 22397.99 17298.71 197
pm-mvs193.94 29493.06 29896.59 23996.49 32195.16 19498.95 9198.03 26192.32 28891.08 34297.84 22684.54 29498.41 29792.16 27886.13 36896.19 346
CSCG97.85 7197.74 6898.20 11899.67 2595.16 19499.22 3799.32 1193.04 26197.02 16398.92 11695.36 5799.91 3997.43 10499.64 6999.52 86
thisisatest051595.61 18994.89 20597.76 15398.15 20295.15 19696.77 35694.41 38592.95 26597.18 15597.43 26284.78 28699.45 16894.63 20397.73 18498.68 199
VDDNet95.36 20294.53 21997.86 14398.10 20595.13 19798.85 11997.75 28090.46 33598.36 9499.39 3273.27 37899.64 13197.98 6296.58 21298.81 185
gg-mvs-nofinetune92.21 32190.58 32997.13 19796.75 30795.09 19895.85 37389.40 40585.43 38094.50 23981.98 39880.80 32998.40 30392.16 27898.33 16397.88 235
PS-MVSNAJss96.43 14296.26 13996.92 21495.84 34895.08 19999.16 4898.50 16995.87 11893.84 27798.34 18194.51 8198.61 26896.88 12893.45 27897.06 260
thres600view795.49 19094.77 20897.67 16398.98 11995.02 20098.85 11996.90 34495.38 14096.63 18096.90 31184.29 29699.59 14088.65 34296.33 22098.40 218
GBi-Net94.49 25893.80 26996.56 24398.21 19195.00 20198.82 12798.18 22992.46 27994.09 26397.07 28981.16 32397.95 33692.08 28092.14 29496.72 296
test194.49 25893.80 26996.56 24398.21 19195.00 20198.82 12798.18 22992.46 27994.09 26397.07 28981.16 32397.95 33692.08 28092.14 29496.72 296
FMVSNet193.19 30992.07 31696.56 24397.54 25195.00 20198.82 12798.18 22990.38 33892.27 32897.07 28973.68 37797.95 33689.36 33491.30 30596.72 296
tfpn200view995.32 20694.62 21597.43 17798.94 12294.98 20498.68 16396.93 34295.33 14396.55 18696.53 32984.23 30099.56 14588.11 34596.29 22497.76 238
GG-mvs-BLEND96.59 23996.34 32894.98 20496.51 36588.58 40693.10 30694.34 37680.34 33398.05 32989.53 33096.99 19996.74 293
thres40095.38 19994.62 21597.65 16798.94 12294.98 20498.68 16396.93 34295.33 14396.55 18696.53 32984.23 30099.56 14588.11 34596.29 22498.40 218
F-COLMAP97.09 11896.80 11397.97 13799.45 5294.95 20798.55 18698.62 14093.02 26296.17 20098.58 15394.01 9599.81 8193.95 22898.90 13199.14 152
FE-MVS95.62 18694.90 20497.78 15098.37 17194.92 20897.17 33097.38 31590.95 32997.73 13397.70 23885.32 27799.63 13491.18 29998.33 16398.79 186
thres100view90095.38 19994.70 21297.41 17998.98 11994.92 20898.87 11496.90 34495.38 14096.61 18296.88 31284.29 29699.56 14588.11 34596.29 22497.76 238
thres20095.25 20894.57 21797.28 18698.81 13494.92 20898.20 22797.11 32795.24 15196.54 18896.22 34084.58 29399.53 15387.93 34996.50 21697.39 252
tttt051796.07 15995.51 17297.78 15098.41 16894.84 21199.28 2694.33 38794.26 19697.64 14298.64 14684.05 30499.47 16695.34 18197.60 18899.03 166
PEN-MVS94.42 26493.73 27696.49 25296.28 33094.84 21199.17 4799.00 3993.51 23892.23 32997.83 22986.10 26097.90 34092.55 27186.92 36196.74 293
v894.47 26193.77 27296.57 24296.36 32794.83 21399.05 6598.19 22691.92 29993.16 30196.97 30488.82 20598.48 28091.69 29387.79 34996.39 337
TAPA-MVS93.98 795.35 20394.56 21897.74 15599.13 10194.83 21398.33 20998.64 13686.62 37096.29 19798.61 14894.00 9699.29 18380.00 38499.41 10799.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v1094.29 27293.55 28596.51 25196.39 32694.80 21598.99 8298.19 22691.35 31693.02 30796.99 30288.09 22198.41 29790.50 31388.41 34496.33 341
v2v48294.69 23994.03 24996.65 22996.17 33494.79 21698.67 16698.08 25292.72 27294.00 26897.16 28087.69 23498.45 28592.91 25988.87 34096.72 296
v114494.59 24993.92 25896.60 23896.21 33194.78 21798.59 17798.14 23991.86 30294.21 25897.02 29987.97 22598.41 29791.72 29289.57 32696.61 310
testing22294.12 28593.03 29997.37 18498.02 21194.66 21897.94 26196.65 35794.63 18195.78 21195.76 35171.49 38098.92 23691.17 30095.88 23998.52 213
TransMVSNet (Re)92.67 31691.51 32296.15 27396.58 31694.65 21998.90 10096.73 35190.86 33089.46 35797.86 22385.62 26898.09 32686.45 35681.12 38095.71 356
BH-RMVSNet95.92 16995.32 18297.69 16098.32 18294.64 22098.19 23097.45 30994.56 18396.03 20398.61 14885.02 28099.12 20490.68 31199.06 12399.30 125
OPM-MVS95.69 18395.33 18196.76 22296.16 33694.63 22198.43 20298.39 19096.64 8395.02 22698.78 13085.15 27999.05 21495.21 18994.20 25396.60 311
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
jajsoiax95.45 19495.03 19696.73 22395.42 36294.63 22199.14 5198.52 16295.74 12293.22 29998.36 17683.87 30998.65 26696.95 12194.04 25996.91 275
plane_prior797.42 26294.63 221
plane_prior697.35 26994.61 22487.09 242
plane_prior394.61 22497.02 6495.34 217
HQP_MVS96.14 15795.90 15296.85 21797.42 26294.60 22698.80 13698.56 15397.28 4595.34 21798.28 18787.09 24299.03 21896.07 15494.27 25096.92 270
plane_prior94.60 22698.44 20096.74 7894.22 252
CHOSEN 1792x268897.12 11696.80 11398.08 13099.30 6894.56 22898.05 24999.71 193.57 23797.09 15798.91 11788.17 21899.89 4796.87 13199.56 8799.81 17
NP-MVS97.28 27194.51 22997.73 235
h-mvs3396.17 15595.62 17097.81 14899.03 11094.45 23098.64 17098.75 10697.48 3298.67 7398.72 13989.76 17699.86 6297.95 6481.59 37999.11 155
v119294.32 26993.58 28396.53 24996.10 33794.45 23098.50 19398.17 23491.54 30994.19 25997.06 29386.95 24698.43 28890.14 31689.57 32696.70 300
mvs_tets95.41 19895.00 19796.65 22995.58 35494.42 23299.00 7998.55 15595.73 12493.21 30098.38 17483.45 31398.63 26797.09 11594.00 26196.91 275
LTVRE_ROB92.95 1594.60 24793.90 26196.68 22897.41 26594.42 23298.52 18898.59 14491.69 30691.21 34098.35 17784.87 28399.04 21791.06 30493.44 27996.60 311
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet93.98 29393.26 29696.14 27496.06 33994.39 23499.20 4298.86 7593.06 26091.78 33597.81 23185.87 26597.58 35490.53 31286.17 36696.46 335
v7n94.19 27893.43 29196.47 25595.90 34594.38 23599.26 2998.34 20191.99 29792.76 31397.13 28188.31 21598.52 27889.48 33287.70 35096.52 325
v14419294.39 26693.70 27896.48 25496.06 33994.35 23698.58 17998.16 23691.45 31194.33 25197.02 29987.50 23798.45 28591.08 30389.11 33596.63 308
sd_testset96.17 15595.76 15897.42 17899.30 6894.34 23798.82 12799.08 3295.92 11295.96 20798.76 13682.83 31599.32 18195.56 17695.59 24298.60 207
Anonymous2023121194.10 28793.26 29696.61 23699.11 10494.28 23899.01 7798.88 6286.43 37292.81 31197.57 25281.66 32098.68 26494.83 19789.02 33896.88 279
cascas94.63 24693.86 26596.93 21196.91 29794.27 23996.00 37298.51 16485.55 37994.54 23796.23 33884.20 30298.87 24595.80 16796.98 20297.66 244
Anonymous2024052995.10 21794.22 23697.75 15499.01 11394.26 24098.87 11498.83 8085.79 37896.64 17998.97 10578.73 34199.85 6396.27 14994.89 24799.12 154
HQP5-MVS94.25 241
HQP-MVS95.72 17895.40 17396.69 22797.20 27794.25 24198.05 24998.46 17696.43 9394.45 24197.73 23586.75 24898.96 22995.30 18394.18 25496.86 283
RRT_MVS95.98 16395.78 15696.56 24396.48 32294.22 24399.57 697.92 27195.89 11593.95 27098.70 14089.27 18898.42 28997.23 11193.02 28597.04 261
mvsany_test197.69 7997.70 6997.66 16698.24 18794.18 24497.53 29997.53 29995.52 13399.66 1599.51 1394.30 8999.56 14598.38 4598.62 14699.23 135
TR-MVS94.94 23194.20 23797.17 19397.75 23194.14 24597.59 29697.02 33792.28 29095.75 21297.64 24683.88 30898.96 22989.77 32496.15 23498.40 218
v192192094.20 27793.47 28996.40 26395.98 34294.08 24698.52 18898.15 23791.33 31794.25 25597.20 27986.41 25598.42 28990.04 32189.39 33296.69 305
Baseline_NR-MVSNet94.35 26793.81 26895.96 28296.20 33294.05 24798.61 17696.67 35591.44 31293.85 27697.60 24988.57 20898.14 32194.39 21286.93 36095.68 357
VDD-MVS95.82 17595.23 18697.61 16998.84 13293.98 24898.68 16397.40 31395.02 16297.95 11899.34 4874.37 37599.78 10198.64 2596.80 20599.08 161
PMMVS96.60 13496.33 13597.41 17997.90 22393.93 24997.35 31498.41 18692.84 26997.76 12897.45 26091.10 15599.20 19396.26 15097.91 17599.11 155
v124094.06 29193.29 29596.34 26696.03 34193.90 25098.44 20098.17 23491.18 32694.13 26297.01 30186.05 26198.42 28989.13 33789.50 33096.70 300
GA-MVS94.81 23594.03 24997.14 19697.15 28393.86 25196.76 35797.58 28994.00 20594.76 23497.04 29680.91 32698.48 28091.79 29096.25 23099.09 157
ACMM93.85 995.69 18395.38 17796.61 23697.61 24493.84 25298.91 9998.44 18095.25 14994.28 25398.47 16386.04 26399.12 20495.50 17993.95 26496.87 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_anonymous96.70 13296.53 12997.18 19298.19 19593.78 25398.31 21498.19 22694.01 20494.47 24098.27 19092.08 12798.46 28497.39 10697.91 17599.31 122
XVG-OURS-SEG-HR96.51 14096.34 13497.02 20498.77 13693.76 25497.79 28198.50 16995.45 13696.94 16599.09 9287.87 22999.55 15296.76 13895.83 24197.74 240
XVG-OURS96.55 13996.41 13296.99 20598.75 13793.76 25497.50 30298.52 16295.67 12796.83 17199.30 5288.95 20299.53 15395.88 16396.26 22997.69 243
Anonymous20240521195.28 20794.49 22197.67 16399.00 11493.75 25698.70 16097.04 33490.66 33196.49 19098.80 12878.13 34999.83 6996.21 15395.36 24699.44 107
CLD-MVS95.62 18695.34 17996.46 25897.52 25493.75 25697.27 32198.46 17695.53 13294.42 24698.00 21186.21 25898.97 22596.25 15294.37 24896.66 306
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_enhance_ethall95.10 21794.75 21096.12 27697.53 25393.73 25896.61 36298.08 25292.20 29493.89 27396.65 32592.44 11298.30 31094.21 22091.16 30896.34 339
IterMVS-LS95.46 19295.21 18796.22 27298.12 20393.72 25998.32 21398.13 24093.71 22594.26 25497.31 27092.24 11998.10 32494.63 20390.12 31996.84 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet95.96 16495.83 15496.36 26497.93 22193.70 26098.12 24098.27 21493.70 22795.07 22499.02 9892.23 12098.54 27694.68 20193.46 27696.84 285
cl2294.68 24194.19 23896.13 27598.11 20493.60 26196.94 34298.31 20592.43 28393.32 29796.87 31486.51 25198.28 31494.10 22591.16 30896.51 328
baseline295.11 21694.52 22096.87 21696.65 31393.56 26298.27 22194.10 39193.45 24292.02 33497.43 26287.45 23999.19 19493.88 23197.41 19397.87 236
LPG-MVS_test95.62 18695.34 17996.47 25597.46 25793.54 26398.99 8298.54 15794.67 17994.36 24998.77 13285.39 27299.11 20695.71 17194.15 25696.76 291
LGP-MVS_train96.47 25597.46 25793.54 26398.54 15794.67 17994.36 24998.77 13285.39 27299.11 20695.71 17194.15 25696.76 291
hse-mvs295.71 18095.30 18496.93 21198.50 16293.53 26598.36 20698.10 24797.48 3298.67 7397.99 21289.76 17699.02 22197.95 6480.91 38398.22 227
AUN-MVS94.53 25493.73 27696.92 21498.50 16293.52 26698.34 20898.10 24793.83 21695.94 20997.98 21485.59 26999.03 21894.35 21480.94 38298.22 227
ACMP93.49 1095.34 20494.98 19996.43 26097.67 23993.48 26798.73 15198.44 18094.94 16992.53 32198.53 15784.50 29599.14 20195.48 18094.00 26196.66 306
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CR-MVSNet94.76 23894.15 24296.59 23997.00 28993.43 26894.96 38197.56 29292.46 27996.93 16696.24 33688.15 21997.88 34487.38 35196.65 21098.46 216
RPMNet92.81 31491.34 32397.24 18797.00 28993.43 26894.96 38198.80 9382.27 38796.93 16692.12 39086.98 24599.82 7676.32 39396.65 21098.46 216
testing9194.98 22694.25 23597.20 18997.94 21993.41 27098.00 25597.58 28994.99 16395.45 21696.04 34577.20 35899.42 17294.97 19496.02 23798.78 189
IB-MVS91.98 1793.27 30591.97 31897.19 19197.47 25693.41 27097.09 33595.99 36793.32 24792.47 32495.73 35478.06 35099.53 15394.59 20882.98 37498.62 206
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cl____94.51 25694.01 25296.02 27897.58 24693.40 27297.05 33697.96 26891.73 30592.76 31397.08 28889.06 19698.13 32292.61 26590.29 31796.52 325
DIV-MVS_self_test94.52 25594.03 24995.99 27997.57 25093.38 27397.05 33697.94 26991.74 30392.81 31197.10 28289.12 19398.07 32892.60 26690.30 31696.53 322
UniMVSNet_ETH3D94.24 27593.33 29396.97 20897.19 28093.38 27398.74 14798.57 15191.21 32593.81 27898.58 15372.85 37998.77 25795.05 19293.93 26598.77 193
testing1195.00 22294.28 23397.16 19497.96 21893.36 27598.09 24597.06 33394.94 16995.33 22096.15 34276.89 36199.40 17395.77 16996.30 22398.72 194
miper_ehance_all_eth95.01 22194.69 21395.97 28197.70 23793.31 27697.02 33898.07 25492.23 29193.51 28996.96 30691.85 13298.15 32093.68 23691.16 30896.44 336
CHOSEN 280x42097.18 11397.18 9897.20 18998.81 13493.27 27795.78 37599.15 2895.25 14996.79 17698.11 20292.29 11699.07 21398.56 2999.85 599.25 133
ACMH92.88 1694.55 25193.95 25796.34 26697.63 24393.26 27898.81 13598.49 17493.43 24389.74 35398.53 15781.91 31899.08 21293.69 23593.30 28296.70 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_cas_vis1_n_192097.38 10397.36 8997.45 17598.95 12193.25 27999.00 7998.53 15997.70 2099.77 799.35 4484.71 28999.85 6398.57 2799.66 6299.26 131
COLMAP_ROBcopyleft93.27 1295.33 20594.87 20696.71 22499.29 7393.24 28098.58 17998.11 24489.92 34593.57 28599.10 8686.37 25699.79 9890.78 30998.10 17097.09 259
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest95.24 20994.65 21496.99 20599.25 8193.21 28198.59 17798.18 22991.36 31493.52 28798.77 13284.67 29099.72 11389.70 32797.87 17798.02 233
TestCases96.99 20599.25 8193.21 28198.18 22991.36 31493.52 28798.77 13284.67 29099.72 11389.70 32797.87 17798.02 233
testing9994.83 23494.08 24697.07 20297.94 21993.13 28398.10 24497.17 32594.86 17195.34 21796.00 34876.31 36499.40 17395.08 19195.90 23898.68 199
MIMVSNet93.26 30692.21 31596.41 26197.73 23593.13 28395.65 37697.03 33591.27 32294.04 26696.06 34475.33 36897.19 36286.56 35596.23 23298.92 178
c3_l94.79 23694.43 22895.89 28697.75 23193.12 28597.16 33298.03 26192.23 29193.46 29297.05 29591.39 14498.01 33193.58 24189.21 33496.53 322
Patchmtry93.22 30792.35 31395.84 28896.77 30493.09 28694.66 38897.56 29287.37 36892.90 30996.24 33688.15 21997.90 34087.37 35290.10 32096.53 322
tt080594.54 25293.85 26696.63 23397.98 21693.06 28798.77 14397.84 27693.67 23293.80 27998.04 20776.88 36298.96 22994.79 20092.86 28897.86 237
v14894.29 27293.76 27495.91 28496.10 33792.93 28898.58 17997.97 26692.59 27793.47 29196.95 30888.53 21298.32 30692.56 27087.06 35996.49 331
test0.0.03 194.08 28993.51 28795.80 28995.53 35692.89 28997.38 30995.97 36895.11 15692.51 32396.66 32387.71 23196.94 36687.03 35393.67 27097.57 248
PatchT93.06 31291.97 31896.35 26596.69 31092.67 29094.48 38997.08 32986.62 37097.08 15892.23 38987.94 22697.90 34078.89 38896.69 20898.49 215
MVP-Stereo94.28 27493.92 25895.35 30694.95 36792.60 29197.97 25897.65 28491.61 30890.68 34697.09 28686.32 25798.42 28989.70 32799.34 11495.02 369
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs593.65 29892.97 30195.68 29395.49 35792.37 29298.20 22797.28 31989.66 35092.58 31997.26 27282.14 31798.09 32693.18 25190.95 31196.58 313
testing393.19 30992.48 31195.30 30898.07 20692.27 29398.64 17097.17 32593.94 21093.98 26997.04 29667.97 38696.01 38188.40 34397.14 19697.63 245
BH-untuned95.95 16595.72 16096.65 22998.55 15992.26 29498.23 22397.79 27893.73 22294.62 23598.01 21088.97 20199.00 22493.04 25598.51 15298.68 199
WB-MVSnew94.19 27894.04 24894.66 32996.82 30392.14 29597.86 27395.96 36993.50 23995.64 21396.77 31988.06 22397.99 33484.87 36796.86 20393.85 384
pmmvs-eth3d90.36 33789.05 34294.32 33991.10 39092.12 29697.63 29596.95 34188.86 36184.91 38393.13 38478.32 34696.74 36988.70 34081.81 37894.09 379
FMVSNet591.81 32290.92 32594.49 33497.21 27692.09 29798.00 25597.55 29789.31 35790.86 34495.61 35974.48 37395.32 38785.57 36289.70 32496.07 349
D2MVS95.18 21395.08 19495.48 30097.10 28692.07 29898.30 21699.13 3094.02 20392.90 30996.73 32089.48 18198.73 25994.48 21193.60 27595.65 358
PVSNet91.96 1896.35 14796.15 14296.96 20999.17 9492.05 29996.08 36898.68 12393.69 22897.75 13097.80 23288.86 20399.69 12494.26 21999.01 12799.15 150
ACMH+92.99 1494.30 27093.77 27295.88 28797.81 22892.04 30098.71 15698.37 19693.99 20690.60 34798.47 16380.86 32899.05 21492.75 26492.40 29396.55 319
ADS-MVSNet95.00 22294.45 22696.63 23398.00 21291.91 30196.04 36997.74 28190.15 34196.47 19196.64 32687.89 22798.96 22990.08 31897.06 19799.02 167
BH-w/o95.38 19995.08 19496.26 27198.34 17791.79 30297.70 28797.43 31192.87 26894.24 25697.22 27788.66 20698.84 24891.55 29597.70 18598.16 230
Patchmatch-test94.42 26493.68 28096.63 23397.60 24591.76 30394.83 38597.49 30489.45 35494.14 26197.10 28288.99 19798.83 25185.37 36598.13 16999.29 127
EPMVS94.99 22494.48 22296.52 25097.22 27591.75 30497.23 32291.66 40094.11 19897.28 15196.81 31785.70 26798.84 24893.04 25597.28 19498.97 172
Fast-Effi-MVS+-dtu95.87 17195.85 15395.91 28497.74 23491.74 30598.69 16298.15 23795.56 13194.92 22797.68 24388.98 20098.79 25593.19 25097.78 18197.20 258
eth_miper_zixun_eth94.68 24194.41 22995.47 30197.64 24291.71 30696.73 35998.07 25492.71 27393.64 28297.21 27890.54 16598.17 31993.38 24489.76 32396.54 320
XVG-ACMP-BASELINE94.54 25294.14 24395.75 29296.55 31791.65 30798.11 24298.44 18094.96 16694.22 25797.90 21979.18 33999.11 20694.05 22793.85 26696.48 333
KD-MVS_2432*160089.61 34387.96 35094.54 33294.06 37791.59 30895.59 37797.63 28689.87 34688.95 36094.38 37478.28 34796.82 36784.83 36868.05 39995.21 363
miper_refine_blended89.61 34387.96 35094.54 33294.06 37791.59 30895.59 37797.63 28689.87 34688.95 36094.38 37478.28 34796.82 36784.83 36868.05 39995.21 363
TDRefinement91.06 33189.68 33695.21 30985.35 40391.49 31098.51 19297.07 33191.47 31088.83 36397.84 22677.31 35699.09 21192.79 26377.98 39195.04 368
MDA-MVSNet-bldmvs89.97 34088.35 34694.83 32495.21 36491.34 31197.64 29297.51 30188.36 36471.17 39996.13 34379.22 33896.63 37483.65 37486.27 36596.52 325
ITE_SJBPF95.44 30397.42 26291.32 31297.50 30295.09 15993.59 28398.35 17781.70 31998.88 24489.71 32693.39 28096.12 347
SCA95.46 19295.13 19096.46 25897.67 23991.29 31397.33 31697.60 28894.68 17896.92 16897.10 28283.97 30698.89 24292.59 26898.32 16599.20 139
pmmvs691.77 32390.63 32895.17 31194.69 37391.24 31498.67 16697.92 27186.14 37489.62 35497.56 25475.79 36798.34 30490.75 31084.56 37095.94 352
test_040291.32 32690.27 33294.48 33596.60 31491.12 31598.50 19397.22 32386.10 37588.30 36596.98 30377.65 35497.99 33478.13 39092.94 28794.34 373
MIMVSNet189.67 34288.28 34793.82 34392.81 38591.08 31698.01 25397.45 30987.95 36587.90 36795.87 35067.63 38894.56 39178.73 38988.18 34695.83 354
miper_lstm_enhance94.33 26894.07 24795.11 31397.75 23190.97 31797.22 32398.03 26191.67 30792.76 31396.97 30490.03 17397.78 34792.51 27389.64 32596.56 317
WAC-MVS90.94 31888.66 341
myMVS_eth3d92.73 31592.01 31794.89 32097.39 26690.94 31897.91 26497.46 30593.16 25593.42 29395.37 36268.09 38596.12 37988.34 34496.99 19997.60 246
ECVR-MVScopyleft95.95 16595.71 16396.65 22999.02 11190.86 32099.03 7291.80 39996.96 6798.10 10499.26 5781.31 32299.51 15796.90 12599.04 12499.59 79
ppachtmachnet_test93.22 30792.63 30794.97 31795.45 36090.84 32196.88 35197.88 27490.60 33292.08 33297.26 27288.08 22297.86 34585.12 36690.33 31596.22 344
USDC93.33 30492.71 30595.21 30996.83 30290.83 32296.91 34597.50 30293.84 21490.72 34598.14 20077.69 35298.82 25289.51 33193.21 28495.97 351
MDA-MVSNet_test_wron90.71 33489.38 33994.68 32894.83 36990.78 32397.19 32797.46 30587.60 36672.41 39895.72 35686.51 25196.71 37285.92 36086.80 36396.56 317
PatchmatchNetpermissive95.71 18095.52 17196.29 27097.58 24690.72 32496.84 35497.52 30094.06 20097.08 15896.96 30689.24 19098.90 24192.03 28498.37 16099.26 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
patch_mono-298.36 5098.87 696.82 21999.53 3690.68 32598.64 17099.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1699.86 199.82 16
YYNet190.70 33589.39 33894.62 33194.79 37190.65 32697.20 32597.46 30587.54 36772.54 39795.74 35286.51 25196.66 37386.00 35986.76 36496.54 320
JIA-IIPM93.35 30292.49 31095.92 28396.48 32290.65 32695.01 38096.96 34085.93 37696.08 20287.33 39587.70 23398.78 25691.35 29795.58 24498.34 222
IterMVS-SCA-FT94.11 28693.87 26494.85 32297.98 21690.56 32897.18 32898.11 24493.75 21992.58 31997.48 25783.97 30697.41 35992.48 27591.30 30596.58 313
EPNet_dtu95.21 21194.95 20295.99 27996.17 33490.45 32998.16 23697.27 32096.77 7593.14 30498.33 18290.34 16898.42 28985.57 36298.81 13999.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_vis1_n95.47 19195.13 19096.49 25297.77 23090.41 33099.27 2898.11 24496.58 8599.66 1599.18 7367.00 38999.62 13799.21 1599.40 11099.44 107
IterMVS94.09 28893.85 26694.80 32597.99 21490.35 33197.18 32898.12 24193.68 23092.46 32597.34 26784.05 30497.41 35992.51 27391.33 30496.62 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dcpmvs_298.08 6098.59 1496.56 24399.57 3390.34 33299.15 4998.38 19496.82 7399.29 3499.49 1795.78 4399.57 14298.94 1999.86 199.77 27
Effi-MVS+-dtu96.29 14996.56 12695.51 29997.89 22490.22 33398.80 13698.10 24796.57 8796.45 19396.66 32390.81 15998.91 23895.72 17097.99 17297.40 251
test111195.94 16795.78 15696.41 26198.99 11890.12 33499.04 6892.45 39896.99 6698.03 11099.27 5681.40 32199.48 16496.87 13199.04 12499.63 73
dmvs_re94.48 26094.18 24095.37 30597.68 23890.11 33598.54 18797.08 32994.56 18394.42 24697.24 27584.25 29897.76 34891.02 30792.83 28998.24 225
testgi93.06 31292.45 31294.88 32196.43 32589.90 33698.75 14497.54 29895.60 12991.63 33897.91 21874.46 37497.02 36486.10 35893.67 27097.72 242
UnsupCasMVSNet_eth90.99 33289.92 33594.19 34194.08 37689.83 33797.13 33498.67 12893.69 22885.83 37896.19 34175.15 36996.74 36989.14 33679.41 38796.00 350
TinyColmap92.31 32091.53 32194.65 33096.92 29589.75 33896.92 34396.68 35490.45 33689.62 35497.85 22576.06 36698.81 25386.74 35492.51 29295.41 360
test_vis1_n_192096.71 13196.84 11296.31 26899.11 10489.74 33999.05 6598.58 14998.08 1299.87 199.37 3878.48 34599.93 2599.29 1499.69 5799.27 129
test-LLR95.10 21794.87 20695.80 28996.77 30489.70 34096.91 34595.21 37795.11 15694.83 23195.72 35687.71 23198.97 22593.06 25398.50 15398.72 194
test-mter94.08 28993.51 28795.80 28996.77 30489.70 34096.91 34595.21 37792.89 26794.83 23195.72 35677.69 35298.97 22593.06 25398.50 15398.72 194
our_test_393.65 29893.30 29494.69 32795.45 36089.68 34296.91 34597.65 28491.97 29891.66 33796.88 31289.67 17997.93 33988.02 34891.49 30396.48 333
EGC-MVSNET75.22 36769.54 37092.28 36094.81 37089.58 34397.64 29296.50 3591.82 4105.57 41195.74 35268.21 38496.26 37873.80 39591.71 30090.99 390
DeepPCF-MVS96.37 297.93 6798.48 2396.30 26999.00 11489.54 34497.43 30598.87 6998.16 1199.26 3699.38 3796.12 3199.64 13198.30 4999.77 3299.72 45
MS-PatchMatch93.84 29593.63 28194.46 33796.18 33389.45 34597.76 28298.27 21492.23 29192.13 33197.49 25679.50 33698.69 26189.75 32599.38 11295.25 362
OpenMVS_ROBcopyleft86.42 2089.00 34687.43 35493.69 34493.08 38389.42 34697.91 26496.89 34678.58 39185.86 37794.69 36969.48 38398.29 31377.13 39193.29 28393.36 386
SixPastTwentyTwo93.34 30392.86 30294.75 32695.67 35189.41 34798.75 14496.67 35593.89 21190.15 35198.25 19380.87 32798.27 31590.90 30890.64 31396.57 315
K. test v392.55 31791.91 32094.48 33595.64 35289.24 34899.07 6294.88 38194.04 20186.78 37297.59 25077.64 35597.64 35192.08 28089.43 33196.57 315
OurMVSNet-221017-094.21 27694.00 25394.85 32295.60 35389.22 34998.89 10497.43 31195.29 14692.18 33098.52 16082.86 31498.59 27193.46 24391.76 29996.74 293
TESTMET0.1,194.18 28193.69 27995.63 29596.92 29589.12 35096.91 34594.78 38293.17 25494.88 22896.45 33278.52 34498.92 23693.09 25298.50 15398.85 181
CostFormer94.95 22994.73 21195.60 29797.28 27189.06 35197.53 29996.89 34689.66 35096.82 17396.72 32186.05 26198.95 23495.53 17896.13 23598.79 186
tpm294.19 27893.76 27495.46 30297.23 27489.04 35297.31 31896.85 35087.08 36996.21 19996.79 31883.75 31298.74 25892.43 27696.23 23298.59 209
EG-PatchMatch MVS91.13 33090.12 33394.17 34294.73 37289.00 35398.13 23997.81 27789.22 35885.32 38296.46 33167.71 38798.42 28987.89 35093.82 26795.08 367
test250694.44 26393.91 26096.04 27799.02 11188.99 35499.06 6379.47 41296.96 6798.36 9499.26 5777.21 35799.52 15696.78 13799.04 12499.59 79
UWE-MVS94.30 27093.89 26395.53 29897.83 22688.95 35597.52 30193.25 39394.44 19196.63 18097.07 28978.70 34399.28 18491.99 28597.56 19098.36 221
KD-MVS_self_test90.38 33689.38 33993.40 34892.85 38488.94 35697.95 25997.94 26990.35 33990.25 34993.96 37779.82 33495.94 38284.62 37276.69 39395.33 361
UnsupCasMVSNet_bld87.17 35285.12 35993.31 35091.94 38688.77 35794.92 38398.30 21184.30 38482.30 38690.04 39263.96 39297.25 36185.85 36174.47 39793.93 383
ADS-MVSNet294.58 25094.40 23095.11 31398.00 21288.74 35896.04 36997.30 31790.15 34196.47 19196.64 32687.89 22797.56 35590.08 31897.06 19799.02 167
LF4IMVS93.14 31192.79 30494.20 34095.88 34688.67 35997.66 29097.07 33193.81 21791.71 33697.65 24477.96 35198.81 25391.47 29691.92 29895.12 365
tpmvs94.60 24794.36 23195.33 30797.46 25788.60 36096.88 35197.68 28291.29 32093.80 27996.42 33388.58 20799.24 18891.06 30496.04 23698.17 229
tpmrst95.63 18595.69 16695.44 30397.54 25188.54 36196.97 34097.56 29293.50 23997.52 14896.93 31089.49 18099.16 19695.25 18796.42 21898.64 205
test_fmvs196.42 14396.67 12395.66 29498.82 13388.53 36298.80 13698.20 22496.39 9799.64 1799.20 6780.35 33299.67 12699.04 1799.57 8198.78 189
Anonymous2024052191.18 32990.44 33093.42 34693.70 38088.47 36398.94 9497.56 29288.46 36389.56 35695.08 36777.15 36096.97 36583.92 37389.55 32894.82 371
lessismore_v094.45 33894.93 36888.44 36491.03 40286.77 37397.64 24676.23 36598.42 28990.31 31585.64 36996.51 328
MDTV_nov1_ep1395.40 17397.48 25588.34 36596.85 35397.29 31893.74 22197.48 14997.26 27289.18 19199.05 21491.92 28897.43 192
test_fmvs1_n95.90 17095.99 14995.63 29598.67 14888.32 36699.26 2998.22 22196.40 9699.67 1499.26 5773.91 37699.70 11999.02 1899.50 9598.87 180
new_pmnet90.06 33989.00 34393.22 35294.18 37488.32 36696.42 36796.89 34686.19 37385.67 37993.62 37977.18 35997.10 36381.61 38089.29 33394.23 375
CL-MVSNet_self_test90.11 33889.14 34193.02 35491.86 38788.23 36896.51 36598.07 25490.49 33390.49 34894.41 37284.75 28795.34 38680.79 38274.95 39595.50 359
test20.0390.89 33390.38 33192.43 35793.48 38188.14 36998.33 20997.56 29293.40 24487.96 36696.71 32280.69 33094.13 39279.15 38786.17 36695.01 370
tpm cat193.36 30192.80 30395.07 31597.58 24687.97 37096.76 35797.86 27582.17 38893.53 28696.04 34586.13 25999.13 20289.24 33595.87 24098.10 231
tpm94.13 28393.80 26995.12 31296.50 32087.91 37197.44 30395.89 37292.62 27596.37 19696.30 33584.13 30398.30 31093.24 24891.66 30299.14 152
LCM-MVSNet-Re95.22 21095.32 18294.91 31898.18 19787.85 37298.75 14495.66 37395.11 15688.96 35996.85 31590.26 17197.65 35095.65 17498.44 15699.22 137
gm-plane-assit95.88 34687.47 37389.74 34996.94 30999.19 19493.32 247
Anonymous2023120691.66 32491.10 32493.33 34994.02 37987.35 37498.58 17997.26 32190.48 33490.16 35096.31 33483.83 31096.53 37579.36 38689.90 32296.12 347
PVSNet_088.72 1991.28 32890.03 33495.00 31697.99 21487.29 37594.84 38498.50 16992.06 29689.86 35295.19 36479.81 33599.39 17692.27 27769.79 39898.33 223
pmmvs386.67 35584.86 36092.11 36288.16 39787.19 37696.63 36194.75 38379.88 39087.22 37092.75 38766.56 39095.20 38881.24 38176.56 39493.96 382
dp94.15 28293.90 26194.90 31997.31 27086.82 37796.97 34097.19 32491.22 32496.02 20496.61 32885.51 27199.02 22190.00 32294.30 24998.85 181
test_vis1_rt91.29 32790.65 32793.19 35397.45 26086.25 37898.57 18490.90 40393.30 24986.94 37193.59 38062.07 39399.11 20697.48 10395.58 24494.22 376
new-patchmatchnet88.50 34887.45 35391.67 36390.31 39285.89 37997.16 33297.33 31689.47 35383.63 38592.77 38676.38 36395.06 38982.70 37777.29 39294.06 381
Patchmatch-RL test91.49 32590.85 32693.41 34791.37 38884.40 38092.81 39395.93 37191.87 30187.25 36994.87 36888.99 19796.53 37592.54 27282.00 37699.30 125
MDTV_nov1_ep13_2view84.26 38196.89 35090.97 32897.90 12489.89 17593.91 23099.18 148
test_fmvs293.43 30093.58 28392.95 35596.97 29283.91 38299.19 4497.24 32295.74 12295.20 22298.27 19069.65 38298.72 26096.26 15093.73 26996.24 343
CVMVSNet95.43 19596.04 14693.57 34597.93 22183.62 38398.12 24098.59 14495.68 12696.56 18499.02 9887.51 23597.51 35793.56 24297.44 19199.60 77
Syy-MVS92.55 31792.61 30892.38 35897.39 26683.41 38497.91 26497.46 30593.16 25593.42 29395.37 36284.75 28796.12 37977.00 39296.99 19997.60 246
EU-MVSNet93.66 29694.14 24392.25 36195.96 34483.38 38598.52 18898.12 24194.69 17792.61 31898.13 20187.36 24096.39 37791.82 28990.00 32196.98 265
PM-MVS87.77 35086.55 35691.40 36491.03 39183.36 38696.92 34395.18 37991.28 32186.48 37693.42 38153.27 39796.74 36989.43 33381.97 37794.11 378
DSMNet-mixed92.52 31992.58 30992.33 35994.15 37582.65 38798.30 21694.26 38889.08 35992.65 31795.73 35485.01 28195.76 38386.24 35797.76 18298.59 209
MVS-HIRNet89.46 34588.40 34592.64 35697.58 24682.15 38894.16 39293.05 39775.73 39490.90 34382.52 39779.42 33798.33 30583.53 37598.68 14197.43 249
RPSCF94.87 23395.40 17393.26 35198.89 12582.06 38998.33 20998.06 25990.30 34096.56 18499.26 5787.09 24299.49 15993.82 23396.32 22198.24 225
mvsany_test388.80 34788.04 34891.09 36589.78 39381.57 39097.83 27895.49 37493.81 21787.53 36893.95 37856.14 39697.43 35894.68 20183.13 37394.26 374
Gipumacopyleft78.40 36476.75 36783.38 37895.54 35580.43 39179.42 40297.40 31364.67 39973.46 39680.82 40045.65 39993.14 39666.32 40087.43 35376.56 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CMPMVSbinary66.06 2189.70 34189.67 33789.78 36693.19 38276.56 39297.00 33998.35 19980.97 38981.57 38897.75 23474.75 37198.61 26889.85 32393.63 27394.17 377
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc89.49 36786.66 40075.78 39392.66 39496.72 35286.55 37592.50 38846.01 39897.90 34090.32 31482.09 37594.80 372
test_fmvs387.17 35287.06 35587.50 37091.21 38975.66 39499.05 6596.61 35892.79 27188.85 36292.78 38543.72 40093.49 39393.95 22884.56 37093.34 387
test_f86.07 35685.39 35788.10 36989.28 39575.57 39597.73 28596.33 36389.41 35685.35 38191.56 39143.31 40295.53 38491.32 29884.23 37293.21 388
PMMVS277.95 36575.44 36985.46 37382.54 40474.95 39694.23 39193.08 39672.80 39574.68 39387.38 39436.36 40591.56 39873.95 39463.94 40189.87 393
test_vis3_rt79.22 35977.40 36584.67 37586.44 40174.85 39797.66 29081.43 41084.98 38167.12 40181.91 39928.09 41097.60 35288.96 33880.04 38581.55 399
APD_test188.22 34988.01 34988.86 36895.98 34274.66 39897.21 32496.44 36083.96 38586.66 37497.90 21960.95 39497.84 34682.73 37690.23 31894.09 379
DeepMVS_CXcopyleft86.78 37197.09 28772.30 39995.17 38075.92 39384.34 38495.19 36470.58 38195.35 38579.98 38589.04 33792.68 389
LCM-MVSNet78.70 36376.24 36886.08 37277.26 40971.99 40094.34 39096.72 35261.62 40076.53 39289.33 39333.91 40892.78 39781.85 37974.60 39693.46 385
ANet_high69.08 36865.37 37280.22 38365.99 41171.96 40190.91 39790.09 40482.62 38649.93 40678.39 40129.36 40981.75 40462.49 40138.52 40586.95 398
WB-MVS84.86 35785.33 35883.46 37789.48 39469.56 40298.19 23096.42 36189.55 35281.79 38794.67 37084.80 28590.12 40052.44 40380.64 38490.69 391
SSC-MVS84.27 35884.71 36182.96 38189.19 39668.83 40398.08 24696.30 36489.04 36081.37 38994.47 37184.60 29289.89 40149.80 40579.52 38690.15 392
testf179.02 36177.70 36382.99 37988.10 39866.90 40494.67 38693.11 39471.08 39674.02 39493.41 38234.15 40693.25 39472.25 39678.50 38988.82 394
APD_test279.02 36177.70 36382.99 37988.10 39866.90 40494.67 38693.11 39471.08 39674.02 39493.41 38234.15 40693.25 39472.25 39678.50 38988.82 394
MVEpermissive62.14 2263.28 37359.38 37674.99 38574.33 41065.47 40685.55 39980.50 41152.02 40351.10 40575.00 40410.91 41480.50 40551.60 40453.40 40278.99 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset87.64 35188.93 34483.79 37695.25 36363.36 40797.20 32591.17 40193.07 25985.64 38095.98 34985.30 27891.52 39969.42 39887.33 35596.49 331
N_pmnet87.12 35487.77 35285.17 37495.46 35961.92 40897.37 31170.66 41385.83 37788.73 36496.04 34585.33 27697.76 34880.02 38390.48 31495.84 353
FPMVS77.62 36677.14 36679.05 38479.25 40760.97 40995.79 37495.94 37065.96 39867.93 40094.40 37337.73 40488.88 40368.83 39988.46 34387.29 396
tmp_tt68.90 36966.97 37174.68 38650.78 41359.95 41087.13 39883.47 40938.80 40662.21 40296.23 33864.70 39176.91 40888.91 33930.49 40687.19 397
E-PMN64.94 37164.25 37367.02 38882.28 40559.36 41191.83 39685.63 40752.69 40260.22 40377.28 40241.06 40380.12 40646.15 40641.14 40361.57 404
EMVS64.07 37263.26 37566.53 38981.73 40658.81 41291.85 39584.75 40851.93 40459.09 40475.13 40343.32 40179.09 40742.03 40739.47 40461.69 403
test_method79.03 36078.17 36281.63 38286.06 40254.40 41382.75 40196.89 34639.54 40580.98 39095.57 36058.37 39594.73 39084.74 37178.61 38895.75 355
PMVScopyleft61.03 2365.95 37063.57 37473.09 38757.90 41251.22 41485.05 40093.93 39254.45 40144.32 40783.57 39613.22 41189.15 40258.68 40281.00 38178.91 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d30.17 37430.18 37830.16 39078.61 40843.29 41566.79 40314.21 41417.31 40714.82 41011.93 41011.55 41341.43 40937.08 40819.30 4075.76 407
test12320.95 37723.72 38012.64 39113.54 4158.19 41696.55 3646.13 4167.48 40916.74 40937.98 40712.97 4126.05 41016.69 4095.43 40923.68 405
testmvs21.48 37624.95 37911.09 39214.89 4146.47 41796.56 3639.87 4157.55 40817.93 40839.02 4069.43 4155.90 41116.56 41012.72 40820.91 406
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k23.98 37531.98 3770.00 3930.00 4160.00 4180.00 40498.59 1440.00 4110.00 41298.61 14890.60 1640.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.88 37910.50 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41194.51 810.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.20 37810.94 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41298.43 1670.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
PC_three_145295.08 16099.60 1999.16 7797.86 298.47 28397.52 10199.72 5299.74 37
eth-test20.00 416
eth-test0.00 416
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4299.80 2099.83 13
9.1498.06 5899.47 4798.71 15698.82 8194.36 19399.16 4499.29 5396.05 3399.81 8197.00 11799.71 54
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 3899.86 199.85 10
GSMVS99.20 139
sam_mvs189.45 18399.20 139
sam_mvs88.99 197
MTGPAbinary98.74 108
test_post196.68 36030.43 40987.85 23098.69 26192.59 268
test_post31.83 40888.83 20498.91 238
patchmatchnet-post95.10 36689.42 18498.89 242
MTMP98.89 10494.14 390
test9_res96.39 14899.57 8199.69 56
agg_prior295.87 16499.57 8199.68 61
test_prior297.80 27996.12 10797.89 12598.69 14195.96 3796.89 12699.60 75
旧先验297.57 29891.30 31998.67 7399.80 8895.70 173
新几何297.64 292
无先验97.58 29798.72 11391.38 31399.87 5893.36 24699.60 77
原ACMM297.67 289
testdata299.89 4791.65 294
segment_acmp96.85 14
testdata197.32 31796.34 99
plane_prior598.56 15399.03 21896.07 15494.27 25096.92 270
plane_prior498.28 187
plane_prior298.80 13697.28 45
plane_prior197.37 268
n20.00 417
nn0.00 417
door-mid94.37 386
test1198.66 131
door94.64 384
HQP-NCC97.20 27798.05 24996.43 9394.45 241
ACMP_Plane97.20 27798.05 24996.43 9394.45 241
BP-MVS95.30 183
HQP4-MVS94.45 24198.96 22996.87 281
HQP3-MVS98.46 17694.18 254
HQP2-MVS86.75 248
ACMMP++_ref92.97 286
ACMMP++93.61 274
Test By Simon94.64 78