| MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 8 | 97.13 2 | 95.58 11 | 89.33 1 | 85.77 51 | 96.26 30 | 72.84 26 | 99.38 1 | 92.64 19 | 95.93 9 | 97.08 9 |
|
| DPM-MVS | | | 90.70 2 | 90.52 7 | 91.24 1 | 89.68 145 | 76.68 2 | 97.29 1 | 95.35 13 | 82.87 20 | 91.58 12 | 97.22 3 | 79.93 5 | 99.10 9 | 83.12 92 | 97.64 2 | 97.94 1 |
|
| DVP-MVS++ | | | 90.53 3 | 91.09 4 | 88.87 14 | 97.31 4 | 69.91 37 | 93.96 70 | 94.37 47 | 72.48 176 | 92.07 8 | 96.85 16 | 83.82 2 | 99.15 2 | 91.53 29 | 97.42 4 | 97.55 4 |
|
| MSP-MVS | | | 90.38 4 | 91.87 1 | 85.88 81 | 92.83 72 | 64.03 184 | 93.06 107 | 94.33 49 | 82.19 28 | 93.65 3 | 96.15 35 | 85.89 1 | 97.19 82 | 91.02 33 | 97.75 1 | 96.43 26 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| CNVR-MVS | | | 90.32 5 | 90.89 6 | 88.61 19 | 96.76 8 | 70.65 26 | 96.47 13 | 94.83 26 | 84.83 11 | 89.07 31 | 96.80 19 | 70.86 34 | 99.06 15 | 92.64 19 | 95.71 10 | 96.12 35 |
|
| DELS-MVS | | | 90.05 6 | 90.09 10 | 89.94 4 | 93.14 66 | 73.88 7 | 97.01 4 | 94.40 45 | 88.32 3 | 85.71 52 | 94.91 68 | 74.11 19 | 98.91 17 | 87.26 59 | 95.94 8 | 97.03 10 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| MVS_0304 | | | 90.01 7 | 90.50 8 | 88.53 20 | 90.14 136 | 70.94 23 | 96.47 13 | 95.72 10 | 87.33 4 | 89.60 28 | 96.26 30 | 68.44 41 | 98.74 24 | 95.82 4 | 94.72 30 | 95.90 42 |
|
| SED-MVS | | | 89.94 8 | 90.36 9 | 88.70 16 | 96.45 12 | 69.38 48 | 96.89 5 | 94.44 41 | 71.65 206 | 92.11 6 | 97.21 4 | 76.79 9 | 99.11 6 | 92.34 21 | 95.36 13 | 97.62 2 |
|
| DeepPCF-MVS | | 81.17 1 | 89.72 9 | 91.38 3 | 84.72 124 | 93.00 69 | 58.16 297 | 96.72 8 | 94.41 43 | 86.50 8 | 90.25 21 | 97.83 1 | 75.46 14 | 98.67 25 | 92.78 18 | 95.49 12 | 97.32 6 |
|
| patch_mono-2 | | | 89.71 10 | 90.99 5 | 85.85 84 | 96.04 24 | 63.70 194 | 95.04 40 | 95.19 16 | 86.74 7 | 91.53 14 | 95.15 62 | 73.86 20 | 97.58 59 | 93.38 14 | 92.00 67 | 96.28 32 |
|
| CANet | | | 89.61 11 | 89.99 11 | 88.46 21 | 94.39 39 | 69.71 44 | 96.53 12 | 93.78 61 | 86.89 6 | 89.68 27 | 95.78 40 | 65.94 62 | 99.10 9 | 92.99 16 | 93.91 40 | 96.58 18 |
|
| DVP-MVS |  | | 89.41 12 | 89.73 13 | 88.45 22 | 96.40 15 | 69.99 33 | 96.64 9 | 94.52 37 | 71.92 192 | 90.55 19 | 96.93 11 | 73.77 21 | 99.08 11 | 91.91 27 | 94.90 21 | 96.29 30 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| HPM-MVS++ |  | | 89.37 13 | 89.95 12 | 87.64 30 | 95.10 30 | 68.23 78 | 95.24 33 | 94.49 39 | 82.43 25 | 88.90 32 | 96.35 27 | 71.89 33 | 98.63 26 | 88.76 47 | 96.40 6 | 96.06 36 |
|
| NCCC | | | 89.07 14 | 89.46 14 | 87.91 25 | 96.60 10 | 69.05 57 | 96.38 15 | 94.64 34 | 84.42 12 | 86.74 43 | 96.20 32 | 66.56 58 | 98.76 23 | 89.03 46 | 94.56 32 | 95.92 41 |
|
| DPE-MVS |  | | 88.77 15 | 89.21 15 | 87.45 37 | 96.26 20 | 67.56 94 | 94.17 57 | 94.15 54 | 68.77 256 | 90.74 17 | 97.27 2 | 76.09 12 | 98.49 29 | 90.58 37 | 94.91 20 | 96.30 29 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SMA-MVS |  | | 88.14 16 | 88.29 20 | 87.67 29 | 93.21 63 | 68.72 65 | 93.85 77 | 94.03 57 | 74.18 139 | 91.74 11 | 96.67 21 | 65.61 66 | 98.42 33 | 89.24 43 | 96.08 7 | 95.88 43 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| PS-MVSNAJ | | | 88.14 16 | 87.61 27 | 89.71 6 | 92.06 91 | 76.72 1 | 95.75 20 | 93.26 85 | 83.86 14 | 89.55 29 | 96.06 36 | 53.55 207 | 97.89 43 | 91.10 31 | 93.31 51 | 94.54 97 |
|
| TSAR-MVS + MP. | | | 88.11 18 | 88.64 16 | 86.54 64 | 91.73 103 | 68.04 82 | 90.36 219 | 93.55 74 | 82.89 19 | 91.29 15 | 92.89 119 | 72.27 30 | 96.03 135 | 87.99 50 | 94.77 25 | 95.54 52 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| TSAR-MVS + GP. | | | 87.96 19 | 88.37 19 | 86.70 57 | 93.51 56 | 65.32 149 | 95.15 36 | 93.84 60 | 78.17 86 | 85.93 50 | 94.80 71 | 75.80 13 | 98.21 34 | 89.38 40 | 88.78 101 | 96.59 16 |
|
| DeepC-MVS_fast | | 79.48 2 | 87.95 20 | 88.00 23 | 87.79 28 | 95.86 27 | 68.32 73 | 95.74 21 | 94.11 55 | 83.82 15 | 83.49 73 | 96.19 33 | 64.53 80 | 98.44 31 | 83.42 91 | 94.88 24 | 96.61 15 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| xiu_mvs_v2_base | | | 87.92 21 | 87.38 31 | 89.55 11 | 91.41 114 | 76.43 3 | 95.74 21 | 93.12 93 | 83.53 17 | 89.55 29 | 95.95 38 | 53.45 211 | 97.68 50 | 91.07 32 | 92.62 58 | 94.54 97 |
|
| EPNet | | | 87.84 22 | 88.38 18 | 86.23 74 | 93.30 60 | 66.05 131 | 95.26 32 | 94.84 25 | 87.09 5 | 88.06 34 | 94.53 77 | 66.79 55 | 97.34 73 | 83.89 88 | 91.68 72 | 95.29 63 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| lupinMVS | | | 87.74 23 | 87.77 25 | 87.63 34 | 89.24 159 | 71.18 19 | 96.57 11 | 92.90 101 | 82.70 23 | 87.13 39 | 95.27 56 | 64.99 71 | 95.80 140 | 89.34 41 | 91.80 70 | 95.93 40 |
|
| test_fmvsm_n_1920 | | | 87.69 24 | 88.50 17 | 85.27 104 | 87.05 215 | 63.55 201 | 93.69 87 | 91.08 178 | 84.18 13 | 90.17 23 | 97.04 8 | 67.58 50 | 97.99 39 | 95.72 5 | 90.03 92 | 94.26 105 |
|
| APDe-MVS |  | | 87.54 25 | 87.84 24 | 86.65 58 | 96.07 23 | 66.30 127 | 94.84 45 | 93.78 61 | 69.35 247 | 88.39 33 | 96.34 28 | 67.74 49 | 97.66 54 | 90.62 36 | 93.44 49 | 96.01 39 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| fmvsm_l_conf0.5_n | | | 87.49 26 | 88.19 21 | 85.39 98 | 86.95 216 | 64.37 174 | 94.30 54 | 88.45 279 | 80.51 48 | 92.70 4 | 96.86 15 | 69.98 37 | 97.15 86 | 95.83 3 | 88.08 108 | 94.65 91 |
|
| SD-MVS | | | 87.49 26 | 87.49 29 | 87.50 36 | 93.60 53 | 68.82 63 | 93.90 74 | 92.63 112 | 76.86 105 | 87.90 35 | 95.76 41 | 66.17 59 | 97.63 56 | 89.06 45 | 91.48 76 | 96.05 37 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| fmvsm_l_conf0.5_n_a | | | 87.44 28 | 88.15 22 | 85.30 102 | 87.10 213 | 64.19 181 | 94.41 52 | 88.14 288 | 80.24 53 | 92.54 5 | 96.97 10 | 69.52 39 | 97.17 83 | 95.89 2 | 88.51 104 | 94.56 94 |
|
| dcpmvs_2 | | | 87.37 29 | 87.55 28 | 86.85 50 | 95.04 32 | 68.20 79 | 90.36 219 | 90.66 190 | 79.37 65 | 81.20 89 | 93.67 103 | 74.73 15 | 96.55 118 | 90.88 34 | 92.00 67 | 95.82 44 |
|
| alignmvs | | | 87.28 30 | 86.97 35 | 88.24 24 | 91.30 115 | 71.14 21 | 95.61 25 | 93.56 73 | 79.30 66 | 87.07 41 | 95.25 58 | 68.43 42 | 96.93 105 | 87.87 51 | 84.33 142 | 96.65 14 |
|
| train_agg | | | 87.21 31 | 87.42 30 | 86.60 60 | 94.18 41 | 67.28 101 | 94.16 58 | 93.51 75 | 71.87 197 | 85.52 54 | 95.33 51 | 68.19 44 | 97.27 80 | 89.09 44 | 94.90 21 | 95.25 69 |
|
| MG-MVS | | | 87.11 32 | 86.27 41 | 89.62 7 | 97.79 1 | 76.27 4 | 94.96 43 | 94.49 39 | 78.74 81 | 83.87 72 | 92.94 117 | 64.34 81 | 96.94 103 | 75.19 148 | 94.09 36 | 95.66 47 |
|
| SF-MVS | | | 87.03 33 | 87.09 33 | 86.84 51 | 92.70 78 | 67.45 99 | 93.64 89 | 93.76 64 | 70.78 230 | 86.25 45 | 96.44 26 | 66.98 53 | 97.79 47 | 88.68 48 | 94.56 32 | 95.28 65 |
|
| CSCG | | | 86.87 34 | 86.26 42 | 88.72 15 | 95.05 31 | 70.79 25 | 93.83 82 | 95.33 14 | 68.48 260 | 77.63 131 | 94.35 86 | 73.04 24 | 98.45 30 | 84.92 79 | 93.71 45 | 96.92 11 |
|
| canonicalmvs | | | 86.85 35 | 86.25 43 | 88.66 18 | 91.80 102 | 71.92 14 | 93.54 94 | 91.71 149 | 80.26 52 | 87.55 37 | 95.25 58 | 63.59 94 | 96.93 105 | 88.18 49 | 84.34 141 | 97.11 8 |
|
| PHI-MVS | | | 86.83 36 | 86.85 39 | 86.78 55 | 93.47 57 | 65.55 145 | 95.39 30 | 95.10 19 | 71.77 202 | 85.69 53 | 96.52 23 | 62.07 111 | 98.77 22 | 86.06 70 | 95.60 11 | 96.03 38 |
|
| SteuartSystems-ACMMP | | | 86.82 37 | 86.90 37 | 86.58 62 | 90.42 130 | 66.38 124 | 96.09 17 | 93.87 59 | 77.73 93 | 84.01 71 | 95.66 43 | 63.39 96 | 97.94 40 | 87.40 57 | 93.55 48 | 95.42 53 |
| Skip Steuart: Steuart Systems R&D Blog. |
| PVSNet_Blended | | | 86.73 38 | 86.86 38 | 86.31 73 | 93.76 49 | 67.53 96 | 96.33 16 | 93.61 71 | 82.34 27 | 81.00 94 | 93.08 113 | 63.19 100 | 97.29 76 | 87.08 61 | 91.38 78 | 94.13 112 |
|
| test_fmvsmconf_n | | | 86.58 39 | 87.17 32 | 84.82 117 | 85.28 246 | 62.55 225 | 94.26 56 | 89.78 223 | 83.81 16 | 87.78 36 | 96.33 29 | 65.33 68 | 96.98 98 | 94.40 11 | 87.55 113 | 94.95 78 |
|
| jason | | | 86.40 40 | 86.17 44 | 87.11 44 | 86.16 231 | 70.54 28 | 95.71 24 | 92.19 127 | 82.00 30 | 84.58 64 | 94.34 87 | 61.86 113 | 95.53 160 | 87.76 52 | 90.89 84 | 95.27 66 |
| jason: jason. |
| fmvsm_s_conf0.5_n | | | 86.39 41 | 86.91 36 | 84.82 117 | 87.36 208 | 63.54 202 | 94.74 47 | 90.02 217 | 82.52 24 | 90.14 24 | 96.92 13 | 62.93 104 | 97.84 46 | 95.28 8 | 82.26 155 | 93.07 148 |
|
| WTY-MVS | | | 86.32 42 | 85.81 51 | 87.85 26 | 92.82 74 | 69.37 50 | 95.20 34 | 95.25 15 | 82.71 22 | 81.91 84 | 94.73 72 | 67.93 48 | 97.63 56 | 79.55 117 | 82.25 156 | 96.54 19 |
|
| MSLP-MVS++ | | | 86.27 43 | 85.91 50 | 87.35 39 | 92.01 94 | 68.97 60 | 95.04 40 | 92.70 106 | 79.04 75 | 81.50 87 | 96.50 25 | 58.98 146 | 96.78 110 | 83.49 90 | 93.93 39 | 96.29 30 |
|
| VNet | | | 86.20 44 | 85.65 54 | 87.84 27 | 93.92 46 | 69.99 33 | 95.73 23 | 95.94 7 | 78.43 83 | 86.00 49 | 93.07 114 | 58.22 151 | 97.00 94 | 85.22 74 | 84.33 142 | 96.52 20 |
|
| MVS_111021_HR | | | 86.19 45 | 85.80 52 | 87.37 38 | 93.17 65 | 69.79 41 | 93.99 69 | 93.76 64 | 79.08 73 | 78.88 119 | 93.99 97 | 62.25 110 | 98.15 36 | 85.93 71 | 91.15 82 | 94.15 111 |
|
| CS-MVS-test | | | 86.14 46 | 87.01 34 | 83.52 162 | 92.63 81 | 59.36 285 | 95.49 27 | 91.92 136 | 80.09 54 | 85.46 56 | 95.53 47 | 61.82 116 | 95.77 143 | 86.77 65 | 93.37 50 | 95.41 54 |
|
| ACMMP_NAP | | | 86.05 47 | 85.80 52 | 86.80 54 | 91.58 107 | 67.53 96 | 91.79 163 | 93.49 78 | 74.93 130 | 84.61 63 | 95.30 53 | 59.42 140 | 97.92 41 | 86.13 68 | 94.92 19 | 94.94 79 |
|
| ETV-MVS | | | 86.01 48 | 86.11 45 | 85.70 90 | 90.21 135 | 67.02 110 | 93.43 99 | 91.92 136 | 81.21 42 | 84.13 70 | 94.07 96 | 60.93 124 | 95.63 151 | 89.28 42 | 89.81 93 | 94.46 103 |
|
| APD-MVS |  | | 85.93 49 | 85.99 48 | 85.76 88 | 95.98 26 | 65.21 152 | 93.59 92 | 92.58 114 | 66.54 274 | 86.17 47 | 95.88 39 | 63.83 87 | 97.00 94 | 86.39 67 | 92.94 55 | 95.06 73 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PAPM | | | 85.89 50 | 85.46 55 | 87.18 42 | 88.20 187 | 72.42 13 | 92.41 136 | 92.77 104 | 82.11 29 | 80.34 100 | 93.07 114 | 68.27 43 | 95.02 173 | 78.39 130 | 93.59 47 | 94.09 114 |
|
| CS-MVS | | | 85.80 51 | 86.65 40 | 83.27 170 | 92.00 95 | 58.92 290 | 95.31 31 | 91.86 141 | 79.97 55 | 84.82 62 | 95.40 49 | 62.26 109 | 95.51 161 | 86.11 69 | 92.08 66 | 95.37 57 |
|
| fmvsm_s_conf0.5_n_a | | | 85.75 52 | 86.09 46 | 84.72 124 | 85.73 240 | 63.58 199 | 93.79 83 | 89.32 241 | 81.42 39 | 90.21 22 | 96.91 14 | 62.41 108 | 97.67 51 | 94.48 10 | 80.56 172 | 92.90 154 |
|
| test_fmvsmconf0.1_n | | | 85.71 53 | 86.08 47 | 84.62 131 | 80.83 299 | 62.33 229 | 93.84 80 | 88.81 266 | 83.50 18 | 87.00 42 | 96.01 37 | 63.36 97 | 96.93 105 | 94.04 12 | 87.29 116 | 94.61 93 |
|
| CDPH-MVS | | | 85.71 53 | 85.46 55 | 86.46 66 | 94.75 34 | 67.19 103 | 93.89 75 | 92.83 103 | 70.90 226 | 83.09 76 | 95.28 54 | 63.62 92 | 97.36 71 | 80.63 111 | 94.18 35 | 94.84 83 |
|
| casdiffmvs_mvg |  | | 85.66 55 | 85.18 58 | 87.09 45 | 88.22 186 | 69.35 51 | 93.74 86 | 91.89 139 | 81.47 35 | 80.10 102 | 91.45 147 | 64.80 76 | 96.35 121 | 87.23 60 | 87.69 111 | 95.58 50 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| fmvsm_s_conf0.1_n | | | 85.61 56 | 85.93 49 | 84.68 127 | 82.95 283 | 63.48 204 | 94.03 68 | 89.46 235 | 81.69 33 | 89.86 25 | 96.74 20 | 61.85 114 | 97.75 49 | 94.74 9 | 82.01 159 | 92.81 156 |
|
| DeepC-MVS | | 77.85 3 | 85.52 57 | 85.24 57 | 86.37 70 | 88.80 169 | 66.64 118 | 92.15 143 | 93.68 69 | 81.07 43 | 76.91 141 | 93.64 104 | 62.59 106 | 98.44 31 | 85.50 72 | 92.84 57 | 94.03 118 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| casdiffmvs |  | | 85.37 58 | 84.87 64 | 86.84 51 | 88.25 184 | 69.07 56 | 93.04 109 | 91.76 146 | 81.27 41 | 80.84 96 | 92.07 138 | 64.23 82 | 96.06 133 | 84.98 78 | 87.43 115 | 95.39 55 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ZNCC-MVS | | | 85.33 59 | 85.08 60 | 86.06 76 | 93.09 68 | 65.65 141 | 93.89 75 | 93.41 82 | 73.75 150 | 79.94 104 | 94.68 74 | 60.61 127 | 98.03 38 | 82.63 95 | 93.72 44 | 94.52 99 |
|
| MP-MVS-pluss | | | 85.24 60 | 85.13 59 | 85.56 93 | 91.42 112 | 65.59 143 | 91.54 173 | 92.51 116 | 74.56 133 | 80.62 97 | 95.64 44 | 59.15 144 | 97.00 94 | 86.94 63 | 93.80 41 | 94.07 116 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| testing222 | | | 85.18 61 | 84.69 66 | 86.63 59 | 92.91 71 | 69.91 37 | 92.61 128 | 95.80 9 | 80.31 51 | 80.38 99 | 92.27 134 | 68.73 40 | 95.19 170 | 75.94 143 | 83.27 149 | 94.81 85 |
|
| PAPR | | | 85.15 62 | 84.47 67 | 87.18 42 | 96.02 25 | 68.29 74 | 91.85 161 | 93.00 98 | 76.59 112 | 79.03 115 | 95.00 63 | 61.59 117 | 97.61 58 | 78.16 131 | 89.00 100 | 95.63 48 |
|
| MP-MVS |  | | 85.02 63 | 84.97 62 | 85.17 108 | 92.60 82 | 64.27 179 | 93.24 102 | 92.27 121 | 73.13 161 | 79.63 108 | 94.43 80 | 61.90 112 | 97.17 83 | 85.00 77 | 92.56 59 | 94.06 117 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| baseline | | | 85.01 64 | 84.44 68 | 86.71 56 | 88.33 181 | 68.73 64 | 90.24 224 | 91.82 145 | 81.05 44 | 81.18 90 | 92.50 126 | 63.69 90 | 96.08 132 | 84.45 83 | 86.71 125 | 95.32 61 |
|
| CHOSEN 1792x2688 | | | 84.98 65 | 83.45 80 | 89.57 10 | 89.94 140 | 75.14 5 | 92.07 149 | 92.32 119 | 81.87 31 | 75.68 150 | 88.27 195 | 60.18 130 | 98.60 27 | 80.46 113 | 90.27 91 | 94.96 77 |
|
| EIA-MVS | | | 84.84 66 | 84.88 63 | 84.69 126 | 91.30 115 | 62.36 228 | 93.85 77 | 92.04 131 | 79.45 62 | 79.33 112 | 94.28 90 | 62.42 107 | 96.35 121 | 80.05 114 | 91.25 81 | 95.38 56 |
|
| fmvsm_s_conf0.1_n_a | | | 84.76 67 | 84.84 65 | 84.53 133 | 80.23 309 | 63.50 203 | 92.79 117 | 88.73 270 | 80.46 49 | 89.84 26 | 96.65 22 | 60.96 123 | 97.57 61 | 93.80 13 | 80.14 174 | 92.53 163 |
|
| HFP-MVS | | | 84.73 68 | 84.40 69 | 85.72 89 | 93.75 51 | 65.01 158 | 93.50 96 | 93.19 89 | 72.19 186 | 79.22 113 | 94.93 66 | 59.04 145 | 97.67 51 | 81.55 102 | 92.21 62 | 94.49 102 |
|
| MVS | | | 84.66 69 | 82.86 95 | 90.06 2 | 90.93 121 | 74.56 6 | 87.91 270 | 95.54 12 | 68.55 258 | 72.35 192 | 94.71 73 | 59.78 136 | 98.90 19 | 81.29 108 | 94.69 31 | 96.74 13 |
|
| GST-MVS | | | 84.63 70 | 84.29 70 | 85.66 91 | 92.82 74 | 65.27 150 | 93.04 109 | 93.13 92 | 73.20 159 | 78.89 116 | 94.18 93 | 59.41 141 | 97.85 45 | 81.45 104 | 92.48 61 | 93.86 126 |
|
| EC-MVSNet | | | 84.53 71 | 85.04 61 | 83.01 174 | 89.34 152 | 61.37 249 | 94.42 51 | 91.09 176 | 77.91 90 | 83.24 74 | 94.20 92 | 58.37 149 | 95.40 162 | 85.35 73 | 91.41 77 | 92.27 173 |
|
| ACMMPR | | | 84.37 72 | 84.06 71 | 85.28 103 | 93.56 54 | 64.37 174 | 93.50 96 | 93.15 91 | 72.19 186 | 78.85 121 | 94.86 69 | 56.69 171 | 97.45 65 | 81.55 102 | 92.20 63 | 94.02 119 |
|
| region2R | | | 84.36 73 | 84.03 72 | 85.36 100 | 93.54 55 | 64.31 177 | 93.43 99 | 92.95 99 | 72.16 189 | 78.86 120 | 94.84 70 | 56.97 166 | 97.53 63 | 81.38 106 | 92.11 65 | 94.24 106 |
|
| LFMVS | | | 84.34 74 | 82.73 97 | 89.18 12 | 94.76 33 | 73.25 9 | 94.99 42 | 91.89 139 | 71.90 194 | 82.16 83 | 93.49 108 | 47.98 258 | 97.05 89 | 82.55 96 | 84.82 137 | 97.25 7 |
|
| test_yl | | | 84.28 75 | 83.16 88 | 87.64 30 | 94.52 37 | 69.24 52 | 95.78 18 | 95.09 20 | 69.19 250 | 81.09 91 | 92.88 120 | 57.00 164 | 97.44 66 | 81.11 109 | 81.76 161 | 96.23 33 |
|
| DCV-MVSNet | | | 84.28 75 | 83.16 88 | 87.64 30 | 94.52 37 | 69.24 52 | 95.78 18 | 95.09 20 | 69.19 250 | 81.09 91 | 92.88 120 | 57.00 164 | 97.44 66 | 81.11 109 | 81.76 161 | 96.23 33 |
|
| diffmvs |  | | 84.28 75 | 83.83 73 | 85.61 92 | 87.40 206 | 68.02 83 | 90.88 203 | 89.24 244 | 80.54 47 | 81.64 86 | 92.52 125 | 59.83 135 | 94.52 198 | 87.32 58 | 85.11 135 | 94.29 104 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| HY-MVS | | 76.49 5 | 84.28 75 | 83.36 86 | 87.02 48 | 92.22 88 | 67.74 89 | 84.65 296 | 94.50 38 | 79.15 70 | 82.23 82 | 87.93 204 | 66.88 54 | 96.94 103 | 80.53 112 | 82.20 157 | 96.39 28 |
|
| MAR-MVS | | | 84.18 79 | 83.43 81 | 86.44 67 | 96.25 21 | 65.93 136 | 94.28 55 | 94.27 51 | 74.41 134 | 79.16 114 | 95.61 45 | 53.99 202 | 98.88 21 | 69.62 197 | 93.26 52 | 94.50 101 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MVS_Test | | | 84.16 80 | 83.20 87 | 87.05 47 | 91.56 108 | 69.82 40 | 89.99 233 | 92.05 130 | 77.77 92 | 82.84 77 | 86.57 223 | 63.93 86 | 96.09 129 | 74.91 153 | 89.18 99 | 95.25 69 |
|
| CANet_DTU | | | 84.09 81 | 83.52 75 | 85.81 85 | 90.30 133 | 66.82 113 | 91.87 159 | 89.01 258 | 85.27 9 | 86.09 48 | 93.74 101 | 47.71 262 | 96.98 98 | 77.90 133 | 89.78 95 | 93.65 131 |
|
| ET-MVSNet_ETH3D | | | 84.01 82 | 83.15 90 | 86.58 62 | 90.78 126 | 70.89 24 | 94.74 47 | 94.62 35 | 81.44 38 | 58.19 322 | 93.64 104 | 73.64 23 | 92.35 275 | 82.66 94 | 78.66 189 | 96.50 24 |
|
| PVSNet_Blended_VisFu | | | 83.97 83 | 83.50 77 | 85.39 98 | 90.02 138 | 66.59 121 | 93.77 84 | 91.73 147 | 77.43 101 | 77.08 140 | 89.81 177 | 63.77 89 | 96.97 100 | 79.67 116 | 88.21 106 | 92.60 160 |
|
| MTAPA | | | 83.91 84 | 83.38 85 | 85.50 94 | 91.89 100 | 65.16 154 | 81.75 319 | 92.23 122 | 75.32 125 | 80.53 98 | 95.21 60 | 56.06 179 | 97.16 85 | 84.86 80 | 92.55 60 | 94.18 108 |
|
| XVS | | | 83.87 85 | 83.47 79 | 85.05 109 | 93.22 61 | 63.78 188 | 92.92 114 | 92.66 109 | 73.99 142 | 78.18 125 | 94.31 89 | 55.25 185 | 97.41 68 | 79.16 121 | 91.58 74 | 93.95 121 |
|
| Effi-MVS+ | | | 83.82 86 | 82.76 96 | 86.99 49 | 89.56 148 | 69.40 47 | 91.35 185 | 86.12 312 | 72.59 173 | 83.22 75 | 92.81 123 | 59.60 138 | 96.01 137 | 81.76 101 | 87.80 110 | 95.56 51 |
|
| test_fmvsmvis_n_1920 | | | 83.80 87 | 83.48 78 | 84.77 121 | 82.51 285 | 63.72 192 | 91.37 183 | 83.99 332 | 81.42 39 | 77.68 130 | 95.74 42 | 58.37 149 | 97.58 59 | 93.38 14 | 86.87 119 | 93.00 151 |
|
| EI-MVSNet-Vis-set | | | 83.77 88 | 83.67 74 | 84.06 149 | 92.79 77 | 63.56 200 | 91.76 166 | 94.81 27 | 79.65 61 | 77.87 128 | 94.09 94 | 63.35 98 | 97.90 42 | 79.35 119 | 79.36 181 | 90.74 198 |
|
| MVSFormer | | | 83.75 89 | 82.88 94 | 86.37 70 | 89.24 159 | 71.18 19 | 89.07 252 | 90.69 187 | 65.80 279 | 87.13 39 | 94.34 87 | 64.99 71 | 92.67 261 | 72.83 164 | 91.80 70 | 95.27 66 |
|
| CP-MVS | | | 83.71 90 | 83.40 84 | 84.65 128 | 93.14 66 | 63.84 186 | 94.59 49 | 92.28 120 | 71.03 224 | 77.41 134 | 94.92 67 | 55.21 188 | 96.19 125 | 81.32 107 | 90.70 86 | 93.91 123 |
|
| test_fmvsmconf0.01_n | | | 83.70 91 | 83.52 75 | 84.25 145 | 75.26 351 | 61.72 243 | 92.17 142 | 87.24 301 | 82.36 26 | 84.91 61 | 95.41 48 | 55.60 183 | 96.83 109 | 92.85 17 | 85.87 131 | 94.21 107 |
|
| baseline2 | | | 83.68 92 | 83.42 83 | 84.48 136 | 87.37 207 | 66.00 133 | 90.06 228 | 95.93 8 | 79.71 60 | 69.08 228 | 90.39 165 | 77.92 6 | 96.28 123 | 78.91 125 | 81.38 165 | 91.16 194 |
|
| thisisatest0515 | | | 83.41 93 | 82.49 102 | 86.16 75 | 89.46 151 | 68.26 76 | 93.54 94 | 94.70 31 | 74.31 137 | 75.75 148 | 90.92 155 | 72.62 28 | 96.52 119 | 69.64 195 | 81.50 164 | 93.71 129 |
|
| PVSNet_BlendedMVS | | | 83.38 94 | 83.43 81 | 83.22 171 | 93.76 49 | 67.53 96 | 94.06 63 | 93.61 71 | 79.13 71 | 81.00 94 | 85.14 238 | 63.19 100 | 97.29 76 | 87.08 61 | 73.91 227 | 84.83 297 |
|
| test2506 | | | 83.29 95 | 82.92 93 | 84.37 140 | 88.39 179 | 63.18 211 | 92.01 152 | 91.35 164 | 77.66 95 | 78.49 124 | 91.42 148 | 64.58 79 | 95.09 172 | 73.19 160 | 89.23 97 | 94.85 80 |
|
| iter_conf05 | | | 83.27 96 | 82.70 98 | 84.98 112 | 93.32 59 | 71.84 15 | 94.16 58 | 81.76 343 | 82.74 21 | 73.83 172 | 88.40 191 | 72.77 27 | 94.61 189 | 82.10 98 | 75.21 216 | 88.48 230 |
|
| PGM-MVS | | | 83.25 97 | 82.70 98 | 84.92 113 | 92.81 76 | 64.07 183 | 90.44 215 | 92.20 126 | 71.28 218 | 77.23 137 | 94.43 80 | 55.17 189 | 97.31 75 | 79.33 120 | 91.38 78 | 93.37 137 |
|
| HPM-MVS |  | | 83.25 97 | 82.95 92 | 84.17 147 | 92.25 87 | 62.88 220 | 90.91 200 | 91.86 141 | 70.30 236 | 77.12 138 | 93.96 98 | 56.75 169 | 96.28 123 | 82.04 99 | 91.34 80 | 93.34 138 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| EI-MVSNet-UG-set | | | 83.14 99 | 82.96 91 | 83.67 160 | 92.28 86 | 63.19 210 | 91.38 182 | 94.68 32 | 79.22 68 | 76.60 143 | 93.75 100 | 62.64 105 | 97.76 48 | 78.07 132 | 78.01 192 | 90.05 207 |
|
| VDD-MVS | | | 83.06 100 | 81.81 111 | 86.81 53 | 90.86 124 | 67.70 90 | 95.40 29 | 91.50 159 | 75.46 122 | 81.78 85 | 92.34 133 | 40.09 300 | 97.13 87 | 86.85 64 | 82.04 158 | 95.60 49 |
|
| h-mvs33 | | | 83.01 101 | 82.56 101 | 84.35 141 | 89.34 152 | 62.02 235 | 92.72 120 | 93.76 64 | 81.45 36 | 82.73 79 | 92.25 136 | 60.11 131 | 97.13 87 | 87.69 53 | 62.96 306 | 93.91 123 |
|
| PAPM_NR | | | 82.97 102 | 81.84 110 | 86.37 70 | 94.10 44 | 66.76 116 | 87.66 275 | 92.84 102 | 69.96 240 | 74.07 169 | 93.57 106 | 63.10 102 | 97.50 64 | 70.66 188 | 90.58 88 | 94.85 80 |
|
| mPP-MVS | | | 82.96 103 | 82.44 103 | 84.52 134 | 92.83 72 | 62.92 218 | 92.76 118 | 91.85 143 | 71.52 214 | 75.61 153 | 94.24 91 | 53.48 210 | 96.99 97 | 78.97 124 | 90.73 85 | 93.64 132 |
|
| SR-MVS | | | 82.81 104 | 82.58 100 | 83.50 165 | 93.35 58 | 61.16 252 | 92.23 141 | 91.28 168 | 64.48 288 | 81.27 88 | 95.28 54 | 53.71 206 | 95.86 139 | 82.87 93 | 88.77 102 | 93.49 135 |
|
| DP-MVS Recon | | | 82.73 105 | 81.65 112 | 85.98 78 | 97.31 4 | 67.06 107 | 95.15 36 | 91.99 133 | 69.08 253 | 76.50 145 | 93.89 99 | 54.48 197 | 98.20 35 | 70.76 186 | 85.66 133 | 92.69 157 |
|
| CLD-MVS | | | 82.73 105 | 82.35 105 | 83.86 153 | 87.90 194 | 67.65 92 | 95.45 28 | 92.18 128 | 85.06 10 | 72.58 185 | 92.27 134 | 52.46 218 | 95.78 141 | 84.18 84 | 79.06 184 | 88.16 236 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| sss | | | 82.71 107 | 82.38 104 | 83.73 157 | 89.25 156 | 59.58 280 | 92.24 140 | 94.89 24 | 77.96 88 | 79.86 105 | 92.38 131 | 56.70 170 | 97.05 89 | 77.26 136 | 80.86 169 | 94.55 95 |
|
| 3Dnovator | | 73.91 6 | 82.69 108 | 80.82 123 | 88.31 23 | 89.57 147 | 71.26 18 | 92.60 129 | 94.39 46 | 78.84 78 | 67.89 249 | 92.48 129 | 48.42 253 | 98.52 28 | 68.80 207 | 94.40 34 | 95.15 71 |
|
| MVSTER | | | 82.47 109 | 82.05 106 | 83.74 155 | 92.68 79 | 69.01 58 | 91.90 158 | 93.21 86 | 79.83 56 | 72.14 193 | 85.71 235 | 74.72 16 | 94.72 184 | 75.72 144 | 72.49 238 | 87.50 241 |
|
| TESTMET0.1,1 | | | 82.41 110 | 81.98 109 | 83.72 158 | 88.08 188 | 63.74 190 | 92.70 122 | 93.77 63 | 79.30 66 | 77.61 132 | 87.57 210 | 58.19 152 | 94.08 214 | 73.91 159 | 86.68 126 | 93.33 140 |
|
| CostFormer | | | 82.33 111 | 81.15 116 | 85.86 83 | 89.01 164 | 68.46 70 | 82.39 316 | 93.01 96 | 75.59 120 | 80.25 101 | 81.57 281 | 72.03 32 | 94.96 176 | 79.06 123 | 77.48 200 | 94.16 110 |
|
| API-MVS | | | 82.28 112 | 80.53 130 | 87.54 35 | 96.13 22 | 70.59 27 | 93.63 90 | 91.04 182 | 65.72 281 | 75.45 155 | 92.83 122 | 56.11 178 | 98.89 20 | 64.10 250 | 89.75 96 | 93.15 144 |
|
| IB-MVS | | 77.80 4 | 82.18 113 | 80.46 132 | 87.35 39 | 89.14 161 | 70.28 31 | 95.59 26 | 95.17 18 | 78.85 77 | 70.19 216 | 85.82 233 | 70.66 35 | 97.67 51 | 72.19 175 | 66.52 279 | 94.09 114 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| xiu_mvs_v1_base_debu | | | 82.16 114 | 81.12 117 | 85.26 105 | 86.42 224 | 68.72 65 | 92.59 131 | 90.44 197 | 73.12 162 | 84.20 67 | 94.36 82 | 38.04 314 | 95.73 145 | 84.12 85 | 86.81 120 | 91.33 187 |
|
| xiu_mvs_v1_base | | | 82.16 114 | 81.12 117 | 85.26 105 | 86.42 224 | 68.72 65 | 92.59 131 | 90.44 197 | 73.12 162 | 84.20 67 | 94.36 82 | 38.04 314 | 95.73 145 | 84.12 85 | 86.81 120 | 91.33 187 |
|
| xiu_mvs_v1_base_debi | | | 82.16 114 | 81.12 117 | 85.26 105 | 86.42 224 | 68.72 65 | 92.59 131 | 90.44 197 | 73.12 162 | 84.20 67 | 94.36 82 | 38.04 314 | 95.73 145 | 84.12 85 | 86.81 120 | 91.33 187 |
|
| 3Dnovator+ | | 73.60 7 | 82.10 117 | 80.60 129 | 86.60 60 | 90.89 123 | 66.80 115 | 95.20 34 | 93.44 80 | 74.05 141 | 67.42 255 | 92.49 128 | 49.46 243 | 97.65 55 | 70.80 185 | 91.68 72 | 95.33 59 |
|
| MVS_111021_LR | | | 82.02 118 | 81.52 113 | 83.51 164 | 88.42 177 | 62.88 220 | 89.77 237 | 88.93 262 | 76.78 108 | 75.55 154 | 93.10 111 | 50.31 235 | 95.38 164 | 83.82 89 | 87.02 118 | 92.26 174 |
|
| PMMVS | | | 81.98 119 | 82.04 107 | 81.78 207 | 89.76 144 | 56.17 317 | 91.13 196 | 90.69 187 | 77.96 88 | 80.09 103 | 93.57 106 | 46.33 272 | 94.99 175 | 81.41 105 | 87.46 114 | 94.17 109 |
|
| baseline1 | | | 81.84 120 | 81.03 121 | 84.28 144 | 91.60 106 | 66.62 119 | 91.08 197 | 91.66 153 | 81.87 31 | 74.86 159 | 91.67 145 | 69.98 37 | 94.92 179 | 71.76 178 | 64.75 294 | 91.29 192 |
|
| EPP-MVSNet | | | 81.79 121 | 81.52 113 | 82.61 183 | 88.77 170 | 60.21 272 | 93.02 111 | 93.66 70 | 68.52 259 | 72.90 180 | 90.39 165 | 72.19 31 | 94.96 176 | 74.93 152 | 79.29 183 | 92.67 158 |
|
| iter_conf_final | | | 81.74 122 | 80.93 122 | 84.18 146 | 92.66 80 | 69.10 55 | 92.94 113 | 82.80 341 | 79.01 76 | 74.85 160 | 88.40 191 | 61.83 115 | 94.61 189 | 79.36 118 | 76.52 209 | 88.83 221 |
|
| test_vis1_n_1920 | | | 81.66 123 | 82.01 108 | 80.64 234 | 82.24 288 | 55.09 325 | 94.76 46 | 86.87 303 | 81.67 34 | 84.40 66 | 94.63 75 | 38.17 311 | 94.67 188 | 91.98 26 | 83.34 148 | 92.16 177 |
|
| APD-MVS_3200maxsize | | | 81.64 124 | 81.32 115 | 82.59 184 | 92.36 84 | 58.74 292 | 91.39 180 | 91.01 183 | 63.35 297 | 79.72 107 | 94.62 76 | 51.82 221 | 96.14 127 | 79.71 115 | 87.93 109 | 92.89 155 |
|
| ACMMP |  | | 81.49 125 | 80.67 126 | 83.93 152 | 91.71 104 | 62.90 219 | 92.13 144 | 92.22 125 | 71.79 201 | 71.68 200 | 93.49 108 | 50.32 234 | 96.96 101 | 78.47 129 | 84.22 146 | 91.93 179 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CDS-MVSNet | | | 81.43 126 | 80.74 124 | 83.52 162 | 86.26 228 | 64.45 168 | 92.09 147 | 90.65 191 | 75.83 119 | 73.95 171 | 89.81 177 | 63.97 85 | 92.91 251 | 71.27 181 | 82.82 152 | 93.20 143 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| mvs_anonymous | | | 81.36 127 | 79.99 137 | 85.46 95 | 90.39 132 | 68.40 71 | 86.88 286 | 90.61 192 | 74.41 134 | 70.31 215 | 84.67 244 | 63.79 88 | 92.32 276 | 73.13 161 | 85.70 132 | 95.67 46 |
|
| ECVR-MVS |  | | 81.29 128 | 80.38 133 | 84.01 151 | 88.39 179 | 61.96 237 | 92.56 134 | 86.79 305 | 77.66 95 | 76.63 142 | 91.42 148 | 46.34 271 | 95.24 169 | 74.36 157 | 89.23 97 | 94.85 80 |
|
| thisisatest0530 | | | 81.15 129 | 80.07 134 | 84.39 139 | 88.26 183 | 65.63 142 | 91.40 178 | 94.62 35 | 71.27 219 | 70.93 206 | 89.18 182 | 72.47 29 | 96.04 134 | 65.62 239 | 76.89 206 | 91.49 183 |
|
| Fast-Effi-MVS+ | | | 81.14 130 | 80.01 136 | 84.51 135 | 90.24 134 | 65.86 137 | 94.12 62 | 89.15 250 | 73.81 149 | 75.37 156 | 88.26 196 | 57.26 159 | 94.53 197 | 66.97 224 | 84.92 136 | 93.15 144 |
|
| HQP-MVS | | | 81.14 130 | 80.64 127 | 82.64 182 | 87.54 202 | 63.66 197 | 94.06 63 | 91.70 151 | 79.80 57 | 74.18 165 | 90.30 167 | 51.63 225 | 95.61 153 | 77.63 134 | 78.90 185 | 88.63 226 |
|
| hse-mvs2 | | | 81.12 132 | 81.11 120 | 81.16 221 | 86.52 223 | 57.48 307 | 89.40 245 | 91.16 171 | 81.45 36 | 82.73 79 | 90.49 163 | 60.11 131 | 94.58 191 | 87.69 53 | 60.41 333 | 91.41 186 |
|
| SR-MVS-dyc-post | | | 81.06 133 | 80.70 125 | 82.15 198 | 92.02 92 | 58.56 294 | 90.90 201 | 90.45 194 | 62.76 304 | 78.89 116 | 94.46 78 | 51.26 229 | 95.61 153 | 78.77 127 | 86.77 123 | 92.28 170 |
|
| HyFIR lowres test | | | 81.03 134 | 79.56 144 | 85.43 96 | 87.81 198 | 68.11 81 | 90.18 225 | 90.01 218 | 70.65 232 | 72.95 179 | 86.06 231 | 63.61 93 | 94.50 199 | 75.01 151 | 79.75 178 | 93.67 130 |
|
| nrg030 | | | 80.93 135 | 79.86 139 | 84.13 148 | 83.69 272 | 68.83 62 | 93.23 103 | 91.20 169 | 75.55 121 | 75.06 158 | 88.22 199 | 63.04 103 | 94.74 183 | 81.88 100 | 66.88 276 | 88.82 224 |
|
| Vis-MVSNet |  | | 80.92 136 | 79.98 138 | 83.74 155 | 88.48 174 | 61.80 239 | 93.44 98 | 88.26 287 | 73.96 145 | 77.73 129 | 91.76 142 | 49.94 239 | 94.76 181 | 65.84 236 | 90.37 90 | 94.65 91 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test1111 | | | 80.84 137 | 80.02 135 | 83.33 168 | 87.87 195 | 60.76 260 | 92.62 127 | 86.86 304 | 77.86 91 | 75.73 149 | 91.39 150 | 46.35 270 | 94.70 187 | 72.79 166 | 88.68 103 | 94.52 99 |
|
| 1314 | | | 80.70 138 | 78.95 155 | 85.94 80 | 87.77 200 | 67.56 94 | 87.91 270 | 92.55 115 | 72.17 188 | 67.44 254 | 93.09 112 | 50.27 236 | 97.04 92 | 71.68 180 | 87.64 112 | 93.23 142 |
|
| tpmrst | | | 80.57 139 | 79.14 154 | 84.84 116 | 90.10 137 | 68.28 75 | 81.70 320 | 89.72 230 | 77.63 97 | 75.96 147 | 79.54 313 | 64.94 73 | 92.71 258 | 75.43 146 | 77.28 203 | 93.55 133 |
|
| 1112_ss | | | 80.56 140 | 79.83 140 | 82.77 178 | 88.65 171 | 60.78 258 | 92.29 138 | 88.36 281 | 72.58 174 | 72.46 189 | 94.95 64 | 65.09 70 | 93.42 238 | 66.38 230 | 77.71 194 | 94.10 113 |
|
| VDDNet | | | 80.50 141 | 78.26 163 | 87.21 41 | 86.19 229 | 69.79 41 | 94.48 50 | 91.31 165 | 60.42 322 | 79.34 111 | 90.91 156 | 38.48 309 | 96.56 117 | 82.16 97 | 81.05 167 | 95.27 66 |
|
| BH-w/o | | | 80.49 142 | 79.30 151 | 84.05 150 | 90.83 125 | 64.36 176 | 93.60 91 | 89.42 238 | 74.35 136 | 69.09 227 | 90.15 172 | 55.23 187 | 95.61 153 | 64.61 247 | 86.43 129 | 92.17 176 |
|
| test_cas_vis1_n_1920 | | | 80.45 143 | 80.61 128 | 79.97 252 | 78.25 335 | 57.01 313 | 94.04 67 | 88.33 282 | 79.06 74 | 82.81 78 | 93.70 102 | 38.65 306 | 91.63 290 | 90.82 35 | 79.81 176 | 91.27 193 |
|
| TAMVS | | | 80.37 144 | 79.45 147 | 83.13 173 | 85.14 249 | 63.37 205 | 91.23 191 | 90.76 186 | 74.81 132 | 72.65 183 | 88.49 188 | 60.63 126 | 92.95 246 | 69.41 199 | 81.95 160 | 93.08 147 |
|
| HQP_MVS | | | 80.34 145 | 79.75 141 | 82.12 200 | 86.94 217 | 62.42 226 | 93.13 105 | 91.31 165 | 78.81 79 | 72.53 186 | 89.14 184 | 50.66 232 | 95.55 158 | 76.74 137 | 78.53 190 | 88.39 233 |
|
| SDMVSNet | | | 80.26 146 | 78.88 156 | 84.40 138 | 89.25 156 | 67.63 93 | 85.35 292 | 93.02 95 | 76.77 109 | 70.84 207 | 87.12 217 | 47.95 259 | 96.09 129 | 85.04 76 | 74.55 218 | 89.48 217 |
|
| HPM-MVS_fast | | | 80.25 147 | 79.55 146 | 82.33 190 | 91.55 109 | 59.95 275 | 91.32 187 | 89.16 249 | 65.23 285 | 74.71 162 | 93.07 114 | 47.81 261 | 95.74 144 | 74.87 155 | 88.23 105 | 91.31 191 |
|
| ab-mvs | | | 80.18 148 | 78.31 162 | 85.80 86 | 88.44 176 | 65.49 148 | 83.00 313 | 92.67 108 | 71.82 200 | 77.36 135 | 85.01 239 | 54.50 194 | 96.59 114 | 76.35 141 | 75.63 214 | 95.32 61 |
|
| IS-MVSNet | | | 80.14 149 | 79.41 148 | 82.33 190 | 87.91 193 | 60.08 274 | 91.97 156 | 88.27 285 | 72.90 169 | 71.44 203 | 91.73 144 | 61.44 118 | 93.66 233 | 62.47 264 | 86.53 127 | 93.24 141 |
|
| test-LLR | | | 80.10 150 | 79.56 144 | 81.72 209 | 86.93 219 | 61.17 250 | 92.70 122 | 91.54 156 | 71.51 215 | 75.62 151 | 86.94 219 | 53.83 203 | 92.38 272 | 72.21 173 | 84.76 139 | 91.60 181 |
|
| PVSNet | | 73.49 8 | 80.05 151 | 78.63 158 | 84.31 142 | 90.92 122 | 64.97 159 | 92.47 135 | 91.05 181 | 79.18 69 | 72.43 190 | 90.51 162 | 37.05 326 | 94.06 216 | 68.06 211 | 86.00 130 | 93.90 125 |
|
| UA-Net | | | 80.02 152 | 79.65 142 | 81.11 223 | 89.33 154 | 57.72 302 | 86.33 289 | 89.00 261 | 77.44 100 | 81.01 93 | 89.15 183 | 59.33 142 | 95.90 138 | 61.01 271 | 84.28 144 | 89.73 213 |
|
| test-mter | | | 79.96 153 | 79.38 150 | 81.72 209 | 86.93 219 | 61.17 250 | 92.70 122 | 91.54 156 | 73.85 147 | 75.62 151 | 86.94 219 | 49.84 241 | 92.38 272 | 72.21 173 | 84.76 139 | 91.60 181 |
|
| QAPM | | | 79.95 154 | 77.39 180 | 87.64 30 | 89.63 146 | 71.41 17 | 93.30 101 | 93.70 68 | 65.34 284 | 67.39 257 | 91.75 143 | 47.83 260 | 98.96 16 | 57.71 287 | 89.81 93 | 92.54 162 |
|
| UGNet | | | 79.87 155 | 78.68 157 | 83.45 167 | 89.96 139 | 61.51 246 | 92.13 144 | 90.79 185 | 76.83 107 | 78.85 121 | 86.33 227 | 38.16 312 | 96.17 126 | 67.93 214 | 87.17 117 | 92.67 158 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| tpm2 | | | 79.80 156 | 77.95 169 | 85.34 101 | 88.28 182 | 68.26 76 | 81.56 322 | 91.42 162 | 70.11 238 | 77.59 133 | 80.50 299 | 67.40 51 | 94.26 208 | 67.34 219 | 77.35 201 | 93.51 134 |
|
| thres200 | | | 79.66 157 | 78.33 161 | 83.66 161 | 92.54 83 | 65.82 139 | 93.06 107 | 96.31 3 | 74.90 131 | 73.30 176 | 88.66 186 | 59.67 137 | 95.61 153 | 47.84 325 | 78.67 188 | 89.56 216 |
|
| CPTT-MVS | | | 79.59 158 | 79.16 153 | 80.89 232 | 91.54 110 | 59.80 277 | 92.10 146 | 88.54 278 | 60.42 322 | 72.96 178 | 93.28 110 | 48.27 254 | 92.80 255 | 78.89 126 | 86.50 128 | 90.06 206 |
|
| Test_1112_low_res | | | 79.56 159 | 78.60 159 | 82.43 186 | 88.24 185 | 60.39 269 | 92.09 147 | 87.99 292 | 72.10 190 | 71.84 196 | 87.42 212 | 64.62 78 | 93.04 242 | 65.80 237 | 77.30 202 | 93.85 127 |
|
| tttt0517 | | | 79.50 160 | 78.53 160 | 82.41 189 | 87.22 210 | 61.43 248 | 89.75 238 | 94.76 28 | 69.29 248 | 67.91 247 | 88.06 203 | 72.92 25 | 95.63 151 | 62.91 260 | 73.90 228 | 90.16 205 |
|
| FIs | | | 79.47 161 | 79.41 148 | 79.67 259 | 85.95 234 | 59.40 282 | 91.68 170 | 93.94 58 | 78.06 87 | 68.96 232 | 88.28 194 | 66.61 57 | 91.77 287 | 66.20 233 | 74.99 217 | 87.82 238 |
|
| BH-RMVSNet | | | 79.46 162 | 77.65 172 | 84.89 114 | 91.68 105 | 65.66 140 | 93.55 93 | 88.09 290 | 72.93 166 | 73.37 175 | 91.12 154 | 46.20 274 | 96.12 128 | 56.28 292 | 85.61 134 | 92.91 153 |
|
| PCF-MVS | | 73.15 9 | 79.29 163 | 77.63 173 | 84.29 143 | 86.06 232 | 65.96 135 | 87.03 282 | 91.10 175 | 69.86 242 | 69.79 223 | 90.64 158 | 57.54 158 | 96.59 114 | 64.37 249 | 82.29 154 | 90.32 203 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| Vis-MVSNet (Re-imp) | | | 79.24 164 | 79.57 143 | 78.24 280 | 88.46 175 | 52.29 336 | 90.41 217 | 89.12 252 | 74.24 138 | 69.13 226 | 91.91 140 | 65.77 64 | 90.09 312 | 59.00 283 | 88.09 107 | 92.33 167 |
|
| 114514_t | | | 79.17 165 | 77.67 171 | 83.68 159 | 95.32 29 | 65.53 146 | 92.85 116 | 91.60 155 | 63.49 295 | 67.92 246 | 90.63 160 | 46.65 267 | 95.72 149 | 67.01 223 | 83.54 147 | 89.79 211 |
|
| FA-MVS(test-final) | | | 79.12 166 | 77.23 182 | 84.81 120 | 90.54 128 | 63.98 185 | 81.35 325 | 91.71 149 | 71.09 223 | 74.85 160 | 82.94 262 | 52.85 214 | 97.05 89 | 67.97 212 | 81.73 163 | 93.41 136 |
|
| VPA-MVSNet | | | 79.03 167 | 78.00 167 | 82.11 203 | 85.95 234 | 64.48 167 | 93.22 104 | 94.66 33 | 75.05 129 | 74.04 170 | 84.95 240 | 52.17 220 | 93.52 235 | 74.90 154 | 67.04 275 | 88.32 235 |
|
| OPM-MVS | | | 79.00 168 | 78.09 165 | 81.73 208 | 83.52 275 | 63.83 187 | 91.64 172 | 90.30 204 | 76.36 115 | 71.97 195 | 89.93 176 | 46.30 273 | 95.17 171 | 75.10 149 | 77.70 195 | 86.19 269 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| EI-MVSNet | | | 78.97 169 | 78.22 164 | 81.25 218 | 85.33 244 | 62.73 223 | 89.53 242 | 93.21 86 | 72.39 181 | 72.14 193 | 90.13 173 | 60.99 121 | 94.72 184 | 67.73 216 | 72.49 238 | 86.29 265 |
|
| AdaColmap |  | | 78.94 170 | 77.00 186 | 84.76 122 | 96.34 17 | 65.86 137 | 92.66 126 | 87.97 294 | 62.18 309 | 70.56 209 | 92.37 132 | 43.53 288 | 97.35 72 | 64.50 248 | 82.86 151 | 91.05 196 |
|
| GeoE | | | 78.90 171 | 77.43 176 | 83.29 169 | 88.95 165 | 62.02 235 | 92.31 137 | 86.23 310 | 70.24 237 | 71.34 204 | 89.27 181 | 54.43 198 | 94.04 219 | 63.31 256 | 80.81 171 | 93.81 128 |
|
| miper_enhance_ethall | | | 78.86 172 | 77.97 168 | 81.54 213 | 88.00 192 | 65.17 153 | 91.41 176 | 89.15 250 | 75.19 127 | 68.79 235 | 83.98 253 | 67.17 52 | 92.82 253 | 72.73 167 | 65.30 285 | 86.62 262 |
|
| VPNet | | | 78.82 173 | 77.53 175 | 82.70 180 | 84.52 259 | 66.44 123 | 93.93 72 | 92.23 122 | 80.46 49 | 72.60 184 | 88.38 193 | 49.18 247 | 93.13 241 | 72.47 171 | 63.97 303 | 88.55 229 |
|
| EPNet_dtu | | | 78.80 174 | 79.26 152 | 77.43 288 | 88.06 189 | 49.71 349 | 91.96 157 | 91.95 135 | 77.67 94 | 76.56 144 | 91.28 152 | 58.51 148 | 90.20 310 | 56.37 291 | 80.95 168 | 92.39 165 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| tfpn200view9 | | | 78.79 175 | 77.43 176 | 82.88 176 | 92.21 89 | 64.49 165 | 92.05 150 | 96.28 4 | 73.48 156 | 71.75 198 | 88.26 196 | 60.07 133 | 95.32 165 | 45.16 336 | 77.58 197 | 88.83 221 |
|
| TR-MVS | | | 78.77 176 | 77.37 181 | 82.95 175 | 90.49 129 | 60.88 256 | 93.67 88 | 90.07 213 | 70.08 239 | 74.51 163 | 91.37 151 | 45.69 277 | 95.70 150 | 60.12 277 | 80.32 173 | 92.29 169 |
|
| thres400 | | | 78.68 177 | 77.43 176 | 82.43 186 | 92.21 89 | 64.49 165 | 92.05 150 | 96.28 4 | 73.48 156 | 71.75 198 | 88.26 196 | 60.07 133 | 95.32 165 | 45.16 336 | 77.58 197 | 87.48 242 |
|
| BH-untuned | | | 78.68 177 | 77.08 183 | 83.48 166 | 89.84 141 | 63.74 190 | 92.70 122 | 88.59 276 | 71.57 212 | 66.83 264 | 88.65 187 | 51.75 223 | 95.39 163 | 59.03 282 | 84.77 138 | 91.32 190 |
|
| OMC-MVS | | | 78.67 179 | 77.91 170 | 80.95 230 | 85.76 239 | 57.40 309 | 88.49 261 | 88.67 273 | 73.85 147 | 72.43 190 | 92.10 137 | 49.29 246 | 94.55 196 | 72.73 167 | 77.89 193 | 90.91 197 |
|
| tpm | | | 78.58 180 | 77.03 184 | 83.22 171 | 85.94 236 | 64.56 163 | 83.21 310 | 91.14 174 | 78.31 84 | 73.67 173 | 79.68 311 | 64.01 84 | 92.09 281 | 66.07 234 | 71.26 248 | 93.03 149 |
|
| OpenMVS |  | 70.45 11 | 78.54 181 | 75.92 200 | 86.41 69 | 85.93 237 | 71.68 16 | 92.74 119 | 92.51 116 | 66.49 275 | 64.56 279 | 91.96 139 | 43.88 287 | 98.10 37 | 54.61 297 | 90.65 87 | 89.44 219 |
|
| EPMVS | | | 78.49 182 | 75.98 199 | 86.02 77 | 91.21 117 | 69.68 45 | 80.23 334 | 91.20 169 | 75.25 126 | 72.48 188 | 78.11 321 | 54.65 193 | 93.69 232 | 57.66 288 | 83.04 150 | 94.69 87 |
|
| AUN-MVS | | | 78.37 183 | 77.43 176 | 81.17 220 | 86.60 222 | 57.45 308 | 89.46 244 | 91.16 171 | 74.11 140 | 74.40 164 | 90.49 163 | 55.52 184 | 94.57 193 | 74.73 156 | 60.43 332 | 91.48 184 |
|
| thres100view900 | | | 78.37 183 | 77.01 185 | 82.46 185 | 91.89 100 | 63.21 209 | 91.19 195 | 96.33 1 | 72.28 184 | 70.45 212 | 87.89 205 | 60.31 128 | 95.32 165 | 45.16 336 | 77.58 197 | 88.83 221 |
|
| GA-MVS | | | 78.33 185 | 76.23 195 | 84.65 128 | 83.65 273 | 66.30 127 | 91.44 174 | 90.14 211 | 76.01 117 | 70.32 214 | 84.02 252 | 42.50 292 | 94.72 184 | 70.98 183 | 77.00 205 | 92.94 152 |
|
| cascas | | | 78.18 186 | 75.77 202 | 85.41 97 | 87.14 212 | 69.11 54 | 92.96 112 | 91.15 173 | 66.71 273 | 70.47 210 | 86.07 230 | 37.49 320 | 96.48 120 | 70.15 191 | 79.80 177 | 90.65 199 |
|
| UniMVSNet_NR-MVSNet | | | 78.15 187 | 77.55 174 | 79.98 250 | 84.46 261 | 60.26 270 | 92.25 139 | 93.20 88 | 77.50 99 | 68.88 233 | 86.61 222 | 66.10 60 | 92.13 279 | 66.38 230 | 62.55 310 | 87.54 240 |
|
| thres600view7 | | | 78.00 188 | 76.66 190 | 82.03 205 | 91.93 97 | 63.69 195 | 91.30 188 | 96.33 1 | 72.43 179 | 70.46 211 | 87.89 205 | 60.31 128 | 94.92 179 | 42.64 348 | 76.64 207 | 87.48 242 |
|
| FC-MVSNet-test | | | 77.99 189 | 78.08 166 | 77.70 283 | 84.89 254 | 55.51 322 | 90.27 222 | 93.75 67 | 76.87 104 | 66.80 265 | 87.59 209 | 65.71 65 | 90.23 309 | 62.89 261 | 73.94 226 | 87.37 245 |
|
| Anonymous202405211 | | | 77.96 190 | 75.33 209 | 85.87 82 | 93.73 52 | 64.52 164 | 94.85 44 | 85.36 318 | 62.52 307 | 76.11 146 | 90.18 170 | 29.43 355 | 97.29 76 | 68.51 209 | 77.24 204 | 95.81 45 |
|
| cl22 | | | 77.94 191 | 76.78 188 | 81.42 215 | 87.57 201 | 64.93 161 | 90.67 210 | 88.86 265 | 72.45 178 | 67.63 253 | 82.68 266 | 64.07 83 | 92.91 251 | 71.79 176 | 65.30 285 | 86.44 263 |
|
| XXY-MVS | | | 77.94 191 | 76.44 192 | 82.43 186 | 82.60 284 | 64.44 169 | 92.01 152 | 91.83 144 | 73.59 155 | 70.00 219 | 85.82 233 | 54.43 198 | 94.76 181 | 69.63 196 | 68.02 269 | 88.10 237 |
|
| MS-PatchMatch | | | 77.90 193 | 76.50 191 | 82.12 200 | 85.99 233 | 69.95 36 | 91.75 168 | 92.70 106 | 73.97 144 | 62.58 300 | 84.44 248 | 41.11 297 | 95.78 141 | 63.76 253 | 92.17 64 | 80.62 344 |
|
| FMVSNet3 | | | 77.73 194 | 76.04 198 | 82.80 177 | 91.20 118 | 68.99 59 | 91.87 159 | 91.99 133 | 73.35 158 | 67.04 260 | 83.19 261 | 56.62 172 | 92.14 278 | 59.80 279 | 69.34 256 | 87.28 249 |
|
| miper_ehance_all_eth | | | 77.60 195 | 76.44 192 | 81.09 227 | 85.70 241 | 64.41 172 | 90.65 211 | 88.64 275 | 72.31 182 | 67.37 258 | 82.52 267 | 64.77 77 | 92.64 265 | 70.67 187 | 65.30 285 | 86.24 267 |
|
| UniMVSNet (Re) | | | 77.58 196 | 76.78 188 | 79.98 250 | 84.11 267 | 60.80 257 | 91.76 166 | 93.17 90 | 76.56 113 | 69.93 222 | 84.78 243 | 63.32 99 | 92.36 274 | 64.89 246 | 62.51 312 | 86.78 257 |
|
| PatchmatchNet |  | | 77.46 197 | 74.63 215 | 85.96 79 | 89.55 149 | 70.35 30 | 79.97 339 | 89.55 233 | 72.23 185 | 70.94 205 | 76.91 332 | 57.03 162 | 92.79 256 | 54.27 299 | 81.17 166 | 94.74 86 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| v2v482 | | | 77.42 198 | 75.65 205 | 82.73 179 | 80.38 305 | 67.13 106 | 91.85 161 | 90.23 208 | 75.09 128 | 69.37 224 | 83.39 259 | 53.79 205 | 94.44 200 | 71.77 177 | 65.00 291 | 86.63 261 |
|
| CHOSEN 280x420 | | | 77.35 199 | 76.95 187 | 78.55 275 | 87.07 214 | 62.68 224 | 69.71 367 | 82.95 339 | 68.80 255 | 71.48 202 | 87.27 216 | 66.03 61 | 84.00 354 | 76.47 140 | 82.81 153 | 88.95 220 |
|
| PS-MVSNAJss | | | 77.26 200 | 76.31 194 | 80.13 245 | 80.64 303 | 59.16 287 | 90.63 214 | 91.06 180 | 72.80 170 | 68.58 239 | 84.57 246 | 53.55 207 | 93.96 224 | 72.97 162 | 71.96 242 | 87.27 250 |
|
| gg-mvs-nofinetune | | | 77.18 201 | 74.31 222 | 85.80 86 | 91.42 112 | 68.36 72 | 71.78 361 | 94.72 30 | 49.61 362 | 77.12 138 | 45.92 385 | 77.41 8 | 93.98 223 | 67.62 217 | 93.16 53 | 95.05 74 |
|
| WB-MVSnew | | | 77.14 202 | 76.18 197 | 80.01 249 | 86.18 230 | 63.24 208 | 91.26 189 | 94.11 55 | 71.72 204 | 73.52 174 | 87.29 215 | 45.14 282 | 93.00 244 | 56.98 289 | 79.42 179 | 83.80 305 |
|
| MVP-Stereo | | | 77.12 203 | 76.23 195 | 79.79 257 | 81.72 293 | 66.34 126 | 89.29 246 | 90.88 184 | 70.56 234 | 62.01 303 | 82.88 263 | 49.34 244 | 94.13 211 | 65.55 241 | 93.80 41 | 78.88 358 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| sd_testset | | | 77.08 204 | 75.37 207 | 82.20 196 | 89.25 156 | 62.11 234 | 82.06 317 | 89.09 254 | 76.77 109 | 70.84 207 | 87.12 217 | 41.43 296 | 95.01 174 | 67.23 221 | 74.55 218 | 89.48 217 |
|
| dmvs_re | | | 76.93 205 | 75.36 208 | 81.61 211 | 87.78 199 | 60.71 263 | 80.00 338 | 87.99 292 | 79.42 63 | 69.02 230 | 89.47 180 | 46.77 265 | 94.32 202 | 63.38 255 | 74.45 221 | 89.81 210 |
|
| X-MVStestdata | | | 76.86 206 | 74.13 226 | 85.05 109 | 93.22 61 | 63.78 188 | 92.92 114 | 92.66 109 | 73.99 142 | 78.18 125 | 10.19 400 | 55.25 185 | 97.41 68 | 79.16 121 | 91.58 74 | 93.95 121 |
|
| DU-MVS | | | 76.86 206 | 75.84 201 | 79.91 253 | 82.96 281 | 60.26 270 | 91.26 189 | 91.54 156 | 76.46 114 | 68.88 233 | 86.35 225 | 56.16 176 | 92.13 279 | 66.38 230 | 62.55 310 | 87.35 247 |
|
| mvsmamba | | | 76.85 208 | 75.71 204 | 80.25 242 | 83.07 280 | 59.16 287 | 91.44 174 | 80.64 348 | 76.84 106 | 67.95 245 | 86.33 227 | 46.17 275 | 94.24 209 | 76.06 142 | 72.92 234 | 87.36 246 |
|
| Anonymous20240529 | | | 76.84 209 | 74.15 225 | 84.88 115 | 91.02 119 | 64.95 160 | 93.84 80 | 91.09 176 | 53.57 351 | 73.00 177 | 87.42 212 | 35.91 330 | 97.32 74 | 69.14 203 | 72.41 240 | 92.36 166 |
|
| c3_l | | | 76.83 210 | 75.47 206 | 80.93 231 | 85.02 252 | 64.18 182 | 90.39 218 | 88.11 289 | 71.66 205 | 66.65 266 | 81.64 279 | 63.58 95 | 92.56 266 | 69.31 201 | 62.86 307 | 86.04 274 |
|
| WR-MVS | | | 76.76 211 | 75.74 203 | 79.82 256 | 84.60 257 | 62.27 232 | 92.60 129 | 92.51 116 | 76.06 116 | 67.87 250 | 85.34 236 | 56.76 168 | 90.24 308 | 62.20 265 | 63.69 305 | 86.94 255 |
|
| v1144 | | | 76.73 212 | 74.88 212 | 82.27 192 | 80.23 309 | 66.60 120 | 91.68 170 | 90.21 210 | 73.69 152 | 69.06 229 | 81.89 274 | 52.73 216 | 94.40 201 | 69.21 202 | 65.23 288 | 85.80 280 |
|
| IterMVS-LS | | | 76.49 213 | 75.18 211 | 80.43 237 | 84.49 260 | 62.74 222 | 90.64 212 | 88.80 267 | 72.40 180 | 65.16 273 | 81.72 277 | 60.98 122 | 92.27 277 | 67.74 215 | 64.65 296 | 86.29 265 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| V42 | | | 76.46 214 | 74.55 218 | 82.19 197 | 79.14 323 | 67.82 87 | 90.26 223 | 89.42 238 | 73.75 150 | 68.63 238 | 81.89 274 | 51.31 228 | 94.09 213 | 71.69 179 | 64.84 292 | 84.66 298 |
|
| v148 | | | 76.19 215 | 74.47 220 | 81.36 216 | 80.05 311 | 64.44 169 | 91.75 168 | 90.23 208 | 73.68 153 | 67.13 259 | 80.84 294 | 55.92 181 | 93.86 230 | 68.95 205 | 61.73 321 | 85.76 283 |
|
| Effi-MVS+-dtu | | | 76.14 216 | 75.28 210 | 78.72 274 | 83.22 277 | 55.17 324 | 89.87 234 | 87.78 295 | 75.42 123 | 67.98 244 | 81.43 283 | 45.08 283 | 92.52 268 | 75.08 150 | 71.63 243 | 88.48 230 |
|
| cl____ | | | 76.07 217 | 74.67 213 | 80.28 240 | 85.15 248 | 61.76 241 | 90.12 226 | 88.73 270 | 71.16 220 | 65.43 270 | 81.57 281 | 61.15 119 | 92.95 246 | 66.54 227 | 62.17 314 | 86.13 272 |
|
| DIV-MVS_self_test | | | 76.07 217 | 74.67 213 | 80.28 240 | 85.14 249 | 61.75 242 | 90.12 226 | 88.73 270 | 71.16 220 | 65.42 271 | 81.60 280 | 61.15 119 | 92.94 250 | 66.54 227 | 62.16 316 | 86.14 270 |
|
| FMVSNet2 | | | 76.07 217 | 74.01 228 | 82.26 194 | 88.85 166 | 67.66 91 | 91.33 186 | 91.61 154 | 70.84 227 | 65.98 267 | 82.25 270 | 48.03 255 | 92.00 283 | 58.46 284 | 68.73 264 | 87.10 252 |
|
| v144192 | | | 76.05 220 | 74.03 227 | 82.12 200 | 79.50 317 | 66.55 122 | 91.39 180 | 89.71 231 | 72.30 183 | 68.17 242 | 81.33 286 | 51.75 223 | 94.03 221 | 67.94 213 | 64.19 298 | 85.77 281 |
|
| NR-MVSNet | | | 76.05 220 | 74.59 216 | 80.44 236 | 82.96 281 | 62.18 233 | 90.83 205 | 91.73 147 | 77.12 103 | 60.96 307 | 86.35 225 | 59.28 143 | 91.80 286 | 60.74 272 | 61.34 325 | 87.35 247 |
|
| v1192 | | | 75.98 222 | 73.92 229 | 82.15 198 | 79.73 313 | 66.24 129 | 91.22 192 | 89.75 225 | 72.67 172 | 68.49 240 | 81.42 284 | 49.86 240 | 94.27 206 | 67.08 222 | 65.02 290 | 85.95 277 |
|
| FE-MVS | | | 75.97 223 | 73.02 239 | 84.82 117 | 89.78 142 | 65.56 144 | 77.44 350 | 91.07 179 | 64.55 287 | 72.66 182 | 79.85 309 | 46.05 276 | 96.69 112 | 54.97 296 | 80.82 170 | 92.21 175 |
|
| eth_miper_zixun_eth | | | 75.96 224 | 74.40 221 | 80.66 233 | 84.66 256 | 63.02 213 | 89.28 247 | 88.27 285 | 71.88 196 | 65.73 268 | 81.65 278 | 59.45 139 | 92.81 254 | 68.13 210 | 60.53 330 | 86.14 270 |
|
| TranMVSNet+NR-MVSNet | | | 75.86 225 | 74.52 219 | 79.89 254 | 82.44 286 | 60.64 266 | 91.37 183 | 91.37 163 | 76.63 111 | 67.65 252 | 86.21 229 | 52.37 219 | 91.55 292 | 61.84 267 | 60.81 328 | 87.48 242 |
|
| SCA | | | 75.82 226 | 72.76 243 | 85.01 111 | 86.63 221 | 70.08 32 | 81.06 327 | 89.19 247 | 71.60 211 | 70.01 218 | 77.09 330 | 45.53 278 | 90.25 305 | 60.43 274 | 73.27 230 | 94.68 88 |
|
| LPG-MVS_test | | | 75.82 226 | 74.58 217 | 79.56 263 | 84.31 264 | 59.37 283 | 90.44 215 | 89.73 228 | 69.49 245 | 64.86 274 | 88.42 189 | 38.65 306 | 94.30 204 | 72.56 169 | 72.76 235 | 85.01 295 |
|
| GBi-Net | | | 75.65 228 | 73.83 230 | 81.10 224 | 88.85 166 | 65.11 155 | 90.01 230 | 90.32 200 | 70.84 227 | 67.04 260 | 80.25 304 | 48.03 255 | 91.54 293 | 59.80 279 | 69.34 256 | 86.64 258 |
|
| test1 | | | 75.65 228 | 73.83 230 | 81.10 224 | 88.85 166 | 65.11 155 | 90.01 230 | 90.32 200 | 70.84 227 | 67.04 260 | 80.25 304 | 48.03 255 | 91.54 293 | 59.80 279 | 69.34 256 | 86.64 258 |
|
| v1921920 | | | 75.63 230 | 73.49 235 | 82.06 204 | 79.38 318 | 66.35 125 | 91.07 199 | 89.48 234 | 71.98 191 | 67.99 243 | 81.22 289 | 49.16 249 | 93.90 227 | 66.56 226 | 64.56 297 | 85.92 279 |
|
| ACMP | | 71.68 10 | 75.58 231 | 74.23 224 | 79.62 261 | 84.97 253 | 59.64 278 | 90.80 206 | 89.07 256 | 70.39 235 | 62.95 296 | 87.30 214 | 38.28 310 | 93.87 228 | 72.89 163 | 71.45 246 | 85.36 290 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| v8 | | | 75.35 232 | 73.26 237 | 81.61 211 | 80.67 302 | 66.82 113 | 89.54 241 | 89.27 243 | 71.65 206 | 63.30 292 | 80.30 303 | 54.99 191 | 94.06 216 | 67.33 220 | 62.33 313 | 83.94 303 |
|
| tpm cat1 | | | 75.30 233 | 72.21 252 | 84.58 132 | 88.52 172 | 67.77 88 | 78.16 348 | 88.02 291 | 61.88 314 | 68.45 241 | 76.37 336 | 60.65 125 | 94.03 221 | 53.77 302 | 74.11 224 | 91.93 179 |
|
| PLC |  | 68.80 14 | 75.23 234 | 73.68 233 | 79.86 255 | 92.93 70 | 58.68 293 | 90.64 212 | 88.30 283 | 60.90 319 | 64.43 283 | 90.53 161 | 42.38 293 | 94.57 193 | 56.52 290 | 76.54 208 | 86.33 264 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| v1240 | | | 75.21 235 | 72.98 240 | 81.88 206 | 79.20 320 | 66.00 133 | 90.75 208 | 89.11 253 | 71.63 210 | 67.41 256 | 81.22 289 | 47.36 263 | 93.87 228 | 65.46 242 | 64.72 295 | 85.77 281 |
|
| Fast-Effi-MVS+-dtu | | | 75.04 236 | 73.37 236 | 80.07 246 | 80.86 298 | 59.52 281 | 91.20 194 | 85.38 317 | 71.90 194 | 65.20 272 | 84.84 242 | 41.46 295 | 92.97 245 | 66.50 229 | 72.96 233 | 87.73 239 |
|
| dp | | | 75.01 237 | 72.09 253 | 83.76 154 | 89.28 155 | 66.22 130 | 79.96 340 | 89.75 225 | 71.16 220 | 67.80 251 | 77.19 329 | 51.81 222 | 92.54 267 | 50.39 310 | 71.44 247 | 92.51 164 |
|
| TAPA-MVS | | 70.22 12 | 74.94 238 | 73.53 234 | 79.17 268 | 90.40 131 | 52.07 337 | 89.19 250 | 89.61 232 | 62.69 306 | 70.07 217 | 92.67 124 | 48.89 252 | 94.32 202 | 38.26 362 | 79.97 175 | 91.12 195 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| v10 | | | 74.77 239 | 72.54 249 | 81.46 214 | 80.33 307 | 66.71 117 | 89.15 251 | 89.08 255 | 70.94 225 | 63.08 295 | 79.86 308 | 52.52 217 | 94.04 219 | 65.70 238 | 62.17 314 | 83.64 306 |
|
| XVG-OURS-SEG-HR | | | 74.70 240 | 73.08 238 | 79.57 262 | 78.25 335 | 57.33 310 | 80.49 330 | 87.32 298 | 63.22 299 | 68.76 236 | 90.12 175 | 44.89 284 | 91.59 291 | 70.55 189 | 74.09 225 | 89.79 211 |
|
| RRT_MVS | | | 74.44 241 | 72.97 241 | 78.84 273 | 82.36 287 | 57.66 304 | 89.83 236 | 88.79 269 | 70.61 233 | 64.58 278 | 84.89 241 | 39.24 302 | 92.65 264 | 70.11 192 | 66.34 280 | 86.21 268 |
|
| ACMM | | 69.62 13 | 74.34 242 | 72.73 245 | 79.17 268 | 84.25 266 | 57.87 300 | 90.36 219 | 89.93 219 | 63.17 301 | 65.64 269 | 86.04 232 | 37.79 318 | 94.10 212 | 65.89 235 | 71.52 245 | 85.55 286 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CNLPA | | | 74.31 243 | 72.30 251 | 80.32 238 | 91.49 111 | 61.66 244 | 90.85 204 | 80.72 347 | 56.67 343 | 63.85 287 | 90.64 158 | 46.75 266 | 90.84 300 | 53.79 301 | 75.99 213 | 88.47 232 |
|
| XVG-OURS | | | 74.25 244 | 72.46 250 | 79.63 260 | 78.45 333 | 57.59 306 | 80.33 332 | 87.39 297 | 63.86 292 | 68.76 236 | 89.62 179 | 40.50 299 | 91.72 288 | 69.00 204 | 74.25 223 | 89.58 214 |
|
| test_fmvs1 | | | 74.07 245 | 73.69 232 | 75.22 307 | 78.91 327 | 47.34 361 | 89.06 254 | 74.69 362 | 63.68 294 | 79.41 110 | 91.59 146 | 24.36 364 | 87.77 331 | 85.22 74 | 76.26 211 | 90.55 202 |
|
| CVMVSNet | | | 74.04 246 | 74.27 223 | 73.33 322 | 85.33 244 | 43.94 372 | 89.53 242 | 88.39 280 | 54.33 350 | 70.37 213 | 90.13 173 | 49.17 248 | 84.05 352 | 61.83 268 | 79.36 181 | 91.99 178 |
|
| Baseline_NR-MVSNet | | | 73.99 247 | 72.83 242 | 77.48 287 | 80.78 300 | 59.29 286 | 91.79 163 | 84.55 325 | 68.85 254 | 68.99 231 | 80.70 295 | 56.16 176 | 92.04 282 | 62.67 262 | 60.98 327 | 81.11 338 |
|
| pmmvs4 | | | 73.92 248 | 71.81 257 | 80.25 242 | 79.17 321 | 65.24 151 | 87.43 278 | 87.26 300 | 67.64 267 | 63.46 290 | 83.91 254 | 48.96 251 | 91.53 296 | 62.94 259 | 65.49 284 | 83.96 302 |
|
| D2MVS | | | 73.80 249 | 72.02 254 | 79.15 270 | 79.15 322 | 62.97 214 | 88.58 260 | 90.07 213 | 72.94 165 | 59.22 316 | 78.30 318 | 42.31 294 | 92.70 260 | 65.59 240 | 72.00 241 | 81.79 333 |
|
| CR-MVSNet | | | 73.79 250 | 70.82 265 | 82.70 180 | 83.15 278 | 67.96 84 | 70.25 364 | 84.00 330 | 73.67 154 | 69.97 220 | 72.41 350 | 57.82 155 | 89.48 316 | 52.99 305 | 73.13 231 | 90.64 200 |
|
| test_djsdf | | | 73.76 251 | 72.56 248 | 77.39 289 | 77.00 345 | 53.93 330 | 89.07 252 | 90.69 187 | 65.80 279 | 63.92 285 | 82.03 273 | 43.14 291 | 92.67 261 | 72.83 164 | 68.53 265 | 85.57 285 |
|
| pmmvs5 | | | 73.35 252 | 71.52 259 | 78.86 272 | 78.64 331 | 60.61 267 | 91.08 197 | 86.90 302 | 67.69 264 | 63.32 291 | 83.64 255 | 44.33 286 | 90.53 302 | 62.04 266 | 66.02 282 | 85.46 288 |
|
| Anonymous20231211 | | | 73.08 253 | 70.39 269 | 81.13 222 | 90.62 127 | 63.33 206 | 91.40 178 | 90.06 215 | 51.84 356 | 64.46 282 | 80.67 297 | 36.49 328 | 94.07 215 | 63.83 252 | 64.17 299 | 85.98 276 |
|
| tt0805 | | | 73.07 254 | 70.73 266 | 80.07 246 | 78.37 334 | 57.05 312 | 87.78 272 | 92.18 128 | 61.23 318 | 67.04 260 | 86.49 224 | 31.35 349 | 94.58 191 | 65.06 245 | 67.12 274 | 88.57 228 |
|
| miper_lstm_enhance | | | 73.05 255 | 71.73 258 | 77.03 294 | 83.80 270 | 58.32 296 | 81.76 318 | 88.88 263 | 69.80 243 | 61.01 306 | 78.23 320 | 57.19 160 | 87.51 335 | 65.34 243 | 59.53 335 | 85.27 293 |
|
| jajsoiax | | | 73.05 255 | 71.51 260 | 77.67 284 | 77.46 342 | 54.83 326 | 88.81 256 | 90.04 216 | 69.13 252 | 62.85 298 | 83.51 257 | 31.16 350 | 92.75 257 | 70.83 184 | 69.80 252 | 85.43 289 |
|
| LCM-MVSNet-Re | | | 72.93 257 | 71.84 256 | 76.18 303 | 88.49 173 | 48.02 356 | 80.07 337 | 70.17 373 | 73.96 145 | 52.25 346 | 80.09 307 | 49.98 238 | 88.24 325 | 67.35 218 | 84.23 145 | 92.28 170 |
|
| pm-mvs1 | | | 72.89 258 | 71.09 262 | 78.26 279 | 79.10 324 | 57.62 305 | 90.80 206 | 89.30 242 | 67.66 265 | 62.91 297 | 81.78 276 | 49.11 250 | 92.95 246 | 60.29 276 | 58.89 338 | 84.22 301 |
|
| tpmvs | | | 72.88 259 | 69.76 275 | 82.22 195 | 90.98 120 | 67.05 108 | 78.22 347 | 88.30 283 | 63.10 302 | 64.35 284 | 74.98 343 | 55.09 190 | 94.27 206 | 43.25 342 | 69.57 255 | 85.34 291 |
|
| test0.0.03 1 | | | 72.76 260 | 72.71 246 | 72.88 326 | 80.25 308 | 47.99 357 | 91.22 192 | 89.45 236 | 71.51 215 | 62.51 301 | 87.66 208 | 53.83 203 | 85.06 348 | 50.16 312 | 67.84 272 | 85.58 284 |
|
| UniMVSNet_ETH3D | | | 72.74 261 | 70.53 268 | 79.36 265 | 78.62 332 | 56.64 315 | 85.01 294 | 89.20 246 | 63.77 293 | 64.84 276 | 84.44 248 | 34.05 337 | 91.86 285 | 63.94 251 | 70.89 250 | 89.57 215 |
|
| mvs_tets | | | 72.71 262 | 71.11 261 | 77.52 285 | 77.41 343 | 54.52 328 | 88.45 262 | 89.76 224 | 68.76 257 | 62.70 299 | 83.26 260 | 29.49 354 | 92.71 258 | 70.51 190 | 69.62 254 | 85.34 291 |
|
| FMVSNet1 | | | 72.71 262 | 69.91 273 | 81.10 224 | 83.60 274 | 65.11 155 | 90.01 230 | 90.32 200 | 63.92 291 | 63.56 289 | 80.25 304 | 36.35 329 | 91.54 293 | 54.46 298 | 66.75 277 | 86.64 258 |
|
| test_fmvs1_n | | | 72.69 264 | 71.92 255 | 74.99 310 | 71.15 364 | 47.08 363 | 87.34 280 | 75.67 357 | 63.48 296 | 78.08 127 | 91.17 153 | 20.16 375 | 87.87 328 | 84.65 81 | 75.57 215 | 90.01 208 |
|
| IterMVS | | | 72.65 265 | 70.83 263 | 78.09 281 | 82.17 289 | 62.96 215 | 87.64 276 | 86.28 308 | 71.56 213 | 60.44 309 | 78.85 316 | 45.42 280 | 86.66 339 | 63.30 257 | 61.83 318 | 84.65 299 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| myMVS_eth3d | | | 72.58 266 | 72.74 244 | 72.10 334 | 87.87 195 | 49.45 351 | 88.07 266 | 89.01 258 | 72.91 167 | 63.11 293 | 88.10 200 | 63.63 91 | 85.54 344 | 32.73 376 | 69.23 259 | 81.32 336 |
|
| PatchMatch-RL | | | 72.06 267 | 69.98 270 | 78.28 278 | 89.51 150 | 55.70 321 | 83.49 303 | 83.39 337 | 61.24 317 | 63.72 288 | 82.76 264 | 34.77 334 | 93.03 243 | 53.37 304 | 77.59 196 | 86.12 273 |
|
| PVSNet_0 | | 68.08 15 | 71.81 268 | 68.32 285 | 82.27 192 | 84.68 255 | 62.31 231 | 88.68 258 | 90.31 203 | 75.84 118 | 57.93 327 | 80.65 298 | 37.85 317 | 94.19 210 | 69.94 193 | 29.05 390 | 90.31 204 |
|
| MIMVSNet | | | 71.64 269 | 68.44 283 | 81.23 219 | 81.97 292 | 64.44 169 | 73.05 360 | 88.80 267 | 69.67 244 | 64.59 277 | 74.79 344 | 32.79 341 | 87.82 329 | 53.99 300 | 76.35 210 | 91.42 185 |
|
| test_vis1_n | | | 71.63 270 | 70.73 266 | 74.31 317 | 69.63 370 | 47.29 362 | 86.91 284 | 72.11 368 | 63.21 300 | 75.18 157 | 90.17 171 | 20.40 373 | 85.76 343 | 84.59 82 | 74.42 222 | 89.87 209 |
|
| bld_raw_dy_0_64 | | | 71.59 271 | 69.71 276 | 77.22 293 | 77.82 341 | 58.12 298 | 87.71 274 | 73.66 364 | 68.01 262 | 61.90 305 | 84.29 250 | 33.68 338 | 88.43 323 | 69.91 194 | 70.43 251 | 85.11 294 |
|
| IterMVS-SCA-FT | | | 71.55 272 | 69.97 271 | 76.32 301 | 81.48 294 | 60.67 265 | 87.64 276 | 85.99 313 | 66.17 277 | 59.50 314 | 78.88 315 | 45.53 278 | 83.65 356 | 62.58 263 | 61.93 317 | 84.63 300 |
|
| v7n | | | 71.31 273 | 68.65 280 | 79.28 266 | 76.40 347 | 60.77 259 | 86.71 287 | 89.45 236 | 64.17 290 | 58.77 321 | 78.24 319 | 44.59 285 | 93.54 234 | 57.76 286 | 61.75 320 | 83.52 309 |
|
| anonymousdsp | | | 71.14 274 | 69.37 278 | 76.45 300 | 72.95 359 | 54.71 327 | 84.19 298 | 88.88 263 | 61.92 313 | 62.15 302 | 79.77 310 | 38.14 313 | 91.44 298 | 68.90 206 | 67.45 273 | 83.21 315 |
|
| F-COLMAP | | | 70.66 275 | 68.44 283 | 77.32 290 | 86.37 227 | 55.91 319 | 88.00 268 | 86.32 307 | 56.94 341 | 57.28 330 | 88.07 202 | 33.58 339 | 92.49 269 | 51.02 308 | 68.37 266 | 83.55 307 |
|
| WR-MVS_H | | | 70.59 276 | 69.94 272 | 72.53 328 | 81.03 297 | 51.43 340 | 87.35 279 | 92.03 132 | 67.38 268 | 60.23 311 | 80.70 295 | 55.84 182 | 83.45 358 | 46.33 332 | 58.58 340 | 82.72 322 |
|
| CP-MVSNet | | | 70.50 277 | 69.91 273 | 72.26 331 | 80.71 301 | 51.00 343 | 87.23 281 | 90.30 204 | 67.84 263 | 59.64 313 | 82.69 265 | 50.23 237 | 82.30 366 | 51.28 307 | 59.28 336 | 83.46 311 |
|
| RPMNet | | | 70.42 278 | 65.68 297 | 84.63 130 | 83.15 278 | 67.96 84 | 70.25 364 | 90.45 194 | 46.83 370 | 69.97 220 | 65.10 369 | 56.48 175 | 95.30 168 | 35.79 367 | 73.13 231 | 90.64 200 |
|
| testing3 | | | 70.38 279 | 70.83 263 | 69.03 345 | 85.82 238 | 43.93 373 | 90.72 209 | 90.56 193 | 68.06 261 | 60.24 310 | 86.82 221 | 64.83 75 | 84.12 350 | 26.33 383 | 64.10 300 | 79.04 357 |
|
| tfpnnormal | | | 70.10 280 | 67.36 288 | 78.32 277 | 83.45 276 | 60.97 255 | 88.85 255 | 92.77 104 | 64.85 286 | 60.83 308 | 78.53 317 | 43.52 289 | 93.48 236 | 31.73 379 | 61.70 322 | 80.52 345 |
|
| TransMVSNet (Re) | | | 70.07 281 | 67.66 287 | 77.31 291 | 80.62 304 | 59.13 289 | 91.78 165 | 84.94 322 | 65.97 278 | 60.08 312 | 80.44 300 | 50.78 231 | 91.87 284 | 48.84 318 | 45.46 368 | 80.94 340 |
|
| CL-MVSNet_self_test | | | 69.92 282 | 68.09 286 | 75.41 306 | 73.25 358 | 55.90 320 | 90.05 229 | 89.90 220 | 69.96 240 | 61.96 304 | 76.54 333 | 51.05 230 | 87.64 332 | 49.51 316 | 50.59 360 | 82.70 324 |
|
| DP-MVS | | | 69.90 283 | 66.48 290 | 80.14 244 | 95.36 28 | 62.93 216 | 89.56 239 | 76.11 355 | 50.27 361 | 57.69 328 | 85.23 237 | 39.68 301 | 95.73 145 | 33.35 372 | 71.05 249 | 81.78 334 |
|
| PS-CasMVS | | | 69.86 284 | 69.13 279 | 72.07 335 | 80.35 306 | 50.57 345 | 87.02 283 | 89.75 225 | 67.27 269 | 59.19 317 | 82.28 269 | 46.58 268 | 82.24 367 | 50.69 309 | 59.02 337 | 83.39 313 |
|
| Syy-MVS | | | 69.65 285 | 69.52 277 | 70.03 341 | 87.87 195 | 43.21 374 | 88.07 266 | 89.01 258 | 72.91 167 | 63.11 293 | 88.10 200 | 45.28 281 | 85.54 344 | 22.07 387 | 69.23 259 | 81.32 336 |
|
| MSDG | | | 69.54 286 | 65.73 296 | 80.96 229 | 85.11 251 | 63.71 193 | 84.19 298 | 83.28 338 | 56.95 340 | 54.50 337 | 84.03 251 | 31.50 347 | 96.03 135 | 42.87 346 | 69.13 261 | 83.14 317 |
|
| PEN-MVS | | | 69.46 287 | 68.56 281 | 72.17 333 | 79.27 319 | 49.71 349 | 86.90 285 | 89.24 244 | 67.24 272 | 59.08 318 | 82.51 268 | 47.23 264 | 83.54 357 | 48.42 320 | 57.12 341 | 83.25 314 |
|
| LS3D | | | 69.17 288 | 66.40 292 | 77.50 286 | 91.92 98 | 56.12 318 | 85.12 293 | 80.37 349 | 46.96 368 | 56.50 332 | 87.51 211 | 37.25 321 | 93.71 231 | 32.52 378 | 79.40 180 | 82.68 325 |
|
| PatchT | | | 69.11 289 | 65.37 301 | 80.32 238 | 82.07 291 | 63.68 196 | 67.96 373 | 87.62 296 | 50.86 359 | 69.37 224 | 65.18 368 | 57.09 161 | 88.53 322 | 41.59 351 | 66.60 278 | 88.74 225 |
|
| KD-MVS_2432*1600 | | | 69.03 290 | 66.37 293 | 77.01 295 | 85.56 242 | 61.06 253 | 81.44 323 | 90.25 206 | 67.27 269 | 58.00 325 | 76.53 334 | 54.49 195 | 87.63 333 | 48.04 322 | 35.77 382 | 82.34 328 |
|
| miper_refine_blended | | | 69.03 290 | 66.37 293 | 77.01 295 | 85.56 242 | 61.06 253 | 81.44 323 | 90.25 206 | 67.27 269 | 58.00 325 | 76.53 334 | 54.49 195 | 87.63 333 | 48.04 322 | 35.77 382 | 82.34 328 |
|
| mvsany_test1 | | | 68.77 292 | 68.56 281 | 69.39 343 | 73.57 357 | 45.88 368 | 80.93 328 | 60.88 386 | 59.65 328 | 71.56 201 | 90.26 169 | 43.22 290 | 75.05 376 | 74.26 158 | 62.70 309 | 87.25 251 |
|
| ACMH | | 63.93 17 | 68.62 293 | 64.81 303 | 80.03 248 | 85.22 247 | 63.25 207 | 87.72 273 | 84.66 324 | 60.83 320 | 51.57 349 | 79.43 314 | 27.29 360 | 94.96 176 | 41.76 349 | 64.84 292 | 81.88 332 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| EG-PatchMatch MVS | | | 68.55 294 | 65.41 300 | 77.96 282 | 78.69 330 | 62.93 216 | 89.86 235 | 89.17 248 | 60.55 321 | 50.27 354 | 77.73 324 | 22.60 369 | 94.06 216 | 47.18 328 | 72.65 237 | 76.88 366 |
|
| ADS-MVSNet | | | 68.54 295 | 64.38 310 | 81.03 228 | 88.06 189 | 66.90 112 | 68.01 371 | 84.02 329 | 57.57 335 | 64.48 280 | 69.87 360 | 38.68 304 | 89.21 318 | 40.87 353 | 67.89 270 | 86.97 253 |
|
| DTE-MVSNet | | | 68.46 296 | 67.33 289 | 71.87 337 | 77.94 339 | 49.00 354 | 86.16 290 | 88.58 277 | 66.36 276 | 58.19 322 | 82.21 271 | 46.36 269 | 83.87 355 | 44.97 339 | 55.17 348 | 82.73 321 |
|
| our_test_3 | | | 68.29 297 | 64.69 305 | 79.11 271 | 78.92 325 | 64.85 162 | 88.40 263 | 85.06 320 | 60.32 324 | 52.68 344 | 76.12 338 | 40.81 298 | 89.80 315 | 44.25 341 | 55.65 346 | 82.67 326 |
|
| Patchmatch-RL test | | | 68.17 298 | 64.49 308 | 79.19 267 | 71.22 363 | 53.93 330 | 70.07 366 | 71.54 372 | 69.22 249 | 56.79 331 | 62.89 372 | 56.58 173 | 88.61 319 | 69.53 198 | 52.61 355 | 95.03 76 |
|
| XVG-ACMP-BASELINE | | | 68.04 299 | 65.53 299 | 75.56 305 | 74.06 356 | 52.37 335 | 78.43 344 | 85.88 314 | 62.03 311 | 58.91 320 | 81.21 291 | 20.38 374 | 91.15 299 | 60.69 273 | 68.18 267 | 83.16 316 |
|
| FMVSNet5 | | | 68.04 299 | 65.66 298 | 75.18 309 | 84.43 262 | 57.89 299 | 83.54 302 | 86.26 309 | 61.83 315 | 53.64 342 | 73.30 347 | 37.15 324 | 85.08 347 | 48.99 317 | 61.77 319 | 82.56 327 |
|
| ppachtmachnet_test | | | 67.72 301 | 63.70 312 | 79.77 258 | 78.92 325 | 66.04 132 | 88.68 258 | 82.90 340 | 60.11 326 | 55.45 334 | 75.96 339 | 39.19 303 | 90.55 301 | 39.53 357 | 52.55 356 | 82.71 323 |
|
| ACMH+ | | 65.35 16 | 67.65 302 | 64.55 306 | 76.96 297 | 84.59 258 | 57.10 311 | 88.08 265 | 80.79 346 | 58.59 334 | 53.00 343 | 81.09 293 | 26.63 362 | 92.95 246 | 46.51 330 | 61.69 323 | 80.82 341 |
|
| pmmvs6 | | | 67.57 303 | 64.76 304 | 76.00 304 | 72.82 361 | 53.37 332 | 88.71 257 | 86.78 306 | 53.19 352 | 57.58 329 | 78.03 322 | 35.33 333 | 92.41 271 | 55.56 294 | 54.88 350 | 82.21 330 |
|
| Anonymous20231206 | | | 67.53 304 | 65.78 295 | 72.79 327 | 74.95 352 | 47.59 359 | 88.23 264 | 87.32 298 | 61.75 316 | 58.07 324 | 77.29 327 | 37.79 318 | 87.29 337 | 42.91 344 | 63.71 304 | 83.48 310 |
|
| Patchmtry | | | 67.53 304 | 63.93 311 | 78.34 276 | 82.12 290 | 64.38 173 | 68.72 368 | 84.00 330 | 48.23 367 | 59.24 315 | 72.41 350 | 57.82 155 | 89.27 317 | 46.10 333 | 56.68 345 | 81.36 335 |
|
| USDC | | | 67.43 306 | 64.51 307 | 76.19 302 | 77.94 339 | 55.29 323 | 78.38 345 | 85.00 321 | 73.17 160 | 48.36 361 | 80.37 301 | 21.23 371 | 92.48 270 | 52.15 306 | 64.02 302 | 80.81 342 |
|
| ADS-MVSNet2 | | | 66.90 307 | 63.44 314 | 77.26 292 | 88.06 189 | 60.70 264 | 68.01 371 | 75.56 359 | 57.57 335 | 64.48 280 | 69.87 360 | 38.68 304 | 84.10 351 | 40.87 353 | 67.89 270 | 86.97 253 |
|
| CMPMVS |  | 48.56 21 | 66.77 308 | 64.41 309 | 73.84 319 | 70.65 367 | 50.31 346 | 77.79 349 | 85.73 316 | 45.54 372 | 44.76 371 | 82.14 272 | 35.40 332 | 90.14 311 | 63.18 258 | 74.54 220 | 81.07 339 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| OpenMVS_ROB |  | 61.12 18 | 66.39 309 | 62.92 317 | 76.80 299 | 76.51 346 | 57.77 301 | 89.22 248 | 83.41 336 | 55.48 347 | 53.86 341 | 77.84 323 | 26.28 363 | 93.95 225 | 34.90 369 | 68.76 263 | 78.68 360 |
|
| LTVRE_ROB | | 59.60 19 | 66.27 310 | 63.54 313 | 74.45 314 | 84.00 269 | 51.55 339 | 67.08 374 | 83.53 334 | 58.78 332 | 54.94 336 | 80.31 302 | 34.54 335 | 93.23 240 | 40.64 355 | 68.03 268 | 78.58 361 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| JIA-IIPM | | | 66.06 311 | 62.45 320 | 76.88 298 | 81.42 296 | 54.45 329 | 57.49 386 | 88.67 273 | 49.36 363 | 63.86 286 | 46.86 384 | 56.06 179 | 90.25 305 | 49.53 315 | 68.83 262 | 85.95 277 |
|
| Patchmatch-test | | | 65.86 312 | 60.94 326 | 80.62 235 | 83.75 271 | 58.83 291 | 58.91 385 | 75.26 361 | 44.50 375 | 50.95 353 | 77.09 330 | 58.81 147 | 87.90 327 | 35.13 368 | 64.03 301 | 95.12 72 |
|
| UnsupCasMVSNet_eth | | | 65.79 313 | 63.10 315 | 73.88 318 | 70.71 366 | 50.29 347 | 81.09 326 | 89.88 221 | 72.58 174 | 49.25 359 | 74.77 345 | 32.57 343 | 87.43 336 | 55.96 293 | 41.04 375 | 83.90 304 |
|
| test_fmvs2 | | | 65.78 314 | 64.84 302 | 68.60 347 | 66.54 375 | 41.71 376 | 83.27 307 | 69.81 374 | 54.38 349 | 67.91 247 | 84.54 247 | 15.35 380 | 81.22 371 | 75.65 145 | 66.16 281 | 82.88 318 |
|
| dmvs_testset | | | 65.55 315 | 66.45 291 | 62.86 357 | 79.87 312 | 22.35 400 | 76.55 352 | 71.74 370 | 77.42 102 | 55.85 333 | 87.77 207 | 51.39 227 | 80.69 372 | 31.51 382 | 65.92 283 | 85.55 286 |
|
| pmmvs-eth3d | | | 65.53 316 | 62.32 321 | 75.19 308 | 69.39 371 | 59.59 279 | 82.80 314 | 83.43 335 | 62.52 307 | 51.30 351 | 72.49 348 | 32.86 340 | 87.16 338 | 55.32 295 | 50.73 359 | 78.83 359 |
|
| SixPastTwentyTwo | | | 64.92 317 | 61.78 324 | 74.34 316 | 78.74 329 | 49.76 348 | 83.42 306 | 79.51 352 | 62.86 303 | 50.27 354 | 77.35 325 | 30.92 352 | 90.49 303 | 45.89 334 | 47.06 365 | 82.78 319 |
|
| OurMVSNet-221017-0 | | | 64.68 318 | 62.17 322 | 72.21 332 | 76.08 350 | 47.35 360 | 80.67 329 | 81.02 345 | 56.19 344 | 51.60 348 | 79.66 312 | 27.05 361 | 88.56 321 | 53.60 303 | 53.63 353 | 80.71 343 |
|
| test_0402 | | | 64.54 319 | 61.09 325 | 74.92 311 | 84.10 268 | 60.75 261 | 87.95 269 | 79.71 351 | 52.03 354 | 52.41 345 | 77.20 328 | 32.21 345 | 91.64 289 | 23.14 385 | 61.03 326 | 72.36 374 |
|
| testgi | | | 64.48 320 | 62.87 318 | 69.31 344 | 71.24 362 | 40.62 379 | 85.49 291 | 79.92 350 | 65.36 283 | 54.18 339 | 83.49 258 | 23.74 367 | 84.55 349 | 41.60 350 | 60.79 329 | 82.77 320 |
|
| RPSCF | | | 64.24 321 | 61.98 323 | 71.01 339 | 76.10 349 | 45.00 369 | 75.83 356 | 75.94 356 | 46.94 369 | 58.96 319 | 84.59 245 | 31.40 348 | 82.00 368 | 47.76 326 | 60.33 334 | 86.04 274 |
|
| EU-MVSNet | | | 64.01 322 | 63.01 316 | 67.02 353 | 74.40 355 | 38.86 384 | 83.27 307 | 86.19 311 | 45.11 373 | 54.27 338 | 81.15 292 | 36.91 327 | 80.01 374 | 48.79 319 | 57.02 342 | 82.19 331 |
|
| test20.03 | | | 63.83 323 | 62.65 319 | 67.38 352 | 70.58 368 | 39.94 380 | 86.57 288 | 84.17 327 | 63.29 298 | 51.86 347 | 77.30 326 | 37.09 325 | 82.47 364 | 38.87 361 | 54.13 352 | 79.73 351 |
|
| MDA-MVSNet_test_wron | | | 63.78 324 | 60.16 327 | 74.64 312 | 78.15 337 | 60.41 268 | 83.49 303 | 84.03 328 | 56.17 346 | 39.17 380 | 71.59 356 | 37.22 322 | 83.24 361 | 42.87 346 | 48.73 362 | 80.26 348 |
|
| YYNet1 | | | 63.76 325 | 60.14 328 | 74.62 313 | 78.06 338 | 60.19 273 | 83.46 305 | 83.99 332 | 56.18 345 | 39.25 379 | 71.56 357 | 37.18 323 | 83.34 359 | 42.90 345 | 48.70 363 | 80.32 347 |
|
| K. test v3 | | | 63.09 326 | 59.61 330 | 73.53 321 | 76.26 348 | 49.38 353 | 83.27 307 | 77.15 354 | 64.35 289 | 47.77 363 | 72.32 352 | 28.73 356 | 87.79 330 | 49.93 314 | 36.69 381 | 83.41 312 |
|
| COLMAP_ROB |  | 57.96 20 | 62.98 327 | 59.65 329 | 72.98 325 | 81.44 295 | 53.00 334 | 83.75 301 | 75.53 360 | 48.34 366 | 48.81 360 | 81.40 285 | 24.14 365 | 90.30 304 | 32.95 374 | 60.52 331 | 75.65 369 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| Anonymous20240521 | | | 62.09 328 | 59.08 331 | 71.10 338 | 67.19 374 | 48.72 355 | 83.91 300 | 85.23 319 | 50.38 360 | 47.84 362 | 71.22 359 | 20.74 372 | 85.51 346 | 46.47 331 | 58.75 339 | 79.06 356 |
|
| AllTest | | | 61.66 329 | 58.06 333 | 72.46 329 | 79.57 314 | 51.42 341 | 80.17 335 | 68.61 376 | 51.25 357 | 45.88 365 | 81.23 287 | 19.86 376 | 86.58 340 | 38.98 359 | 57.01 343 | 79.39 353 |
|
| UnsupCasMVSNet_bld | | | 61.60 330 | 57.71 334 | 73.29 323 | 68.73 372 | 51.64 338 | 78.61 343 | 89.05 257 | 57.20 339 | 46.11 364 | 61.96 375 | 28.70 357 | 88.60 320 | 50.08 313 | 38.90 379 | 79.63 352 |
|
| MDA-MVSNet-bldmvs | | | 61.54 331 | 57.70 335 | 73.05 324 | 79.53 316 | 57.00 314 | 83.08 311 | 81.23 344 | 57.57 335 | 34.91 383 | 72.45 349 | 32.79 341 | 86.26 342 | 35.81 366 | 41.95 373 | 75.89 368 |
|
| KD-MVS_self_test | | | 60.87 332 | 58.60 332 | 67.68 350 | 66.13 376 | 39.93 381 | 75.63 357 | 84.70 323 | 57.32 338 | 49.57 357 | 68.45 363 | 29.55 353 | 82.87 362 | 48.09 321 | 47.94 364 | 80.25 349 |
|
| TinyColmap | | | 60.32 333 | 56.42 340 | 72.00 336 | 78.78 328 | 53.18 333 | 78.36 346 | 75.64 358 | 52.30 353 | 41.59 378 | 75.82 341 | 14.76 383 | 88.35 324 | 35.84 365 | 54.71 351 | 74.46 370 |
|
| MVS-HIRNet | | | 60.25 334 | 55.55 341 | 74.35 315 | 84.37 263 | 56.57 316 | 71.64 362 | 74.11 363 | 34.44 383 | 45.54 369 | 42.24 390 | 31.11 351 | 89.81 313 | 40.36 356 | 76.10 212 | 76.67 367 |
|
| MIMVSNet1 | | | 60.16 335 | 57.33 336 | 68.67 346 | 69.71 369 | 44.13 371 | 78.92 342 | 84.21 326 | 55.05 348 | 44.63 372 | 71.85 354 | 23.91 366 | 81.54 370 | 32.63 377 | 55.03 349 | 80.35 346 |
|
| PM-MVS | | | 59.40 336 | 56.59 338 | 67.84 348 | 63.63 378 | 41.86 375 | 76.76 351 | 63.22 383 | 59.01 331 | 51.07 352 | 72.27 353 | 11.72 386 | 83.25 360 | 61.34 269 | 50.28 361 | 78.39 362 |
|
| new-patchmatchnet | | | 59.30 337 | 56.48 339 | 67.79 349 | 65.86 377 | 44.19 370 | 82.47 315 | 81.77 342 | 59.94 327 | 43.65 375 | 66.20 367 | 27.67 359 | 81.68 369 | 39.34 358 | 41.40 374 | 77.50 365 |
|
| test_vis1_rt | | | 59.09 338 | 57.31 337 | 64.43 355 | 68.44 373 | 46.02 367 | 83.05 312 | 48.63 395 | 51.96 355 | 49.57 357 | 63.86 371 | 16.30 378 | 80.20 373 | 71.21 182 | 62.79 308 | 67.07 380 |
|
| test_fmvs3 | | | 56.82 339 | 54.86 342 | 62.69 358 | 53.59 388 | 35.47 386 | 75.87 355 | 65.64 381 | 43.91 376 | 55.10 335 | 71.43 358 | 6.91 394 | 74.40 379 | 68.64 208 | 52.63 354 | 78.20 363 |
|
| DSMNet-mixed | | | 56.78 340 | 54.44 343 | 63.79 356 | 63.21 379 | 29.44 395 | 64.43 377 | 64.10 382 | 42.12 380 | 51.32 350 | 71.60 355 | 31.76 346 | 75.04 377 | 36.23 364 | 65.20 289 | 86.87 256 |
|
| pmmvs3 | | | 55.51 341 | 51.50 346 | 67.53 351 | 57.90 386 | 50.93 344 | 80.37 331 | 73.66 364 | 40.63 381 | 44.15 374 | 64.75 370 | 16.30 378 | 78.97 375 | 44.77 340 | 40.98 377 | 72.69 372 |
|
| TDRefinement | | | 55.28 342 | 51.58 345 | 66.39 354 | 59.53 385 | 46.15 366 | 76.23 354 | 72.80 366 | 44.60 374 | 42.49 376 | 76.28 337 | 15.29 381 | 82.39 365 | 33.20 373 | 43.75 370 | 70.62 376 |
|
| LF4IMVS | | | 54.01 343 | 52.12 344 | 59.69 359 | 62.41 381 | 39.91 382 | 68.59 369 | 68.28 378 | 42.96 379 | 44.55 373 | 75.18 342 | 14.09 385 | 68.39 385 | 41.36 352 | 51.68 357 | 70.78 375 |
|
| N_pmnet | | | 50.55 344 | 49.11 347 | 54.88 365 | 77.17 344 | 4.02 408 | 84.36 297 | 2.00 406 | 48.59 364 | 45.86 367 | 68.82 362 | 32.22 344 | 82.80 363 | 31.58 380 | 51.38 358 | 77.81 364 |
|
| new_pmnet | | | 49.31 345 | 46.44 348 | 57.93 360 | 62.84 380 | 40.74 378 | 68.47 370 | 62.96 384 | 36.48 382 | 35.09 382 | 57.81 379 | 14.97 382 | 72.18 381 | 32.86 375 | 46.44 366 | 60.88 382 |
|
| mvsany_test3 | | | 48.86 346 | 46.35 349 | 56.41 361 | 46.00 394 | 31.67 391 | 62.26 379 | 47.25 396 | 43.71 377 | 45.54 369 | 68.15 364 | 10.84 387 | 64.44 393 | 57.95 285 | 35.44 384 | 73.13 371 |
|
| test_f | | | 46.58 347 | 43.45 351 | 55.96 362 | 45.18 395 | 32.05 390 | 61.18 380 | 49.49 394 | 33.39 384 | 42.05 377 | 62.48 374 | 7.00 393 | 65.56 389 | 47.08 329 | 43.21 372 | 70.27 377 |
|
| WB-MVS | | | 46.23 348 | 44.94 350 | 50.11 369 | 62.13 382 | 21.23 402 | 76.48 353 | 55.49 388 | 45.89 371 | 35.78 381 | 61.44 377 | 35.54 331 | 72.83 380 | 9.96 396 | 21.75 391 | 56.27 384 |
|
| FPMVS | | | 45.64 349 | 43.10 353 | 53.23 367 | 51.42 391 | 36.46 385 | 64.97 376 | 71.91 369 | 29.13 387 | 27.53 387 | 61.55 376 | 9.83 389 | 65.01 391 | 16.00 393 | 55.58 347 | 58.22 383 |
|
| SSC-MVS | | | 44.51 350 | 43.35 352 | 47.99 373 | 61.01 384 | 18.90 404 | 74.12 359 | 54.36 389 | 43.42 378 | 34.10 384 | 60.02 378 | 34.42 336 | 70.39 383 | 9.14 398 | 19.57 392 | 54.68 385 |
|
| EGC-MVSNET | | | 42.35 351 | 38.09 354 | 55.11 364 | 74.57 353 | 46.62 365 | 71.63 363 | 55.77 387 | 0.04 401 | 0.24 402 | 62.70 373 | 14.24 384 | 74.91 378 | 17.59 390 | 46.06 367 | 43.80 387 |
|
| LCM-MVSNet | | | 40.54 352 | 35.79 357 | 54.76 366 | 36.92 401 | 30.81 392 | 51.41 389 | 69.02 375 | 22.07 389 | 24.63 389 | 45.37 386 | 4.56 398 | 65.81 388 | 33.67 371 | 34.50 385 | 67.67 378 |
|
| APD_test1 | | | 40.50 353 | 37.31 356 | 50.09 370 | 51.88 389 | 35.27 387 | 59.45 384 | 52.59 391 | 21.64 390 | 26.12 388 | 57.80 380 | 4.56 398 | 66.56 387 | 22.64 386 | 39.09 378 | 48.43 386 |
|
| test_vis3_rt | | | 40.46 354 | 37.79 355 | 48.47 372 | 44.49 396 | 33.35 389 | 66.56 375 | 32.84 403 | 32.39 385 | 29.65 385 | 39.13 393 | 3.91 401 | 68.65 384 | 50.17 311 | 40.99 376 | 43.40 388 |
|
| ANet_high | | | 40.27 355 | 35.20 358 | 55.47 363 | 34.74 402 | 34.47 388 | 63.84 378 | 71.56 371 | 48.42 365 | 18.80 392 | 41.08 391 | 9.52 390 | 64.45 392 | 20.18 388 | 8.66 399 | 67.49 379 |
|
| test_method | | | 38.59 356 | 35.16 359 | 48.89 371 | 54.33 387 | 21.35 401 | 45.32 392 | 53.71 390 | 7.41 398 | 28.74 386 | 51.62 382 | 8.70 391 | 52.87 396 | 33.73 370 | 32.89 386 | 72.47 373 |
|
| PMMVS2 | | | 37.93 357 | 33.61 360 | 50.92 368 | 46.31 393 | 24.76 398 | 60.55 383 | 50.05 392 | 28.94 388 | 20.93 390 | 47.59 383 | 4.41 400 | 65.13 390 | 25.14 384 | 18.55 394 | 62.87 381 |
|
| Gipuma |  | | 34.91 358 | 31.44 361 | 45.30 374 | 70.99 365 | 39.64 383 | 19.85 396 | 72.56 367 | 20.10 392 | 16.16 396 | 21.47 397 | 5.08 397 | 71.16 382 | 13.07 394 | 43.70 371 | 25.08 394 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| testf1 | | | 32.77 359 | 29.47 362 | 42.67 376 | 41.89 398 | 30.81 392 | 52.07 387 | 43.45 397 | 15.45 393 | 18.52 393 | 44.82 387 | 2.12 402 | 58.38 394 | 16.05 391 | 30.87 388 | 38.83 389 |
|
| APD_test2 | | | 32.77 359 | 29.47 362 | 42.67 376 | 41.89 398 | 30.81 392 | 52.07 387 | 43.45 397 | 15.45 393 | 18.52 393 | 44.82 387 | 2.12 402 | 58.38 394 | 16.05 391 | 30.87 388 | 38.83 389 |
|
| PMVS |  | 26.43 22 | 31.84 361 | 28.16 364 | 42.89 375 | 25.87 404 | 27.58 396 | 50.92 390 | 49.78 393 | 21.37 391 | 14.17 397 | 40.81 392 | 2.01 404 | 66.62 386 | 9.61 397 | 38.88 380 | 34.49 393 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| E-PMN | | | 24.61 362 | 24.00 366 | 26.45 380 | 43.74 397 | 18.44 405 | 60.86 381 | 39.66 399 | 15.11 395 | 9.53 399 | 22.10 396 | 6.52 395 | 46.94 398 | 8.31 399 | 10.14 396 | 13.98 396 |
|
| MVE |  | 24.84 23 | 24.35 363 | 19.77 369 | 38.09 378 | 34.56 403 | 26.92 397 | 26.57 394 | 38.87 401 | 11.73 397 | 11.37 398 | 27.44 394 | 1.37 405 | 50.42 397 | 11.41 395 | 14.60 395 | 36.93 391 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| EMVS | | | 23.76 364 | 23.20 368 | 25.46 381 | 41.52 400 | 16.90 406 | 60.56 382 | 38.79 402 | 14.62 396 | 8.99 400 | 20.24 399 | 7.35 392 | 45.82 399 | 7.25 400 | 9.46 397 | 13.64 397 |
|
| tmp_tt | | | 22.26 365 | 23.75 367 | 17.80 382 | 5.23 405 | 12.06 407 | 35.26 393 | 39.48 400 | 2.82 400 | 18.94 391 | 44.20 389 | 22.23 370 | 24.64 401 | 36.30 363 | 9.31 398 | 16.69 395 |
|
| cdsmvs_eth3d_5k | | | 19.86 366 | 26.47 365 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 93.45 79 | 0.00 404 | 0.00 405 | 95.27 56 | 49.56 242 | 0.00 405 | 0.00 404 | 0.00 402 | 0.00 401 |
|
| wuyk23d | | | 11.30 367 | 10.95 370 | 12.33 383 | 48.05 392 | 19.89 403 | 25.89 395 | 1.92 407 | 3.58 399 | 3.12 401 | 1.37 401 | 0.64 406 | 15.77 402 | 6.23 401 | 7.77 400 | 1.35 398 |
|
| ab-mvs-re | | | 7.91 368 | 10.55 371 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 94.95 64 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 402 | 0.00 401 |
|
| testmvs | | | 7.23 369 | 9.62 372 | 0.06 385 | 0.04 406 | 0.02 410 | 84.98 295 | 0.02 408 | 0.03 402 | 0.18 403 | 1.21 402 | 0.01 408 | 0.02 403 | 0.14 402 | 0.01 401 | 0.13 400 |
|
| test123 | | | 6.92 370 | 9.21 373 | 0.08 384 | 0.03 407 | 0.05 409 | 81.65 321 | 0.01 409 | 0.02 403 | 0.14 404 | 0.85 403 | 0.03 407 | 0.02 403 | 0.12 403 | 0.00 402 | 0.16 399 |
|
| pcd_1.5k_mvsjas | | | 4.46 371 | 5.95 374 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 53.55 207 | 0.00 405 | 0.00 404 | 0.00 402 | 0.00 401 |
|
| test_blank | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 402 | 0.00 401 |
|
| uanet_test | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 402 | 0.00 401 |
|
| DCPMVS | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 402 | 0.00 401 |
|
| sosnet-low-res | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 402 | 0.00 401 |
|
| sosnet | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 402 | 0.00 401 |
|
| uncertanet | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 402 | 0.00 401 |
|
| Regformer | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 402 | 0.00 401 |
|
| uanet | | | 0.00 372 | 0.00 375 | 0.00 386 | 0.00 408 | 0.00 411 | 0.00 397 | 0.00 410 | 0.00 404 | 0.00 405 | 0.00 404 | 0.00 409 | 0.00 405 | 0.00 404 | 0.00 402 | 0.00 401 |
|
| MM | | | | | 88.92 13 | | 71.10 22 | 97.02 3 | 96.04 6 | 88.70 2 | 91.57 13 | 96.19 33 | 70.12 36 | 98.91 17 | 96.83 1 | 95.06 16 | 96.76 12 |
|
| WAC-MVS | | | | | | | 49.45 351 | | | | | | | | 31.56 381 | | |
|
| FOURS1 | | | | | | 93.95 45 | 61.77 240 | 93.96 70 | 91.92 136 | 62.14 310 | 86.57 44 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 22 | | | | | 99.07 13 | 92.01 24 | 94.77 25 | 96.51 21 |
|
| PC_three_1452 | | | | | | | | | | 80.91 45 | 94.07 2 | 96.83 18 | 83.57 4 | 99.12 5 | 95.70 7 | 97.42 4 | 97.55 4 |
|
| No_MVS | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 22 | | | | | 99.07 13 | 92.01 24 | 94.77 25 | 96.51 21 |
|
| test_one_0601 | | | | | | 96.32 18 | 69.74 43 | | 94.18 52 | 71.42 217 | 90.67 18 | 96.85 16 | 74.45 18 | | | | |
|
| eth-test2 | | | | | | 0.00 408 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 408 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 96.63 9 | 65.50 147 | | 93.50 77 | 70.74 231 | 85.26 59 | 95.19 61 | 64.92 74 | 97.29 76 | 87.51 55 | 93.01 54 | |
|
| RE-MVS-def | | | | 80.48 131 | | 92.02 92 | 58.56 294 | 90.90 201 | 90.45 194 | 62.76 304 | 78.89 116 | 94.46 78 | 49.30 245 | | 78.77 127 | 86.77 123 | 92.28 170 |
|
| IU-MVS | | | | | | 96.46 11 | 69.91 37 | | 95.18 17 | 80.75 46 | 95.28 1 | | | | 92.34 21 | 95.36 13 | 96.47 25 |
|
| OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 12 | 96.89 5 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 5 | 97.63 3 | 97.62 2 |
|
| test_241102_TWO | | | | | | | | | 94.41 43 | 71.65 206 | 92.07 8 | 97.21 4 | 74.58 17 | 99.11 6 | 92.34 21 | 95.36 13 | 96.59 16 |
|
| test_241102_ONE | | | | | | 96.45 12 | 69.38 48 | | 94.44 41 | 71.65 206 | 92.11 6 | 97.05 7 | 76.79 9 | 99.11 6 | | | |
|
| 9.14 | | | | 87.63 26 | | 93.86 47 | | 94.41 52 | 94.18 52 | 72.76 171 | 86.21 46 | 96.51 24 | 66.64 56 | 97.88 44 | 90.08 38 | 94.04 37 | |
|
| save fliter | | | | | | 93.84 48 | 67.89 86 | 95.05 39 | 92.66 109 | 78.19 85 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 72.48 176 | 90.55 19 | 96.93 11 | 76.24 11 | 99.08 11 | 91.53 29 | 94.99 17 | 96.43 26 |
|
| test_0728_SECOND | | | | | 88.70 16 | 96.45 12 | 70.43 29 | 96.64 9 | 94.37 47 | | | | | 99.15 2 | 91.91 27 | 94.90 21 | 96.51 21 |
|
| test0726 | | | | | | 96.40 15 | 69.99 33 | 96.76 7 | 94.33 49 | 71.92 192 | 91.89 10 | 97.11 6 | 73.77 21 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.68 88 |
|
| test_part2 | | | | | | 96.29 19 | 68.16 80 | | | | 90.78 16 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 57.85 154 | | | | 94.68 88 |
|
| sam_mvs | | | | | | | | | | | | | 54.91 192 | | | | |
|
| ambc | | | | | 69.61 342 | 61.38 383 | 41.35 377 | 49.07 391 | 85.86 315 | | 50.18 356 | 66.40 366 | 10.16 388 | 88.14 326 | 45.73 335 | 44.20 369 | 79.32 355 |
|
| MTGPA |  | | | | | | | | 92.23 122 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.95 341 | | | | 20.70 398 | 53.05 212 | 91.50 297 | 60.43 274 | | |
|
| test_post | | | | | | | | | | | | 23.01 395 | 56.49 174 | 92.67 261 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 67.62 365 | 57.62 157 | 90.25 305 | | | |
|
| GG-mvs-BLEND | | | | | 86.53 65 | 91.91 99 | 69.67 46 | 75.02 358 | 94.75 29 | | 78.67 123 | 90.85 157 | 77.91 7 | 94.56 195 | 72.25 172 | 93.74 43 | 95.36 58 |
|
| MTMP | | | | | | | | 93.77 84 | 32.52 404 | | | | | | | | |
|
| gm-plane-assit | | | | | | 88.42 177 | 67.04 109 | | | 78.62 82 | | 91.83 141 | | 97.37 70 | 76.57 139 | | |
|
| test9_res | | | | | | | | | | | | | | | 89.41 39 | 94.96 18 | 95.29 63 |
|
| TEST9 | | | | | | 94.18 41 | 67.28 101 | 94.16 58 | 93.51 75 | 71.75 203 | 85.52 54 | 95.33 51 | 68.01 46 | 97.27 80 | | | |
|
| test_8 | | | | | | 94.19 40 | 67.19 103 | 94.15 61 | 93.42 81 | 71.87 197 | 85.38 57 | 95.35 50 | 68.19 44 | 96.95 102 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 86.41 66 | 94.75 29 | 95.33 59 |
|
| agg_prior | | | | | | 94.16 43 | 66.97 111 | | 93.31 84 | | 84.49 65 | | | 96.75 111 | | | |
|
| TestCases | | | | | 72.46 329 | 79.57 314 | 51.42 341 | | 68.61 376 | 51.25 357 | 45.88 365 | 81.23 287 | 19.86 376 | 86.58 340 | 38.98 359 | 57.01 343 | 79.39 353 |
|
| test_prior4 | | | | | | | 67.18 105 | 93.92 73 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 95.10 38 | | 75.40 124 | 85.25 60 | 95.61 45 | 67.94 47 | | 87.47 56 | 94.77 25 | |
|
| test_prior | | | | | 86.42 68 | 94.71 35 | 67.35 100 | | 93.10 94 | | | | | 96.84 108 | | | 95.05 74 |
|
| 旧先验2 | | | | | | | | 92.00 155 | | 59.37 330 | 87.54 38 | | | 93.47 237 | 75.39 147 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 91.41 176 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 84.73 123 | 92.32 85 | 64.28 178 | | 91.46 161 | 59.56 329 | 79.77 106 | 92.90 118 | 56.95 167 | 96.57 116 | 63.40 254 | 92.91 56 | 93.34 138 |
|
| 旧先验1 | | | | | | 91.94 96 | 60.74 262 | | 91.50 159 | | | 94.36 82 | 65.23 69 | | | 91.84 69 | 94.55 95 |
|
| æ— å…ˆéªŒ | | | | | | | | 92.71 121 | 92.61 113 | 62.03 311 | | | | 97.01 93 | 66.63 225 | | 93.97 120 |
|
| 原ACMM2 | | | | | | | | 92.01 152 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.42 137 | 93.21 63 | 64.27 179 | | 93.40 83 | 65.39 282 | 79.51 109 | 92.50 126 | 58.11 153 | 96.69 112 | 65.27 244 | 93.96 38 | 92.32 168 |
|
| test222 | | | | | | 89.77 143 | 61.60 245 | 89.55 240 | 89.42 238 | 56.83 342 | 77.28 136 | 92.43 130 | 52.76 215 | | | 91.14 83 | 93.09 146 |
|
| testdata2 | | | | | | | | | | | | | | 96.09 129 | 61.26 270 | | |
|
| segment_acmp | | | | | | | | | | | | | 65.94 62 | | | | |
|
| testdata | | | | | 81.34 217 | 89.02 163 | 57.72 302 | | 89.84 222 | 58.65 333 | 85.32 58 | 94.09 94 | 57.03 162 | 93.28 239 | 69.34 200 | 90.56 89 | 93.03 149 |
|
| testdata1 | | | | | | | | 89.21 249 | | 77.55 98 | | | | | | | |
|
| test12 | | | | | 87.09 45 | 94.60 36 | 68.86 61 | | 92.91 100 | | 82.67 81 | | 65.44 67 | 97.55 62 | | 93.69 46 | 94.84 83 |
|
| plane_prior7 | | | | | | 86.94 217 | 61.51 246 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 87.23 209 | 62.32 230 | | | | | | 50.66 232 | | | | |
|
| plane_prior5 | | | | | | | | | 91.31 165 | | | | | 95.55 158 | 76.74 137 | 78.53 190 | 88.39 233 |
|
| plane_prior4 | | | | | | | | | | | | 89.14 184 | | | | | |
|
| plane_prior3 | | | | | | | 61.95 238 | | | 79.09 72 | 72.53 186 | | | | | | |
|
| plane_prior2 | | | | | | | | 93.13 105 | | 78.81 79 | | | | | | | |
|
| plane_prior1 | | | | | | 87.15 211 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 62.42 226 | 93.85 77 | | 79.38 64 | | | | | | 78.80 187 | |
|
| n2 | | | | | | | | | 0.00 410 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 410 | | | | | | | | |
|
| door-mid | | | | | | | | | 66.01 380 | | | | | | | | |
|
| lessismore_v0 | | | | | 73.72 320 | 72.93 360 | 47.83 358 | | 61.72 385 | | 45.86 367 | 73.76 346 | 28.63 358 | 89.81 313 | 47.75 327 | 31.37 387 | 83.53 308 |
|
| LGP-MVS_train | | | | | 79.56 263 | 84.31 264 | 59.37 283 | | 89.73 228 | 69.49 245 | 64.86 274 | 88.42 189 | 38.65 306 | 94.30 204 | 72.56 169 | 72.76 235 | 85.01 295 |
|
| test11 | | | | | | | | | 93.01 96 | | | | | | | | |
|
| door | | | | | | | | | 66.57 379 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 63.66 197 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 87.54 202 | | 94.06 63 | | 79.80 57 | 74.18 165 | | | | | | |
|
| ACMP_Plane | | | | | | 87.54 202 | | 94.06 63 | | 79.80 57 | 74.18 165 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.63 134 | | |
|
| HQP4-MVS | | | | | | | | | | | 74.18 165 | | | 95.61 153 | | | 88.63 226 |
|
| HQP3-MVS | | | | | | | | | 91.70 151 | | | | | | | 78.90 185 | |
|
| HQP2-MVS | | | | | | | | | | | | | 51.63 225 | | | | |
|
| NP-MVS | | | | | | 87.41 205 | 63.04 212 | | | | | 90.30 167 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 59.90 276 | 80.13 336 | | 67.65 266 | 72.79 181 | | 54.33 200 | | 59.83 278 | | 92.58 161 |
|
| MDTV_nov1_ep13 | | | | 72.61 247 | | 89.06 162 | 68.48 69 | 80.33 332 | 90.11 212 | 71.84 199 | 71.81 197 | 75.92 340 | 53.01 213 | 93.92 226 | 48.04 322 | 73.38 229 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 243 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 69.72 253 | |
|
| Test By Simon | | | | | | | | | | | | | 54.21 201 | | | | |
|
| ITE_SJBPF | | | | | 70.43 340 | 74.44 354 | 47.06 364 | | 77.32 353 | 60.16 325 | 54.04 340 | 83.53 256 | 23.30 368 | 84.01 353 | 43.07 343 | 61.58 324 | 80.21 350 |
|
| DeepMVS_CX |  | | | | 34.71 379 | 51.45 390 | 24.73 399 | | 28.48 405 | 31.46 386 | 17.49 395 | 52.75 381 | 5.80 396 | 42.60 400 | 18.18 389 | 19.42 393 | 36.81 392 |
|