This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS90.70 290.52 791.24 189.68 14576.68 297.29 195.35 1382.87 2091.58 1297.22 379.93 599.10 983.12 9297.64 297.94 1
MVS84.66 6982.86 9590.06 290.93 12174.56 687.91 27095.54 1268.55 25872.35 19294.71 7359.78 13698.90 1981.29 10894.69 3196.74 13
OPU-MVS89.97 397.52 373.15 1296.89 597.00 983.82 299.15 295.72 597.63 397.62 2
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 1189.33 185.77 5196.26 3072.84 2699.38 192.64 1995.93 997.08 9
DELS-MVS90.05 690.09 1089.94 493.14 6673.88 797.01 494.40 4588.32 385.71 5294.91 6874.11 1998.91 1787.26 5995.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PS-MVSNAJ88.14 1687.61 2789.71 692.06 9176.72 195.75 2093.26 8583.86 1489.55 2996.06 3653.55 20797.89 4391.10 3193.31 5194.54 97
MG-MVS87.11 3286.27 4189.62 797.79 176.27 494.96 4394.49 3978.74 8183.87 7292.94 11764.34 8196.94 10375.19 14894.09 3695.66 47
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2299.07 1392.01 2494.77 2596.51 21
No_MVS89.60 897.31 473.22 1095.05 2299.07 1392.01 2494.77 2596.51 21
CHOSEN 1792x268884.98 6583.45 8089.57 1089.94 14075.14 592.07 14992.32 11981.87 3175.68 15088.27 19560.18 13098.60 2780.46 11390.27 9194.96 77
xiu_mvs_v2_base87.92 2187.38 3189.55 1191.41 11476.43 395.74 2193.12 9383.53 1789.55 2995.95 3853.45 21197.68 5091.07 3292.62 5894.54 97
LFMVS84.34 7482.73 9789.18 1294.76 3373.25 994.99 4291.89 13971.90 19482.16 8393.49 10847.98 25897.05 8982.55 9684.82 13797.25 7
MM88.92 1371.10 2297.02 396.04 688.70 291.57 1396.19 3370.12 3698.91 1796.83 195.06 1696.76 12
DVP-MVS++90.53 391.09 488.87 1497.31 469.91 3793.96 7094.37 4772.48 17692.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
CSCG86.87 3486.26 4288.72 1595.05 3170.79 2593.83 8295.33 1468.48 26077.63 13194.35 8673.04 2498.45 3084.92 7993.71 4596.92 11
SED-MVS89.94 890.36 988.70 1696.45 1269.38 4896.89 594.44 4171.65 20692.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
test_0728_SECOND88.70 1696.45 1270.43 2996.64 994.37 4799.15 291.91 2794.90 2196.51 21
canonicalmvs86.85 3586.25 4388.66 1891.80 10271.92 1493.54 9491.71 14980.26 5287.55 3795.25 5863.59 9496.93 10588.18 4984.34 14197.11 8
CNVR-MVS90.32 590.89 688.61 1996.76 870.65 2696.47 1394.83 2684.83 1189.07 3196.80 1970.86 3499.06 1592.64 1995.71 1096.12 35
MVS_030490.01 790.50 888.53 2090.14 13670.94 2396.47 1395.72 1087.33 489.60 2896.26 3068.44 4198.74 2495.82 494.72 3095.90 42
CANet89.61 1189.99 1188.46 2194.39 3969.71 4496.53 1293.78 6186.89 689.68 2795.78 4065.94 6299.10 992.99 1693.91 4096.58 18
DVP-MVScopyleft89.41 1289.73 1388.45 2296.40 1569.99 3396.64 994.52 3771.92 19290.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
3Dnovator73.91 682.69 10880.82 12388.31 2389.57 14771.26 1892.60 12994.39 4678.84 7867.89 24992.48 12948.42 25398.52 2868.80 20794.40 3495.15 71
alignmvs87.28 3086.97 3588.24 2491.30 11571.14 2195.61 2593.56 7379.30 6687.07 4195.25 5868.43 4296.93 10587.87 5184.33 14296.65 14
NCCC89.07 1489.46 1487.91 2596.60 1069.05 5796.38 1594.64 3484.42 1286.74 4396.20 3266.56 5898.76 2389.03 4694.56 3295.92 41
WTY-MVS86.32 4285.81 5187.85 2692.82 7469.37 5095.20 3495.25 1582.71 2281.91 8494.73 7267.93 4897.63 5679.55 11782.25 15696.54 19
VNet86.20 4485.65 5487.84 2793.92 4669.99 3395.73 2395.94 778.43 8386.00 4993.07 11458.22 15197.00 9485.22 7484.33 14296.52 20
DeepC-MVS_fast79.48 287.95 2088.00 2387.79 2895.86 2768.32 7395.74 2194.11 5583.82 1583.49 7396.19 3364.53 8098.44 3183.42 9194.88 2496.61 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft88.14 1688.29 2087.67 2993.21 6368.72 6593.85 7794.03 5774.18 13991.74 1196.67 2165.61 6698.42 3389.24 4396.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_yl84.28 7583.16 8887.64 3094.52 3769.24 5295.78 1895.09 2069.19 25081.09 9192.88 12057.00 16497.44 6681.11 10981.76 16196.23 33
DCV-MVSNet84.28 7583.16 8887.64 3094.52 3769.24 5295.78 1895.09 2069.19 25081.09 9192.88 12057.00 16497.44 6681.11 10981.76 16196.23 33
HPM-MVS++copyleft89.37 1389.95 1287.64 3095.10 3068.23 7895.24 3394.49 3982.43 2588.90 3296.35 2771.89 3398.63 2688.76 4796.40 696.06 36
QAPM79.95 15477.39 18087.64 3089.63 14671.41 1793.30 10193.70 6865.34 28467.39 25791.75 14347.83 26098.96 1657.71 28789.81 9392.54 162
lupinMVS87.74 2387.77 2587.63 3489.24 15971.18 1996.57 1192.90 10182.70 2387.13 3995.27 5664.99 7195.80 14089.34 4191.80 7095.93 40
API-MVS82.28 11280.53 13087.54 3596.13 2270.59 2793.63 9091.04 18265.72 28175.45 15592.83 12256.11 17898.89 2064.10 25089.75 9693.15 144
SD-MVS87.49 2687.49 2987.50 3693.60 5368.82 6393.90 7492.63 11276.86 10587.90 3595.76 4166.17 5997.63 5689.06 4591.48 7696.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft88.77 1589.21 1587.45 3796.26 2067.56 9494.17 5794.15 5468.77 25690.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_111021_HR86.19 4585.80 5287.37 3893.17 6569.79 4193.99 6993.76 6479.08 7378.88 11993.99 9762.25 11098.15 3685.93 7191.15 8294.15 111
MSLP-MVS++86.27 4385.91 5087.35 3992.01 9468.97 6095.04 4092.70 10679.04 7581.50 8796.50 2558.98 14696.78 11083.49 9093.93 3996.29 30
IB-MVS77.80 482.18 11380.46 13287.35 3989.14 16170.28 3195.59 2695.17 1878.85 7770.19 21685.82 23370.66 3597.67 5172.19 17566.52 27994.09 114
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
VDDNet80.50 14178.26 16387.21 4186.19 22969.79 4194.48 5091.31 16560.42 32279.34 11190.91 15638.48 30996.56 11782.16 9781.05 16795.27 66
PAPR85.15 6284.47 6787.18 4296.02 2568.29 7491.85 16193.00 9876.59 11279.03 11595.00 6361.59 11797.61 5878.16 13189.00 10095.63 48
PAPM85.89 5085.46 5587.18 4288.20 18772.42 1392.41 13692.77 10482.11 2980.34 10093.07 11468.27 4395.02 17378.39 13093.59 4794.09 114
jason86.40 4086.17 4487.11 4486.16 23170.54 2895.71 2492.19 12782.00 3084.58 6494.34 8761.86 11395.53 16087.76 5290.89 8495.27 66
jason: jason.
test1287.09 4594.60 3668.86 6192.91 10082.67 8165.44 6797.55 6293.69 4694.84 83
casdiffmvs_mvgpermissive85.66 5585.18 5887.09 4588.22 18669.35 5193.74 8691.89 13981.47 3580.10 10291.45 14764.80 7696.35 12187.23 6087.69 11195.58 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test84.16 8083.20 8787.05 4791.56 10869.82 4089.99 23392.05 13077.77 9282.84 7786.57 22363.93 8696.09 12974.91 15389.18 9995.25 69
HY-MVS76.49 584.28 7583.36 8687.02 4892.22 8867.74 8984.65 29694.50 3879.15 7082.23 8287.93 20466.88 5496.94 10380.53 11282.20 15796.39 28
Effi-MVS+83.82 8682.76 9686.99 4989.56 14869.40 4791.35 18586.12 31272.59 17383.22 7592.81 12359.60 13896.01 13781.76 10187.80 11095.56 51
dcpmvs_287.37 2987.55 2886.85 5095.04 3268.20 7990.36 21990.66 19079.37 6581.20 8993.67 10374.73 1596.55 11890.88 3492.00 6795.82 44
SF-MVS87.03 3387.09 3386.84 5192.70 7867.45 9993.64 8993.76 6470.78 23086.25 4596.44 2666.98 5397.79 4788.68 4894.56 3295.28 65
casdiffmvspermissive85.37 5884.87 6486.84 5188.25 18469.07 5693.04 10991.76 14681.27 4180.84 9692.07 13864.23 8296.06 13384.98 7887.43 11595.39 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
VDD-MVS83.06 10081.81 11186.81 5390.86 12467.70 9095.40 2991.50 15975.46 12281.78 8592.34 13340.09 30097.13 8786.85 6482.04 15895.60 49
ACMMP_NAP86.05 4785.80 5286.80 5491.58 10767.53 9691.79 16393.49 7874.93 13084.61 6395.30 5359.42 14097.92 4186.13 6894.92 1994.94 79
PHI-MVS86.83 3686.85 3986.78 5593.47 5765.55 14595.39 3095.10 1971.77 20285.69 5396.52 2362.07 11198.77 2286.06 7095.60 1196.03 38
baseline85.01 6484.44 6886.71 5688.33 18168.73 6490.24 22491.82 14581.05 4481.18 9092.50 12663.69 9096.08 13284.45 8386.71 12595.32 61
TSAR-MVS + GP.87.96 1988.37 1986.70 5793.51 5665.32 14995.15 3693.84 6078.17 8685.93 5094.80 7175.80 1398.21 3489.38 4088.78 10196.59 16
APDe-MVScopyleft87.54 2587.84 2486.65 5896.07 2366.30 12794.84 4593.78 6169.35 24788.39 3396.34 2867.74 4997.66 5490.62 3693.44 4996.01 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
testing22285.18 6184.69 6686.63 5992.91 7169.91 3792.61 12895.80 980.31 5180.38 9992.27 13468.73 4095.19 17075.94 14383.27 14994.81 85
train_agg87.21 3187.42 3086.60 6094.18 4167.28 10194.16 5893.51 7571.87 19785.52 5495.33 5168.19 4497.27 8089.09 4494.90 2195.25 69
3Dnovator+73.60 782.10 11780.60 12986.60 6090.89 12366.80 11595.20 3493.44 8074.05 14167.42 25592.49 12849.46 24397.65 5570.80 18591.68 7295.33 59
ET-MVSNet_ETH3D84.01 8283.15 9086.58 6290.78 12670.89 2494.74 4794.62 3581.44 3858.19 32293.64 10473.64 2392.35 27582.66 9478.66 18996.50 24
SteuartSystems-ACMMP86.82 3786.90 3786.58 6290.42 13066.38 12496.09 1793.87 5977.73 9384.01 7195.66 4363.39 9697.94 4087.40 5793.55 4895.42 53
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.88.11 1888.64 1686.54 6491.73 10368.04 8290.36 21993.55 7482.89 1991.29 1592.89 11972.27 3096.03 13587.99 5094.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
GG-mvs-BLEND86.53 6591.91 9969.67 4675.02 35894.75 2978.67 12390.85 15777.91 794.56 19572.25 17293.74 4395.36 58
CDPH-MVS85.71 5385.46 5586.46 6694.75 3467.19 10393.89 7592.83 10370.90 22683.09 7695.28 5463.62 9297.36 7180.63 11194.18 3594.84 83
MAR-MVS84.18 7983.43 8186.44 6796.25 2165.93 13694.28 5594.27 5174.41 13479.16 11495.61 4553.99 20298.88 2169.62 19793.26 5294.50 101
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_prior86.42 6894.71 3567.35 10093.10 9496.84 10895.05 74
OpenMVScopyleft70.45 1178.54 18175.92 20086.41 6985.93 23771.68 1692.74 11992.51 11666.49 27564.56 27991.96 13943.88 28798.10 3754.61 29790.65 8789.44 219
MVSFormer83.75 8982.88 9486.37 7089.24 15971.18 1989.07 25290.69 18765.80 27987.13 3994.34 8764.99 7192.67 26172.83 16491.80 7095.27 66
PAPM_NR82.97 10281.84 11086.37 7094.10 4466.76 11687.66 27592.84 10269.96 24074.07 16993.57 10663.10 10297.50 6470.66 18890.58 8894.85 80
DeepC-MVS77.85 385.52 5785.24 5786.37 7088.80 16966.64 11892.15 14393.68 6981.07 4376.91 14193.64 10462.59 10698.44 3185.50 7292.84 5794.03 118
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PVSNet_Blended86.73 3886.86 3886.31 7393.76 4967.53 9696.33 1693.61 7182.34 2781.00 9493.08 11363.19 10097.29 7687.08 6191.38 7894.13 112
EPNet87.84 2288.38 1886.23 7493.30 6066.05 13195.26 3294.84 2587.09 588.06 3494.53 7766.79 5597.34 7383.89 8891.68 7295.29 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest051583.41 9382.49 10286.16 7589.46 15168.26 7693.54 9494.70 3174.31 13775.75 14890.92 15572.62 2896.52 11969.64 19581.50 16493.71 129
ZNCC-MVS85.33 5985.08 6086.06 7693.09 6865.65 14193.89 7593.41 8273.75 15079.94 10494.68 7460.61 12798.03 3882.63 9593.72 4494.52 99
EPMVS78.49 18275.98 19986.02 7791.21 11769.68 4580.23 33491.20 16975.25 12672.48 18878.11 32154.65 19393.69 23257.66 28883.04 15094.69 87
DP-MVS Recon82.73 10581.65 11285.98 7897.31 467.06 10795.15 3691.99 13369.08 25376.50 14593.89 9954.48 19798.20 3570.76 18685.66 13392.69 157
PatchmatchNetpermissive77.46 19774.63 21585.96 7989.55 14970.35 3079.97 33989.55 23372.23 18570.94 20576.91 33257.03 16292.79 25654.27 29981.17 16694.74 86
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
131480.70 13878.95 15585.94 8087.77 20067.56 9487.91 27092.55 11572.17 18867.44 25493.09 11250.27 23697.04 9271.68 18087.64 11293.23 142
MSP-MVS90.38 491.87 185.88 8192.83 7264.03 18493.06 10794.33 4982.19 2893.65 396.15 3585.89 197.19 8291.02 3397.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Anonymous20240521177.96 19075.33 20985.87 8293.73 5264.52 16494.85 4485.36 31862.52 30776.11 14690.18 17029.43 35597.29 7668.51 20977.24 20495.81 45
CostFormer82.33 11181.15 11685.86 8389.01 16468.46 7082.39 31693.01 9675.59 12080.25 10181.57 28172.03 3294.96 17679.06 12377.48 20094.16 110
patch_mono-289.71 1090.99 585.85 8496.04 2463.70 19495.04 4095.19 1686.74 791.53 1495.15 6273.86 2097.58 5993.38 1492.00 6796.28 32
CANet_DTU84.09 8183.52 7585.81 8590.30 13366.82 11391.87 15989.01 25885.27 986.09 4893.74 10147.71 26296.98 9877.90 13389.78 9593.65 131
gg-mvs-nofinetune77.18 20174.31 22285.80 8691.42 11268.36 7271.78 36194.72 3049.61 36277.12 13845.92 38577.41 893.98 22367.62 21793.16 5395.05 74
ab-mvs80.18 14878.31 16285.80 8688.44 17665.49 14883.00 31392.67 10871.82 20077.36 13585.01 23954.50 19496.59 11476.35 14175.63 21495.32 61
APD-MVScopyleft85.93 4985.99 4885.76 8895.98 2665.21 15293.59 9292.58 11466.54 27486.17 4795.88 3963.83 8797.00 9486.39 6792.94 5595.06 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS84.73 6884.40 6985.72 8993.75 5165.01 15893.50 9693.19 8972.19 18679.22 11394.93 6659.04 14597.67 5181.55 10292.21 6294.49 102
ETV-MVS86.01 4886.11 4585.70 9090.21 13567.02 11093.43 9991.92 13681.21 4284.13 7094.07 9660.93 12495.63 15189.28 4289.81 9394.46 103
GST-MVS84.63 7084.29 7085.66 9192.82 7465.27 15093.04 10993.13 9273.20 15978.89 11694.18 9359.41 14197.85 4581.45 10492.48 6193.86 126
diffmvspermissive84.28 7583.83 7385.61 9287.40 20668.02 8390.88 20389.24 24480.54 4781.64 8692.52 12559.83 13594.52 19887.32 5885.11 13594.29 104
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVS-pluss85.24 6085.13 5985.56 9391.42 11265.59 14391.54 17392.51 11674.56 13380.62 9795.64 4459.15 14497.00 9486.94 6393.80 4194.07 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA83.91 8483.38 8585.50 9491.89 10065.16 15481.75 31992.23 12275.32 12580.53 9895.21 6056.06 17997.16 8584.86 8092.55 6094.18 108
mvs_anonymous81.36 12779.99 13785.46 9590.39 13268.40 7186.88 28690.61 19274.41 13470.31 21584.67 24463.79 8892.32 27673.13 16185.70 13295.67 46
HyFIR lowres test81.03 13479.56 14485.43 9687.81 19868.11 8190.18 22590.01 21870.65 23272.95 17986.06 23163.61 9394.50 19975.01 15179.75 17893.67 130
cascas78.18 18675.77 20285.41 9787.14 21269.11 5492.96 11291.15 17366.71 27370.47 21086.07 23037.49 32096.48 12070.15 19179.80 17790.65 199
fmvsm_l_conf0.5_n87.49 2688.19 2185.39 9886.95 21664.37 17494.30 5488.45 27980.51 4892.70 496.86 1569.98 3797.15 8695.83 388.08 10894.65 91
PVSNet_Blended_VisFu83.97 8383.50 7785.39 9890.02 13866.59 12193.77 8491.73 14777.43 10177.08 14089.81 17763.77 8996.97 10079.67 11688.21 10692.60 160
region2R84.36 7384.03 7285.36 10093.54 5564.31 17793.43 9992.95 9972.16 18978.86 12094.84 7056.97 16697.53 6381.38 10692.11 6594.24 106
tpm279.80 15677.95 16985.34 10188.28 18268.26 7681.56 32291.42 16270.11 23877.59 13380.50 29967.40 5194.26 20867.34 21977.35 20193.51 134
fmvsm_l_conf0.5_n_a87.44 2888.15 2285.30 10287.10 21364.19 18194.41 5288.14 28880.24 5392.54 596.97 1069.52 3997.17 8395.89 288.51 10494.56 94
ACMMPR84.37 7284.06 7185.28 10393.56 5464.37 17493.50 9693.15 9172.19 18678.85 12194.86 6956.69 17197.45 6581.55 10292.20 6394.02 119
test_fmvsm_n_192087.69 2488.50 1785.27 10487.05 21563.55 20193.69 8791.08 17884.18 1390.17 2397.04 867.58 5097.99 3995.72 590.03 9294.26 105
xiu_mvs_v1_base_debu82.16 11481.12 11785.26 10586.42 22468.72 6592.59 13190.44 19773.12 16284.20 6794.36 8238.04 31495.73 14584.12 8586.81 12091.33 187
xiu_mvs_v1_base82.16 11481.12 11785.26 10586.42 22468.72 6592.59 13190.44 19773.12 16284.20 6794.36 8238.04 31495.73 14584.12 8586.81 12091.33 187
xiu_mvs_v1_base_debi82.16 11481.12 11785.26 10586.42 22468.72 6592.59 13190.44 19773.12 16284.20 6794.36 8238.04 31495.73 14584.12 8586.81 12091.33 187
MP-MVScopyleft85.02 6384.97 6285.17 10892.60 8264.27 17993.24 10292.27 12173.13 16179.63 10894.43 8061.90 11297.17 8385.00 7792.56 5994.06 117
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
XVS83.87 8583.47 7985.05 10993.22 6163.78 18892.92 11492.66 10973.99 14278.18 12594.31 8955.25 18597.41 6879.16 12191.58 7493.95 121
X-MVStestdata76.86 20674.13 22685.05 10993.22 6163.78 18892.92 11492.66 10973.99 14278.18 12510.19 40055.25 18597.41 6879.16 12191.58 7493.95 121
SCA75.82 22672.76 24385.01 11186.63 22170.08 3281.06 32789.19 24771.60 21170.01 21877.09 33045.53 27890.25 30560.43 27473.27 23094.68 88
iter_conf0583.27 9682.70 9884.98 11293.32 5971.84 1594.16 5881.76 34382.74 2173.83 17288.40 19172.77 2794.61 18982.10 9875.21 21688.48 230
PGM-MVS83.25 9782.70 9884.92 11392.81 7664.07 18390.44 21592.20 12671.28 21877.23 13794.43 8055.17 18997.31 7579.33 12091.38 7893.37 137
BH-RMVSNet79.46 16277.65 17284.89 11491.68 10565.66 14093.55 9388.09 29072.93 16673.37 17591.12 15446.20 27496.12 12856.28 29285.61 13492.91 153
Anonymous2024052976.84 20974.15 22584.88 11591.02 11964.95 16093.84 8091.09 17653.57 35173.00 17787.42 21235.91 33097.32 7469.14 20372.41 24092.36 166
tpmrst80.57 13979.14 15484.84 11690.10 13768.28 7581.70 32089.72 23077.63 9775.96 14779.54 31364.94 7392.71 25875.43 14677.28 20393.55 133
fmvsm_s_conf0.5_n86.39 4186.91 3684.82 11787.36 20863.54 20294.74 4790.02 21782.52 2490.14 2496.92 1362.93 10497.84 4695.28 882.26 15593.07 148
test_fmvsmconf_n86.58 3987.17 3284.82 11785.28 24662.55 22594.26 5689.78 22383.81 1687.78 3696.33 2965.33 6896.98 9894.40 1187.55 11394.95 78
FE-MVS75.97 22373.02 23984.82 11789.78 14265.56 14477.44 35091.07 17964.55 28772.66 18279.85 30946.05 27696.69 11254.97 29680.82 17092.21 175
FA-MVS(test-final)79.12 16677.23 18284.81 12090.54 12863.98 18581.35 32591.71 14971.09 22374.85 16082.94 26252.85 21497.05 8967.97 21281.73 16393.41 136
test_fmvsmvis_n_192083.80 8783.48 7884.77 12182.51 28563.72 19291.37 18383.99 33281.42 3977.68 13095.74 4258.37 14997.58 5993.38 1486.87 11993.00 151
AdaColmapbinary78.94 17077.00 18684.76 12296.34 1765.86 13792.66 12687.97 29462.18 30970.56 20992.37 13243.53 28897.35 7264.50 24882.86 15191.05 196
新几何184.73 12392.32 8564.28 17891.46 16159.56 32979.77 10692.90 11856.95 16796.57 11663.40 25492.91 5693.34 138
fmvsm_s_conf0.5_n_a85.75 5286.09 4684.72 12485.73 24063.58 19993.79 8389.32 24181.42 3990.21 2296.91 1462.41 10897.67 5194.48 1080.56 17292.90 154
DeepPCF-MVS81.17 189.72 991.38 384.72 12493.00 6958.16 29796.72 894.41 4386.50 890.25 2197.83 175.46 1498.67 2592.78 1895.49 1297.32 6
EIA-MVS84.84 6684.88 6384.69 12691.30 11562.36 22893.85 7792.04 13179.45 6279.33 11294.28 9062.42 10796.35 12180.05 11491.25 8195.38 56
fmvsm_s_conf0.1_n85.61 5685.93 4984.68 12782.95 28363.48 20494.03 6889.46 23581.69 3389.86 2596.74 2061.85 11497.75 4994.74 982.01 15992.81 156
GA-MVS78.33 18576.23 19584.65 12883.65 27366.30 12791.44 17490.14 21176.01 11770.32 21484.02 25242.50 29294.72 18470.98 18377.00 20592.94 152
CP-MVS83.71 9083.40 8484.65 12893.14 6663.84 18694.59 4992.28 12071.03 22477.41 13494.92 6755.21 18896.19 12581.32 10790.70 8693.91 123
RPMNet70.42 27865.68 29784.63 13083.15 27867.96 8470.25 36490.45 19446.83 37069.97 22065.10 36956.48 17595.30 16835.79 36773.13 23190.64 200
test_fmvsmconf0.1_n85.71 5386.08 4784.62 13180.83 29962.33 22993.84 8088.81 26683.50 1887.00 4296.01 3763.36 9796.93 10594.04 1287.29 11694.61 93
tpm cat175.30 23372.21 25284.58 13288.52 17267.77 8878.16 34888.02 29161.88 31468.45 24176.37 33660.65 12594.03 22153.77 30274.11 22491.93 179
fmvsm_s_conf0.1_n_a84.76 6784.84 6584.53 13380.23 30963.50 20392.79 11788.73 27080.46 4989.84 2696.65 2260.96 12397.57 6193.80 1380.14 17492.53 163
mPP-MVS82.96 10382.44 10384.52 13492.83 7262.92 21892.76 11891.85 14371.52 21475.61 15394.24 9153.48 21096.99 9778.97 12490.73 8593.64 132
Fast-Effi-MVS+81.14 13080.01 13684.51 13590.24 13465.86 13794.12 6289.15 25073.81 14975.37 15688.26 19657.26 15994.53 19766.97 22484.92 13693.15 144
baseline283.68 9283.42 8384.48 13687.37 20766.00 13390.06 22895.93 879.71 6069.08 22890.39 16577.92 696.28 12378.91 12581.38 16591.16 194
原ACMM184.42 13793.21 6364.27 17993.40 8365.39 28279.51 10992.50 12658.11 15396.69 11265.27 24493.96 3892.32 168
SDMVSNet80.26 14678.88 15684.40 13889.25 15667.63 9385.35 29293.02 9576.77 10970.84 20787.12 21747.95 25996.09 12985.04 7674.55 21889.48 217
thisisatest053081.15 12980.07 13484.39 13988.26 18365.63 14291.40 17894.62 3571.27 21970.93 20689.18 18272.47 2996.04 13465.62 23976.89 20691.49 183
test250683.29 9582.92 9384.37 14088.39 17963.18 21192.01 15291.35 16477.66 9578.49 12491.42 14864.58 7995.09 17273.19 16089.23 9794.85 80
h-mvs3383.01 10182.56 10184.35 14189.34 15262.02 23592.72 12093.76 6481.45 3682.73 7992.25 13660.11 13197.13 8787.69 5362.96 30693.91 123
PVSNet73.49 880.05 15178.63 15884.31 14290.92 12264.97 15992.47 13591.05 18179.18 6972.43 19090.51 16237.05 32694.06 21668.06 21186.00 13093.90 125
PCF-MVS73.15 979.29 16377.63 17384.29 14386.06 23265.96 13587.03 28291.10 17569.86 24269.79 22390.64 15857.54 15896.59 11464.37 24982.29 15490.32 203
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline181.84 12081.03 12184.28 14491.60 10666.62 11991.08 19791.66 15381.87 3174.86 15991.67 14569.98 3794.92 17971.76 17864.75 29491.29 192
test_fmvsmconf0.01_n83.70 9183.52 7584.25 14575.26 35161.72 24392.17 14287.24 30182.36 2684.91 6195.41 4855.60 18396.83 10992.85 1785.87 13194.21 107
iter_conf_final81.74 12280.93 12284.18 14692.66 8069.10 5592.94 11382.80 34179.01 7674.85 16088.40 19161.83 11594.61 18979.36 11876.52 20988.83 221
HPM-MVScopyleft83.25 9782.95 9284.17 14792.25 8762.88 22090.91 20091.86 14170.30 23677.12 13893.96 9856.75 16996.28 12382.04 9991.34 8093.34 138
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
nrg03080.93 13579.86 13984.13 14883.69 27268.83 6293.23 10391.20 16975.55 12175.06 15888.22 19963.04 10394.74 18381.88 10066.88 27688.82 224
EI-MVSNet-Vis-set83.77 8883.67 7484.06 14992.79 7763.56 20091.76 16694.81 2779.65 6177.87 12894.09 9463.35 9897.90 4279.35 11979.36 18190.74 198
BH-w/o80.49 14279.30 15184.05 15090.83 12564.36 17693.60 9189.42 23874.35 13669.09 22790.15 17255.23 18795.61 15364.61 24786.43 12992.17 176
ECVR-MVScopyleft81.29 12880.38 13384.01 15188.39 17961.96 23792.56 13486.79 30577.66 9576.63 14291.42 14846.34 27195.24 16974.36 15789.23 9794.85 80
ACMMPcopyleft81.49 12580.67 12683.93 15291.71 10462.90 21992.13 14492.22 12571.79 20171.68 20093.49 10850.32 23496.96 10178.47 12984.22 14691.93 179
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CLD-MVS82.73 10582.35 10583.86 15387.90 19467.65 9295.45 2892.18 12885.06 1072.58 18592.27 13452.46 21895.78 14184.18 8479.06 18488.16 236
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
dp75.01 23772.09 25383.76 15489.28 15566.22 13079.96 34089.75 22571.16 22067.80 25177.19 32951.81 22292.54 26750.39 31071.44 24792.51 164
MVSTER82.47 10982.05 10683.74 15592.68 7969.01 5891.90 15893.21 8679.83 5672.14 19385.71 23574.72 1694.72 18475.72 14472.49 23887.50 241
Vis-MVSNetpermissive80.92 13679.98 13883.74 15588.48 17461.80 23993.44 9888.26 28773.96 14577.73 12991.76 14249.94 23994.76 18165.84 23690.37 9094.65 91
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
sss82.71 10782.38 10483.73 15789.25 15659.58 28092.24 14094.89 2477.96 8879.86 10592.38 13156.70 17097.05 8977.26 13680.86 16994.55 95
TESTMET0.1,182.41 11081.98 10983.72 15888.08 18863.74 19092.70 12293.77 6379.30 6677.61 13287.57 21058.19 15294.08 21473.91 15986.68 12693.33 140
114514_t79.17 16577.67 17183.68 15995.32 2965.53 14692.85 11691.60 15563.49 29567.92 24690.63 16046.65 26795.72 14967.01 22383.54 14789.79 211
EI-MVSNet-UG-set83.14 9982.96 9183.67 16092.28 8663.19 21091.38 18294.68 3279.22 6876.60 14393.75 10062.64 10597.76 4878.07 13278.01 19290.05 207
thres20079.66 15778.33 16183.66 16192.54 8365.82 13993.06 10796.31 374.90 13173.30 17688.66 18659.67 13795.61 15347.84 32578.67 18889.56 216
CS-MVS-test86.14 4687.01 3483.52 16292.63 8159.36 28595.49 2791.92 13680.09 5485.46 5695.53 4761.82 11695.77 14386.77 6593.37 5095.41 54
CDS-MVSNet81.43 12680.74 12483.52 16286.26 22864.45 16892.09 14790.65 19175.83 11973.95 17189.81 17763.97 8592.91 25171.27 18182.82 15293.20 143
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_111021_LR82.02 11881.52 11383.51 16488.42 17762.88 22089.77 23788.93 26276.78 10875.55 15493.10 11150.31 23595.38 16483.82 8987.02 11892.26 174
SR-MVS82.81 10482.58 10083.50 16593.35 5861.16 25292.23 14191.28 16864.48 28881.27 8895.28 5453.71 20695.86 13982.87 9388.77 10293.49 135
BH-untuned78.68 17777.08 18383.48 16689.84 14163.74 19092.70 12288.59 27671.57 21266.83 26488.65 18751.75 22395.39 16359.03 28284.77 13891.32 190
UGNet79.87 15578.68 15783.45 16789.96 13961.51 24692.13 14490.79 18576.83 10778.85 12186.33 22738.16 31296.17 12667.93 21487.17 11792.67 158
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test111180.84 13780.02 13583.33 16887.87 19560.76 26092.62 12786.86 30477.86 9175.73 14991.39 15046.35 27094.70 18772.79 16688.68 10394.52 99
GeoE78.90 17177.43 17683.29 16988.95 16562.02 23592.31 13786.23 31070.24 23771.34 20489.27 18154.43 19894.04 21963.31 25680.81 17193.81 128
CS-MVS85.80 5186.65 4083.27 17092.00 9558.92 29095.31 3191.86 14179.97 5584.82 6295.40 4962.26 10995.51 16186.11 6992.08 6695.37 57
tpm78.58 18077.03 18483.22 17185.94 23664.56 16383.21 31091.14 17478.31 8473.67 17379.68 31164.01 8492.09 28166.07 23471.26 24893.03 149
PVSNet_BlendedMVS83.38 9483.43 8183.22 17193.76 4967.53 9694.06 6393.61 7179.13 7181.00 9485.14 23863.19 10097.29 7687.08 6173.91 22784.83 297
TAMVS80.37 14479.45 14783.13 17385.14 24963.37 20591.23 19190.76 18674.81 13272.65 18388.49 18860.63 12692.95 24669.41 19981.95 16093.08 147
EC-MVSNet84.53 7185.04 6183.01 17489.34 15261.37 24994.42 5191.09 17677.91 9083.24 7494.20 9258.37 14995.40 16285.35 7391.41 7792.27 173
TR-MVS78.77 17677.37 18182.95 17590.49 12960.88 25693.67 8890.07 21370.08 23974.51 16391.37 15145.69 27795.70 15060.12 27780.32 17392.29 169
tfpn200view978.79 17577.43 17682.88 17692.21 8964.49 16592.05 15096.28 473.48 15671.75 19888.26 19660.07 13395.32 16545.16 33677.58 19788.83 221
FMVSNet377.73 19476.04 19882.80 17791.20 11868.99 5991.87 15991.99 13373.35 15867.04 26083.19 26156.62 17292.14 27859.80 27969.34 25687.28 249
1112_ss80.56 14079.83 14082.77 17888.65 17160.78 25892.29 13888.36 28172.58 17472.46 18994.95 6465.09 7093.42 23866.38 23077.71 19494.10 113
v2v48277.42 19875.65 20582.73 17980.38 30567.13 10691.85 16190.23 20875.09 12869.37 22483.39 25953.79 20594.44 20071.77 17765.00 29186.63 261
VPNet78.82 17377.53 17582.70 18084.52 25966.44 12393.93 7292.23 12280.46 4972.60 18488.38 19349.18 24793.13 24172.47 17163.97 30388.55 229
CR-MVSNet73.79 25070.82 26582.70 18083.15 27867.96 8470.25 36484.00 33073.67 15469.97 22072.41 35057.82 15589.48 31652.99 30573.13 23190.64 200
HQP-MVS81.14 13080.64 12782.64 18287.54 20263.66 19794.06 6391.70 15179.80 5774.18 16590.30 16751.63 22595.61 15377.63 13478.90 18588.63 226
EPP-MVSNet81.79 12181.52 11382.61 18388.77 17060.21 27293.02 11193.66 7068.52 25972.90 18090.39 16572.19 3194.96 17674.93 15279.29 18392.67 158
APD-MVS_3200maxsize81.64 12481.32 11582.59 18492.36 8458.74 29291.39 18091.01 18363.35 29779.72 10794.62 7651.82 22196.14 12779.71 11587.93 10992.89 155
thres100view90078.37 18377.01 18582.46 18591.89 10063.21 20991.19 19596.33 172.28 18470.45 21287.89 20560.31 12895.32 16545.16 33677.58 19788.83 221
thres40078.68 17777.43 17682.43 18692.21 8964.49 16592.05 15096.28 473.48 15671.75 19888.26 19660.07 13395.32 16545.16 33677.58 19787.48 242
XXY-MVS77.94 19176.44 19282.43 18682.60 28464.44 16992.01 15291.83 14473.59 15570.00 21985.82 23354.43 19894.76 18169.63 19668.02 26988.10 237
Test_1112_low_res79.56 15978.60 15982.43 18688.24 18560.39 26992.09 14787.99 29272.10 19071.84 19687.42 21264.62 7893.04 24265.80 23777.30 20293.85 127
tttt051779.50 16078.53 16082.41 18987.22 21061.43 24889.75 23894.76 2869.29 24867.91 24788.06 20372.92 2595.63 15162.91 26073.90 22890.16 205
HPM-MVS_fast80.25 14779.55 14682.33 19091.55 10959.95 27591.32 18789.16 24965.23 28574.71 16293.07 11447.81 26195.74 14474.87 15588.23 10591.31 191
IS-MVSNet80.14 14979.41 14882.33 19087.91 19360.08 27491.97 15688.27 28572.90 16971.44 20391.73 14461.44 11893.66 23362.47 26486.53 12793.24 141
v114476.73 21274.88 21282.27 19280.23 30966.60 12091.68 17090.21 21073.69 15269.06 22981.89 27452.73 21694.40 20169.21 20265.23 28885.80 280
PVSNet_068.08 1571.81 26868.32 28582.27 19284.68 25562.31 23188.68 25890.31 20375.84 11857.93 32780.65 29837.85 31794.19 21069.94 19329.05 39090.31 204
FMVSNet276.07 21774.01 22882.26 19488.85 16667.66 9191.33 18691.61 15470.84 22765.98 26782.25 27048.03 25592.00 28358.46 28468.73 26487.10 252
tpmvs72.88 25969.76 27582.22 19590.98 12067.05 10878.22 34788.30 28363.10 30264.35 28474.98 34355.09 19094.27 20643.25 34269.57 25585.34 291
sd_testset77.08 20475.37 20782.20 19689.25 15662.11 23482.06 31789.09 25476.77 10970.84 20787.12 21741.43 29695.01 17467.23 22174.55 21889.48 217
V4276.46 21474.55 21882.19 19779.14 32367.82 8790.26 22389.42 23873.75 15068.63 23881.89 27451.31 22894.09 21371.69 17964.84 29284.66 298
SR-MVS-dyc-post81.06 13380.70 12582.15 19892.02 9258.56 29490.90 20190.45 19462.76 30478.89 11694.46 7851.26 22995.61 15378.77 12786.77 12392.28 170
v119275.98 22273.92 22982.15 19879.73 31366.24 12991.22 19289.75 22572.67 17268.49 24081.42 28449.86 24094.27 20667.08 22265.02 29085.95 277
MS-PatchMatch77.90 19376.50 19182.12 20085.99 23369.95 3691.75 16892.70 10673.97 14462.58 30084.44 24841.11 29795.78 14163.76 25392.17 6480.62 344
v14419276.05 22074.03 22782.12 20079.50 31766.55 12291.39 18089.71 23172.30 18368.17 24281.33 28651.75 22394.03 22167.94 21364.19 29885.77 281
HQP_MVS80.34 14579.75 14182.12 20086.94 21762.42 22693.13 10591.31 16578.81 7972.53 18689.14 18450.66 23295.55 15876.74 13778.53 19088.39 233
VPA-MVSNet79.03 16778.00 16782.11 20385.95 23464.48 16793.22 10494.66 3375.05 12974.04 17084.95 24052.17 22093.52 23574.90 15467.04 27588.32 235
v192192075.63 23073.49 23582.06 20479.38 31866.35 12591.07 19989.48 23471.98 19167.99 24381.22 28949.16 24993.90 22766.56 22664.56 29785.92 279
thres600view778.00 18876.66 19082.03 20591.93 9763.69 19591.30 18896.33 172.43 17970.46 21187.89 20560.31 12894.92 17942.64 34876.64 20787.48 242
v124075.21 23572.98 24081.88 20679.20 32066.00 13390.75 20889.11 25371.63 21067.41 25681.22 28947.36 26393.87 22865.46 24264.72 29585.77 281
PMMVS81.98 11982.04 10781.78 20789.76 14456.17 31791.13 19690.69 18777.96 8880.09 10393.57 10646.33 27294.99 17581.41 10587.46 11494.17 109
OPM-MVS79.00 16878.09 16581.73 20883.52 27563.83 18791.64 17290.30 20476.36 11571.97 19589.93 17646.30 27395.17 17175.10 14977.70 19586.19 269
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test-LLR80.10 15079.56 14481.72 20986.93 21961.17 25092.70 12291.54 15671.51 21575.62 15186.94 21953.83 20392.38 27272.21 17384.76 13991.60 181
test-mter79.96 15379.38 15081.72 20986.93 21961.17 25092.70 12291.54 15673.85 14775.62 15186.94 21949.84 24192.38 27272.21 17384.76 13991.60 181
dmvs_re76.93 20575.36 20881.61 21187.78 19960.71 26380.00 33887.99 29279.42 6369.02 23089.47 18046.77 26594.32 20263.38 25574.45 22189.81 210
v875.35 23273.26 23781.61 21180.67 30266.82 11389.54 24189.27 24371.65 20663.30 29280.30 30354.99 19194.06 21667.33 22062.33 31383.94 303
miper_enhance_ethall78.86 17277.97 16881.54 21388.00 19265.17 15391.41 17689.15 25075.19 12768.79 23583.98 25367.17 5292.82 25372.73 16765.30 28586.62 262
v1074.77 23972.54 24981.46 21480.33 30766.71 11789.15 25189.08 25570.94 22563.08 29579.86 30852.52 21794.04 21965.70 23862.17 31483.64 306
cl2277.94 19176.78 18881.42 21587.57 20164.93 16190.67 21088.86 26572.45 17867.63 25382.68 26664.07 8392.91 25171.79 17665.30 28586.44 263
v14876.19 21574.47 22081.36 21680.05 31164.44 16991.75 16890.23 20873.68 15367.13 25980.84 29455.92 18193.86 23068.95 20561.73 32185.76 283
testdata81.34 21789.02 16357.72 30289.84 22258.65 33385.32 5894.09 9457.03 16293.28 23969.34 20090.56 8993.03 149
EI-MVSNet78.97 16978.22 16481.25 21885.33 24462.73 22389.53 24293.21 8672.39 18172.14 19390.13 17360.99 12194.72 18467.73 21672.49 23886.29 265
MIMVSNet71.64 26968.44 28381.23 21981.97 29264.44 16973.05 36088.80 26769.67 24464.59 27774.79 34432.79 34187.82 32953.99 30076.35 21091.42 185
AUN-MVS78.37 18377.43 17681.17 22086.60 22257.45 30889.46 24491.16 17174.11 14074.40 16490.49 16355.52 18494.57 19374.73 15660.43 33291.48 184
hse-mvs281.12 13281.11 12081.16 22186.52 22357.48 30789.40 24591.16 17181.45 3682.73 7990.49 16360.11 13194.58 19187.69 5360.41 33391.41 186
Anonymous2023121173.08 25370.39 26981.13 22290.62 12763.33 20691.40 17890.06 21551.84 35664.46 28280.67 29736.49 32894.07 21563.83 25264.17 29985.98 276
UA-Net80.02 15279.65 14281.11 22389.33 15457.72 30286.33 28989.00 26177.44 10081.01 9389.15 18359.33 14295.90 13861.01 27184.28 14489.73 213
GBi-Net75.65 22873.83 23081.10 22488.85 16665.11 15590.01 23090.32 20070.84 22767.04 26080.25 30448.03 25591.54 29359.80 27969.34 25686.64 258
test175.65 22873.83 23081.10 22488.85 16665.11 15590.01 23090.32 20070.84 22767.04 26080.25 30448.03 25591.54 29359.80 27969.34 25686.64 258
FMVSNet172.71 26269.91 27381.10 22483.60 27465.11 15590.01 23090.32 20063.92 29163.56 28980.25 30436.35 32991.54 29354.46 29866.75 27786.64 258
miper_ehance_all_eth77.60 19576.44 19281.09 22785.70 24164.41 17290.65 21188.64 27572.31 18267.37 25882.52 26764.77 7792.64 26570.67 18765.30 28586.24 267
ADS-MVSNet68.54 29564.38 31081.03 22888.06 18966.90 11268.01 37184.02 32957.57 33564.48 28069.87 36038.68 30489.21 31840.87 35367.89 27086.97 253
MSDG69.54 28665.73 29680.96 22985.11 25163.71 19384.19 29883.28 33856.95 34054.50 33784.03 25131.50 34796.03 13542.87 34669.13 26183.14 317
OMC-MVS78.67 17977.91 17080.95 23085.76 23957.40 30988.49 26188.67 27373.85 14772.43 19092.10 13749.29 24694.55 19672.73 16777.89 19390.91 197
c3_l76.83 21075.47 20680.93 23185.02 25264.18 18290.39 21888.11 28971.66 20566.65 26681.64 27963.58 9592.56 26669.31 20162.86 30786.04 274
CPTT-MVS79.59 15879.16 15380.89 23291.54 11059.80 27792.10 14688.54 27860.42 32272.96 17893.28 11048.27 25492.80 25578.89 12686.50 12890.06 206
eth_miper_zixun_eth75.96 22474.40 22180.66 23384.66 25663.02 21389.28 24788.27 28571.88 19665.73 26881.65 27859.45 13992.81 25468.13 21060.53 33086.14 270
test_vis1_n_192081.66 12382.01 10880.64 23482.24 28855.09 32594.76 4686.87 30381.67 3484.40 6694.63 7538.17 31194.67 18891.98 2683.34 14892.16 177
Patchmatch-test65.86 31260.94 32680.62 23583.75 27158.83 29158.91 38575.26 36144.50 37550.95 35377.09 33058.81 14787.90 32735.13 36864.03 30195.12 72
NR-MVSNet76.05 22074.59 21680.44 23682.96 28162.18 23390.83 20591.73 14777.12 10360.96 30786.35 22559.28 14391.80 28660.74 27261.34 32587.35 247
IterMVS-LS76.49 21375.18 21180.43 23784.49 26062.74 22290.64 21288.80 26772.40 18065.16 27381.72 27760.98 12292.27 27767.74 21564.65 29686.29 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchT69.11 28965.37 30180.32 23882.07 29163.68 19667.96 37387.62 29650.86 35969.37 22465.18 36857.09 16188.53 32241.59 35166.60 27888.74 225
CNLPA74.31 24372.30 25180.32 23891.49 11161.66 24490.85 20480.72 34756.67 34363.85 28790.64 15846.75 26690.84 30053.79 30175.99 21388.47 232
cl____76.07 21774.67 21380.28 24085.15 24861.76 24190.12 22688.73 27071.16 22065.43 27081.57 28161.15 11992.95 24666.54 22762.17 31486.13 272
DIV-MVS_self_test76.07 21774.67 21380.28 24085.14 24961.75 24290.12 22688.73 27071.16 22065.42 27181.60 28061.15 11992.94 25066.54 22762.16 31686.14 270
pmmvs473.92 24871.81 25780.25 24279.17 32165.24 15187.43 27887.26 30067.64 26763.46 29083.91 25448.96 25191.53 29662.94 25965.49 28483.96 302
mvsmamba76.85 20875.71 20480.25 24283.07 28059.16 28791.44 17480.64 34876.84 10667.95 24586.33 22746.17 27594.24 20976.06 14272.92 23487.36 246
DP-MVS69.90 28366.48 29080.14 24495.36 2862.93 21689.56 23976.11 35550.27 36157.69 32885.23 23739.68 30195.73 14533.35 37271.05 24981.78 334
PS-MVSNAJss77.26 20076.31 19480.13 24580.64 30359.16 28790.63 21491.06 18072.80 17068.58 23984.57 24653.55 20793.96 22472.97 16271.96 24287.27 250
tt080573.07 25470.73 26680.07 24678.37 33457.05 31287.78 27292.18 12861.23 31867.04 26086.49 22431.35 34994.58 19165.06 24567.12 27488.57 228
Fast-Effi-MVS+-dtu75.04 23673.37 23680.07 24680.86 29859.52 28191.20 19485.38 31771.90 19465.20 27284.84 24241.46 29592.97 24566.50 22972.96 23387.73 239
ACMH63.93 1768.62 29364.81 30380.03 24885.22 24763.25 20787.72 27384.66 32460.83 32051.57 34979.43 31427.29 36094.96 17641.76 34964.84 29281.88 332
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WB-MVSnew77.14 20276.18 19780.01 24986.18 23063.24 20891.26 18994.11 5571.72 20473.52 17487.29 21545.14 28293.00 24456.98 28979.42 17983.80 305
UniMVSNet_NR-MVSNet78.15 18777.55 17479.98 25084.46 26160.26 27092.25 13993.20 8877.50 9968.88 23386.61 22266.10 6092.13 27966.38 23062.55 31087.54 240
UniMVSNet (Re)77.58 19676.78 18879.98 25084.11 26760.80 25791.76 16693.17 9076.56 11369.93 22284.78 24363.32 9992.36 27464.89 24662.51 31286.78 257
test_cas_vis1_n_192080.45 14380.61 12879.97 25278.25 33557.01 31394.04 6788.33 28279.06 7482.81 7893.70 10238.65 30691.63 29090.82 3579.81 17691.27 193
DU-MVS76.86 20675.84 20179.91 25382.96 28160.26 27091.26 18991.54 15676.46 11468.88 23386.35 22556.16 17692.13 27966.38 23062.55 31087.35 247
TranMVSNet+NR-MVSNet75.86 22574.52 21979.89 25482.44 28660.64 26691.37 18391.37 16376.63 11167.65 25286.21 22952.37 21991.55 29261.84 26760.81 32887.48 242
PLCcopyleft68.80 1475.23 23473.68 23379.86 25592.93 7058.68 29390.64 21288.30 28360.90 31964.43 28390.53 16142.38 29394.57 19356.52 29076.54 20886.33 264
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS76.76 21175.74 20379.82 25684.60 25762.27 23292.60 12992.51 11676.06 11667.87 25085.34 23656.76 16890.24 30862.20 26563.69 30586.94 255
MVP-Stereo77.12 20376.23 19579.79 25781.72 29366.34 12689.29 24690.88 18470.56 23462.01 30382.88 26349.34 24494.13 21165.55 24193.80 4178.88 358
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ppachtmachnet_test67.72 30163.70 31279.77 25878.92 32566.04 13288.68 25882.90 34060.11 32655.45 33475.96 33939.19 30390.55 30139.53 35752.55 35682.71 323
FIs79.47 16179.41 14879.67 25985.95 23459.40 28291.68 17093.94 5878.06 8768.96 23288.28 19466.61 5791.77 28766.20 23374.99 21787.82 238
XVG-OURS74.25 24472.46 25079.63 26078.45 33357.59 30680.33 33287.39 29763.86 29268.76 23689.62 17940.50 29991.72 28869.00 20474.25 22389.58 214
ACMP71.68 1075.58 23174.23 22479.62 26184.97 25359.64 27890.80 20689.07 25670.39 23562.95 29687.30 21438.28 31093.87 22872.89 16371.45 24685.36 290
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR74.70 24073.08 23879.57 26278.25 33557.33 31080.49 33087.32 29863.22 29968.76 23690.12 17544.89 28491.59 29170.55 18974.09 22589.79 211
LPG-MVS_test75.82 22674.58 21779.56 26384.31 26459.37 28390.44 21589.73 22869.49 24564.86 27488.42 18938.65 30694.30 20472.56 16972.76 23585.01 295
LGP-MVS_train79.56 26384.31 26459.37 28389.73 22869.49 24564.86 27488.42 18938.65 30694.30 20472.56 16972.76 23585.01 295
UniMVSNet_ETH3D72.74 26170.53 26879.36 26578.62 33256.64 31585.01 29489.20 24663.77 29364.84 27684.44 24834.05 33791.86 28563.94 25170.89 25089.57 215
v7n71.31 27368.65 28079.28 26676.40 34760.77 25986.71 28789.45 23664.17 29058.77 32178.24 31944.59 28593.54 23457.76 28661.75 32083.52 309
Patchmatch-RL test68.17 29864.49 30879.19 26771.22 36353.93 33070.07 36671.54 37269.22 24956.79 33162.89 37256.58 17388.61 31969.53 19852.61 35595.03 76
TAPA-MVS70.22 1274.94 23873.53 23479.17 26890.40 13152.07 33789.19 25089.61 23262.69 30670.07 21792.67 12448.89 25294.32 20238.26 36279.97 17591.12 195
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM69.62 1374.34 24272.73 24579.17 26884.25 26657.87 30090.36 21989.93 21963.17 30165.64 26986.04 23237.79 31894.10 21265.89 23571.52 24585.55 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
D2MVS73.80 24972.02 25479.15 27079.15 32262.97 21488.58 26090.07 21372.94 16559.22 31678.30 31842.31 29492.70 26065.59 24072.00 24181.79 333
our_test_368.29 29764.69 30579.11 27178.92 32564.85 16288.40 26385.06 32060.32 32452.68 34476.12 33840.81 29889.80 31544.25 34155.65 34682.67 326
pmmvs573.35 25271.52 25978.86 27278.64 33160.61 26791.08 19786.90 30267.69 26463.32 29183.64 25544.33 28690.53 30262.04 26666.02 28285.46 288
RRT_MVS74.44 24172.97 24178.84 27382.36 28757.66 30489.83 23688.79 26970.61 23364.58 27884.89 24139.24 30292.65 26470.11 19266.34 28086.21 268
Effi-MVS+-dtu76.14 21675.28 21078.72 27483.22 27755.17 32489.87 23487.78 29575.42 12367.98 24481.43 28345.08 28392.52 26875.08 15071.63 24388.48 230
CHOSEN 280x42077.35 19976.95 18778.55 27587.07 21462.68 22469.71 36782.95 33968.80 25571.48 20287.27 21666.03 6184.00 35476.47 14082.81 15388.95 220
Patchmtry67.53 30463.93 31178.34 27682.12 29064.38 17368.72 36884.00 33048.23 36759.24 31572.41 35057.82 15589.27 31746.10 33356.68 34581.36 335
tfpnnormal70.10 28067.36 28878.32 27783.45 27660.97 25588.85 25592.77 10464.85 28660.83 30878.53 31743.52 28993.48 23631.73 37961.70 32280.52 345
PatchMatch-RL72.06 26769.98 27078.28 27889.51 15055.70 32183.49 30383.39 33761.24 31763.72 28882.76 26434.77 33493.03 24353.37 30477.59 19686.12 273
pm-mvs172.89 25871.09 26278.26 27979.10 32457.62 30590.80 20689.30 24267.66 26562.91 29781.78 27649.11 25092.95 24660.29 27658.89 33884.22 301
Vis-MVSNet (Re-imp)79.24 16479.57 14378.24 28088.46 17552.29 33690.41 21789.12 25274.24 13869.13 22691.91 14065.77 6490.09 31259.00 28388.09 10792.33 167
IterMVS72.65 26570.83 26378.09 28182.17 28962.96 21587.64 27686.28 30871.56 21360.44 30978.85 31645.42 28086.66 33963.30 25761.83 31884.65 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EG-PatchMatch MVS68.55 29465.41 30077.96 28278.69 33062.93 21689.86 23589.17 24860.55 32150.27 35477.73 32422.60 36994.06 21647.18 32872.65 23776.88 366
FC-MVSNet-test77.99 18978.08 16677.70 28384.89 25455.51 32290.27 22293.75 6776.87 10466.80 26587.59 20965.71 6590.23 30962.89 26173.94 22687.37 245
jajsoiax73.05 25571.51 26077.67 28477.46 34254.83 32688.81 25690.04 21669.13 25262.85 29883.51 25731.16 35092.75 25770.83 18469.80 25285.43 289
mvs_tets72.71 26271.11 26177.52 28577.41 34354.52 32888.45 26289.76 22468.76 25762.70 29983.26 26029.49 35492.71 25870.51 19069.62 25485.34 291
LS3D69.17 28866.40 29277.50 28691.92 9856.12 31885.12 29380.37 34946.96 36856.50 33287.51 21137.25 32193.71 23132.52 37879.40 18082.68 325
Baseline_NR-MVSNet73.99 24772.83 24277.48 28780.78 30059.29 28691.79 16384.55 32568.85 25468.99 23180.70 29556.16 17692.04 28262.67 26260.98 32781.11 338
EPNet_dtu78.80 17479.26 15277.43 28888.06 18949.71 34991.96 15791.95 13577.67 9476.56 14491.28 15258.51 14890.20 31056.37 29180.95 16892.39 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_djsdf73.76 25172.56 24877.39 28977.00 34553.93 33089.07 25290.69 18765.80 27963.92 28582.03 27343.14 29192.67 26172.83 16468.53 26585.57 285
F-COLMAP70.66 27568.44 28377.32 29086.37 22755.91 31988.00 26886.32 30756.94 34157.28 33088.07 20233.58 33992.49 26951.02 30868.37 26683.55 307
TransMVSNet (Re)70.07 28167.66 28777.31 29180.62 30459.13 28991.78 16584.94 32265.97 27860.08 31280.44 30050.78 23191.87 28448.84 31845.46 36880.94 340
ADS-MVSNet266.90 30763.44 31477.26 29288.06 18960.70 26468.01 37175.56 35957.57 33564.48 28069.87 36038.68 30484.10 35140.87 35367.89 27086.97 253
bld_raw_dy_0_6471.59 27169.71 27677.22 29377.82 34158.12 29887.71 27473.66 36468.01 26261.90 30584.29 25033.68 33888.43 32369.91 19470.43 25185.11 294
miper_lstm_enhance73.05 25571.73 25877.03 29483.80 27058.32 29681.76 31888.88 26369.80 24361.01 30678.23 32057.19 16087.51 33565.34 24359.53 33585.27 293
KD-MVS_2432*160069.03 29066.37 29377.01 29585.56 24261.06 25381.44 32390.25 20667.27 26958.00 32576.53 33454.49 19587.63 33348.04 32235.77 38282.34 328
miper_refine_blended69.03 29066.37 29377.01 29585.56 24261.06 25381.44 32390.25 20667.27 26958.00 32576.53 33454.49 19587.63 33348.04 32235.77 38282.34 328
ACMH+65.35 1667.65 30264.55 30676.96 29784.59 25857.10 31188.08 26580.79 34658.59 33453.00 34381.09 29326.63 36292.95 24646.51 33061.69 32380.82 341
JIA-IIPM66.06 31162.45 32076.88 29881.42 29654.45 32957.49 38688.67 27349.36 36363.86 28646.86 38456.06 17990.25 30549.53 31568.83 26285.95 277
OpenMVS_ROBcopyleft61.12 1866.39 30962.92 31776.80 29976.51 34657.77 30189.22 24883.41 33655.48 34753.86 34177.84 32326.28 36393.95 22534.90 36968.76 26378.68 360
anonymousdsp71.14 27469.37 27876.45 30072.95 35954.71 32784.19 29888.88 26361.92 31362.15 30279.77 31038.14 31391.44 29868.90 20667.45 27383.21 315
IterMVS-SCA-FT71.55 27269.97 27176.32 30181.48 29460.67 26587.64 27685.99 31366.17 27759.50 31478.88 31545.53 27883.65 35662.58 26361.93 31784.63 300
USDC67.43 30664.51 30776.19 30277.94 33955.29 32378.38 34585.00 32173.17 16048.36 36180.37 30121.23 37192.48 27052.15 30664.02 30280.81 342
LCM-MVSNet-Re72.93 25771.84 25676.18 30388.49 17348.02 35680.07 33770.17 37373.96 14552.25 34680.09 30749.98 23888.24 32567.35 21884.23 14592.28 170
pmmvs667.57 30364.76 30476.00 30472.82 36153.37 33288.71 25786.78 30653.19 35257.58 32978.03 32235.33 33392.41 27155.56 29454.88 35082.21 330
XVG-ACMP-BASELINE68.04 29965.53 29975.56 30574.06 35652.37 33578.43 34485.88 31462.03 31158.91 32081.21 29120.38 37491.15 29960.69 27368.18 26783.16 316
CL-MVSNet_self_test69.92 28268.09 28675.41 30673.25 35855.90 32090.05 22989.90 22069.96 24061.96 30476.54 33351.05 23087.64 33249.51 31650.59 36082.70 324
test_fmvs174.07 24573.69 23275.22 30778.91 32747.34 36189.06 25474.69 36263.68 29479.41 11091.59 14624.36 36487.77 33185.22 7476.26 21190.55 202
pmmvs-eth3d65.53 31662.32 32175.19 30869.39 37159.59 27982.80 31483.43 33562.52 30751.30 35172.49 34832.86 34087.16 33855.32 29550.73 35978.83 359
FMVSNet568.04 29965.66 29875.18 30984.43 26257.89 29983.54 30286.26 30961.83 31553.64 34273.30 34737.15 32485.08 34748.99 31761.77 31982.56 327
test_fmvs1_n72.69 26471.92 25574.99 31071.15 36447.08 36387.34 28075.67 35763.48 29678.08 12791.17 15320.16 37587.87 32884.65 8175.57 21590.01 208
test_040264.54 31961.09 32574.92 31184.10 26860.75 26187.95 26979.71 35152.03 35452.41 34577.20 32832.21 34591.64 28923.14 38561.03 32672.36 374
MDA-MVSNet_test_wron63.78 32460.16 32774.64 31278.15 33760.41 26883.49 30384.03 32856.17 34639.17 38071.59 35637.22 32283.24 36142.87 34648.73 36280.26 348
YYNet163.76 32560.14 32874.62 31378.06 33860.19 27383.46 30583.99 33256.18 34539.25 37971.56 35737.18 32383.34 35942.90 34548.70 36380.32 347
LTVRE_ROB59.60 1966.27 31063.54 31374.45 31484.00 26951.55 33967.08 37483.53 33458.78 33254.94 33680.31 30234.54 33593.23 24040.64 35568.03 26878.58 361
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS-HIRNet60.25 33455.55 34174.35 31584.37 26356.57 31671.64 36274.11 36334.44 38345.54 36942.24 39031.11 35189.81 31340.36 35676.10 21276.67 367
SixPastTwentyTwo64.92 31761.78 32474.34 31678.74 32949.76 34883.42 30679.51 35262.86 30350.27 35477.35 32530.92 35290.49 30345.89 33447.06 36582.78 319
test_vis1_n71.63 27070.73 26674.31 31769.63 37047.29 36286.91 28472.11 36863.21 30075.18 15790.17 17120.40 37385.76 34384.59 8274.42 22289.87 209
UnsupCasMVSNet_eth65.79 31363.10 31573.88 31870.71 36650.29 34781.09 32689.88 22172.58 17449.25 35974.77 34532.57 34387.43 33655.96 29341.04 37583.90 304
CMPMVSbinary48.56 2166.77 30864.41 30973.84 31970.65 36750.31 34677.79 34985.73 31645.54 37244.76 37182.14 27235.40 33290.14 31163.18 25874.54 22081.07 339
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
lessismore_v073.72 32072.93 36047.83 35861.72 38545.86 36773.76 34628.63 35889.81 31347.75 32731.37 38783.53 308
K. test v363.09 32659.61 33073.53 32176.26 34849.38 35383.27 30777.15 35464.35 28947.77 36372.32 35228.73 35687.79 33049.93 31436.69 38183.41 312
CVMVSNet74.04 24674.27 22373.33 32285.33 24443.94 37289.53 24288.39 28054.33 35070.37 21390.13 17349.17 24884.05 35261.83 26879.36 18191.99 178
UnsupCasMVSNet_bld61.60 33057.71 33473.29 32368.73 37251.64 33878.61 34389.05 25757.20 33946.11 36461.96 37528.70 35788.60 32050.08 31338.90 37979.63 352
MDA-MVSNet-bldmvs61.54 33157.70 33573.05 32479.53 31657.00 31483.08 31181.23 34457.57 33534.91 38372.45 34932.79 34186.26 34235.81 36641.95 37375.89 368
COLMAP_ROBcopyleft57.96 2062.98 32759.65 32972.98 32581.44 29553.00 33483.75 30175.53 36048.34 36648.81 36081.40 28524.14 36590.30 30432.95 37460.52 33175.65 369
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test0.0.03 172.76 26072.71 24672.88 32680.25 30847.99 35791.22 19289.45 23671.51 21562.51 30187.66 20853.83 20385.06 34850.16 31267.84 27285.58 284
Anonymous2023120667.53 30465.78 29572.79 32774.95 35247.59 35988.23 26487.32 29861.75 31658.07 32477.29 32737.79 31887.29 33742.91 34463.71 30483.48 310
WR-MVS_H70.59 27669.94 27272.53 32881.03 29751.43 34087.35 27992.03 13267.38 26860.23 31180.70 29555.84 18283.45 35846.33 33258.58 34082.72 322
AllTest61.66 32958.06 33372.46 32979.57 31451.42 34180.17 33568.61 37651.25 35745.88 36581.23 28719.86 37686.58 34038.98 35957.01 34379.39 353
TestCases72.46 32979.57 31451.42 34168.61 37651.25 35745.88 36581.23 28719.86 37686.58 34038.98 35957.01 34379.39 353
CP-MVSNet70.50 27769.91 27372.26 33180.71 30151.00 34387.23 28190.30 20467.84 26359.64 31382.69 26550.23 23782.30 36651.28 30759.28 33683.46 311
OurMVSNet-221017-064.68 31862.17 32272.21 33276.08 35047.35 36080.67 32981.02 34556.19 34451.60 34879.66 31227.05 36188.56 32153.60 30353.63 35380.71 343
PEN-MVS69.46 28768.56 28172.17 33379.27 31949.71 34986.90 28589.24 24467.24 27259.08 31882.51 26847.23 26483.54 35748.42 32057.12 34183.25 314
myMVS_eth3d72.58 26672.74 24472.10 33487.87 19549.45 35188.07 26689.01 25872.91 16763.11 29388.10 20063.63 9185.54 34432.73 37669.23 25981.32 336
PS-CasMVS69.86 28469.13 27972.07 33580.35 30650.57 34587.02 28389.75 22567.27 26959.19 31782.28 26946.58 26882.24 36750.69 30959.02 33783.39 313
TinyColmap60.32 33356.42 34072.00 33678.78 32853.18 33378.36 34675.64 35852.30 35341.59 37875.82 34114.76 38388.35 32435.84 36554.71 35174.46 370
DTE-MVSNet68.46 29667.33 28971.87 33777.94 33949.00 35486.16 29088.58 27766.36 27658.19 32282.21 27146.36 26983.87 35544.97 33955.17 34882.73 321
Anonymous2024052162.09 32859.08 33171.10 33867.19 37448.72 35583.91 30085.23 31950.38 36047.84 36271.22 35920.74 37285.51 34646.47 33158.75 33979.06 356
RPSCF64.24 32161.98 32371.01 33976.10 34945.00 36975.83 35675.94 35646.94 36958.96 31984.59 24531.40 34882.00 36847.76 32660.33 33486.04 274
ITE_SJBPF70.43 34074.44 35447.06 36477.32 35360.16 32554.04 34083.53 25623.30 36884.01 35343.07 34361.58 32480.21 350
Syy-MVS69.65 28569.52 27770.03 34187.87 19543.21 37488.07 26689.01 25872.91 16763.11 29388.10 20045.28 28185.54 34422.07 38769.23 25981.32 336
ambc69.61 34261.38 38341.35 37749.07 39185.86 31550.18 35666.40 36610.16 38888.14 32645.73 33544.20 36979.32 355
mvsany_test168.77 29268.56 28169.39 34373.57 35745.88 36880.93 32860.88 38659.65 32871.56 20190.26 16943.22 29075.05 37674.26 15862.70 30987.25 251
testgi64.48 32062.87 31869.31 34471.24 36240.62 37985.49 29179.92 35065.36 28354.18 33983.49 25823.74 36784.55 34941.60 35060.79 32982.77 320
testing370.38 27970.83 26369.03 34585.82 23843.93 37390.72 20990.56 19368.06 26160.24 31086.82 22164.83 7584.12 35026.33 38364.10 30079.04 357
MIMVSNet160.16 33557.33 33668.67 34669.71 36944.13 37178.92 34284.21 32655.05 34844.63 37271.85 35423.91 36681.54 37032.63 37755.03 34980.35 346
test_fmvs265.78 31464.84 30268.60 34766.54 37541.71 37683.27 30769.81 37454.38 34967.91 24784.54 24715.35 38081.22 37175.65 14566.16 28182.88 318
PM-MVS59.40 33656.59 33867.84 34863.63 37841.86 37576.76 35163.22 38359.01 33151.07 35272.27 35311.72 38683.25 36061.34 26950.28 36178.39 362
new-patchmatchnet59.30 33756.48 33967.79 34965.86 37744.19 37082.47 31581.77 34259.94 32743.65 37566.20 36727.67 35981.68 36939.34 35841.40 37477.50 365
KD-MVS_self_test60.87 33258.60 33267.68 35066.13 37639.93 38175.63 35784.70 32357.32 33849.57 35768.45 36329.55 35382.87 36248.09 32147.94 36480.25 349
pmmvs355.51 34151.50 34667.53 35157.90 38650.93 34480.37 33173.66 36440.63 38144.15 37464.75 37016.30 37878.97 37544.77 34040.98 37772.69 372
test20.0363.83 32362.65 31967.38 35270.58 36839.94 38086.57 28884.17 32763.29 29851.86 34777.30 32637.09 32582.47 36438.87 36154.13 35279.73 351
EU-MVSNet64.01 32263.01 31667.02 35374.40 35538.86 38483.27 30786.19 31145.11 37354.27 33881.15 29236.91 32780.01 37448.79 31957.02 34282.19 331
TDRefinement55.28 34251.58 34566.39 35459.53 38546.15 36676.23 35472.80 36644.60 37442.49 37676.28 33715.29 38182.39 36533.20 37343.75 37070.62 376
test_vis1_rt59.09 33857.31 33764.43 35568.44 37346.02 36783.05 31248.63 39551.96 35549.57 35763.86 37116.30 37880.20 37371.21 18262.79 30867.07 380
DSMNet-mixed56.78 34054.44 34363.79 35663.21 37929.44 39564.43 37764.10 38242.12 38051.32 35071.60 35531.76 34675.04 37736.23 36465.20 28986.87 256
dmvs_testset65.55 31566.45 29162.86 35779.87 31222.35 40076.55 35271.74 37077.42 10255.85 33387.77 20751.39 22780.69 37231.51 38265.92 28385.55 286
test_fmvs356.82 33954.86 34262.69 35853.59 38835.47 38675.87 35565.64 38143.91 37655.10 33571.43 3586.91 39474.40 37968.64 20852.63 35478.20 363
LF4IMVS54.01 34352.12 34459.69 35962.41 38139.91 38268.59 36968.28 37842.96 37944.55 37375.18 34214.09 38568.39 38541.36 35251.68 35770.78 375
new_pmnet49.31 34546.44 34857.93 36062.84 38040.74 37868.47 37062.96 38436.48 38235.09 38257.81 37914.97 38272.18 38132.86 37546.44 36660.88 382
mvsany_test348.86 34646.35 34956.41 36146.00 39431.67 39162.26 37947.25 39643.71 37745.54 36968.15 36410.84 38764.44 39357.95 28535.44 38473.13 371
test_f46.58 34743.45 35155.96 36245.18 39532.05 39061.18 38049.49 39433.39 38442.05 37762.48 3747.00 39365.56 38947.08 32943.21 37270.27 377
ANet_high40.27 35535.20 35855.47 36334.74 40234.47 38863.84 37871.56 37148.42 36518.80 39241.08 3919.52 39064.45 39220.18 3888.66 39967.49 379
EGC-MVSNET42.35 35138.09 35455.11 36474.57 35346.62 36571.63 36355.77 3870.04 4010.24 40262.70 37314.24 38474.91 37817.59 39046.06 36743.80 387
N_pmnet50.55 34449.11 34754.88 36577.17 3444.02 40884.36 2972.00 40648.59 36445.86 36768.82 36232.22 34482.80 36331.58 38051.38 35877.81 364
LCM-MVSNet40.54 35235.79 35754.76 36636.92 40130.81 39251.41 38969.02 37522.07 38924.63 38945.37 3864.56 39865.81 38833.67 37134.50 38567.67 378
FPMVS45.64 34943.10 35353.23 36751.42 39136.46 38564.97 37671.91 36929.13 38727.53 38761.55 3769.83 38965.01 39116.00 39355.58 34758.22 383
PMMVS237.93 35733.61 36050.92 36846.31 39324.76 39860.55 38350.05 39228.94 38820.93 39047.59 3834.41 40065.13 39025.14 38418.55 39462.87 381
WB-MVS46.23 34844.94 35050.11 36962.13 38221.23 40276.48 35355.49 38845.89 37135.78 38161.44 37735.54 33172.83 3809.96 39621.75 39156.27 384
APD_test140.50 35337.31 35650.09 37051.88 38935.27 38759.45 38452.59 39121.64 39026.12 38857.80 3804.56 39866.56 38722.64 38639.09 37848.43 386
test_method38.59 35635.16 35948.89 37154.33 38721.35 40145.32 39253.71 3907.41 39828.74 38651.62 3828.70 39152.87 39633.73 37032.89 38672.47 373
test_vis3_rt40.46 35437.79 35548.47 37244.49 39633.35 38966.56 37532.84 40332.39 38529.65 38539.13 3933.91 40168.65 38450.17 31140.99 37643.40 388
SSC-MVS44.51 35043.35 35247.99 37361.01 38418.90 40474.12 35954.36 38943.42 37834.10 38460.02 37834.42 33670.39 3839.14 39819.57 39254.68 385
Gipumacopyleft34.91 35831.44 36145.30 37470.99 36539.64 38319.85 39672.56 36720.10 39216.16 39621.47 3975.08 39771.16 38213.07 39443.70 37125.08 394
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft26.43 2231.84 36128.16 36442.89 37525.87 40427.58 39650.92 39049.78 39321.37 39114.17 39740.81 3922.01 40466.62 3869.61 39738.88 38034.49 393
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testf132.77 35929.47 36242.67 37641.89 39830.81 39252.07 38743.45 39715.45 39318.52 39344.82 3872.12 40258.38 39416.05 39130.87 38838.83 389
APD_test232.77 35929.47 36242.67 37641.89 39830.81 39252.07 38743.45 39715.45 39318.52 39344.82 3872.12 40258.38 39416.05 39130.87 38838.83 389
MVEpermissive24.84 2324.35 36319.77 36938.09 37834.56 40326.92 39726.57 39438.87 40111.73 39711.37 39827.44 3941.37 40550.42 39711.41 39514.60 39536.93 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft34.71 37951.45 39024.73 39928.48 40531.46 38617.49 39552.75 3815.80 39642.60 40018.18 38919.42 39336.81 392
E-PMN24.61 36224.00 36626.45 38043.74 39718.44 40560.86 38139.66 39915.11 3959.53 39922.10 3966.52 39546.94 3988.31 39910.14 39613.98 396
EMVS23.76 36423.20 36825.46 38141.52 40016.90 40660.56 38238.79 40214.62 3968.99 40020.24 3997.35 39245.82 3997.25 4009.46 39713.64 397
tmp_tt22.26 36523.75 36717.80 3825.23 40512.06 40735.26 39339.48 4002.82 40018.94 39144.20 38922.23 37024.64 40136.30 3639.31 39816.69 395
wuyk23d11.30 36710.95 37012.33 38348.05 39219.89 40325.89 3951.92 4073.58 3993.12 4011.37 4010.64 40615.77 4026.23 4017.77 4001.35 398
test1236.92 3709.21 3730.08 3840.03 4070.05 40981.65 3210.01 4090.02 4030.14 4040.85 4030.03 4070.02 4030.12 4030.00 4020.16 399
testmvs7.23 3699.62 3720.06 3850.04 4060.02 41084.98 2950.02 4080.03 4020.18 4031.21 4020.01 4080.02 4030.14 4020.01 4010.13 400
test_blank0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
uanet_test0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
DCPMVS0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
cdsmvs_eth3d_5k19.86 36626.47 3650.00 3860.00 4080.00 4110.00 39793.45 790.00 4040.00 40595.27 5649.56 2420.00 4050.00 4040.00 4020.00 401
pcd_1.5k_mvsjas4.46 3715.95 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 40453.55 2070.00 4050.00 4040.00 4020.00 401
sosnet-low-res0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
sosnet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
uncertanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
Regformer0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
ab-mvs-re7.91 36810.55 3710.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40594.95 640.00 4090.00 4050.00 4040.00 4020.00 401
uanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
WAC-MVS49.45 35131.56 381
FOURS193.95 4561.77 24093.96 7091.92 13662.14 31086.57 44
PC_three_145280.91 4594.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
test_one_060196.32 1869.74 4394.18 5271.42 21790.67 1896.85 1674.45 18
eth-test20.00 408
eth-test0.00 408
ZD-MVS96.63 965.50 14793.50 7770.74 23185.26 5995.19 6164.92 7497.29 7687.51 5593.01 54
RE-MVS-def80.48 13192.02 9258.56 29490.90 20190.45 19462.76 30478.89 11694.46 7849.30 24578.77 12786.77 12392.28 170
IU-MVS96.46 1169.91 3795.18 1780.75 4695.28 192.34 2195.36 1396.47 25
test_241102_TWO94.41 4371.65 20692.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 16
test_241102_ONE96.45 1269.38 4894.44 4171.65 20692.11 697.05 776.79 999.11 6
9.1487.63 2693.86 4794.41 5294.18 5272.76 17186.21 4696.51 2466.64 5697.88 4490.08 3894.04 37
save fliter93.84 4867.89 8695.05 3992.66 10978.19 85
test_0728_THIRD72.48 17690.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 26
test072696.40 1569.99 3396.76 794.33 4971.92 19291.89 1097.11 673.77 21
GSMVS94.68 88
test_part296.29 1968.16 8090.78 16
sam_mvs157.85 15494.68 88
sam_mvs54.91 192
MTGPAbinary92.23 122
test_post178.95 34120.70 39853.05 21291.50 29760.43 274
test_post23.01 39556.49 17492.67 261
patchmatchnet-post67.62 36557.62 15790.25 305
MTMP93.77 8432.52 404
gm-plane-assit88.42 17767.04 10978.62 8291.83 14197.37 7076.57 139
test9_res89.41 3994.96 1895.29 63
TEST994.18 4167.28 10194.16 5893.51 7571.75 20385.52 5495.33 5168.01 4697.27 80
test_894.19 4067.19 10394.15 6193.42 8171.87 19785.38 5795.35 5068.19 4496.95 102
agg_prior286.41 6694.75 2995.33 59
agg_prior94.16 4366.97 11193.31 8484.49 6596.75 111
test_prior467.18 10593.92 73
test_prior295.10 3875.40 12485.25 6095.61 4567.94 4787.47 5694.77 25
旧先验292.00 15559.37 33087.54 3893.47 23775.39 147
新几何291.41 176
旧先验191.94 9660.74 26291.50 15994.36 8265.23 6991.84 6994.55 95
无先验92.71 12192.61 11362.03 31197.01 9366.63 22593.97 120
原ACMM292.01 152
test22289.77 14361.60 24589.55 24089.42 23856.83 34277.28 13692.43 13052.76 21591.14 8393.09 146
testdata296.09 12961.26 270
segment_acmp65.94 62
testdata189.21 24977.55 98
plane_prior786.94 21761.51 246
plane_prior687.23 20962.32 23050.66 232
plane_prior591.31 16595.55 15876.74 13778.53 19088.39 233
plane_prior489.14 184
plane_prior361.95 23879.09 7272.53 186
plane_prior293.13 10578.81 79
plane_prior187.15 211
plane_prior62.42 22693.85 7779.38 6478.80 187
n20.00 410
nn0.00 410
door-mid66.01 380
test1193.01 96
door66.57 379
HQP5-MVS63.66 197
HQP-NCC87.54 20294.06 6379.80 5774.18 165
ACMP_Plane87.54 20294.06 6379.80 5774.18 165
BP-MVS77.63 134
HQP4-MVS74.18 16595.61 15388.63 226
HQP3-MVS91.70 15178.90 185
HQP2-MVS51.63 225
NP-MVS87.41 20563.04 21290.30 167
MDTV_nov1_ep13_2view59.90 27680.13 33667.65 26672.79 18154.33 20059.83 27892.58 161
MDTV_nov1_ep1372.61 24789.06 16268.48 6980.33 33290.11 21271.84 19971.81 19775.92 34053.01 21393.92 22648.04 32273.38 229
ACMMP++_ref71.63 243
ACMMP++69.72 253
Test By Simon54.21 201