This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PS-MVSNAJ88.14 1687.61 2789.71 692.06 9176.72 195.75 2093.26 8583.86 1489.55 2996.06 3653.55 20797.89 4391.10 3193.31 5194.54 97
DPM-MVS90.70 290.52 791.24 189.68 14576.68 297.29 195.35 1382.87 2091.58 1297.22 379.93 599.10 983.12 9297.64 297.94 1
xiu_mvs_v2_base87.92 2187.38 3189.55 1191.41 11476.43 395.74 2193.12 9383.53 1789.55 2995.95 3853.45 21197.68 5091.07 3292.62 5894.54 97
MG-MVS87.11 3286.27 4189.62 797.79 176.27 494.96 4394.49 3978.74 8183.87 7292.94 11764.34 8196.94 10375.19 14894.09 3695.66 47
CHOSEN 1792x268884.98 6583.45 8089.57 1089.94 14075.14 592.07 14992.32 11981.87 3175.68 15088.27 19560.18 13098.60 2780.46 11390.27 9194.96 77
MVS84.66 6982.86 9590.06 290.93 12174.56 687.91 27095.54 1268.55 25872.35 19294.71 7359.78 13698.90 1981.29 10894.69 3196.74 13
DELS-MVS90.05 690.09 1089.94 493.14 6673.88 797.01 494.40 4588.32 385.71 5294.91 6874.11 1998.91 1787.26 5995.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 1189.33 185.77 5196.26 3072.84 2699.38 192.64 1995.93 997.08 9
LFMVS84.34 7482.73 9789.18 1294.76 3373.25 994.99 4291.89 13971.90 19482.16 8393.49 10847.98 25897.05 8982.55 9684.82 13797.25 7
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2299.07 1392.01 2494.77 2596.51 21
No_MVS89.60 897.31 473.22 1095.05 2299.07 1392.01 2494.77 2596.51 21
OPU-MVS89.97 397.52 373.15 1296.89 597.00 983.82 299.15 295.72 597.63 397.62 2
PAPM85.89 5085.46 5587.18 4288.20 18772.42 1392.41 13692.77 10482.11 2980.34 10093.07 11468.27 4395.02 17378.39 13093.59 4794.09 114
canonicalmvs86.85 3586.25 4388.66 1891.80 10271.92 1493.54 9491.71 14980.26 5287.55 3795.25 5863.59 9496.93 10588.18 4984.34 14197.11 8
iter_conf0583.27 9682.70 9884.98 11293.32 5971.84 1594.16 5881.76 34382.74 2173.83 17288.40 19172.77 2794.61 18982.10 9875.21 21688.48 230
OpenMVScopyleft70.45 1178.54 18175.92 20086.41 6985.93 23771.68 1692.74 11992.51 11666.49 27564.56 27991.96 13943.88 28798.10 3754.61 29790.65 8789.44 219
QAPM79.95 15477.39 18087.64 3089.63 14671.41 1793.30 10193.70 6865.34 28467.39 25791.75 14347.83 26098.96 1657.71 28789.81 9392.54 162
3Dnovator73.91 682.69 10880.82 12388.31 2389.57 14771.26 1892.60 12994.39 4678.84 7867.89 24992.48 12948.42 25398.52 2868.80 20794.40 3495.15 71
MVSFormer83.75 8982.88 9486.37 7089.24 15971.18 1989.07 25290.69 18765.80 27987.13 3994.34 8764.99 7192.67 26172.83 16491.80 7095.27 66
lupinMVS87.74 2387.77 2587.63 3489.24 15971.18 1996.57 1192.90 10182.70 2387.13 3995.27 5664.99 7195.80 14089.34 4191.80 7095.93 40
alignmvs87.28 3086.97 3588.24 2491.30 11571.14 2195.61 2593.56 7379.30 6687.07 4195.25 5868.43 4296.93 10587.87 5184.33 14296.65 14
MM88.92 1371.10 2297.02 396.04 688.70 291.57 1396.19 3370.12 3698.91 1796.83 195.06 1696.76 12
MVS_030490.01 790.50 888.53 2090.14 13670.94 2396.47 1395.72 1087.33 489.60 2896.26 3068.44 4198.74 2495.82 494.72 3095.90 42
ET-MVSNet_ETH3D84.01 8283.15 9086.58 6290.78 12670.89 2494.74 4794.62 3581.44 3858.19 32293.64 10473.64 2392.35 27582.66 9478.66 18996.50 24
CSCG86.87 3486.26 4288.72 1595.05 3170.79 2593.83 8295.33 1468.48 26077.63 13194.35 8673.04 2498.45 3084.92 7993.71 4596.92 11
CNVR-MVS90.32 590.89 688.61 1996.76 870.65 2696.47 1394.83 2684.83 1189.07 3196.80 1970.86 3499.06 1592.64 1995.71 1096.12 35
API-MVS82.28 11280.53 13087.54 3596.13 2270.59 2793.63 9091.04 18265.72 28175.45 15592.83 12256.11 17898.89 2064.10 25089.75 9693.15 144
jason86.40 4086.17 4487.11 4486.16 23170.54 2895.71 2492.19 12782.00 3084.58 6494.34 8761.86 11395.53 16087.76 5290.89 8495.27 66
jason: jason.
test_0728_SECOND88.70 1696.45 1270.43 2996.64 994.37 4799.15 291.91 2794.90 2196.51 21
PatchmatchNetpermissive77.46 19774.63 21585.96 7989.55 14970.35 3079.97 33989.55 23372.23 18570.94 20576.91 33257.03 16292.79 25654.27 29981.17 16694.74 86
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
IB-MVS77.80 482.18 11380.46 13287.35 3989.14 16170.28 3195.59 2695.17 1878.85 7770.19 21685.82 23370.66 3597.67 5172.19 17566.52 27994.09 114
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
SCA75.82 22672.76 24385.01 11186.63 22170.08 3281.06 32789.19 24771.60 21170.01 21877.09 33045.53 27890.25 30560.43 27473.27 23094.68 88
DVP-MVScopyleft89.41 1289.73 1388.45 2296.40 1569.99 3396.64 994.52 3771.92 19290.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3396.76 794.33 4971.92 19291.89 1097.11 673.77 21
VNet86.20 4485.65 5487.84 2793.92 4669.99 3395.73 2395.94 778.43 8386.00 4993.07 11458.22 15197.00 9485.22 7484.33 14296.52 20
MS-PatchMatch77.90 19376.50 19182.12 20085.99 23369.95 3691.75 16892.70 10673.97 14462.58 30084.44 24841.11 29795.78 14163.76 25392.17 6480.62 344
testing22285.18 6184.69 6686.63 5992.91 7169.91 3792.61 12895.80 980.31 5180.38 9992.27 13468.73 4095.19 17075.94 14383.27 14994.81 85
DVP-MVS++90.53 391.09 488.87 1497.31 469.91 3793.96 7094.37 4772.48 17692.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
IU-MVS96.46 1169.91 3795.18 1780.75 4695.28 192.34 2195.36 1396.47 25
MVS_Test84.16 8083.20 8787.05 4791.56 10869.82 4089.99 23392.05 13077.77 9282.84 7786.57 22363.93 8696.09 12974.91 15389.18 9995.25 69
VDDNet80.50 14178.26 16387.21 4186.19 22969.79 4194.48 5091.31 16560.42 32279.34 11190.91 15638.48 30996.56 11782.16 9781.05 16795.27 66
MVS_111021_HR86.19 4585.80 5287.37 3893.17 6569.79 4193.99 6993.76 6479.08 7378.88 11993.99 9762.25 11098.15 3685.93 7191.15 8294.15 111
test_one_060196.32 1869.74 4394.18 5271.42 21790.67 1896.85 1674.45 18
CANet89.61 1189.99 1188.46 2194.39 3969.71 4496.53 1293.78 6186.89 689.68 2795.78 4065.94 6299.10 992.99 1693.91 4096.58 18
EPMVS78.49 18275.98 19986.02 7791.21 11769.68 4580.23 33491.20 16975.25 12672.48 18878.11 32154.65 19393.69 23257.66 28883.04 15094.69 87
GG-mvs-BLEND86.53 6591.91 9969.67 4675.02 35894.75 2978.67 12390.85 15777.91 794.56 19572.25 17293.74 4395.36 58
Effi-MVS+83.82 8682.76 9686.99 4989.56 14869.40 4791.35 18586.12 31272.59 17383.22 7592.81 12359.60 13896.01 13781.76 10187.80 11095.56 51
SED-MVS89.94 890.36 988.70 1696.45 1269.38 4896.89 594.44 4171.65 20692.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
test_241102_ONE96.45 1269.38 4894.44 4171.65 20692.11 697.05 776.79 999.11 6
WTY-MVS86.32 4285.81 5187.85 2692.82 7469.37 5095.20 3495.25 1582.71 2281.91 8494.73 7267.93 4897.63 5679.55 11782.25 15696.54 19
casdiffmvs_mvgpermissive85.66 5585.18 5887.09 4588.22 18669.35 5193.74 8691.89 13981.47 3580.10 10291.45 14764.80 7696.35 12187.23 6087.69 11195.58 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_yl84.28 7583.16 8887.64 3094.52 3769.24 5295.78 1895.09 2069.19 25081.09 9192.88 12057.00 16497.44 6681.11 10981.76 16196.23 33
DCV-MVSNet84.28 7583.16 8887.64 3094.52 3769.24 5295.78 1895.09 2069.19 25081.09 9192.88 12057.00 16497.44 6681.11 10981.76 16196.23 33
cascas78.18 18675.77 20285.41 9787.14 21269.11 5492.96 11291.15 17366.71 27370.47 21086.07 23037.49 32096.48 12070.15 19179.80 17790.65 199
iter_conf_final81.74 12280.93 12284.18 14692.66 8069.10 5592.94 11382.80 34179.01 7674.85 16088.40 19161.83 11594.61 18979.36 11876.52 20988.83 221
casdiffmvspermissive85.37 5884.87 6486.84 5188.25 18469.07 5693.04 10991.76 14681.27 4180.84 9692.07 13864.23 8296.06 13384.98 7887.43 11595.39 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NCCC89.07 1489.46 1487.91 2596.60 1069.05 5796.38 1594.64 3484.42 1286.74 4396.20 3266.56 5898.76 2389.03 4694.56 3295.92 41
MVSTER82.47 10982.05 10683.74 15592.68 7969.01 5891.90 15893.21 8679.83 5672.14 19385.71 23574.72 1694.72 18475.72 14472.49 23887.50 241
FMVSNet377.73 19476.04 19882.80 17791.20 11868.99 5991.87 15991.99 13373.35 15867.04 26083.19 26156.62 17292.14 27859.80 27969.34 25687.28 249
MSLP-MVS++86.27 4385.91 5087.35 3992.01 9468.97 6095.04 4092.70 10679.04 7581.50 8796.50 2558.98 14696.78 11083.49 9093.93 3996.29 30
test1287.09 4594.60 3668.86 6192.91 10082.67 8165.44 6797.55 6293.69 4694.84 83
nrg03080.93 13579.86 13984.13 14883.69 27268.83 6293.23 10391.20 16975.55 12175.06 15888.22 19963.04 10394.74 18381.88 10066.88 27688.82 224
SD-MVS87.49 2687.49 2987.50 3693.60 5368.82 6393.90 7492.63 11276.86 10587.90 3595.76 4166.17 5997.63 5689.06 4591.48 7696.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
baseline85.01 6484.44 6886.71 5688.33 18168.73 6490.24 22491.82 14581.05 4481.18 9092.50 12663.69 9096.08 13284.45 8386.71 12595.32 61
SMA-MVScopyleft88.14 1688.29 2087.67 2993.21 6368.72 6593.85 7794.03 5774.18 13991.74 1196.67 2165.61 6698.42 3389.24 4396.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
xiu_mvs_v1_base_debu82.16 11481.12 11785.26 10586.42 22468.72 6592.59 13190.44 19773.12 16284.20 6794.36 8238.04 31495.73 14584.12 8586.81 12091.33 187
xiu_mvs_v1_base82.16 11481.12 11785.26 10586.42 22468.72 6592.59 13190.44 19773.12 16284.20 6794.36 8238.04 31495.73 14584.12 8586.81 12091.33 187
xiu_mvs_v1_base_debi82.16 11481.12 11785.26 10586.42 22468.72 6592.59 13190.44 19773.12 16284.20 6794.36 8238.04 31495.73 14584.12 8586.81 12091.33 187
MDTV_nov1_ep1372.61 24789.06 16268.48 6980.33 33290.11 21271.84 19971.81 19775.92 34053.01 21393.92 22648.04 32273.38 229
CostFormer82.33 11181.15 11685.86 8389.01 16468.46 7082.39 31693.01 9675.59 12080.25 10181.57 28172.03 3294.96 17679.06 12377.48 20094.16 110
mvs_anonymous81.36 12779.99 13785.46 9590.39 13268.40 7186.88 28690.61 19274.41 13470.31 21584.67 24463.79 8892.32 27673.13 16185.70 13295.67 46
gg-mvs-nofinetune77.18 20174.31 22285.80 8691.42 11268.36 7271.78 36194.72 3049.61 36277.12 13845.92 38577.41 893.98 22367.62 21793.16 5395.05 74
DeepC-MVS_fast79.48 287.95 2088.00 2387.79 2895.86 2768.32 7395.74 2194.11 5583.82 1583.49 7396.19 3364.53 8098.44 3183.42 9194.88 2496.61 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PAPR85.15 6284.47 6787.18 4296.02 2568.29 7491.85 16193.00 9876.59 11279.03 11595.00 6361.59 11797.61 5878.16 13189.00 10095.63 48
tpmrst80.57 13979.14 15484.84 11690.10 13768.28 7581.70 32089.72 23077.63 9775.96 14779.54 31364.94 7392.71 25875.43 14677.28 20393.55 133
thisisatest051583.41 9382.49 10286.16 7589.46 15168.26 7693.54 9494.70 3174.31 13775.75 14890.92 15572.62 2896.52 11969.64 19581.50 16493.71 129
tpm279.80 15677.95 16985.34 10188.28 18268.26 7681.56 32291.42 16270.11 23877.59 13380.50 29967.40 5194.26 20867.34 21977.35 20193.51 134
HPM-MVS++copyleft89.37 1389.95 1287.64 3095.10 3068.23 7895.24 3394.49 3982.43 2588.90 3296.35 2771.89 3398.63 2688.76 4796.40 696.06 36
dcpmvs_287.37 2987.55 2886.85 5095.04 3268.20 7990.36 21990.66 19079.37 6581.20 8993.67 10374.73 1596.55 11890.88 3492.00 6795.82 44
test_part296.29 1968.16 8090.78 16
HyFIR lowres test81.03 13479.56 14485.43 9687.81 19868.11 8190.18 22590.01 21870.65 23272.95 17986.06 23163.61 9394.50 19975.01 15179.75 17893.67 130
TSAR-MVS + MP.88.11 1888.64 1686.54 6491.73 10368.04 8290.36 21993.55 7482.89 1991.29 1592.89 11972.27 3096.03 13587.99 5094.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
diffmvspermissive84.28 7583.83 7385.61 9287.40 20668.02 8390.88 20389.24 24480.54 4781.64 8692.52 12559.83 13594.52 19887.32 5885.11 13594.29 104
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CR-MVSNet73.79 25070.82 26582.70 18083.15 27867.96 8470.25 36484.00 33073.67 15469.97 22072.41 35057.82 15589.48 31652.99 30573.13 23190.64 200
RPMNet70.42 27865.68 29784.63 13083.15 27867.96 8470.25 36490.45 19446.83 37069.97 22065.10 36956.48 17595.30 16835.79 36773.13 23190.64 200
save fliter93.84 4867.89 8695.05 3992.66 10978.19 85
V4276.46 21474.55 21882.19 19779.14 32367.82 8790.26 22389.42 23873.75 15068.63 23881.89 27451.31 22894.09 21371.69 17964.84 29284.66 298
tpm cat175.30 23372.21 25284.58 13288.52 17267.77 8878.16 34888.02 29161.88 31468.45 24176.37 33660.65 12594.03 22153.77 30274.11 22491.93 179
HY-MVS76.49 584.28 7583.36 8687.02 4892.22 8867.74 8984.65 29694.50 3879.15 7082.23 8287.93 20466.88 5496.94 10380.53 11282.20 15796.39 28
VDD-MVS83.06 10081.81 11186.81 5390.86 12467.70 9095.40 2991.50 15975.46 12281.78 8592.34 13340.09 30097.13 8786.85 6482.04 15895.60 49
FMVSNet276.07 21774.01 22882.26 19488.85 16667.66 9191.33 18691.61 15470.84 22765.98 26782.25 27048.03 25592.00 28358.46 28468.73 26487.10 252
CLD-MVS82.73 10582.35 10583.86 15387.90 19467.65 9295.45 2892.18 12885.06 1072.58 18592.27 13452.46 21895.78 14184.18 8479.06 18488.16 236
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SDMVSNet80.26 14678.88 15684.40 13889.25 15667.63 9385.35 29293.02 9576.77 10970.84 20787.12 21747.95 25996.09 12985.04 7674.55 21889.48 217
DPE-MVScopyleft88.77 1589.21 1587.45 3796.26 2067.56 9494.17 5794.15 5468.77 25690.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
131480.70 13878.95 15585.94 8087.77 20067.56 9487.91 27092.55 11572.17 18867.44 25493.09 11250.27 23697.04 9271.68 18087.64 11293.23 142
ACMMP_NAP86.05 4785.80 5286.80 5491.58 10767.53 9691.79 16393.49 7874.93 13084.61 6395.30 5359.42 14097.92 4186.13 6894.92 1994.94 79
PVSNet_BlendedMVS83.38 9483.43 8183.22 17193.76 4967.53 9694.06 6393.61 7179.13 7181.00 9485.14 23863.19 10097.29 7687.08 6173.91 22784.83 297
PVSNet_Blended86.73 3886.86 3886.31 7393.76 4967.53 9696.33 1693.61 7182.34 2781.00 9493.08 11363.19 10097.29 7687.08 6191.38 7894.13 112
SF-MVS87.03 3387.09 3386.84 5192.70 7867.45 9993.64 8993.76 6470.78 23086.25 4596.44 2666.98 5397.79 4788.68 4894.56 3295.28 65
test_prior86.42 6894.71 3567.35 10093.10 9496.84 10895.05 74
TEST994.18 4167.28 10194.16 5893.51 7571.75 20385.52 5495.33 5168.01 4697.27 80
train_agg87.21 3187.42 3086.60 6094.18 4167.28 10194.16 5893.51 7571.87 19785.52 5495.33 5168.19 4497.27 8089.09 4494.90 2195.25 69
test_894.19 4067.19 10394.15 6193.42 8171.87 19785.38 5795.35 5068.19 4496.95 102
CDPH-MVS85.71 5385.46 5586.46 6694.75 3467.19 10393.89 7592.83 10370.90 22683.09 7695.28 5463.62 9297.36 7180.63 11194.18 3594.84 83
test_prior467.18 10593.92 73
v2v48277.42 19875.65 20582.73 17980.38 30567.13 10691.85 16190.23 20875.09 12869.37 22483.39 25953.79 20594.44 20071.77 17765.00 29186.63 261
DP-MVS Recon82.73 10581.65 11285.98 7897.31 467.06 10795.15 3691.99 13369.08 25376.50 14593.89 9954.48 19798.20 3570.76 18685.66 13392.69 157
tpmvs72.88 25969.76 27582.22 19590.98 12067.05 10878.22 34788.30 28363.10 30264.35 28474.98 34355.09 19094.27 20643.25 34269.57 25585.34 291
gm-plane-assit88.42 17767.04 10978.62 8291.83 14197.37 7076.57 139
ETV-MVS86.01 4886.11 4585.70 9090.21 13567.02 11093.43 9991.92 13681.21 4284.13 7094.07 9660.93 12495.63 15189.28 4289.81 9394.46 103
agg_prior94.16 4366.97 11193.31 8484.49 6596.75 111
ADS-MVSNet68.54 29564.38 31081.03 22888.06 18966.90 11268.01 37184.02 32957.57 33564.48 28069.87 36038.68 30489.21 31840.87 35367.89 27086.97 253
CANet_DTU84.09 8183.52 7585.81 8590.30 13366.82 11391.87 15989.01 25885.27 986.09 4893.74 10147.71 26296.98 9877.90 13389.78 9593.65 131
v875.35 23273.26 23781.61 21180.67 30266.82 11389.54 24189.27 24371.65 20663.30 29280.30 30354.99 19194.06 21667.33 22062.33 31383.94 303
3Dnovator+73.60 782.10 11780.60 12986.60 6090.89 12366.80 11595.20 3493.44 8074.05 14167.42 25592.49 12849.46 24397.65 5570.80 18591.68 7295.33 59
PAPM_NR82.97 10281.84 11086.37 7094.10 4466.76 11687.66 27592.84 10269.96 24074.07 16993.57 10663.10 10297.50 6470.66 18890.58 8894.85 80
v1074.77 23972.54 24981.46 21480.33 30766.71 11789.15 25189.08 25570.94 22563.08 29579.86 30852.52 21794.04 21965.70 23862.17 31483.64 306
DeepC-MVS77.85 385.52 5785.24 5786.37 7088.80 16966.64 11892.15 14393.68 6981.07 4376.91 14193.64 10462.59 10698.44 3185.50 7292.84 5794.03 118
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline181.84 12081.03 12184.28 14491.60 10666.62 11991.08 19791.66 15381.87 3174.86 15991.67 14569.98 3794.92 17971.76 17864.75 29491.29 192
v114476.73 21274.88 21282.27 19280.23 30966.60 12091.68 17090.21 21073.69 15269.06 22981.89 27452.73 21694.40 20169.21 20265.23 28885.80 280
PVSNet_Blended_VisFu83.97 8383.50 7785.39 9890.02 13866.59 12193.77 8491.73 14777.43 10177.08 14089.81 17763.77 8996.97 10079.67 11688.21 10692.60 160
v14419276.05 22074.03 22782.12 20079.50 31766.55 12291.39 18089.71 23172.30 18368.17 24281.33 28651.75 22394.03 22167.94 21364.19 29885.77 281
VPNet78.82 17377.53 17582.70 18084.52 25966.44 12393.93 7292.23 12280.46 4972.60 18488.38 19349.18 24793.13 24172.47 17163.97 30388.55 229
SteuartSystems-ACMMP86.82 3786.90 3786.58 6290.42 13066.38 12496.09 1793.87 5977.73 9384.01 7195.66 4363.39 9697.94 4087.40 5793.55 4895.42 53
Skip Steuart: Steuart Systems R&D Blog.
v192192075.63 23073.49 23582.06 20479.38 31866.35 12591.07 19989.48 23471.98 19167.99 24381.22 28949.16 24993.90 22766.56 22664.56 29785.92 279
MVP-Stereo77.12 20376.23 19579.79 25781.72 29366.34 12689.29 24690.88 18470.56 23462.01 30382.88 26349.34 24494.13 21165.55 24193.80 4178.88 358
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
GA-MVS78.33 18576.23 19584.65 12883.65 27366.30 12791.44 17490.14 21176.01 11770.32 21484.02 25242.50 29294.72 18470.98 18377.00 20592.94 152
APDe-MVScopyleft87.54 2587.84 2486.65 5896.07 2366.30 12794.84 4593.78 6169.35 24788.39 3396.34 2867.74 4997.66 5490.62 3693.44 4996.01 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
v119275.98 22273.92 22982.15 19879.73 31366.24 12991.22 19289.75 22572.67 17268.49 24081.42 28449.86 24094.27 20667.08 22265.02 29085.95 277
dp75.01 23772.09 25383.76 15489.28 15566.22 13079.96 34089.75 22571.16 22067.80 25177.19 32951.81 22292.54 26750.39 31071.44 24792.51 164
EPNet87.84 2288.38 1886.23 7493.30 6066.05 13195.26 3294.84 2587.09 588.06 3494.53 7766.79 5597.34 7383.89 8891.68 7295.29 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ppachtmachnet_test67.72 30163.70 31279.77 25878.92 32566.04 13288.68 25882.90 34060.11 32655.45 33475.96 33939.19 30390.55 30139.53 35752.55 35682.71 323
v124075.21 23572.98 24081.88 20679.20 32066.00 13390.75 20889.11 25371.63 21067.41 25681.22 28947.36 26393.87 22865.46 24264.72 29585.77 281
baseline283.68 9283.42 8384.48 13687.37 20766.00 13390.06 22895.93 879.71 6069.08 22890.39 16577.92 696.28 12378.91 12581.38 16591.16 194
PCF-MVS73.15 979.29 16377.63 17384.29 14386.06 23265.96 13587.03 28291.10 17569.86 24269.79 22390.64 15857.54 15896.59 11464.37 24982.29 15490.32 203
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MAR-MVS84.18 7983.43 8186.44 6796.25 2165.93 13694.28 5594.27 5174.41 13479.16 11495.61 4553.99 20298.88 2169.62 19793.26 5294.50 101
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Fast-Effi-MVS+81.14 13080.01 13684.51 13590.24 13465.86 13794.12 6289.15 25073.81 14975.37 15688.26 19657.26 15994.53 19766.97 22484.92 13693.15 144
AdaColmapbinary78.94 17077.00 18684.76 12296.34 1765.86 13792.66 12687.97 29462.18 30970.56 20992.37 13243.53 28897.35 7264.50 24882.86 15191.05 196
thres20079.66 15778.33 16183.66 16192.54 8365.82 13993.06 10796.31 374.90 13173.30 17688.66 18659.67 13795.61 15347.84 32578.67 18889.56 216
BH-RMVSNet79.46 16277.65 17284.89 11491.68 10565.66 14093.55 9388.09 29072.93 16673.37 17591.12 15446.20 27496.12 12856.28 29285.61 13492.91 153
ZNCC-MVS85.33 5985.08 6086.06 7693.09 6865.65 14193.89 7593.41 8273.75 15079.94 10494.68 7460.61 12798.03 3882.63 9593.72 4494.52 99
thisisatest053081.15 12980.07 13484.39 13988.26 18365.63 14291.40 17894.62 3571.27 21970.93 20689.18 18272.47 2996.04 13465.62 23976.89 20691.49 183
MP-MVS-pluss85.24 6085.13 5985.56 9391.42 11265.59 14391.54 17392.51 11674.56 13380.62 9795.64 4459.15 14497.00 9486.94 6393.80 4194.07 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FE-MVS75.97 22373.02 23984.82 11789.78 14265.56 14477.44 35091.07 17964.55 28772.66 18279.85 30946.05 27696.69 11254.97 29680.82 17092.21 175
PHI-MVS86.83 3686.85 3986.78 5593.47 5765.55 14595.39 3095.10 1971.77 20285.69 5396.52 2362.07 11198.77 2286.06 7095.60 1196.03 38
114514_t79.17 16577.67 17183.68 15995.32 2965.53 14692.85 11691.60 15563.49 29567.92 24690.63 16046.65 26795.72 14967.01 22383.54 14789.79 211
ZD-MVS96.63 965.50 14793.50 7770.74 23185.26 5995.19 6164.92 7497.29 7687.51 5593.01 54
ab-mvs80.18 14878.31 16285.80 8688.44 17665.49 14883.00 31392.67 10871.82 20077.36 13585.01 23954.50 19496.59 11476.35 14175.63 21495.32 61
TSAR-MVS + GP.87.96 1988.37 1986.70 5793.51 5665.32 14995.15 3693.84 6078.17 8685.93 5094.80 7175.80 1398.21 3489.38 4088.78 10196.59 16
GST-MVS84.63 7084.29 7085.66 9192.82 7465.27 15093.04 10993.13 9273.20 15978.89 11694.18 9359.41 14197.85 4581.45 10492.48 6193.86 126
pmmvs473.92 24871.81 25780.25 24279.17 32165.24 15187.43 27887.26 30067.64 26763.46 29083.91 25448.96 25191.53 29662.94 25965.49 28483.96 302
APD-MVScopyleft85.93 4985.99 4885.76 8895.98 2665.21 15293.59 9292.58 11466.54 27486.17 4795.88 3963.83 8797.00 9486.39 6792.94 5595.06 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
miper_enhance_ethall78.86 17277.97 16881.54 21388.00 19265.17 15391.41 17689.15 25075.19 12768.79 23583.98 25367.17 5292.82 25372.73 16765.30 28586.62 262
MTAPA83.91 8483.38 8585.50 9491.89 10065.16 15481.75 31992.23 12275.32 12580.53 9895.21 6056.06 17997.16 8584.86 8092.55 6094.18 108
GBi-Net75.65 22873.83 23081.10 22488.85 16665.11 15590.01 23090.32 20070.84 22767.04 26080.25 30448.03 25591.54 29359.80 27969.34 25686.64 258
test175.65 22873.83 23081.10 22488.85 16665.11 15590.01 23090.32 20070.84 22767.04 26080.25 30448.03 25591.54 29359.80 27969.34 25686.64 258
FMVSNet172.71 26269.91 27381.10 22483.60 27465.11 15590.01 23090.32 20063.92 29163.56 28980.25 30436.35 32991.54 29354.46 29866.75 27786.64 258
HFP-MVS84.73 6884.40 6985.72 8993.75 5165.01 15893.50 9693.19 8972.19 18679.22 11394.93 6659.04 14597.67 5181.55 10292.21 6294.49 102
PVSNet73.49 880.05 15178.63 15884.31 14290.92 12264.97 15992.47 13591.05 18179.18 6972.43 19090.51 16237.05 32694.06 21668.06 21186.00 13093.90 125
Anonymous2024052976.84 20974.15 22584.88 11591.02 11964.95 16093.84 8091.09 17653.57 35173.00 17787.42 21235.91 33097.32 7469.14 20372.41 24092.36 166
cl2277.94 19176.78 18881.42 21587.57 20164.93 16190.67 21088.86 26572.45 17867.63 25382.68 26664.07 8392.91 25171.79 17665.30 28586.44 263
our_test_368.29 29764.69 30579.11 27178.92 32564.85 16288.40 26385.06 32060.32 32452.68 34476.12 33840.81 29889.80 31544.25 34155.65 34682.67 326
tpm78.58 18077.03 18483.22 17185.94 23664.56 16383.21 31091.14 17478.31 8473.67 17379.68 31164.01 8492.09 28166.07 23471.26 24893.03 149
Anonymous20240521177.96 19075.33 20985.87 8293.73 5264.52 16494.85 4485.36 31862.52 30776.11 14690.18 17029.43 35597.29 7668.51 20977.24 20495.81 45
tfpn200view978.79 17577.43 17682.88 17692.21 8964.49 16592.05 15096.28 473.48 15671.75 19888.26 19660.07 13395.32 16545.16 33677.58 19788.83 221
thres40078.68 17777.43 17682.43 18692.21 8964.49 16592.05 15096.28 473.48 15671.75 19888.26 19660.07 13395.32 16545.16 33677.58 19787.48 242
VPA-MVSNet79.03 16778.00 16782.11 20385.95 23464.48 16793.22 10494.66 3375.05 12974.04 17084.95 24052.17 22093.52 23574.90 15467.04 27588.32 235
CDS-MVSNet81.43 12680.74 12483.52 16286.26 22864.45 16892.09 14790.65 19175.83 11973.95 17189.81 17763.97 8592.91 25171.27 18182.82 15293.20 143
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v14876.19 21574.47 22081.36 21680.05 31164.44 16991.75 16890.23 20873.68 15367.13 25980.84 29455.92 18193.86 23068.95 20561.73 32185.76 283
XXY-MVS77.94 19176.44 19282.43 18682.60 28464.44 16992.01 15291.83 14473.59 15570.00 21985.82 23354.43 19894.76 18169.63 19668.02 26988.10 237
MIMVSNet71.64 26968.44 28381.23 21981.97 29264.44 16973.05 36088.80 26769.67 24464.59 27774.79 34432.79 34187.82 32953.99 30076.35 21091.42 185
miper_ehance_all_eth77.60 19576.44 19281.09 22785.70 24164.41 17290.65 21188.64 27572.31 18267.37 25882.52 26764.77 7792.64 26570.67 18765.30 28586.24 267
Patchmtry67.53 30463.93 31178.34 27682.12 29064.38 17368.72 36884.00 33048.23 36759.24 31572.41 35057.82 15589.27 31746.10 33356.68 34581.36 335
fmvsm_l_conf0.5_n87.49 2688.19 2185.39 9886.95 21664.37 17494.30 5488.45 27980.51 4892.70 496.86 1569.98 3797.15 8695.83 388.08 10894.65 91
ACMMPR84.37 7284.06 7185.28 10393.56 5464.37 17493.50 9693.15 9172.19 18678.85 12194.86 6956.69 17197.45 6581.55 10292.20 6394.02 119
BH-w/o80.49 14279.30 15184.05 15090.83 12564.36 17693.60 9189.42 23874.35 13669.09 22790.15 17255.23 18795.61 15364.61 24786.43 12992.17 176
region2R84.36 7384.03 7285.36 10093.54 5564.31 17793.43 9992.95 9972.16 18978.86 12094.84 7056.97 16697.53 6381.38 10692.11 6594.24 106
新几何184.73 12392.32 8564.28 17891.46 16159.56 32979.77 10692.90 11856.95 16796.57 11663.40 25492.91 5693.34 138
原ACMM184.42 13793.21 6364.27 17993.40 8365.39 28279.51 10992.50 12658.11 15396.69 11265.27 24493.96 3892.32 168
MP-MVScopyleft85.02 6384.97 6285.17 10892.60 8264.27 17993.24 10292.27 12173.13 16179.63 10894.43 8061.90 11297.17 8385.00 7792.56 5994.06 117
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
fmvsm_l_conf0.5_n_a87.44 2888.15 2285.30 10287.10 21364.19 18194.41 5288.14 28880.24 5392.54 596.97 1069.52 3997.17 8395.89 288.51 10494.56 94
c3_l76.83 21075.47 20680.93 23185.02 25264.18 18290.39 21888.11 28971.66 20566.65 26681.64 27963.58 9592.56 26669.31 20162.86 30786.04 274
PGM-MVS83.25 9782.70 9884.92 11392.81 7664.07 18390.44 21592.20 12671.28 21877.23 13794.43 8055.17 18997.31 7579.33 12091.38 7893.37 137
MSP-MVS90.38 491.87 185.88 8192.83 7264.03 18493.06 10794.33 4982.19 2893.65 396.15 3585.89 197.19 8291.02 3397.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FA-MVS(test-final)79.12 16677.23 18284.81 12090.54 12863.98 18581.35 32591.71 14971.09 22374.85 16082.94 26252.85 21497.05 8967.97 21281.73 16393.41 136
CP-MVS83.71 9083.40 8484.65 12893.14 6663.84 18694.59 4992.28 12071.03 22477.41 13494.92 6755.21 18896.19 12581.32 10790.70 8693.91 123
OPM-MVS79.00 16878.09 16581.73 20883.52 27563.83 18791.64 17290.30 20476.36 11571.97 19589.93 17646.30 27395.17 17175.10 14977.70 19586.19 269
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVS83.87 8583.47 7985.05 10993.22 6163.78 18892.92 11492.66 10973.99 14278.18 12594.31 8955.25 18597.41 6879.16 12191.58 7493.95 121
X-MVStestdata76.86 20674.13 22685.05 10993.22 6163.78 18892.92 11492.66 10973.99 14278.18 12510.19 40055.25 18597.41 6879.16 12191.58 7493.95 121
TESTMET0.1,182.41 11081.98 10983.72 15888.08 18863.74 19092.70 12293.77 6379.30 6677.61 13287.57 21058.19 15294.08 21473.91 15986.68 12693.33 140
BH-untuned78.68 17777.08 18383.48 16689.84 14163.74 19092.70 12288.59 27671.57 21266.83 26488.65 18751.75 22395.39 16359.03 28284.77 13891.32 190
test_fmvsmvis_n_192083.80 8783.48 7884.77 12182.51 28563.72 19291.37 18383.99 33281.42 3977.68 13095.74 4258.37 14997.58 5993.38 1486.87 11993.00 151
MSDG69.54 28665.73 29680.96 22985.11 25163.71 19384.19 29883.28 33856.95 34054.50 33784.03 25131.50 34796.03 13542.87 34669.13 26183.14 317
patch_mono-289.71 1090.99 585.85 8496.04 2463.70 19495.04 4095.19 1686.74 791.53 1495.15 6273.86 2097.58 5993.38 1492.00 6796.28 32
thres600view778.00 18876.66 19082.03 20591.93 9763.69 19591.30 18896.33 172.43 17970.46 21187.89 20560.31 12894.92 17942.64 34876.64 20787.48 242
PatchT69.11 28965.37 30180.32 23882.07 29163.68 19667.96 37387.62 29650.86 35969.37 22465.18 36857.09 16188.53 32241.59 35166.60 27888.74 225
HQP5-MVS63.66 197
HQP-MVS81.14 13080.64 12782.64 18287.54 20263.66 19794.06 6391.70 15179.80 5774.18 16590.30 16751.63 22595.61 15377.63 13478.90 18588.63 226
fmvsm_s_conf0.5_n_a85.75 5286.09 4684.72 12485.73 24063.58 19993.79 8389.32 24181.42 3990.21 2296.91 1462.41 10897.67 5194.48 1080.56 17292.90 154
EI-MVSNet-Vis-set83.77 8883.67 7484.06 14992.79 7763.56 20091.76 16694.81 2779.65 6177.87 12894.09 9463.35 9897.90 4279.35 11979.36 18190.74 198
test_fmvsm_n_192087.69 2488.50 1785.27 10487.05 21563.55 20193.69 8791.08 17884.18 1390.17 2397.04 867.58 5097.99 3995.72 590.03 9294.26 105
fmvsm_s_conf0.5_n86.39 4186.91 3684.82 11787.36 20863.54 20294.74 4790.02 21782.52 2490.14 2496.92 1362.93 10497.84 4695.28 882.26 15593.07 148
fmvsm_s_conf0.1_n_a84.76 6784.84 6584.53 13380.23 30963.50 20392.79 11788.73 27080.46 4989.84 2696.65 2260.96 12397.57 6193.80 1380.14 17492.53 163
fmvsm_s_conf0.1_n85.61 5685.93 4984.68 12782.95 28363.48 20494.03 6889.46 23581.69 3389.86 2596.74 2061.85 11497.75 4994.74 982.01 15992.81 156
TAMVS80.37 14479.45 14783.13 17385.14 24963.37 20591.23 19190.76 18674.81 13272.65 18388.49 18860.63 12692.95 24669.41 19981.95 16093.08 147
Anonymous2023121173.08 25370.39 26981.13 22290.62 12763.33 20691.40 17890.06 21551.84 35664.46 28280.67 29736.49 32894.07 21563.83 25264.17 29985.98 276
ACMH63.93 1768.62 29364.81 30380.03 24885.22 24763.25 20787.72 27384.66 32460.83 32051.57 34979.43 31427.29 36094.96 17641.76 34964.84 29281.88 332
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WB-MVSnew77.14 20276.18 19780.01 24986.18 23063.24 20891.26 18994.11 5571.72 20473.52 17487.29 21545.14 28293.00 24456.98 28979.42 17983.80 305
thres100view90078.37 18377.01 18582.46 18591.89 10063.21 20991.19 19596.33 172.28 18470.45 21287.89 20560.31 12895.32 16545.16 33677.58 19788.83 221
EI-MVSNet-UG-set83.14 9982.96 9183.67 16092.28 8663.19 21091.38 18294.68 3279.22 6876.60 14393.75 10062.64 10597.76 4878.07 13278.01 19290.05 207
test250683.29 9582.92 9384.37 14088.39 17963.18 21192.01 15291.35 16477.66 9578.49 12491.42 14864.58 7995.09 17273.19 16089.23 9794.85 80
NP-MVS87.41 20563.04 21290.30 167
eth_miper_zixun_eth75.96 22474.40 22180.66 23384.66 25663.02 21389.28 24788.27 28571.88 19665.73 26881.65 27859.45 13992.81 25468.13 21060.53 33086.14 270
D2MVS73.80 24972.02 25479.15 27079.15 32262.97 21488.58 26090.07 21372.94 16559.22 31678.30 31842.31 29492.70 26065.59 24072.00 24181.79 333
IterMVS72.65 26570.83 26378.09 28182.17 28962.96 21587.64 27686.28 30871.56 21360.44 30978.85 31645.42 28086.66 33963.30 25761.83 31884.65 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EG-PatchMatch MVS68.55 29465.41 30077.96 28278.69 33062.93 21689.86 23589.17 24860.55 32150.27 35477.73 32422.60 36994.06 21647.18 32872.65 23776.88 366
DP-MVS69.90 28366.48 29080.14 24495.36 2862.93 21689.56 23976.11 35550.27 36157.69 32885.23 23739.68 30195.73 14533.35 37271.05 24981.78 334
mPP-MVS82.96 10382.44 10384.52 13492.83 7262.92 21892.76 11891.85 14371.52 21475.61 15394.24 9153.48 21096.99 9778.97 12490.73 8593.64 132
ACMMPcopyleft81.49 12580.67 12683.93 15291.71 10462.90 21992.13 14492.22 12571.79 20171.68 20093.49 10850.32 23496.96 10178.47 12984.22 14691.93 179
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVScopyleft83.25 9782.95 9284.17 14792.25 8762.88 22090.91 20091.86 14170.30 23677.12 13893.96 9856.75 16996.28 12382.04 9991.34 8093.34 138
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_LR82.02 11881.52 11383.51 16488.42 17762.88 22089.77 23788.93 26276.78 10875.55 15493.10 11150.31 23595.38 16483.82 8987.02 11892.26 174
IterMVS-LS76.49 21375.18 21180.43 23784.49 26062.74 22290.64 21288.80 26772.40 18065.16 27381.72 27760.98 12292.27 27767.74 21564.65 29686.29 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet78.97 16978.22 16481.25 21885.33 24462.73 22389.53 24293.21 8672.39 18172.14 19390.13 17360.99 12194.72 18467.73 21672.49 23886.29 265
CHOSEN 280x42077.35 19976.95 18778.55 27587.07 21462.68 22469.71 36782.95 33968.80 25571.48 20287.27 21666.03 6184.00 35476.47 14082.81 15388.95 220
test_fmvsmconf_n86.58 3987.17 3284.82 11785.28 24662.55 22594.26 5689.78 22383.81 1687.78 3696.33 2965.33 6896.98 9894.40 1187.55 11394.95 78
HQP_MVS80.34 14579.75 14182.12 20086.94 21762.42 22693.13 10591.31 16578.81 7972.53 18689.14 18450.66 23295.55 15876.74 13778.53 19088.39 233
plane_prior62.42 22693.85 7779.38 6478.80 187
EIA-MVS84.84 6684.88 6384.69 12691.30 11562.36 22893.85 7792.04 13179.45 6279.33 11294.28 9062.42 10796.35 12180.05 11491.25 8195.38 56
test_fmvsmconf0.1_n85.71 5386.08 4784.62 13180.83 29962.33 22993.84 8088.81 26683.50 1887.00 4296.01 3763.36 9796.93 10594.04 1287.29 11694.61 93
plane_prior687.23 20962.32 23050.66 232
PVSNet_068.08 1571.81 26868.32 28582.27 19284.68 25562.31 23188.68 25890.31 20375.84 11857.93 32780.65 29837.85 31794.19 21069.94 19329.05 39090.31 204
WR-MVS76.76 21175.74 20379.82 25684.60 25762.27 23292.60 12992.51 11676.06 11667.87 25085.34 23656.76 16890.24 30862.20 26563.69 30586.94 255
NR-MVSNet76.05 22074.59 21680.44 23682.96 28162.18 23390.83 20591.73 14777.12 10360.96 30786.35 22559.28 14391.80 28660.74 27261.34 32587.35 247
sd_testset77.08 20475.37 20782.20 19689.25 15662.11 23482.06 31789.09 25476.77 10970.84 20787.12 21741.43 29695.01 17467.23 22174.55 21889.48 217
GeoE78.90 17177.43 17683.29 16988.95 16562.02 23592.31 13786.23 31070.24 23771.34 20489.27 18154.43 19894.04 21963.31 25680.81 17193.81 128
h-mvs3383.01 10182.56 10184.35 14189.34 15262.02 23592.72 12093.76 6481.45 3682.73 7992.25 13660.11 13197.13 8787.69 5362.96 30693.91 123
ECVR-MVScopyleft81.29 12880.38 13384.01 15188.39 17961.96 23792.56 13486.79 30577.66 9576.63 14291.42 14846.34 27195.24 16974.36 15789.23 9794.85 80
plane_prior361.95 23879.09 7272.53 186
Vis-MVSNetpermissive80.92 13679.98 13883.74 15588.48 17461.80 23993.44 9888.26 28773.96 14577.73 12991.76 14249.94 23994.76 18165.84 23690.37 9094.65 91
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FOURS193.95 4561.77 24093.96 7091.92 13662.14 31086.57 44
cl____76.07 21774.67 21380.28 24085.15 24861.76 24190.12 22688.73 27071.16 22065.43 27081.57 28161.15 11992.95 24666.54 22762.17 31486.13 272
DIV-MVS_self_test76.07 21774.67 21380.28 24085.14 24961.75 24290.12 22688.73 27071.16 22065.42 27181.60 28061.15 11992.94 25066.54 22762.16 31686.14 270
test_fmvsmconf0.01_n83.70 9183.52 7584.25 14575.26 35161.72 24392.17 14287.24 30182.36 2684.91 6195.41 4855.60 18396.83 10992.85 1785.87 13194.21 107
CNLPA74.31 24372.30 25180.32 23891.49 11161.66 24490.85 20480.72 34756.67 34363.85 28790.64 15846.75 26690.84 30053.79 30175.99 21388.47 232
test22289.77 14361.60 24589.55 24089.42 23856.83 34277.28 13692.43 13052.76 21591.14 8393.09 146
plane_prior786.94 21761.51 246
UGNet79.87 15578.68 15783.45 16789.96 13961.51 24692.13 14490.79 18576.83 10778.85 12186.33 22738.16 31296.17 12667.93 21487.17 11792.67 158
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tttt051779.50 16078.53 16082.41 18987.22 21061.43 24889.75 23894.76 2869.29 24867.91 24788.06 20372.92 2595.63 15162.91 26073.90 22890.16 205
EC-MVSNet84.53 7185.04 6183.01 17489.34 15261.37 24994.42 5191.09 17677.91 9083.24 7494.20 9258.37 14995.40 16285.35 7391.41 7792.27 173
test-LLR80.10 15079.56 14481.72 20986.93 21961.17 25092.70 12291.54 15671.51 21575.62 15186.94 21953.83 20392.38 27272.21 17384.76 13991.60 181
test-mter79.96 15379.38 15081.72 20986.93 21961.17 25092.70 12291.54 15673.85 14775.62 15186.94 21949.84 24192.38 27272.21 17384.76 13991.60 181
SR-MVS82.81 10482.58 10083.50 16593.35 5861.16 25292.23 14191.28 16864.48 28881.27 8895.28 5453.71 20695.86 13982.87 9388.77 10293.49 135
KD-MVS_2432*160069.03 29066.37 29377.01 29585.56 24261.06 25381.44 32390.25 20667.27 26958.00 32576.53 33454.49 19587.63 33348.04 32235.77 38282.34 328
miper_refine_blended69.03 29066.37 29377.01 29585.56 24261.06 25381.44 32390.25 20667.27 26958.00 32576.53 33454.49 19587.63 33348.04 32235.77 38282.34 328
tfpnnormal70.10 28067.36 28878.32 27783.45 27660.97 25588.85 25592.77 10464.85 28660.83 30878.53 31743.52 28993.48 23631.73 37961.70 32280.52 345
TR-MVS78.77 17677.37 18182.95 17590.49 12960.88 25693.67 8890.07 21370.08 23974.51 16391.37 15145.69 27795.70 15060.12 27780.32 17392.29 169
UniMVSNet (Re)77.58 19676.78 18879.98 25084.11 26760.80 25791.76 16693.17 9076.56 11369.93 22284.78 24363.32 9992.36 27464.89 24662.51 31286.78 257
1112_ss80.56 14079.83 14082.77 17888.65 17160.78 25892.29 13888.36 28172.58 17472.46 18994.95 6465.09 7093.42 23866.38 23077.71 19494.10 113
v7n71.31 27368.65 28079.28 26676.40 34760.77 25986.71 28789.45 23664.17 29058.77 32178.24 31944.59 28593.54 23457.76 28661.75 32083.52 309
test111180.84 13780.02 13583.33 16887.87 19560.76 26092.62 12786.86 30477.86 9175.73 14991.39 15046.35 27094.70 18772.79 16688.68 10394.52 99
test_040264.54 31961.09 32574.92 31184.10 26860.75 26187.95 26979.71 35152.03 35452.41 34577.20 32832.21 34591.64 28923.14 38561.03 32672.36 374
旧先验191.94 9660.74 26291.50 15994.36 8265.23 6991.84 6994.55 95
dmvs_re76.93 20575.36 20881.61 21187.78 19960.71 26380.00 33887.99 29279.42 6369.02 23089.47 18046.77 26594.32 20263.38 25574.45 22189.81 210
ADS-MVSNet266.90 30763.44 31477.26 29288.06 18960.70 26468.01 37175.56 35957.57 33564.48 28069.87 36038.68 30484.10 35140.87 35367.89 27086.97 253
IterMVS-SCA-FT71.55 27269.97 27176.32 30181.48 29460.67 26587.64 27685.99 31366.17 27759.50 31478.88 31545.53 27883.65 35662.58 26361.93 31784.63 300
TranMVSNet+NR-MVSNet75.86 22574.52 21979.89 25482.44 28660.64 26691.37 18391.37 16376.63 11167.65 25286.21 22952.37 21991.55 29261.84 26760.81 32887.48 242
pmmvs573.35 25271.52 25978.86 27278.64 33160.61 26791.08 19786.90 30267.69 26463.32 29183.64 25544.33 28690.53 30262.04 26666.02 28285.46 288
MDA-MVSNet_test_wron63.78 32460.16 32774.64 31278.15 33760.41 26883.49 30384.03 32856.17 34639.17 38071.59 35637.22 32283.24 36142.87 34648.73 36280.26 348
Test_1112_low_res79.56 15978.60 15982.43 18688.24 18560.39 26992.09 14787.99 29272.10 19071.84 19687.42 21264.62 7893.04 24265.80 23777.30 20293.85 127
UniMVSNet_NR-MVSNet78.15 18777.55 17479.98 25084.46 26160.26 27092.25 13993.20 8877.50 9968.88 23386.61 22266.10 6092.13 27966.38 23062.55 31087.54 240
DU-MVS76.86 20675.84 20179.91 25382.96 28160.26 27091.26 18991.54 15676.46 11468.88 23386.35 22556.16 17692.13 27966.38 23062.55 31087.35 247
EPP-MVSNet81.79 12181.52 11382.61 18388.77 17060.21 27293.02 11193.66 7068.52 25972.90 18090.39 16572.19 3194.96 17674.93 15279.29 18392.67 158
YYNet163.76 32560.14 32874.62 31378.06 33860.19 27383.46 30583.99 33256.18 34539.25 37971.56 35737.18 32383.34 35942.90 34548.70 36380.32 347
IS-MVSNet80.14 14979.41 14882.33 19087.91 19360.08 27491.97 15688.27 28572.90 16971.44 20391.73 14461.44 11893.66 23362.47 26486.53 12793.24 141
HPM-MVS_fast80.25 14779.55 14682.33 19091.55 10959.95 27591.32 18789.16 24965.23 28574.71 16293.07 11447.81 26195.74 14474.87 15588.23 10591.31 191
MDTV_nov1_ep13_2view59.90 27680.13 33667.65 26672.79 18154.33 20059.83 27892.58 161
CPTT-MVS79.59 15879.16 15380.89 23291.54 11059.80 27792.10 14688.54 27860.42 32272.96 17893.28 11048.27 25492.80 25578.89 12686.50 12890.06 206
ACMP71.68 1075.58 23174.23 22479.62 26184.97 25359.64 27890.80 20689.07 25670.39 23562.95 29687.30 21438.28 31093.87 22872.89 16371.45 24685.36 290
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs-eth3d65.53 31662.32 32175.19 30869.39 37159.59 27982.80 31483.43 33562.52 30751.30 35172.49 34832.86 34087.16 33855.32 29550.73 35978.83 359
sss82.71 10782.38 10483.73 15789.25 15659.58 28092.24 14094.89 2477.96 8879.86 10592.38 13156.70 17097.05 8977.26 13680.86 16994.55 95
Fast-Effi-MVS+-dtu75.04 23673.37 23680.07 24680.86 29859.52 28191.20 19485.38 31771.90 19465.20 27284.84 24241.46 29592.97 24566.50 22972.96 23387.73 239
FIs79.47 16179.41 14879.67 25985.95 23459.40 28291.68 17093.94 5878.06 8768.96 23288.28 19466.61 5791.77 28766.20 23374.99 21787.82 238
LPG-MVS_test75.82 22674.58 21779.56 26384.31 26459.37 28390.44 21589.73 22869.49 24564.86 27488.42 18938.65 30694.30 20472.56 16972.76 23585.01 295
LGP-MVS_train79.56 26384.31 26459.37 28389.73 22869.49 24564.86 27488.42 18938.65 30694.30 20472.56 16972.76 23585.01 295
CS-MVS-test86.14 4687.01 3483.52 16292.63 8159.36 28595.49 2791.92 13680.09 5485.46 5695.53 4761.82 11695.77 14386.77 6593.37 5095.41 54
Baseline_NR-MVSNet73.99 24772.83 24277.48 28780.78 30059.29 28691.79 16384.55 32568.85 25468.99 23180.70 29556.16 17692.04 28262.67 26260.98 32781.11 338
PS-MVSNAJss77.26 20076.31 19480.13 24580.64 30359.16 28790.63 21491.06 18072.80 17068.58 23984.57 24653.55 20793.96 22472.97 16271.96 24287.27 250
mvsmamba76.85 20875.71 20480.25 24283.07 28059.16 28791.44 17480.64 34876.84 10667.95 24586.33 22746.17 27594.24 20976.06 14272.92 23487.36 246
TransMVSNet (Re)70.07 28167.66 28777.31 29180.62 30459.13 28991.78 16584.94 32265.97 27860.08 31280.44 30050.78 23191.87 28448.84 31845.46 36880.94 340
CS-MVS85.80 5186.65 4083.27 17092.00 9558.92 29095.31 3191.86 14179.97 5584.82 6295.40 4962.26 10995.51 16186.11 6992.08 6695.37 57
Patchmatch-test65.86 31260.94 32680.62 23583.75 27158.83 29158.91 38575.26 36144.50 37550.95 35377.09 33058.81 14787.90 32735.13 36864.03 30195.12 72
APD-MVS_3200maxsize81.64 12481.32 11582.59 18492.36 8458.74 29291.39 18091.01 18363.35 29779.72 10794.62 7651.82 22196.14 12779.71 11587.93 10992.89 155
PLCcopyleft68.80 1475.23 23473.68 23379.86 25592.93 7058.68 29390.64 21288.30 28360.90 31964.43 28390.53 16142.38 29394.57 19356.52 29076.54 20886.33 264
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SR-MVS-dyc-post81.06 13380.70 12582.15 19892.02 9258.56 29490.90 20190.45 19462.76 30478.89 11694.46 7851.26 22995.61 15378.77 12786.77 12392.28 170
RE-MVS-def80.48 13192.02 9258.56 29490.90 20190.45 19462.76 30478.89 11694.46 7849.30 24578.77 12786.77 12392.28 170
miper_lstm_enhance73.05 25571.73 25877.03 29483.80 27058.32 29681.76 31888.88 26369.80 24361.01 30678.23 32057.19 16087.51 33565.34 24359.53 33585.27 293
DeepPCF-MVS81.17 189.72 991.38 384.72 12493.00 6958.16 29796.72 894.41 4386.50 890.25 2197.83 175.46 1498.67 2592.78 1895.49 1297.32 6
bld_raw_dy_0_6471.59 27169.71 27677.22 29377.82 34158.12 29887.71 27473.66 36468.01 26261.90 30584.29 25033.68 33888.43 32369.91 19470.43 25185.11 294
FMVSNet568.04 29965.66 29875.18 30984.43 26257.89 29983.54 30286.26 30961.83 31553.64 34273.30 34737.15 32485.08 34748.99 31761.77 31982.56 327
ACMM69.62 1374.34 24272.73 24579.17 26884.25 26657.87 30090.36 21989.93 21963.17 30165.64 26986.04 23237.79 31894.10 21265.89 23571.52 24585.55 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVS_ROBcopyleft61.12 1866.39 30962.92 31776.80 29976.51 34657.77 30189.22 24883.41 33655.48 34753.86 34177.84 32326.28 36393.95 22534.90 36968.76 26378.68 360
UA-Net80.02 15279.65 14281.11 22389.33 15457.72 30286.33 28989.00 26177.44 10081.01 9389.15 18359.33 14295.90 13861.01 27184.28 14489.73 213
testdata81.34 21789.02 16357.72 30289.84 22258.65 33385.32 5894.09 9457.03 16293.28 23969.34 20090.56 8993.03 149
RRT_MVS74.44 24172.97 24178.84 27382.36 28757.66 30489.83 23688.79 26970.61 23364.58 27884.89 24139.24 30292.65 26470.11 19266.34 28086.21 268
pm-mvs172.89 25871.09 26278.26 27979.10 32457.62 30590.80 20689.30 24267.66 26562.91 29781.78 27649.11 25092.95 24660.29 27658.89 33884.22 301
XVG-OURS74.25 24472.46 25079.63 26078.45 33357.59 30680.33 33287.39 29763.86 29268.76 23689.62 17940.50 29991.72 28869.00 20474.25 22389.58 214
hse-mvs281.12 13281.11 12081.16 22186.52 22357.48 30789.40 24591.16 17181.45 3682.73 7990.49 16360.11 13194.58 19187.69 5360.41 33391.41 186
AUN-MVS78.37 18377.43 17681.17 22086.60 22257.45 30889.46 24491.16 17174.11 14074.40 16490.49 16355.52 18494.57 19374.73 15660.43 33291.48 184
OMC-MVS78.67 17977.91 17080.95 23085.76 23957.40 30988.49 26188.67 27373.85 14772.43 19092.10 13749.29 24694.55 19672.73 16777.89 19390.91 197
XVG-OURS-SEG-HR74.70 24073.08 23879.57 26278.25 33557.33 31080.49 33087.32 29863.22 29968.76 23690.12 17544.89 28491.59 29170.55 18974.09 22589.79 211
ACMH+65.35 1667.65 30264.55 30676.96 29784.59 25857.10 31188.08 26580.79 34658.59 33453.00 34381.09 29326.63 36292.95 24646.51 33061.69 32380.82 341
tt080573.07 25470.73 26680.07 24678.37 33457.05 31287.78 27292.18 12861.23 31867.04 26086.49 22431.35 34994.58 19165.06 24567.12 27488.57 228
test_cas_vis1_n_192080.45 14380.61 12879.97 25278.25 33557.01 31394.04 6788.33 28279.06 7482.81 7893.70 10238.65 30691.63 29090.82 3579.81 17691.27 193
MDA-MVSNet-bldmvs61.54 33157.70 33573.05 32479.53 31657.00 31483.08 31181.23 34457.57 33534.91 38372.45 34932.79 34186.26 34235.81 36641.95 37375.89 368
UniMVSNet_ETH3D72.74 26170.53 26879.36 26578.62 33256.64 31585.01 29489.20 24663.77 29364.84 27684.44 24834.05 33791.86 28563.94 25170.89 25089.57 215
MVS-HIRNet60.25 33455.55 34174.35 31584.37 26356.57 31671.64 36274.11 36334.44 38345.54 36942.24 39031.11 35189.81 31340.36 35676.10 21276.67 367
PMMVS81.98 11982.04 10781.78 20789.76 14456.17 31791.13 19690.69 18777.96 8880.09 10393.57 10646.33 27294.99 17581.41 10587.46 11494.17 109
LS3D69.17 28866.40 29277.50 28691.92 9856.12 31885.12 29380.37 34946.96 36856.50 33287.51 21137.25 32193.71 23132.52 37879.40 18082.68 325
F-COLMAP70.66 27568.44 28377.32 29086.37 22755.91 31988.00 26886.32 30756.94 34157.28 33088.07 20233.58 33992.49 26951.02 30868.37 26683.55 307
CL-MVSNet_self_test69.92 28268.09 28675.41 30673.25 35855.90 32090.05 22989.90 22069.96 24061.96 30476.54 33351.05 23087.64 33249.51 31650.59 36082.70 324
PatchMatch-RL72.06 26769.98 27078.28 27889.51 15055.70 32183.49 30383.39 33761.24 31763.72 28882.76 26434.77 33493.03 24353.37 30477.59 19686.12 273
FC-MVSNet-test77.99 18978.08 16677.70 28384.89 25455.51 32290.27 22293.75 6776.87 10466.80 26587.59 20965.71 6590.23 30962.89 26173.94 22687.37 245
USDC67.43 30664.51 30776.19 30277.94 33955.29 32378.38 34585.00 32173.17 16048.36 36180.37 30121.23 37192.48 27052.15 30664.02 30280.81 342
Effi-MVS+-dtu76.14 21675.28 21078.72 27483.22 27755.17 32489.87 23487.78 29575.42 12367.98 24481.43 28345.08 28392.52 26875.08 15071.63 24388.48 230
test_vis1_n_192081.66 12382.01 10880.64 23482.24 28855.09 32594.76 4686.87 30381.67 3484.40 6694.63 7538.17 31194.67 18891.98 2683.34 14892.16 177
jajsoiax73.05 25571.51 26077.67 28477.46 34254.83 32688.81 25690.04 21669.13 25262.85 29883.51 25731.16 35092.75 25770.83 18469.80 25285.43 289
anonymousdsp71.14 27469.37 27876.45 30072.95 35954.71 32784.19 29888.88 26361.92 31362.15 30279.77 31038.14 31391.44 29868.90 20667.45 27383.21 315
mvs_tets72.71 26271.11 26177.52 28577.41 34354.52 32888.45 26289.76 22468.76 25762.70 29983.26 26029.49 35492.71 25870.51 19069.62 25485.34 291
JIA-IIPM66.06 31162.45 32076.88 29881.42 29654.45 32957.49 38688.67 27349.36 36363.86 28646.86 38456.06 17990.25 30549.53 31568.83 26285.95 277
Patchmatch-RL test68.17 29864.49 30879.19 26771.22 36353.93 33070.07 36671.54 37269.22 24956.79 33162.89 37256.58 17388.61 31969.53 19852.61 35595.03 76
test_djsdf73.76 25172.56 24877.39 28977.00 34553.93 33089.07 25290.69 18765.80 27963.92 28582.03 27343.14 29192.67 26172.83 16468.53 26585.57 285
pmmvs667.57 30364.76 30476.00 30472.82 36153.37 33288.71 25786.78 30653.19 35257.58 32978.03 32235.33 33392.41 27155.56 29454.88 35082.21 330
TinyColmap60.32 33356.42 34072.00 33678.78 32853.18 33378.36 34675.64 35852.30 35341.59 37875.82 34114.76 38388.35 32435.84 36554.71 35174.46 370
COLMAP_ROBcopyleft57.96 2062.98 32759.65 32972.98 32581.44 29553.00 33483.75 30175.53 36048.34 36648.81 36081.40 28524.14 36590.30 30432.95 37460.52 33175.65 369
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-ACMP-BASELINE68.04 29965.53 29975.56 30574.06 35652.37 33578.43 34485.88 31462.03 31158.91 32081.21 29120.38 37491.15 29960.69 27368.18 26783.16 316
Vis-MVSNet (Re-imp)79.24 16479.57 14378.24 28088.46 17552.29 33690.41 21789.12 25274.24 13869.13 22691.91 14065.77 6490.09 31259.00 28388.09 10792.33 167
TAPA-MVS70.22 1274.94 23873.53 23479.17 26890.40 13152.07 33789.19 25089.61 23262.69 30670.07 21792.67 12448.89 25294.32 20238.26 36279.97 17591.12 195
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UnsupCasMVSNet_bld61.60 33057.71 33473.29 32368.73 37251.64 33878.61 34389.05 25757.20 33946.11 36461.96 37528.70 35788.60 32050.08 31338.90 37979.63 352
LTVRE_ROB59.60 1966.27 31063.54 31374.45 31484.00 26951.55 33967.08 37483.53 33458.78 33254.94 33680.31 30234.54 33593.23 24040.64 35568.03 26878.58 361
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WR-MVS_H70.59 27669.94 27272.53 32881.03 29751.43 34087.35 27992.03 13267.38 26860.23 31180.70 29555.84 18283.45 35846.33 33258.58 34082.72 322
AllTest61.66 32958.06 33372.46 32979.57 31451.42 34180.17 33568.61 37651.25 35745.88 36581.23 28719.86 37686.58 34038.98 35957.01 34379.39 353
TestCases72.46 32979.57 31451.42 34168.61 37651.25 35745.88 36581.23 28719.86 37686.58 34038.98 35957.01 34379.39 353
CP-MVSNet70.50 27769.91 27372.26 33180.71 30151.00 34387.23 28190.30 20467.84 26359.64 31382.69 26550.23 23782.30 36651.28 30759.28 33683.46 311
pmmvs355.51 34151.50 34667.53 35157.90 38650.93 34480.37 33173.66 36440.63 38144.15 37464.75 37016.30 37878.97 37544.77 34040.98 37772.69 372
PS-CasMVS69.86 28469.13 27972.07 33580.35 30650.57 34587.02 28389.75 22567.27 26959.19 31782.28 26946.58 26882.24 36750.69 30959.02 33783.39 313
CMPMVSbinary48.56 2166.77 30864.41 30973.84 31970.65 36750.31 34677.79 34985.73 31645.54 37244.76 37182.14 27235.40 33290.14 31163.18 25874.54 22081.07 339
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UnsupCasMVSNet_eth65.79 31363.10 31573.88 31870.71 36650.29 34781.09 32689.88 22172.58 17449.25 35974.77 34532.57 34387.43 33655.96 29341.04 37583.90 304
SixPastTwentyTwo64.92 31761.78 32474.34 31678.74 32949.76 34883.42 30679.51 35262.86 30350.27 35477.35 32530.92 35290.49 30345.89 33447.06 36582.78 319
PEN-MVS69.46 28768.56 28172.17 33379.27 31949.71 34986.90 28589.24 24467.24 27259.08 31882.51 26847.23 26483.54 35748.42 32057.12 34183.25 314
EPNet_dtu78.80 17479.26 15277.43 28888.06 18949.71 34991.96 15791.95 13577.67 9476.56 14491.28 15258.51 14890.20 31056.37 29180.95 16892.39 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WAC-MVS49.45 35131.56 381
myMVS_eth3d72.58 26672.74 24472.10 33487.87 19549.45 35188.07 26689.01 25872.91 16763.11 29388.10 20063.63 9185.54 34432.73 37669.23 25981.32 336
K. test v363.09 32659.61 33073.53 32176.26 34849.38 35383.27 30777.15 35464.35 28947.77 36372.32 35228.73 35687.79 33049.93 31436.69 38183.41 312
DTE-MVSNet68.46 29667.33 28971.87 33777.94 33949.00 35486.16 29088.58 27766.36 27658.19 32282.21 27146.36 26983.87 35544.97 33955.17 34882.73 321
Anonymous2024052162.09 32859.08 33171.10 33867.19 37448.72 35583.91 30085.23 31950.38 36047.84 36271.22 35920.74 37285.51 34646.47 33158.75 33979.06 356
LCM-MVSNet-Re72.93 25771.84 25676.18 30388.49 17348.02 35680.07 33770.17 37373.96 14552.25 34680.09 30749.98 23888.24 32567.35 21884.23 14592.28 170
test0.0.03 172.76 26072.71 24672.88 32680.25 30847.99 35791.22 19289.45 23671.51 21562.51 30187.66 20853.83 20385.06 34850.16 31267.84 27285.58 284
lessismore_v073.72 32072.93 36047.83 35861.72 38545.86 36773.76 34628.63 35889.81 31347.75 32731.37 38783.53 308
Anonymous2023120667.53 30465.78 29572.79 32774.95 35247.59 35988.23 26487.32 29861.75 31658.07 32477.29 32737.79 31887.29 33742.91 34463.71 30483.48 310
OurMVSNet-221017-064.68 31862.17 32272.21 33276.08 35047.35 36080.67 32981.02 34556.19 34451.60 34879.66 31227.05 36188.56 32153.60 30353.63 35380.71 343
test_fmvs174.07 24573.69 23275.22 30778.91 32747.34 36189.06 25474.69 36263.68 29479.41 11091.59 14624.36 36487.77 33185.22 7476.26 21190.55 202
test_vis1_n71.63 27070.73 26674.31 31769.63 37047.29 36286.91 28472.11 36863.21 30075.18 15790.17 17120.40 37385.76 34384.59 8274.42 22289.87 209
test_fmvs1_n72.69 26471.92 25574.99 31071.15 36447.08 36387.34 28075.67 35763.48 29678.08 12791.17 15320.16 37587.87 32884.65 8175.57 21590.01 208
ITE_SJBPF70.43 34074.44 35447.06 36477.32 35360.16 32554.04 34083.53 25623.30 36884.01 35343.07 34361.58 32480.21 350
EGC-MVSNET42.35 35138.09 35455.11 36474.57 35346.62 36571.63 36355.77 3870.04 4010.24 40262.70 37314.24 38474.91 37817.59 39046.06 36743.80 387
TDRefinement55.28 34251.58 34566.39 35459.53 38546.15 36676.23 35472.80 36644.60 37442.49 37676.28 33715.29 38182.39 36533.20 37343.75 37070.62 376
test_vis1_rt59.09 33857.31 33764.43 35568.44 37346.02 36783.05 31248.63 39551.96 35549.57 35763.86 37116.30 37880.20 37371.21 18262.79 30867.07 380
mvsany_test168.77 29268.56 28169.39 34373.57 35745.88 36880.93 32860.88 38659.65 32871.56 20190.26 16943.22 29075.05 37674.26 15862.70 30987.25 251
RPSCF64.24 32161.98 32371.01 33976.10 34945.00 36975.83 35675.94 35646.94 36958.96 31984.59 24531.40 34882.00 36847.76 32660.33 33486.04 274
new-patchmatchnet59.30 33756.48 33967.79 34965.86 37744.19 37082.47 31581.77 34259.94 32743.65 37566.20 36727.67 35981.68 36939.34 35841.40 37477.50 365
MIMVSNet160.16 33557.33 33668.67 34669.71 36944.13 37178.92 34284.21 32655.05 34844.63 37271.85 35423.91 36681.54 37032.63 37755.03 34980.35 346
CVMVSNet74.04 24674.27 22373.33 32285.33 24443.94 37289.53 24288.39 28054.33 35070.37 21390.13 17349.17 24884.05 35261.83 26879.36 18191.99 178
testing370.38 27970.83 26369.03 34585.82 23843.93 37390.72 20990.56 19368.06 26160.24 31086.82 22164.83 7584.12 35026.33 38364.10 30079.04 357
Syy-MVS69.65 28569.52 27770.03 34187.87 19543.21 37488.07 26689.01 25872.91 16763.11 29388.10 20045.28 28185.54 34422.07 38769.23 25981.32 336
PM-MVS59.40 33656.59 33867.84 34863.63 37841.86 37576.76 35163.22 38359.01 33151.07 35272.27 35311.72 38683.25 36061.34 26950.28 36178.39 362
test_fmvs265.78 31464.84 30268.60 34766.54 37541.71 37683.27 30769.81 37454.38 34967.91 24784.54 24715.35 38081.22 37175.65 14566.16 28182.88 318
ambc69.61 34261.38 38341.35 37749.07 39185.86 31550.18 35666.40 36610.16 38888.14 32645.73 33544.20 36979.32 355
new_pmnet49.31 34546.44 34857.93 36062.84 38040.74 37868.47 37062.96 38436.48 38235.09 38257.81 37914.97 38272.18 38132.86 37546.44 36660.88 382
testgi64.48 32062.87 31869.31 34471.24 36240.62 37985.49 29179.92 35065.36 28354.18 33983.49 25823.74 36784.55 34941.60 35060.79 32982.77 320
test20.0363.83 32362.65 31967.38 35270.58 36839.94 38086.57 28884.17 32763.29 29851.86 34777.30 32637.09 32582.47 36438.87 36154.13 35279.73 351
KD-MVS_self_test60.87 33258.60 33267.68 35066.13 37639.93 38175.63 35784.70 32357.32 33849.57 35768.45 36329.55 35382.87 36248.09 32147.94 36480.25 349
LF4IMVS54.01 34352.12 34459.69 35962.41 38139.91 38268.59 36968.28 37842.96 37944.55 37375.18 34214.09 38568.39 38541.36 35251.68 35770.78 375
Gipumacopyleft34.91 35831.44 36145.30 37470.99 36539.64 38319.85 39672.56 36720.10 39216.16 39621.47 3975.08 39771.16 38213.07 39443.70 37125.08 394
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet64.01 32263.01 31667.02 35374.40 35538.86 38483.27 30786.19 31145.11 37354.27 33881.15 29236.91 32780.01 37448.79 31957.02 34282.19 331
FPMVS45.64 34943.10 35353.23 36751.42 39136.46 38564.97 37671.91 36929.13 38727.53 38761.55 3769.83 38965.01 39116.00 39355.58 34758.22 383
test_fmvs356.82 33954.86 34262.69 35853.59 38835.47 38675.87 35565.64 38143.91 37655.10 33571.43 3586.91 39474.40 37968.64 20852.63 35478.20 363
APD_test140.50 35337.31 35650.09 37051.88 38935.27 38759.45 38452.59 39121.64 39026.12 38857.80 3804.56 39866.56 38722.64 38639.09 37848.43 386
ANet_high40.27 35535.20 35855.47 36334.74 40234.47 38863.84 37871.56 37148.42 36518.80 39241.08 3919.52 39064.45 39220.18 3888.66 39967.49 379
test_vis3_rt40.46 35437.79 35548.47 37244.49 39633.35 38966.56 37532.84 40332.39 38529.65 38539.13 3933.91 40168.65 38450.17 31140.99 37643.40 388
test_f46.58 34743.45 35155.96 36245.18 39532.05 39061.18 38049.49 39433.39 38442.05 37762.48 3747.00 39365.56 38947.08 32943.21 37270.27 377
mvsany_test348.86 34646.35 34956.41 36146.00 39431.67 39162.26 37947.25 39643.71 37745.54 36968.15 36410.84 38764.44 39357.95 28535.44 38473.13 371
testf132.77 35929.47 36242.67 37641.89 39830.81 39252.07 38743.45 39715.45 39318.52 39344.82 3872.12 40258.38 39416.05 39130.87 38838.83 389
APD_test232.77 35929.47 36242.67 37641.89 39830.81 39252.07 38743.45 39715.45 39318.52 39344.82 3872.12 40258.38 39416.05 39130.87 38838.83 389
LCM-MVSNet40.54 35235.79 35754.76 36636.92 40130.81 39251.41 38969.02 37522.07 38924.63 38945.37 3864.56 39865.81 38833.67 37134.50 38567.67 378
DSMNet-mixed56.78 34054.44 34363.79 35663.21 37929.44 39564.43 37764.10 38242.12 38051.32 35071.60 35531.76 34675.04 37736.23 36465.20 28986.87 256
PMVScopyleft26.43 2231.84 36128.16 36442.89 37525.87 40427.58 39650.92 39049.78 39321.37 39114.17 39740.81 3922.01 40466.62 3869.61 39738.88 38034.49 393
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive24.84 2324.35 36319.77 36938.09 37834.56 40326.92 39726.57 39438.87 40111.73 39711.37 39827.44 3941.37 40550.42 39711.41 39514.60 39536.93 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS237.93 35733.61 36050.92 36846.31 39324.76 39860.55 38350.05 39228.94 38820.93 39047.59 3834.41 40065.13 39025.14 38418.55 39462.87 381
DeepMVS_CXcopyleft34.71 37951.45 39024.73 39928.48 40531.46 38617.49 39552.75 3815.80 39642.60 40018.18 38919.42 39336.81 392
dmvs_testset65.55 31566.45 29162.86 35779.87 31222.35 40076.55 35271.74 37077.42 10255.85 33387.77 20751.39 22780.69 37231.51 38265.92 28385.55 286
test_method38.59 35635.16 35948.89 37154.33 38721.35 40145.32 39253.71 3907.41 39828.74 38651.62 3828.70 39152.87 39633.73 37032.89 38672.47 373
WB-MVS46.23 34844.94 35050.11 36962.13 38221.23 40276.48 35355.49 38845.89 37135.78 38161.44 37735.54 33172.83 3809.96 39621.75 39156.27 384
wuyk23d11.30 36710.95 37012.33 38348.05 39219.89 40325.89 3951.92 4073.58 3993.12 4011.37 4010.64 40615.77 4026.23 4017.77 4001.35 398
SSC-MVS44.51 35043.35 35247.99 37361.01 38418.90 40474.12 35954.36 38943.42 37834.10 38460.02 37834.42 33670.39 3839.14 39819.57 39254.68 385
E-PMN24.61 36224.00 36626.45 38043.74 39718.44 40560.86 38139.66 39915.11 3959.53 39922.10 3966.52 39546.94 3988.31 39910.14 39613.98 396
EMVS23.76 36423.20 36825.46 38141.52 40016.90 40660.56 38238.79 40214.62 3968.99 40020.24 3997.35 39245.82 3997.25 4009.46 39713.64 397
tmp_tt22.26 36523.75 36717.80 3825.23 40512.06 40735.26 39339.48 4002.82 40018.94 39144.20 38922.23 37024.64 40136.30 3639.31 39816.69 395
N_pmnet50.55 34449.11 34754.88 36577.17 3444.02 40884.36 2972.00 40648.59 36445.86 36768.82 36232.22 34482.80 36331.58 38051.38 35877.81 364
test1236.92 3709.21 3730.08 3840.03 4070.05 40981.65 3210.01 4090.02 4030.14 4040.85 4030.03 4070.02 4030.12 4030.00 4020.16 399
testmvs7.23 3699.62 3720.06 3850.04 4060.02 41084.98 2950.02 4080.03 4020.18 4031.21 4020.01 4080.02 4030.14 4020.01 4010.13 400
test_blank0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
uanet_test0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
DCPMVS0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
cdsmvs_eth3d_5k19.86 36626.47 3650.00 3860.00 4080.00 4110.00 39793.45 790.00 4040.00 40595.27 5649.56 2420.00 4050.00 4040.00 4020.00 401
pcd_1.5k_mvsjas4.46 3715.95 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 40453.55 2070.00 4050.00 4040.00 4020.00 401
sosnet-low-res0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
sosnet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
uncertanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
Regformer0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
ab-mvs-re7.91 36810.55 3710.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40594.95 640.00 4090.00 4050.00 4040.00 4020.00 401
uanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
PC_three_145280.91 4594.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
eth-test20.00 408
eth-test0.00 408
test_241102_TWO94.41 4371.65 20692.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 16
9.1487.63 2693.86 4794.41 5294.18 5272.76 17186.21 4696.51 2466.64 5697.88 4490.08 3894.04 37
test_0728_THIRD72.48 17690.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 26
GSMVS94.68 88
sam_mvs157.85 15494.68 88
sam_mvs54.91 192
MTGPAbinary92.23 122
test_post178.95 34120.70 39853.05 21291.50 29760.43 274
test_post23.01 39556.49 17492.67 261
patchmatchnet-post67.62 36557.62 15790.25 305
MTMP93.77 8432.52 404
test9_res89.41 3994.96 1895.29 63
agg_prior286.41 6694.75 2995.33 59
test_prior295.10 3875.40 12485.25 6095.61 4567.94 4787.47 5694.77 25
旧先验292.00 15559.37 33087.54 3893.47 23775.39 147
新几何291.41 176
无先验92.71 12192.61 11362.03 31197.01 9366.63 22593.97 120
原ACMM292.01 152
testdata296.09 12961.26 270
segment_acmp65.94 62
testdata189.21 24977.55 98
plane_prior591.31 16595.55 15876.74 13778.53 19088.39 233
plane_prior489.14 184
plane_prior293.13 10578.81 79
plane_prior187.15 211
n20.00 410
nn0.00 410
door-mid66.01 380
test1193.01 96
door66.57 379
HQP-NCC87.54 20294.06 6379.80 5774.18 165
ACMP_Plane87.54 20294.06 6379.80 5774.18 165
BP-MVS77.63 134
HQP4-MVS74.18 16595.61 15388.63 226
HQP3-MVS91.70 15178.90 185
HQP2-MVS51.63 225
ACMMP++_ref71.63 243
ACMMP++69.72 253
Test By Simon54.21 201