This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MSP-MVS90.38 491.87 185.88 8192.83 7264.03 18493.06 10794.33 4982.19 2893.65 396.15 3585.89 197.19 8291.02 3397.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPM-MVS90.70 290.52 791.24 189.68 14576.68 297.29 195.35 1382.87 2091.58 1297.22 379.93 599.10 983.12 9297.64 297.94 1
OPU-MVS89.97 397.52 373.15 1296.89 597.00 983.82 299.15 295.72 597.63 397.62 2
DVP-MVS++90.53 391.09 488.87 1497.31 469.91 3793.96 7094.37 4772.48 17692.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
PC_three_145280.91 4594.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
HPM-MVS++copyleft89.37 1389.95 1287.64 3095.10 3068.23 7895.24 3394.49 3982.43 2588.90 3296.35 2771.89 3398.63 2688.76 4796.40 696.06 36
SMA-MVScopyleft88.14 1688.29 2087.67 2993.21 6368.72 6593.85 7794.03 5774.18 13991.74 1196.67 2165.61 6698.42 3389.24 4396.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DELS-MVS90.05 690.09 1089.94 493.14 6673.88 797.01 494.40 4588.32 385.71 5294.91 6874.11 1998.91 1787.26 5995.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 1189.33 185.77 5196.26 3072.84 2699.38 192.64 1995.93 997.08 9
CNVR-MVS90.32 590.89 688.61 1996.76 870.65 2696.47 1394.83 2684.83 1189.07 3196.80 1970.86 3499.06 1592.64 1995.71 1096.12 35
PHI-MVS86.83 3686.85 3986.78 5593.47 5765.55 14595.39 3095.10 1971.77 20285.69 5396.52 2362.07 11198.77 2286.06 7095.60 1196.03 38
DeepPCF-MVS81.17 189.72 991.38 384.72 12493.00 6958.16 29796.72 894.41 4386.50 890.25 2197.83 175.46 1498.67 2592.78 1895.49 1297.32 6
SED-MVS89.94 890.36 988.70 1696.45 1269.38 4896.89 594.44 4171.65 20692.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
IU-MVS96.46 1169.91 3795.18 1780.75 4695.28 192.34 2195.36 1396.47 25
test_241102_TWO94.41 4371.65 20692.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 16
MM88.92 1371.10 2297.02 396.04 688.70 291.57 1396.19 3370.12 3698.91 1796.83 195.06 1696.76 12
test_0728_THIRD72.48 17690.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 26
test9_res89.41 3994.96 1895.29 63
ACMMP_NAP86.05 4785.80 5286.80 5491.58 10767.53 9691.79 16393.49 7874.93 13084.61 6395.30 5359.42 14097.92 4186.13 6894.92 1994.94 79
DPE-MVScopyleft88.77 1589.21 1587.45 3796.26 2067.56 9494.17 5794.15 5468.77 25690.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft89.41 1289.73 1388.45 2296.40 1569.99 3396.64 994.52 3771.92 19290.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND88.70 1696.45 1270.43 2996.64 994.37 4799.15 291.91 2794.90 2196.51 21
train_agg87.21 3187.42 3086.60 6094.18 4167.28 10194.16 5893.51 7571.87 19785.52 5495.33 5168.19 4497.27 8089.09 4494.90 2195.25 69
DeepC-MVS_fast79.48 287.95 2088.00 2387.79 2895.86 2768.32 7395.74 2194.11 5583.82 1583.49 7396.19 3364.53 8098.44 3183.42 9194.88 2496.61 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2299.07 1392.01 2494.77 2596.51 21
No_MVS89.60 897.31 473.22 1095.05 2299.07 1392.01 2494.77 2596.51 21
TSAR-MVS + MP.88.11 1888.64 1686.54 6491.73 10368.04 8290.36 21993.55 7482.89 1991.29 1592.89 11972.27 3096.03 13587.99 5094.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_prior295.10 3875.40 12485.25 6095.61 4567.94 4787.47 5694.77 25
agg_prior286.41 6694.75 2995.33 59
MVS_030490.01 790.50 888.53 2090.14 13670.94 2396.47 1395.72 1087.33 489.60 2896.26 3068.44 4198.74 2495.82 494.72 3095.90 42
MVS84.66 6982.86 9590.06 290.93 12174.56 687.91 27095.54 1268.55 25872.35 19294.71 7359.78 13698.90 1981.29 10894.69 3196.74 13
SF-MVS87.03 3387.09 3386.84 5192.70 7867.45 9993.64 8993.76 6470.78 23086.25 4596.44 2666.98 5397.79 4788.68 4894.56 3295.28 65
NCCC89.07 1489.46 1487.91 2596.60 1069.05 5796.38 1594.64 3484.42 1286.74 4396.20 3266.56 5898.76 2389.03 4694.56 3295.92 41
3Dnovator73.91 682.69 10880.82 12388.31 2389.57 14771.26 1892.60 12994.39 4678.84 7867.89 24992.48 12948.42 25398.52 2868.80 20794.40 3495.15 71
CDPH-MVS85.71 5385.46 5586.46 6694.75 3467.19 10393.89 7592.83 10370.90 22683.09 7695.28 5463.62 9297.36 7180.63 11194.18 3594.84 83
MG-MVS87.11 3286.27 4189.62 797.79 176.27 494.96 4394.49 3978.74 8183.87 7292.94 11764.34 8196.94 10375.19 14894.09 3695.66 47
9.1487.63 2693.86 4794.41 5294.18 5272.76 17186.21 4696.51 2466.64 5697.88 4490.08 3894.04 37
原ACMM184.42 13793.21 6364.27 17993.40 8365.39 28279.51 10992.50 12658.11 15396.69 11265.27 24493.96 3892.32 168
MSLP-MVS++86.27 4385.91 5087.35 3992.01 9468.97 6095.04 4092.70 10679.04 7581.50 8796.50 2558.98 14696.78 11083.49 9093.93 3996.29 30
CANet89.61 1189.99 1188.46 2194.39 3969.71 4496.53 1293.78 6186.89 689.68 2795.78 4065.94 6299.10 992.99 1693.91 4096.58 18
MP-MVS-pluss85.24 6085.13 5985.56 9391.42 11265.59 14391.54 17392.51 11674.56 13380.62 9795.64 4459.15 14497.00 9486.94 6393.80 4194.07 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVP-Stereo77.12 20376.23 19579.79 25781.72 29366.34 12689.29 24690.88 18470.56 23462.01 30382.88 26349.34 24494.13 21165.55 24193.80 4178.88 358
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
GG-mvs-BLEND86.53 6591.91 9969.67 4675.02 35894.75 2978.67 12390.85 15777.91 794.56 19572.25 17293.74 4395.36 58
ZNCC-MVS85.33 5985.08 6086.06 7693.09 6865.65 14193.89 7593.41 8273.75 15079.94 10494.68 7460.61 12798.03 3882.63 9593.72 4494.52 99
CSCG86.87 3486.26 4288.72 1595.05 3170.79 2593.83 8295.33 1468.48 26077.63 13194.35 8673.04 2498.45 3084.92 7993.71 4596.92 11
test1287.09 4594.60 3668.86 6192.91 10082.67 8165.44 6797.55 6293.69 4694.84 83
PAPM85.89 5085.46 5587.18 4288.20 18772.42 1392.41 13692.77 10482.11 2980.34 10093.07 11468.27 4395.02 17378.39 13093.59 4794.09 114
SteuartSystems-ACMMP86.82 3786.90 3786.58 6290.42 13066.38 12496.09 1793.87 5977.73 9384.01 7195.66 4363.39 9697.94 4087.40 5793.55 4895.42 53
Skip Steuart: Steuart Systems R&D Blog.
APDe-MVScopyleft87.54 2587.84 2486.65 5896.07 2366.30 12794.84 4593.78 6169.35 24788.39 3396.34 2867.74 4997.66 5490.62 3693.44 4996.01 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CS-MVS-test86.14 4687.01 3483.52 16292.63 8159.36 28595.49 2791.92 13680.09 5485.46 5695.53 4761.82 11695.77 14386.77 6593.37 5095.41 54
PS-MVSNAJ88.14 1687.61 2789.71 692.06 9176.72 195.75 2093.26 8583.86 1489.55 2996.06 3653.55 20797.89 4391.10 3193.31 5194.54 97
MAR-MVS84.18 7983.43 8186.44 6796.25 2165.93 13694.28 5594.27 5174.41 13479.16 11495.61 4553.99 20298.88 2169.62 19793.26 5294.50 101
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
gg-mvs-nofinetune77.18 20174.31 22285.80 8691.42 11268.36 7271.78 36194.72 3049.61 36277.12 13845.92 38577.41 893.98 22367.62 21793.16 5395.05 74
ZD-MVS96.63 965.50 14793.50 7770.74 23185.26 5995.19 6164.92 7497.29 7687.51 5593.01 54
APD-MVScopyleft85.93 4985.99 4885.76 8895.98 2665.21 15293.59 9292.58 11466.54 27486.17 4795.88 3963.83 8797.00 9486.39 6792.94 5595.06 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
新几何184.73 12392.32 8564.28 17891.46 16159.56 32979.77 10692.90 11856.95 16796.57 11663.40 25492.91 5693.34 138
DeepC-MVS77.85 385.52 5785.24 5786.37 7088.80 16966.64 11892.15 14393.68 6981.07 4376.91 14193.64 10462.59 10698.44 3185.50 7292.84 5794.03 118
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v2_base87.92 2187.38 3189.55 1191.41 11476.43 395.74 2193.12 9383.53 1789.55 2995.95 3853.45 21197.68 5091.07 3292.62 5894.54 97
MP-MVScopyleft85.02 6384.97 6285.17 10892.60 8264.27 17993.24 10292.27 12173.13 16179.63 10894.43 8061.90 11297.17 8385.00 7792.56 5994.06 117
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA83.91 8483.38 8585.50 9491.89 10065.16 15481.75 31992.23 12275.32 12580.53 9895.21 6056.06 17997.16 8584.86 8092.55 6094.18 108
GST-MVS84.63 7084.29 7085.66 9192.82 7465.27 15093.04 10993.13 9273.20 15978.89 11694.18 9359.41 14197.85 4581.45 10492.48 6193.86 126
HFP-MVS84.73 6884.40 6985.72 8993.75 5165.01 15893.50 9693.19 8972.19 18679.22 11394.93 6659.04 14597.67 5181.55 10292.21 6294.49 102
ACMMPR84.37 7284.06 7185.28 10393.56 5464.37 17493.50 9693.15 9172.19 18678.85 12194.86 6956.69 17197.45 6581.55 10292.20 6394.02 119
MS-PatchMatch77.90 19376.50 19182.12 20085.99 23369.95 3691.75 16892.70 10673.97 14462.58 30084.44 24841.11 29795.78 14163.76 25392.17 6480.62 344
region2R84.36 7384.03 7285.36 10093.54 5564.31 17793.43 9992.95 9972.16 18978.86 12094.84 7056.97 16697.53 6381.38 10692.11 6594.24 106
CS-MVS85.80 5186.65 4083.27 17092.00 9558.92 29095.31 3191.86 14179.97 5584.82 6295.40 4962.26 10995.51 16186.11 6992.08 6695.37 57
patch_mono-289.71 1090.99 585.85 8496.04 2463.70 19495.04 4095.19 1686.74 791.53 1495.15 6273.86 2097.58 5993.38 1492.00 6796.28 32
dcpmvs_287.37 2987.55 2886.85 5095.04 3268.20 7990.36 21990.66 19079.37 6581.20 8993.67 10374.73 1596.55 11890.88 3492.00 6795.82 44
旧先验191.94 9660.74 26291.50 15994.36 8265.23 6991.84 6994.55 95
MVSFormer83.75 8982.88 9486.37 7089.24 15971.18 1989.07 25290.69 18765.80 27987.13 3994.34 8764.99 7192.67 26172.83 16491.80 7095.27 66
lupinMVS87.74 2387.77 2587.63 3489.24 15971.18 1996.57 1192.90 10182.70 2387.13 3995.27 5664.99 7195.80 14089.34 4191.80 7095.93 40
EPNet87.84 2288.38 1886.23 7493.30 6066.05 13195.26 3294.84 2587.09 588.06 3494.53 7766.79 5597.34 7383.89 8891.68 7295.29 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator+73.60 782.10 11780.60 12986.60 6090.89 12366.80 11595.20 3493.44 8074.05 14167.42 25592.49 12849.46 24397.65 5570.80 18591.68 7295.33 59
XVS83.87 8583.47 7985.05 10993.22 6163.78 18892.92 11492.66 10973.99 14278.18 12594.31 8955.25 18597.41 6879.16 12191.58 7493.95 121
X-MVStestdata76.86 20674.13 22685.05 10993.22 6163.78 18892.92 11492.66 10973.99 14278.18 12510.19 40055.25 18597.41 6879.16 12191.58 7493.95 121
SD-MVS87.49 2687.49 2987.50 3693.60 5368.82 6393.90 7492.63 11276.86 10587.90 3595.76 4166.17 5997.63 5689.06 4591.48 7696.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EC-MVSNet84.53 7185.04 6183.01 17489.34 15261.37 24994.42 5191.09 17677.91 9083.24 7494.20 9258.37 14995.40 16285.35 7391.41 7792.27 173
PGM-MVS83.25 9782.70 9884.92 11392.81 7664.07 18390.44 21592.20 12671.28 21877.23 13794.43 8055.17 18997.31 7579.33 12091.38 7893.37 137
PVSNet_Blended86.73 3886.86 3886.31 7393.76 4967.53 9696.33 1693.61 7182.34 2781.00 9493.08 11363.19 10097.29 7687.08 6191.38 7894.13 112
HPM-MVScopyleft83.25 9782.95 9284.17 14792.25 8762.88 22090.91 20091.86 14170.30 23677.12 13893.96 9856.75 16996.28 12382.04 9991.34 8093.34 138
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EIA-MVS84.84 6684.88 6384.69 12691.30 11562.36 22893.85 7792.04 13179.45 6279.33 11294.28 9062.42 10796.35 12180.05 11491.25 8195.38 56
MVS_111021_HR86.19 4585.80 5287.37 3893.17 6569.79 4193.99 6993.76 6479.08 7378.88 11993.99 9762.25 11098.15 3685.93 7191.15 8294.15 111
test22289.77 14361.60 24589.55 24089.42 23856.83 34277.28 13692.43 13052.76 21591.14 8393.09 146
jason86.40 4086.17 4487.11 4486.16 23170.54 2895.71 2492.19 12782.00 3084.58 6494.34 8761.86 11395.53 16087.76 5290.89 8495.27 66
jason: jason.
mPP-MVS82.96 10382.44 10384.52 13492.83 7262.92 21892.76 11891.85 14371.52 21475.61 15394.24 9153.48 21096.99 9778.97 12490.73 8593.64 132
CP-MVS83.71 9083.40 8484.65 12893.14 6663.84 18694.59 4992.28 12071.03 22477.41 13494.92 6755.21 18896.19 12581.32 10790.70 8693.91 123
OpenMVScopyleft70.45 1178.54 18175.92 20086.41 6985.93 23771.68 1692.74 11992.51 11666.49 27564.56 27991.96 13943.88 28798.10 3754.61 29790.65 8789.44 219
PAPM_NR82.97 10281.84 11086.37 7094.10 4466.76 11687.66 27592.84 10269.96 24074.07 16993.57 10663.10 10297.50 6470.66 18890.58 8894.85 80
testdata81.34 21789.02 16357.72 30289.84 22258.65 33385.32 5894.09 9457.03 16293.28 23969.34 20090.56 8993.03 149
Vis-MVSNetpermissive80.92 13679.98 13883.74 15588.48 17461.80 23993.44 9888.26 28773.96 14577.73 12991.76 14249.94 23994.76 18165.84 23690.37 9094.65 91
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CHOSEN 1792x268884.98 6583.45 8089.57 1089.94 14075.14 592.07 14992.32 11981.87 3175.68 15088.27 19560.18 13098.60 2780.46 11390.27 9194.96 77
test_fmvsm_n_192087.69 2488.50 1785.27 10487.05 21563.55 20193.69 8791.08 17884.18 1390.17 2397.04 867.58 5097.99 3995.72 590.03 9294.26 105
ETV-MVS86.01 4886.11 4585.70 9090.21 13567.02 11093.43 9991.92 13681.21 4284.13 7094.07 9660.93 12495.63 15189.28 4289.81 9394.46 103
QAPM79.95 15477.39 18087.64 3089.63 14671.41 1793.30 10193.70 6865.34 28467.39 25791.75 14347.83 26098.96 1657.71 28789.81 9392.54 162
CANet_DTU84.09 8183.52 7585.81 8590.30 13366.82 11391.87 15989.01 25885.27 986.09 4893.74 10147.71 26296.98 9877.90 13389.78 9593.65 131
API-MVS82.28 11280.53 13087.54 3596.13 2270.59 2793.63 9091.04 18265.72 28175.45 15592.83 12256.11 17898.89 2064.10 25089.75 9693.15 144
test250683.29 9582.92 9384.37 14088.39 17963.18 21192.01 15291.35 16477.66 9578.49 12491.42 14864.58 7995.09 17273.19 16089.23 9794.85 80
ECVR-MVScopyleft81.29 12880.38 13384.01 15188.39 17961.96 23792.56 13486.79 30577.66 9576.63 14291.42 14846.34 27195.24 16974.36 15789.23 9794.85 80
MVS_Test84.16 8083.20 8787.05 4791.56 10869.82 4089.99 23392.05 13077.77 9282.84 7786.57 22363.93 8696.09 12974.91 15389.18 9995.25 69
PAPR85.15 6284.47 6787.18 4296.02 2568.29 7491.85 16193.00 9876.59 11279.03 11595.00 6361.59 11797.61 5878.16 13189.00 10095.63 48
TSAR-MVS + GP.87.96 1988.37 1986.70 5793.51 5665.32 14995.15 3693.84 6078.17 8685.93 5094.80 7175.80 1398.21 3489.38 4088.78 10196.59 16
SR-MVS82.81 10482.58 10083.50 16593.35 5861.16 25292.23 14191.28 16864.48 28881.27 8895.28 5453.71 20695.86 13982.87 9388.77 10293.49 135
test111180.84 13780.02 13583.33 16887.87 19560.76 26092.62 12786.86 30477.86 9175.73 14991.39 15046.35 27094.70 18772.79 16688.68 10394.52 99
fmvsm_l_conf0.5_n_a87.44 2888.15 2285.30 10287.10 21364.19 18194.41 5288.14 28880.24 5392.54 596.97 1069.52 3997.17 8395.89 288.51 10494.56 94
HPM-MVS_fast80.25 14779.55 14682.33 19091.55 10959.95 27591.32 18789.16 24965.23 28574.71 16293.07 11447.81 26195.74 14474.87 15588.23 10591.31 191
PVSNet_Blended_VisFu83.97 8383.50 7785.39 9890.02 13866.59 12193.77 8491.73 14777.43 10177.08 14089.81 17763.77 8996.97 10079.67 11688.21 10692.60 160
Vis-MVSNet (Re-imp)79.24 16479.57 14378.24 28088.46 17552.29 33690.41 21789.12 25274.24 13869.13 22691.91 14065.77 6490.09 31259.00 28388.09 10792.33 167
fmvsm_l_conf0.5_n87.49 2688.19 2185.39 9886.95 21664.37 17494.30 5488.45 27980.51 4892.70 496.86 1569.98 3797.15 8695.83 388.08 10894.65 91
APD-MVS_3200maxsize81.64 12481.32 11582.59 18492.36 8458.74 29291.39 18091.01 18363.35 29779.72 10794.62 7651.82 22196.14 12779.71 11587.93 10992.89 155
Effi-MVS+83.82 8682.76 9686.99 4989.56 14869.40 4791.35 18586.12 31272.59 17383.22 7592.81 12359.60 13896.01 13781.76 10187.80 11095.56 51
casdiffmvs_mvgpermissive85.66 5585.18 5887.09 4588.22 18669.35 5193.74 8691.89 13981.47 3580.10 10291.45 14764.80 7696.35 12187.23 6087.69 11195.58 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
131480.70 13878.95 15585.94 8087.77 20067.56 9487.91 27092.55 11572.17 18867.44 25493.09 11250.27 23697.04 9271.68 18087.64 11293.23 142
test_fmvsmconf_n86.58 3987.17 3284.82 11785.28 24662.55 22594.26 5689.78 22383.81 1687.78 3696.33 2965.33 6896.98 9894.40 1187.55 11394.95 78
PMMVS81.98 11982.04 10781.78 20789.76 14456.17 31791.13 19690.69 18777.96 8880.09 10393.57 10646.33 27294.99 17581.41 10587.46 11494.17 109
casdiffmvspermissive85.37 5884.87 6486.84 5188.25 18469.07 5693.04 10991.76 14681.27 4180.84 9692.07 13864.23 8296.06 13384.98 7887.43 11595.39 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.1_n85.71 5386.08 4784.62 13180.83 29962.33 22993.84 8088.81 26683.50 1887.00 4296.01 3763.36 9796.93 10594.04 1287.29 11694.61 93
UGNet79.87 15578.68 15783.45 16789.96 13961.51 24692.13 14490.79 18576.83 10778.85 12186.33 22738.16 31296.17 12667.93 21487.17 11792.67 158
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS_111021_LR82.02 11881.52 11383.51 16488.42 17762.88 22089.77 23788.93 26276.78 10875.55 15493.10 11150.31 23595.38 16483.82 8987.02 11892.26 174
test_fmvsmvis_n_192083.80 8783.48 7884.77 12182.51 28563.72 19291.37 18383.99 33281.42 3977.68 13095.74 4258.37 14997.58 5993.38 1486.87 11993.00 151
xiu_mvs_v1_base_debu82.16 11481.12 11785.26 10586.42 22468.72 6592.59 13190.44 19773.12 16284.20 6794.36 8238.04 31495.73 14584.12 8586.81 12091.33 187
xiu_mvs_v1_base82.16 11481.12 11785.26 10586.42 22468.72 6592.59 13190.44 19773.12 16284.20 6794.36 8238.04 31495.73 14584.12 8586.81 12091.33 187
xiu_mvs_v1_base_debi82.16 11481.12 11785.26 10586.42 22468.72 6592.59 13190.44 19773.12 16284.20 6794.36 8238.04 31495.73 14584.12 8586.81 12091.33 187
SR-MVS-dyc-post81.06 13380.70 12582.15 19892.02 9258.56 29490.90 20190.45 19462.76 30478.89 11694.46 7851.26 22995.61 15378.77 12786.77 12392.28 170
RE-MVS-def80.48 13192.02 9258.56 29490.90 20190.45 19462.76 30478.89 11694.46 7849.30 24578.77 12786.77 12392.28 170
baseline85.01 6484.44 6886.71 5688.33 18168.73 6490.24 22491.82 14581.05 4481.18 9092.50 12663.69 9096.08 13284.45 8386.71 12595.32 61
TESTMET0.1,182.41 11081.98 10983.72 15888.08 18863.74 19092.70 12293.77 6379.30 6677.61 13287.57 21058.19 15294.08 21473.91 15986.68 12693.33 140
IS-MVSNet80.14 14979.41 14882.33 19087.91 19360.08 27491.97 15688.27 28572.90 16971.44 20391.73 14461.44 11893.66 23362.47 26486.53 12793.24 141
CPTT-MVS79.59 15879.16 15380.89 23291.54 11059.80 27792.10 14688.54 27860.42 32272.96 17893.28 11048.27 25492.80 25578.89 12686.50 12890.06 206
BH-w/o80.49 14279.30 15184.05 15090.83 12564.36 17693.60 9189.42 23874.35 13669.09 22790.15 17255.23 18795.61 15364.61 24786.43 12992.17 176
PVSNet73.49 880.05 15178.63 15884.31 14290.92 12264.97 15992.47 13591.05 18179.18 6972.43 19090.51 16237.05 32694.06 21668.06 21186.00 13093.90 125
test_fmvsmconf0.01_n83.70 9183.52 7584.25 14575.26 35161.72 24392.17 14287.24 30182.36 2684.91 6195.41 4855.60 18396.83 10992.85 1785.87 13194.21 107
mvs_anonymous81.36 12779.99 13785.46 9590.39 13268.40 7186.88 28690.61 19274.41 13470.31 21584.67 24463.79 8892.32 27673.13 16185.70 13295.67 46
DP-MVS Recon82.73 10581.65 11285.98 7897.31 467.06 10795.15 3691.99 13369.08 25376.50 14593.89 9954.48 19798.20 3570.76 18685.66 13392.69 157
BH-RMVSNet79.46 16277.65 17284.89 11491.68 10565.66 14093.55 9388.09 29072.93 16673.37 17591.12 15446.20 27496.12 12856.28 29285.61 13492.91 153
diffmvspermissive84.28 7583.83 7385.61 9287.40 20668.02 8390.88 20389.24 24480.54 4781.64 8692.52 12559.83 13594.52 19887.32 5885.11 13594.29 104
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Fast-Effi-MVS+81.14 13080.01 13684.51 13590.24 13465.86 13794.12 6289.15 25073.81 14975.37 15688.26 19657.26 15994.53 19766.97 22484.92 13693.15 144
LFMVS84.34 7482.73 9789.18 1294.76 3373.25 994.99 4291.89 13971.90 19482.16 8393.49 10847.98 25897.05 8982.55 9684.82 13797.25 7
BH-untuned78.68 17777.08 18383.48 16689.84 14163.74 19092.70 12288.59 27671.57 21266.83 26488.65 18751.75 22395.39 16359.03 28284.77 13891.32 190
test-LLR80.10 15079.56 14481.72 20986.93 21961.17 25092.70 12291.54 15671.51 21575.62 15186.94 21953.83 20392.38 27272.21 17384.76 13991.60 181
test-mter79.96 15379.38 15081.72 20986.93 21961.17 25092.70 12291.54 15673.85 14775.62 15186.94 21949.84 24192.38 27272.21 17384.76 13991.60 181
canonicalmvs86.85 3586.25 4388.66 1891.80 10271.92 1493.54 9491.71 14980.26 5287.55 3795.25 5863.59 9496.93 10588.18 4984.34 14197.11 8
alignmvs87.28 3086.97 3588.24 2491.30 11571.14 2195.61 2593.56 7379.30 6687.07 4195.25 5868.43 4296.93 10587.87 5184.33 14296.65 14
VNet86.20 4485.65 5487.84 2793.92 4669.99 3395.73 2395.94 778.43 8386.00 4993.07 11458.22 15197.00 9485.22 7484.33 14296.52 20
UA-Net80.02 15279.65 14281.11 22389.33 15457.72 30286.33 28989.00 26177.44 10081.01 9389.15 18359.33 14295.90 13861.01 27184.28 14489.73 213
LCM-MVSNet-Re72.93 25771.84 25676.18 30388.49 17348.02 35680.07 33770.17 37373.96 14552.25 34680.09 30749.98 23888.24 32567.35 21884.23 14592.28 170
ACMMPcopyleft81.49 12580.67 12683.93 15291.71 10462.90 21992.13 14492.22 12571.79 20171.68 20093.49 10850.32 23496.96 10178.47 12984.22 14691.93 179
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
114514_t79.17 16577.67 17183.68 15995.32 2965.53 14692.85 11691.60 15563.49 29567.92 24690.63 16046.65 26795.72 14967.01 22383.54 14789.79 211
test_vis1_n_192081.66 12382.01 10880.64 23482.24 28855.09 32594.76 4686.87 30381.67 3484.40 6694.63 7538.17 31194.67 18891.98 2683.34 14892.16 177
testing22285.18 6184.69 6686.63 5992.91 7169.91 3792.61 12895.80 980.31 5180.38 9992.27 13468.73 4095.19 17075.94 14383.27 14994.81 85
EPMVS78.49 18275.98 19986.02 7791.21 11769.68 4580.23 33491.20 16975.25 12672.48 18878.11 32154.65 19393.69 23257.66 28883.04 15094.69 87
AdaColmapbinary78.94 17077.00 18684.76 12296.34 1765.86 13792.66 12687.97 29462.18 30970.56 20992.37 13243.53 28897.35 7264.50 24882.86 15191.05 196
CDS-MVSNet81.43 12680.74 12483.52 16286.26 22864.45 16892.09 14790.65 19175.83 11973.95 17189.81 17763.97 8592.91 25171.27 18182.82 15293.20 143
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CHOSEN 280x42077.35 19976.95 18778.55 27587.07 21462.68 22469.71 36782.95 33968.80 25571.48 20287.27 21666.03 6184.00 35476.47 14082.81 15388.95 220
PCF-MVS73.15 979.29 16377.63 17384.29 14386.06 23265.96 13587.03 28291.10 17569.86 24269.79 22390.64 15857.54 15896.59 11464.37 24982.29 15490.32 203
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
fmvsm_s_conf0.5_n86.39 4186.91 3684.82 11787.36 20863.54 20294.74 4790.02 21782.52 2490.14 2496.92 1362.93 10497.84 4695.28 882.26 15593.07 148
WTY-MVS86.32 4285.81 5187.85 2692.82 7469.37 5095.20 3495.25 1582.71 2281.91 8494.73 7267.93 4897.63 5679.55 11782.25 15696.54 19
HY-MVS76.49 584.28 7583.36 8687.02 4892.22 8867.74 8984.65 29694.50 3879.15 7082.23 8287.93 20466.88 5496.94 10380.53 11282.20 15796.39 28
VDD-MVS83.06 10081.81 11186.81 5390.86 12467.70 9095.40 2991.50 15975.46 12281.78 8592.34 13340.09 30097.13 8786.85 6482.04 15895.60 49
fmvsm_s_conf0.1_n85.61 5685.93 4984.68 12782.95 28363.48 20494.03 6889.46 23581.69 3389.86 2596.74 2061.85 11497.75 4994.74 982.01 15992.81 156
TAMVS80.37 14479.45 14783.13 17385.14 24963.37 20591.23 19190.76 18674.81 13272.65 18388.49 18860.63 12692.95 24669.41 19981.95 16093.08 147
test_yl84.28 7583.16 8887.64 3094.52 3769.24 5295.78 1895.09 2069.19 25081.09 9192.88 12057.00 16497.44 6681.11 10981.76 16196.23 33
DCV-MVSNet84.28 7583.16 8887.64 3094.52 3769.24 5295.78 1895.09 2069.19 25081.09 9192.88 12057.00 16497.44 6681.11 10981.76 16196.23 33
FA-MVS(test-final)79.12 16677.23 18284.81 12090.54 12863.98 18581.35 32591.71 14971.09 22374.85 16082.94 26252.85 21497.05 8967.97 21281.73 16393.41 136
thisisatest051583.41 9382.49 10286.16 7589.46 15168.26 7693.54 9494.70 3174.31 13775.75 14890.92 15572.62 2896.52 11969.64 19581.50 16493.71 129
baseline283.68 9283.42 8384.48 13687.37 20766.00 13390.06 22895.93 879.71 6069.08 22890.39 16577.92 696.28 12378.91 12581.38 16591.16 194
PatchmatchNetpermissive77.46 19774.63 21585.96 7989.55 14970.35 3079.97 33989.55 23372.23 18570.94 20576.91 33257.03 16292.79 25654.27 29981.17 16694.74 86
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VDDNet80.50 14178.26 16387.21 4186.19 22969.79 4194.48 5091.31 16560.42 32279.34 11190.91 15638.48 30996.56 11782.16 9781.05 16795.27 66
EPNet_dtu78.80 17479.26 15277.43 28888.06 18949.71 34991.96 15791.95 13577.67 9476.56 14491.28 15258.51 14890.20 31056.37 29180.95 16892.39 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss82.71 10782.38 10483.73 15789.25 15659.58 28092.24 14094.89 2477.96 8879.86 10592.38 13156.70 17097.05 8977.26 13680.86 16994.55 95
FE-MVS75.97 22373.02 23984.82 11789.78 14265.56 14477.44 35091.07 17964.55 28772.66 18279.85 30946.05 27696.69 11254.97 29680.82 17092.21 175
GeoE78.90 17177.43 17683.29 16988.95 16562.02 23592.31 13786.23 31070.24 23771.34 20489.27 18154.43 19894.04 21963.31 25680.81 17193.81 128
fmvsm_s_conf0.5_n_a85.75 5286.09 4684.72 12485.73 24063.58 19993.79 8389.32 24181.42 3990.21 2296.91 1462.41 10897.67 5194.48 1080.56 17292.90 154
TR-MVS78.77 17677.37 18182.95 17590.49 12960.88 25693.67 8890.07 21370.08 23974.51 16391.37 15145.69 27795.70 15060.12 27780.32 17392.29 169
fmvsm_s_conf0.1_n_a84.76 6784.84 6584.53 13380.23 30963.50 20392.79 11788.73 27080.46 4989.84 2696.65 2260.96 12397.57 6193.80 1380.14 17492.53 163
TAPA-MVS70.22 1274.94 23873.53 23479.17 26890.40 13152.07 33789.19 25089.61 23262.69 30670.07 21792.67 12448.89 25294.32 20238.26 36279.97 17591.12 195
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_cas_vis1_n_192080.45 14380.61 12879.97 25278.25 33557.01 31394.04 6788.33 28279.06 7482.81 7893.70 10238.65 30691.63 29090.82 3579.81 17691.27 193
cascas78.18 18675.77 20285.41 9787.14 21269.11 5492.96 11291.15 17366.71 27370.47 21086.07 23037.49 32096.48 12070.15 19179.80 17790.65 199
HyFIR lowres test81.03 13479.56 14485.43 9687.81 19868.11 8190.18 22590.01 21870.65 23272.95 17986.06 23163.61 9394.50 19975.01 15179.75 17893.67 130
WB-MVSnew77.14 20276.18 19780.01 24986.18 23063.24 20891.26 18994.11 5571.72 20473.52 17487.29 21545.14 28293.00 24456.98 28979.42 17983.80 305
LS3D69.17 28866.40 29277.50 28691.92 9856.12 31885.12 29380.37 34946.96 36856.50 33287.51 21137.25 32193.71 23132.52 37879.40 18082.68 325
EI-MVSNet-Vis-set83.77 8883.67 7484.06 14992.79 7763.56 20091.76 16694.81 2779.65 6177.87 12894.09 9463.35 9897.90 4279.35 11979.36 18190.74 198
CVMVSNet74.04 24674.27 22373.33 32285.33 24443.94 37289.53 24288.39 28054.33 35070.37 21390.13 17349.17 24884.05 35261.83 26879.36 18191.99 178
EPP-MVSNet81.79 12181.52 11382.61 18388.77 17060.21 27293.02 11193.66 7068.52 25972.90 18090.39 16572.19 3194.96 17674.93 15279.29 18392.67 158
CLD-MVS82.73 10582.35 10583.86 15387.90 19467.65 9295.45 2892.18 12885.06 1072.58 18592.27 13452.46 21895.78 14184.18 8479.06 18488.16 236
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP3-MVS91.70 15178.90 185
HQP-MVS81.14 13080.64 12782.64 18287.54 20263.66 19794.06 6391.70 15179.80 5774.18 16590.30 16751.63 22595.61 15377.63 13478.90 18588.63 226
plane_prior62.42 22693.85 7779.38 6478.80 187
thres20079.66 15778.33 16183.66 16192.54 8365.82 13993.06 10796.31 374.90 13173.30 17688.66 18659.67 13795.61 15347.84 32578.67 18889.56 216
ET-MVSNet_ETH3D84.01 8283.15 9086.58 6290.78 12670.89 2494.74 4794.62 3581.44 3858.19 32293.64 10473.64 2392.35 27582.66 9478.66 18996.50 24
HQP_MVS80.34 14579.75 14182.12 20086.94 21762.42 22693.13 10591.31 16578.81 7972.53 18689.14 18450.66 23295.55 15876.74 13778.53 19088.39 233
plane_prior591.31 16595.55 15876.74 13778.53 19088.39 233
EI-MVSNet-UG-set83.14 9982.96 9183.67 16092.28 8663.19 21091.38 18294.68 3279.22 6876.60 14393.75 10062.64 10597.76 4878.07 13278.01 19290.05 207
OMC-MVS78.67 17977.91 17080.95 23085.76 23957.40 30988.49 26188.67 27373.85 14772.43 19092.10 13749.29 24694.55 19672.73 16777.89 19390.91 197
1112_ss80.56 14079.83 14082.77 17888.65 17160.78 25892.29 13888.36 28172.58 17472.46 18994.95 6465.09 7093.42 23866.38 23077.71 19494.10 113
OPM-MVS79.00 16878.09 16581.73 20883.52 27563.83 18791.64 17290.30 20476.36 11571.97 19589.93 17646.30 27395.17 17175.10 14977.70 19586.19 269
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PatchMatch-RL72.06 26769.98 27078.28 27889.51 15055.70 32183.49 30383.39 33761.24 31763.72 28882.76 26434.77 33493.03 24353.37 30477.59 19686.12 273
thres100view90078.37 18377.01 18582.46 18591.89 10063.21 20991.19 19596.33 172.28 18470.45 21287.89 20560.31 12895.32 16545.16 33677.58 19788.83 221
tfpn200view978.79 17577.43 17682.88 17692.21 8964.49 16592.05 15096.28 473.48 15671.75 19888.26 19660.07 13395.32 16545.16 33677.58 19788.83 221
thres40078.68 17777.43 17682.43 18692.21 8964.49 16592.05 15096.28 473.48 15671.75 19888.26 19660.07 13395.32 16545.16 33677.58 19787.48 242
CostFormer82.33 11181.15 11685.86 8389.01 16468.46 7082.39 31693.01 9675.59 12080.25 10181.57 28172.03 3294.96 17679.06 12377.48 20094.16 110
tpm279.80 15677.95 16985.34 10188.28 18268.26 7681.56 32291.42 16270.11 23877.59 13380.50 29967.40 5194.26 20867.34 21977.35 20193.51 134
Test_1112_low_res79.56 15978.60 15982.43 18688.24 18560.39 26992.09 14787.99 29272.10 19071.84 19687.42 21264.62 7893.04 24265.80 23777.30 20293.85 127
tpmrst80.57 13979.14 15484.84 11690.10 13768.28 7581.70 32089.72 23077.63 9775.96 14779.54 31364.94 7392.71 25875.43 14677.28 20393.55 133
Anonymous20240521177.96 19075.33 20985.87 8293.73 5264.52 16494.85 4485.36 31862.52 30776.11 14690.18 17029.43 35597.29 7668.51 20977.24 20495.81 45
GA-MVS78.33 18576.23 19584.65 12883.65 27366.30 12791.44 17490.14 21176.01 11770.32 21484.02 25242.50 29294.72 18470.98 18377.00 20592.94 152
thisisatest053081.15 12980.07 13484.39 13988.26 18365.63 14291.40 17894.62 3571.27 21970.93 20689.18 18272.47 2996.04 13465.62 23976.89 20691.49 183
thres600view778.00 18876.66 19082.03 20591.93 9763.69 19591.30 18896.33 172.43 17970.46 21187.89 20560.31 12894.92 17942.64 34876.64 20787.48 242
PLCcopyleft68.80 1475.23 23473.68 23379.86 25592.93 7058.68 29390.64 21288.30 28360.90 31964.43 28390.53 16142.38 29394.57 19356.52 29076.54 20886.33 264
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
iter_conf_final81.74 12280.93 12284.18 14692.66 8069.10 5592.94 11382.80 34179.01 7674.85 16088.40 19161.83 11594.61 18979.36 11876.52 20988.83 221
MIMVSNet71.64 26968.44 28381.23 21981.97 29264.44 16973.05 36088.80 26769.67 24464.59 27774.79 34432.79 34187.82 32953.99 30076.35 21091.42 185
test_fmvs174.07 24573.69 23275.22 30778.91 32747.34 36189.06 25474.69 36263.68 29479.41 11091.59 14624.36 36487.77 33185.22 7476.26 21190.55 202
MVS-HIRNet60.25 33455.55 34174.35 31584.37 26356.57 31671.64 36274.11 36334.44 38345.54 36942.24 39031.11 35189.81 31340.36 35676.10 21276.67 367
CNLPA74.31 24372.30 25180.32 23891.49 11161.66 24490.85 20480.72 34756.67 34363.85 28790.64 15846.75 26690.84 30053.79 30175.99 21388.47 232
ab-mvs80.18 14878.31 16285.80 8688.44 17665.49 14883.00 31392.67 10871.82 20077.36 13585.01 23954.50 19496.59 11476.35 14175.63 21495.32 61
test_fmvs1_n72.69 26471.92 25574.99 31071.15 36447.08 36387.34 28075.67 35763.48 29678.08 12791.17 15320.16 37587.87 32884.65 8175.57 21590.01 208
iter_conf0583.27 9682.70 9884.98 11293.32 5971.84 1594.16 5881.76 34382.74 2173.83 17288.40 19172.77 2794.61 18982.10 9875.21 21688.48 230
FIs79.47 16179.41 14879.67 25985.95 23459.40 28291.68 17093.94 5878.06 8768.96 23288.28 19466.61 5791.77 28766.20 23374.99 21787.82 238
SDMVSNet80.26 14678.88 15684.40 13889.25 15667.63 9385.35 29293.02 9576.77 10970.84 20787.12 21747.95 25996.09 12985.04 7674.55 21889.48 217
sd_testset77.08 20475.37 20782.20 19689.25 15662.11 23482.06 31789.09 25476.77 10970.84 20787.12 21741.43 29695.01 17467.23 22174.55 21889.48 217
CMPMVSbinary48.56 2166.77 30864.41 30973.84 31970.65 36750.31 34677.79 34985.73 31645.54 37244.76 37182.14 27235.40 33290.14 31163.18 25874.54 22081.07 339
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dmvs_re76.93 20575.36 20881.61 21187.78 19960.71 26380.00 33887.99 29279.42 6369.02 23089.47 18046.77 26594.32 20263.38 25574.45 22189.81 210
test_vis1_n71.63 27070.73 26674.31 31769.63 37047.29 36286.91 28472.11 36863.21 30075.18 15790.17 17120.40 37385.76 34384.59 8274.42 22289.87 209
XVG-OURS74.25 24472.46 25079.63 26078.45 33357.59 30680.33 33287.39 29763.86 29268.76 23689.62 17940.50 29991.72 28869.00 20474.25 22389.58 214
tpm cat175.30 23372.21 25284.58 13288.52 17267.77 8878.16 34888.02 29161.88 31468.45 24176.37 33660.65 12594.03 22153.77 30274.11 22491.93 179
XVG-OURS-SEG-HR74.70 24073.08 23879.57 26278.25 33557.33 31080.49 33087.32 29863.22 29968.76 23690.12 17544.89 28491.59 29170.55 18974.09 22589.79 211
FC-MVSNet-test77.99 18978.08 16677.70 28384.89 25455.51 32290.27 22293.75 6776.87 10466.80 26587.59 20965.71 6590.23 30962.89 26173.94 22687.37 245
PVSNet_BlendedMVS83.38 9483.43 8183.22 17193.76 4967.53 9694.06 6393.61 7179.13 7181.00 9485.14 23863.19 10097.29 7687.08 6173.91 22784.83 297
tttt051779.50 16078.53 16082.41 18987.22 21061.43 24889.75 23894.76 2869.29 24867.91 24788.06 20372.92 2595.63 15162.91 26073.90 22890.16 205
MDTV_nov1_ep1372.61 24789.06 16268.48 6980.33 33290.11 21271.84 19971.81 19775.92 34053.01 21393.92 22648.04 32273.38 229
SCA75.82 22672.76 24385.01 11186.63 22170.08 3281.06 32789.19 24771.60 21170.01 21877.09 33045.53 27890.25 30560.43 27473.27 23094.68 88
CR-MVSNet73.79 25070.82 26582.70 18083.15 27867.96 8470.25 36484.00 33073.67 15469.97 22072.41 35057.82 15589.48 31652.99 30573.13 23190.64 200
RPMNet70.42 27865.68 29784.63 13083.15 27867.96 8470.25 36490.45 19446.83 37069.97 22065.10 36956.48 17595.30 16835.79 36773.13 23190.64 200
Fast-Effi-MVS+-dtu75.04 23673.37 23680.07 24680.86 29859.52 28191.20 19485.38 31771.90 19465.20 27284.84 24241.46 29592.97 24566.50 22972.96 23387.73 239
mvsmamba76.85 20875.71 20480.25 24283.07 28059.16 28791.44 17480.64 34876.84 10667.95 24586.33 22746.17 27594.24 20976.06 14272.92 23487.36 246
LPG-MVS_test75.82 22674.58 21779.56 26384.31 26459.37 28390.44 21589.73 22869.49 24564.86 27488.42 18938.65 30694.30 20472.56 16972.76 23585.01 295
LGP-MVS_train79.56 26384.31 26459.37 28389.73 22869.49 24564.86 27488.42 18938.65 30694.30 20472.56 16972.76 23585.01 295
EG-PatchMatch MVS68.55 29465.41 30077.96 28278.69 33062.93 21689.86 23589.17 24860.55 32150.27 35477.73 32422.60 36994.06 21647.18 32872.65 23776.88 366
EI-MVSNet78.97 16978.22 16481.25 21885.33 24462.73 22389.53 24293.21 8672.39 18172.14 19390.13 17360.99 12194.72 18467.73 21672.49 23886.29 265
MVSTER82.47 10982.05 10683.74 15592.68 7969.01 5891.90 15893.21 8679.83 5672.14 19385.71 23574.72 1694.72 18475.72 14472.49 23887.50 241
Anonymous2024052976.84 20974.15 22584.88 11591.02 11964.95 16093.84 8091.09 17653.57 35173.00 17787.42 21235.91 33097.32 7469.14 20372.41 24092.36 166
D2MVS73.80 24972.02 25479.15 27079.15 32262.97 21488.58 26090.07 21372.94 16559.22 31678.30 31842.31 29492.70 26065.59 24072.00 24181.79 333
PS-MVSNAJss77.26 20076.31 19480.13 24580.64 30359.16 28790.63 21491.06 18072.80 17068.58 23984.57 24653.55 20793.96 22472.97 16271.96 24287.27 250
Effi-MVS+-dtu76.14 21675.28 21078.72 27483.22 27755.17 32489.87 23487.78 29575.42 12367.98 24481.43 28345.08 28392.52 26875.08 15071.63 24388.48 230
ACMMP++_ref71.63 243
ACMM69.62 1374.34 24272.73 24579.17 26884.25 26657.87 30090.36 21989.93 21963.17 30165.64 26986.04 23237.79 31894.10 21265.89 23571.52 24585.55 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP71.68 1075.58 23174.23 22479.62 26184.97 25359.64 27890.80 20689.07 25670.39 23562.95 29687.30 21438.28 31093.87 22872.89 16371.45 24685.36 290
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
dp75.01 23772.09 25383.76 15489.28 15566.22 13079.96 34089.75 22571.16 22067.80 25177.19 32951.81 22292.54 26750.39 31071.44 24792.51 164
tpm78.58 18077.03 18483.22 17185.94 23664.56 16383.21 31091.14 17478.31 8473.67 17379.68 31164.01 8492.09 28166.07 23471.26 24893.03 149
DP-MVS69.90 28366.48 29080.14 24495.36 2862.93 21689.56 23976.11 35550.27 36157.69 32885.23 23739.68 30195.73 14533.35 37271.05 24981.78 334
UniMVSNet_ETH3D72.74 26170.53 26879.36 26578.62 33256.64 31585.01 29489.20 24663.77 29364.84 27684.44 24834.05 33791.86 28563.94 25170.89 25089.57 215
bld_raw_dy_0_6471.59 27169.71 27677.22 29377.82 34158.12 29887.71 27473.66 36468.01 26261.90 30584.29 25033.68 33888.43 32369.91 19470.43 25185.11 294
jajsoiax73.05 25571.51 26077.67 28477.46 34254.83 32688.81 25690.04 21669.13 25262.85 29883.51 25731.16 35092.75 25770.83 18469.80 25285.43 289
ACMMP++69.72 253
mvs_tets72.71 26271.11 26177.52 28577.41 34354.52 32888.45 26289.76 22468.76 25762.70 29983.26 26029.49 35492.71 25870.51 19069.62 25485.34 291
tpmvs72.88 25969.76 27582.22 19590.98 12067.05 10878.22 34788.30 28363.10 30264.35 28474.98 34355.09 19094.27 20643.25 34269.57 25585.34 291
GBi-Net75.65 22873.83 23081.10 22488.85 16665.11 15590.01 23090.32 20070.84 22767.04 26080.25 30448.03 25591.54 29359.80 27969.34 25686.64 258
test175.65 22873.83 23081.10 22488.85 16665.11 15590.01 23090.32 20070.84 22767.04 26080.25 30448.03 25591.54 29359.80 27969.34 25686.64 258
FMVSNet377.73 19476.04 19882.80 17791.20 11868.99 5991.87 15991.99 13373.35 15867.04 26083.19 26156.62 17292.14 27859.80 27969.34 25687.28 249
Syy-MVS69.65 28569.52 27770.03 34187.87 19543.21 37488.07 26689.01 25872.91 16763.11 29388.10 20045.28 28185.54 34422.07 38769.23 25981.32 336
myMVS_eth3d72.58 26672.74 24472.10 33487.87 19549.45 35188.07 26689.01 25872.91 16763.11 29388.10 20063.63 9185.54 34432.73 37669.23 25981.32 336
MSDG69.54 28665.73 29680.96 22985.11 25163.71 19384.19 29883.28 33856.95 34054.50 33784.03 25131.50 34796.03 13542.87 34669.13 26183.14 317
JIA-IIPM66.06 31162.45 32076.88 29881.42 29654.45 32957.49 38688.67 27349.36 36363.86 28646.86 38456.06 17990.25 30549.53 31568.83 26285.95 277
OpenMVS_ROBcopyleft61.12 1866.39 30962.92 31776.80 29976.51 34657.77 30189.22 24883.41 33655.48 34753.86 34177.84 32326.28 36393.95 22534.90 36968.76 26378.68 360
FMVSNet276.07 21774.01 22882.26 19488.85 16667.66 9191.33 18691.61 15470.84 22765.98 26782.25 27048.03 25592.00 28358.46 28468.73 26487.10 252
test_djsdf73.76 25172.56 24877.39 28977.00 34553.93 33089.07 25290.69 18765.80 27963.92 28582.03 27343.14 29192.67 26172.83 16468.53 26585.57 285
F-COLMAP70.66 27568.44 28377.32 29086.37 22755.91 31988.00 26886.32 30756.94 34157.28 33088.07 20233.58 33992.49 26951.02 30868.37 26683.55 307
XVG-ACMP-BASELINE68.04 29965.53 29975.56 30574.06 35652.37 33578.43 34485.88 31462.03 31158.91 32081.21 29120.38 37491.15 29960.69 27368.18 26783.16 316
LTVRE_ROB59.60 1966.27 31063.54 31374.45 31484.00 26951.55 33967.08 37483.53 33458.78 33254.94 33680.31 30234.54 33593.23 24040.64 35568.03 26878.58 361
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XXY-MVS77.94 19176.44 19282.43 18682.60 28464.44 16992.01 15291.83 14473.59 15570.00 21985.82 23354.43 19894.76 18169.63 19668.02 26988.10 237
ADS-MVSNet266.90 30763.44 31477.26 29288.06 18960.70 26468.01 37175.56 35957.57 33564.48 28069.87 36038.68 30484.10 35140.87 35367.89 27086.97 253
ADS-MVSNet68.54 29564.38 31081.03 22888.06 18966.90 11268.01 37184.02 32957.57 33564.48 28069.87 36038.68 30489.21 31840.87 35367.89 27086.97 253
test0.0.03 172.76 26072.71 24672.88 32680.25 30847.99 35791.22 19289.45 23671.51 21562.51 30187.66 20853.83 20385.06 34850.16 31267.84 27285.58 284
anonymousdsp71.14 27469.37 27876.45 30072.95 35954.71 32784.19 29888.88 26361.92 31362.15 30279.77 31038.14 31391.44 29868.90 20667.45 27383.21 315
tt080573.07 25470.73 26680.07 24678.37 33457.05 31287.78 27292.18 12861.23 31867.04 26086.49 22431.35 34994.58 19165.06 24567.12 27488.57 228
VPA-MVSNet79.03 16778.00 16782.11 20385.95 23464.48 16793.22 10494.66 3375.05 12974.04 17084.95 24052.17 22093.52 23574.90 15467.04 27588.32 235
nrg03080.93 13579.86 13984.13 14883.69 27268.83 6293.23 10391.20 16975.55 12175.06 15888.22 19963.04 10394.74 18381.88 10066.88 27688.82 224
FMVSNet172.71 26269.91 27381.10 22483.60 27465.11 15590.01 23090.32 20063.92 29163.56 28980.25 30436.35 32991.54 29354.46 29866.75 27786.64 258
PatchT69.11 28965.37 30180.32 23882.07 29163.68 19667.96 37387.62 29650.86 35969.37 22465.18 36857.09 16188.53 32241.59 35166.60 27888.74 225
IB-MVS77.80 482.18 11380.46 13287.35 3989.14 16170.28 3195.59 2695.17 1878.85 7770.19 21685.82 23370.66 3597.67 5172.19 17566.52 27994.09 114
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
RRT_MVS74.44 24172.97 24178.84 27382.36 28757.66 30489.83 23688.79 26970.61 23364.58 27884.89 24139.24 30292.65 26470.11 19266.34 28086.21 268
test_fmvs265.78 31464.84 30268.60 34766.54 37541.71 37683.27 30769.81 37454.38 34967.91 24784.54 24715.35 38081.22 37175.65 14566.16 28182.88 318
pmmvs573.35 25271.52 25978.86 27278.64 33160.61 26791.08 19786.90 30267.69 26463.32 29183.64 25544.33 28690.53 30262.04 26666.02 28285.46 288
dmvs_testset65.55 31566.45 29162.86 35779.87 31222.35 40076.55 35271.74 37077.42 10255.85 33387.77 20751.39 22780.69 37231.51 38265.92 28385.55 286
pmmvs473.92 24871.81 25780.25 24279.17 32165.24 15187.43 27887.26 30067.64 26763.46 29083.91 25448.96 25191.53 29662.94 25965.49 28483.96 302
cl2277.94 19176.78 18881.42 21587.57 20164.93 16190.67 21088.86 26572.45 17867.63 25382.68 26664.07 8392.91 25171.79 17665.30 28586.44 263
miper_ehance_all_eth77.60 19576.44 19281.09 22785.70 24164.41 17290.65 21188.64 27572.31 18267.37 25882.52 26764.77 7792.64 26570.67 18765.30 28586.24 267
miper_enhance_ethall78.86 17277.97 16881.54 21388.00 19265.17 15391.41 17689.15 25075.19 12768.79 23583.98 25367.17 5292.82 25372.73 16765.30 28586.62 262
v114476.73 21274.88 21282.27 19280.23 30966.60 12091.68 17090.21 21073.69 15269.06 22981.89 27452.73 21694.40 20169.21 20265.23 28885.80 280
DSMNet-mixed56.78 34054.44 34363.79 35663.21 37929.44 39564.43 37764.10 38242.12 38051.32 35071.60 35531.76 34675.04 37736.23 36465.20 28986.87 256
v119275.98 22273.92 22982.15 19879.73 31366.24 12991.22 19289.75 22572.67 17268.49 24081.42 28449.86 24094.27 20667.08 22265.02 29085.95 277
v2v48277.42 19875.65 20582.73 17980.38 30567.13 10691.85 16190.23 20875.09 12869.37 22483.39 25953.79 20594.44 20071.77 17765.00 29186.63 261
V4276.46 21474.55 21882.19 19779.14 32367.82 8790.26 22389.42 23873.75 15068.63 23881.89 27451.31 22894.09 21371.69 17964.84 29284.66 298
ACMH63.93 1768.62 29364.81 30380.03 24885.22 24763.25 20787.72 27384.66 32460.83 32051.57 34979.43 31427.29 36094.96 17641.76 34964.84 29281.88 332
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline181.84 12081.03 12184.28 14491.60 10666.62 11991.08 19791.66 15381.87 3174.86 15991.67 14569.98 3794.92 17971.76 17864.75 29491.29 192
v124075.21 23572.98 24081.88 20679.20 32066.00 13390.75 20889.11 25371.63 21067.41 25681.22 28947.36 26393.87 22865.46 24264.72 29585.77 281
IterMVS-LS76.49 21375.18 21180.43 23784.49 26062.74 22290.64 21288.80 26772.40 18065.16 27381.72 27760.98 12292.27 27767.74 21564.65 29686.29 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192075.63 23073.49 23582.06 20479.38 31866.35 12591.07 19989.48 23471.98 19167.99 24381.22 28949.16 24993.90 22766.56 22664.56 29785.92 279
v14419276.05 22074.03 22782.12 20079.50 31766.55 12291.39 18089.71 23172.30 18368.17 24281.33 28651.75 22394.03 22167.94 21364.19 29885.77 281
Anonymous2023121173.08 25370.39 26981.13 22290.62 12763.33 20691.40 17890.06 21551.84 35664.46 28280.67 29736.49 32894.07 21563.83 25264.17 29985.98 276
testing370.38 27970.83 26369.03 34585.82 23843.93 37390.72 20990.56 19368.06 26160.24 31086.82 22164.83 7584.12 35026.33 38364.10 30079.04 357
Patchmatch-test65.86 31260.94 32680.62 23583.75 27158.83 29158.91 38575.26 36144.50 37550.95 35377.09 33058.81 14787.90 32735.13 36864.03 30195.12 72
USDC67.43 30664.51 30776.19 30277.94 33955.29 32378.38 34585.00 32173.17 16048.36 36180.37 30121.23 37192.48 27052.15 30664.02 30280.81 342
VPNet78.82 17377.53 17582.70 18084.52 25966.44 12393.93 7292.23 12280.46 4972.60 18488.38 19349.18 24793.13 24172.47 17163.97 30388.55 229
Anonymous2023120667.53 30465.78 29572.79 32774.95 35247.59 35988.23 26487.32 29861.75 31658.07 32477.29 32737.79 31887.29 33742.91 34463.71 30483.48 310
WR-MVS76.76 21175.74 20379.82 25684.60 25762.27 23292.60 12992.51 11676.06 11667.87 25085.34 23656.76 16890.24 30862.20 26563.69 30586.94 255
h-mvs3383.01 10182.56 10184.35 14189.34 15262.02 23592.72 12093.76 6481.45 3682.73 7992.25 13660.11 13197.13 8787.69 5362.96 30693.91 123
c3_l76.83 21075.47 20680.93 23185.02 25264.18 18290.39 21888.11 28971.66 20566.65 26681.64 27963.58 9592.56 26669.31 20162.86 30786.04 274
test_vis1_rt59.09 33857.31 33764.43 35568.44 37346.02 36783.05 31248.63 39551.96 35549.57 35763.86 37116.30 37880.20 37371.21 18262.79 30867.07 380
mvsany_test168.77 29268.56 28169.39 34373.57 35745.88 36880.93 32860.88 38659.65 32871.56 20190.26 16943.22 29075.05 37674.26 15862.70 30987.25 251
UniMVSNet_NR-MVSNet78.15 18777.55 17479.98 25084.46 26160.26 27092.25 13993.20 8877.50 9968.88 23386.61 22266.10 6092.13 27966.38 23062.55 31087.54 240
DU-MVS76.86 20675.84 20179.91 25382.96 28160.26 27091.26 18991.54 15676.46 11468.88 23386.35 22556.16 17692.13 27966.38 23062.55 31087.35 247
UniMVSNet (Re)77.58 19676.78 18879.98 25084.11 26760.80 25791.76 16693.17 9076.56 11369.93 22284.78 24363.32 9992.36 27464.89 24662.51 31286.78 257
v875.35 23273.26 23781.61 21180.67 30266.82 11389.54 24189.27 24371.65 20663.30 29280.30 30354.99 19194.06 21667.33 22062.33 31383.94 303
cl____76.07 21774.67 21380.28 24085.15 24861.76 24190.12 22688.73 27071.16 22065.43 27081.57 28161.15 11992.95 24666.54 22762.17 31486.13 272
v1074.77 23972.54 24981.46 21480.33 30766.71 11789.15 25189.08 25570.94 22563.08 29579.86 30852.52 21794.04 21965.70 23862.17 31483.64 306
DIV-MVS_self_test76.07 21774.67 21380.28 24085.14 24961.75 24290.12 22688.73 27071.16 22065.42 27181.60 28061.15 11992.94 25066.54 22762.16 31686.14 270
IterMVS-SCA-FT71.55 27269.97 27176.32 30181.48 29460.67 26587.64 27685.99 31366.17 27759.50 31478.88 31545.53 27883.65 35662.58 26361.93 31784.63 300
IterMVS72.65 26570.83 26378.09 28182.17 28962.96 21587.64 27686.28 30871.56 21360.44 30978.85 31645.42 28086.66 33963.30 25761.83 31884.65 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet568.04 29965.66 29875.18 30984.43 26257.89 29983.54 30286.26 30961.83 31553.64 34273.30 34737.15 32485.08 34748.99 31761.77 31982.56 327
v7n71.31 27368.65 28079.28 26676.40 34760.77 25986.71 28789.45 23664.17 29058.77 32178.24 31944.59 28593.54 23457.76 28661.75 32083.52 309
v14876.19 21574.47 22081.36 21680.05 31164.44 16991.75 16890.23 20873.68 15367.13 25980.84 29455.92 18193.86 23068.95 20561.73 32185.76 283
tfpnnormal70.10 28067.36 28878.32 27783.45 27660.97 25588.85 25592.77 10464.85 28660.83 30878.53 31743.52 28993.48 23631.73 37961.70 32280.52 345
ACMH+65.35 1667.65 30264.55 30676.96 29784.59 25857.10 31188.08 26580.79 34658.59 33453.00 34381.09 29326.63 36292.95 24646.51 33061.69 32380.82 341
ITE_SJBPF70.43 34074.44 35447.06 36477.32 35360.16 32554.04 34083.53 25623.30 36884.01 35343.07 34361.58 32480.21 350
NR-MVSNet76.05 22074.59 21680.44 23682.96 28162.18 23390.83 20591.73 14777.12 10360.96 30786.35 22559.28 14391.80 28660.74 27261.34 32587.35 247
test_040264.54 31961.09 32574.92 31184.10 26860.75 26187.95 26979.71 35152.03 35452.41 34577.20 32832.21 34591.64 28923.14 38561.03 32672.36 374
Baseline_NR-MVSNet73.99 24772.83 24277.48 28780.78 30059.29 28691.79 16384.55 32568.85 25468.99 23180.70 29556.16 17692.04 28262.67 26260.98 32781.11 338
TranMVSNet+NR-MVSNet75.86 22574.52 21979.89 25482.44 28660.64 26691.37 18391.37 16376.63 11167.65 25286.21 22952.37 21991.55 29261.84 26760.81 32887.48 242
testgi64.48 32062.87 31869.31 34471.24 36240.62 37985.49 29179.92 35065.36 28354.18 33983.49 25823.74 36784.55 34941.60 35060.79 32982.77 320
eth_miper_zixun_eth75.96 22474.40 22180.66 23384.66 25663.02 21389.28 24788.27 28571.88 19665.73 26881.65 27859.45 13992.81 25468.13 21060.53 33086.14 270
COLMAP_ROBcopyleft57.96 2062.98 32759.65 32972.98 32581.44 29553.00 33483.75 30175.53 36048.34 36648.81 36081.40 28524.14 36590.30 30432.95 37460.52 33175.65 369
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AUN-MVS78.37 18377.43 17681.17 22086.60 22257.45 30889.46 24491.16 17174.11 14074.40 16490.49 16355.52 18494.57 19374.73 15660.43 33291.48 184
hse-mvs281.12 13281.11 12081.16 22186.52 22357.48 30789.40 24591.16 17181.45 3682.73 7990.49 16360.11 13194.58 19187.69 5360.41 33391.41 186
RPSCF64.24 32161.98 32371.01 33976.10 34945.00 36975.83 35675.94 35646.94 36958.96 31984.59 24531.40 34882.00 36847.76 32660.33 33486.04 274
miper_lstm_enhance73.05 25571.73 25877.03 29483.80 27058.32 29681.76 31888.88 26369.80 24361.01 30678.23 32057.19 16087.51 33565.34 24359.53 33585.27 293
CP-MVSNet70.50 27769.91 27372.26 33180.71 30151.00 34387.23 28190.30 20467.84 26359.64 31382.69 26550.23 23782.30 36651.28 30759.28 33683.46 311
PS-CasMVS69.86 28469.13 27972.07 33580.35 30650.57 34587.02 28389.75 22567.27 26959.19 31782.28 26946.58 26882.24 36750.69 30959.02 33783.39 313
pm-mvs172.89 25871.09 26278.26 27979.10 32457.62 30590.80 20689.30 24267.66 26562.91 29781.78 27649.11 25092.95 24660.29 27658.89 33884.22 301
Anonymous2024052162.09 32859.08 33171.10 33867.19 37448.72 35583.91 30085.23 31950.38 36047.84 36271.22 35920.74 37285.51 34646.47 33158.75 33979.06 356
WR-MVS_H70.59 27669.94 27272.53 32881.03 29751.43 34087.35 27992.03 13267.38 26860.23 31180.70 29555.84 18283.45 35846.33 33258.58 34082.72 322
PEN-MVS69.46 28768.56 28172.17 33379.27 31949.71 34986.90 28589.24 24467.24 27259.08 31882.51 26847.23 26483.54 35748.42 32057.12 34183.25 314
EU-MVSNet64.01 32263.01 31667.02 35374.40 35538.86 38483.27 30786.19 31145.11 37354.27 33881.15 29236.91 32780.01 37448.79 31957.02 34282.19 331
AllTest61.66 32958.06 33372.46 32979.57 31451.42 34180.17 33568.61 37651.25 35745.88 36581.23 28719.86 37686.58 34038.98 35957.01 34379.39 353
TestCases72.46 32979.57 31451.42 34168.61 37651.25 35745.88 36581.23 28719.86 37686.58 34038.98 35957.01 34379.39 353
Patchmtry67.53 30463.93 31178.34 27682.12 29064.38 17368.72 36884.00 33048.23 36759.24 31572.41 35057.82 15589.27 31746.10 33356.68 34581.36 335
our_test_368.29 29764.69 30579.11 27178.92 32564.85 16288.40 26385.06 32060.32 32452.68 34476.12 33840.81 29889.80 31544.25 34155.65 34682.67 326
FPMVS45.64 34943.10 35353.23 36751.42 39136.46 38564.97 37671.91 36929.13 38727.53 38761.55 3769.83 38965.01 39116.00 39355.58 34758.22 383
DTE-MVSNet68.46 29667.33 28971.87 33777.94 33949.00 35486.16 29088.58 27766.36 27658.19 32282.21 27146.36 26983.87 35544.97 33955.17 34882.73 321
MIMVSNet160.16 33557.33 33668.67 34669.71 36944.13 37178.92 34284.21 32655.05 34844.63 37271.85 35423.91 36681.54 37032.63 37755.03 34980.35 346
pmmvs667.57 30364.76 30476.00 30472.82 36153.37 33288.71 25786.78 30653.19 35257.58 32978.03 32235.33 33392.41 27155.56 29454.88 35082.21 330
TinyColmap60.32 33356.42 34072.00 33678.78 32853.18 33378.36 34675.64 35852.30 35341.59 37875.82 34114.76 38388.35 32435.84 36554.71 35174.46 370
test20.0363.83 32362.65 31967.38 35270.58 36839.94 38086.57 28884.17 32763.29 29851.86 34777.30 32637.09 32582.47 36438.87 36154.13 35279.73 351
OurMVSNet-221017-064.68 31862.17 32272.21 33276.08 35047.35 36080.67 32981.02 34556.19 34451.60 34879.66 31227.05 36188.56 32153.60 30353.63 35380.71 343
test_fmvs356.82 33954.86 34262.69 35853.59 38835.47 38675.87 35565.64 38143.91 37655.10 33571.43 3586.91 39474.40 37968.64 20852.63 35478.20 363
Patchmatch-RL test68.17 29864.49 30879.19 26771.22 36353.93 33070.07 36671.54 37269.22 24956.79 33162.89 37256.58 17388.61 31969.53 19852.61 35595.03 76
ppachtmachnet_test67.72 30163.70 31279.77 25878.92 32566.04 13288.68 25882.90 34060.11 32655.45 33475.96 33939.19 30390.55 30139.53 35752.55 35682.71 323
LF4IMVS54.01 34352.12 34459.69 35962.41 38139.91 38268.59 36968.28 37842.96 37944.55 37375.18 34214.09 38568.39 38541.36 35251.68 35770.78 375
N_pmnet50.55 34449.11 34754.88 36577.17 3444.02 40884.36 2972.00 40648.59 36445.86 36768.82 36232.22 34482.80 36331.58 38051.38 35877.81 364
pmmvs-eth3d65.53 31662.32 32175.19 30869.39 37159.59 27982.80 31483.43 33562.52 30751.30 35172.49 34832.86 34087.16 33855.32 29550.73 35978.83 359
CL-MVSNet_self_test69.92 28268.09 28675.41 30673.25 35855.90 32090.05 22989.90 22069.96 24061.96 30476.54 33351.05 23087.64 33249.51 31650.59 36082.70 324
PM-MVS59.40 33656.59 33867.84 34863.63 37841.86 37576.76 35163.22 38359.01 33151.07 35272.27 35311.72 38683.25 36061.34 26950.28 36178.39 362
MDA-MVSNet_test_wron63.78 32460.16 32774.64 31278.15 33760.41 26883.49 30384.03 32856.17 34639.17 38071.59 35637.22 32283.24 36142.87 34648.73 36280.26 348
YYNet163.76 32560.14 32874.62 31378.06 33860.19 27383.46 30583.99 33256.18 34539.25 37971.56 35737.18 32383.34 35942.90 34548.70 36380.32 347
KD-MVS_self_test60.87 33258.60 33267.68 35066.13 37639.93 38175.63 35784.70 32357.32 33849.57 35768.45 36329.55 35382.87 36248.09 32147.94 36480.25 349
SixPastTwentyTwo64.92 31761.78 32474.34 31678.74 32949.76 34883.42 30679.51 35262.86 30350.27 35477.35 32530.92 35290.49 30345.89 33447.06 36582.78 319
new_pmnet49.31 34546.44 34857.93 36062.84 38040.74 37868.47 37062.96 38436.48 38235.09 38257.81 37914.97 38272.18 38132.86 37546.44 36660.88 382
EGC-MVSNET42.35 35138.09 35455.11 36474.57 35346.62 36571.63 36355.77 3870.04 4010.24 40262.70 37314.24 38474.91 37817.59 39046.06 36743.80 387
TransMVSNet (Re)70.07 28167.66 28777.31 29180.62 30459.13 28991.78 16584.94 32265.97 27860.08 31280.44 30050.78 23191.87 28448.84 31845.46 36880.94 340
ambc69.61 34261.38 38341.35 37749.07 39185.86 31550.18 35666.40 36610.16 38888.14 32645.73 33544.20 36979.32 355
TDRefinement55.28 34251.58 34566.39 35459.53 38546.15 36676.23 35472.80 36644.60 37442.49 37676.28 33715.29 38182.39 36533.20 37343.75 37070.62 376
Gipumacopyleft34.91 35831.44 36145.30 37470.99 36539.64 38319.85 39672.56 36720.10 39216.16 39621.47 3975.08 39771.16 38213.07 39443.70 37125.08 394
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_f46.58 34743.45 35155.96 36245.18 39532.05 39061.18 38049.49 39433.39 38442.05 37762.48 3747.00 39365.56 38947.08 32943.21 37270.27 377
MDA-MVSNet-bldmvs61.54 33157.70 33573.05 32479.53 31657.00 31483.08 31181.23 34457.57 33534.91 38372.45 34932.79 34186.26 34235.81 36641.95 37375.89 368
new-patchmatchnet59.30 33756.48 33967.79 34965.86 37744.19 37082.47 31581.77 34259.94 32743.65 37566.20 36727.67 35981.68 36939.34 35841.40 37477.50 365
UnsupCasMVSNet_eth65.79 31363.10 31573.88 31870.71 36650.29 34781.09 32689.88 22172.58 17449.25 35974.77 34532.57 34387.43 33655.96 29341.04 37583.90 304
test_vis3_rt40.46 35437.79 35548.47 37244.49 39633.35 38966.56 37532.84 40332.39 38529.65 38539.13 3933.91 40168.65 38450.17 31140.99 37643.40 388
pmmvs355.51 34151.50 34667.53 35157.90 38650.93 34480.37 33173.66 36440.63 38144.15 37464.75 37016.30 37878.97 37544.77 34040.98 37772.69 372
APD_test140.50 35337.31 35650.09 37051.88 38935.27 38759.45 38452.59 39121.64 39026.12 38857.80 3804.56 39866.56 38722.64 38639.09 37848.43 386
UnsupCasMVSNet_bld61.60 33057.71 33473.29 32368.73 37251.64 33878.61 34389.05 25757.20 33946.11 36461.96 37528.70 35788.60 32050.08 31338.90 37979.63 352
PMVScopyleft26.43 2231.84 36128.16 36442.89 37525.87 40427.58 39650.92 39049.78 39321.37 39114.17 39740.81 3922.01 40466.62 3869.61 39738.88 38034.49 393
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
K. test v363.09 32659.61 33073.53 32176.26 34849.38 35383.27 30777.15 35464.35 28947.77 36372.32 35228.73 35687.79 33049.93 31436.69 38183.41 312
KD-MVS_2432*160069.03 29066.37 29377.01 29585.56 24261.06 25381.44 32390.25 20667.27 26958.00 32576.53 33454.49 19587.63 33348.04 32235.77 38282.34 328
miper_refine_blended69.03 29066.37 29377.01 29585.56 24261.06 25381.44 32390.25 20667.27 26958.00 32576.53 33454.49 19587.63 33348.04 32235.77 38282.34 328
mvsany_test348.86 34646.35 34956.41 36146.00 39431.67 39162.26 37947.25 39643.71 37745.54 36968.15 36410.84 38764.44 39357.95 28535.44 38473.13 371
LCM-MVSNet40.54 35235.79 35754.76 36636.92 40130.81 39251.41 38969.02 37522.07 38924.63 38945.37 3864.56 39865.81 38833.67 37134.50 38567.67 378
test_method38.59 35635.16 35948.89 37154.33 38721.35 40145.32 39253.71 3907.41 39828.74 38651.62 3828.70 39152.87 39633.73 37032.89 38672.47 373
lessismore_v073.72 32072.93 36047.83 35861.72 38545.86 36773.76 34628.63 35889.81 31347.75 32731.37 38783.53 308
testf132.77 35929.47 36242.67 37641.89 39830.81 39252.07 38743.45 39715.45 39318.52 39344.82 3872.12 40258.38 39416.05 39130.87 38838.83 389
APD_test232.77 35929.47 36242.67 37641.89 39830.81 39252.07 38743.45 39715.45 39318.52 39344.82 3872.12 40258.38 39416.05 39130.87 38838.83 389
PVSNet_068.08 1571.81 26868.32 28582.27 19284.68 25562.31 23188.68 25890.31 20375.84 11857.93 32780.65 29837.85 31794.19 21069.94 19329.05 39090.31 204
WB-MVS46.23 34844.94 35050.11 36962.13 38221.23 40276.48 35355.49 38845.89 37135.78 38161.44 37735.54 33172.83 3809.96 39621.75 39156.27 384
SSC-MVS44.51 35043.35 35247.99 37361.01 38418.90 40474.12 35954.36 38943.42 37834.10 38460.02 37834.42 33670.39 3839.14 39819.57 39254.68 385
DeepMVS_CXcopyleft34.71 37951.45 39024.73 39928.48 40531.46 38617.49 39552.75 3815.80 39642.60 40018.18 38919.42 39336.81 392
PMMVS237.93 35733.61 36050.92 36846.31 39324.76 39860.55 38350.05 39228.94 38820.93 39047.59 3834.41 40065.13 39025.14 38418.55 39462.87 381
MVEpermissive24.84 2324.35 36319.77 36938.09 37834.56 40326.92 39726.57 39438.87 40111.73 39711.37 39827.44 3941.37 40550.42 39711.41 39514.60 39536.93 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN24.61 36224.00 36626.45 38043.74 39718.44 40560.86 38139.66 39915.11 3959.53 39922.10 3966.52 39546.94 3988.31 39910.14 39613.98 396
EMVS23.76 36423.20 36825.46 38141.52 40016.90 40660.56 38238.79 40214.62 3968.99 40020.24 3997.35 39245.82 3997.25 4009.46 39713.64 397
tmp_tt22.26 36523.75 36717.80 3825.23 40512.06 40735.26 39339.48 4002.82 40018.94 39144.20 38922.23 37024.64 40136.30 3639.31 39816.69 395
ANet_high40.27 35535.20 35855.47 36334.74 40234.47 38863.84 37871.56 37148.42 36518.80 39241.08 3919.52 39064.45 39220.18 3888.66 39967.49 379
wuyk23d11.30 36710.95 37012.33 38348.05 39219.89 40325.89 3951.92 4073.58 3993.12 4011.37 4010.64 40615.77 4026.23 4017.77 4001.35 398
testmvs7.23 3699.62 3720.06 3850.04 4060.02 41084.98 2950.02 4080.03 4020.18 4031.21 4020.01 4080.02 4030.14 4020.01 4010.13 400
test_blank0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
uanet_test0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
DCPMVS0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
cdsmvs_eth3d_5k19.86 36626.47 3650.00 3860.00 4080.00 4110.00 39793.45 790.00 4040.00 40595.27 5649.56 2420.00 4050.00 4040.00 4020.00 401
pcd_1.5k_mvsjas4.46 3715.95 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 40453.55 2070.00 4050.00 4040.00 4020.00 401
sosnet-low-res0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
sosnet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
uncertanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
Regformer0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
test1236.92 3709.21 3730.08 3840.03 4070.05 40981.65 3210.01 4090.02 4030.14 4040.85 4030.03 4070.02 4030.12 4030.00 4020.16 399
ab-mvs-re7.91 36810.55 3710.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40594.95 640.00 4090.00 4050.00 4040.00 4020.00 401
uanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
WAC-MVS49.45 35131.56 381
FOURS193.95 4561.77 24093.96 7091.92 13662.14 31086.57 44
test_one_060196.32 1869.74 4394.18 5271.42 21790.67 1896.85 1674.45 18
eth-test20.00 408
eth-test0.00 408
test_241102_ONE96.45 1269.38 4894.44 4171.65 20692.11 697.05 776.79 999.11 6
save fliter93.84 4867.89 8695.05 3992.66 10978.19 85
test072696.40 1569.99 3396.76 794.33 4971.92 19291.89 1097.11 673.77 21
GSMVS94.68 88
test_part296.29 1968.16 8090.78 16
sam_mvs157.85 15494.68 88
sam_mvs54.91 192
MTGPAbinary92.23 122
test_post178.95 34120.70 39853.05 21291.50 29760.43 274
test_post23.01 39556.49 17492.67 261
patchmatchnet-post67.62 36557.62 15790.25 305
MTMP93.77 8432.52 404
gm-plane-assit88.42 17767.04 10978.62 8291.83 14197.37 7076.57 139
TEST994.18 4167.28 10194.16 5893.51 7571.75 20385.52 5495.33 5168.01 4697.27 80
test_894.19 4067.19 10394.15 6193.42 8171.87 19785.38 5795.35 5068.19 4496.95 102
agg_prior94.16 4366.97 11193.31 8484.49 6596.75 111
test_prior467.18 10593.92 73
test_prior86.42 6894.71 3567.35 10093.10 9496.84 10895.05 74
旧先验292.00 15559.37 33087.54 3893.47 23775.39 147
新几何291.41 176
无先验92.71 12192.61 11362.03 31197.01 9366.63 22593.97 120
原ACMM292.01 152
testdata296.09 12961.26 270
segment_acmp65.94 62
testdata189.21 24977.55 98
plane_prior786.94 21761.51 246
plane_prior687.23 20962.32 23050.66 232
plane_prior489.14 184
plane_prior361.95 23879.09 7272.53 186
plane_prior293.13 10578.81 79
plane_prior187.15 211
n20.00 410
nn0.00 410
door-mid66.01 380
test1193.01 96
door66.57 379
HQP5-MVS63.66 197
HQP-NCC87.54 20294.06 6379.80 5774.18 165
ACMP_Plane87.54 20294.06 6379.80 5774.18 165
BP-MVS77.63 134
HQP4-MVS74.18 16595.61 15388.63 226
HQP2-MVS51.63 225
NP-MVS87.41 20563.04 21290.30 167
MDTV_nov1_ep13_2view59.90 27680.13 33667.65 26672.79 18154.33 20059.83 27892.58 161
Test By Simon54.21 201