This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 1189.33 185.77 5196.26 3072.84 2699.38 192.64 1995.93 997.08 9
DVP-MVS++90.53 391.09 488.87 1497.31 469.91 3793.96 7094.37 4772.48 17692.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
OPU-MVS89.97 397.52 373.15 1296.89 597.00 983.82 299.15 295.72 597.63 397.62 2
test_0728_SECOND88.70 1696.45 1270.43 2996.64 994.37 4799.15 291.91 2794.90 2196.51 21
PC_three_145280.91 4594.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
SED-MVS89.94 890.36 988.70 1696.45 1269.38 4896.89 594.44 4171.65 20692.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
test_241102_TWO94.41 4371.65 20692.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 16
test_241102_ONE96.45 1269.38 4894.44 4171.65 20692.11 697.05 776.79 999.11 6
DPM-MVS90.70 290.52 791.24 189.68 14576.68 297.29 195.35 1382.87 2091.58 1297.22 379.93 599.10 983.12 9297.64 297.94 1
CANet89.61 1189.99 1188.46 2194.39 3969.71 4496.53 1293.78 6186.89 689.68 2795.78 4065.94 6299.10 992.99 1693.91 4096.58 18
DVP-MVScopyleft89.41 1289.73 1388.45 2296.40 1569.99 3396.64 994.52 3771.92 19290.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD72.48 17690.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 26
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2299.07 1392.01 2494.77 2596.51 21
No_MVS89.60 897.31 473.22 1095.05 2299.07 1392.01 2494.77 2596.51 21
CNVR-MVS90.32 590.89 688.61 1996.76 870.65 2696.47 1394.83 2684.83 1189.07 3196.80 1970.86 3499.06 1592.64 1995.71 1096.12 35
QAPM79.95 15477.39 18087.64 3089.63 14671.41 1793.30 10193.70 6865.34 28467.39 25791.75 14347.83 26098.96 1657.71 28789.81 9392.54 162
MM88.92 1371.10 2297.02 396.04 688.70 291.57 1396.19 3370.12 3698.91 1796.83 195.06 1696.76 12
DELS-MVS90.05 690.09 1089.94 493.14 6673.88 797.01 494.40 4588.32 385.71 5294.91 6874.11 1998.91 1787.26 5995.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS84.66 6982.86 9590.06 290.93 12174.56 687.91 27095.54 1268.55 25872.35 19294.71 7359.78 13698.90 1981.29 10894.69 3196.74 13
API-MVS82.28 11280.53 13087.54 3596.13 2270.59 2793.63 9091.04 18265.72 28175.45 15592.83 12256.11 17898.89 2064.10 25089.75 9693.15 144
MAR-MVS84.18 7983.43 8186.44 6796.25 2165.93 13694.28 5594.27 5174.41 13479.16 11495.61 4553.99 20298.88 2169.62 19793.26 5294.50 101
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PHI-MVS86.83 3686.85 3986.78 5593.47 5765.55 14595.39 3095.10 1971.77 20285.69 5396.52 2362.07 11198.77 2286.06 7095.60 1196.03 38
NCCC89.07 1489.46 1487.91 2596.60 1069.05 5796.38 1594.64 3484.42 1286.74 4396.20 3266.56 5898.76 2389.03 4694.56 3295.92 41
MVS_030490.01 790.50 888.53 2090.14 13670.94 2396.47 1395.72 1087.33 489.60 2896.26 3068.44 4198.74 2495.82 494.72 3095.90 42
DeepPCF-MVS81.17 189.72 991.38 384.72 12493.00 6958.16 29796.72 894.41 4386.50 890.25 2197.83 175.46 1498.67 2592.78 1895.49 1297.32 6
HPM-MVS++copyleft89.37 1389.95 1287.64 3095.10 3068.23 7895.24 3394.49 3982.43 2588.90 3296.35 2771.89 3398.63 2688.76 4796.40 696.06 36
CHOSEN 1792x268884.98 6583.45 8089.57 1089.94 14075.14 592.07 14992.32 11981.87 3175.68 15088.27 19560.18 13098.60 2780.46 11390.27 9194.96 77
3Dnovator73.91 682.69 10880.82 12388.31 2389.57 14771.26 1892.60 12994.39 4678.84 7867.89 24992.48 12948.42 25398.52 2868.80 20794.40 3495.15 71
DPE-MVScopyleft88.77 1589.21 1587.45 3796.26 2067.56 9494.17 5794.15 5468.77 25690.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CSCG86.87 3486.26 4288.72 1595.05 3170.79 2593.83 8295.33 1468.48 26077.63 13194.35 8673.04 2498.45 3084.92 7993.71 4596.92 11
DeepC-MVS77.85 385.52 5785.24 5786.37 7088.80 16966.64 11892.15 14393.68 6981.07 4376.91 14193.64 10462.59 10698.44 3185.50 7292.84 5794.03 118
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.48 287.95 2088.00 2387.79 2895.86 2768.32 7395.74 2194.11 5583.82 1583.49 7396.19 3364.53 8098.44 3183.42 9194.88 2496.61 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft88.14 1688.29 2087.67 2993.21 6368.72 6593.85 7794.03 5774.18 13991.74 1196.67 2165.61 6698.42 3389.24 4396.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + GP.87.96 1988.37 1986.70 5793.51 5665.32 14995.15 3693.84 6078.17 8685.93 5094.80 7175.80 1398.21 3489.38 4088.78 10196.59 16
DP-MVS Recon82.73 10581.65 11285.98 7897.31 467.06 10795.15 3691.99 13369.08 25376.50 14593.89 9954.48 19798.20 3570.76 18685.66 13392.69 157
MVS_111021_HR86.19 4585.80 5287.37 3893.17 6569.79 4193.99 6993.76 6479.08 7378.88 11993.99 9762.25 11098.15 3685.93 7191.15 8294.15 111
OpenMVScopyleft70.45 1178.54 18175.92 20086.41 6985.93 23771.68 1692.74 11992.51 11666.49 27564.56 27991.96 13943.88 28798.10 3754.61 29790.65 8789.44 219
ZNCC-MVS85.33 5985.08 6086.06 7693.09 6865.65 14193.89 7593.41 8273.75 15079.94 10494.68 7460.61 12798.03 3882.63 9593.72 4494.52 99
test_fmvsm_n_192087.69 2488.50 1785.27 10487.05 21563.55 20193.69 8791.08 17884.18 1390.17 2397.04 867.58 5097.99 3995.72 590.03 9294.26 105
SteuartSystems-ACMMP86.82 3786.90 3786.58 6290.42 13066.38 12496.09 1793.87 5977.73 9384.01 7195.66 4363.39 9697.94 4087.40 5793.55 4895.42 53
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP86.05 4785.80 5286.80 5491.58 10767.53 9691.79 16393.49 7874.93 13084.61 6395.30 5359.42 14097.92 4186.13 6894.92 1994.94 79
EI-MVSNet-Vis-set83.77 8883.67 7484.06 14992.79 7763.56 20091.76 16694.81 2779.65 6177.87 12894.09 9463.35 9897.90 4279.35 11979.36 18190.74 198
PS-MVSNAJ88.14 1687.61 2789.71 692.06 9176.72 195.75 2093.26 8583.86 1489.55 2996.06 3653.55 20797.89 4391.10 3193.31 5194.54 97
9.1487.63 2693.86 4794.41 5294.18 5272.76 17186.21 4696.51 2466.64 5697.88 4490.08 3894.04 37
GST-MVS84.63 7084.29 7085.66 9192.82 7465.27 15093.04 10993.13 9273.20 15978.89 11694.18 9359.41 14197.85 4581.45 10492.48 6193.86 126
fmvsm_s_conf0.5_n86.39 4186.91 3684.82 11787.36 20863.54 20294.74 4790.02 21782.52 2490.14 2496.92 1362.93 10497.84 4695.28 882.26 15593.07 148
SF-MVS87.03 3387.09 3386.84 5192.70 7867.45 9993.64 8993.76 6470.78 23086.25 4596.44 2666.98 5397.79 4788.68 4894.56 3295.28 65
EI-MVSNet-UG-set83.14 9982.96 9183.67 16092.28 8663.19 21091.38 18294.68 3279.22 6876.60 14393.75 10062.64 10597.76 4878.07 13278.01 19290.05 207
fmvsm_s_conf0.1_n85.61 5685.93 4984.68 12782.95 28363.48 20494.03 6889.46 23581.69 3389.86 2596.74 2061.85 11497.75 4994.74 982.01 15992.81 156
xiu_mvs_v2_base87.92 2187.38 3189.55 1191.41 11476.43 395.74 2193.12 9383.53 1789.55 2995.95 3853.45 21197.68 5091.07 3292.62 5894.54 97
fmvsm_s_conf0.5_n_a85.75 5286.09 4684.72 12485.73 24063.58 19993.79 8389.32 24181.42 3990.21 2296.91 1462.41 10897.67 5194.48 1080.56 17292.90 154
HFP-MVS84.73 6884.40 6985.72 8993.75 5165.01 15893.50 9693.19 8972.19 18679.22 11394.93 6659.04 14597.67 5181.55 10292.21 6294.49 102
IB-MVS77.80 482.18 11380.46 13287.35 3989.14 16170.28 3195.59 2695.17 1878.85 7770.19 21685.82 23370.66 3597.67 5172.19 17566.52 27994.09 114
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
APDe-MVScopyleft87.54 2587.84 2486.65 5896.07 2366.30 12794.84 4593.78 6169.35 24788.39 3396.34 2867.74 4997.66 5490.62 3693.44 4996.01 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator+73.60 782.10 11780.60 12986.60 6090.89 12366.80 11595.20 3493.44 8074.05 14167.42 25592.49 12849.46 24397.65 5570.80 18591.68 7295.33 59
SD-MVS87.49 2687.49 2987.50 3693.60 5368.82 6393.90 7492.63 11276.86 10587.90 3595.76 4166.17 5997.63 5689.06 4591.48 7696.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
WTY-MVS86.32 4285.81 5187.85 2692.82 7469.37 5095.20 3495.25 1582.71 2281.91 8494.73 7267.93 4897.63 5679.55 11782.25 15696.54 19
PAPR85.15 6284.47 6787.18 4296.02 2568.29 7491.85 16193.00 9876.59 11279.03 11595.00 6361.59 11797.61 5878.16 13189.00 10095.63 48
test_fmvsmvis_n_192083.80 8783.48 7884.77 12182.51 28563.72 19291.37 18383.99 33281.42 3977.68 13095.74 4258.37 14997.58 5993.38 1486.87 11993.00 151
patch_mono-289.71 1090.99 585.85 8496.04 2463.70 19495.04 4095.19 1686.74 791.53 1495.15 6273.86 2097.58 5993.38 1492.00 6796.28 32
fmvsm_s_conf0.1_n_a84.76 6784.84 6584.53 13380.23 30963.50 20392.79 11788.73 27080.46 4989.84 2696.65 2260.96 12397.57 6193.80 1380.14 17492.53 163
test1287.09 4594.60 3668.86 6192.91 10082.67 8165.44 6797.55 6293.69 4694.84 83
region2R84.36 7384.03 7285.36 10093.54 5564.31 17793.43 9992.95 9972.16 18978.86 12094.84 7056.97 16697.53 6381.38 10692.11 6594.24 106
PAPM_NR82.97 10281.84 11086.37 7094.10 4466.76 11687.66 27592.84 10269.96 24074.07 16993.57 10663.10 10297.50 6470.66 18890.58 8894.85 80
ACMMPR84.37 7284.06 7185.28 10393.56 5464.37 17493.50 9693.15 9172.19 18678.85 12194.86 6956.69 17197.45 6581.55 10292.20 6394.02 119
test_yl84.28 7583.16 8887.64 3094.52 3769.24 5295.78 1895.09 2069.19 25081.09 9192.88 12057.00 16497.44 6681.11 10981.76 16196.23 33
DCV-MVSNet84.28 7583.16 8887.64 3094.52 3769.24 5295.78 1895.09 2069.19 25081.09 9192.88 12057.00 16497.44 6681.11 10981.76 16196.23 33
XVS83.87 8583.47 7985.05 10993.22 6163.78 18892.92 11492.66 10973.99 14278.18 12594.31 8955.25 18597.41 6879.16 12191.58 7493.95 121
X-MVStestdata76.86 20674.13 22685.05 10993.22 6163.78 18892.92 11492.66 10973.99 14278.18 12510.19 40055.25 18597.41 6879.16 12191.58 7493.95 121
gm-plane-assit88.42 17767.04 10978.62 8291.83 14197.37 7076.57 139
CDPH-MVS85.71 5385.46 5586.46 6694.75 3467.19 10393.89 7592.83 10370.90 22683.09 7695.28 5463.62 9297.36 7180.63 11194.18 3594.84 83
AdaColmapbinary78.94 17077.00 18684.76 12296.34 1765.86 13792.66 12687.97 29462.18 30970.56 20992.37 13243.53 28897.35 7264.50 24882.86 15191.05 196
EPNet87.84 2288.38 1886.23 7493.30 6066.05 13195.26 3294.84 2587.09 588.06 3494.53 7766.79 5597.34 7383.89 8891.68 7295.29 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2024052976.84 20974.15 22584.88 11591.02 11964.95 16093.84 8091.09 17653.57 35173.00 17787.42 21235.91 33097.32 7469.14 20372.41 24092.36 166
PGM-MVS83.25 9782.70 9884.92 11392.81 7664.07 18390.44 21592.20 12671.28 21877.23 13794.43 8055.17 18997.31 7579.33 12091.38 7893.37 137
ZD-MVS96.63 965.50 14793.50 7770.74 23185.26 5995.19 6164.92 7497.29 7687.51 5593.01 54
Anonymous20240521177.96 19075.33 20985.87 8293.73 5264.52 16494.85 4485.36 31862.52 30776.11 14690.18 17029.43 35597.29 7668.51 20977.24 20495.81 45
PVSNet_BlendedMVS83.38 9483.43 8183.22 17193.76 4967.53 9694.06 6393.61 7179.13 7181.00 9485.14 23863.19 10097.29 7687.08 6173.91 22784.83 297
PVSNet_Blended86.73 3886.86 3886.31 7393.76 4967.53 9696.33 1693.61 7182.34 2781.00 9493.08 11363.19 10097.29 7687.08 6191.38 7894.13 112
TEST994.18 4167.28 10194.16 5893.51 7571.75 20385.52 5495.33 5168.01 4697.27 80
train_agg87.21 3187.42 3086.60 6094.18 4167.28 10194.16 5893.51 7571.87 19785.52 5495.33 5168.19 4497.27 8089.09 4494.90 2195.25 69
MSP-MVS90.38 491.87 185.88 8192.83 7264.03 18493.06 10794.33 4982.19 2893.65 396.15 3585.89 197.19 8291.02 3397.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
fmvsm_l_conf0.5_n_a87.44 2888.15 2285.30 10287.10 21364.19 18194.41 5288.14 28880.24 5392.54 596.97 1069.52 3997.17 8395.89 288.51 10494.56 94
MP-MVScopyleft85.02 6384.97 6285.17 10892.60 8264.27 17993.24 10292.27 12173.13 16179.63 10894.43 8061.90 11297.17 8385.00 7792.56 5994.06 117
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA83.91 8483.38 8585.50 9491.89 10065.16 15481.75 31992.23 12275.32 12580.53 9895.21 6056.06 17997.16 8584.86 8092.55 6094.18 108
fmvsm_l_conf0.5_n87.49 2688.19 2185.39 9886.95 21664.37 17494.30 5488.45 27980.51 4892.70 496.86 1569.98 3797.15 8695.83 388.08 10894.65 91
h-mvs3383.01 10182.56 10184.35 14189.34 15262.02 23592.72 12093.76 6481.45 3682.73 7992.25 13660.11 13197.13 8787.69 5362.96 30693.91 123
VDD-MVS83.06 10081.81 11186.81 5390.86 12467.70 9095.40 2991.50 15975.46 12281.78 8592.34 13340.09 30097.13 8786.85 6482.04 15895.60 49
FA-MVS(test-final)79.12 16677.23 18284.81 12090.54 12863.98 18581.35 32591.71 14971.09 22374.85 16082.94 26252.85 21497.05 8967.97 21281.73 16393.41 136
LFMVS84.34 7482.73 9789.18 1294.76 3373.25 994.99 4291.89 13971.90 19482.16 8393.49 10847.98 25897.05 8982.55 9684.82 13797.25 7
sss82.71 10782.38 10483.73 15789.25 15659.58 28092.24 14094.89 2477.96 8879.86 10592.38 13156.70 17097.05 8977.26 13680.86 16994.55 95
131480.70 13878.95 15585.94 8087.77 20067.56 9487.91 27092.55 11572.17 18867.44 25493.09 11250.27 23697.04 9271.68 18087.64 11293.23 142
无先验92.71 12192.61 11362.03 31197.01 9366.63 22593.97 120
MP-MVS-pluss85.24 6085.13 5985.56 9391.42 11265.59 14391.54 17392.51 11674.56 13380.62 9795.64 4459.15 14497.00 9486.94 6393.80 4194.07 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VNet86.20 4485.65 5487.84 2793.92 4669.99 3395.73 2395.94 778.43 8386.00 4993.07 11458.22 15197.00 9485.22 7484.33 14296.52 20
APD-MVScopyleft85.93 4985.99 4885.76 8895.98 2665.21 15293.59 9292.58 11466.54 27486.17 4795.88 3963.83 8797.00 9486.39 6792.94 5595.06 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mPP-MVS82.96 10382.44 10384.52 13492.83 7262.92 21892.76 11891.85 14371.52 21475.61 15394.24 9153.48 21096.99 9778.97 12490.73 8593.64 132
test_fmvsmconf_n86.58 3987.17 3284.82 11785.28 24662.55 22594.26 5689.78 22383.81 1687.78 3696.33 2965.33 6896.98 9894.40 1187.55 11394.95 78
CANet_DTU84.09 8183.52 7585.81 8590.30 13366.82 11391.87 15989.01 25885.27 986.09 4893.74 10147.71 26296.98 9877.90 13389.78 9593.65 131
PVSNet_Blended_VisFu83.97 8383.50 7785.39 9890.02 13866.59 12193.77 8491.73 14777.43 10177.08 14089.81 17763.77 8996.97 10079.67 11688.21 10692.60 160
ACMMPcopyleft81.49 12580.67 12683.93 15291.71 10462.90 21992.13 14492.22 12571.79 20171.68 20093.49 10850.32 23496.96 10178.47 12984.22 14691.93 179
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_894.19 4067.19 10394.15 6193.42 8171.87 19785.38 5795.35 5068.19 4496.95 102
HY-MVS76.49 584.28 7583.36 8687.02 4892.22 8867.74 8984.65 29694.50 3879.15 7082.23 8287.93 20466.88 5496.94 10380.53 11282.20 15796.39 28
MG-MVS87.11 3286.27 4189.62 797.79 176.27 494.96 4394.49 3978.74 8183.87 7292.94 11764.34 8196.94 10375.19 14894.09 3695.66 47
test_fmvsmconf0.1_n85.71 5386.08 4784.62 13180.83 29962.33 22993.84 8088.81 26683.50 1887.00 4296.01 3763.36 9796.93 10594.04 1287.29 11694.61 93
canonicalmvs86.85 3586.25 4388.66 1891.80 10271.92 1493.54 9491.71 14980.26 5287.55 3795.25 5863.59 9496.93 10588.18 4984.34 14197.11 8
alignmvs87.28 3086.97 3588.24 2491.30 11571.14 2195.61 2593.56 7379.30 6687.07 4195.25 5868.43 4296.93 10587.87 5184.33 14296.65 14
test_prior86.42 6894.71 3567.35 10093.10 9496.84 10895.05 74
test_fmvsmconf0.01_n83.70 9183.52 7584.25 14575.26 35161.72 24392.17 14287.24 30182.36 2684.91 6195.41 4855.60 18396.83 10992.85 1785.87 13194.21 107
MSLP-MVS++86.27 4385.91 5087.35 3992.01 9468.97 6095.04 4092.70 10679.04 7581.50 8796.50 2558.98 14696.78 11083.49 9093.93 3996.29 30
agg_prior94.16 4366.97 11193.31 8484.49 6596.75 111
FE-MVS75.97 22373.02 23984.82 11789.78 14265.56 14477.44 35091.07 17964.55 28772.66 18279.85 30946.05 27696.69 11254.97 29680.82 17092.21 175
原ACMM184.42 13793.21 6364.27 17993.40 8365.39 28279.51 10992.50 12658.11 15396.69 11265.27 24493.96 3892.32 168
ab-mvs80.18 14878.31 16285.80 8688.44 17665.49 14883.00 31392.67 10871.82 20077.36 13585.01 23954.50 19496.59 11476.35 14175.63 21495.32 61
PCF-MVS73.15 979.29 16377.63 17384.29 14386.06 23265.96 13587.03 28291.10 17569.86 24269.79 22390.64 15857.54 15896.59 11464.37 24982.29 15490.32 203
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
新几何184.73 12392.32 8564.28 17891.46 16159.56 32979.77 10692.90 11856.95 16796.57 11663.40 25492.91 5693.34 138
VDDNet80.50 14178.26 16387.21 4186.19 22969.79 4194.48 5091.31 16560.42 32279.34 11190.91 15638.48 30996.56 11782.16 9781.05 16795.27 66
dcpmvs_287.37 2987.55 2886.85 5095.04 3268.20 7990.36 21990.66 19079.37 6581.20 8993.67 10374.73 1596.55 11890.88 3492.00 6795.82 44
thisisatest051583.41 9382.49 10286.16 7589.46 15168.26 7693.54 9494.70 3174.31 13775.75 14890.92 15572.62 2896.52 11969.64 19581.50 16493.71 129
cascas78.18 18675.77 20285.41 9787.14 21269.11 5492.96 11291.15 17366.71 27370.47 21086.07 23037.49 32096.48 12070.15 19179.80 17790.65 199
EIA-MVS84.84 6684.88 6384.69 12691.30 11562.36 22893.85 7792.04 13179.45 6279.33 11294.28 9062.42 10796.35 12180.05 11491.25 8195.38 56
casdiffmvs_mvgpermissive85.66 5585.18 5887.09 4588.22 18669.35 5193.74 8691.89 13981.47 3580.10 10291.45 14764.80 7696.35 12187.23 6087.69 11195.58 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline283.68 9283.42 8384.48 13687.37 20766.00 13390.06 22895.93 879.71 6069.08 22890.39 16577.92 696.28 12378.91 12581.38 16591.16 194
HPM-MVScopyleft83.25 9782.95 9284.17 14792.25 8762.88 22090.91 20091.86 14170.30 23677.12 13893.96 9856.75 16996.28 12382.04 9991.34 8093.34 138
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS83.71 9083.40 8484.65 12893.14 6663.84 18694.59 4992.28 12071.03 22477.41 13494.92 6755.21 18896.19 12581.32 10790.70 8693.91 123
UGNet79.87 15578.68 15783.45 16789.96 13961.51 24692.13 14490.79 18576.83 10778.85 12186.33 22738.16 31296.17 12667.93 21487.17 11792.67 158
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
APD-MVS_3200maxsize81.64 12481.32 11582.59 18492.36 8458.74 29291.39 18091.01 18363.35 29779.72 10794.62 7651.82 22196.14 12779.71 11587.93 10992.89 155
BH-RMVSNet79.46 16277.65 17284.89 11491.68 10565.66 14093.55 9388.09 29072.93 16673.37 17591.12 15446.20 27496.12 12856.28 29285.61 13492.91 153
SDMVSNet80.26 14678.88 15684.40 13889.25 15667.63 9385.35 29293.02 9576.77 10970.84 20787.12 21747.95 25996.09 12985.04 7674.55 21889.48 217
testdata296.09 12961.26 270
MVS_Test84.16 8083.20 8787.05 4791.56 10869.82 4089.99 23392.05 13077.77 9282.84 7786.57 22363.93 8696.09 12974.91 15389.18 9995.25 69
baseline85.01 6484.44 6886.71 5688.33 18168.73 6490.24 22491.82 14581.05 4481.18 9092.50 12663.69 9096.08 13284.45 8386.71 12595.32 61
casdiffmvspermissive85.37 5884.87 6486.84 5188.25 18469.07 5693.04 10991.76 14681.27 4180.84 9692.07 13864.23 8296.06 13384.98 7887.43 11595.39 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thisisatest053081.15 12980.07 13484.39 13988.26 18365.63 14291.40 17894.62 3571.27 21970.93 20689.18 18272.47 2996.04 13465.62 23976.89 20691.49 183
TSAR-MVS + MP.88.11 1888.64 1686.54 6491.73 10368.04 8290.36 21993.55 7482.89 1991.29 1592.89 11972.27 3096.03 13587.99 5094.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSDG69.54 28665.73 29680.96 22985.11 25163.71 19384.19 29883.28 33856.95 34054.50 33784.03 25131.50 34796.03 13542.87 34669.13 26183.14 317
Effi-MVS+83.82 8682.76 9686.99 4989.56 14869.40 4791.35 18586.12 31272.59 17383.22 7592.81 12359.60 13896.01 13781.76 10187.80 11095.56 51
UA-Net80.02 15279.65 14281.11 22389.33 15457.72 30286.33 28989.00 26177.44 10081.01 9389.15 18359.33 14295.90 13861.01 27184.28 14489.73 213
SR-MVS82.81 10482.58 10083.50 16593.35 5861.16 25292.23 14191.28 16864.48 28881.27 8895.28 5453.71 20695.86 13982.87 9388.77 10293.49 135
lupinMVS87.74 2387.77 2587.63 3489.24 15971.18 1996.57 1192.90 10182.70 2387.13 3995.27 5664.99 7195.80 14089.34 4191.80 7095.93 40
MS-PatchMatch77.90 19376.50 19182.12 20085.99 23369.95 3691.75 16892.70 10673.97 14462.58 30084.44 24841.11 29795.78 14163.76 25392.17 6480.62 344
CLD-MVS82.73 10582.35 10583.86 15387.90 19467.65 9295.45 2892.18 12885.06 1072.58 18592.27 13452.46 21895.78 14184.18 8479.06 18488.16 236
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS-test86.14 4687.01 3483.52 16292.63 8159.36 28595.49 2791.92 13680.09 5485.46 5695.53 4761.82 11695.77 14386.77 6593.37 5095.41 54
HPM-MVS_fast80.25 14779.55 14682.33 19091.55 10959.95 27591.32 18789.16 24965.23 28574.71 16293.07 11447.81 26195.74 14474.87 15588.23 10591.31 191
xiu_mvs_v1_base_debu82.16 11481.12 11785.26 10586.42 22468.72 6592.59 13190.44 19773.12 16284.20 6794.36 8238.04 31495.73 14584.12 8586.81 12091.33 187
xiu_mvs_v1_base82.16 11481.12 11785.26 10586.42 22468.72 6592.59 13190.44 19773.12 16284.20 6794.36 8238.04 31495.73 14584.12 8586.81 12091.33 187
xiu_mvs_v1_base_debi82.16 11481.12 11785.26 10586.42 22468.72 6592.59 13190.44 19773.12 16284.20 6794.36 8238.04 31495.73 14584.12 8586.81 12091.33 187
DP-MVS69.90 28366.48 29080.14 24495.36 2862.93 21689.56 23976.11 35550.27 36157.69 32885.23 23739.68 30195.73 14533.35 37271.05 24981.78 334
114514_t79.17 16577.67 17183.68 15995.32 2965.53 14692.85 11691.60 15563.49 29567.92 24690.63 16046.65 26795.72 14967.01 22383.54 14789.79 211
TR-MVS78.77 17677.37 18182.95 17590.49 12960.88 25693.67 8890.07 21370.08 23974.51 16391.37 15145.69 27795.70 15060.12 27780.32 17392.29 169
ETV-MVS86.01 4886.11 4585.70 9090.21 13567.02 11093.43 9991.92 13681.21 4284.13 7094.07 9660.93 12495.63 15189.28 4289.81 9394.46 103
tttt051779.50 16078.53 16082.41 18987.22 21061.43 24889.75 23894.76 2869.29 24867.91 24788.06 20372.92 2595.63 15162.91 26073.90 22890.16 205
SR-MVS-dyc-post81.06 13380.70 12582.15 19892.02 9258.56 29490.90 20190.45 19462.76 30478.89 11694.46 7851.26 22995.61 15378.77 12786.77 12392.28 170
thres20079.66 15778.33 16183.66 16192.54 8365.82 13993.06 10796.31 374.90 13173.30 17688.66 18659.67 13795.61 15347.84 32578.67 18889.56 216
HQP4-MVS74.18 16595.61 15388.63 226
BH-w/o80.49 14279.30 15184.05 15090.83 12564.36 17693.60 9189.42 23874.35 13669.09 22790.15 17255.23 18795.61 15364.61 24786.43 12992.17 176
HQP-MVS81.14 13080.64 12782.64 18287.54 20263.66 19794.06 6391.70 15179.80 5774.18 16590.30 16751.63 22595.61 15377.63 13478.90 18588.63 226
HQP_MVS80.34 14579.75 14182.12 20086.94 21762.42 22693.13 10591.31 16578.81 7972.53 18689.14 18450.66 23295.55 15876.74 13778.53 19088.39 233
plane_prior591.31 16595.55 15876.74 13778.53 19088.39 233
jason86.40 4086.17 4487.11 4486.16 23170.54 2895.71 2492.19 12782.00 3084.58 6494.34 8761.86 11395.53 16087.76 5290.89 8495.27 66
jason: jason.
CS-MVS85.80 5186.65 4083.27 17092.00 9558.92 29095.31 3191.86 14179.97 5584.82 6295.40 4962.26 10995.51 16186.11 6992.08 6695.37 57
EC-MVSNet84.53 7185.04 6183.01 17489.34 15261.37 24994.42 5191.09 17677.91 9083.24 7494.20 9258.37 14995.40 16285.35 7391.41 7792.27 173
BH-untuned78.68 17777.08 18383.48 16689.84 14163.74 19092.70 12288.59 27671.57 21266.83 26488.65 18751.75 22395.39 16359.03 28284.77 13891.32 190
MVS_111021_LR82.02 11881.52 11383.51 16488.42 17762.88 22089.77 23788.93 26276.78 10875.55 15493.10 11150.31 23595.38 16483.82 8987.02 11892.26 174
thres100view90078.37 18377.01 18582.46 18591.89 10063.21 20991.19 19596.33 172.28 18470.45 21287.89 20560.31 12895.32 16545.16 33677.58 19788.83 221
tfpn200view978.79 17577.43 17682.88 17692.21 8964.49 16592.05 15096.28 473.48 15671.75 19888.26 19660.07 13395.32 16545.16 33677.58 19788.83 221
thres40078.68 17777.43 17682.43 18692.21 8964.49 16592.05 15096.28 473.48 15671.75 19888.26 19660.07 13395.32 16545.16 33677.58 19787.48 242
RPMNet70.42 27865.68 29784.63 13083.15 27867.96 8470.25 36490.45 19446.83 37069.97 22065.10 36956.48 17595.30 16835.79 36773.13 23190.64 200
ECVR-MVScopyleft81.29 12880.38 13384.01 15188.39 17961.96 23792.56 13486.79 30577.66 9576.63 14291.42 14846.34 27195.24 16974.36 15789.23 9794.85 80
testing22285.18 6184.69 6686.63 5992.91 7169.91 3792.61 12895.80 980.31 5180.38 9992.27 13468.73 4095.19 17075.94 14383.27 14994.81 85
OPM-MVS79.00 16878.09 16581.73 20883.52 27563.83 18791.64 17290.30 20476.36 11571.97 19589.93 17646.30 27395.17 17175.10 14977.70 19586.19 269
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test250683.29 9582.92 9384.37 14088.39 17963.18 21192.01 15291.35 16477.66 9578.49 12491.42 14864.58 7995.09 17273.19 16089.23 9794.85 80
PAPM85.89 5085.46 5587.18 4288.20 18772.42 1392.41 13692.77 10482.11 2980.34 10093.07 11468.27 4395.02 17378.39 13093.59 4794.09 114
sd_testset77.08 20475.37 20782.20 19689.25 15662.11 23482.06 31789.09 25476.77 10970.84 20787.12 21741.43 29695.01 17467.23 22174.55 21889.48 217
PMMVS81.98 11982.04 10781.78 20789.76 14456.17 31791.13 19690.69 18777.96 8880.09 10393.57 10646.33 27294.99 17581.41 10587.46 11494.17 109
CostFormer82.33 11181.15 11685.86 8389.01 16468.46 7082.39 31693.01 9675.59 12080.25 10181.57 28172.03 3294.96 17679.06 12377.48 20094.16 110
EPP-MVSNet81.79 12181.52 11382.61 18388.77 17060.21 27293.02 11193.66 7068.52 25972.90 18090.39 16572.19 3194.96 17674.93 15279.29 18392.67 158
ACMH63.93 1768.62 29364.81 30380.03 24885.22 24763.25 20787.72 27384.66 32460.83 32051.57 34979.43 31427.29 36094.96 17641.76 34964.84 29281.88 332
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres600view778.00 18876.66 19082.03 20591.93 9763.69 19591.30 18896.33 172.43 17970.46 21187.89 20560.31 12894.92 17942.64 34876.64 20787.48 242
baseline181.84 12081.03 12184.28 14491.60 10666.62 11991.08 19791.66 15381.87 3174.86 15991.67 14569.98 3794.92 17971.76 17864.75 29491.29 192
XXY-MVS77.94 19176.44 19282.43 18682.60 28464.44 16992.01 15291.83 14473.59 15570.00 21985.82 23354.43 19894.76 18169.63 19668.02 26988.10 237
Vis-MVSNetpermissive80.92 13679.98 13883.74 15588.48 17461.80 23993.44 9888.26 28773.96 14577.73 12991.76 14249.94 23994.76 18165.84 23690.37 9094.65 91
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
nrg03080.93 13579.86 13984.13 14883.69 27268.83 6293.23 10391.20 16975.55 12175.06 15888.22 19963.04 10394.74 18381.88 10066.88 27688.82 224
GA-MVS78.33 18576.23 19584.65 12883.65 27366.30 12791.44 17490.14 21176.01 11770.32 21484.02 25242.50 29294.72 18470.98 18377.00 20592.94 152
EI-MVSNet78.97 16978.22 16481.25 21885.33 24462.73 22389.53 24293.21 8672.39 18172.14 19390.13 17360.99 12194.72 18467.73 21672.49 23886.29 265
MVSTER82.47 10982.05 10683.74 15592.68 7969.01 5891.90 15893.21 8679.83 5672.14 19385.71 23574.72 1694.72 18475.72 14472.49 23887.50 241
test111180.84 13780.02 13583.33 16887.87 19560.76 26092.62 12786.86 30477.86 9175.73 14991.39 15046.35 27094.70 18772.79 16688.68 10394.52 99
test_vis1_n_192081.66 12382.01 10880.64 23482.24 28855.09 32594.76 4686.87 30381.67 3484.40 6694.63 7538.17 31194.67 18891.98 2683.34 14892.16 177
iter_conf_final81.74 12280.93 12284.18 14692.66 8069.10 5592.94 11382.80 34179.01 7674.85 16088.40 19161.83 11594.61 18979.36 11876.52 20988.83 221
iter_conf0583.27 9682.70 9884.98 11293.32 5971.84 1594.16 5881.76 34382.74 2173.83 17288.40 19172.77 2794.61 18982.10 9875.21 21688.48 230
tt080573.07 25470.73 26680.07 24678.37 33457.05 31287.78 27292.18 12861.23 31867.04 26086.49 22431.35 34994.58 19165.06 24567.12 27488.57 228
hse-mvs281.12 13281.11 12081.16 22186.52 22357.48 30789.40 24591.16 17181.45 3682.73 7990.49 16360.11 13194.58 19187.69 5360.41 33391.41 186
AUN-MVS78.37 18377.43 17681.17 22086.60 22257.45 30889.46 24491.16 17174.11 14074.40 16490.49 16355.52 18494.57 19374.73 15660.43 33291.48 184
PLCcopyleft68.80 1475.23 23473.68 23379.86 25592.93 7058.68 29390.64 21288.30 28360.90 31964.43 28390.53 16142.38 29394.57 19356.52 29076.54 20886.33 264
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GG-mvs-BLEND86.53 6591.91 9969.67 4675.02 35894.75 2978.67 12390.85 15777.91 794.56 19572.25 17293.74 4395.36 58
OMC-MVS78.67 17977.91 17080.95 23085.76 23957.40 30988.49 26188.67 27373.85 14772.43 19092.10 13749.29 24694.55 19672.73 16777.89 19390.91 197
Fast-Effi-MVS+81.14 13080.01 13684.51 13590.24 13465.86 13794.12 6289.15 25073.81 14975.37 15688.26 19657.26 15994.53 19766.97 22484.92 13693.15 144
diffmvspermissive84.28 7583.83 7385.61 9287.40 20668.02 8390.88 20389.24 24480.54 4781.64 8692.52 12559.83 13594.52 19887.32 5885.11 13594.29 104
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HyFIR lowres test81.03 13479.56 14485.43 9687.81 19868.11 8190.18 22590.01 21870.65 23272.95 17986.06 23163.61 9394.50 19975.01 15179.75 17893.67 130
v2v48277.42 19875.65 20582.73 17980.38 30567.13 10691.85 16190.23 20875.09 12869.37 22483.39 25953.79 20594.44 20071.77 17765.00 29186.63 261
v114476.73 21274.88 21282.27 19280.23 30966.60 12091.68 17090.21 21073.69 15269.06 22981.89 27452.73 21694.40 20169.21 20265.23 28885.80 280
dmvs_re76.93 20575.36 20881.61 21187.78 19960.71 26380.00 33887.99 29279.42 6369.02 23089.47 18046.77 26594.32 20263.38 25574.45 22189.81 210
TAPA-MVS70.22 1274.94 23873.53 23479.17 26890.40 13152.07 33789.19 25089.61 23262.69 30670.07 21792.67 12448.89 25294.32 20238.26 36279.97 17591.12 195
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LPG-MVS_test75.82 22674.58 21779.56 26384.31 26459.37 28390.44 21589.73 22869.49 24564.86 27488.42 18938.65 30694.30 20472.56 16972.76 23585.01 295
LGP-MVS_train79.56 26384.31 26459.37 28389.73 22869.49 24564.86 27488.42 18938.65 30694.30 20472.56 16972.76 23585.01 295
v119275.98 22273.92 22982.15 19879.73 31366.24 12991.22 19289.75 22572.67 17268.49 24081.42 28449.86 24094.27 20667.08 22265.02 29085.95 277
tpmvs72.88 25969.76 27582.22 19590.98 12067.05 10878.22 34788.30 28363.10 30264.35 28474.98 34355.09 19094.27 20643.25 34269.57 25585.34 291
tpm279.80 15677.95 16985.34 10188.28 18268.26 7681.56 32291.42 16270.11 23877.59 13380.50 29967.40 5194.26 20867.34 21977.35 20193.51 134
mvsmamba76.85 20875.71 20480.25 24283.07 28059.16 28791.44 17480.64 34876.84 10667.95 24586.33 22746.17 27594.24 20976.06 14272.92 23487.36 246
PVSNet_068.08 1571.81 26868.32 28582.27 19284.68 25562.31 23188.68 25890.31 20375.84 11857.93 32780.65 29837.85 31794.19 21069.94 19329.05 39090.31 204
MVP-Stereo77.12 20376.23 19579.79 25781.72 29366.34 12689.29 24690.88 18470.56 23462.01 30382.88 26349.34 24494.13 21165.55 24193.80 4178.88 358
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMM69.62 1374.34 24272.73 24579.17 26884.25 26657.87 30090.36 21989.93 21963.17 30165.64 26986.04 23237.79 31894.10 21265.89 23571.52 24585.55 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
V4276.46 21474.55 21882.19 19779.14 32367.82 8790.26 22389.42 23873.75 15068.63 23881.89 27451.31 22894.09 21371.69 17964.84 29284.66 298
TESTMET0.1,182.41 11081.98 10983.72 15888.08 18863.74 19092.70 12293.77 6379.30 6677.61 13287.57 21058.19 15294.08 21473.91 15986.68 12693.33 140
Anonymous2023121173.08 25370.39 26981.13 22290.62 12763.33 20691.40 17890.06 21551.84 35664.46 28280.67 29736.49 32894.07 21563.83 25264.17 29985.98 276
v875.35 23273.26 23781.61 21180.67 30266.82 11389.54 24189.27 24371.65 20663.30 29280.30 30354.99 19194.06 21667.33 22062.33 31383.94 303
EG-PatchMatch MVS68.55 29465.41 30077.96 28278.69 33062.93 21689.86 23589.17 24860.55 32150.27 35477.73 32422.60 36994.06 21647.18 32872.65 23776.88 366
PVSNet73.49 880.05 15178.63 15884.31 14290.92 12264.97 15992.47 13591.05 18179.18 6972.43 19090.51 16237.05 32694.06 21668.06 21186.00 13093.90 125
GeoE78.90 17177.43 17683.29 16988.95 16562.02 23592.31 13786.23 31070.24 23771.34 20489.27 18154.43 19894.04 21963.31 25680.81 17193.81 128
v1074.77 23972.54 24981.46 21480.33 30766.71 11789.15 25189.08 25570.94 22563.08 29579.86 30852.52 21794.04 21965.70 23862.17 31483.64 306
v14419276.05 22074.03 22782.12 20079.50 31766.55 12291.39 18089.71 23172.30 18368.17 24281.33 28651.75 22394.03 22167.94 21364.19 29885.77 281
tpm cat175.30 23372.21 25284.58 13288.52 17267.77 8878.16 34888.02 29161.88 31468.45 24176.37 33660.65 12594.03 22153.77 30274.11 22491.93 179
gg-mvs-nofinetune77.18 20174.31 22285.80 8691.42 11268.36 7271.78 36194.72 3049.61 36277.12 13845.92 38577.41 893.98 22367.62 21793.16 5395.05 74
PS-MVSNAJss77.26 20076.31 19480.13 24580.64 30359.16 28790.63 21491.06 18072.80 17068.58 23984.57 24653.55 20793.96 22472.97 16271.96 24287.27 250
OpenMVS_ROBcopyleft61.12 1866.39 30962.92 31776.80 29976.51 34657.77 30189.22 24883.41 33655.48 34753.86 34177.84 32326.28 36393.95 22534.90 36968.76 26378.68 360
MDTV_nov1_ep1372.61 24789.06 16268.48 6980.33 33290.11 21271.84 19971.81 19775.92 34053.01 21393.92 22648.04 32273.38 229
v192192075.63 23073.49 23582.06 20479.38 31866.35 12591.07 19989.48 23471.98 19167.99 24381.22 28949.16 24993.90 22766.56 22664.56 29785.92 279
v124075.21 23572.98 24081.88 20679.20 32066.00 13390.75 20889.11 25371.63 21067.41 25681.22 28947.36 26393.87 22865.46 24264.72 29585.77 281
ACMP71.68 1075.58 23174.23 22479.62 26184.97 25359.64 27890.80 20689.07 25670.39 23562.95 29687.30 21438.28 31093.87 22872.89 16371.45 24685.36 290
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v14876.19 21574.47 22081.36 21680.05 31164.44 16991.75 16890.23 20873.68 15367.13 25980.84 29455.92 18193.86 23068.95 20561.73 32185.76 283
LS3D69.17 28866.40 29277.50 28691.92 9856.12 31885.12 29380.37 34946.96 36856.50 33287.51 21137.25 32193.71 23132.52 37879.40 18082.68 325
EPMVS78.49 18275.98 19986.02 7791.21 11769.68 4580.23 33491.20 16975.25 12672.48 18878.11 32154.65 19393.69 23257.66 28883.04 15094.69 87
IS-MVSNet80.14 14979.41 14882.33 19087.91 19360.08 27491.97 15688.27 28572.90 16971.44 20391.73 14461.44 11893.66 23362.47 26486.53 12793.24 141
v7n71.31 27368.65 28079.28 26676.40 34760.77 25986.71 28789.45 23664.17 29058.77 32178.24 31944.59 28593.54 23457.76 28661.75 32083.52 309
VPA-MVSNet79.03 16778.00 16782.11 20385.95 23464.48 16793.22 10494.66 3375.05 12974.04 17084.95 24052.17 22093.52 23574.90 15467.04 27588.32 235
tfpnnormal70.10 28067.36 28878.32 27783.45 27660.97 25588.85 25592.77 10464.85 28660.83 30878.53 31743.52 28993.48 23631.73 37961.70 32280.52 345
旧先验292.00 15559.37 33087.54 3893.47 23775.39 147
1112_ss80.56 14079.83 14082.77 17888.65 17160.78 25892.29 13888.36 28172.58 17472.46 18994.95 6465.09 7093.42 23866.38 23077.71 19494.10 113
testdata81.34 21789.02 16357.72 30289.84 22258.65 33385.32 5894.09 9457.03 16293.28 23969.34 20090.56 8993.03 149
LTVRE_ROB59.60 1966.27 31063.54 31374.45 31484.00 26951.55 33967.08 37483.53 33458.78 33254.94 33680.31 30234.54 33593.23 24040.64 35568.03 26878.58 361
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
VPNet78.82 17377.53 17582.70 18084.52 25966.44 12393.93 7292.23 12280.46 4972.60 18488.38 19349.18 24793.13 24172.47 17163.97 30388.55 229
Test_1112_low_res79.56 15978.60 15982.43 18688.24 18560.39 26992.09 14787.99 29272.10 19071.84 19687.42 21264.62 7893.04 24265.80 23777.30 20293.85 127
PatchMatch-RL72.06 26769.98 27078.28 27889.51 15055.70 32183.49 30383.39 33761.24 31763.72 28882.76 26434.77 33493.03 24353.37 30477.59 19686.12 273
WB-MVSnew77.14 20276.18 19780.01 24986.18 23063.24 20891.26 18994.11 5571.72 20473.52 17487.29 21545.14 28293.00 24456.98 28979.42 17983.80 305
Fast-Effi-MVS+-dtu75.04 23673.37 23680.07 24680.86 29859.52 28191.20 19485.38 31771.90 19465.20 27284.84 24241.46 29592.97 24566.50 22972.96 23387.73 239
cl____76.07 21774.67 21380.28 24085.15 24861.76 24190.12 22688.73 27071.16 22065.43 27081.57 28161.15 11992.95 24666.54 22762.17 31486.13 272
pm-mvs172.89 25871.09 26278.26 27979.10 32457.62 30590.80 20689.30 24267.66 26562.91 29781.78 27649.11 25092.95 24660.29 27658.89 33884.22 301
TAMVS80.37 14479.45 14783.13 17385.14 24963.37 20591.23 19190.76 18674.81 13272.65 18388.49 18860.63 12692.95 24669.41 19981.95 16093.08 147
ACMH+65.35 1667.65 30264.55 30676.96 29784.59 25857.10 31188.08 26580.79 34658.59 33453.00 34381.09 29326.63 36292.95 24646.51 33061.69 32380.82 341
DIV-MVS_self_test76.07 21774.67 21380.28 24085.14 24961.75 24290.12 22688.73 27071.16 22065.42 27181.60 28061.15 11992.94 25066.54 22762.16 31686.14 270
cl2277.94 19176.78 18881.42 21587.57 20164.93 16190.67 21088.86 26572.45 17867.63 25382.68 26664.07 8392.91 25171.79 17665.30 28586.44 263
CDS-MVSNet81.43 12680.74 12483.52 16286.26 22864.45 16892.09 14790.65 19175.83 11973.95 17189.81 17763.97 8592.91 25171.27 18182.82 15293.20 143
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
miper_enhance_ethall78.86 17277.97 16881.54 21388.00 19265.17 15391.41 17689.15 25075.19 12768.79 23583.98 25367.17 5292.82 25372.73 16765.30 28586.62 262
eth_miper_zixun_eth75.96 22474.40 22180.66 23384.66 25663.02 21389.28 24788.27 28571.88 19665.73 26881.65 27859.45 13992.81 25468.13 21060.53 33086.14 270
CPTT-MVS79.59 15879.16 15380.89 23291.54 11059.80 27792.10 14688.54 27860.42 32272.96 17893.28 11048.27 25492.80 25578.89 12686.50 12890.06 206
PatchmatchNetpermissive77.46 19774.63 21585.96 7989.55 14970.35 3079.97 33989.55 23372.23 18570.94 20576.91 33257.03 16292.79 25654.27 29981.17 16694.74 86
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
jajsoiax73.05 25571.51 26077.67 28477.46 34254.83 32688.81 25690.04 21669.13 25262.85 29883.51 25731.16 35092.75 25770.83 18469.80 25285.43 289
mvs_tets72.71 26271.11 26177.52 28577.41 34354.52 32888.45 26289.76 22468.76 25762.70 29983.26 26029.49 35492.71 25870.51 19069.62 25485.34 291
tpmrst80.57 13979.14 15484.84 11690.10 13768.28 7581.70 32089.72 23077.63 9775.96 14779.54 31364.94 7392.71 25875.43 14677.28 20393.55 133
D2MVS73.80 24972.02 25479.15 27079.15 32262.97 21488.58 26090.07 21372.94 16559.22 31678.30 31842.31 29492.70 26065.59 24072.00 24181.79 333
test_post23.01 39556.49 17492.67 261
MVSFormer83.75 8982.88 9486.37 7089.24 15971.18 1989.07 25290.69 18765.80 27987.13 3994.34 8764.99 7192.67 26172.83 16491.80 7095.27 66
test_djsdf73.76 25172.56 24877.39 28977.00 34553.93 33089.07 25290.69 18765.80 27963.92 28582.03 27343.14 29192.67 26172.83 16468.53 26585.57 285
RRT_MVS74.44 24172.97 24178.84 27382.36 28757.66 30489.83 23688.79 26970.61 23364.58 27884.89 24139.24 30292.65 26470.11 19266.34 28086.21 268
miper_ehance_all_eth77.60 19576.44 19281.09 22785.70 24164.41 17290.65 21188.64 27572.31 18267.37 25882.52 26764.77 7792.64 26570.67 18765.30 28586.24 267
c3_l76.83 21075.47 20680.93 23185.02 25264.18 18290.39 21888.11 28971.66 20566.65 26681.64 27963.58 9592.56 26669.31 20162.86 30786.04 274
dp75.01 23772.09 25383.76 15489.28 15566.22 13079.96 34089.75 22571.16 22067.80 25177.19 32951.81 22292.54 26750.39 31071.44 24792.51 164
Effi-MVS+-dtu76.14 21675.28 21078.72 27483.22 27755.17 32489.87 23487.78 29575.42 12367.98 24481.43 28345.08 28392.52 26875.08 15071.63 24388.48 230
F-COLMAP70.66 27568.44 28377.32 29086.37 22755.91 31988.00 26886.32 30756.94 34157.28 33088.07 20233.58 33992.49 26951.02 30868.37 26683.55 307
USDC67.43 30664.51 30776.19 30277.94 33955.29 32378.38 34585.00 32173.17 16048.36 36180.37 30121.23 37192.48 27052.15 30664.02 30280.81 342
pmmvs667.57 30364.76 30476.00 30472.82 36153.37 33288.71 25786.78 30653.19 35257.58 32978.03 32235.33 33392.41 27155.56 29454.88 35082.21 330
test-LLR80.10 15079.56 14481.72 20986.93 21961.17 25092.70 12291.54 15671.51 21575.62 15186.94 21953.83 20392.38 27272.21 17384.76 13991.60 181
test-mter79.96 15379.38 15081.72 20986.93 21961.17 25092.70 12291.54 15673.85 14775.62 15186.94 21949.84 24192.38 27272.21 17384.76 13991.60 181
UniMVSNet (Re)77.58 19676.78 18879.98 25084.11 26760.80 25791.76 16693.17 9076.56 11369.93 22284.78 24363.32 9992.36 27464.89 24662.51 31286.78 257
ET-MVSNet_ETH3D84.01 8283.15 9086.58 6290.78 12670.89 2494.74 4794.62 3581.44 3858.19 32293.64 10473.64 2392.35 27582.66 9478.66 18996.50 24
mvs_anonymous81.36 12779.99 13785.46 9590.39 13268.40 7186.88 28690.61 19274.41 13470.31 21584.67 24463.79 8892.32 27673.13 16185.70 13295.67 46
IterMVS-LS76.49 21375.18 21180.43 23784.49 26062.74 22290.64 21288.80 26772.40 18065.16 27381.72 27760.98 12292.27 27767.74 21564.65 29686.29 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet377.73 19476.04 19882.80 17791.20 11868.99 5991.87 15991.99 13373.35 15867.04 26083.19 26156.62 17292.14 27859.80 27969.34 25687.28 249
UniMVSNet_NR-MVSNet78.15 18777.55 17479.98 25084.46 26160.26 27092.25 13993.20 8877.50 9968.88 23386.61 22266.10 6092.13 27966.38 23062.55 31087.54 240
DU-MVS76.86 20675.84 20179.91 25382.96 28160.26 27091.26 18991.54 15676.46 11468.88 23386.35 22556.16 17692.13 27966.38 23062.55 31087.35 247
tpm78.58 18077.03 18483.22 17185.94 23664.56 16383.21 31091.14 17478.31 8473.67 17379.68 31164.01 8492.09 28166.07 23471.26 24893.03 149
Baseline_NR-MVSNet73.99 24772.83 24277.48 28780.78 30059.29 28691.79 16384.55 32568.85 25468.99 23180.70 29556.16 17692.04 28262.67 26260.98 32781.11 338
FMVSNet276.07 21774.01 22882.26 19488.85 16667.66 9191.33 18691.61 15470.84 22765.98 26782.25 27048.03 25592.00 28358.46 28468.73 26487.10 252
TransMVSNet (Re)70.07 28167.66 28777.31 29180.62 30459.13 28991.78 16584.94 32265.97 27860.08 31280.44 30050.78 23191.87 28448.84 31845.46 36880.94 340
UniMVSNet_ETH3D72.74 26170.53 26879.36 26578.62 33256.64 31585.01 29489.20 24663.77 29364.84 27684.44 24834.05 33791.86 28563.94 25170.89 25089.57 215
NR-MVSNet76.05 22074.59 21680.44 23682.96 28162.18 23390.83 20591.73 14777.12 10360.96 30786.35 22559.28 14391.80 28660.74 27261.34 32587.35 247
FIs79.47 16179.41 14879.67 25985.95 23459.40 28291.68 17093.94 5878.06 8768.96 23288.28 19466.61 5791.77 28766.20 23374.99 21787.82 238
XVG-OURS74.25 24472.46 25079.63 26078.45 33357.59 30680.33 33287.39 29763.86 29268.76 23689.62 17940.50 29991.72 28869.00 20474.25 22389.58 214
test_040264.54 31961.09 32574.92 31184.10 26860.75 26187.95 26979.71 35152.03 35452.41 34577.20 32832.21 34591.64 28923.14 38561.03 32672.36 374
test_cas_vis1_n_192080.45 14380.61 12879.97 25278.25 33557.01 31394.04 6788.33 28279.06 7482.81 7893.70 10238.65 30691.63 29090.82 3579.81 17691.27 193
XVG-OURS-SEG-HR74.70 24073.08 23879.57 26278.25 33557.33 31080.49 33087.32 29863.22 29968.76 23690.12 17544.89 28491.59 29170.55 18974.09 22589.79 211
TranMVSNet+NR-MVSNet75.86 22574.52 21979.89 25482.44 28660.64 26691.37 18391.37 16376.63 11167.65 25286.21 22952.37 21991.55 29261.84 26760.81 32887.48 242
GBi-Net75.65 22873.83 23081.10 22488.85 16665.11 15590.01 23090.32 20070.84 22767.04 26080.25 30448.03 25591.54 29359.80 27969.34 25686.64 258
test175.65 22873.83 23081.10 22488.85 16665.11 15590.01 23090.32 20070.84 22767.04 26080.25 30448.03 25591.54 29359.80 27969.34 25686.64 258
FMVSNet172.71 26269.91 27381.10 22483.60 27465.11 15590.01 23090.32 20063.92 29163.56 28980.25 30436.35 32991.54 29354.46 29866.75 27786.64 258
pmmvs473.92 24871.81 25780.25 24279.17 32165.24 15187.43 27887.26 30067.64 26763.46 29083.91 25448.96 25191.53 29662.94 25965.49 28483.96 302
test_post178.95 34120.70 39853.05 21291.50 29760.43 274
anonymousdsp71.14 27469.37 27876.45 30072.95 35954.71 32784.19 29888.88 26361.92 31362.15 30279.77 31038.14 31391.44 29868.90 20667.45 27383.21 315
XVG-ACMP-BASELINE68.04 29965.53 29975.56 30574.06 35652.37 33578.43 34485.88 31462.03 31158.91 32081.21 29120.38 37491.15 29960.69 27368.18 26783.16 316
CNLPA74.31 24372.30 25180.32 23891.49 11161.66 24490.85 20480.72 34756.67 34363.85 28790.64 15846.75 26690.84 30053.79 30175.99 21388.47 232
ppachtmachnet_test67.72 30163.70 31279.77 25878.92 32566.04 13288.68 25882.90 34060.11 32655.45 33475.96 33939.19 30390.55 30139.53 35752.55 35682.71 323
pmmvs573.35 25271.52 25978.86 27278.64 33160.61 26791.08 19786.90 30267.69 26463.32 29183.64 25544.33 28690.53 30262.04 26666.02 28285.46 288
SixPastTwentyTwo64.92 31761.78 32474.34 31678.74 32949.76 34883.42 30679.51 35262.86 30350.27 35477.35 32530.92 35290.49 30345.89 33447.06 36582.78 319
COLMAP_ROBcopyleft57.96 2062.98 32759.65 32972.98 32581.44 29553.00 33483.75 30175.53 36048.34 36648.81 36081.40 28524.14 36590.30 30432.95 37460.52 33175.65 369
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
patchmatchnet-post67.62 36557.62 15790.25 305
SCA75.82 22672.76 24385.01 11186.63 22170.08 3281.06 32789.19 24771.60 21170.01 21877.09 33045.53 27890.25 30560.43 27473.27 23094.68 88
JIA-IIPM66.06 31162.45 32076.88 29881.42 29654.45 32957.49 38688.67 27349.36 36363.86 28646.86 38456.06 17990.25 30549.53 31568.83 26285.95 277
WR-MVS76.76 21175.74 20379.82 25684.60 25762.27 23292.60 12992.51 11676.06 11667.87 25085.34 23656.76 16890.24 30862.20 26563.69 30586.94 255
FC-MVSNet-test77.99 18978.08 16677.70 28384.89 25455.51 32290.27 22293.75 6776.87 10466.80 26587.59 20965.71 6590.23 30962.89 26173.94 22687.37 245
EPNet_dtu78.80 17479.26 15277.43 28888.06 18949.71 34991.96 15791.95 13577.67 9476.56 14491.28 15258.51 14890.20 31056.37 29180.95 16892.39 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CMPMVSbinary48.56 2166.77 30864.41 30973.84 31970.65 36750.31 34677.79 34985.73 31645.54 37244.76 37182.14 27235.40 33290.14 31163.18 25874.54 22081.07 339
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Vis-MVSNet (Re-imp)79.24 16479.57 14378.24 28088.46 17552.29 33690.41 21789.12 25274.24 13869.13 22691.91 14065.77 6490.09 31259.00 28388.09 10792.33 167
lessismore_v073.72 32072.93 36047.83 35861.72 38545.86 36773.76 34628.63 35889.81 31347.75 32731.37 38783.53 308
MVS-HIRNet60.25 33455.55 34174.35 31584.37 26356.57 31671.64 36274.11 36334.44 38345.54 36942.24 39031.11 35189.81 31340.36 35676.10 21276.67 367
our_test_368.29 29764.69 30579.11 27178.92 32564.85 16288.40 26385.06 32060.32 32452.68 34476.12 33840.81 29889.80 31544.25 34155.65 34682.67 326
CR-MVSNet73.79 25070.82 26582.70 18083.15 27867.96 8470.25 36484.00 33073.67 15469.97 22072.41 35057.82 15589.48 31652.99 30573.13 23190.64 200
Patchmtry67.53 30463.93 31178.34 27682.12 29064.38 17368.72 36884.00 33048.23 36759.24 31572.41 35057.82 15589.27 31746.10 33356.68 34581.36 335
ADS-MVSNet68.54 29564.38 31081.03 22888.06 18966.90 11268.01 37184.02 32957.57 33564.48 28069.87 36038.68 30489.21 31840.87 35367.89 27086.97 253
Patchmatch-RL test68.17 29864.49 30879.19 26771.22 36353.93 33070.07 36671.54 37269.22 24956.79 33162.89 37256.58 17388.61 31969.53 19852.61 35595.03 76
UnsupCasMVSNet_bld61.60 33057.71 33473.29 32368.73 37251.64 33878.61 34389.05 25757.20 33946.11 36461.96 37528.70 35788.60 32050.08 31338.90 37979.63 352
OurMVSNet-221017-064.68 31862.17 32272.21 33276.08 35047.35 36080.67 32981.02 34556.19 34451.60 34879.66 31227.05 36188.56 32153.60 30353.63 35380.71 343
PatchT69.11 28965.37 30180.32 23882.07 29163.68 19667.96 37387.62 29650.86 35969.37 22465.18 36857.09 16188.53 32241.59 35166.60 27888.74 225
bld_raw_dy_0_6471.59 27169.71 27677.22 29377.82 34158.12 29887.71 27473.66 36468.01 26261.90 30584.29 25033.68 33888.43 32369.91 19470.43 25185.11 294
TinyColmap60.32 33356.42 34072.00 33678.78 32853.18 33378.36 34675.64 35852.30 35341.59 37875.82 34114.76 38388.35 32435.84 36554.71 35174.46 370
LCM-MVSNet-Re72.93 25771.84 25676.18 30388.49 17348.02 35680.07 33770.17 37373.96 14552.25 34680.09 30749.98 23888.24 32567.35 21884.23 14592.28 170
ambc69.61 34261.38 38341.35 37749.07 39185.86 31550.18 35666.40 36610.16 38888.14 32645.73 33544.20 36979.32 355
Patchmatch-test65.86 31260.94 32680.62 23583.75 27158.83 29158.91 38575.26 36144.50 37550.95 35377.09 33058.81 14787.90 32735.13 36864.03 30195.12 72
test_fmvs1_n72.69 26471.92 25574.99 31071.15 36447.08 36387.34 28075.67 35763.48 29678.08 12791.17 15320.16 37587.87 32884.65 8175.57 21590.01 208
MIMVSNet71.64 26968.44 28381.23 21981.97 29264.44 16973.05 36088.80 26769.67 24464.59 27774.79 34432.79 34187.82 32953.99 30076.35 21091.42 185
K. test v363.09 32659.61 33073.53 32176.26 34849.38 35383.27 30777.15 35464.35 28947.77 36372.32 35228.73 35687.79 33049.93 31436.69 38183.41 312
test_fmvs174.07 24573.69 23275.22 30778.91 32747.34 36189.06 25474.69 36263.68 29479.41 11091.59 14624.36 36487.77 33185.22 7476.26 21190.55 202
CL-MVSNet_self_test69.92 28268.09 28675.41 30673.25 35855.90 32090.05 22989.90 22069.96 24061.96 30476.54 33351.05 23087.64 33249.51 31650.59 36082.70 324
KD-MVS_2432*160069.03 29066.37 29377.01 29585.56 24261.06 25381.44 32390.25 20667.27 26958.00 32576.53 33454.49 19587.63 33348.04 32235.77 38282.34 328
miper_refine_blended69.03 29066.37 29377.01 29585.56 24261.06 25381.44 32390.25 20667.27 26958.00 32576.53 33454.49 19587.63 33348.04 32235.77 38282.34 328
miper_lstm_enhance73.05 25571.73 25877.03 29483.80 27058.32 29681.76 31888.88 26369.80 24361.01 30678.23 32057.19 16087.51 33565.34 24359.53 33585.27 293
UnsupCasMVSNet_eth65.79 31363.10 31573.88 31870.71 36650.29 34781.09 32689.88 22172.58 17449.25 35974.77 34532.57 34387.43 33655.96 29341.04 37583.90 304
Anonymous2023120667.53 30465.78 29572.79 32774.95 35247.59 35988.23 26487.32 29861.75 31658.07 32477.29 32737.79 31887.29 33742.91 34463.71 30483.48 310
pmmvs-eth3d65.53 31662.32 32175.19 30869.39 37159.59 27982.80 31483.43 33562.52 30751.30 35172.49 34832.86 34087.16 33855.32 29550.73 35978.83 359
IterMVS72.65 26570.83 26378.09 28182.17 28962.96 21587.64 27686.28 30871.56 21360.44 30978.85 31645.42 28086.66 33963.30 25761.83 31884.65 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AllTest61.66 32958.06 33372.46 32979.57 31451.42 34180.17 33568.61 37651.25 35745.88 36581.23 28719.86 37686.58 34038.98 35957.01 34379.39 353
TestCases72.46 32979.57 31451.42 34168.61 37651.25 35745.88 36581.23 28719.86 37686.58 34038.98 35957.01 34379.39 353
MDA-MVSNet-bldmvs61.54 33157.70 33573.05 32479.53 31657.00 31483.08 31181.23 34457.57 33534.91 38372.45 34932.79 34186.26 34235.81 36641.95 37375.89 368
test_vis1_n71.63 27070.73 26674.31 31769.63 37047.29 36286.91 28472.11 36863.21 30075.18 15790.17 17120.40 37385.76 34384.59 8274.42 22289.87 209
Syy-MVS69.65 28569.52 27770.03 34187.87 19543.21 37488.07 26689.01 25872.91 16763.11 29388.10 20045.28 28185.54 34422.07 38769.23 25981.32 336
myMVS_eth3d72.58 26672.74 24472.10 33487.87 19549.45 35188.07 26689.01 25872.91 16763.11 29388.10 20063.63 9185.54 34432.73 37669.23 25981.32 336
Anonymous2024052162.09 32859.08 33171.10 33867.19 37448.72 35583.91 30085.23 31950.38 36047.84 36271.22 35920.74 37285.51 34646.47 33158.75 33979.06 356
FMVSNet568.04 29965.66 29875.18 30984.43 26257.89 29983.54 30286.26 30961.83 31553.64 34273.30 34737.15 32485.08 34748.99 31761.77 31982.56 327
test0.0.03 172.76 26072.71 24672.88 32680.25 30847.99 35791.22 19289.45 23671.51 21562.51 30187.66 20853.83 20385.06 34850.16 31267.84 27285.58 284
testgi64.48 32062.87 31869.31 34471.24 36240.62 37985.49 29179.92 35065.36 28354.18 33983.49 25823.74 36784.55 34941.60 35060.79 32982.77 320
testing370.38 27970.83 26369.03 34585.82 23843.93 37390.72 20990.56 19368.06 26160.24 31086.82 22164.83 7584.12 35026.33 38364.10 30079.04 357
ADS-MVSNet266.90 30763.44 31477.26 29288.06 18960.70 26468.01 37175.56 35957.57 33564.48 28069.87 36038.68 30484.10 35140.87 35367.89 27086.97 253
CVMVSNet74.04 24674.27 22373.33 32285.33 24443.94 37289.53 24288.39 28054.33 35070.37 21390.13 17349.17 24884.05 35261.83 26879.36 18191.99 178
ITE_SJBPF70.43 34074.44 35447.06 36477.32 35360.16 32554.04 34083.53 25623.30 36884.01 35343.07 34361.58 32480.21 350
CHOSEN 280x42077.35 19976.95 18778.55 27587.07 21462.68 22469.71 36782.95 33968.80 25571.48 20287.27 21666.03 6184.00 35476.47 14082.81 15388.95 220
DTE-MVSNet68.46 29667.33 28971.87 33777.94 33949.00 35486.16 29088.58 27766.36 27658.19 32282.21 27146.36 26983.87 35544.97 33955.17 34882.73 321
IterMVS-SCA-FT71.55 27269.97 27176.32 30181.48 29460.67 26587.64 27685.99 31366.17 27759.50 31478.88 31545.53 27883.65 35662.58 26361.93 31784.63 300
PEN-MVS69.46 28768.56 28172.17 33379.27 31949.71 34986.90 28589.24 24467.24 27259.08 31882.51 26847.23 26483.54 35748.42 32057.12 34183.25 314
WR-MVS_H70.59 27669.94 27272.53 32881.03 29751.43 34087.35 27992.03 13267.38 26860.23 31180.70 29555.84 18283.45 35846.33 33258.58 34082.72 322
YYNet163.76 32560.14 32874.62 31378.06 33860.19 27383.46 30583.99 33256.18 34539.25 37971.56 35737.18 32383.34 35942.90 34548.70 36380.32 347
PM-MVS59.40 33656.59 33867.84 34863.63 37841.86 37576.76 35163.22 38359.01 33151.07 35272.27 35311.72 38683.25 36061.34 26950.28 36178.39 362
MDA-MVSNet_test_wron63.78 32460.16 32774.64 31278.15 33760.41 26883.49 30384.03 32856.17 34639.17 38071.59 35637.22 32283.24 36142.87 34648.73 36280.26 348
KD-MVS_self_test60.87 33258.60 33267.68 35066.13 37639.93 38175.63 35784.70 32357.32 33849.57 35768.45 36329.55 35382.87 36248.09 32147.94 36480.25 349
N_pmnet50.55 34449.11 34754.88 36577.17 3444.02 40884.36 2972.00 40648.59 36445.86 36768.82 36232.22 34482.80 36331.58 38051.38 35877.81 364
test20.0363.83 32362.65 31967.38 35270.58 36839.94 38086.57 28884.17 32763.29 29851.86 34777.30 32637.09 32582.47 36438.87 36154.13 35279.73 351
TDRefinement55.28 34251.58 34566.39 35459.53 38546.15 36676.23 35472.80 36644.60 37442.49 37676.28 33715.29 38182.39 36533.20 37343.75 37070.62 376
CP-MVSNet70.50 27769.91 27372.26 33180.71 30151.00 34387.23 28190.30 20467.84 26359.64 31382.69 26550.23 23782.30 36651.28 30759.28 33683.46 311
PS-CasMVS69.86 28469.13 27972.07 33580.35 30650.57 34587.02 28389.75 22567.27 26959.19 31782.28 26946.58 26882.24 36750.69 30959.02 33783.39 313
RPSCF64.24 32161.98 32371.01 33976.10 34945.00 36975.83 35675.94 35646.94 36958.96 31984.59 24531.40 34882.00 36847.76 32660.33 33486.04 274
new-patchmatchnet59.30 33756.48 33967.79 34965.86 37744.19 37082.47 31581.77 34259.94 32743.65 37566.20 36727.67 35981.68 36939.34 35841.40 37477.50 365
MIMVSNet160.16 33557.33 33668.67 34669.71 36944.13 37178.92 34284.21 32655.05 34844.63 37271.85 35423.91 36681.54 37032.63 37755.03 34980.35 346
test_fmvs265.78 31464.84 30268.60 34766.54 37541.71 37683.27 30769.81 37454.38 34967.91 24784.54 24715.35 38081.22 37175.65 14566.16 28182.88 318
dmvs_testset65.55 31566.45 29162.86 35779.87 31222.35 40076.55 35271.74 37077.42 10255.85 33387.77 20751.39 22780.69 37231.51 38265.92 28385.55 286
test_vis1_rt59.09 33857.31 33764.43 35568.44 37346.02 36783.05 31248.63 39551.96 35549.57 35763.86 37116.30 37880.20 37371.21 18262.79 30867.07 380
EU-MVSNet64.01 32263.01 31667.02 35374.40 35538.86 38483.27 30786.19 31145.11 37354.27 33881.15 29236.91 32780.01 37448.79 31957.02 34282.19 331
pmmvs355.51 34151.50 34667.53 35157.90 38650.93 34480.37 33173.66 36440.63 38144.15 37464.75 37016.30 37878.97 37544.77 34040.98 37772.69 372
mvsany_test168.77 29268.56 28169.39 34373.57 35745.88 36880.93 32860.88 38659.65 32871.56 20190.26 16943.22 29075.05 37674.26 15862.70 30987.25 251
DSMNet-mixed56.78 34054.44 34363.79 35663.21 37929.44 39564.43 37764.10 38242.12 38051.32 35071.60 35531.76 34675.04 37736.23 36465.20 28986.87 256
EGC-MVSNET42.35 35138.09 35455.11 36474.57 35346.62 36571.63 36355.77 3870.04 4010.24 40262.70 37314.24 38474.91 37817.59 39046.06 36743.80 387
test_fmvs356.82 33954.86 34262.69 35853.59 38835.47 38675.87 35565.64 38143.91 37655.10 33571.43 3586.91 39474.40 37968.64 20852.63 35478.20 363
WB-MVS46.23 34844.94 35050.11 36962.13 38221.23 40276.48 35355.49 38845.89 37135.78 38161.44 37735.54 33172.83 3809.96 39621.75 39156.27 384
new_pmnet49.31 34546.44 34857.93 36062.84 38040.74 37868.47 37062.96 38436.48 38235.09 38257.81 37914.97 38272.18 38132.86 37546.44 36660.88 382
Gipumacopyleft34.91 35831.44 36145.30 37470.99 36539.64 38319.85 39672.56 36720.10 39216.16 39621.47 3975.08 39771.16 38213.07 39443.70 37125.08 394
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SSC-MVS44.51 35043.35 35247.99 37361.01 38418.90 40474.12 35954.36 38943.42 37834.10 38460.02 37834.42 33670.39 3839.14 39819.57 39254.68 385
test_vis3_rt40.46 35437.79 35548.47 37244.49 39633.35 38966.56 37532.84 40332.39 38529.65 38539.13 3933.91 40168.65 38450.17 31140.99 37643.40 388
LF4IMVS54.01 34352.12 34459.69 35962.41 38139.91 38268.59 36968.28 37842.96 37944.55 37375.18 34214.09 38568.39 38541.36 35251.68 35770.78 375
PMVScopyleft26.43 2231.84 36128.16 36442.89 37525.87 40427.58 39650.92 39049.78 39321.37 39114.17 39740.81 3922.01 40466.62 3869.61 39738.88 38034.49 393
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD_test140.50 35337.31 35650.09 37051.88 38935.27 38759.45 38452.59 39121.64 39026.12 38857.80 3804.56 39866.56 38722.64 38639.09 37848.43 386
LCM-MVSNet40.54 35235.79 35754.76 36636.92 40130.81 39251.41 38969.02 37522.07 38924.63 38945.37 3864.56 39865.81 38833.67 37134.50 38567.67 378
test_f46.58 34743.45 35155.96 36245.18 39532.05 39061.18 38049.49 39433.39 38442.05 37762.48 3747.00 39365.56 38947.08 32943.21 37270.27 377
PMMVS237.93 35733.61 36050.92 36846.31 39324.76 39860.55 38350.05 39228.94 38820.93 39047.59 3834.41 40065.13 39025.14 38418.55 39462.87 381
FPMVS45.64 34943.10 35353.23 36751.42 39136.46 38564.97 37671.91 36929.13 38727.53 38761.55 3769.83 38965.01 39116.00 39355.58 34758.22 383
ANet_high40.27 35535.20 35855.47 36334.74 40234.47 38863.84 37871.56 37148.42 36518.80 39241.08 3919.52 39064.45 39220.18 3888.66 39967.49 379
mvsany_test348.86 34646.35 34956.41 36146.00 39431.67 39162.26 37947.25 39643.71 37745.54 36968.15 36410.84 38764.44 39357.95 28535.44 38473.13 371
testf132.77 35929.47 36242.67 37641.89 39830.81 39252.07 38743.45 39715.45 39318.52 39344.82 3872.12 40258.38 39416.05 39130.87 38838.83 389
APD_test232.77 35929.47 36242.67 37641.89 39830.81 39252.07 38743.45 39715.45 39318.52 39344.82 3872.12 40258.38 39416.05 39130.87 38838.83 389
test_method38.59 35635.16 35948.89 37154.33 38721.35 40145.32 39253.71 3907.41 39828.74 38651.62 3828.70 39152.87 39633.73 37032.89 38672.47 373
MVEpermissive24.84 2324.35 36319.77 36938.09 37834.56 40326.92 39726.57 39438.87 40111.73 39711.37 39827.44 3941.37 40550.42 39711.41 39514.60 39536.93 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN24.61 36224.00 36626.45 38043.74 39718.44 40560.86 38139.66 39915.11 3959.53 39922.10 3966.52 39546.94 3988.31 39910.14 39613.98 396
EMVS23.76 36423.20 36825.46 38141.52 40016.90 40660.56 38238.79 40214.62 3968.99 40020.24 3997.35 39245.82 3997.25 4009.46 39713.64 397
DeepMVS_CXcopyleft34.71 37951.45 39024.73 39928.48 40531.46 38617.49 39552.75 3815.80 39642.60 40018.18 38919.42 39336.81 392
tmp_tt22.26 36523.75 36717.80 3825.23 40512.06 40735.26 39339.48 4002.82 40018.94 39144.20 38922.23 37024.64 40136.30 3639.31 39816.69 395
wuyk23d11.30 36710.95 37012.33 38348.05 39219.89 40325.89 3951.92 4073.58 3993.12 4011.37 4010.64 40615.77 4026.23 4017.77 4001.35 398
testmvs7.23 3699.62 3720.06 3850.04 4060.02 41084.98 2950.02 4080.03 4020.18 4031.21 4020.01 4080.02 4030.14 4020.01 4010.13 400
test1236.92 3709.21 3730.08 3840.03 4070.05 40981.65 3210.01 4090.02 4030.14 4040.85 4030.03 4070.02 4030.12 4030.00 4020.16 399
test_blank0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
uanet_test0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
DCPMVS0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
cdsmvs_eth3d_5k19.86 36626.47 3650.00 3860.00 4080.00 4110.00 39793.45 790.00 4040.00 40595.27 5649.56 2420.00 4050.00 4040.00 4020.00 401
pcd_1.5k_mvsjas4.46 3715.95 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 40453.55 2070.00 4050.00 4040.00 4020.00 401
sosnet-low-res0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
sosnet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
uncertanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
Regformer0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
ab-mvs-re7.91 36810.55 3710.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40594.95 640.00 4090.00 4050.00 4040.00 4020.00 401
uanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
WAC-MVS49.45 35131.56 381
FOURS193.95 4561.77 24093.96 7091.92 13662.14 31086.57 44
test_one_060196.32 1869.74 4394.18 5271.42 21790.67 1896.85 1674.45 18
eth-test20.00 408
eth-test0.00 408
RE-MVS-def80.48 13192.02 9258.56 29490.90 20190.45 19462.76 30478.89 11694.46 7849.30 24578.77 12786.77 12392.28 170
IU-MVS96.46 1169.91 3795.18 1780.75 4695.28 192.34 2195.36 1396.47 25
save fliter93.84 4867.89 8695.05 3992.66 10978.19 85
test072696.40 1569.99 3396.76 794.33 4971.92 19291.89 1097.11 673.77 21
GSMVS94.68 88
test_part296.29 1968.16 8090.78 16
sam_mvs157.85 15494.68 88
sam_mvs54.91 192
MTGPAbinary92.23 122
MTMP93.77 8432.52 404
test9_res89.41 3994.96 1895.29 63
agg_prior286.41 6694.75 2995.33 59
test_prior467.18 10593.92 73
test_prior295.10 3875.40 12485.25 6095.61 4567.94 4787.47 5694.77 25
新几何291.41 176
旧先验191.94 9660.74 26291.50 15994.36 8265.23 6991.84 6994.55 95
原ACMM292.01 152
test22289.77 14361.60 24589.55 24089.42 23856.83 34277.28 13692.43 13052.76 21591.14 8393.09 146
segment_acmp65.94 62
testdata189.21 24977.55 98
plane_prior786.94 21761.51 246
plane_prior687.23 20962.32 23050.66 232
plane_prior489.14 184
plane_prior361.95 23879.09 7272.53 186
plane_prior293.13 10578.81 79
plane_prior187.15 211
plane_prior62.42 22693.85 7779.38 6478.80 187
n20.00 410
nn0.00 410
door-mid66.01 380
test1193.01 96
door66.57 379
HQP5-MVS63.66 197
HQP-NCC87.54 20294.06 6379.80 5774.18 165
ACMP_Plane87.54 20294.06 6379.80 5774.18 165
BP-MVS77.63 134
HQP3-MVS91.70 15178.90 185
HQP2-MVS51.63 225
NP-MVS87.41 20563.04 21290.30 167
MDTV_nov1_ep13_2view59.90 27680.13 33667.65 26672.79 18154.33 20059.83 27892.58 161
ACMMP++_ref71.63 243
ACMMP++69.72 253
Test By Simon54.21 201