This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5599.27 199.54 1
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13291.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3592.51 5595.13 4490.65 995.34 5288.06 898.15 3495.95 41
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6888.83 2495.51 4487.16 2997.60 6492.73 158
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9190.15 1695.67 3486.82 3397.34 7492.19 185
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5991.77 6893.94 9990.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7390.09 1795.08 6186.67 3597.60 6494.18 95
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6579.95 11198.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 6292.39 5894.14 8589.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5691.54 7094.25 7987.67 4195.51 4487.21 2898.11 3593.12 146
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5591.06 8194.00 9288.26 3095.71 3287.28 2798.39 2092.55 167
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9994.03 9086.57 5295.80 2587.35 2497.62 6294.20 92
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11884.07 4492.00 6494.40 7286.63 5195.28 5588.59 598.31 2392.30 178
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6591.40 7294.17 8487.51 4295.87 1987.74 1397.76 5593.99 103
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6790.88 8794.21 8087.75 3995.87 1987.60 1897.71 5893.83 112
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6591.47 7193.96 9688.35 2995.56 3987.74 1397.74 5792.85 155
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8891.29 7693.97 9387.93 3895.87 1988.65 497.96 4594.12 99
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 8078.04 8992.84 1594.14 3183.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8591.74 6994.41 7188.17 3295.98 1186.37 3897.99 4093.96 106
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 6092.60 5493.97 9388.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 6188.52 13094.37 7486.74 5095.41 5086.32 3998.21 2993.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7991.38 7393.80 10387.20 4695.80 2587.10 3197.69 5993.93 107
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9994.51 1775.79 14092.94 4494.96 4788.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7976.26 11689.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12378.35 12898.76 395.61 48
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11991.97 6594.89 4988.38 2795.45 4889.27 397.87 5093.27 138
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 10093.83 2793.60 11190.81 792.96 13885.02 5798.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1690.65 790.33 9393.95 9884.50 6995.37 5180.87 10195.50 14394.53 79
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10392.87 4693.74 10790.60 1195.21 5882.87 7998.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6978.65 8389.15 8294.05 3684.68 4093.90 2494.11 8888.13 3496.30 484.51 6397.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14390.47 5193.69 5083.77 4794.11 2294.27 7590.28 1495.84 2386.03 4697.92 4692.29 179
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS90.27 3590.80 4288.68 7492.86 8477.09 10491.19 4095.74 581.38 7392.28 5993.80 10386.89 4994.64 7385.52 5197.51 7194.30 91
v7n90.13 3690.96 3887.65 8991.95 11071.06 17189.99 5993.05 7786.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18188.51 1790.11 9595.12 4590.98 688.92 24777.55 14297.07 8283.13 334
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVS++90.07 3891.09 3287.00 9591.55 12772.64 14596.19 294.10 3485.33 3393.49 3694.64 6081.12 11795.88 1787.41 2295.94 12692.48 169
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14990.54 4891.01 13983.61 5093.75 3094.65 5789.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PS-CasMVS90.06 3991.92 1184.47 14896.56 658.83 30389.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3879.42 12098.74 599.00 2
PEN-MVS90.03 4191.88 1484.48 14796.57 558.88 30088.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3678.69 12598.72 898.97 3
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7795.32 1097.24 572.94 20794.85 6785.07 5597.78 5397.26 16
DTE-MVSNet89.98 4391.91 1384.21 15796.51 757.84 31088.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 1079.05 12298.57 1498.80 6
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 9292.09 6293.89 10183.80 7693.10 13582.67 8398.04 3693.64 124
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12494.26 7877.55 14995.86 2284.88 5995.87 13095.24 58
WR-MVS_H89.91 4691.31 2985.71 12596.32 962.39 25789.54 7493.31 6490.21 1095.57 995.66 2981.42 11495.90 1580.94 10098.80 298.84 5
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12292.78 8978.78 10692.51 5593.64 11088.13 3493.84 10484.83 6097.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14970.00 21894.55 1596.67 1187.94 3793.59 11584.27 6595.97 12395.52 49
anonymousdsp89.73 4988.88 6692.27 789.82 16986.67 1490.51 5090.20 16669.87 21995.06 1196.14 2184.28 7293.07 13687.68 1596.34 10697.09 21
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16971.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 10097.09 21
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11893.91 4180.07 8986.75 16493.26 11593.64 290.93 19384.60 6290.75 26393.97 105
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 8191.13 7993.19 11686.22 5795.97 1282.23 8997.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16369.27 22294.39 1696.38 1586.02 6093.52 11983.96 6795.92 12895.34 53
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 9187.50 14992.38 14481.42 11493.28 12883.07 7597.24 7791.67 202
ACMH76.49 1489.34 5591.14 3183.96 16292.50 9270.36 17789.55 7293.84 4681.89 6894.70 1395.44 3490.69 888.31 25783.33 7198.30 2493.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
CP-MVSNet89.27 5890.91 4084.37 14996.34 858.61 30688.66 9292.06 10690.78 695.67 795.17 4381.80 11095.54 4179.00 12398.69 998.95 4
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5580.16 8789.13 12193.44 11383.82 7590.98 19183.86 6995.30 15193.60 126
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9494.20 2573.53 16689.71 10694.82 5285.09 6395.77 3084.17 6698.03 3893.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet_ETH3D89.12 6190.72 4384.31 15597.00 264.33 23389.67 6988.38 19688.84 1394.29 1897.57 390.48 1391.26 18372.57 20297.65 6097.34 15
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 11189.16 11992.25 15172.03 22096.36 388.21 790.93 25792.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS88.96 6389.88 4986.22 11291.63 12177.07 10589.82 6493.77 4778.90 10492.88 4592.29 14986.11 5890.22 21486.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13278.20 11386.69 16792.28 15080.36 12695.06 6286.17 4496.49 10090.22 237
test_040288.65 6589.58 5685.88 12192.55 9072.22 15784.01 16889.44 18388.63 1694.38 1795.77 2686.38 5693.59 11579.84 11295.21 15291.82 197
DP-MVS88.60 6689.01 6387.36 9191.30 13477.50 9787.55 10692.97 8387.95 2089.62 11092.87 13084.56 6893.89 10177.65 14096.62 9490.70 225
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11284.26 4290.87 8893.92 10082.18 10189.29 24273.75 18594.81 17193.70 120
Anonymous2023121188.40 6789.62 5584.73 14290.46 15565.27 22388.86 8693.02 8187.15 2393.05 4397.10 682.28 10092.02 16476.70 15297.99 4096.88 25
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 9287.94 10291.97 10970.73 20894.19 2196.67 1176.94 15994.57 7683.07 7596.28 10896.15 33
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 12192.36 2689.06 18877.34 12293.63 3595.83 2565.40 25495.90 1585.01 5898.23 2797.49 13
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10893.17 7076.02 13488.64 12791.22 17784.24 7393.37 12677.97 13897.03 8395.52 49
CS-MVS88.14 7287.67 8089.54 5889.56 17179.18 7890.47 5194.77 1579.37 9884.32 21589.33 22983.87 7494.53 7982.45 8594.89 16794.90 65
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13567.85 24286.63 16894.84 5179.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
tt080588.09 7489.79 5182.98 18993.26 7363.94 23791.10 4189.64 17885.07 3690.91 8591.09 18289.16 2291.87 16982.03 9095.87 13093.13 144
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15990.31 5496.31 380.88 8085.12 19689.67 22384.47 7095.46 4782.56 8496.26 11193.77 118
RPSCF88.00 7686.93 9391.22 2790.08 16289.30 489.68 6891.11 13679.26 9989.68 10794.81 5582.44 9287.74 26176.54 15588.74 28796.61 29
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 11291.09 4291.87 11372.61 18692.16 6095.23 4166.01 24995.59 3786.02 4897.78 5397.24 17
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13394.02 5464.13 23484.38 16191.29 13184.88 3992.06 6393.84 10286.45 5493.73 10673.22 19398.66 1097.69 9
nrg03087.85 8088.49 7085.91 11990.07 16469.73 18187.86 10394.20 2574.04 15892.70 5394.66 5685.88 6191.50 17579.72 11597.32 7596.50 31
CNVR-MVS87.81 8187.68 7988.21 8192.87 8277.30 10385.25 14491.23 13377.31 12487.07 15891.47 17182.94 8694.71 7084.67 6196.27 11092.62 165
HQP_MVS87.75 8287.43 8488.70 7393.45 6676.42 11389.45 7793.61 5379.44 9686.55 16992.95 12774.84 18095.22 5680.78 10395.83 13294.46 80
NCCC87.36 8386.87 9488.83 6892.32 9878.84 8286.58 12691.09 13778.77 10784.85 20490.89 19080.85 12095.29 5381.14 9895.32 14892.34 176
DeepPCF-MVS81.24 587.28 8486.21 10490.49 3891.48 13184.90 3883.41 18692.38 9870.25 21589.35 11890.68 19982.85 8794.57 7679.55 11795.95 12592.00 192
SixPastTwentyTwo87.20 8587.45 8386.45 10692.52 9169.19 19087.84 10488.05 20481.66 7094.64 1496.53 1465.94 25094.75 6983.02 7796.83 8895.41 51
CS-MVS-test87.00 8686.43 10088.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26787.25 26382.43 9394.53 7977.65 14096.46 10294.14 98
UniMVSNet (Re)86.87 8786.98 9286.55 10493.11 7768.48 19483.80 17792.87 8580.37 8389.61 11291.81 16277.72 14694.18 9075.00 17198.53 1596.99 24
Vis-MVSNetpermissive86.86 8886.58 9787.72 8692.09 10677.43 10087.35 10992.09 10578.87 10584.27 22094.05 8978.35 14093.65 10880.54 10791.58 24592.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11592.86 8467.02 20682.55 21291.56 12183.08 5790.92 8391.82 16178.25 14193.99 9774.16 17698.35 2197.49 13
DU-MVS86.80 9086.99 9186.21 11393.24 7467.02 20683.16 19592.21 10181.73 6990.92 8391.97 15577.20 15393.99 9774.16 17698.35 2197.61 10
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 15187.09 23065.22 22484.16 16394.23 2277.89 11691.28 7793.66 10984.35 7192.71 14480.07 10894.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n86.68 9286.52 9887.18 9285.94 25878.30 8586.93 11692.20 10265.94 25389.16 11993.16 11883.10 8489.89 22787.81 1194.43 18293.35 134
IS-MVSNet86.66 9386.82 9686.17 11592.05 10866.87 20991.21 3988.64 19386.30 2889.60 11392.59 13869.22 23394.91 6673.89 18297.89 4996.72 26
v1086.54 9487.10 8884.84 13788.16 20663.28 24386.64 12592.20 10275.42 14692.81 5094.50 6474.05 19194.06 9683.88 6896.28 10897.17 20
pmmvs686.52 9588.06 7481.90 20992.22 10262.28 26084.66 15489.15 18683.54 5289.85 10397.32 488.08 3686.80 27670.43 21997.30 7696.62 28
PHI-MVS86.38 9685.81 11288.08 8288.44 20077.34 10189.35 8093.05 7773.15 17784.76 20587.70 25478.87 13694.18 9080.67 10596.29 10792.73 158
MVS_030486.35 9785.92 10887.66 8889.21 18073.16 14088.40 9683.63 26881.27 7480.87 27794.12 8771.49 22495.71 3287.79 1296.50 9994.11 100
CSCG86.26 9886.47 9985.60 12790.87 14774.26 12987.98 10191.85 11480.35 8489.54 11688.01 24779.09 13492.13 16075.51 16495.06 15990.41 234
DeepC-MVS_fast80.27 886.23 9985.65 11687.96 8591.30 13476.92 10687.19 11091.99 10870.56 20984.96 20090.69 19880.01 12995.14 5978.37 12795.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v886.22 10086.83 9584.36 15187.82 21062.35 25986.42 12891.33 13076.78 12892.73 5294.48 6673.41 20093.72 10783.10 7495.41 14497.01 23
Anonymous2024052986.20 10187.13 8783.42 17890.19 16064.55 23184.55 15690.71 14685.85 3189.94 10295.24 4082.13 10290.40 21069.19 23196.40 10595.31 55
test_fmvsmconf0.1_n86.18 10285.88 11087.08 9485.26 26678.25 8685.82 13591.82 11665.33 26688.55 12892.35 14882.62 9189.80 22986.87 3294.32 18593.18 143
CDPH-MVS86.17 10385.54 11788.05 8492.25 10075.45 12283.85 17492.01 10765.91 25586.19 17891.75 16583.77 7794.98 6477.43 14596.71 9293.73 119
NR-MVSNet86.00 10486.22 10385.34 13193.24 7464.56 23082.21 22490.46 15380.99 7888.42 13291.97 15577.56 14893.85 10272.46 20398.65 1197.61 10
train_agg85.98 10585.28 12288.07 8392.34 9679.70 7483.94 17090.32 15865.79 25684.49 20990.97 18681.93 10693.63 11081.21 9796.54 9790.88 219
FC-MVSNet-test85.93 10687.05 9082.58 20092.25 10056.44 32185.75 13693.09 7577.33 12391.94 6694.65 5774.78 18293.41 12575.11 17098.58 1397.88 7
test_fmvsmconf_n85.88 10785.51 11886.99 9684.77 27378.21 8785.40 14391.39 12865.32 26787.72 14591.81 16282.33 9689.78 23086.68 3494.20 18992.99 151
Effi-MVS+-dtu85.82 10883.38 15493.14 387.13 22691.15 287.70 10588.42 19574.57 15483.56 23385.65 28678.49 13994.21 8872.04 20592.88 21894.05 102
TAPA-MVS77.73 1285.71 10984.83 12888.37 7888.78 19179.72 7387.15 11293.50 5669.17 22385.80 18789.56 22480.76 12192.13 16073.21 19895.51 14293.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
canonicalmvs85.50 11086.14 10583.58 17487.97 20767.13 20487.55 10694.32 1873.44 16888.47 13187.54 25786.45 5491.06 19075.76 16393.76 19792.54 168
EPP-MVSNet85.47 11185.04 12586.77 10191.52 13069.37 18591.63 3687.98 20681.51 7287.05 15991.83 16066.18 24895.29 5370.75 21496.89 8595.64 46
GeoE85.45 11285.81 11284.37 14990.08 16267.07 20585.86 13491.39 12872.33 19287.59 14790.25 21184.85 6692.37 15478.00 13691.94 23893.66 121
FIs85.35 11386.27 10282.60 19991.86 11457.31 31485.10 14893.05 7775.83 13991.02 8293.97 9373.57 19692.91 14273.97 18198.02 3997.58 12
test_fmvsmvis_n_192085.22 11485.36 12184.81 13885.80 26076.13 11985.15 14792.32 9961.40 29591.33 7490.85 19383.76 7886.16 28984.31 6493.28 20892.15 187
casdiffmvspermissive85.21 11585.85 11183.31 18186.17 25362.77 25083.03 19793.93 4074.69 15388.21 13792.68 13782.29 9991.89 16877.87 13993.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline85.20 11685.93 10783.02 18886.30 24762.37 25884.55 15693.96 3974.48 15587.12 15392.03 15482.30 9891.94 16578.39 12694.21 18894.74 73
K. test v385.14 11784.73 12986.37 10791.13 14169.63 18385.45 14176.68 31884.06 4592.44 5796.99 862.03 27194.65 7280.58 10693.24 20994.83 72
EI-MVSNet-Vis-set85.12 11884.53 13686.88 9884.01 28572.76 14283.91 17385.18 24880.44 8288.75 12585.49 28880.08 12891.92 16682.02 9190.85 26195.97 39
EI-MVSNet-UG-set85.04 11984.44 13886.85 9983.87 28972.52 15183.82 17585.15 24980.27 8688.75 12585.45 29079.95 13091.90 16781.92 9490.80 26296.13 34
X-MVStestdata85.04 11982.70 16792.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9916.05 39986.57 5295.80 2587.35 2497.62 6294.20 92
MSLP-MVS++85.00 12186.03 10681.90 20991.84 11771.56 16886.75 12393.02 8175.95 13787.12 15389.39 22777.98 14289.40 24177.46 14394.78 17284.75 309
F-COLMAP84.97 12283.42 15389.63 5592.39 9483.40 4888.83 8791.92 11173.19 17680.18 29089.15 23377.04 15793.28 12865.82 26292.28 22992.21 184
bld_raw_dy_0_6484.85 12384.44 13886.07 11793.73 6074.93 12588.57 9381.90 28470.44 21091.28 7795.18 4256.62 30789.28 24385.15 5497.09 8193.99 103
3Dnovator80.37 784.80 12484.71 13285.06 13586.36 24574.71 12688.77 8990.00 17175.65 14284.96 20093.17 11774.06 19091.19 18578.28 13091.09 25189.29 255
IterMVS-LS84.73 12584.98 12683.96 16287.35 22163.66 23883.25 19189.88 17376.06 13289.62 11092.37 14773.40 20292.52 14978.16 13394.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_HR84.63 12684.34 14385.49 13090.18 16175.86 12079.23 26587.13 21673.35 16985.56 19189.34 22883.60 8090.50 20876.64 15394.05 19390.09 242
HQP-MVS84.61 12784.06 14686.27 11091.19 13770.66 17384.77 14992.68 9173.30 17280.55 28290.17 21572.10 21694.61 7477.30 14794.47 18093.56 129
v119284.57 12884.69 13384.21 15787.75 21262.88 24783.02 19891.43 12569.08 22589.98 10190.89 19072.70 21193.62 11382.41 8694.97 16496.13 34
FMVSNet184.55 12985.45 11981.85 21190.27 15961.05 27386.83 11988.27 20178.57 11089.66 10995.64 3075.43 17390.68 20369.09 23295.33 14793.82 113
v114484.54 13084.72 13184.00 16087.67 21562.55 25482.97 20090.93 14270.32 21489.80 10490.99 18573.50 19793.48 12181.69 9694.65 17795.97 39
Gipumacopyleft84.44 13186.33 10178.78 25584.20 28473.57 13389.55 7290.44 15484.24 4384.38 21294.89 4976.35 17080.40 33276.14 15996.80 9082.36 343
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MCST-MVS84.36 13283.93 14985.63 12691.59 12271.58 16683.52 18392.13 10461.82 28883.96 22689.75 22279.93 13193.46 12278.33 12994.34 18491.87 196
VDDNet84.35 13385.39 12081.25 22095.13 3159.32 29385.42 14281.11 28986.41 2787.41 15096.21 1973.61 19590.61 20666.33 25596.85 8693.81 116
ETV-MVS84.31 13483.91 15085.52 12888.58 19670.40 17684.50 16093.37 5878.76 10884.07 22478.72 36180.39 12595.13 6073.82 18492.98 21691.04 215
v124084.30 13584.51 13783.65 17187.65 21661.26 27082.85 20491.54 12267.94 24090.68 9090.65 20271.71 22293.64 10982.84 8094.78 17296.07 36
MVS_111021_LR84.28 13683.76 15185.83 12389.23 17983.07 5180.99 24083.56 26972.71 18486.07 18189.07 23481.75 11186.19 28877.11 14993.36 20488.24 268
h-mvs3384.25 13782.76 16688.72 7191.82 11982.60 5684.00 16984.98 25571.27 20186.70 16590.55 20463.04 26893.92 10078.26 13194.20 18989.63 247
v14419284.24 13884.41 14083.71 17087.59 21861.57 26682.95 20191.03 13867.82 24389.80 10490.49 20573.28 20493.51 12081.88 9594.89 16796.04 38
dcpmvs_284.23 13985.14 12381.50 21788.61 19561.98 26482.90 20393.11 7368.66 23192.77 5192.39 14378.50 13887.63 26376.99 15192.30 22694.90 65
v192192084.23 13984.37 14283.79 16687.64 21761.71 26582.91 20291.20 13467.94 24090.06 9690.34 20872.04 21993.59 11582.32 8794.91 16596.07 36
VDD-MVS84.23 13984.58 13583.20 18591.17 14065.16 22683.25 19184.97 25679.79 9087.18 15294.27 7574.77 18390.89 19669.24 22896.54 9793.55 131
v2v48284.09 14284.24 14483.62 17287.13 22661.40 26782.71 20789.71 17672.19 19589.55 11491.41 17270.70 22893.20 13081.02 9993.76 19796.25 32
EG-PatchMatch MVS84.08 14384.11 14583.98 16192.22 10272.61 14882.20 22687.02 22172.63 18588.86 12291.02 18478.52 13791.11 18873.41 19091.09 25188.21 269
DP-MVS Recon84.05 14483.22 15686.52 10591.73 12075.27 12383.23 19392.40 9672.04 19682.04 25788.33 24377.91 14493.95 9966.17 25695.12 15790.34 236
TransMVSNet (Re)84.02 14585.74 11478.85 25491.00 14455.20 33182.29 22087.26 21279.65 9388.38 13495.52 3383.00 8586.88 27467.97 24696.60 9594.45 82
Baseline_NR-MVSNet84.00 14685.90 10978.29 26691.47 13253.44 34082.29 22087.00 22479.06 10289.55 11495.72 2877.20 15386.14 29072.30 20498.51 1695.28 56
TSAR-MVS + GP.83.95 14782.69 16887.72 8689.27 17881.45 6383.72 17981.58 28874.73 15285.66 18886.06 28172.56 21392.69 14675.44 16695.21 15289.01 263
alignmvs83.94 14883.98 14883.80 16587.80 21167.88 20184.54 15891.42 12773.27 17588.41 13387.96 24872.33 21490.83 19876.02 16194.11 19192.69 162
Effi-MVS+83.90 14984.01 14783.57 17587.22 22465.61 22286.55 12792.40 9678.64 10981.34 27284.18 30983.65 7992.93 14074.22 17587.87 29992.17 186
CANet83.79 15082.85 16586.63 10286.17 25372.21 15883.76 17891.43 12577.24 12574.39 33887.45 25975.36 17495.42 4977.03 15092.83 21992.25 183
pm-mvs183.69 15184.95 12779.91 24190.04 16659.66 29082.43 21687.44 20975.52 14487.85 14395.26 3981.25 11685.65 29968.74 23896.04 12094.42 85
AdaColmapbinary83.66 15283.69 15283.57 17590.05 16572.26 15686.29 13090.00 17178.19 11481.65 26687.16 26583.40 8294.24 8761.69 29694.76 17584.21 316
MIMVSNet183.63 15384.59 13480.74 22994.06 5362.77 25082.72 20684.53 26177.57 12190.34 9295.92 2476.88 16585.83 29761.88 29497.42 7293.62 125
test_fmvsm_n_192083.60 15482.89 16485.74 12485.22 26777.74 9584.12 16590.48 15259.87 31386.45 17791.12 18175.65 17185.89 29582.28 8890.87 25993.58 127
WR-MVS83.56 15584.40 14181.06 22593.43 6854.88 33278.67 27385.02 25381.24 7590.74 8991.56 16972.85 20891.08 18968.00 24598.04 3697.23 18
CNLPA83.55 15683.10 16184.90 13689.34 17683.87 4684.54 15888.77 19079.09 10183.54 23488.66 24074.87 17981.73 32466.84 25192.29 22889.11 257
LCM-MVSNet-Re83.48 15785.06 12478.75 25685.94 25855.75 32680.05 24994.27 1976.47 12996.09 594.54 6383.31 8389.75 23359.95 30694.89 16790.75 222
hse-mvs283.47 15881.81 18188.47 7591.03 14382.27 5782.61 20883.69 26671.27 20186.70 16586.05 28263.04 26892.41 15278.26 13193.62 20390.71 224
V4283.47 15883.37 15583.75 16883.16 29863.33 24281.31 23490.23 16569.51 22190.91 8590.81 19574.16 18992.29 15880.06 10990.22 27095.62 47
VPA-MVSNet83.47 15884.73 12979.69 24590.29 15857.52 31381.30 23688.69 19276.29 13087.58 14894.44 6780.60 12487.20 26866.60 25496.82 8994.34 89
PAPM_NR83.23 16183.19 15883.33 18090.90 14665.98 21888.19 9890.78 14578.13 11580.87 27787.92 25173.49 19992.42 15170.07 22188.40 28991.60 204
CLD-MVS83.18 16282.64 16984.79 13989.05 18267.82 20277.93 28192.52 9468.33 23385.07 19781.54 33882.06 10392.96 13869.35 22797.91 4893.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ANet_high83.17 16385.68 11575.65 30081.24 31645.26 38079.94 25192.91 8483.83 4691.33 7496.88 1080.25 12785.92 29268.89 23595.89 12995.76 43
FA-MVS(test-final)83.13 16483.02 16283.43 17786.16 25566.08 21788.00 10088.36 19775.55 14385.02 19892.75 13565.12 25592.50 15074.94 17291.30 24991.72 199
114514_t83.10 16582.54 17284.77 14192.90 8169.10 19286.65 12490.62 15054.66 34081.46 26990.81 19576.98 15894.38 8372.62 20196.18 11390.82 221
UGNet82.78 16681.64 18386.21 11386.20 25276.24 11786.86 11785.68 24077.07 12673.76 34292.82 13169.64 23091.82 17169.04 23493.69 20090.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LF4IMVS82.75 16781.93 17985.19 13282.08 30580.15 7085.53 13988.76 19168.01 23785.58 19087.75 25371.80 22186.85 27574.02 18093.87 19688.58 266
EI-MVSNet82.61 16882.42 17483.20 18583.25 29563.66 23883.50 18485.07 25076.06 13286.55 16985.10 29673.41 20090.25 21178.15 13590.67 26595.68 45
QAPM82.59 16982.59 17182.58 20086.44 24066.69 21089.94 6290.36 15767.97 23984.94 20292.58 14072.71 21092.18 15970.63 21787.73 30188.85 264
fmvsm_s_conf0.1_n_a82.58 17081.93 17984.50 14687.68 21473.35 13486.14 13177.70 30761.64 29385.02 19891.62 16777.75 14586.24 28582.79 8187.07 30893.91 109
Fast-Effi-MVS+-dtu82.54 17181.41 19185.90 12085.60 26176.53 11183.07 19689.62 18073.02 17979.11 30083.51 31480.74 12290.24 21368.76 23789.29 27890.94 217
MVS_Test82.47 17283.22 15680.22 23882.62 30457.75 31282.54 21391.96 11071.16 20582.89 24492.52 14277.41 15090.50 20880.04 11087.84 30092.40 173
v14882.31 17382.48 17381.81 21485.59 26259.66 29081.47 23386.02 23672.85 18088.05 14090.65 20270.73 22790.91 19575.15 16991.79 23994.87 67
API-MVS82.28 17482.61 17081.30 21986.29 24869.79 17988.71 9087.67 20878.42 11282.15 25584.15 31077.98 14291.59 17465.39 26592.75 22082.51 342
MVSFormer82.23 17581.57 18884.19 15985.54 26369.26 18791.98 3190.08 16971.54 19976.23 32085.07 29958.69 29394.27 8486.26 4088.77 28589.03 261
fmvsm_s_conf0.5_n_a82.21 17681.51 19084.32 15486.56 23873.35 13485.46 14077.30 31161.81 28984.51 20890.88 19277.36 15186.21 28782.72 8286.97 31293.38 133
EIA-MVS82.19 17781.23 19685.10 13487.95 20869.17 19183.22 19493.33 6170.42 21178.58 30379.77 35477.29 15294.20 8971.51 20788.96 28391.93 195
fmvsm_s_conf0.1_n82.17 17881.59 18683.94 16486.87 23671.57 16785.19 14677.42 31062.27 28784.47 21191.33 17476.43 16785.91 29383.14 7287.14 30694.33 90
PCF-MVS74.62 1582.15 17980.92 20085.84 12289.43 17472.30 15580.53 24491.82 11657.36 32987.81 14489.92 21977.67 14793.63 11058.69 31195.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft73.85 1682.09 18080.31 20787.45 9090.86 14880.29 6985.88 13390.65 14868.17 23576.32 31986.33 27673.12 20692.61 14861.40 29990.02 27389.44 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
fmvsm_l_conf0.5_n82.06 18181.54 18983.60 17383.94 28673.90 13183.35 18886.10 23358.97 31583.80 22890.36 20774.23 18886.94 27382.90 7890.22 27089.94 244
GBi-Net82.02 18282.07 17681.85 21186.38 24261.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26290.68 20365.95 25893.34 20593.82 113
test182.02 18282.07 17681.85 21186.38 24261.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26290.68 20365.95 25893.34 20593.82 113
OpenMVScopyleft76.72 1381.98 18482.00 17881.93 20884.42 27968.22 19688.50 9589.48 18266.92 24881.80 26491.86 15772.59 21290.16 21671.19 21091.25 25087.40 282
KD-MVS_self_test81.93 18583.14 16078.30 26584.75 27452.75 34480.37 24689.42 18470.24 21690.26 9493.39 11474.55 18786.77 27768.61 24096.64 9395.38 52
fmvsm_s_conf0.5_n81.91 18681.30 19383.75 16886.02 25771.56 16884.73 15277.11 31462.44 28484.00 22590.68 19976.42 16885.89 29583.14 7287.11 30793.81 116
SDMVSNet81.90 18783.17 15978.10 26988.81 18962.45 25676.08 31186.05 23573.67 16383.41 23593.04 12082.35 9580.65 33170.06 22295.03 16091.21 211
tfpnnormal81.79 18882.95 16378.31 26488.93 18655.40 32780.83 24382.85 27576.81 12785.90 18694.14 8574.58 18686.51 28166.82 25295.68 14193.01 150
c3_l81.64 18981.59 18681.79 21580.86 32259.15 29778.61 27490.18 16768.36 23287.20 15187.11 26769.39 23191.62 17378.16 13394.43 18294.60 75
PVSNet_Blended_VisFu81.55 19080.49 20584.70 14491.58 12573.24 13884.21 16291.67 12062.86 27980.94 27587.16 26567.27 24292.87 14369.82 22488.94 28487.99 273
fmvsm_l_conf0.5_n_a81.46 19180.87 20183.25 18283.73 29073.21 13983.00 19985.59 24258.22 32182.96 24390.09 21772.30 21586.65 27981.97 9389.95 27489.88 245
DELS-MVS81.44 19281.25 19482.03 20784.27 28362.87 24876.47 30592.49 9570.97 20681.64 26783.83 31175.03 17792.70 14574.29 17492.22 23290.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet281.31 19381.61 18580.41 23586.38 24258.75 30483.93 17286.58 22772.43 18787.65 14692.98 12463.78 26290.22 21466.86 24993.92 19592.27 181
TinyColmap81.25 19482.34 17577.99 27285.33 26560.68 28182.32 21988.33 19971.26 20386.97 16092.22 15377.10 15686.98 27262.37 28895.17 15486.31 293
AUN-MVS81.18 19578.78 22888.39 7790.93 14582.14 5882.51 21483.67 26764.69 27180.29 28685.91 28551.07 33292.38 15376.29 15893.63 20290.65 228
tttt051781.07 19679.58 21985.52 12888.99 18566.45 21387.03 11475.51 32673.76 16288.32 13690.20 21237.96 38594.16 9479.36 12195.13 15595.93 42
Fast-Effi-MVS+81.04 19780.57 20282.46 20487.50 21963.22 24478.37 27789.63 17968.01 23781.87 26082.08 33282.31 9792.65 14767.10 24888.30 29591.51 207
BH-untuned80.96 19880.99 19880.84 22888.55 19768.23 19580.33 24788.46 19472.79 18386.55 16986.76 27174.72 18491.77 17261.79 29588.99 28282.52 341
eth_miper_zixun_eth80.84 19980.22 21182.71 19781.41 31460.98 27677.81 28390.14 16867.31 24686.95 16187.24 26464.26 25892.31 15675.23 16891.61 24394.85 71
xiu_mvs_v1_base_debu80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29186.90 287
xiu_mvs_v1_base80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29186.90 287
xiu_mvs_v1_base_debi80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29186.90 287
IterMVS-SCA-FT80.64 20379.41 22084.34 15383.93 28769.66 18276.28 30781.09 29072.43 18786.47 17590.19 21360.46 27893.15 13377.45 14486.39 31890.22 237
BH-RMVSNet80.53 20480.22 21181.49 21887.19 22566.21 21677.79 28486.23 23174.21 15783.69 22988.50 24173.25 20590.75 20063.18 28587.90 29887.52 280
Anonymous20240521180.51 20581.19 19778.49 26188.48 19857.26 31576.63 30182.49 27881.21 7684.30 21892.24 15267.99 23986.24 28562.22 28995.13 15591.98 194
DIV-MVS_self_test80.43 20680.23 20981.02 22679.99 33059.25 29477.07 29487.02 22167.38 24486.19 17889.22 23063.09 26690.16 21676.32 15695.80 13593.66 121
cl____80.42 20780.23 20981.02 22679.99 33059.25 29477.07 29487.02 22167.37 24586.18 18089.21 23163.08 26790.16 21676.31 15795.80 13593.65 123
diffmvspermissive80.40 20880.48 20680.17 23979.02 34260.04 28577.54 28890.28 16466.65 25182.40 25087.33 26273.50 19787.35 26677.98 13789.62 27693.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet80.37 20978.41 23586.23 11176.75 35673.28 13687.18 11177.45 30976.24 13168.14 36788.93 23665.41 25393.85 10269.47 22696.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
iter_conf_final80.36 21078.88 22584.79 13986.29 24866.36 21586.95 11586.25 23068.16 23682.09 25689.48 22536.59 38894.51 8179.83 11394.30 18693.50 132
miper_ehance_all_eth80.34 21180.04 21681.24 22279.82 33258.95 29977.66 28589.66 17765.75 25985.99 18585.11 29568.29 23891.42 18076.03 16092.03 23493.33 135
MG-MVS80.32 21280.94 19978.47 26288.18 20452.62 34782.29 22085.01 25472.01 19779.24 29992.54 14169.36 23293.36 12770.65 21689.19 28189.45 249
VPNet80.25 21381.68 18275.94 29892.46 9347.98 37076.70 29981.67 28673.45 16784.87 20392.82 13174.66 18586.51 28161.66 29796.85 8693.33 135
MAR-MVS80.24 21478.74 23084.73 14286.87 23678.18 8885.75 13687.81 20765.67 26177.84 30878.50 36273.79 19490.53 20761.59 29890.87 25985.49 302
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PM-MVS80.20 21579.00 22483.78 16788.17 20586.66 1581.31 23466.81 37569.64 22088.33 13590.19 21364.58 25683.63 31571.99 20690.03 27281.06 360
Anonymous2024052180.18 21681.25 19476.95 28583.15 29960.84 27882.46 21585.99 23768.76 22986.78 16293.73 10859.13 29077.44 34373.71 18697.55 6792.56 166
LFMVS80.15 21780.56 20378.89 25389.19 18155.93 32385.22 14573.78 33882.96 5884.28 21992.72 13657.38 30290.07 22363.80 27995.75 13890.68 226
DPM-MVS80.10 21879.18 22382.88 19590.71 15169.74 18078.87 27090.84 14360.29 30975.64 32885.92 28467.28 24193.11 13471.24 20991.79 23985.77 299
MSDG80.06 21979.99 21880.25 23783.91 28868.04 20077.51 28989.19 18577.65 11981.94 25883.45 31676.37 16986.31 28463.31 28486.59 31586.41 291
FE-MVS79.98 22078.86 22683.36 17986.47 23966.45 21389.73 6584.74 26072.80 18284.22 22391.38 17344.95 36693.60 11463.93 27891.50 24690.04 243
sd_testset79.95 22181.39 19275.64 30188.81 18958.07 30876.16 31082.81 27673.67 16383.41 23593.04 12080.96 11977.65 34258.62 31295.03 16091.21 211
ab-mvs79.67 22280.56 20376.99 28488.48 19856.93 31784.70 15386.06 23468.95 22780.78 27993.08 11975.30 17584.62 30756.78 32190.90 25889.43 251
VNet79.31 22380.27 20876.44 29287.92 20953.95 33675.58 31784.35 26274.39 15682.23 25390.72 19772.84 20984.39 30960.38 30593.98 19490.97 216
thisisatest053079.07 22477.33 24584.26 15687.13 22664.58 22983.66 18175.95 32168.86 22885.22 19587.36 26138.10 38393.57 11875.47 16594.28 18794.62 74
cl2278.97 22578.21 23781.24 22277.74 34659.01 29877.46 29187.13 21665.79 25684.32 21585.10 29658.96 29290.88 19775.36 16792.03 23493.84 111
patch_mono-278.89 22679.39 22177.41 28184.78 27268.11 19875.60 31583.11 27260.96 30279.36 29689.89 22075.18 17672.97 35473.32 19292.30 22691.15 213
RPMNet78.88 22778.28 23680.68 23279.58 33362.64 25282.58 21094.16 2774.80 15175.72 32692.59 13848.69 34095.56 3973.48 18982.91 35083.85 321
PAPR78.84 22878.10 23881.07 22485.17 26860.22 28482.21 22490.57 15162.51 28175.32 33284.61 30474.99 17892.30 15759.48 30988.04 29790.68 226
iter_conf0578.81 22977.35 24483.21 18482.98 30260.75 28084.09 16688.34 19863.12 27784.25 22289.48 22531.41 39394.51 8176.64 15395.83 13294.38 88
PVSNet_BlendedMVS78.80 23077.84 23981.65 21684.43 27763.41 24079.49 25990.44 15461.70 29275.43 32987.07 26869.11 23491.44 17860.68 30392.24 23090.11 241
FMVSNet378.80 23078.55 23279.57 24782.89 30356.89 31981.76 22885.77 23969.04 22686.00 18290.44 20651.75 33090.09 22265.95 25893.34 20591.72 199
test_yl78.71 23278.51 23379.32 25084.32 28158.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29690.02 22562.74 28692.73 22189.10 258
DCV-MVSNet78.71 23278.51 23379.32 25084.32 28158.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29690.02 22562.74 28692.73 22189.10 258
test111178.53 23478.85 22777.56 27892.22 10247.49 37282.61 20869.24 36472.43 18785.28 19494.20 8151.91 32890.07 22365.36 26696.45 10395.11 62
ECVR-MVScopyleft78.44 23578.63 23177.88 27491.85 11548.95 36683.68 18069.91 36272.30 19384.26 22194.20 8151.89 32989.82 22863.58 28096.02 12194.87 67
pmmvs-eth3d78.42 23677.04 24782.57 20287.44 22074.41 12880.86 24279.67 29855.68 33584.69 20690.31 21060.91 27685.42 30062.20 29091.59 24487.88 276
mvs_anonymous78.13 23778.76 22976.23 29779.24 33950.31 36378.69 27284.82 25861.60 29483.09 24292.82 13173.89 19387.01 26968.33 24486.41 31791.37 208
TAMVS78.08 23876.36 25383.23 18390.62 15272.87 14179.08 26680.01 29761.72 29181.35 27186.92 27063.96 26188.78 25150.61 35793.01 21588.04 272
miper_enhance_ethall77.83 23976.93 24880.51 23376.15 36258.01 30975.47 31988.82 18958.05 32383.59 23180.69 34264.41 25791.20 18473.16 19992.03 23492.33 177
Vis-MVSNet (Re-imp)77.82 24077.79 24077.92 27388.82 18851.29 35783.28 18971.97 35174.04 15882.23 25389.78 22157.38 30289.41 24057.22 32095.41 14493.05 148
CANet_DTU77.81 24177.05 24680.09 24081.37 31559.90 28883.26 19088.29 20069.16 22467.83 37083.72 31260.93 27589.47 23569.22 23089.70 27590.88 219
OpenMVS_ROBcopyleft70.19 1777.77 24277.46 24178.71 25784.39 28061.15 27181.18 23882.52 27762.45 28383.34 23787.37 26066.20 24788.66 25364.69 27385.02 33286.32 292
SSC-MVS77.55 24381.64 18365.29 35990.46 15520.33 40473.56 33568.28 36685.44 3288.18 13994.64 6070.93 22681.33 32671.25 20892.03 23494.20 92
MDA-MVSNet-bldmvs77.47 24476.90 24979.16 25279.03 34164.59 22866.58 36975.67 32473.15 17788.86 12288.99 23566.94 24381.23 32764.71 27288.22 29691.64 203
jason77.42 24575.75 25982.43 20587.10 22969.27 18677.99 28081.94 28351.47 35877.84 30885.07 29960.32 28089.00 24570.74 21589.27 28089.03 261
jason: jason.
CDS-MVSNet77.32 24675.40 26283.06 18789.00 18472.48 15277.90 28282.17 28160.81 30378.94 30183.49 31559.30 28888.76 25254.64 33992.37 22587.93 275
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base77.19 24776.75 25078.52 26087.01 23261.30 26975.55 31887.12 21961.24 29974.45 33778.79 36077.20 15390.93 19364.62 27584.80 33983.32 330
MVSTER77.09 24875.70 26081.25 22075.27 37061.08 27277.49 29085.07 25060.78 30486.55 16988.68 23943.14 37590.25 21173.69 18790.67 26592.42 171
PS-MVSNAJ77.04 24976.53 25278.56 25987.09 23061.40 26775.26 32087.13 21661.25 29874.38 33977.22 37176.94 15990.94 19264.63 27484.83 33883.35 329
IterMVS76.91 25076.34 25478.64 25880.91 32064.03 23576.30 30679.03 30164.88 27083.11 24089.16 23259.90 28484.46 30868.61 24085.15 33087.42 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS76.84 25175.67 26180.34 23680.48 32862.16 26373.50 33684.80 25957.61 32782.24 25287.54 25751.31 33187.65 26270.40 22093.19 21191.23 210
CL-MVSNet_self_test76.81 25277.38 24375.12 30486.90 23451.34 35573.20 33980.63 29468.30 23481.80 26488.40 24266.92 24480.90 32855.35 33394.90 16693.12 146
TR-MVS76.77 25375.79 25879.72 24486.10 25665.79 22077.14 29283.02 27365.20 26881.40 27082.10 33066.30 24690.73 20255.57 33085.27 32682.65 336
USDC76.63 25476.73 25176.34 29483.46 29257.20 31680.02 25088.04 20552.14 35483.65 23091.25 17663.24 26586.65 27954.66 33894.11 19185.17 304
BH-w/o76.57 25576.07 25778.10 26986.88 23565.92 21977.63 28686.33 22865.69 26080.89 27679.95 35168.97 23690.74 20153.01 34785.25 32777.62 371
Patchmtry76.56 25677.46 24173.83 31079.37 33846.60 37682.41 21776.90 31573.81 16185.56 19192.38 14448.07 34383.98 31263.36 28395.31 15090.92 218
PVSNet_Blended76.49 25775.40 26279.76 24384.43 27763.41 24075.14 32190.44 15457.36 32975.43 32978.30 36369.11 23491.44 17860.68 30387.70 30284.42 312
miper_lstm_enhance76.45 25876.10 25677.51 27976.72 35760.97 27764.69 37385.04 25263.98 27483.20 23988.22 24456.67 30678.79 34073.22 19393.12 21292.78 157
lupinMVS76.37 25974.46 27182.09 20685.54 26369.26 18776.79 29780.77 29350.68 36576.23 32082.82 32458.69 29388.94 24669.85 22388.77 28588.07 270
cascas76.29 26074.81 26780.72 23184.47 27662.94 24673.89 33387.34 21055.94 33475.16 33476.53 37563.97 26091.16 18665.00 26990.97 25688.06 271
WB-MVS76.06 26180.01 21764.19 36289.96 16820.58 40372.18 34368.19 36783.21 5486.46 17693.49 11270.19 22978.97 33865.96 25790.46 26993.02 149
thres600view775.97 26275.35 26477.85 27687.01 23251.84 35380.45 24573.26 34275.20 14883.10 24186.31 27845.54 35789.05 24455.03 33692.24 23092.66 163
GA-MVS75.83 26374.61 26879.48 24981.87 30759.25 29473.42 33782.88 27468.68 23079.75 29181.80 33550.62 33489.46 23666.85 25085.64 32389.72 246
MVP-Stereo75.81 26473.51 28082.71 19789.35 17573.62 13280.06 24885.20 24760.30 30873.96 34087.94 24957.89 30089.45 23752.02 35174.87 38285.06 306
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_fmvs375.72 26575.20 26577.27 28275.01 37369.47 18478.93 26784.88 25746.67 37287.08 15787.84 25250.44 33671.62 35977.42 14688.53 28890.72 223
thres100view90075.45 26675.05 26676.66 29187.27 22251.88 35281.07 23973.26 34275.68 14183.25 23886.37 27545.54 35788.80 24851.98 35290.99 25389.31 253
ET-MVSNet_ETH3D75.28 26772.77 28882.81 19683.03 30168.11 19877.09 29376.51 31960.67 30677.60 31380.52 34638.04 38491.15 18770.78 21390.68 26489.17 256
thres40075.14 26874.23 27377.86 27586.24 25052.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35188.80 24851.98 35290.99 25392.66 163
wuyk23d75.13 26979.30 22262.63 36575.56 36675.18 12480.89 24173.10 34475.06 15094.76 1295.32 3587.73 4052.85 39534.16 39597.11 8059.85 392
EU-MVSNet75.12 27074.43 27277.18 28383.11 30059.48 29285.71 13882.43 27939.76 39285.64 18988.76 23744.71 36887.88 26073.86 18385.88 32284.16 317
HyFIR lowres test75.12 27072.66 29082.50 20391.44 13365.19 22572.47 34187.31 21146.79 37180.29 28684.30 30752.70 32592.10 16351.88 35686.73 31390.22 237
CMPMVSbinary59.41 2075.12 27073.57 27879.77 24275.84 36567.22 20381.21 23782.18 28050.78 36376.50 31687.66 25555.20 31782.99 31862.17 29290.64 26889.09 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs474.92 27372.98 28680.73 23084.95 26971.71 16576.23 30877.59 30852.83 34877.73 31286.38 27456.35 31084.97 30457.72 31987.05 30985.51 301
tfpn200view974.86 27474.23 27376.74 29086.24 25052.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35188.80 24851.98 35290.99 25389.31 253
1112_ss74.82 27573.74 27678.04 27189.57 17060.04 28576.49 30487.09 22054.31 34173.66 34379.80 35260.25 28186.76 27858.37 31384.15 34387.32 283
EGC-MVSNET74.79 27669.99 31689.19 6394.89 3787.00 1191.89 3486.28 2291.09 4002.23 40295.98 2381.87 10989.48 23479.76 11495.96 12491.10 214
ppachtmachnet_test74.73 27774.00 27576.90 28780.71 32556.89 31971.53 34878.42 30358.24 32079.32 29882.92 32357.91 29984.26 31065.60 26491.36 24889.56 248
Patchmatch-RL test74.48 27873.68 27776.89 28884.83 27166.54 21172.29 34269.16 36557.70 32586.76 16386.33 27645.79 35682.59 31969.63 22590.65 26781.54 351
PatchMatch-RL74.48 27873.22 28378.27 26787.70 21385.26 3475.92 31370.09 36064.34 27276.09 32281.25 34065.87 25178.07 34153.86 34183.82 34471.48 380
XXY-MVS74.44 28076.19 25569.21 33984.61 27552.43 34871.70 34677.18 31360.73 30580.60 28090.96 18875.44 17269.35 36556.13 32688.33 29185.86 298
test250674.12 28173.39 28176.28 29591.85 11544.20 38384.06 16748.20 40072.30 19381.90 25994.20 8127.22 40189.77 23164.81 27196.02 12194.87 67
CR-MVSNet74.00 28273.04 28576.85 28979.58 33362.64 25282.58 21076.90 31550.50 36675.72 32692.38 14448.07 34384.07 31168.72 23982.91 35083.85 321
Test_1112_low_res73.90 28373.08 28476.35 29390.35 15755.95 32273.40 33886.17 23250.70 36473.14 34485.94 28358.31 29585.90 29456.51 32383.22 34787.20 284
test20.0373.75 28474.59 27071.22 32781.11 31851.12 35970.15 35672.10 35070.42 21180.28 28891.50 17064.21 25974.72 35346.96 37494.58 17887.82 278
test_fmvs273.57 28572.80 28775.90 29972.74 38568.84 19377.07 29484.32 26345.14 37882.89 24484.22 30848.37 34170.36 36273.40 19187.03 31088.52 267
SCA73.32 28672.57 29275.58 30281.62 31155.86 32478.89 26971.37 35661.73 29074.93 33583.42 31760.46 27887.01 26958.11 31782.63 35583.88 318
baseline173.26 28773.54 27972.43 32284.92 27047.79 37179.89 25274.00 33465.93 25478.81 30286.28 27956.36 30981.63 32556.63 32279.04 37187.87 277
131473.22 28872.56 29375.20 30380.41 32957.84 31081.64 23185.36 24451.68 35773.10 34576.65 37461.45 27385.19 30263.54 28179.21 36982.59 337
MVS73.21 28972.59 29175.06 30580.97 31960.81 27981.64 23185.92 23846.03 37671.68 35277.54 36668.47 23789.77 23155.70 32985.39 32474.60 377
HY-MVS64.64 1873.03 29072.47 29474.71 30683.36 29454.19 33482.14 22781.96 28256.76 33369.57 36386.21 28060.03 28284.83 30649.58 36382.65 35385.11 305
thisisatest051573.00 29170.52 30880.46 23481.45 31359.90 28873.16 34074.31 33357.86 32476.08 32377.78 36537.60 38692.12 16265.00 26991.45 24789.35 252
EPNet_dtu72.87 29271.33 30477.49 28077.72 34760.55 28282.35 21875.79 32266.49 25258.39 39581.06 34153.68 32185.98 29153.55 34292.97 21785.95 296
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet72.62 29371.41 30376.28 29583.25 29560.34 28383.50 18479.02 30237.77 39576.33 31885.10 29649.60 33987.41 26570.54 21877.54 37781.08 358
CHOSEN 1792x268872.45 29470.56 30778.13 26890.02 16763.08 24568.72 36083.16 27142.99 38675.92 32485.46 28957.22 30485.18 30349.87 36181.67 35786.14 294
testgi72.36 29574.61 26865.59 35680.56 32742.82 38868.29 36173.35 34166.87 24981.84 26189.93 21872.08 21866.92 37846.05 37792.54 22387.01 286
thres20072.34 29671.55 30274.70 30783.48 29151.60 35475.02 32273.71 33970.14 21778.56 30480.57 34546.20 34988.20 25846.99 37389.29 27884.32 313
FPMVS72.29 29772.00 29673.14 31588.63 19485.00 3674.65 32667.39 36971.94 19877.80 31087.66 25550.48 33575.83 34949.95 35979.51 36558.58 394
FMVSNet572.10 29871.69 29873.32 31381.57 31253.02 34376.77 29878.37 30463.31 27576.37 31791.85 15836.68 38778.98 33747.87 37092.45 22487.95 274
our_test_371.85 29971.59 29972.62 31980.71 32553.78 33769.72 35871.71 35558.80 31778.03 30580.51 34756.61 30878.84 33962.20 29086.04 32185.23 303
PAPM71.77 30070.06 31476.92 28686.39 24153.97 33576.62 30286.62 22653.44 34563.97 38584.73 30357.79 30192.34 15539.65 38881.33 36184.45 311
IB-MVS62.13 1971.64 30168.97 32479.66 24680.80 32462.26 26173.94 33276.90 31563.27 27668.63 36676.79 37333.83 39191.84 17059.28 31087.26 30484.88 307
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UnsupCasMVSNet_eth71.63 30272.30 29569.62 33676.47 35952.70 34670.03 35780.97 29159.18 31479.36 29688.21 24560.50 27769.12 36658.33 31577.62 37687.04 285
testing371.53 30370.79 30573.77 31188.89 18741.86 38976.60 30359.12 39072.83 18180.97 27382.08 33219.80 40687.33 26765.12 26891.68 24292.13 188
test_vis3_rt71.42 30470.67 30673.64 31269.66 39170.46 17566.97 36889.73 17442.68 38888.20 13883.04 31943.77 37060.07 39065.35 26786.66 31490.39 235
Anonymous2023120671.38 30571.88 29769.88 33486.31 24654.37 33370.39 35474.62 32952.57 35076.73 31588.76 23759.94 28372.06 35644.35 38193.23 21083.23 332
test_vis1_n_192071.30 30671.58 30170.47 33077.58 34959.99 28774.25 32784.22 26451.06 36074.85 33679.10 35755.10 31868.83 36868.86 23679.20 37082.58 338
MIMVSNet71.09 30771.59 29969.57 33787.23 22350.07 36478.91 26871.83 35260.20 31171.26 35391.76 16455.08 31976.09 34741.06 38687.02 31182.54 340
test_fmvs1_n70.94 30870.41 31172.53 32173.92 37566.93 20875.99 31284.21 26543.31 38579.40 29579.39 35543.47 37168.55 37069.05 23384.91 33582.10 345
MS-PatchMatch70.93 30970.22 31273.06 31681.85 30862.50 25573.82 33477.90 30552.44 35175.92 32481.27 33955.67 31481.75 32355.37 33277.70 37574.94 376
pmmvs570.73 31070.07 31372.72 31877.03 35452.73 34574.14 32875.65 32550.36 36772.17 35085.37 29355.42 31680.67 33052.86 34887.59 30384.77 308
PatchT70.52 31172.76 28963.79 36479.38 33733.53 39877.63 28665.37 37873.61 16571.77 35192.79 13444.38 36975.65 35064.53 27685.37 32582.18 344
test_vis1_n70.29 31269.99 31671.20 32875.97 36466.50 21276.69 30080.81 29244.22 38175.43 32977.23 37050.00 33768.59 36966.71 25382.85 35278.52 370
N_pmnet70.20 31368.80 32674.38 30880.91 32084.81 3959.12 38476.45 32055.06 33875.31 33382.36 32955.74 31354.82 39447.02 37287.24 30583.52 325
tpmvs70.16 31469.56 31971.96 32474.71 37448.13 36879.63 25475.45 32765.02 26970.26 35981.88 33445.34 36285.68 29858.34 31475.39 38182.08 346
new-patchmatchnet70.10 31573.37 28260.29 37281.23 31716.95 40559.54 38274.62 32962.93 27880.97 27387.93 25062.83 27071.90 35755.24 33495.01 16392.00 192
YYNet170.06 31670.44 30968.90 34073.76 37753.42 34158.99 38567.20 37158.42 31987.10 15585.39 29259.82 28567.32 37559.79 30783.50 34685.96 295
MDA-MVSNet_test_wron70.05 31770.44 30968.88 34173.84 37653.47 33958.93 38667.28 37058.43 31887.09 15685.40 29159.80 28667.25 37659.66 30883.54 34585.92 297
CostFormer69.98 31868.68 32773.87 30977.14 35250.72 36179.26 26274.51 33151.94 35670.97 35684.75 30245.16 36587.49 26455.16 33579.23 36883.40 328
baseline269.77 31966.89 33478.41 26379.51 33558.09 30776.23 30869.57 36357.50 32864.82 38377.45 36846.02 35188.44 25453.08 34477.83 37388.70 265
PatchmatchNetpermissive69.71 32068.83 32572.33 32377.66 34853.60 33879.29 26169.99 36157.66 32672.53 34882.93 32246.45 34880.08 33460.91 30272.09 38583.31 331
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_fmvs169.57 32169.05 32271.14 32969.15 39265.77 22173.98 33183.32 27042.83 38777.77 31178.27 36443.39 37468.50 37168.39 24384.38 34279.15 368
JIA-IIPM69.41 32266.64 33877.70 27773.19 38071.24 17075.67 31465.56 37770.42 21165.18 37992.97 12633.64 39283.06 31653.52 34369.61 39178.79 369
Syy-MVS69.40 32370.03 31567.49 34981.72 30938.94 39171.00 34961.99 38261.38 29670.81 35772.36 38461.37 27479.30 33564.50 27785.18 32884.22 314
UnsupCasMVSNet_bld69.21 32469.68 31867.82 34779.42 33651.15 35867.82 36575.79 32254.15 34277.47 31485.36 29459.26 28970.64 36148.46 36779.35 36781.66 349
test_cas_vis1_n_192069.20 32569.12 32069.43 33873.68 37862.82 24970.38 35577.21 31246.18 37580.46 28578.95 35952.03 32765.53 38365.77 26377.45 37879.95 366
gg-mvs-nofinetune68.96 32669.11 32168.52 34576.12 36345.32 37983.59 18255.88 39586.68 2464.62 38497.01 730.36 39583.97 31344.78 38082.94 34976.26 373
WB-MVSnew68.72 32769.01 32367.85 34683.22 29743.98 38474.93 32365.98 37655.09 33773.83 34179.11 35665.63 25271.89 35838.21 39285.04 33187.69 279
tpm268.45 32866.83 33573.30 31478.93 34348.50 36779.76 25371.76 35347.50 37069.92 36183.60 31342.07 37788.40 25548.44 36879.51 36583.01 335
tpm67.95 32968.08 33067.55 34878.74 34443.53 38675.60 31567.10 37454.92 33972.23 34988.10 24642.87 37675.97 34852.21 35080.95 36483.15 333
WTY-MVS67.91 33068.35 32866.58 35380.82 32348.12 36965.96 37072.60 34553.67 34471.20 35481.68 33758.97 29169.06 36748.57 36681.67 35782.55 339
test-LLR67.21 33166.74 33668.63 34376.45 36055.21 32967.89 36267.14 37262.43 28565.08 38072.39 38243.41 37269.37 36361.00 30084.89 33681.31 353
testing22266.93 33265.30 34371.81 32583.38 29345.83 37872.06 34467.50 36864.12 27369.68 36276.37 37627.34 40083.00 31738.88 38988.38 29086.62 290
sss66.92 33367.26 33265.90 35577.23 35151.10 36064.79 37271.72 35452.12 35570.13 36080.18 34957.96 29865.36 38450.21 35881.01 36381.25 355
KD-MVS_2432*160066.87 33465.81 34070.04 33267.50 39347.49 37262.56 37779.16 29961.21 30077.98 30680.61 34325.29 40382.48 32053.02 34584.92 33380.16 364
miper_refine_blended66.87 33465.81 34070.04 33267.50 39347.49 37262.56 37779.16 29961.21 30077.98 30680.61 34325.29 40382.48 32053.02 34584.92 33380.16 364
dmvs_re66.81 33666.98 33366.28 35476.87 35558.68 30571.66 34772.24 34860.29 30969.52 36473.53 38152.38 32664.40 38644.90 37981.44 36075.76 374
tpm cat166.76 33765.21 34471.42 32677.09 35350.62 36278.01 27973.68 34044.89 37968.64 36579.00 35845.51 35982.42 32249.91 36070.15 38881.23 357
PVSNet58.17 2166.41 33865.63 34268.75 34281.96 30649.88 36562.19 37972.51 34751.03 36168.04 36875.34 37950.84 33374.77 35145.82 37882.96 34881.60 350
tpmrst66.28 33966.69 33765.05 36072.82 38439.33 39078.20 27870.69 35953.16 34767.88 36980.36 34848.18 34274.75 35258.13 31670.79 38781.08 358
Patchmatch-test65.91 34067.38 33161.48 37075.51 36743.21 38768.84 35963.79 38062.48 28272.80 34783.42 31744.89 36759.52 39248.27 36986.45 31681.70 348
ADS-MVSNet265.87 34163.64 34972.55 32073.16 38156.92 31867.10 36674.81 32849.74 36866.04 37482.97 32046.71 34677.26 34442.29 38369.96 38983.46 326
test_vis1_rt65.64 34264.09 34670.31 33166.09 39770.20 17861.16 38081.60 28738.65 39372.87 34669.66 38752.84 32360.04 39156.16 32577.77 37480.68 362
mvsany_test365.48 34362.97 35073.03 31769.99 39076.17 11864.83 37143.71 40243.68 38380.25 28987.05 26952.83 32463.09 38951.92 35572.44 38479.84 367
test-mter65.00 34463.79 34868.63 34376.45 36055.21 32967.89 36267.14 37250.98 36265.08 38072.39 38228.27 39869.37 36361.00 30084.89 33681.31 353
myMVS_eth3d64.66 34563.89 34766.97 35181.72 30937.39 39471.00 34961.99 38261.38 29670.81 35772.36 38420.96 40579.30 33549.59 36285.18 32884.22 314
test0.0.03 164.66 34564.36 34565.57 35775.03 37246.89 37564.69 37361.58 38762.43 28571.18 35577.54 36643.41 37268.47 37240.75 38782.65 35381.35 352
test_f64.31 34765.85 33959.67 37366.54 39662.24 26257.76 38770.96 35740.13 39084.36 21382.09 33146.93 34551.67 39661.99 29381.89 35665.12 388
pmmvs362.47 34860.02 36169.80 33571.58 38864.00 23670.52 35358.44 39339.77 39166.05 37375.84 37727.10 40272.28 35546.15 37684.77 34073.11 378
EPMVS62.47 34862.63 35262.01 36670.63 38938.74 39274.76 32452.86 39753.91 34367.71 37180.01 35039.40 38166.60 37955.54 33168.81 39380.68 362
ADS-MVSNet61.90 35062.19 35461.03 37173.16 38136.42 39667.10 36661.75 38549.74 36866.04 37482.97 32046.71 34663.21 38742.29 38369.96 38983.46 326
PMMVS61.65 35160.38 35865.47 35865.40 40069.26 18763.97 37561.73 38636.80 39660.11 39068.43 38959.42 28766.35 38048.97 36578.57 37260.81 391
E-PMN61.59 35261.62 35561.49 36966.81 39555.40 32753.77 39060.34 38966.80 25058.90 39365.50 39240.48 38066.12 38155.72 32886.25 31962.95 390
TESTMET0.1,161.29 35360.32 35964.19 36272.06 38651.30 35667.89 36262.09 38145.27 37760.65 38969.01 38827.93 39964.74 38556.31 32481.65 35976.53 372
MVS-HIRNet61.16 35462.92 35155.87 37679.09 34035.34 39771.83 34557.98 39446.56 37359.05 39291.14 18049.95 33876.43 34638.74 39071.92 38655.84 395
EMVS61.10 35560.81 35761.99 36765.96 39855.86 32453.10 39158.97 39267.06 24756.89 39663.33 39340.98 37867.03 37754.79 33786.18 32063.08 389
DSMNet-mixed60.98 35661.61 35659.09 37572.88 38345.05 38174.70 32546.61 40126.20 39765.34 37890.32 20955.46 31563.12 38841.72 38581.30 36269.09 384
dp60.70 35760.29 36061.92 36872.04 38738.67 39370.83 35164.08 37951.28 35960.75 38877.28 36936.59 38871.58 36047.41 37162.34 39575.52 375
dmvs_testset60.59 35862.54 35354.72 37877.26 35027.74 40174.05 33061.00 38860.48 30765.62 37767.03 39155.93 31268.23 37332.07 39869.46 39268.17 385
CHOSEN 280x42059.08 35956.52 36466.76 35276.51 35864.39 23249.62 39259.00 39143.86 38255.66 39768.41 39035.55 39068.21 37443.25 38276.78 38067.69 386
mvsany_test158.48 36056.47 36564.50 36165.90 39968.21 19756.95 38842.11 40338.30 39465.69 37677.19 37256.96 30559.35 39346.16 37558.96 39665.93 387
PVSNet_051.08 2256.10 36154.97 36659.48 37475.12 37153.28 34255.16 38961.89 38444.30 38059.16 39162.48 39454.22 32065.91 38235.40 39447.01 39759.25 393
new_pmnet55.69 36257.66 36349.76 37975.47 36830.59 39959.56 38151.45 39843.62 38462.49 38675.48 37840.96 37949.15 39837.39 39372.52 38369.55 383
PMMVS255.64 36359.27 36244.74 38064.30 40112.32 40640.60 39349.79 39953.19 34665.06 38284.81 30153.60 32249.76 39732.68 39789.41 27772.15 379
MVEpermissive40.22 2351.82 36450.47 36755.87 37662.66 40251.91 35131.61 39539.28 40440.65 38950.76 39874.98 38056.24 31144.67 39933.94 39664.11 39471.04 382
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method30.46 36529.60 36833.06 38117.99 4043.84 40813.62 39673.92 3352.79 39918.29 40153.41 39628.53 39743.25 40022.56 39935.27 39952.11 396
cdsmvs_eth3d_5k20.81 36627.75 3690.00 3860.00 4080.00 4110.00 39785.44 2430.00 4040.00 40582.82 32481.46 1130.00 4050.00 4040.00 4030.00 401
tmp_tt20.25 36724.50 3707.49 3834.47 4058.70 40734.17 39425.16 4061.00 40132.43 40018.49 39839.37 3829.21 40221.64 40043.75 3984.57 398
ab-mvs-re6.65 3688.87 3710.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40579.80 3520.00 4090.00 4050.00 4040.00 4030.00 401
pcd_1.5k_mvsjas6.41 3698.55 3720.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 40476.94 1590.00 4050.00 4040.00 4030.00 401
test1236.27 3708.08 3730.84 3841.11 4070.57 40962.90 3760.82 4080.54 4021.07 4042.75 4031.26 4070.30 4031.04 4021.26 4021.66 399
testmvs5.91 3717.65 3740.72 3851.20 4060.37 41059.14 3830.67 4090.49 4031.11 4032.76 4020.94 4080.24 4041.02 4031.47 4011.55 400
test_blank0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uanet_test0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
DCPMVS0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
sosnet-low-res0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
sosnet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uncertanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
Regformer0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
uanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4030.00 401
MM89.09 6576.39 11588.68 9186.76 22584.54 4183.58 23293.78 10573.36 20396.48 187.98 996.21 11294.41 86
WAC-MVS37.39 39452.61 349
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
PC_three_145258.96 31690.06 9691.33 17480.66 12393.03 13775.78 16295.94 12692.48 169
No_MVS88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
test_one_060193.85 5873.27 13794.11 3386.57 2593.47 3894.64 6088.42 26
eth-test20.00 408
eth-test0.00 408
ZD-MVS92.22 10280.48 6791.85 11471.22 20490.38 9192.98 12486.06 5996.11 681.99 9296.75 91
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6890.64 1087.16 2997.60 6492.73 158
IU-MVS94.18 4672.64 14590.82 14456.98 33189.67 10885.78 5097.92 4693.28 137
OPU-MVS88.27 8091.89 11377.83 9390.47 5191.22 17781.12 11794.68 7174.48 17395.35 14692.29 179
test_241102_TWO93.71 4983.77 4793.49 3694.27 7589.27 2195.84 2386.03 4697.82 5192.04 190
test_241102_ONE94.18 4672.65 14393.69 5083.62 4994.11 2293.78 10590.28 1495.50 46
9.1489.29 5891.84 11788.80 8895.32 1175.14 14991.07 8092.89 12987.27 4493.78 10583.69 7097.55 67
save fliter93.75 5977.44 9986.31 12989.72 17570.80 207
test_0728_THIRD85.33 3393.75 3094.65 5787.44 4395.78 2887.41 2298.21 2992.98 152
test_0728_SECOND86.79 10094.25 4572.45 15390.54 4894.10 3495.88 1786.42 3697.97 4392.02 191
test072694.16 4972.56 14990.63 4593.90 4283.61 5093.75 3094.49 6589.76 18
GSMVS83.88 318
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 35083.88 318
sam_mvs45.92 355
ambc82.98 18990.55 15464.86 22788.20 9789.15 18689.40 11793.96 9671.67 22391.38 18278.83 12496.55 9692.71 161
MTGPAbinary91.81 118
test_post178.85 2713.13 40045.19 36480.13 33358.11 317
test_post3.10 40145.43 36077.22 345
patchmatchnet-post81.71 33645.93 35487.01 269
GG-mvs-BLEND67.16 35073.36 37946.54 37784.15 16455.04 39658.64 39461.95 39529.93 39683.87 31438.71 39176.92 37971.07 381
MTMP90.66 4433.14 405
gm-plane-assit75.42 36944.97 38252.17 35272.36 38487.90 25954.10 340
test9_res80.83 10296.45 10390.57 229
TEST992.34 9679.70 7483.94 17090.32 15865.41 26584.49 20990.97 18682.03 10493.63 110
test_892.09 10678.87 8183.82 17590.31 16065.79 25684.36 21390.96 18881.93 10693.44 123
agg_prior279.68 11696.16 11490.22 237
agg_prior91.58 12577.69 9690.30 16184.32 21593.18 131
TestCases89.68 5391.59 12283.40 4895.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
test_prior478.97 8084.59 155
test_prior283.37 18775.43 14584.58 20791.57 16881.92 10879.54 11896.97 84
test_prior86.32 10890.59 15371.99 16092.85 8694.17 9292.80 156
旧先验281.73 22956.88 33286.54 17484.90 30572.81 200
新几何281.72 230
新几何182.95 19193.96 5578.56 8480.24 29555.45 33683.93 22791.08 18371.19 22588.33 25665.84 26193.07 21381.95 347
旧先验191.97 10971.77 16181.78 28591.84 15973.92 19293.65 20183.61 324
无先验82.81 20585.62 24158.09 32291.41 18167.95 24784.48 310
原ACMM282.26 223
原ACMM184.60 14592.81 8774.01 13091.50 12362.59 28082.73 24790.67 20176.53 16694.25 8669.24 22895.69 14085.55 300
test22293.31 7176.54 10979.38 26077.79 30652.59 34982.36 25190.84 19466.83 24591.69 24181.25 355
testdata286.43 28363.52 282
segment_acmp81.94 105
testdata79.54 24892.87 8272.34 15480.14 29659.91 31285.47 19391.75 16567.96 24085.24 30168.57 24292.18 23381.06 360
testdata179.62 25573.95 160
test1286.57 10390.74 14972.63 14790.69 14782.76 24679.20 13394.80 6895.32 14892.27 181
plane_prior793.45 6677.31 102
plane_prior692.61 8876.54 10974.84 180
plane_prior593.61 5395.22 5680.78 10395.83 13294.46 80
plane_prior492.95 127
plane_prior376.85 10777.79 11886.55 169
plane_prior289.45 7779.44 96
plane_prior192.83 86
plane_prior76.42 11387.15 11275.94 13895.03 160
n20.00 410
nn0.00 410
door-mid74.45 332
lessismore_v085.95 11891.10 14270.99 17270.91 35891.79 6794.42 7061.76 27292.93 14079.52 11993.03 21493.93 107
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
test1191.46 124
door72.57 346
HQP5-MVS70.66 173
HQP-NCC91.19 13784.77 14973.30 17280.55 282
ACMP_Plane91.19 13784.77 14973.30 17280.55 282
BP-MVS77.30 147
HQP4-MVS80.56 28194.61 7493.56 129
HQP3-MVS92.68 9194.47 180
HQP2-MVS72.10 216
NP-MVS91.95 11074.55 12790.17 215
MDTV_nov1_ep13_2view27.60 40270.76 35246.47 37461.27 38745.20 36349.18 36483.75 323
MDTV_nov1_ep1368.29 32978.03 34543.87 38574.12 32972.22 34952.17 35267.02 37285.54 28745.36 36180.85 32955.73 32784.42 341
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 134
ITE_SJBPF90.11 4590.72 15084.97 3790.30 16181.56 7190.02 9891.20 17982.40 9490.81 19973.58 18894.66 17694.56 76
DeepMVS_CXcopyleft24.13 38232.95 40329.49 40021.63 40712.07 39837.95 39945.07 39730.84 39419.21 40117.94 40133.06 40023.69 397