This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS90.38 491.87 185.88 8192.83 7264.03 18493.06 10794.33 4982.19 2893.65 396.15 3585.89 197.19 8291.02 3397.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 1189.33 185.77 5196.26 3072.84 2699.38 192.64 1995.93 997.08 9
DeepPCF-MVS81.17 189.72 991.38 384.72 12493.00 6958.16 29796.72 894.41 4386.50 890.25 2197.83 175.46 1498.67 2592.78 1895.49 1297.32 6
DVP-MVS++90.53 391.09 488.87 1497.31 469.91 3793.96 7094.37 4772.48 17692.07 896.85 1683.82 299.15 291.53 2997.42 497.55 4
patch_mono-289.71 1090.99 585.85 8496.04 2463.70 19495.04 4095.19 1686.74 791.53 1495.15 6273.86 2097.58 5993.38 1492.00 6796.28 32
CNVR-MVS90.32 590.89 688.61 1996.76 870.65 2696.47 1394.83 2684.83 1189.07 3196.80 1970.86 3499.06 1592.64 1995.71 1096.12 35
DPM-MVS90.70 290.52 791.24 189.68 14576.68 297.29 195.35 1382.87 2091.58 1297.22 379.93 599.10 983.12 9297.64 297.94 1
MVS_030490.01 790.50 888.53 2090.14 13670.94 2396.47 1395.72 1087.33 489.60 2896.26 3068.44 4198.74 2495.82 494.72 3095.90 42
SED-MVS89.94 890.36 988.70 1696.45 1269.38 4896.89 594.44 4171.65 20692.11 697.21 476.79 999.11 692.34 2195.36 1397.62 2
DELS-MVS90.05 690.09 1089.94 493.14 6673.88 797.01 494.40 4588.32 385.71 5294.91 6874.11 1998.91 1787.26 5995.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet89.61 1189.99 1188.46 2194.39 3969.71 4496.53 1293.78 6186.89 689.68 2795.78 4065.94 6299.10 992.99 1693.91 4096.58 18
HPM-MVS++copyleft89.37 1389.95 1287.64 3095.10 3068.23 7895.24 3394.49 3982.43 2588.90 3296.35 2771.89 3398.63 2688.76 4796.40 696.06 36
DVP-MVScopyleft89.41 1289.73 1388.45 2296.40 1569.99 3396.64 994.52 3771.92 19290.55 1996.93 1173.77 2199.08 1191.91 2794.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
NCCC89.07 1489.46 1487.91 2596.60 1069.05 5796.38 1594.64 3484.42 1286.74 4396.20 3266.56 5898.76 2389.03 4694.56 3295.92 41
DPE-MVScopyleft88.77 1589.21 1587.45 3796.26 2067.56 9494.17 5794.15 5468.77 25690.74 1797.27 276.09 1298.49 2990.58 3794.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.88.11 1888.64 1686.54 6491.73 10368.04 8290.36 21993.55 7482.89 1991.29 1592.89 11972.27 3096.03 13587.99 5094.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_fmvsm_n_192087.69 2488.50 1785.27 10487.05 21563.55 20193.69 8791.08 17884.18 1390.17 2397.04 867.58 5097.99 3995.72 590.03 9294.26 105
EPNet87.84 2288.38 1886.23 7493.30 6066.05 13195.26 3294.84 2587.09 588.06 3494.53 7766.79 5597.34 7383.89 8891.68 7295.29 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + GP.87.96 1988.37 1986.70 5793.51 5665.32 14995.15 3693.84 6078.17 8685.93 5094.80 7175.80 1398.21 3489.38 4088.78 10196.59 16
SMA-MVScopyleft88.14 1688.29 2087.67 2993.21 6368.72 6593.85 7794.03 5774.18 13991.74 1196.67 2165.61 6698.42 3389.24 4396.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
fmvsm_l_conf0.5_n87.49 2688.19 2185.39 9886.95 21664.37 17494.30 5488.45 27980.51 4892.70 496.86 1569.98 3797.15 8695.83 388.08 10894.65 91
fmvsm_l_conf0.5_n_a87.44 2888.15 2285.30 10287.10 21364.19 18194.41 5288.14 28880.24 5392.54 596.97 1069.52 3997.17 8395.89 288.51 10494.56 94
DeepC-MVS_fast79.48 287.95 2088.00 2387.79 2895.86 2768.32 7395.74 2194.11 5583.82 1583.49 7396.19 3364.53 8098.44 3183.42 9194.88 2496.61 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVScopyleft87.54 2587.84 2486.65 5896.07 2366.30 12794.84 4593.78 6169.35 24788.39 3396.34 2867.74 4997.66 5490.62 3693.44 4996.01 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
lupinMVS87.74 2387.77 2587.63 3489.24 15971.18 1996.57 1192.90 10182.70 2387.13 3995.27 5664.99 7195.80 14089.34 4191.80 7095.93 40
9.1487.63 2693.86 4794.41 5294.18 5272.76 17186.21 4696.51 2466.64 5697.88 4490.08 3894.04 37
PS-MVSNAJ88.14 1687.61 2789.71 692.06 9176.72 195.75 2093.26 8583.86 1489.55 2996.06 3653.55 20797.89 4391.10 3193.31 5194.54 97
dcpmvs_287.37 2987.55 2886.85 5095.04 3268.20 7990.36 21990.66 19079.37 6581.20 8993.67 10374.73 1596.55 11890.88 3492.00 6795.82 44
SD-MVS87.49 2687.49 2987.50 3693.60 5368.82 6393.90 7492.63 11276.86 10587.90 3595.76 4166.17 5997.63 5689.06 4591.48 7696.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
train_agg87.21 3187.42 3086.60 6094.18 4167.28 10194.16 5893.51 7571.87 19785.52 5495.33 5168.19 4497.27 8089.09 4494.90 2195.25 69
xiu_mvs_v2_base87.92 2187.38 3189.55 1191.41 11476.43 395.74 2193.12 9383.53 1789.55 2995.95 3853.45 21197.68 5091.07 3292.62 5894.54 97
test_fmvsmconf_n86.58 3987.17 3284.82 11785.28 24662.55 22594.26 5689.78 22383.81 1687.78 3696.33 2965.33 6896.98 9894.40 1187.55 11394.95 78
SF-MVS87.03 3387.09 3386.84 5192.70 7867.45 9993.64 8993.76 6470.78 23086.25 4596.44 2666.98 5397.79 4788.68 4894.56 3295.28 65
CS-MVS-test86.14 4687.01 3483.52 16292.63 8159.36 28595.49 2791.92 13680.09 5485.46 5695.53 4761.82 11695.77 14386.77 6593.37 5095.41 54
alignmvs87.28 3086.97 3588.24 2491.30 11571.14 2195.61 2593.56 7379.30 6687.07 4195.25 5868.43 4296.93 10587.87 5184.33 14296.65 14
fmvsm_s_conf0.5_n86.39 4186.91 3684.82 11787.36 20863.54 20294.74 4790.02 21782.52 2490.14 2496.92 1362.93 10497.84 4695.28 882.26 15593.07 148
SteuartSystems-ACMMP86.82 3786.90 3786.58 6290.42 13066.38 12496.09 1793.87 5977.73 9384.01 7195.66 4363.39 9697.94 4087.40 5793.55 4895.42 53
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended86.73 3886.86 3886.31 7393.76 4967.53 9696.33 1693.61 7182.34 2781.00 9493.08 11363.19 10097.29 7687.08 6191.38 7894.13 112
PHI-MVS86.83 3686.85 3986.78 5593.47 5765.55 14595.39 3095.10 1971.77 20285.69 5396.52 2362.07 11198.77 2286.06 7095.60 1196.03 38
CS-MVS85.80 5186.65 4083.27 17092.00 9558.92 29095.31 3191.86 14179.97 5584.82 6295.40 4962.26 10995.51 16186.11 6992.08 6695.37 57
MG-MVS87.11 3286.27 4189.62 797.79 176.27 494.96 4394.49 3978.74 8183.87 7292.94 11764.34 8196.94 10375.19 14894.09 3695.66 47
CSCG86.87 3486.26 4288.72 1595.05 3170.79 2593.83 8295.33 1468.48 26077.63 13194.35 8673.04 2498.45 3084.92 7993.71 4596.92 11
canonicalmvs86.85 3586.25 4388.66 1891.80 10271.92 1493.54 9491.71 14980.26 5287.55 3795.25 5863.59 9496.93 10588.18 4984.34 14197.11 8
jason86.40 4086.17 4487.11 4486.16 23170.54 2895.71 2492.19 12782.00 3084.58 6494.34 8761.86 11395.53 16087.76 5290.89 8495.27 66
jason: jason.
ETV-MVS86.01 4886.11 4585.70 9090.21 13567.02 11093.43 9991.92 13681.21 4284.13 7094.07 9660.93 12495.63 15189.28 4289.81 9394.46 103
fmvsm_s_conf0.5_n_a85.75 5286.09 4684.72 12485.73 24063.58 19993.79 8389.32 24181.42 3990.21 2296.91 1462.41 10897.67 5194.48 1080.56 17292.90 154
test_fmvsmconf0.1_n85.71 5386.08 4784.62 13180.83 29962.33 22993.84 8088.81 26683.50 1887.00 4296.01 3763.36 9796.93 10594.04 1287.29 11694.61 93
APD-MVScopyleft85.93 4985.99 4885.76 8895.98 2665.21 15293.59 9292.58 11466.54 27486.17 4795.88 3963.83 8797.00 9486.39 6792.94 5595.06 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
fmvsm_s_conf0.1_n85.61 5685.93 4984.68 12782.95 28363.48 20494.03 6889.46 23581.69 3389.86 2596.74 2061.85 11497.75 4994.74 982.01 15992.81 156
MSLP-MVS++86.27 4385.91 5087.35 3992.01 9468.97 6095.04 4092.70 10679.04 7581.50 8796.50 2558.98 14696.78 11083.49 9093.93 3996.29 30
WTY-MVS86.32 4285.81 5187.85 2692.82 7469.37 5095.20 3495.25 1582.71 2281.91 8494.73 7267.93 4897.63 5679.55 11782.25 15696.54 19
ACMMP_NAP86.05 4785.80 5286.80 5491.58 10767.53 9691.79 16393.49 7874.93 13084.61 6395.30 5359.42 14097.92 4186.13 6894.92 1994.94 79
MVS_111021_HR86.19 4585.80 5287.37 3893.17 6569.79 4193.99 6993.76 6479.08 7378.88 11993.99 9762.25 11098.15 3685.93 7191.15 8294.15 111
VNet86.20 4485.65 5487.84 2793.92 4669.99 3395.73 2395.94 778.43 8386.00 4993.07 11458.22 15197.00 9485.22 7484.33 14296.52 20
CDPH-MVS85.71 5385.46 5586.46 6694.75 3467.19 10393.89 7592.83 10370.90 22683.09 7695.28 5463.62 9297.36 7180.63 11194.18 3594.84 83
PAPM85.89 5085.46 5587.18 4288.20 18772.42 1392.41 13692.77 10482.11 2980.34 10093.07 11468.27 4395.02 17378.39 13093.59 4794.09 114
DeepC-MVS77.85 385.52 5785.24 5786.37 7088.80 16966.64 11892.15 14393.68 6981.07 4376.91 14193.64 10462.59 10698.44 3185.50 7292.84 5794.03 118
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvs_mvgpermissive85.66 5585.18 5887.09 4588.22 18669.35 5193.74 8691.89 13981.47 3580.10 10291.45 14764.80 7696.35 12187.23 6087.69 11195.58 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVS-pluss85.24 6085.13 5985.56 9391.42 11265.59 14391.54 17392.51 11674.56 13380.62 9795.64 4459.15 14497.00 9486.94 6393.80 4194.07 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZNCC-MVS85.33 5985.08 6086.06 7693.09 6865.65 14193.89 7593.41 8273.75 15079.94 10494.68 7460.61 12798.03 3882.63 9593.72 4494.52 99
EC-MVSNet84.53 7185.04 6183.01 17489.34 15261.37 24994.42 5191.09 17677.91 9083.24 7494.20 9258.37 14995.40 16285.35 7391.41 7792.27 173
MP-MVScopyleft85.02 6384.97 6285.17 10892.60 8264.27 17993.24 10292.27 12173.13 16179.63 10894.43 8061.90 11297.17 8385.00 7792.56 5994.06 117
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EIA-MVS84.84 6684.88 6384.69 12691.30 11562.36 22893.85 7792.04 13179.45 6279.33 11294.28 9062.42 10796.35 12180.05 11491.25 8195.38 56
casdiffmvspermissive85.37 5884.87 6486.84 5188.25 18469.07 5693.04 10991.76 14681.27 4180.84 9692.07 13864.23 8296.06 13384.98 7887.43 11595.39 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n_a84.76 6784.84 6584.53 13380.23 30963.50 20392.79 11788.73 27080.46 4989.84 2696.65 2260.96 12397.57 6193.80 1380.14 17492.53 163
testing22285.18 6184.69 6686.63 5992.91 7169.91 3792.61 12895.80 980.31 5180.38 9992.27 13468.73 4095.19 17075.94 14383.27 14994.81 85
PAPR85.15 6284.47 6787.18 4296.02 2568.29 7491.85 16193.00 9876.59 11279.03 11595.00 6361.59 11797.61 5878.16 13189.00 10095.63 48
baseline85.01 6484.44 6886.71 5688.33 18168.73 6490.24 22491.82 14581.05 4481.18 9092.50 12663.69 9096.08 13284.45 8386.71 12595.32 61
HFP-MVS84.73 6884.40 6985.72 8993.75 5165.01 15893.50 9693.19 8972.19 18679.22 11394.93 6659.04 14597.67 5181.55 10292.21 6294.49 102
GST-MVS84.63 7084.29 7085.66 9192.82 7465.27 15093.04 10993.13 9273.20 15978.89 11694.18 9359.41 14197.85 4581.45 10492.48 6193.86 126
ACMMPR84.37 7284.06 7185.28 10393.56 5464.37 17493.50 9693.15 9172.19 18678.85 12194.86 6956.69 17197.45 6581.55 10292.20 6394.02 119
region2R84.36 7384.03 7285.36 10093.54 5564.31 17793.43 9992.95 9972.16 18978.86 12094.84 7056.97 16697.53 6381.38 10692.11 6594.24 106
diffmvspermissive84.28 7583.83 7385.61 9287.40 20668.02 8390.88 20389.24 24480.54 4781.64 8692.52 12559.83 13594.52 19887.32 5885.11 13594.29 104
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-Vis-set83.77 8883.67 7484.06 14992.79 7763.56 20091.76 16694.81 2779.65 6177.87 12894.09 9463.35 9897.90 4279.35 11979.36 18190.74 198
test_fmvsmconf0.01_n83.70 9183.52 7584.25 14575.26 35161.72 24392.17 14287.24 30182.36 2684.91 6195.41 4855.60 18396.83 10992.85 1785.87 13194.21 107
CANet_DTU84.09 8183.52 7585.81 8590.30 13366.82 11391.87 15989.01 25885.27 986.09 4893.74 10147.71 26296.98 9877.90 13389.78 9593.65 131
PVSNet_Blended_VisFu83.97 8383.50 7785.39 9890.02 13866.59 12193.77 8491.73 14777.43 10177.08 14089.81 17763.77 8996.97 10079.67 11688.21 10692.60 160
test_fmvsmvis_n_192083.80 8783.48 7884.77 12182.51 28563.72 19291.37 18383.99 33281.42 3977.68 13095.74 4258.37 14997.58 5993.38 1486.87 11993.00 151
XVS83.87 8583.47 7985.05 10993.22 6163.78 18892.92 11492.66 10973.99 14278.18 12594.31 8955.25 18597.41 6879.16 12191.58 7493.95 121
CHOSEN 1792x268884.98 6583.45 8089.57 1089.94 14075.14 592.07 14992.32 11981.87 3175.68 15088.27 19560.18 13098.60 2780.46 11390.27 9194.96 77
PVSNet_BlendedMVS83.38 9483.43 8183.22 17193.76 4967.53 9694.06 6393.61 7179.13 7181.00 9485.14 23863.19 10097.29 7687.08 6173.91 22784.83 297
MAR-MVS84.18 7983.43 8186.44 6796.25 2165.93 13694.28 5594.27 5174.41 13479.16 11495.61 4553.99 20298.88 2169.62 19793.26 5294.50 101
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline283.68 9283.42 8384.48 13687.37 20766.00 13390.06 22895.93 879.71 6069.08 22890.39 16577.92 696.28 12378.91 12581.38 16591.16 194
CP-MVS83.71 9083.40 8484.65 12893.14 6663.84 18694.59 4992.28 12071.03 22477.41 13494.92 6755.21 18896.19 12581.32 10790.70 8693.91 123
MTAPA83.91 8483.38 8585.50 9491.89 10065.16 15481.75 31992.23 12275.32 12580.53 9895.21 6056.06 17997.16 8584.86 8092.55 6094.18 108
HY-MVS76.49 584.28 7583.36 8687.02 4892.22 8867.74 8984.65 29694.50 3879.15 7082.23 8287.93 20466.88 5496.94 10380.53 11282.20 15796.39 28
MVS_Test84.16 8083.20 8787.05 4791.56 10869.82 4089.99 23392.05 13077.77 9282.84 7786.57 22363.93 8696.09 12974.91 15389.18 9995.25 69
test_yl84.28 7583.16 8887.64 3094.52 3769.24 5295.78 1895.09 2069.19 25081.09 9192.88 12057.00 16497.44 6681.11 10981.76 16196.23 33
DCV-MVSNet84.28 7583.16 8887.64 3094.52 3769.24 5295.78 1895.09 2069.19 25081.09 9192.88 12057.00 16497.44 6681.11 10981.76 16196.23 33
ET-MVSNet_ETH3D84.01 8283.15 9086.58 6290.78 12670.89 2494.74 4794.62 3581.44 3858.19 32293.64 10473.64 2392.35 27582.66 9478.66 18996.50 24
EI-MVSNet-UG-set83.14 9982.96 9183.67 16092.28 8663.19 21091.38 18294.68 3279.22 6876.60 14393.75 10062.64 10597.76 4878.07 13278.01 19290.05 207
HPM-MVScopyleft83.25 9782.95 9284.17 14792.25 8762.88 22090.91 20091.86 14170.30 23677.12 13893.96 9856.75 16996.28 12382.04 9991.34 8093.34 138
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test250683.29 9582.92 9384.37 14088.39 17963.18 21192.01 15291.35 16477.66 9578.49 12491.42 14864.58 7995.09 17273.19 16089.23 9794.85 80
MVSFormer83.75 8982.88 9486.37 7089.24 15971.18 1989.07 25290.69 18765.80 27987.13 3994.34 8764.99 7192.67 26172.83 16491.80 7095.27 66
MVS84.66 6982.86 9590.06 290.93 12174.56 687.91 27095.54 1268.55 25872.35 19294.71 7359.78 13698.90 1981.29 10894.69 3196.74 13
Effi-MVS+83.82 8682.76 9686.99 4989.56 14869.40 4791.35 18586.12 31272.59 17383.22 7592.81 12359.60 13896.01 13781.76 10187.80 11095.56 51
LFMVS84.34 7482.73 9789.18 1294.76 3373.25 994.99 4291.89 13971.90 19482.16 8393.49 10847.98 25897.05 8982.55 9684.82 13797.25 7
iter_conf0583.27 9682.70 9884.98 11293.32 5971.84 1594.16 5881.76 34382.74 2173.83 17288.40 19172.77 2794.61 18982.10 9875.21 21688.48 230
PGM-MVS83.25 9782.70 9884.92 11392.81 7664.07 18390.44 21592.20 12671.28 21877.23 13794.43 8055.17 18997.31 7579.33 12091.38 7893.37 137
SR-MVS82.81 10482.58 10083.50 16593.35 5861.16 25292.23 14191.28 16864.48 28881.27 8895.28 5453.71 20695.86 13982.87 9388.77 10293.49 135
h-mvs3383.01 10182.56 10184.35 14189.34 15262.02 23592.72 12093.76 6481.45 3682.73 7992.25 13660.11 13197.13 8787.69 5362.96 30693.91 123
thisisatest051583.41 9382.49 10286.16 7589.46 15168.26 7693.54 9494.70 3174.31 13775.75 14890.92 15572.62 2896.52 11969.64 19581.50 16493.71 129
mPP-MVS82.96 10382.44 10384.52 13492.83 7262.92 21892.76 11891.85 14371.52 21475.61 15394.24 9153.48 21096.99 9778.97 12490.73 8593.64 132
sss82.71 10782.38 10483.73 15789.25 15659.58 28092.24 14094.89 2477.96 8879.86 10592.38 13156.70 17097.05 8977.26 13680.86 16994.55 95
CLD-MVS82.73 10582.35 10583.86 15387.90 19467.65 9295.45 2892.18 12885.06 1072.58 18592.27 13452.46 21895.78 14184.18 8479.06 18488.16 236
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVSTER82.47 10982.05 10683.74 15592.68 7969.01 5891.90 15893.21 8679.83 5672.14 19385.71 23574.72 1694.72 18475.72 14472.49 23887.50 241
PMMVS81.98 11982.04 10781.78 20789.76 14456.17 31791.13 19690.69 18777.96 8880.09 10393.57 10646.33 27294.99 17581.41 10587.46 11494.17 109
test_vis1_n_192081.66 12382.01 10880.64 23482.24 28855.09 32594.76 4686.87 30381.67 3484.40 6694.63 7538.17 31194.67 18891.98 2683.34 14892.16 177
TESTMET0.1,182.41 11081.98 10983.72 15888.08 18863.74 19092.70 12293.77 6379.30 6677.61 13287.57 21058.19 15294.08 21473.91 15986.68 12693.33 140
PAPM_NR82.97 10281.84 11086.37 7094.10 4466.76 11687.66 27592.84 10269.96 24074.07 16993.57 10663.10 10297.50 6470.66 18890.58 8894.85 80
VDD-MVS83.06 10081.81 11186.81 5390.86 12467.70 9095.40 2991.50 15975.46 12281.78 8592.34 13340.09 30097.13 8786.85 6482.04 15895.60 49
DP-MVS Recon82.73 10581.65 11285.98 7897.31 467.06 10795.15 3691.99 13369.08 25376.50 14593.89 9954.48 19798.20 3570.76 18685.66 13392.69 157
MVS_111021_LR82.02 11881.52 11383.51 16488.42 17762.88 22089.77 23788.93 26276.78 10875.55 15493.10 11150.31 23595.38 16483.82 8987.02 11892.26 174
EPP-MVSNet81.79 12181.52 11382.61 18388.77 17060.21 27293.02 11193.66 7068.52 25972.90 18090.39 16572.19 3194.96 17674.93 15279.29 18392.67 158
APD-MVS_3200maxsize81.64 12481.32 11582.59 18492.36 8458.74 29291.39 18091.01 18363.35 29779.72 10794.62 7651.82 22196.14 12779.71 11587.93 10992.89 155
CostFormer82.33 11181.15 11685.86 8389.01 16468.46 7082.39 31693.01 9675.59 12080.25 10181.57 28172.03 3294.96 17679.06 12377.48 20094.16 110
xiu_mvs_v1_base_debu82.16 11481.12 11785.26 10586.42 22468.72 6592.59 13190.44 19773.12 16284.20 6794.36 8238.04 31495.73 14584.12 8586.81 12091.33 187
xiu_mvs_v1_base82.16 11481.12 11785.26 10586.42 22468.72 6592.59 13190.44 19773.12 16284.20 6794.36 8238.04 31495.73 14584.12 8586.81 12091.33 187
xiu_mvs_v1_base_debi82.16 11481.12 11785.26 10586.42 22468.72 6592.59 13190.44 19773.12 16284.20 6794.36 8238.04 31495.73 14584.12 8586.81 12091.33 187
hse-mvs281.12 13281.11 12081.16 22186.52 22357.48 30789.40 24591.16 17181.45 3682.73 7990.49 16360.11 13194.58 19187.69 5360.41 33391.41 186
baseline181.84 12081.03 12184.28 14491.60 10666.62 11991.08 19791.66 15381.87 3174.86 15991.67 14569.98 3794.92 17971.76 17864.75 29491.29 192
iter_conf_final81.74 12280.93 12284.18 14692.66 8069.10 5592.94 11382.80 34179.01 7674.85 16088.40 19161.83 11594.61 18979.36 11876.52 20988.83 221
3Dnovator73.91 682.69 10880.82 12388.31 2389.57 14771.26 1892.60 12994.39 4678.84 7867.89 24992.48 12948.42 25398.52 2868.80 20794.40 3495.15 71
CDS-MVSNet81.43 12680.74 12483.52 16286.26 22864.45 16892.09 14790.65 19175.83 11973.95 17189.81 17763.97 8592.91 25171.27 18182.82 15293.20 143
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
SR-MVS-dyc-post81.06 13380.70 12582.15 19892.02 9258.56 29490.90 20190.45 19462.76 30478.89 11694.46 7851.26 22995.61 15378.77 12786.77 12392.28 170
ACMMPcopyleft81.49 12580.67 12683.93 15291.71 10462.90 21992.13 14492.22 12571.79 20171.68 20093.49 10850.32 23496.96 10178.47 12984.22 14691.93 179
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HQP-MVS81.14 13080.64 12782.64 18287.54 20263.66 19794.06 6391.70 15179.80 5774.18 16590.30 16751.63 22595.61 15377.63 13478.90 18588.63 226
test_cas_vis1_n_192080.45 14380.61 12879.97 25278.25 33557.01 31394.04 6788.33 28279.06 7482.81 7893.70 10238.65 30691.63 29090.82 3579.81 17691.27 193
3Dnovator+73.60 782.10 11780.60 12986.60 6090.89 12366.80 11595.20 3493.44 8074.05 14167.42 25592.49 12849.46 24397.65 5570.80 18591.68 7295.33 59
API-MVS82.28 11280.53 13087.54 3596.13 2270.59 2793.63 9091.04 18265.72 28175.45 15592.83 12256.11 17898.89 2064.10 25089.75 9693.15 144
RE-MVS-def80.48 13192.02 9258.56 29490.90 20190.45 19462.76 30478.89 11694.46 7849.30 24578.77 12786.77 12392.28 170
IB-MVS77.80 482.18 11380.46 13287.35 3989.14 16170.28 3195.59 2695.17 1878.85 7770.19 21685.82 23370.66 3597.67 5172.19 17566.52 27994.09 114
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ECVR-MVScopyleft81.29 12880.38 13384.01 15188.39 17961.96 23792.56 13486.79 30577.66 9576.63 14291.42 14846.34 27195.24 16974.36 15789.23 9794.85 80
thisisatest053081.15 12980.07 13484.39 13988.26 18365.63 14291.40 17894.62 3571.27 21970.93 20689.18 18272.47 2996.04 13465.62 23976.89 20691.49 183
test111180.84 13780.02 13583.33 16887.87 19560.76 26092.62 12786.86 30477.86 9175.73 14991.39 15046.35 27094.70 18772.79 16688.68 10394.52 99
Fast-Effi-MVS+81.14 13080.01 13684.51 13590.24 13465.86 13794.12 6289.15 25073.81 14975.37 15688.26 19657.26 15994.53 19766.97 22484.92 13693.15 144
mvs_anonymous81.36 12779.99 13785.46 9590.39 13268.40 7186.88 28690.61 19274.41 13470.31 21584.67 24463.79 8892.32 27673.13 16185.70 13295.67 46
Vis-MVSNetpermissive80.92 13679.98 13883.74 15588.48 17461.80 23993.44 9888.26 28773.96 14577.73 12991.76 14249.94 23994.76 18165.84 23690.37 9094.65 91
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
nrg03080.93 13579.86 13984.13 14883.69 27268.83 6293.23 10391.20 16975.55 12175.06 15888.22 19963.04 10394.74 18381.88 10066.88 27688.82 224
1112_ss80.56 14079.83 14082.77 17888.65 17160.78 25892.29 13888.36 28172.58 17472.46 18994.95 6465.09 7093.42 23866.38 23077.71 19494.10 113
HQP_MVS80.34 14579.75 14182.12 20086.94 21762.42 22693.13 10591.31 16578.81 7972.53 18689.14 18450.66 23295.55 15876.74 13778.53 19088.39 233
UA-Net80.02 15279.65 14281.11 22389.33 15457.72 30286.33 28989.00 26177.44 10081.01 9389.15 18359.33 14295.90 13861.01 27184.28 14489.73 213
Vis-MVSNet (Re-imp)79.24 16479.57 14378.24 28088.46 17552.29 33690.41 21789.12 25274.24 13869.13 22691.91 14065.77 6490.09 31259.00 28388.09 10792.33 167
test-LLR80.10 15079.56 14481.72 20986.93 21961.17 25092.70 12291.54 15671.51 21575.62 15186.94 21953.83 20392.38 27272.21 17384.76 13991.60 181
HyFIR lowres test81.03 13479.56 14485.43 9687.81 19868.11 8190.18 22590.01 21870.65 23272.95 17986.06 23163.61 9394.50 19975.01 15179.75 17893.67 130
HPM-MVS_fast80.25 14779.55 14682.33 19091.55 10959.95 27591.32 18789.16 24965.23 28574.71 16293.07 11447.81 26195.74 14474.87 15588.23 10591.31 191
TAMVS80.37 14479.45 14783.13 17385.14 24963.37 20591.23 19190.76 18674.81 13272.65 18388.49 18860.63 12692.95 24669.41 19981.95 16093.08 147
FIs79.47 16179.41 14879.67 25985.95 23459.40 28291.68 17093.94 5878.06 8768.96 23288.28 19466.61 5791.77 28766.20 23374.99 21787.82 238
IS-MVSNet80.14 14979.41 14882.33 19087.91 19360.08 27491.97 15688.27 28572.90 16971.44 20391.73 14461.44 11893.66 23362.47 26486.53 12793.24 141
test-mter79.96 15379.38 15081.72 20986.93 21961.17 25092.70 12291.54 15673.85 14775.62 15186.94 21949.84 24192.38 27272.21 17384.76 13991.60 181
BH-w/o80.49 14279.30 15184.05 15090.83 12564.36 17693.60 9189.42 23874.35 13669.09 22790.15 17255.23 18795.61 15364.61 24786.43 12992.17 176
EPNet_dtu78.80 17479.26 15277.43 28888.06 18949.71 34991.96 15791.95 13577.67 9476.56 14491.28 15258.51 14890.20 31056.37 29180.95 16892.39 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CPTT-MVS79.59 15879.16 15380.89 23291.54 11059.80 27792.10 14688.54 27860.42 32272.96 17893.28 11048.27 25492.80 25578.89 12686.50 12890.06 206
tpmrst80.57 13979.14 15484.84 11690.10 13768.28 7581.70 32089.72 23077.63 9775.96 14779.54 31364.94 7392.71 25875.43 14677.28 20393.55 133
131480.70 13878.95 15585.94 8087.77 20067.56 9487.91 27092.55 11572.17 18867.44 25493.09 11250.27 23697.04 9271.68 18087.64 11293.23 142
SDMVSNet80.26 14678.88 15684.40 13889.25 15667.63 9385.35 29293.02 9576.77 10970.84 20787.12 21747.95 25996.09 12985.04 7674.55 21889.48 217
UGNet79.87 15578.68 15783.45 16789.96 13961.51 24692.13 14490.79 18576.83 10778.85 12186.33 22738.16 31296.17 12667.93 21487.17 11792.67 158
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet73.49 880.05 15178.63 15884.31 14290.92 12264.97 15992.47 13591.05 18179.18 6972.43 19090.51 16237.05 32694.06 21668.06 21186.00 13093.90 125
Test_1112_low_res79.56 15978.60 15982.43 18688.24 18560.39 26992.09 14787.99 29272.10 19071.84 19687.42 21264.62 7893.04 24265.80 23777.30 20293.85 127
tttt051779.50 16078.53 16082.41 18987.22 21061.43 24889.75 23894.76 2869.29 24867.91 24788.06 20372.92 2595.63 15162.91 26073.90 22890.16 205
thres20079.66 15778.33 16183.66 16192.54 8365.82 13993.06 10796.31 374.90 13173.30 17688.66 18659.67 13795.61 15347.84 32578.67 18889.56 216
ab-mvs80.18 14878.31 16285.80 8688.44 17665.49 14883.00 31392.67 10871.82 20077.36 13585.01 23954.50 19496.59 11476.35 14175.63 21495.32 61
VDDNet80.50 14178.26 16387.21 4186.19 22969.79 4194.48 5091.31 16560.42 32279.34 11190.91 15638.48 30996.56 11782.16 9781.05 16795.27 66
EI-MVSNet78.97 16978.22 16481.25 21885.33 24462.73 22389.53 24293.21 8672.39 18172.14 19390.13 17360.99 12194.72 18467.73 21672.49 23886.29 265
OPM-MVS79.00 16878.09 16581.73 20883.52 27563.83 18791.64 17290.30 20476.36 11571.97 19589.93 17646.30 27395.17 17175.10 14977.70 19586.19 269
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FC-MVSNet-test77.99 18978.08 16677.70 28384.89 25455.51 32290.27 22293.75 6776.87 10466.80 26587.59 20965.71 6590.23 30962.89 26173.94 22687.37 245
VPA-MVSNet79.03 16778.00 16782.11 20385.95 23464.48 16793.22 10494.66 3375.05 12974.04 17084.95 24052.17 22093.52 23574.90 15467.04 27588.32 235
miper_enhance_ethall78.86 17277.97 16881.54 21388.00 19265.17 15391.41 17689.15 25075.19 12768.79 23583.98 25367.17 5292.82 25372.73 16765.30 28586.62 262
tpm279.80 15677.95 16985.34 10188.28 18268.26 7681.56 32291.42 16270.11 23877.59 13380.50 29967.40 5194.26 20867.34 21977.35 20193.51 134
OMC-MVS78.67 17977.91 17080.95 23085.76 23957.40 30988.49 26188.67 27373.85 14772.43 19092.10 13749.29 24694.55 19672.73 16777.89 19390.91 197
114514_t79.17 16577.67 17183.68 15995.32 2965.53 14692.85 11691.60 15563.49 29567.92 24690.63 16046.65 26795.72 14967.01 22383.54 14789.79 211
BH-RMVSNet79.46 16277.65 17284.89 11491.68 10565.66 14093.55 9388.09 29072.93 16673.37 17591.12 15446.20 27496.12 12856.28 29285.61 13492.91 153
PCF-MVS73.15 979.29 16377.63 17384.29 14386.06 23265.96 13587.03 28291.10 17569.86 24269.79 22390.64 15857.54 15896.59 11464.37 24982.29 15490.32 203
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet_NR-MVSNet78.15 18777.55 17479.98 25084.46 26160.26 27092.25 13993.20 8877.50 9968.88 23386.61 22266.10 6092.13 27966.38 23062.55 31087.54 240
VPNet78.82 17377.53 17582.70 18084.52 25966.44 12393.93 7292.23 12280.46 4972.60 18488.38 19349.18 24793.13 24172.47 17163.97 30388.55 229
GeoE78.90 17177.43 17683.29 16988.95 16562.02 23592.31 13786.23 31070.24 23771.34 20489.27 18154.43 19894.04 21963.31 25680.81 17193.81 128
AUN-MVS78.37 18377.43 17681.17 22086.60 22257.45 30889.46 24491.16 17174.11 14074.40 16490.49 16355.52 18494.57 19374.73 15660.43 33291.48 184
tfpn200view978.79 17577.43 17682.88 17692.21 8964.49 16592.05 15096.28 473.48 15671.75 19888.26 19660.07 13395.32 16545.16 33677.58 19788.83 221
thres40078.68 17777.43 17682.43 18692.21 8964.49 16592.05 15096.28 473.48 15671.75 19888.26 19660.07 13395.32 16545.16 33677.58 19787.48 242
QAPM79.95 15477.39 18087.64 3089.63 14671.41 1793.30 10193.70 6865.34 28467.39 25791.75 14347.83 26098.96 1657.71 28789.81 9392.54 162
TR-MVS78.77 17677.37 18182.95 17590.49 12960.88 25693.67 8890.07 21370.08 23974.51 16391.37 15145.69 27795.70 15060.12 27780.32 17392.29 169
FA-MVS(test-final)79.12 16677.23 18284.81 12090.54 12863.98 18581.35 32591.71 14971.09 22374.85 16082.94 26252.85 21497.05 8967.97 21281.73 16393.41 136
BH-untuned78.68 17777.08 18383.48 16689.84 14163.74 19092.70 12288.59 27671.57 21266.83 26488.65 18751.75 22395.39 16359.03 28284.77 13891.32 190
tpm78.58 18077.03 18483.22 17185.94 23664.56 16383.21 31091.14 17478.31 8473.67 17379.68 31164.01 8492.09 28166.07 23471.26 24893.03 149
thres100view90078.37 18377.01 18582.46 18591.89 10063.21 20991.19 19596.33 172.28 18470.45 21287.89 20560.31 12895.32 16545.16 33677.58 19788.83 221
AdaColmapbinary78.94 17077.00 18684.76 12296.34 1765.86 13792.66 12687.97 29462.18 30970.56 20992.37 13243.53 28897.35 7264.50 24882.86 15191.05 196
CHOSEN 280x42077.35 19976.95 18778.55 27587.07 21462.68 22469.71 36782.95 33968.80 25571.48 20287.27 21666.03 6184.00 35476.47 14082.81 15388.95 220
cl2277.94 19176.78 18881.42 21587.57 20164.93 16190.67 21088.86 26572.45 17867.63 25382.68 26664.07 8392.91 25171.79 17665.30 28586.44 263
UniMVSNet (Re)77.58 19676.78 18879.98 25084.11 26760.80 25791.76 16693.17 9076.56 11369.93 22284.78 24363.32 9992.36 27464.89 24662.51 31286.78 257
thres600view778.00 18876.66 19082.03 20591.93 9763.69 19591.30 18896.33 172.43 17970.46 21187.89 20560.31 12894.92 17942.64 34876.64 20787.48 242
MS-PatchMatch77.90 19376.50 19182.12 20085.99 23369.95 3691.75 16892.70 10673.97 14462.58 30084.44 24841.11 29795.78 14163.76 25392.17 6480.62 344
miper_ehance_all_eth77.60 19576.44 19281.09 22785.70 24164.41 17290.65 21188.64 27572.31 18267.37 25882.52 26764.77 7792.64 26570.67 18765.30 28586.24 267
XXY-MVS77.94 19176.44 19282.43 18682.60 28464.44 16992.01 15291.83 14473.59 15570.00 21985.82 23354.43 19894.76 18169.63 19668.02 26988.10 237
PS-MVSNAJss77.26 20076.31 19480.13 24580.64 30359.16 28790.63 21491.06 18072.80 17068.58 23984.57 24653.55 20793.96 22472.97 16271.96 24287.27 250
MVP-Stereo77.12 20376.23 19579.79 25781.72 29366.34 12689.29 24690.88 18470.56 23462.01 30382.88 26349.34 24494.13 21165.55 24193.80 4178.88 358
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
GA-MVS78.33 18576.23 19584.65 12883.65 27366.30 12791.44 17490.14 21176.01 11770.32 21484.02 25242.50 29294.72 18470.98 18377.00 20592.94 152
WB-MVSnew77.14 20276.18 19780.01 24986.18 23063.24 20891.26 18994.11 5571.72 20473.52 17487.29 21545.14 28293.00 24456.98 28979.42 17983.80 305
FMVSNet377.73 19476.04 19882.80 17791.20 11868.99 5991.87 15991.99 13373.35 15867.04 26083.19 26156.62 17292.14 27859.80 27969.34 25687.28 249
EPMVS78.49 18275.98 19986.02 7791.21 11769.68 4580.23 33491.20 16975.25 12672.48 18878.11 32154.65 19393.69 23257.66 28883.04 15094.69 87
OpenMVScopyleft70.45 1178.54 18175.92 20086.41 6985.93 23771.68 1692.74 11992.51 11666.49 27564.56 27991.96 13943.88 28798.10 3754.61 29790.65 8789.44 219
DU-MVS76.86 20675.84 20179.91 25382.96 28160.26 27091.26 18991.54 15676.46 11468.88 23386.35 22556.16 17692.13 27966.38 23062.55 31087.35 247
cascas78.18 18675.77 20285.41 9787.14 21269.11 5492.96 11291.15 17366.71 27370.47 21086.07 23037.49 32096.48 12070.15 19179.80 17790.65 199
WR-MVS76.76 21175.74 20379.82 25684.60 25762.27 23292.60 12992.51 11676.06 11667.87 25085.34 23656.76 16890.24 30862.20 26563.69 30586.94 255
mvsmamba76.85 20875.71 20480.25 24283.07 28059.16 28791.44 17480.64 34876.84 10667.95 24586.33 22746.17 27594.24 20976.06 14272.92 23487.36 246
v2v48277.42 19875.65 20582.73 17980.38 30567.13 10691.85 16190.23 20875.09 12869.37 22483.39 25953.79 20594.44 20071.77 17765.00 29186.63 261
c3_l76.83 21075.47 20680.93 23185.02 25264.18 18290.39 21888.11 28971.66 20566.65 26681.64 27963.58 9592.56 26669.31 20162.86 30786.04 274
sd_testset77.08 20475.37 20782.20 19689.25 15662.11 23482.06 31789.09 25476.77 10970.84 20787.12 21741.43 29695.01 17467.23 22174.55 21889.48 217
dmvs_re76.93 20575.36 20881.61 21187.78 19960.71 26380.00 33887.99 29279.42 6369.02 23089.47 18046.77 26594.32 20263.38 25574.45 22189.81 210
Anonymous20240521177.96 19075.33 20985.87 8293.73 5264.52 16494.85 4485.36 31862.52 30776.11 14690.18 17029.43 35597.29 7668.51 20977.24 20495.81 45
Effi-MVS+-dtu76.14 21675.28 21078.72 27483.22 27755.17 32489.87 23487.78 29575.42 12367.98 24481.43 28345.08 28392.52 26875.08 15071.63 24388.48 230
IterMVS-LS76.49 21375.18 21180.43 23784.49 26062.74 22290.64 21288.80 26772.40 18065.16 27381.72 27760.98 12292.27 27767.74 21564.65 29686.29 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114476.73 21274.88 21282.27 19280.23 30966.60 12091.68 17090.21 21073.69 15269.06 22981.89 27452.73 21694.40 20169.21 20265.23 28885.80 280
cl____76.07 21774.67 21380.28 24085.15 24861.76 24190.12 22688.73 27071.16 22065.43 27081.57 28161.15 11992.95 24666.54 22762.17 31486.13 272
DIV-MVS_self_test76.07 21774.67 21380.28 24085.14 24961.75 24290.12 22688.73 27071.16 22065.42 27181.60 28061.15 11992.94 25066.54 22762.16 31686.14 270
PatchmatchNetpermissive77.46 19774.63 21585.96 7989.55 14970.35 3079.97 33989.55 23372.23 18570.94 20576.91 33257.03 16292.79 25654.27 29981.17 16694.74 86
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
NR-MVSNet76.05 22074.59 21680.44 23682.96 28162.18 23390.83 20591.73 14777.12 10360.96 30786.35 22559.28 14391.80 28660.74 27261.34 32587.35 247
LPG-MVS_test75.82 22674.58 21779.56 26384.31 26459.37 28390.44 21589.73 22869.49 24564.86 27488.42 18938.65 30694.30 20472.56 16972.76 23585.01 295
V4276.46 21474.55 21882.19 19779.14 32367.82 8790.26 22389.42 23873.75 15068.63 23881.89 27451.31 22894.09 21371.69 17964.84 29284.66 298
TranMVSNet+NR-MVSNet75.86 22574.52 21979.89 25482.44 28660.64 26691.37 18391.37 16376.63 11167.65 25286.21 22952.37 21991.55 29261.84 26760.81 32887.48 242
v14876.19 21574.47 22081.36 21680.05 31164.44 16991.75 16890.23 20873.68 15367.13 25980.84 29455.92 18193.86 23068.95 20561.73 32185.76 283
eth_miper_zixun_eth75.96 22474.40 22180.66 23384.66 25663.02 21389.28 24788.27 28571.88 19665.73 26881.65 27859.45 13992.81 25468.13 21060.53 33086.14 270
gg-mvs-nofinetune77.18 20174.31 22285.80 8691.42 11268.36 7271.78 36194.72 3049.61 36277.12 13845.92 38577.41 893.98 22367.62 21793.16 5395.05 74
CVMVSNet74.04 24674.27 22373.33 32285.33 24443.94 37289.53 24288.39 28054.33 35070.37 21390.13 17349.17 24884.05 35261.83 26879.36 18191.99 178
ACMP71.68 1075.58 23174.23 22479.62 26184.97 25359.64 27890.80 20689.07 25670.39 23562.95 29687.30 21438.28 31093.87 22872.89 16371.45 24685.36 290
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2024052976.84 20974.15 22584.88 11591.02 11964.95 16093.84 8091.09 17653.57 35173.00 17787.42 21235.91 33097.32 7469.14 20372.41 24092.36 166
X-MVStestdata76.86 20674.13 22685.05 10993.22 6163.78 18892.92 11492.66 10973.99 14278.18 12510.19 40055.25 18597.41 6879.16 12191.58 7493.95 121
v14419276.05 22074.03 22782.12 20079.50 31766.55 12291.39 18089.71 23172.30 18368.17 24281.33 28651.75 22394.03 22167.94 21364.19 29885.77 281
FMVSNet276.07 21774.01 22882.26 19488.85 16667.66 9191.33 18691.61 15470.84 22765.98 26782.25 27048.03 25592.00 28358.46 28468.73 26487.10 252
v119275.98 22273.92 22982.15 19879.73 31366.24 12991.22 19289.75 22572.67 17268.49 24081.42 28449.86 24094.27 20667.08 22265.02 29085.95 277
GBi-Net75.65 22873.83 23081.10 22488.85 16665.11 15590.01 23090.32 20070.84 22767.04 26080.25 30448.03 25591.54 29359.80 27969.34 25686.64 258
test175.65 22873.83 23081.10 22488.85 16665.11 15590.01 23090.32 20070.84 22767.04 26080.25 30448.03 25591.54 29359.80 27969.34 25686.64 258
test_fmvs174.07 24573.69 23275.22 30778.91 32747.34 36189.06 25474.69 36263.68 29479.41 11091.59 14624.36 36487.77 33185.22 7476.26 21190.55 202
PLCcopyleft68.80 1475.23 23473.68 23379.86 25592.93 7058.68 29390.64 21288.30 28360.90 31964.43 28390.53 16142.38 29394.57 19356.52 29076.54 20886.33 264
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS70.22 1274.94 23873.53 23479.17 26890.40 13152.07 33789.19 25089.61 23262.69 30670.07 21792.67 12448.89 25294.32 20238.26 36279.97 17591.12 195
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v192192075.63 23073.49 23582.06 20479.38 31866.35 12591.07 19989.48 23471.98 19167.99 24381.22 28949.16 24993.90 22766.56 22664.56 29785.92 279
Fast-Effi-MVS+-dtu75.04 23673.37 23680.07 24680.86 29859.52 28191.20 19485.38 31771.90 19465.20 27284.84 24241.46 29592.97 24566.50 22972.96 23387.73 239
v875.35 23273.26 23781.61 21180.67 30266.82 11389.54 24189.27 24371.65 20663.30 29280.30 30354.99 19194.06 21667.33 22062.33 31383.94 303
XVG-OURS-SEG-HR74.70 24073.08 23879.57 26278.25 33557.33 31080.49 33087.32 29863.22 29968.76 23690.12 17544.89 28491.59 29170.55 18974.09 22589.79 211
FE-MVS75.97 22373.02 23984.82 11789.78 14265.56 14477.44 35091.07 17964.55 28772.66 18279.85 30946.05 27696.69 11254.97 29680.82 17092.21 175
v124075.21 23572.98 24081.88 20679.20 32066.00 13390.75 20889.11 25371.63 21067.41 25681.22 28947.36 26393.87 22865.46 24264.72 29585.77 281
RRT_MVS74.44 24172.97 24178.84 27382.36 28757.66 30489.83 23688.79 26970.61 23364.58 27884.89 24139.24 30292.65 26470.11 19266.34 28086.21 268
Baseline_NR-MVSNet73.99 24772.83 24277.48 28780.78 30059.29 28691.79 16384.55 32568.85 25468.99 23180.70 29556.16 17692.04 28262.67 26260.98 32781.11 338
SCA75.82 22672.76 24385.01 11186.63 22170.08 3281.06 32789.19 24771.60 21170.01 21877.09 33045.53 27890.25 30560.43 27473.27 23094.68 88
myMVS_eth3d72.58 26672.74 24472.10 33487.87 19549.45 35188.07 26689.01 25872.91 16763.11 29388.10 20063.63 9185.54 34432.73 37669.23 25981.32 336
ACMM69.62 1374.34 24272.73 24579.17 26884.25 26657.87 30090.36 21989.93 21963.17 30165.64 26986.04 23237.79 31894.10 21265.89 23571.52 24585.55 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test0.0.03 172.76 26072.71 24672.88 32680.25 30847.99 35791.22 19289.45 23671.51 21562.51 30187.66 20853.83 20385.06 34850.16 31267.84 27285.58 284
MDTV_nov1_ep1372.61 24789.06 16268.48 6980.33 33290.11 21271.84 19971.81 19775.92 34053.01 21393.92 22648.04 32273.38 229
test_djsdf73.76 25172.56 24877.39 28977.00 34553.93 33089.07 25290.69 18765.80 27963.92 28582.03 27343.14 29192.67 26172.83 16468.53 26585.57 285
v1074.77 23972.54 24981.46 21480.33 30766.71 11789.15 25189.08 25570.94 22563.08 29579.86 30852.52 21794.04 21965.70 23862.17 31483.64 306
XVG-OURS74.25 24472.46 25079.63 26078.45 33357.59 30680.33 33287.39 29763.86 29268.76 23689.62 17940.50 29991.72 28869.00 20474.25 22389.58 214
CNLPA74.31 24372.30 25180.32 23891.49 11161.66 24490.85 20480.72 34756.67 34363.85 28790.64 15846.75 26690.84 30053.79 30175.99 21388.47 232
tpm cat175.30 23372.21 25284.58 13288.52 17267.77 8878.16 34888.02 29161.88 31468.45 24176.37 33660.65 12594.03 22153.77 30274.11 22491.93 179
dp75.01 23772.09 25383.76 15489.28 15566.22 13079.96 34089.75 22571.16 22067.80 25177.19 32951.81 22292.54 26750.39 31071.44 24792.51 164
D2MVS73.80 24972.02 25479.15 27079.15 32262.97 21488.58 26090.07 21372.94 16559.22 31678.30 31842.31 29492.70 26065.59 24072.00 24181.79 333
test_fmvs1_n72.69 26471.92 25574.99 31071.15 36447.08 36387.34 28075.67 35763.48 29678.08 12791.17 15320.16 37587.87 32884.65 8175.57 21590.01 208
LCM-MVSNet-Re72.93 25771.84 25676.18 30388.49 17348.02 35680.07 33770.17 37373.96 14552.25 34680.09 30749.98 23888.24 32567.35 21884.23 14592.28 170
pmmvs473.92 24871.81 25780.25 24279.17 32165.24 15187.43 27887.26 30067.64 26763.46 29083.91 25448.96 25191.53 29662.94 25965.49 28483.96 302
miper_lstm_enhance73.05 25571.73 25877.03 29483.80 27058.32 29681.76 31888.88 26369.80 24361.01 30678.23 32057.19 16087.51 33565.34 24359.53 33585.27 293
pmmvs573.35 25271.52 25978.86 27278.64 33160.61 26791.08 19786.90 30267.69 26463.32 29183.64 25544.33 28690.53 30262.04 26666.02 28285.46 288
jajsoiax73.05 25571.51 26077.67 28477.46 34254.83 32688.81 25690.04 21669.13 25262.85 29883.51 25731.16 35092.75 25770.83 18469.80 25285.43 289
mvs_tets72.71 26271.11 26177.52 28577.41 34354.52 32888.45 26289.76 22468.76 25762.70 29983.26 26029.49 35492.71 25870.51 19069.62 25485.34 291
pm-mvs172.89 25871.09 26278.26 27979.10 32457.62 30590.80 20689.30 24267.66 26562.91 29781.78 27649.11 25092.95 24660.29 27658.89 33884.22 301
testing370.38 27970.83 26369.03 34585.82 23843.93 37390.72 20990.56 19368.06 26160.24 31086.82 22164.83 7584.12 35026.33 38364.10 30079.04 357
IterMVS72.65 26570.83 26378.09 28182.17 28962.96 21587.64 27686.28 30871.56 21360.44 30978.85 31645.42 28086.66 33963.30 25761.83 31884.65 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet73.79 25070.82 26582.70 18083.15 27867.96 8470.25 36484.00 33073.67 15469.97 22072.41 35057.82 15589.48 31652.99 30573.13 23190.64 200
test_vis1_n71.63 27070.73 26674.31 31769.63 37047.29 36286.91 28472.11 36863.21 30075.18 15790.17 17120.40 37385.76 34384.59 8274.42 22289.87 209
tt080573.07 25470.73 26680.07 24678.37 33457.05 31287.78 27292.18 12861.23 31867.04 26086.49 22431.35 34994.58 19165.06 24567.12 27488.57 228
UniMVSNet_ETH3D72.74 26170.53 26879.36 26578.62 33256.64 31585.01 29489.20 24663.77 29364.84 27684.44 24834.05 33791.86 28563.94 25170.89 25089.57 215
Anonymous2023121173.08 25370.39 26981.13 22290.62 12763.33 20691.40 17890.06 21551.84 35664.46 28280.67 29736.49 32894.07 21563.83 25264.17 29985.98 276
PatchMatch-RL72.06 26769.98 27078.28 27889.51 15055.70 32183.49 30383.39 33761.24 31763.72 28882.76 26434.77 33493.03 24353.37 30477.59 19686.12 273
IterMVS-SCA-FT71.55 27269.97 27176.32 30181.48 29460.67 26587.64 27685.99 31366.17 27759.50 31478.88 31545.53 27883.65 35662.58 26361.93 31784.63 300
WR-MVS_H70.59 27669.94 27272.53 32881.03 29751.43 34087.35 27992.03 13267.38 26860.23 31180.70 29555.84 18283.45 35846.33 33258.58 34082.72 322
CP-MVSNet70.50 27769.91 27372.26 33180.71 30151.00 34387.23 28190.30 20467.84 26359.64 31382.69 26550.23 23782.30 36651.28 30759.28 33683.46 311
FMVSNet172.71 26269.91 27381.10 22483.60 27465.11 15590.01 23090.32 20063.92 29163.56 28980.25 30436.35 32991.54 29354.46 29866.75 27786.64 258
tpmvs72.88 25969.76 27582.22 19590.98 12067.05 10878.22 34788.30 28363.10 30264.35 28474.98 34355.09 19094.27 20643.25 34269.57 25585.34 291
bld_raw_dy_0_6471.59 27169.71 27677.22 29377.82 34158.12 29887.71 27473.66 36468.01 26261.90 30584.29 25033.68 33888.43 32369.91 19470.43 25185.11 294
Syy-MVS69.65 28569.52 27770.03 34187.87 19543.21 37488.07 26689.01 25872.91 16763.11 29388.10 20045.28 28185.54 34422.07 38769.23 25981.32 336
anonymousdsp71.14 27469.37 27876.45 30072.95 35954.71 32784.19 29888.88 26361.92 31362.15 30279.77 31038.14 31391.44 29868.90 20667.45 27383.21 315
PS-CasMVS69.86 28469.13 27972.07 33580.35 30650.57 34587.02 28389.75 22567.27 26959.19 31782.28 26946.58 26882.24 36750.69 30959.02 33783.39 313
v7n71.31 27368.65 28079.28 26676.40 34760.77 25986.71 28789.45 23664.17 29058.77 32178.24 31944.59 28593.54 23457.76 28661.75 32083.52 309
mvsany_test168.77 29268.56 28169.39 34373.57 35745.88 36880.93 32860.88 38659.65 32871.56 20190.26 16943.22 29075.05 37674.26 15862.70 30987.25 251
PEN-MVS69.46 28768.56 28172.17 33379.27 31949.71 34986.90 28589.24 24467.24 27259.08 31882.51 26847.23 26483.54 35748.42 32057.12 34183.25 314
MIMVSNet71.64 26968.44 28381.23 21981.97 29264.44 16973.05 36088.80 26769.67 24464.59 27774.79 34432.79 34187.82 32953.99 30076.35 21091.42 185
F-COLMAP70.66 27568.44 28377.32 29086.37 22755.91 31988.00 26886.32 30756.94 34157.28 33088.07 20233.58 33992.49 26951.02 30868.37 26683.55 307
PVSNet_068.08 1571.81 26868.32 28582.27 19284.68 25562.31 23188.68 25890.31 20375.84 11857.93 32780.65 29837.85 31794.19 21069.94 19329.05 39090.31 204
CL-MVSNet_self_test69.92 28268.09 28675.41 30673.25 35855.90 32090.05 22989.90 22069.96 24061.96 30476.54 33351.05 23087.64 33249.51 31650.59 36082.70 324
TransMVSNet (Re)70.07 28167.66 28777.31 29180.62 30459.13 28991.78 16584.94 32265.97 27860.08 31280.44 30050.78 23191.87 28448.84 31845.46 36880.94 340
tfpnnormal70.10 28067.36 28878.32 27783.45 27660.97 25588.85 25592.77 10464.85 28660.83 30878.53 31743.52 28993.48 23631.73 37961.70 32280.52 345
DTE-MVSNet68.46 29667.33 28971.87 33777.94 33949.00 35486.16 29088.58 27766.36 27658.19 32282.21 27146.36 26983.87 35544.97 33955.17 34882.73 321
DP-MVS69.90 28366.48 29080.14 24495.36 2862.93 21689.56 23976.11 35550.27 36157.69 32885.23 23739.68 30195.73 14533.35 37271.05 24981.78 334
dmvs_testset65.55 31566.45 29162.86 35779.87 31222.35 40076.55 35271.74 37077.42 10255.85 33387.77 20751.39 22780.69 37231.51 38265.92 28385.55 286
LS3D69.17 28866.40 29277.50 28691.92 9856.12 31885.12 29380.37 34946.96 36856.50 33287.51 21137.25 32193.71 23132.52 37879.40 18082.68 325
KD-MVS_2432*160069.03 29066.37 29377.01 29585.56 24261.06 25381.44 32390.25 20667.27 26958.00 32576.53 33454.49 19587.63 33348.04 32235.77 38282.34 328
miper_refine_blended69.03 29066.37 29377.01 29585.56 24261.06 25381.44 32390.25 20667.27 26958.00 32576.53 33454.49 19587.63 33348.04 32235.77 38282.34 328
Anonymous2023120667.53 30465.78 29572.79 32774.95 35247.59 35988.23 26487.32 29861.75 31658.07 32477.29 32737.79 31887.29 33742.91 34463.71 30483.48 310
MSDG69.54 28665.73 29680.96 22985.11 25163.71 19384.19 29883.28 33856.95 34054.50 33784.03 25131.50 34796.03 13542.87 34669.13 26183.14 317
RPMNet70.42 27865.68 29784.63 13083.15 27867.96 8470.25 36490.45 19446.83 37069.97 22065.10 36956.48 17595.30 16835.79 36773.13 23190.64 200
FMVSNet568.04 29965.66 29875.18 30984.43 26257.89 29983.54 30286.26 30961.83 31553.64 34273.30 34737.15 32485.08 34748.99 31761.77 31982.56 327
XVG-ACMP-BASELINE68.04 29965.53 29975.56 30574.06 35652.37 33578.43 34485.88 31462.03 31158.91 32081.21 29120.38 37491.15 29960.69 27368.18 26783.16 316
EG-PatchMatch MVS68.55 29465.41 30077.96 28278.69 33062.93 21689.86 23589.17 24860.55 32150.27 35477.73 32422.60 36994.06 21647.18 32872.65 23776.88 366
PatchT69.11 28965.37 30180.32 23882.07 29163.68 19667.96 37387.62 29650.86 35969.37 22465.18 36857.09 16188.53 32241.59 35166.60 27888.74 225
test_fmvs265.78 31464.84 30268.60 34766.54 37541.71 37683.27 30769.81 37454.38 34967.91 24784.54 24715.35 38081.22 37175.65 14566.16 28182.88 318
ACMH63.93 1768.62 29364.81 30380.03 24885.22 24763.25 20787.72 27384.66 32460.83 32051.57 34979.43 31427.29 36094.96 17641.76 34964.84 29281.88 332
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs667.57 30364.76 30476.00 30472.82 36153.37 33288.71 25786.78 30653.19 35257.58 32978.03 32235.33 33392.41 27155.56 29454.88 35082.21 330
our_test_368.29 29764.69 30579.11 27178.92 32564.85 16288.40 26385.06 32060.32 32452.68 34476.12 33840.81 29889.80 31544.25 34155.65 34682.67 326
ACMH+65.35 1667.65 30264.55 30676.96 29784.59 25857.10 31188.08 26580.79 34658.59 33453.00 34381.09 29326.63 36292.95 24646.51 33061.69 32380.82 341
USDC67.43 30664.51 30776.19 30277.94 33955.29 32378.38 34585.00 32173.17 16048.36 36180.37 30121.23 37192.48 27052.15 30664.02 30280.81 342
Patchmatch-RL test68.17 29864.49 30879.19 26771.22 36353.93 33070.07 36671.54 37269.22 24956.79 33162.89 37256.58 17388.61 31969.53 19852.61 35595.03 76
CMPMVSbinary48.56 2166.77 30864.41 30973.84 31970.65 36750.31 34677.79 34985.73 31645.54 37244.76 37182.14 27235.40 33290.14 31163.18 25874.54 22081.07 339
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ADS-MVSNet68.54 29564.38 31081.03 22888.06 18966.90 11268.01 37184.02 32957.57 33564.48 28069.87 36038.68 30489.21 31840.87 35367.89 27086.97 253
Patchmtry67.53 30463.93 31178.34 27682.12 29064.38 17368.72 36884.00 33048.23 36759.24 31572.41 35057.82 15589.27 31746.10 33356.68 34581.36 335
ppachtmachnet_test67.72 30163.70 31279.77 25878.92 32566.04 13288.68 25882.90 34060.11 32655.45 33475.96 33939.19 30390.55 30139.53 35752.55 35682.71 323
LTVRE_ROB59.60 1966.27 31063.54 31374.45 31484.00 26951.55 33967.08 37483.53 33458.78 33254.94 33680.31 30234.54 33593.23 24040.64 35568.03 26878.58 361
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ADS-MVSNet266.90 30763.44 31477.26 29288.06 18960.70 26468.01 37175.56 35957.57 33564.48 28069.87 36038.68 30484.10 35140.87 35367.89 27086.97 253
UnsupCasMVSNet_eth65.79 31363.10 31573.88 31870.71 36650.29 34781.09 32689.88 22172.58 17449.25 35974.77 34532.57 34387.43 33655.96 29341.04 37583.90 304
EU-MVSNet64.01 32263.01 31667.02 35374.40 35538.86 38483.27 30786.19 31145.11 37354.27 33881.15 29236.91 32780.01 37448.79 31957.02 34282.19 331
OpenMVS_ROBcopyleft61.12 1866.39 30962.92 31776.80 29976.51 34657.77 30189.22 24883.41 33655.48 34753.86 34177.84 32326.28 36393.95 22534.90 36968.76 26378.68 360
testgi64.48 32062.87 31869.31 34471.24 36240.62 37985.49 29179.92 35065.36 28354.18 33983.49 25823.74 36784.55 34941.60 35060.79 32982.77 320
test20.0363.83 32362.65 31967.38 35270.58 36839.94 38086.57 28884.17 32763.29 29851.86 34777.30 32637.09 32582.47 36438.87 36154.13 35279.73 351
JIA-IIPM66.06 31162.45 32076.88 29881.42 29654.45 32957.49 38688.67 27349.36 36363.86 28646.86 38456.06 17990.25 30549.53 31568.83 26285.95 277
pmmvs-eth3d65.53 31662.32 32175.19 30869.39 37159.59 27982.80 31483.43 33562.52 30751.30 35172.49 34832.86 34087.16 33855.32 29550.73 35978.83 359
OurMVSNet-221017-064.68 31862.17 32272.21 33276.08 35047.35 36080.67 32981.02 34556.19 34451.60 34879.66 31227.05 36188.56 32153.60 30353.63 35380.71 343
RPSCF64.24 32161.98 32371.01 33976.10 34945.00 36975.83 35675.94 35646.94 36958.96 31984.59 24531.40 34882.00 36847.76 32660.33 33486.04 274
SixPastTwentyTwo64.92 31761.78 32474.34 31678.74 32949.76 34883.42 30679.51 35262.86 30350.27 35477.35 32530.92 35290.49 30345.89 33447.06 36582.78 319
test_040264.54 31961.09 32574.92 31184.10 26860.75 26187.95 26979.71 35152.03 35452.41 34577.20 32832.21 34591.64 28923.14 38561.03 32672.36 374
Patchmatch-test65.86 31260.94 32680.62 23583.75 27158.83 29158.91 38575.26 36144.50 37550.95 35377.09 33058.81 14787.90 32735.13 36864.03 30195.12 72
MDA-MVSNet_test_wron63.78 32460.16 32774.64 31278.15 33760.41 26883.49 30384.03 32856.17 34639.17 38071.59 35637.22 32283.24 36142.87 34648.73 36280.26 348
YYNet163.76 32560.14 32874.62 31378.06 33860.19 27383.46 30583.99 33256.18 34539.25 37971.56 35737.18 32383.34 35942.90 34548.70 36380.32 347
COLMAP_ROBcopyleft57.96 2062.98 32759.65 32972.98 32581.44 29553.00 33483.75 30175.53 36048.34 36648.81 36081.40 28524.14 36590.30 30432.95 37460.52 33175.65 369
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
K. test v363.09 32659.61 33073.53 32176.26 34849.38 35383.27 30777.15 35464.35 28947.77 36372.32 35228.73 35687.79 33049.93 31436.69 38183.41 312
Anonymous2024052162.09 32859.08 33171.10 33867.19 37448.72 35583.91 30085.23 31950.38 36047.84 36271.22 35920.74 37285.51 34646.47 33158.75 33979.06 356
KD-MVS_self_test60.87 33258.60 33267.68 35066.13 37639.93 38175.63 35784.70 32357.32 33849.57 35768.45 36329.55 35382.87 36248.09 32147.94 36480.25 349
AllTest61.66 32958.06 33372.46 32979.57 31451.42 34180.17 33568.61 37651.25 35745.88 36581.23 28719.86 37686.58 34038.98 35957.01 34379.39 353
UnsupCasMVSNet_bld61.60 33057.71 33473.29 32368.73 37251.64 33878.61 34389.05 25757.20 33946.11 36461.96 37528.70 35788.60 32050.08 31338.90 37979.63 352
MDA-MVSNet-bldmvs61.54 33157.70 33573.05 32479.53 31657.00 31483.08 31181.23 34457.57 33534.91 38372.45 34932.79 34186.26 34235.81 36641.95 37375.89 368
MIMVSNet160.16 33557.33 33668.67 34669.71 36944.13 37178.92 34284.21 32655.05 34844.63 37271.85 35423.91 36681.54 37032.63 37755.03 34980.35 346
test_vis1_rt59.09 33857.31 33764.43 35568.44 37346.02 36783.05 31248.63 39551.96 35549.57 35763.86 37116.30 37880.20 37371.21 18262.79 30867.07 380
PM-MVS59.40 33656.59 33867.84 34863.63 37841.86 37576.76 35163.22 38359.01 33151.07 35272.27 35311.72 38683.25 36061.34 26950.28 36178.39 362
new-patchmatchnet59.30 33756.48 33967.79 34965.86 37744.19 37082.47 31581.77 34259.94 32743.65 37566.20 36727.67 35981.68 36939.34 35841.40 37477.50 365
TinyColmap60.32 33356.42 34072.00 33678.78 32853.18 33378.36 34675.64 35852.30 35341.59 37875.82 34114.76 38388.35 32435.84 36554.71 35174.46 370
MVS-HIRNet60.25 33455.55 34174.35 31584.37 26356.57 31671.64 36274.11 36334.44 38345.54 36942.24 39031.11 35189.81 31340.36 35676.10 21276.67 367
test_fmvs356.82 33954.86 34262.69 35853.59 38835.47 38675.87 35565.64 38143.91 37655.10 33571.43 3586.91 39474.40 37968.64 20852.63 35478.20 363
DSMNet-mixed56.78 34054.44 34363.79 35663.21 37929.44 39564.43 37764.10 38242.12 38051.32 35071.60 35531.76 34675.04 37736.23 36465.20 28986.87 256
LF4IMVS54.01 34352.12 34459.69 35962.41 38139.91 38268.59 36968.28 37842.96 37944.55 37375.18 34214.09 38568.39 38541.36 35251.68 35770.78 375
TDRefinement55.28 34251.58 34566.39 35459.53 38546.15 36676.23 35472.80 36644.60 37442.49 37676.28 33715.29 38182.39 36533.20 37343.75 37070.62 376
pmmvs355.51 34151.50 34667.53 35157.90 38650.93 34480.37 33173.66 36440.63 38144.15 37464.75 37016.30 37878.97 37544.77 34040.98 37772.69 372
N_pmnet50.55 34449.11 34754.88 36577.17 3444.02 40884.36 2972.00 40648.59 36445.86 36768.82 36232.22 34482.80 36331.58 38051.38 35877.81 364
new_pmnet49.31 34546.44 34857.93 36062.84 38040.74 37868.47 37062.96 38436.48 38235.09 38257.81 37914.97 38272.18 38132.86 37546.44 36660.88 382
mvsany_test348.86 34646.35 34956.41 36146.00 39431.67 39162.26 37947.25 39643.71 37745.54 36968.15 36410.84 38764.44 39357.95 28535.44 38473.13 371
WB-MVS46.23 34844.94 35050.11 36962.13 38221.23 40276.48 35355.49 38845.89 37135.78 38161.44 37735.54 33172.83 3809.96 39621.75 39156.27 384
test_f46.58 34743.45 35155.96 36245.18 39532.05 39061.18 38049.49 39433.39 38442.05 37762.48 3747.00 39365.56 38947.08 32943.21 37270.27 377
SSC-MVS44.51 35043.35 35247.99 37361.01 38418.90 40474.12 35954.36 38943.42 37834.10 38460.02 37834.42 33670.39 3839.14 39819.57 39254.68 385
FPMVS45.64 34943.10 35353.23 36751.42 39136.46 38564.97 37671.91 36929.13 38727.53 38761.55 3769.83 38965.01 39116.00 39355.58 34758.22 383
EGC-MVSNET42.35 35138.09 35455.11 36474.57 35346.62 36571.63 36355.77 3870.04 4010.24 40262.70 37314.24 38474.91 37817.59 39046.06 36743.80 387
test_vis3_rt40.46 35437.79 35548.47 37244.49 39633.35 38966.56 37532.84 40332.39 38529.65 38539.13 3933.91 40168.65 38450.17 31140.99 37643.40 388
APD_test140.50 35337.31 35650.09 37051.88 38935.27 38759.45 38452.59 39121.64 39026.12 38857.80 3804.56 39866.56 38722.64 38639.09 37848.43 386
LCM-MVSNet40.54 35235.79 35754.76 36636.92 40130.81 39251.41 38969.02 37522.07 38924.63 38945.37 3864.56 39865.81 38833.67 37134.50 38567.67 378
ANet_high40.27 35535.20 35855.47 36334.74 40234.47 38863.84 37871.56 37148.42 36518.80 39241.08 3919.52 39064.45 39220.18 3888.66 39967.49 379
test_method38.59 35635.16 35948.89 37154.33 38721.35 40145.32 39253.71 3907.41 39828.74 38651.62 3828.70 39152.87 39633.73 37032.89 38672.47 373
PMMVS237.93 35733.61 36050.92 36846.31 39324.76 39860.55 38350.05 39228.94 38820.93 39047.59 3834.41 40065.13 39025.14 38418.55 39462.87 381
Gipumacopyleft34.91 35831.44 36145.30 37470.99 36539.64 38319.85 39672.56 36720.10 39216.16 39621.47 3975.08 39771.16 38213.07 39443.70 37125.08 394
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf132.77 35929.47 36242.67 37641.89 39830.81 39252.07 38743.45 39715.45 39318.52 39344.82 3872.12 40258.38 39416.05 39130.87 38838.83 389
APD_test232.77 35929.47 36242.67 37641.89 39830.81 39252.07 38743.45 39715.45 39318.52 39344.82 3872.12 40258.38 39416.05 39130.87 38838.83 389
PMVScopyleft26.43 2231.84 36128.16 36442.89 37525.87 40427.58 39650.92 39049.78 39321.37 39114.17 39740.81 3922.01 40466.62 3869.61 39738.88 38034.49 393
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
cdsmvs_eth3d_5k19.86 36626.47 3650.00 3860.00 4080.00 4110.00 39793.45 790.00 4040.00 40595.27 5649.56 2420.00 4050.00 4040.00 4020.00 401
E-PMN24.61 36224.00 36626.45 38043.74 39718.44 40560.86 38139.66 39915.11 3959.53 39922.10 3966.52 39546.94 3988.31 39910.14 39613.98 396
tmp_tt22.26 36523.75 36717.80 3825.23 40512.06 40735.26 39339.48 4002.82 40018.94 39144.20 38922.23 37024.64 40136.30 3639.31 39816.69 395
EMVS23.76 36423.20 36825.46 38141.52 40016.90 40660.56 38238.79 40214.62 3968.99 40020.24 3997.35 39245.82 3997.25 4009.46 39713.64 397
MVEpermissive24.84 2324.35 36319.77 36938.09 37834.56 40326.92 39726.57 39438.87 40111.73 39711.37 39827.44 3941.37 40550.42 39711.41 39514.60 39536.93 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d11.30 36710.95 37012.33 38348.05 39219.89 40325.89 3951.92 4073.58 3993.12 4011.37 4010.64 40615.77 4026.23 4017.77 4001.35 398
ab-mvs-re7.91 36810.55 3710.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 40594.95 640.00 4090.00 4050.00 4040.00 4020.00 401
testmvs7.23 3699.62 3720.06 3850.04 4060.02 41084.98 2950.02 4080.03 4020.18 4031.21 4020.01 4080.02 4030.14 4020.01 4010.13 400
test1236.92 3709.21 3730.08 3840.03 4070.05 40981.65 3210.01 4090.02 4030.14 4040.85 4030.03 4070.02 4030.12 4030.00 4020.16 399
pcd_1.5k_mvsjas4.46 3715.95 3740.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 40453.55 2070.00 4050.00 4040.00 4020.00 401
test_blank0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
uanet_test0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
DCPMVS0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
sosnet-low-res0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
sosnet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
uncertanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
Regformer0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
uanet0.00 3720.00 3750.00 3860.00 4080.00 4110.00 3970.00 4100.00 4040.00 4050.00 4040.00 4090.00 4050.00 4040.00 4020.00 401
MM88.92 1371.10 2297.02 396.04 688.70 291.57 1396.19 3370.12 3698.91 1796.83 195.06 1696.76 12
WAC-MVS49.45 35131.56 381
FOURS193.95 4561.77 24093.96 7091.92 13662.14 31086.57 44
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2299.07 1392.01 2494.77 2596.51 21
PC_three_145280.91 4594.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
No_MVS89.60 897.31 473.22 1095.05 2299.07 1392.01 2494.77 2596.51 21
test_one_060196.32 1869.74 4394.18 5271.42 21790.67 1896.85 1674.45 18
eth-test20.00 408
eth-test0.00 408
ZD-MVS96.63 965.50 14793.50 7770.74 23185.26 5995.19 6164.92 7497.29 7687.51 5593.01 54
IU-MVS96.46 1169.91 3795.18 1780.75 4695.28 192.34 2195.36 1396.47 25
OPU-MVS89.97 397.52 373.15 1296.89 597.00 983.82 299.15 295.72 597.63 397.62 2
test_241102_TWO94.41 4371.65 20692.07 897.21 474.58 1799.11 692.34 2195.36 1396.59 16
test_241102_ONE96.45 1269.38 4894.44 4171.65 20692.11 697.05 776.79 999.11 6
save fliter93.84 4867.89 8695.05 3992.66 10978.19 85
test_0728_THIRD72.48 17690.55 1996.93 1176.24 1199.08 1191.53 2994.99 1796.43 26
test_0728_SECOND88.70 1696.45 1270.43 2996.64 994.37 4799.15 291.91 2794.90 2196.51 21
test072696.40 1569.99 3396.76 794.33 4971.92 19291.89 1097.11 673.77 21
GSMVS94.68 88
test_part296.29 1968.16 8090.78 16
sam_mvs157.85 15494.68 88
sam_mvs54.91 192
ambc69.61 34261.38 38341.35 37749.07 39185.86 31550.18 35666.40 36610.16 38888.14 32645.73 33544.20 36979.32 355
MTGPAbinary92.23 122
test_post178.95 34120.70 39853.05 21291.50 29760.43 274
test_post23.01 39556.49 17492.67 261
patchmatchnet-post67.62 36557.62 15790.25 305
GG-mvs-BLEND86.53 6591.91 9969.67 4675.02 35894.75 2978.67 12390.85 15777.91 794.56 19572.25 17293.74 4395.36 58
MTMP93.77 8432.52 404
gm-plane-assit88.42 17767.04 10978.62 8291.83 14197.37 7076.57 139
test9_res89.41 3994.96 1895.29 63
TEST994.18 4167.28 10194.16 5893.51 7571.75 20385.52 5495.33 5168.01 4697.27 80
test_894.19 4067.19 10394.15 6193.42 8171.87 19785.38 5795.35 5068.19 4496.95 102
agg_prior286.41 6694.75 2995.33 59
agg_prior94.16 4366.97 11193.31 8484.49 6596.75 111
TestCases72.46 32979.57 31451.42 34168.61 37651.25 35745.88 36581.23 28719.86 37686.58 34038.98 35957.01 34379.39 353
test_prior467.18 10593.92 73
test_prior295.10 3875.40 12485.25 6095.61 4567.94 4787.47 5694.77 25
test_prior86.42 6894.71 3567.35 10093.10 9496.84 10895.05 74
旧先验292.00 15559.37 33087.54 3893.47 23775.39 147
新几何291.41 176
新几何184.73 12392.32 8564.28 17891.46 16159.56 32979.77 10692.90 11856.95 16796.57 11663.40 25492.91 5693.34 138
旧先验191.94 9660.74 26291.50 15994.36 8265.23 6991.84 6994.55 95
无先验92.71 12192.61 11362.03 31197.01 9366.63 22593.97 120
原ACMM292.01 152
原ACMM184.42 13793.21 6364.27 17993.40 8365.39 28279.51 10992.50 12658.11 15396.69 11265.27 24493.96 3892.32 168
test22289.77 14361.60 24589.55 24089.42 23856.83 34277.28 13692.43 13052.76 21591.14 8393.09 146
testdata296.09 12961.26 270
segment_acmp65.94 62
testdata81.34 21789.02 16357.72 30289.84 22258.65 33385.32 5894.09 9457.03 16293.28 23969.34 20090.56 8993.03 149
testdata189.21 24977.55 98
test1287.09 4594.60 3668.86 6192.91 10082.67 8165.44 6797.55 6293.69 4694.84 83
plane_prior786.94 21761.51 246
plane_prior687.23 20962.32 23050.66 232
plane_prior591.31 16595.55 15876.74 13778.53 19088.39 233
plane_prior489.14 184
plane_prior361.95 23879.09 7272.53 186
plane_prior293.13 10578.81 79
plane_prior187.15 211
plane_prior62.42 22693.85 7779.38 6478.80 187
n20.00 410
nn0.00 410
door-mid66.01 380
lessismore_v073.72 32072.93 36047.83 35861.72 38545.86 36773.76 34628.63 35889.81 31347.75 32731.37 38783.53 308
LGP-MVS_train79.56 26384.31 26459.37 28389.73 22869.49 24564.86 27488.42 18938.65 30694.30 20472.56 16972.76 23585.01 295
test1193.01 96
door66.57 379
HQP5-MVS63.66 197
HQP-NCC87.54 20294.06 6379.80 5774.18 165
ACMP_Plane87.54 20294.06 6379.80 5774.18 165
BP-MVS77.63 134
HQP4-MVS74.18 16595.61 15388.63 226
HQP3-MVS91.70 15178.90 185
HQP2-MVS51.63 225
NP-MVS87.41 20563.04 21290.30 167
MDTV_nov1_ep13_2view59.90 27680.13 33667.65 26672.79 18154.33 20059.83 27892.58 161
ACMMP++_ref71.63 243
ACMMP++69.72 253
Test By Simon54.21 201
ITE_SJBPF70.43 34074.44 35447.06 36477.32 35360.16 32554.04 34083.53 25623.30 36884.01 35343.07 34361.58 32480.21 350
DeepMVS_CXcopyleft34.71 37951.45 39024.73 39928.48 40531.46 38617.49 39552.75 3815.80 39642.60 40018.18 38919.42 39336.81 392