This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MM90.87 291.52 288.92 1592.12 10071.10 2797.02 396.04 688.70 291.57 1496.19 3270.12 4598.91 1896.83 195.06 1796.76 15
MVS_030490.32 690.90 788.55 2394.05 4570.23 3697.00 593.73 7487.30 492.15 696.15 3466.38 6798.94 1796.71 294.67 3396.47 28
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11387.10 23164.19 19294.41 5288.14 30680.24 5992.54 596.97 1069.52 4897.17 8595.89 388.51 11094.56 106
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10986.95 23464.37 18594.30 5588.45 29780.51 5192.70 496.86 1569.98 4697.15 8995.83 488.08 11594.65 103
test_fmvsm_n_192087.69 2688.50 1985.27 11587.05 23363.55 21293.69 8791.08 19684.18 1390.17 2497.04 867.58 5897.99 3995.72 590.03 9594.26 119
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
fmvsm_s_conf0.5_n86.39 4786.91 3884.82 12887.36 22663.54 21394.74 4790.02 23582.52 2590.14 2596.92 1362.93 11697.84 4695.28 882.26 17093.07 165
fmvsm_s_conf0.1_n85.61 6485.93 5584.68 13882.95 30163.48 21594.03 6889.46 25381.69 3489.86 2696.74 2061.85 12797.75 4994.74 982.01 17692.81 173
fmvsm_s_conf0.5_n_a85.75 6086.09 5284.72 13585.73 25863.58 21093.79 8389.32 25981.42 4190.21 2396.91 1462.41 12197.67 5194.48 1080.56 18992.90 171
test_fmvsmconf_n86.58 4487.17 3484.82 12885.28 26462.55 23794.26 5789.78 24183.81 1787.78 3696.33 2965.33 7896.98 10194.40 1187.55 12194.95 87
test_fmvsmconf0.1_n85.71 6186.08 5384.62 14280.83 31862.33 24293.84 8088.81 28583.50 1987.00 4396.01 3763.36 10896.93 10994.04 1287.29 12494.61 105
fmvsm_s_conf0.1_n_a84.76 7884.84 7584.53 14480.23 32863.50 21492.79 12488.73 28880.46 5289.84 2796.65 2260.96 13597.57 6193.80 1380.14 19192.53 180
test_fmvsmvis_n_192083.80 9983.48 9084.77 13282.51 30463.72 20391.37 19183.99 35381.42 4177.68 14495.74 4258.37 16697.58 5993.38 1486.87 12793.00 168
patch_mono-289.71 1190.99 685.85 9496.04 2463.70 20595.04 4095.19 2086.74 791.53 1595.15 6673.86 2297.58 5993.38 1492.00 6996.28 37
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 22693.43 8884.06 1486.20 4990.17 18372.42 3396.98 10193.09 1695.92 1097.29 7
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6786.89 689.68 2895.78 4065.94 7299.10 992.99 1793.91 4296.58 21
test_fmvsmconf0.01_n83.70 10383.52 8784.25 15675.26 37161.72 25692.17 15087.24 31982.36 2784.91 6495.41 5155.60 20196.83 11492.85 1885.87 14094.21 122
DeepPCF-MVS81.17 189.72 1091.38 484.72 13593.00 7558.16 31396.72 994.41 4986.50 890.25 2297.83 175.46 1498.67 2592.78 1995.49 1397.32 6
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1189.33 185.77 5496.26 3072.84 2999.38 192.64 2095.93 997.08 11
CNVR-MVS90.32 690.89 888.61 2296.76 870.65 3096.47 1494.83 3184.83 1189.07 3196.80 1970.86 4199.06 1592.64 2095.71 1196.12 40
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5596.89 694.44 4771.65 21992.11 797.21 476.79 999.11 692.34 2295.36 1497.62 2
IU-MVS96.46 1169.91 4295.18 2180.75 4995.28 192.34 2295.36 1496.47 28
test_241102_TWO94.41 4971.65 21992.07 997.21 474.58 1899.11 692.34 2295.36 1496.59 19
MSC_two_6792asdad89.60 997.31 473.22 1295.05 2799.07 1392.01 2594.77 2696.51 24
No_MVS89.60 997.31 473.22 1295.05 2799.07 1392.01 2594.77 2696.51 24
test_vis1_n_192081.66 13882.01 12280.64 25082.24 30655.09 34094.76 4686.87 32181.67 3584.40 6994.63 8038.17 33094.67 20291.98 2783.34 16192.16 194
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3896.64 1094.52 4371.92 20590.55 2096.93 1173.77 2399.08 1191.91 2894.90 2296.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND88.70 1896.45 1270.43 3396.64 1094.37 5399.15 291.91 2894.90 2296.51 24
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7094.37 5372.48 18992.07 996.85 1683.82 299.15 291.53 3097.42 497.55 4
test_0728_THIRD72.48 18990.55 2096.93 1176.24 1199.08 1191.53 3094.99 1896.43 31
PS-MVSNAJ88.14 1887.61 2989.71 792.06 10176.72 195.75 2093.26 9483.86 1589.55 2996.06 3653.55 22597.89 4391.10 3293.31 5394.54 109
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12776.43 395.74 2193.12 10283.53 1889.55 2995.95 3853.45 22997.68 5091.07 3392.62 6094.54 109
MSP-MVS90.38 591.87 185.88 9192.83 7964.03 19593.06 11294.33 5582.19 2993.65 396.15 3485.89 197.19 8491.02 3497.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8790.36 23290.66 20879.37 7481.20 9993.67 11074.73 1696.55 12390.88 3592.00 6995.82 48
test_cas_vis1_n_192080.45 16080.61 14579.97 26978.25 35457.01 32894.04 6788.33 30079.06 8482.81 8693.70 10938.65 32591.63 30590.82 3679.81 19391.27 211
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13894.84 4593.78 6769.35 25988.39 3396.34 2867.74 5797.66 5490.62 3793.44 5196.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10394.17 5894.15 6068.77 26890.74 1897.27 276.09 1298.49 2990.58 3894.91 2196.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
9.1487.63 2893.86 4894.41 5294.18 5872.76 18486.21 4896.51 2466.64 6497.88 4490.08 3994.04 39
test9_res89.41 4094.96 1995.29 70
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 16095.15 3693.84 6678.17 9685.93 5394.80 7675.80 1398.21 3489.38 4188.78 10796.59 19
lupinMVS87.74 2587.77 2787.63 3889.24 17571.18 2496.57 1292.90 11182.70 2487.13 4095.27 5964.99 8195.80 15489.34 4291.80 7295.93 45
ETV-MVS86.01 5486.11 5185.70 10190.21 15067.02 12093.43 10391.92 15281.21 4584.13 7394.07 10360.93 13695.63 16589.28 4389.81 9694.46 115
SMA-MVScopyleft88.14 1888.29 2287.67 3393.21 6768.72 7293.85 7794.03 6374.18 15291.74 1296.67 2165.61 7698.42 3389.24 4496.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
train_agg87.21 3387.42 3286.60 6894.18 4167.28 11094.16 5993.51 8271.87 21085.52 5795.33 5468.19 5297.27 8089.09 4594.90 2295.25 76
SD-MVS87.49 2887.49 3187.50 4293.60 5668.82 6993.90 7492.63 12376.86 11787.90 3595.76 4166.17 6997.63 5689.06 4691.48 7896.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC89.07 1689.46 1587.91 2896.60 1069.05 6396.38 1594.64 4084.42 1286.74 4596.20 3166.56 6698.76 2489.03 4794.56 3495.92 46
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8695.24 3394.49 4582.43 2688.90 3296.35 2771.89 3898.63 2688.76 4896.40 696.06 41
SF-MVS87.03 3587.09 3586.84 5992.70 8567.45 10893.64 9093.76 7070.78 24386.25 4796.44 2666.98 6197.79 4788.68 4994.56 3495.28 72
sasdasda86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9591.71 16580.26 5687.55 3795.25 6163.59 10496.93 10988.18 5084.34 15197.11 9
canonicalmvs86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9591.71 16580.26 5687.55 3795.25 6163.59 10496.93 10988.18 5084.34 15197.11 9
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11568.04 9090.36 23293.55 8182.89 2191.29 1692.89 12672.27 3596.03 14987.99 5294.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
alignmvs87.28 3286.97 3788.24 2791.30 12971.14 2695.61 2593.56 8079.30 7587.07 4295.25 6168.43 5096.93 10987.87 5384.33 15396.65 17
jason86.40 4686.17 5087.11 5186.16 24970.54 3295.71 2492.19 14082.00 3184.58 6794.34 9261.86 12695.53 17487.76 5490.89 8695.27 73
jason: jason.
h-mvs3383.01 11582.56 11584.35 15289.34 16762.02 24892.72 12793.76 7081.45 3882.73 8792.25 14360.11 14397.13 9087.69 5562.96 32193.91 139
hse-mvs281.12 14881.11 13581.16 23786.52 24157.48 32189.40 25791.16 18981.45 3882.73 8790.49 17560.11 14394.58 20387.69 5560.41 34891.41 204
ZD-MVS96.63 965.50 15893.50 8470.74 24485.26 6295.19 6564.92 8497.29 7687.51 5793.01 56
mvsmamba81.55 14080.72 14184.03 16391.42 12466.93 12283.08 32689.13 27078.55 9267.50 26987.02 23351.79 24190.07 32987.48 5890.49 9295.10 81
test_prior295.10 3875.40 13785.25 6395.61 4567.94 5587.47 5994.77 26
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 14566.38 13596.09 1793.87 6577.73 10484.01 7495.66 4363.39 10797.94 4087.40 6093.55 5095.42 59
Skip Steuart: Steuart Systems R&D Blog.
diffmvspermissive84.28 8683.83 8385.61 10387.40 22468.02 9190.88 21289.24 26280.54 5081.64 9492.52 13259.83 14794.52 21187.32 6185.11 14594.29 118
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 997.01 494.40 5188.32 385.71 5594.91 7374.11 2198.91 1887.26 6295.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
casdiffmvs_mvgpermissive85.66 6385.18 6887.09 5288.22 20269.35 5893.74 8691.89 15581.47 3780.10 11591.45 15964.80 8696.35 13287.23 6387.69 11995.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MGCFI-Net85.59 6585.73 6085.17 11991.41 12762.44 23892.87 12291.31 18279.65 6886.99 4495.14 6762.90 11796.12 14187.13 6484.13 15896.96 13
PVSNet_BlendedMVS83.38 10883.43 9383.22 18693.76 5067.53 10594.06 6393.61 7879.13 8081.00 10485.14 25363.19 11197.29 7687.08 6573.91 24284.83 312
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10596.33 1693.61 7882.34 2881.00 10493.08 12063.19 11197.29 7687.08 6591.38 8094.13 128
MP-MVS-pluss85.24 7085.13 6985.56 10491.42 12465.59 15491.54 18292.51 12774.56 14680.62 10895.64 4459.15 15697.00 9786.94 6793.80 4394.07 132
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VDD-MVS83.06 11481.81 12586.81 6190.86 13967.70 9995.40 2991.50 17675.46 13581.78 9392.34 14040.09 32097.13 9086.85 6882.04 17595.60 54
SPE-MVS-test86.14 5287.01 3683.52 17792.63 8759.36 30295.49 2791.92 15280.09 6085.46 5995.53 4961.82 12895.77 15786.77 6993.37 5295.41 60
agg_prior286.41 7094.75 3095.33 66
APD-MVScopyleft85.93 5685.99 5485.76 9895.98 2665.21 16393.59 9392.58 12566.54 28686.17 5095.88 3963.83 9797.00 9786.39 7192.94 5795.06 82
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP86.05 5385.80 5886.80 6291.58 11967.53 10591.79 17293.49 8574.93 14384.61 6695.30 5659.42 15297.92 4186.13 7294.92 2094.94 88
CS-MVS85.80 5986.65 4483.27 18592.00 10658.92 30695.31 3191.86 15779.97 6184.82 6595.40 5262.26 12295.51 17586.11 7392.08 6895.37 63
PHI-MVS86.83 3986.85 4186.78 6393.47 6265.55 15695.39 3095.10 2371.77 21585.69 5696.52 2362.07 12498.77 2386.06 7495.60 1296.03 43
MVS_111021_HR86.19 5185.80 5887.37 4493.17 6969.79 4793.99 6993.76 7079.08 8278.88 13393.99 10462.25 12398.15 3685.93 7591.15 8494.15 127
DeepC-MVS77.85 385.52 6785.24 6786.37 7888.80 18566.64 12992.15 15193.68 7681.07 4676.91 15593.64 11162.59 11998.44 3185.50 7692.84 5994.03 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EC-MVSNet84.53 8285.04 7183.01 18989.34 16761.37 26394.42 5191.09 19477.91 10083.24 7894.20 9858.37 16695.40 17685.35 7791.41 7992.27 190
test_fmvs174.07 26273.69 25075.22 32278.91 34647.34 37989.06 26674.69 38263.68 30979.41 12491.59 15824.36 38487.77 34885.22 7876.26 22790.55 220
VNet86.20 5085.65 6187.84 3093.92 4769.99 3895.73 2395.94 778.43 9386.00 5293.07 12158.22 16897.00 9785.22 7884.33 15396.52 23
testing1186.71 4386.44 4587.55 4093.54 5971.35 2193.65 8995.58 1181.36 4380.69 10792.21 14472.30 3496.46 12885.18 8083.43 16094.82 95
SDMVSNet80.26 16378.88 17484.40 14989.25 17267.63 10285.35 30693.02 10576.77 12170.84 22387.12 23047.95 28096.09 14385.04 8174.55 23389.48 235
MP-MVScopyleft85.02 7384.97 7285.17 11992.60 8864.27 19093.24 10792.27 13373.13 17479.63 12194.43 8561.90 12597.17 8585.00 8292.56 6194.06 133
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
casdiffmvspermissive85.37 6884.87 7486.84 5988.25 20069.07 6293.04 11491.76 16281.27 4480.84 10692.07 14764.23 9296.06 14784.98 8387.43 12395.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CSCG86.87 3686.26 4788.72 1795.05 3170.79 2993.83 8295.33 1768.48 27277.63 14594.35 9173.04 2798.45 3084.92 8493.71 4796.92 14
MTAPA83.91 9683.38 9785.50 10591.89 11165.16 16581.75 33592.23 13475.32 13880.53 11095.21 6456.06 19797.16 8884.86 8592.55 6294.18 124
MVSMamba_PlusPlus84.97 7683.65 8688.93 1490.17 15174.04 887.84 28492.69 11862.18 32481.47 9787.64 22171.47 4096.28 13484.69 8694.74 3196.47 28
test_fmvs1_n72.69 28171.92 27274.99 32571.15 38447.08 38187.34 29375.67 37763.48 31178.08 14191.17 16520.16 39687.87 34584.65 8775.57 23190.01 226
test_vis1_n71.63 28770.73 28374.31 33269.63 39047.29 38086.91 29772.11 38863.21 31575.18 17190.17 18320.40 39485.76 36084.59 8874.42 23789.87 227
baseline85.01 7484.44 7886.71 6488.33 19768.73 7190.24 23791.82 16181.05 4781.18 10092.50 13363.69 10096.08 14684.45 8986.71 13395.32 68
UBG86.83 3986.70 4287.20 4893.07 7369.81 4693.43 10395.56 1381.52 3681.50 9592.12 14573.58 2696.28 13484.37 9085.20 14495.51 58
CLD-MVS82.73 11982.35 11983.86 16687.90 21067.65 10195.45 2892.18 14185.06 1072.58 19992.27 14152.46 23695.78 15584.18 9179.06 20188.16 252
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
xiu_mvs_v1_base_debu82.16 12981.12 13285.26 11686.42 24268.72 7292.59 13890.44 21573.12 17584.20 7094.36 8738.04 33395.73 15984.12 9286.81 12891.33 205
xiu_mvs_v1_base82.16 12981.12 13285.26 11686.42 24268.72 7292.59 13890.44 21573.12 17584.20 7094.36 8738.04 33395.73 15984.12 9286.81 12891.33 205
xiu_mvs_v1_base_debi82.16 12981.12 13285.26 11686.42 24268.72 7292.59 13890.44 21573.12 17584.20 7094.36 8738.04 33395.73 15984.12 9286.81 12891.33 205
EPNet87.84 2488.38 2086.23 8293.30 6466.05 14295.26 3294.84 3087.09 588.06 3494.53 8266.79 6397.34 7383.89 9591.68 7495.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_111021_LR82.02 13381.52 12783.51 17988.42 19362.88 23289.77 24988.93 28176.78 12075.55 16893.10 11850.31 25595.38 17883.82 9687.02 12692.26 191
reproduce-ours83.51 10583.33 9984.06 15992.18 9860.49 28290.74 21892.04 14564.35 30183.24 7895.59 4759.05 15797.27 8083.61 9789.17 10394.41 116
our_new_method83.51 10583.33 9984.06 15992.18 9860.49 28290.74 21892.04 14564.35 30183.24 7895.59 4759.05 15797.27 8083.61 9789.17 10394.41 116
RRT-MVS82.61 12381.16 13086.96 5791.10 13368.75 7087.70 28792.20 13876.97 11572.68 19587.10 23251.30 24896.41 13083.56 9987.84 11795.74 50
MSLP-MVS++86.27 4985.91 5687.35 4592.01 10568.97 6695.04 4092.70 11679.04 8581.50 9596.50 2558.98 16196.78 11583.49 10093.93 4196.29 35
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3195.86 2768.32 8095.74 2194.11 6183.82 1683.49 7796.19 3264.53 9098.44 3183.42 10194.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPM-MVS90.70 390.52 991.24 189.68 16076.68 297.29 195.35 1682.87 2291.58 1397.22 379.93 599.10 983.12 10297.64 297.94 1
reproduce_model83.15 11282.96 10583.73 17092.02 10259.74 29490.37 23192.08 14363.70 30882.86 8395.48 5058.62 16397.17 8583.06 10388.42 11194.26 119
BP-MVS186.54 4586.68 4386.13 8587.80 21567.18 11492.97 11795.62 1079.92 6282.84 8494.14 10074.95 1596.46 12882.91 10488.96 10694.74 97
SR-MVS82.81 11882.58 11483.50 18093.35 6361.16 26692.23 14991.28 18664.48 30081.27 9895.28 5753.71 22495.86 15382.87 10588.77 10893.49 151
ET-MVSNet_ETH3D84.01 9483.15 10486.58 7090.78 14170.89 2894.74 4794.62 4181.44 4058.19 33993.64 11173.64 2592.35 28882.66 10678.66 20696.50 27
ZNCC-MVS85.33 6985.08 7086.06 8693.09 7265.65 15293.89 7593.41 9073.75 16379.94 11794.68 7960.61 13998.03 3882.63 10793.72 4694.52 111
LFMVS84.34 8582.73 11289.18 1394.76 3373.25 1194.99 4291.89 15571.90 20782.16 9193.49 11547.98 27997.05 9282.55 10884.82 14797.25 8
VDDNet80.50 15878.26 18187.21 4786.19 24769.79 4794.48 5091.31 18260.42 33879.34 12590.91 16838.48 32896.56 12282.16 10981.05 18495.27 73
HPM-MVScopyleft83.25 11082.95 10784.17 15792.25 9462.88 23290.91 20991.86 15770.30 24877.12 15293.96 10556.75 18696.28 13482.04 11091.34 8293.34 154
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
nrg03080.93 15179.86 15684.13 15883.69 29068.83 6893.23 10891.20 18775.55 13475.06 17288.22 21163.04 11594.74 19781.88 11166.88 29088.82 241
Effi-MVS+83.82 9882.76 11186.99 5689.56 16369.40 5391.35 19386.12 33172.59 18683.22 8192.81 13059.60 15096.01 15181.76 11287.80 11895.56 56
HFP-MVS84.73 7984.40 7985.72 10093.75 5265.01 16993.50 9893.19 9872.19 19979.22 12794.93 7159.04 15997.67 5181.55 11392.21 6494.49 114
ACMMPR84.37 8384.06 8185.28 11493.56 5864.37 18593.50 9893.15 10072.19 19978.85 13594.86 7456.69 18897.45 6581.55 11392.20 6594.02 135
GST-MVS84.63 8184.29 8085.66 10292.82 8165.27 16193.04 11493.13 10173.20 17278.89 13094.18 9959.41 15397.85 4581.45 11592.48 6393.86 142
PMMVS81.98 13482.04 12181.78 22389.76 15956.17 33291.13 20590.69 20577.96 9880.09 11693.57 11346.33 29394.99 18981.41 11687.46 12294.17 125
region2R84.36 8484.03 8285.36 11193.54 5964.31 18893.43 10392.95 10972.16 20278.86 13494.84 7556.97 18397.53 6381.38 11792.11 6794.24 121
CP-MVS83.71 10283.40 9684.65 13993.14 7063.84 19794.59 4992.28 13271.03 23777.41 14894.92 7255.21 20696.19 13881.32 11890.70 8893.91 139
MVS84.66 8082.86 11090.06 290.93 13674.56 787.91 28295.54 1468.55 27072.35 20694.71 7859.78 14898.90 2081.29 11994.69 3296.74 16
reproduce_monomvs79.49 17879.11 17280.64 25092.91 7761.47 26191.17 20493.28 9383.09 2064.04 30182.38 28366.19 6894.57 20581.19 12057.71 35685.88 295
test_yl84.28 8683.16 10287.64 3494.52 3769.24 5995.78 1895.09 2469.19 26281.09 10192.88 12757.00 18197.44 6681.11 12181.76 17896.23 38
DCV-MVSNet84.28 8683.16 10287.64 3494.52 3769.24 5995.78 1895.09 2469.19 26281.09 10192.88 12757.00 18197.44 6681.11 12181.76 17896.23 38
CDPH-MVS85.71 6185.46 6386.46 7494.75 3467.19 11293.89 7592.83 11370.90 23983.09 8295.28 5763.62 10297.36 7180.63 12394.18 3794.84 92
HY-MVS76.49 584.28 8683.36 9887.02 5592.22 9567.74 9884.65 31094.50 4479.15 7982.23 9087.93 21666.88 6296.94 10780.53 12482.20 17396.39 33
CHOSEN 1792x268884.98 7583.45 9289.57 1189.94 15575.14 692.07 15792.32 13181.87 3275.68 16488.27 20760.18 14298.60 2780.46 12590.27 9494.96 86
GDP-MVS85.54 6685.32 6586.18 8387.64 21867.95 9492.91 12192.36 13077.81 10283.69 7694.31 9472.84 2996.41 13080.39 12685.95 13994.19 123
testing9185.93 5685.31 6687.78 3293.59 5771.47 1993.50 9895.08 2680.26 5680.53 11091.93 15070.43 4396.51 12580.32 12782.13 17495.37 63
EIA-MVS84.84 7784.88 7384.69 13791.30 12962.36 24193.85 7792.04 14579.45 7179.33 12694.28 9662.42 12096.35 13280.05 12891.25 8395.38 62
testing9986.01 5485.47 6287.63 3893.62 5571.25 2393.47 10195.23 1980.42 5480.60 10991.95 14971.73 3996.50 12680.02 12982.22 17295.13 79
APD-MVS_3200maxsize81.64 13981.32 12982.59 20092.36 9158.74 30891.39 18891.01 20163.35 31279.72 12094.62 8151.82 23996.14 14079.71 13087.93 11692.89 172
PVSNet_Blended_VisFu83.97 9583.50 8985.39 10990.02 15366.59 13293.77 8491.73 16377.43 11277.08 15489.81 19063.77 9996.97 10479.67 13188.21 11392.60 177
WTY-MVS86.32 4885.81 5787.85 2992.82 8169.37 5795.20 3495.25 1882.71 2381.91 9294.73 7767.93 5697.63 5679.55 13282.25 17196.54 22
MonoMVSNet76.99 22375.08 22982.73 19483.32 29563.24 21986.47 30286.37 32579.08 8266.31 28379.30 33049.80 26291.72 30279.37 13365.70 29793.23 158
EI-MVSNet-Vis-set83.77 10083.67 8584.06 15992.79 8463.56 21191.76 17594.81 3279.65 6877.87 14294.09 10163.35 10997.90 4279.35 13479.36 19890.74 216
PGM-MVS83.25 11082.70 11384.92 12492.81 8364.07 19490.44 22792.20 13871.28 23177.23 15194.43 8555.17 20797.31 7579.33 13591.38 8093.37 153
XVS83.87 9783.47 9185.05 12193.22 6563.78 19992.92 11992.66 12073.99 15578.18 13994.31 9455.25 20397.41 6879.16 13691.58 7693.95 137
X-MVStestdata76.86 22574.13 24485.05 12193.22 6563.78 19992.92 11992.66 12073.99 15578.18 13910.19 42255.25 20397.41 6879.16 13691.58 7693.95 137
CostFormer82.33 12681.15 13185.86 9389.01 18068.46 7782.39 33293.01 10675.59 13380.25 11481.57 29672.03 3794.96 19079.06 13877.48 21794.16 126
mPP-MVS82.96 11782.44 11784.52 14592.83 7962.92 23092.76 12591.85 15971.52 22775.61 16794.24 9753.48 22896.99 10078.97 13990.73 8793.64 148
baseline283.68 10483.42 9584.48 14787.37 22566.00 14490.06 24195.93 879.71 6769.08 24490.39 17777.92 696.28 13478.91 14081.38 18291.16 212
CPTT-MVS79.59 17579.16 17080.89 24891.54 12259.80 29392.10 15488.54 29660.42 33872.96 19193.28 11748.27 27592.80 26978.89 14186.50 13690.06 224
SR-MVS-dyc-post81.06 14980.70 14282.15 21492.02 10258.56 31090.90 21090.45 21262.76 31978.89 13094.46 8351.26 24995.61 16778.77 14286.77 13192.28 187
RE-MVS-def80.48 14892.02 10258.56 31090.90 21090.45 21262.76 31978.89 13094.46 8349.30 26678.77 14286.77 13192.28 187
ACMMPcopyleft81.49 14180.67 14383.93 16591.71 11662.90 23192.13 15292.22 13771.79 21471.68 21593.49 11550.32 25496.96 10578.47 14484.22 15791.93 197
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PAPM85.89 5885.46 6387.18 4988.20 20372.42 1592.41 14492.77 11482.11 3080.34 11393.07 12168.27 5195.02 18778.39 14593.59 4994.09 130
PAPR85.15 7284.47 7787.18 4996.02 2568.29 8191.85 17093.00 10876.59 12479.03 12995.00 6861.59 12997.61 5878.16 14689.00 10595.63 53
EI-MVSNet-UG-set83.14 11382.96 10583.67 17592.28 9363.19 22291.38 19094.68 3879.22 7776.60 15793.75 10762.64 11897.76 4878.07 14778.01 20990.05 225
CANet_DTU84.09 9383.52 8785.81 9590.30 14866.82 12491.87 16889.01 27785.27 986.09 5193.74 10847.71 28396.98 10177.90 14889.78 9893.65 147
BP-MVS77.63 149
HQP-MVS81.14 14680.64 14482.64 19887.54 22063.66 20894.06 6391.70 16879.80 6474.18 17990.30 17951.63 24495.61 16777.63 14978.90 20288.63 243
sss82.71 12182.38 11883.73 17089.25 17259.58 29792.24 14894.89 2977.96 9879.86 11892.38 13856.70 18797.05 9277.26 15180.86 18694.55 107
HQP_MVS80.34 16279.75 15882.12 21686.94 23562.42 23993.13 11091.31 18278.81 8872.53 20089.14 19850.66 25295.55 17276.74 15278.53 20788.39 249
plane_prior591.31 18295.55 17276.74 15278.53 20788.39 249
gm-plane-assit88.42 19367.04 11978.62 9191.83 15297.37 7076.57 154
CHOSEN 280x42077.35 21776.95 20578.55 29187.07 23262.68 23669.71 38782.95 36068.80 26771.48 21887.27 22966.03 7184.00 37176.47 15582.81 16688.95 238
ab-mvs80.18 16578.31 18085.80 9688.44 19265.49 15983.00 32992.67 11971.82 21377.36 14985.01 25454.50 21296.59 11976.35 15675.63 23095.32 68
testing22285.18 7184.69 7686.63 6792.91 7769.91 4292.61 13595.80 980.31 5580.38 11292.27 14168.73 4995.19 18475.94 15783.27 16294.81 96
mmtdpeth68.33 31366.37 31074.21 33382.81 30251.73 35384.34 31280.42 36767.01 28471.56 21668.58 38330.52 37192.35 28875.89 15836.21 39978.56 377
MVSTER82.47 12482.05 12083.74 16892.68 8669.01 6491.90 16793.21 9579.83 6372.14 20785.71 24974.72 1794.72 19875.72 15972.49 25287.50 258
test_fmvs265.78 33164.84 32068.60 36466.54 39641.71 39683.27 32269.81 39554.38 36767.91 26284.54 26115.35 40181.22 38875.65 16066.16 29482.88 333
tpmrst80.57 15679.14 17184.84 12790.10 15268.28 8281.70 33689.72 24877.63 10875.96 16179.54 32864.94 8392.71 27275.43 16177.28 22093.55 149
旧先验292.00 16359.37 34687.54 3993.47 25175.39 162
MG-MVS87.11 3486.27 4689.62 897.79 176.27 494.96 4394.49 4578.74 9083.87 7592.94 12464.34 9196.94 10775.19 16394.09 3895.66 52
OPM-MVS79.00 18678.09 18381.73 22483.52 29363.83 19891.64 18190.30 22276.36 12771.97 21089.93 18946.30 29495.17 18575.10 16477.70 21286.19 284
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Effi-MVS+-dtu76.14 23475.28 22778.72 29083.22 29655.17 33989.87 24787.78 31375.42 13667.98 26081.43 29845.08 30392.52 28175.08 16571.63 25788.48 247
HyFIR lowres test81.03 15079.56 16185.43 10787.81 21468.11 8990.18 23890.01 23670.65 24572.95 19286.06 24563.61 10394.50 21275.01 16679.75 19593.67 146
EPP-MVSNet81.79 13681.52 12782.61 19988.77 18660.21 28893.02 11693.66 7768.52 27172.90 19390.39 17772.19 3694.96 19074.93 16779.29 20092.67 175
MVS_Test84.16 9283.20 10187.05 5491.56 12069.82 4589.99 24692.05 14477.77 10382.84 8486.57 23863.93 9696.09 14374.91 16889.18 10295.25 76
VPA-MVSNet79.03 18578.00 18582.11 21985.95 25264.48 17893.22 10994.66 3975.05 14274.04 18484.95 25552.17 23893.52 24974.90 16967.04 28988.32 251
HPM-MVS_fast80.25 16479.55 16382.33 20691.55 12159.95 29191.32 19589.16 26765.23 29774.71 17693.07 12147.81 28295.74 15874.87 17088.23 11291.31 209
AUN-MVS78.37 20177.43 19481.17 23686.60 24057.45 32289.46 25691.16 18974.11 15374.40 17890.49 17555.52 20294.57 20574.73 17160.43 34791.48 202
ECVR-MVScopyleft81.29 14480.38 15084.01 16488.39 19561.96 25092.56 14186.79 32377.66 10676.63 15691.42 16046.34 29295.24 18374.36 17289.23 10094.85 89
mvsany_test168.77 30868.56 29769.39 36073.57 37745.88 38880.93 34460.88 40859.65 34471.56 21690.26 18143.22 31075.05 39574.26 17362.70 32487.25 267
TESTMET0.1,182.41 12581.98 12383.72 17288.08 20463.74 20192.70 12993.77 6979.30 7577.61 14687.57 22358.19 16994.08 22773.91 17486.68 13493.33 156
mamv465.18 33467.43 30458.44 38077.88 36049.36 37169.40 38870.99 39348.31 38657.78 34585.53 25059.01 16051.88 41873.67 17564.32 31274.07 388
test250683.29 10982.92 10884.37 15188.39 19563.18 22392.01 16091.35 18177.66 10678.49 13891.42 16064.58 8995.09 18673.19 17689.23 10094.85 89
mvs_anonymous81.36 14379.99 15485.46 10690.39 14768.40 7886.88 29990.61 21074.41 14770.31 23184.67 25863.79 9892.32 29073.13 17785.70 14195.67 51
PS-MVSNAJss77.26 21876.31 21280.13 26280.64 32259.16 30490.63 22591.06 19872.80 18368.58 25584.57 26053.55 22593.96 23772.97 17871.96 25687.27 266
ACMP71.68 1075.58 24974.23 24279.62 27884.97 27159.64 29590.80 21589.07 27570.39 24762.95 31387.30 22738.28 32993.87 24272.89 17971.45 26085.36 306
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVSFormer83.75 10182.88 10986.37 7889.24 17571.18 2489.07 26490.69 20565.80 29187.13 4094.34 9264.99 8192.67 27572.83 18091.80 7295.27 73
test_djsdf73.76 26872.56 26577.39 30577.00 36453.93 34589.07 26490.69 20565.80 29163.92 30282.03 28843.14 31192.67 27572.83 18068.53 27885.57 301
test111180.84 15380.02 15283.33 18387.87 21160.76 27492.62 13486.86 32277.86 10175.73 16391.39 16246.35 29194.70 20172.79 18288.68 10994.52 111
WBMVS81.67 13780.98 13883.72 17293.07 7369.40 5394.33 5493.05 10476.84 11872.05 20984.14 26474.49 1993.88 24172.76 18368.09 28187.88 254
miper_enhance_ethall78.86 19077.97 18681.54 22988.00 20865.17 16491.41 18489.15 26875.19 14068.79 25183.98 26767.17 6092.82 26772.73 18465.30 29986.62 278
OMC-MVS78.67 19777.91 18880.95 24685.76 25757.40 32388.49 27388.67 29173.85 16072.43 20492.10 14649.29 26794.55 20972.73 18477.89 21090.91 215
LPG-MVS_test75.82 24474.58 23579.56 28084.31 28259.37 30090.44 22789.73 24669.49 25764.86 29188.42 20338.65 32594.30 21772.56 18672.76 24985.01 310
LGP-MVS_train79.56 28084.31 28259.37 30089.73 24669.49 25764.86 29188.42 20338.65 32594.30 21772.56 18672.76 24985.01 310
VPNet78.82 19177.53 19382.70 19684.52 27766.44 13493.93 7292.23 13480.46 5272.60 19888.38 20549.18 26893.13 25572.47 18863.97 31888.55 246
GG-mvs-BLEND86.53 7391.91 11069.67 5275.02 37694.75 3478.67 13790.85 16977.91 794.56 20872.25 18993.74 4595.36 65
test-LLR80.10 16779.56 16181.72 22586.93 23761.17 26492.70 12991.54 17371.51 22875.62 16586.94 23453.83 22192.38 28572.21 19084.76 14991.60 199
test-mter79.96 17079.38 16781.72 22586.93 23761.17 26492.70 12991.54 17373.85 16075.62 16586.94 23449.84 26192.38 28572.21 19084.76 14991.60 199
IB-MVS77.80 482.18 12880.46 14987.35 4589.14 17770.28 3595.59 2695.17 2278.85 8670.19 23285.82 24770.66 4297.67 5172.19 19266.52 29394.09 130
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cl2277.94 20976.78 20681.42 23187.57 21964.93 17290.67 22188.86 28472.45 19167.63 26882.68 28064.07 9392.91 26571.79 19365.30 29986.44 279
v2v48277.42 21675.65 22282.73 19480.38 32467.13 11691.85 17090.23 22675.09 14169.37 24083.39 27353.79 22394.44 21371.77 19465.00 30586.63 277
baseline181.84 13581.03 13684.28 15591.60 11866.62 13091.08 20691.66 17081.87 3274.86 17491.67 15669.98 4694.92 19371.76 19564.75 30891.29 210
V4276.46 23274.55 23682.19 21379.14 34267.82 9690.26 23689.42 25673.75 16368.63 25481.89 28951.31 24794.09 22671.69 19664.84 30684.66 313
131480.70 15578.95 17385.94 9087.77 21767.56 10387.91 28292.55 12672.17 20167.44 27093.09 11950.27 25697.04 9571.68 19787.64 12093.23 158
CDS-MVSNet81.43 14280.74 14083.52 17786.26 24664.45 17992.09 15590.65 20975.83 13173.95 18589.81 19063.97 9592.91 26571.27 19882.82 16593.20 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_vis1_rt59.09 35857.31 35764.43 37368.44 39346.02 38783.05 32848.63 41751.96 37349.57 37663.86 39316.30 39980.20 39071.21 19962.79 32367.07 400
GA-MVS78.33 20376.23 21384.65 13983.65 29166.30 13891.44 18390.14 22976.01 12970.32 23084.02 26642.50 31294.72 19870.98 20077.00 22292.94 169
jajsoiax73.05 27271.51 27777.67 30077.46 36154.83 34188.81 26890.04 23469.13 26462.85 31583.51 27131.16 36892.75 27170.83 20169.80 26585.43 305
3Dnovator+73.60 782.10 13280.60 14686.60 6890.89 13866.80 12695.20 3493.44 8774.05 15467.42 27192.49 13549.46 26497.65 5570.80 20291.68 7495.33 66
DP-MVS Recon82.73 11981.65 12685.98 8897.31 467.06 11795.15 3691.99 14969.08 26576.50 15993.89 10654.48 21598.20 3570.76 20385.66 14292.69 174
miper_ehance_all_eth77.60 21376.44 21081.09 24385.70 25964.41 18390.65 22288.64 29372.31 19567.37 27482.52 28164.77 8792.64 27870.67 20465.30 29986.24 283
PAPM_NR82.97 11681.84 12486.37 7894.10 4466.76 12787.66 28892.84 11269.96 25274.07 18393.57 11363.10 11497.50 6470.66 20590.58 9094.85 89
XVG-OURS-SEG-HR74.70 25873.08 25679.57 27978.25 35457.33 32480.49 34687.32 31663.22 31468.76 25290.12 18844.89 30491.59 30670.55 20674.09 24089.79 229
mvs_tets72.71 27971.11 27877.52 30177.41 36254.52 34388.45 27489.76 24268.76 26962.70 31683.26 27429.49 37392.71 27270.51 20769.62 26785.34 307
cascas78.18 20475.77 22085.41 10887.14 23069.11 6192.96 11891.15 19166.71 28570.47 22686.07 24437.49 33996.48 12770.15 20879.80 19490.65 217
PVSNet_068.08 1571.81 28568.32 30182.27 20884.68 27362.31 24488.68 27090.31 22175.84 13057.93 34480.65 31337.85 33694.19 22269.94 20929.05 41090.31 222
thisisatest051583.41 10782.49 11686.16 8489.46 16668.26 8393.54 9594.70 3774.31 15075.75 16290.92 16772.62 3196.52 12469.64 21081.50 18193.71 145
XXY-MVS77.94 20976.44 21082.43 20282.60 30364.44 18092.01 16091.83 16073.59 16870.00 23585.82 24754.43 21694.76 19569.63 21168.02 28388.10 253
MAR-MVS84.18 9183.43 9386.44 7596.25 2165.93 14794.28 5694.27 5774.41 14779.16 12895.61 4553.99 22098.88 2269.62 21293.26 5494.50 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Patchmatch-RL test68.17 31564.49 32679.19 28471.22 38353.93 34570.07 38671.54 39269.22 26156.79 34962.89 39456.58 19088.61 33669.53 21352.61 37195.03 85
TAMVS80.37 16179.45 16483.13 18885.14 26763.37 21691.23 19990.76 20474.81 14572.65 19788.49 20260.63 13892.95 26069.41 21481.95 17793.08 164
testdata81.34 23389.02 17957.72 31789.84 24058.65 34985.32 6194.09 10157.03 17993.28 25369.34 21590.56 9193.03 166
c3_l76.83 22875.47 22380.93 24785.02 27064.18 19390.39 23088.11 30771.66 21866.65 28281.64 29463.58 10692.56 27969.31 21662.86 32286.04 289
v114476.73 23074.88 23082.27 20880.23 32866.60 13191.68 17990.21 22873.69 16569.06 24581.89 28952.73 23494.40 21469.21 21765.23 30285.80 296
ETVMVS84.22 9083.71 8485.76 9892.58 8968.25 8592.45 14395.53 1579.54 7079.46 12391.64 15770.29 4494.18 22369.16 21882.76 16894.84 92
Anonymous2024052976.84 22774.15 24384.88 12691.02 13464.95 17193.84 8091.09 19453.57 36973.00 19087.42 22535.91 34997.32 7469.14 21972.41 25492.36 183
XVG-OURS74.25 26172.46 26779.63 27778.45 35257.59 32080.33 34887.39 31563.86 30668.76 25289.62 19240.50 31991.72 30269.00 22074.25 23889.58 232
v14876.19 23374.47 23881.36 23280.05 33064.44 18091.75 17790.23 22673.68 16667.13 27580.84 30955.92 19993.86 24468.95 22161.73 33685.76 299
anonymousdsp71.14 29069.37 29476.45 31572.95 37954.71 34284.19 31388.88 28261.92 32962.15 31979.77 32538.14 33291.44 31368.90 22267.45 28783.21 330
3Dnovator73.91 682.69 12280.82 13988.31 2689.57 16271.26 2292.60 13694.39 5278.84 8767.89 26492.48 13648.42 27498.52 2868.80 22394.40 3695.15 78
test_fmvs356.82 35954.86 36362.69 37853.59 41135.47 40875.87 37265.64 40243.91 39655.10 35371.43 3776.91 41674.40 39868.64 22452.63 37078.20 379
Anonymous20240521177.96 20875.33 22685.87 9293.73 5364.52 17594.85 4485.36 33862.52 32276.11 16090.18 18229.43 37497.29 7668.51 22577.24 22195.81 49
eth_miper_zixun_eth75.96 24274.40 23980.66 24984.66 27463.02 22589.28 25988.27 30371.88 20965.73 28581.65 29359.45 15192.81 26868.13 22660.53 34586.14 285
PVSNet73.49 880.05 16878.63 17684.31 15390.92 13764.97 17092.47 14291.05 19979.18 7872.43 20490.51 17437.05 34594.06 22968.06 22786.00 13893.90 141
FA-MVS(test-final)79.12 18477.23 20084.81 13190.54 14363.98 19681.35 34191.71 16571.09 23674.85 17582.94 27652.85 23297.05 9267.97 22881.73 18093.41 152
v14419276.05 23874.03 24582.12 21679.50 33666.55 13391.39 18889.71 24972.30 19668.17 25881.33 30151.75 24294.03 23467.94 22964.19 31385.77 297
UGNet79.87 17278.68 17583.45 18289.96 15461.51 25992.13 15290.79 20376.83 11978.85 13586.33 24238.16 33196.17 13967.93 23087.17 12592.67 175
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-LS76.49 23175.18 22880.43 25484.49 27862.74 23490.64 22388.80 28672.40 19365.16 29081.72 29260.98 13492.27 29167.74 23164.65 31086.29 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet78.97 18778.22 18281.25 23485.33 26262.73 23589.53 25493.21 9572.39 19472.14 20790.13 18660.99 13394.72 19867.73 23272.49 25286.29 281
gg-mvs-nofinetune77.18 21974.31 24085.80 9691.42 12468.36 7971.78 38194.72 3549.61 38177.12 15245.92 40777.41 893.98 23667.62 23393.16 5595.05 83
LCM-MVSNet-Re72.93 27471.84 27376.18 31888.49 18948.02 37480.07 35370.17 39473.96 15852.25 36480.09 32249.98 25888.24 34267.35 23484.23 15692.28 187
tpm279.80 17377.95 18785.34 11288.28 19868.26 8381.56 33891.42 17970.11 25077.59 14780.50 31467.40 5994.26 22167.34 23577.35 21893.51 150
v875.35 25073.26 25581.61 22780.67 32166.82 12489.54 25389.27 26171.65 21963.30 30980.30 31854.99 20994.06 22967.33 23662.33 32883.94 318
sd_testset77.08 22275.37 22482.20 21289.25 17262.11 24782.06 33389.09 27376.77 12170.84 22387.12 23041.43 31695.01 18867.23 23774.55 23389.48 235
UWE-MVS80.81 15481.01 13780.20 26089.33 16957.05 32691.91 16694.71 3675.67 13275.01 17389.37 19463.13 11391.44 31367.19 23882.80 16792.12 195
v119275.98 24073.92 24782.15 21479.73 33266.24 14091.22 20089.75 24372.67 18568.49 25681.42 29949.86 26094.27 21967.08 23965.02 30485.95 292
114514_t79.17 18377.67 18983.68 17495.32 2965.53 15792.85 12391.60 17263.49 31067.92 26190.63 17246.65 28895.72 16367.01 24083.54 15989.79 229
Fast-Effi-MVS+81.14 14680.01 15384.51 14690.24 14965.86 14894.12 6289.15 26873.81 16275.37 17088.26 20857.26 17694.53 21066.97 24184.92 14693.15 161
无先验92.71 12892.61 12462.03 32797.01 9666.63 24293.97 136
v192192075.63 24873.49 25382.06 22079.38 33766.35 13691.07 20889.48 25271.98 20467.99 25981.22 30449.16 27093.90 24066.56 24364.56 31185.92 294
cl____76.07 23574.67 23180.28 25785.15 26661.76 25490.12 23988.73 28871.16 23365.43 28781.57 29661.15 13192.95 26066.54 24462.17 32986.13 287
DIV-MVS_self_test76.07 23574.67 23180.28 25785.14 26761.75 25590.12 23988.73 28871.16 23365.42 28881.60 29561.15 13192.94 26466.54 24462.16 33186.14 285
Fast-Effi-MVS+-dtu75.04 25473.37 25480.07 26380.86 31759.52 29891.20 20285.38 33771.90 20765.20 28984.84 25641.46 31592.97 25966.50 24672.96 24887.73 256
UniMVSNet_NR-MVSNet78.15 20577.55 19279.98 26784.46 27960.26 28692.25 14793.20 9777.50 11068.88 24986.61 23766.10 7092.13 29366.38 24762.55 32587.54 257
DU-MVS76.86 22575.84 21979.91 27082.96 29960.26 28691.26 19791.54 17376.46 12668.88 24986.35 24056.16 19492.13 29366.38 24762.55 32587.35 263
1112_ss80.56 15779.83 15782.77 19388.65 18760.78 27292.29 14688.36 29972.58 18772.46 20394.95 6965.09 8093.42 25266.38 24777.71 21194.10 129
FIs79.47 17979.41 16579.67 27685.95 25259.40 29991.68 17993.94 6478.06 9768.96 24888.28 20666.61 6591.77 30166.20 25074.99 23287.82 255
tpm78.58 19877.03 20283.22 18685.94 25464.56 17483.21 32591.14 19278.31 9473.67 18679.68 32664.01 9492.09 29566.07 25171.26 26293.03 166
ACMM69.62 1374.34 25972.73 26279.17 28584.25 28457.87 31590.36 23289.93 23763.17 31665.64 28686.04 24637.79 33794.10 22565.89 25271.52 25985.55 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNetpermissive80.92 15279.98 15583.74 16888.48 19061.80 25293.44 10288.26 30573.96 15877.73 14391.76 15349.94 25994.76 19565.84 25390.37 9394.65 103
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Test_1112_low_res79.56 17678.60 17782.43 20288.24 20160.39 28592.09 15587.99 31072.10 20371.84 21187.42 22564.62 8893.04 25665.80 25477.30 21993.85 143
v1074.77 25772.54 26681.46 23080.33 32666.71 12889.15 26389.08 27470.94 23863.08 31279.86 32352.52 23594.04 23265.70 25562.17 32983.64 321
thisisatest053081.15 14580.07 15184.39 15088.26 19965.63 15391.40 18694.62 4171.27 23270.93 22289.18 19672.47 3296.04 14865.62 25676.89 22391.49 201
D2MVS73.80 26672.02 27179.15 28779.15 34162.97 22688.58 27290.07 23172.94 17859.22 33378.30 33442.31 31492.70 27465.59 25772.00 25581.79 348
MVP-Stereo77.12 22176.23 21379.79 27481.72 31166.34 13789.29 25890.88 20270.56 24662.01 32082.88 27749.34 26594.13 22465.55 25893.80 4378.88 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v124075.21 25372.98 25881.88 22279.20 33966.00 14490.75 21789.11 27271.63 22367.41 27281.22 30447.36 28493.87 24265.46 25964.72 30985.77 297
miper_lstm_enhance73.05 27271.73 27577.03 30983.80 28858.32 31281.76 33488.88 28269.80 25561.01 32278.23 33657.19 17787.51 35265.34 26059.53 35085.27 309
原ACMM184.42 14893.21 6764.27 19093.40 9165.39 29479.51 12292.50 13358.11 17096.69 11765.27 26193.96 4092.32 185
tt080573.07 27170.73 28380.07 26378.37 35357.05 32687.78 28592.18 14161.23 33467.04 27686.49 23931.35 36794.58 20365.06 26267.12 28888.57 245
UniMVSNet (Re)77.58 21476.78 20679.98 26784.11 28560.80 27191.76 17593.17 9976.56 12569.93 23884.78 25763.32 11092.36 28764.89 26362.51 32786.78 273
BH-w/o80.49 15979.30 16884.05 16290.83 14064.36 18793.60 9289.42 25674.35 14969.09 24390.15 18555.23 20595.61 16764.61 26486.43 13792.17 193
AdaColmapbinary78.94 18877.00 20484.76 13396.34 1765.86 14892.66 13387.97 31262.18 32470.56 22592.37 13943.53 30897.35 7264.50 26582.86 16491.05 214
PCF-MVS73.15 979.29 18177.63 19184.29 15486.06 25065.96 14687.03 29591.10 19369.86 25469.79 23990.64 17057.54 17596.59 11964.37 26682.29 16990.32 221
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
API-MVS82.28 12780.53 14787.54 4196.13 2270.59 3193.63 9191.04 20065.72 29375.45 16992.83 12956.11 19698.89 2164.10 26789.75 9993.15 161
UniMVSNet_ETH3D72.74 27870.53 28579.36 28278.62 35156.64 33085.01 30889.20 26463.77 30764.84 29384.44 26234.05 35691.86 29963.94 26870.89 26489.57 233
Anonymous2023121173.08 27070.39 28681.13 23890.62 14263.33 21791.40 18690.06 23351.84 37464.46 29880.67 31236.49 34794.07 22863.83 26964.17 31485.98 291
MS-PatchMatch77.90 21176.50 20982.12 21685.99 25169.95 4191.75 17792.70 11673.97 15762.58 31784.44 26241.11 31795.78 15563.76 27092.17 6680.62 359
新几何184.73 13492.32 9264.28 18991.46 17859.56 34579.77 11992.90 12556.95 18496.57 12163.40 27192.91 5893.34 154
dmvs_re76.93 22475.36 22581.61 22787.78 21660.71 27780.00 35487.99 31079.42 7269.02 24689.47 19346.77 28694.32 21563.38 27274.45 23689.81 228
GeoE78.90 18977.43 19483.29 18488.95 18162.02 24892.31 14586.23 32970.24 24971.34 22089.27 19554.43 21694.04 23263.31 27380.81 18893.81 144
IterMVS72.65 28270.83 28078.09 29782.17 30762.96 22787.64 28986.28 32771.56 22660.44 32678.85 33245.42 30086.66 35663.30 27461.83 33384.65 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CMPMVSbinary48.56 2166.77 32564.41 32773.84 33570.65 38750.31 36377.79 36585.73 33645.54 39244.76 39182.14 28735.40 35190.14 32763.18 27574.54 23581.07 354
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs473.92 26571.81 27480.25 25979.17 34065.24 16287.43 29187.26 31867.64 27863.46 30783.91 26848.96 27291.53 31162.94 27665.49 29883.96 317
tttt051779.50 17778.53 17882.41 20587.22 22861.43 26289.75 25094.76 3369.29 26067.91 26288.06 21572.92 2895.63 16562.91 27773.90 24390.16 223
FC-MVSNet-test77.99 20778.08 18477.70 29984.89 27255.51 33790.27 23593.75 7376.87 11666.80 28187.59 22265.71 7590.23 32562.89 27873.94 24187.37 262
Baseline_NR-MVSNet73.99 26472.83 25977.48 30380.78 31959.29 30391.79 17284.55 34668.85 26668.99 24780.70 31056.16 19492.04 29662.67 27960.98 34281.11 353
IterMVS-SCA-FT71.55 28869.97 28876.32 31681.48 31360.67 27987.64 28985.99 33266.17 28959.50 33178.88 33145.53 29883.65 37362.58 28061.93 33284.63 315
IS-MVSNet80.14 16679.41 16582.33 20687.91 20960.08 29091.97 16488.27 30372.90 18271.44 21991.73 15561.44 13093.66 24762.47 28186.53 13593.24 157
WR-MVS76.76 22975.74 22179.82 27384.60 27562.27 24592.60 13692.51 12776.06 12867.87 26585.34 25156.76 18590.24 32462.20 28263.69 32086.94 271
pmmvs573.35 26971.52 27678.86 28978.64 35060.61 28191.08 20686.90 32067.69 27563.32 30883.64 26944.33 30690.53 31862.04 28366.02 29585.46 304
TranMVSNet+NR-MVSNet75.86 24374.52 23779.89 27182.44 30560.64 28091.37 19191.37 18076.63 12367.65 26786.21 24352.37 23791.55 30761.84 28460.81 34387.48 259
CVMVSNet74.04 26374.27 24173.33 33885.33 26243.94 39289.53 25488.39 29854.33 36870.37 22990.13 18649.17 26984.05 36961.83 28579.36 19891.99 196
PM-MVS59.40 35656.59 35867.84 36563.63 40041.86 39576.76 36763.22 40559.01 34751.07 37172.27 37211.72 40883.25 37761.34 28650.28 37778.39 378
testdata296.09 14361.26 287
UA-Net80.02 16979.65 15981.11 23989.33 16957.72 31786.33 30389.00 28077.44 11181.01 10389.15 19759.33 15495.90 15261.01 28884.28 15589.73 231
NR-MVSNet76.05 23874.59 23480.44 25382.96 29962.18 24690.83 21491.73 16377.12 11460.96 32386.35 24059.28 15591.80 30060.74 28961.34 34087.35 263
XVG-ACMP-BASELINE68.04 31665.53 31775.56 32074.06 37652.37 35078.43 36085.88 33362.03 32758.91 33781.21 30620.38 39591.15 31560.69 29068.18 28083.16 331
test_post178.95 35720.70 42053.05 23091.50 31260.43 291
SCA75.82 24472.76 26085.01 12386.63 23970.08 3781.06 34389.19 26571.60 22470.01 23477.09 34745.53 29890.25 32160.43 29173.27 24594.68 100
pm-mvs172.89 27571.09 27978.26 29579.10 34357.62 31990.80 21589.30 26067.66 27662.91 31481.78 29149.11 27192.95 26060.29 29358.89 35384.22 316
TR-MVS78.77 19477.37 19982.95 19090.49 14460.88 27093.67 8890.07 23170.08 25174.51 17791.37 16345.69 29795.70 16460.12 29480.32 19092.29 186
MDTV_nov1_ep13_2view59.90 29280.13 35267.65 27772.79 19454.33 21859.83 29592.58 178
GBi-Net75.65 24673.83 24881.10 24088.85 18265.11 16690.01 24390.32 21870.84 24067.04 27680.25 31948.03 27691.54 30859.80 29669.34 26986.64 274
test175.65 24673.83 24881.10 24088.85 18265.11 16690.01 24390.32 21870.84 24067.04 27680.25 31948.03 27691.54 30859.80 29669.34 26986.64 274
FMVSNet377.73 21276.04 21682.80 19291.20 13268.99 6591.87 16891.99 14973.35 17167.04 27683.19 27556.62 18992.14 29259.80 29669.34 26987.28 265
BH-untuned78.68 19577.08 20183.48 18189.84 15663.74 20192.70 12988.59 29471.57 22566.83 28088.65 20151.75 24295.39 17759.03 29984.77 14891.32 208
Vis-MVSNet (Re-imp)79.24 18279.57 16078.24 29688.46 19152.29 35190.41 22989.12 27174.24 15169.13 24291.91 15165.77 7490.09 32859.00 30088.09 11492.33 184
FMVSNet276.07 23574.01 24682.26 21088.85 18267.66 10091.33 19491.61 17170.84 24065.98 28482.25 28548.03 27692.00 29758.46 30168.73 27787.10 268
mvsany_test348.86 36946.35 37256.41 38246.00 41731.67 41362.26 40147.25 41843.71 39745.54 38968.15 38510.84 40964.44 41457.95 30235.44 40373.13 391
v7n71.31 28968.65 29679.28 28376.40 36660.77 27386.71 30089.45 25464.17 30458.77 33878.24 33544.59 30593.54 24857.76 30361.75 33583.52 324
QAPM79.95 17177.39 19887.64 3489.63 16171.41 2093.30 10693.70 7565.34 29667.39 27391.75 15447.83 28198.96 1657.71 30489.81 9692.54 179
EPMVS78.49 20075.98 21786.02 8791.21 13169.68 5180.23 35091.20 18775.25 13972.48 20278.11 33754.65 21193.69 24657.66 30583.04 16394.69 99
WB-MVSnew77.14 22076.18 21580.01 26686.18 24863.24 21991.26 19794.11 6171.72 21773.52 18787.29 22845.14 30293.00 25856.98 30679.42 19683.80 320
PLCcopyleft68.80 1475.23 25273.68 25179.86 27292.93 7658.68 30990.64 22388.30 30160.90 33564.43 29990.53 17342.38 31394.57 20556.52 30776.54 22586.33 280
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPNet_dtu78.80 19279.26 16977.43 30488.06 20549.71 36691.96 16591.95 15177.67 10576.56 15891.28 16458.51 16490.20 32656.37 30880.95 18592.39 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-RMVSNet79.46 18077.65 19084.89 12591.68 11765.66 15193.55 9488.09 30872.93 17973.37 18891.12 16646.20 29596.12 14156.28 30985.61 14392.91 170
UnsupCasMVSNet_eth65.79 33063.10 33373.88 33470.71 38650.29 36481.09 34289.88 23972.58 18749.25 37874.77 36332.57 36187.43 35355.96 31041.04 39183.90 319
pmmvs667.57 32064.76 32276.00 31972.82 38153.37 34788.71 26986.78 32453.19 37057.58 34778.03 33835.33 35292.41 28455.56 31154.88 36682.21 345
pmmvs-eth3d65.53 33362.32 33975.19 32369.39 39159.59 29682.80 33083.43 35662.52 32251.30 37072.49 36732.86 35887.16 35555.32 31250.73 37578.83 374
FE-MVS75.97 24173.02 25784.82 12889.78 15765.56 15577.44 36691.07 19764.55 29972.66 19679.85 32446.05 29696.69 11754.97 31380.82 18792.21 192
OpenMVScopyleft70.45 1178.54 19975.92 21886.41 7785.93 25571.68 1892.74 12692.51 12766.49 28764.56 29591.96 14843.88 30798.10 3754.61 31490.65 8989.44 237
FMVSNet172.71 27969.91 29081.10 24083.60 29265.11 16690.01 24390.32 21863.92 30563.56 30680.25 31936.35 34891.54 30854.46 31566.75 29186.64 274
PatchmatchNetpermissive77.46 21574.63 23385.96 8989.55 16470.35 3479.97 35589.55 25172.23 19870.94 22176.91 34957.03 17992.79 27054.27 31681.17 18394.74 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MIMVSNet71.64 28668.44 29981.23 23581.97 31064.44 18073.05 37888.80 28669.67 25664.59 29474.79 36232.79 35987.82 34653.99 31776.35 22691.42 203
CNLPA74.31 26072.30 26880.32 25591.49 12361.66 25790.85 21380.72 36656.67 36163.85 30490.64 17046.75 28790.84 31653.79 31875.99 22988.47 248
tpm cat175.30 25172.21 26984.58 14388.52 18867.77 9778.16 36488.02 30961.88 33068.45 25776.37 35360.65 13794.03 23453.77 31974.11 23991.93 197
OurMVSNet-221017-064.68 33662.17 34072.21 34876.08 36947.35 37880.67 34581.02 36456.19 36251.60 36779.66 32727.05 38188.56 33853.60 32053.63 36980.71 358
PatchMatch-RL72.06 28469.98 28778.28 29489.51 16555.70 33683.49 31883.39 35861.24 33363.72 30582.76 27834.77 35393.03 25753.37 32177.59 21386.12 288
CR-MVSNet73.79 26770.82 28282.70 19683.15 29767.96 9270.25 38484.00 35173.67 16769.97 23672.41 36957.82 17289.48 33352.99 32273.13 24690.64 218
USDC67.43 32364.51 32576.19 31777.94 35855.29 33878.38 36185.00 34173.17 17348.36 38180.37 31621.23 39292.48 28352.15 32364.02 31780.81 357
CP-MVSNet70.50 29369.91 29072.26 34780.71 32051.00 36087.23 29490.30 22267.84 27459.64 33082.69 27950.23 25782.30 38351.28 32459.28 35183.46 326
F-COLMAP70.66 29168.44 29977.32 30686.37 24555.91 33488.00 28086.32 32656.94 35957.28 34888.07 21433.58 35792.49 28251.02 32568.37 27983.55 322
PS-CasMVS69.86 30069.13 29572.07 35180.35 32550.57 36287.02 29689.75 24367.27 28059.19 33482.28 28446.58 28982.24 38450.69 32659.02 35283.39 328
dp75.01 25572.09 27083.76 16789.28 17166.22 14179.96 35689.75 24371.16 23367.80 26677.19 34651.81 24092.54 28050.39 32771.44 26192.51 181
test_vis3_rt40.46 37737.79 37848.47 39444.49 41933.35 41166.56 39732.84 42532.39 40629.65 40739.13 4153.91 42368.65 40450.17 32840.99 39243.40 410
test0.0.03 172.76 27772.71 26372.88 34280.25 32747.99 37591.22 20089.45 25471.51 22862.51 31887.66 22053.83 22185.06 36550.16 32967.84 28685.58 300
UnsupCasMVSNet_bld61.60 34857.71 35373.29 33968.73 39251.64 35478.61 35989.05 27657.20 35746.11 38461.96 39728.70 37688.60 33750.08 33038.90 39679.63 367
K. test v363.09 34459.61 34973.53 33776.26 36749.38 37083.27 32277.15 37464.35 30147.77 38372.32 37128.73 37587.79 34749.93 33136.69 39883.41 327
JIA-IIPM66.06 32862.45 33876.88 31381.42 31554.45 34457.49 40888.67 29149.36 38263.86 30346.86 40656.06 19790.25 32149.53 33268.83 27585.95 292
CL-MVSNet_self_test69.92 29868.09 30275.41 32173.25 37855.90 33590.05 24289.90 23869.96 25261.96 32176.54 35051.05 25087.64 34949.51 33350.59 37682.70 339
mvs5depth61.03 35057.65 35571.18 35467.16 39547.04 38372.74 37977.49 37257.47 35560.52 32572.53 36622.84 38988.38 34049.15 33438.94 39578.11 380
FMVSNet568.04 31665.66 31675.18 32484.43 28057.89 31483.54 31786.26 32861.83 33153.64 36073.30 36537.15 34385.08 36448.99 33561.77 33482.56 342
TransMVSNet (Re)70.07 29767.66 30377.31 30780.62 32359.13 30591.78 17484.94 34265.97 29060.08 32980.44 31550.78 25191.87 29848.84 33645.46 38480.94 355
EU-MVSNet64.01 34063.01 33467.02 37074.40 37538.86 40583.27 32286.19 33045.11 39354.27 35681.15 30736.91 34680.01 39148.79 33757.02 35882.19 346
PEN-MVS69.46 30368.56 29772.17 34979.27 33849.71 36686.90 29889.24 26267.24 28359.08 33582.51 28247.23 28583.54 37448.42 33857.12 35783.25 329
KD-MVS_self_test60.87 35158.60 35167.68 36766.13 39739.93 40275.63 37584.70 34357.32 35649.57 37668.45 38429.55 37282.87 37948.09 33947.94 38080.25 364
KD-MVS_2432*160069.03 30666.37 31077.01 31085.56 26061.06 26781.44 33990.25 22467.27 28058.00 34276.53 35154.49 21387.63 35048.04 34035.77 40182.34 343
miper_refine_blended69.03 30666.37 31077.01 31085.56 26061.06 26781.44 33990.25 22467.27 28058.00 34276.53 35154.49 21387.63 35048.04 34035.77 40182.34 343
MDTV_nov1_ep1372.61 26489.06 17868.48 7680.33 34890.11 23071.84 21271.81 21275.92 35753.01 23193.92 23948.04 34073.38 244
thres20079.66 17478.33 17983.66 17692.54 9065.82 15093.06 11296.31 374.90 14473.30 18988.66 20059.67 14995.61 16747.84 34378.67 20589.56 234
RPSCF64.24 33961.98 34171.01 35676.10 36845.00 38975.83 37375.94 37646.94 38958.96 33684.59 25931.40 36682.00 38547.76 34460.33 34986.04 289
lessismore_v073.72 33672.93 38047.83 37661.72 40745.86 38773.76 36428.63 37789.81 33047.75 34531.37 40683.53 323
EG-PatchMatch MVS68.55 31065.41 31877.96 29878.69 34962.93 22889.86 24889.17 26660.55 33750.27 37377.73 34122.60 39094.06 22947.18 34672.65 25176.88 383
test_f46.58 37043.45 37455.96 38345.18 41832.05 41261.18 40249.49 41633.39 40542.05 39862.48 3967.00 41565.56 41047.08 34743.21 38870.27 397
ACMH+65.35 1667.65 31964.55 32476.96 31284.59 27657.10 32588.08 27780.79 36558.59 35053.00 36181.09 30826.63 38292.95 26046.51 34861.69 33880.82 356
Anonymous2024052162.09 34659.08 35071.10 35567.19 39448.72 37383.91 31585.23 33950.38 37947.84 38271.22 37820.74 39385.51 36346.47 34958.75 35479.06 371
WR-MVS_H70.59 29269.94 28972.53 34481.03 31651.43 35687.35 29292.03 14867.38 27960.23 32880.70 31055.84 20083.45 37546.33 35058.58 35582.72 337
Patchmtry67.53 32163.93 32978.34 29282.12 30864.38 18468.72 38984.00 35148.23 38759.24 33272.41 36957.82 17289.27 33446.10 35156.68 36181.36 350
SixPastTwentyTwo64.92 33561.78 34274.34 33178.74 34849.76 36583.42 32179.51 37162.86 31850.27 37377.35 34230.92 37090.49 31945.89 35247.06 38182.78 334
ambc69.61 35961.38 40641.35 39749.07 41385.86 33550.18 37566.40 38710.16 41088.14 34345.73 35344.20 38579.32 370
thres100view90078.37 20177.01 20382.46 20191.89 11163.21 22191.19 20396.33 172.28 19770.45 22887.89 21760.31 14095.32 17945.16 35477.58 21488.83 239
tfpn200view978.79 19377.43 19482.88 19192.21 9664.49 17692.05 15896.28 473.48 16971.75 21388.26 20860.07 14595.32 17945.16 35477.58 21488.83 239
thres40078.68 19577.43 19482.43 20292.21 9664.49 17692.05 15896.28 473.48 16971.75 21388.26 20860.07 14595.32 17945.16 35477.58 21487.48 259
DTE-MVSNet68.46 31267.33 30671.87 35377.94 35849.00 37286.16 30488.58 29566.36 28858.19 33982.21 28646.36 29083.87 37244.97 35755.17 36482.73 336
pmmvs355.51 36151.50 36767.53 36857.90 40950.93 36180.37 34773.66 38440.63 40244.15 39464.75 39116.30 39978.97 39244.77 35840.98 39372.69 392
our_test_368.29 31464.69 32379.11 28878.92 34464.85 17388.40 27585.06 34060.32 34052.68 36276.12 35540.81 31889.80 33244.25 35955.65 36282.67 341
tpmvs72.88 27669.76 29282.22 21190.98 13567.05 11878.22 36388.30 30163.10 31764.35 30074.98 36055.09 20894.27 21943.25 36069.57 26885.34 307
ITE_SJBPF70.43 35774.44 37447.06 38277.32 37360.16 34154.04 35883.53 27023.30 38884.01 37043.07 36161.58 33980.21 365
Anonymous2023120667.53 32165.78 31372.79 34374.95 37247.59 37788.23 27687.32 31661.75 33258.07 34177.29 34437.79 33787.29 35442.91 36263.71 31983.48 325
YYNet163.76 34360.14 34774.62 32878.06 35760.19 28983.46 32083.99 35356.18 36339.25 40071.56 37637.18 34283.34 37642.90 36348.70 37980.32 362
MDA-MVSNet_test_wron63.78 34260.16 34674.64 32778.15 35660.41 28483.49 31884.03 34956.17 36439.17 40171.59 37537.22 34183.24 37842.87 36448.73 37880.26 363
MSDG69.54 30265.73 31480.96 24585.11 26963.71 20484.19 31383.28 35956.95 35854.50 35584.03 26531.50 36596.03 14942.87 36469.13 27483.14 332
thres600view778.00 20676.66 20882.03 22191.93 10863.69 20691.30 19696.33 172.43 19270.46 22787.89 21760.31 14094.92 19342.64 36676.64 22487.48 259
ACMH63.93 1768.62 30964.81 32180.03 26585.22 26563.25 21887.72 28684.66 34460.83 33651.57 36879.43 32927.29 38094.96 19041.76 36764.84 30681.88 347
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testgi64.48 33862.87 33669.31 36171.24 38240.62 39985.49 30579.92 36965.36 29554.18 35783.49 27223.74 38784.55 36641.60 36860.79 34482.77 335
PatchT69.11 30565.37 31980.32 25582.07 30963.68 20767.96 39487.62 31450.86 37869.37 24065.18 38957.09 17888.53 33941.59 36966.60 29288.74 242
LF4IMVS54.01 36452.12 36559.69 37962.41 40339.91 40368.59 39068.28 39942.96 39944.55 39375.18 35914.09 40668.39 40541.36 37051.68 37370.78 395
ADS-MVSNet266.90 32463.44 33277.26 30888.06 20560.70 27868.01 39275.56 37957.57 35264.48 29669.87 37938.68 32384.10 36840.87 37167.89 28486.97 269
ADS-MVSNet68.54 31164.38 32881.03 24488.06 20566.90 12368.01 39284.02 35057.57 35264.48 29669.87 37938.68 32389.21 33540.87 37167.89 28486.97 269
LTVRE_ROB59.60 1966.27 32763.54 33174.45 32984.00 28751.55 35567.08 39683.53 35558.78 34854.94 35480.31 31734.54 35493.23 25440.64 37368.03 28278.58 376
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS-HIRNet60.25 35455.55 36174.35 33084.37 28156.57 33171.64 38274.11 38334.44 40445.54 38942.24 41231.11 36989.81 33040.36 37476.10 22876.67 384
ppachtmachnet_test67.72 31863.70 33079.77 27578.92 34466.04 14388.68 27082.90 36160.11 34255.45 35275.96 35639.19 32290.55 31739.53 37552.55 37282.71 338
new-patchmatchnet59.30 35756.48 35967.79 36665.86 39844.19 39082.47 33181.77 36259.94 34343.65 39566.20 38827.67 37981.68 38639.34 37641.40 39077.50 382
AllTest61.66 34758.06 35272.46 34579.57 33351.42 35780.17 35168.61 39751.25 37645.88 38581.23 30219.86 39786.58 35738.98 37757.01 35979.39 368
TestCases72.46 34579.57 33351.42 35768.61 39751.25 37645.88 38581.23 30219.86 39786.58 35738.98 37757.01 35979.39 368
test20.0363.83 34162.65 33767.38 36970.58 38839.94 40186.57 30184.17 34863.29 31351.86 36677.30 34337.09 34482.47 38138.87 37954.13 36879.73 366
TAPA-MVS70.22 1274.94 25673.53 25279.17 28590.40 14652.07 35289.19 26289.61 25062.69 32170.07 23392.67 13148.89 27394.32 21538.26 38079.97 19291.12 213
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tmp_tt22.26 38823.75 39017.80 4045.23 42812.06 42935.26 41539.48 4222.82 42218.94 41344.20 41122.23 39124.64 42336.30 3819.31 42016.69 417
DSMNet-mixed56.78 36054.44 36463.79 37463.21 40129.44 41764.43 39964.10 40442.12 40151.32 36971.60 37431.76 36475.04 39636.23 38265.20 30386.87 272
TinyColmap60.32 35356.42 36072.00 35278.78 34753.18 34878.36 36275.64 37852.30 37141.59 39975.82 35814.76 40488.35 34135.84 38354.71 36774.46 387
MDA-MVSNet-bldmvs61.54 34957.70 35473.05 34079.53 33557.00 32983.08 32681.23 36357.57 35234.91 40572.45 36832.79 35986.26 35935.81 38441.95 38975.89 385
RPMNet70.42 29465.68 31584.63 14183.15 29767.96 9270.25 38490.45 21246.83 39069.97 23665.10 39056.48 19395.30 18235.79 38573.13 24690.64 218
Patchmatch-test65.86 32960.94 34480.62 25283.75 28958.83 30758.91 40775.26 38144.50 39550.95 37277.09 34758.81 16287.90 34435.13 38664.03 31695.12 80
OpenMVS_ROBcopyleft61.12 1866.39 32662.92 33576.80 31476.51 36557.77 31689.22 26083.41 35755.48 36553.86 35977.84 33926.28 38393.95 23834.90 38768.76 27678.68 375
test_method38.59 37935.16 38248.89 39354.33 41021.35 42345.32 41453.71 4127.41 42028.74 40851.62 4048.70 41352.87 41733.73 38832.89 40572.47 393
LCM-MVSNet40.54 37535.79 38054.76 38736.92 42430.81 41451.41 41169.02 39622.07 41124.63 41145.37 4084.56 42065.81 40933.67 38934.50 40467.67 398
DP-MVS69.90 29966.48 30780.14 26195.36 2862.93 22889.56 25176.11 37550.27 38057.69 34685.23 25239.68 32195.73 15933.35 39071.05 26381.78 349
TDRefinement55.28 36251.58 36666.39 37159.53 40846.15 38676.23 37072.80 38544.60 39442.49 39776.28 35415.29 40282.39 38233.20 39143.75 38670.62 396
COLMAP_ROBcopyleft57.96 2062.98 34559.65 34872.98 34181.44 31453.00 34983.75 31675.53 38048.34 38548.81 38081.40 30024.14 38590.30 32032.95 39260.52 34675.65 386
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ttmdpeth53.34 36549.96 36863.45 37562.07 40540.04 40072.06 38065.64 40242.54 40051.88 36577.79 34013.94 40776.48 39432.93 39330.82 40973.84 389
new_pmnet49.31 36846.44 37157.93 38162.84 40240.74 39868.47 39162.96 40636.48 40335.09 40457.81 40114.97 40372.18 40032.86 39446.44 38260.88 403
myMVS_eth3d72.58 28372.74 26172.10 35087.87 21149.45 36888.07 27889.01 27772.91 18063.11 31088.10 21263.63 10185.54 36132.73 39569.23 27281.32 351
MIMVSNet160.16 35557.33 35668.67 36369.71 38944.13 39178.92 35884.21 34755.05 36644.63 39271.85 37323.91 38681.54 38732.63 39655.03 36580.35 361
LS3D69.17 30466.40 30977.50 30291.92 10956.12 33385.12 30780.37 36846.96 38856.50 35087.51 22437.25 34093.71 24532.52 39779.40 19782.68 340
tfpnnormal70.10 29667.36 30578.32 29383.45 29460.97 26988.85 26792.77 11464.85 29860.83 32478.53 33343.52 30993.48 25031.73 39861.70 33780.52 360
N_pmnet50.55 36749.11 36954.88 38677.17 3634.02 43084.36 3112.00 42848.59 38345.86 38768.82 38232.22 36282.80 38031.58 39951.38 37477.81 381
WAC-MVS49.45 36831.56 400
dmvs_testset65.55 33266.45 30862.86 37679.87 33122.35 42276.55 36871.74 39077.42 11355.85 35187.77 21951.39 24680.69 38931.51 40165.92 29685.55 302
kuosan60.86 35260.24 34562.71 37781.57 31246.43 38575.70 37485.88 33357.98 35148.95 37969.53 38158.42 16576.53 39328.25 40235.87 40065.15 401
testing370.38 29570.83 28069.03 36285.82 25643.93 39390.72 22090.56 21168.06 27360.24 32786.82 23664.83 8584.12 36726.33 40364.10 31579.04 372
PMMVS237.93 38033.61 38350.92 39046.31 41624.76 42060.55 40550.05 41428.94 41020.93 41247.59 4054.41 42265.13 41125.14 40418.55 41662.87 402
MVStest151.35 36646.89 37064.74 37265.06 39951.10 35967.33 39572.58 38630.20 40835.30 40374.82 36127.70 37869.89 40324.44 40524.57 41273.22 390
test_040264.54 33761.09 34374.92 32684.10 28660.75 27587.95 28179.71 37052.03 37252.41 36377.20 34532.21 36391.64 30423.14 40661.03 34172.36 394
APD_test140.50 37637.31 37950.09 39251.88 41235.27 40959.45 40652.59 41321.64 41226.12 41057.80 4024.56 42066.56 40822.64 40739.09 39448.43 408
Syy-MVS69.65 30169.52 29370.03 35887.87 21143.21 39488.07 27889.01 27772.91 18063.11 31088.10 21245.28 30185.54 36122.07 40869.23 27281.32 351
ANet_high40.27 37835.20 38155.47 38434.74 42534.47 41063.84 40071.56 39148.42 38418.80 41441.08 4139.52 41264.45 41320.18 4098.66 42167.49 399
DeepMVS_CXcopyleft34.71 40151.45 41324.73 42128.48 42731.46 40717.49 41752.75 4035.80 41842.60 42218.18 41019.42 41536.81 414
dongtai55.18 36355.46 36254.34 38876.03 37036.88 40676.07 37184.61 34551.28 37543.41 39664.61 39256.56 19167.81 40618.09 41128.50 41158.32 404
EGC-MVSNET42.35 37438.09 37755.11 38574.57 37346.62 38471.63 38355.77 4090.04 4230.24 42462.70 39514.24 40574.91 39717.59 41246.06 38343.80 409
testf132.77 38229.47 38542.67 39841.89 42130.81 41452.07 40943.45 41915.45 41518.52 41544.82 4092.12 42458.38 41516.05 41330.87 40738.83 411
APD_test232.77 38229.47 38542.67 39841.89 42130.81 41452.07 40943.45 41915.45 41518.52 41544.82 4092.12 42458.38 41516.05 41330.87 40738.83 411
FPMVS45.64 37243.10 37653.23 38951.42 41436.46 40764.97 39871.91 38929.13 40927.53 40961.55 3989.83 41165.01 41216.00 41555.58 36358.22 405
Gipumacopyleft34.91 38131.44 38445.30 39670.99 38539.64 40419.85 41872.56 38720.10 41416.16 41821.47 4195.08 41971.16 40113.07 41643.70 38725.08 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive24.84 2324.35 38619.77 39238.09 40034.56 42626.92 41926.57 41638.87 42311.73 41911.37 42027.44 4161.37 42750.42 41911.41 41714.60 41736.93 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVS46.23 37144.94 37350.11 39162.13 40421.23 42476.48 36955.49 41045.89 39135.78 40261.44 39935.54 35072.83 3999.96 41821.75 41356.27 406
PMVScopyleft26.43 2231.84 38428.16 38742.89 39725.87 42727.58 41850.92 41249.78 41521.37 41314.17 41940.81 4142.01 42666.62 4079.61 41938.88 39734.49 415
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
SSC-MVS44.51 37343.35 37547.99 39561.01 40718.90 42674.12 37754.36 41143.42 39834.10 40660.02 40034.42 35570.39 4029.14 42019.57 41454.68 407
E-PMN24.61 38524.00 38926.45 40243.74 42018.44 42760.86 40339.66 42115.11 4179.53 42122.10 4186.52 41746.94 4208.31 42110.14 41813.98 418
EMVS23.76 38723.20 39125.46 40341.52 42316.90 42860.56 40438.79 42414.62 4188.99 42220.24 4217.35 41445.82 4217.25 4229.46 41913.64 419
wuyk23d11.30 39010.95 39312.33 40548.05 41519.89 42525.89 4171.92 4293.58 4213.12 4231.37 4230.64 42815.77 4246.23 4237.77 4221.35 420
testmvs7.23 3929.62 3950.06 4070.04 4290.02 43284.98 3090.02 4300.03 4240.18 4251.21 4240.01 4300.02 4250.14 4240.01 4230.13 422
test1236.92 3939.21 3960.08 4060.03 4300.05 43181.65 3370.01 4310.02 4250.14 4260.85 4250.03 4290.02 4250.12 4250.00 4240.16 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
cdsmvs_eth3d_5k19.86 38926.47 3880.00 4080.00 4310.00 4330.00 41993.45 860.00 4260.00 42795.27 5949.56 2630.00 4270.00 4260.00 4240.00 423
pcd_1.5k_mvsjas4.46 3945.95 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42653.55 2250.00 4270.00 4260.00 4240.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
ab-mvs-re7.91 39110.55 3940.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42794.95 690.00 4310.00 4270.00 4260.00 4240.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
FOURS193.95 4661.77 25393.96 7091.92 15262.14 32686.57 46
test_one_060196.32 1869.74 4994.18 5871.42 23090.67 1996.85 1674.45 20
eth-test20.00 431
eth-test0.00 431
test_241102_ONE96.45 1269.38 5594.44 4771.65 21992.11 797.05 776.79 999.11 6
save fliter93.84 4967.89 9595.05 3992.66 12078.19 95
test072696.40 1569.99 3896.76 894.33 5571.92 20591.89 1197.11 673.77 23
GSMVS94.68 100
test_part296.29 1968.16 8890.78 17
sam_mvs157.85 17194.68 100
sam_mvs54.91 210
MTGPAbinary92.23 134
test_post23.01 41756.49 19292.67 275
patchmatchnet-post67.62 38657.62 17490.25 321
MTMP93.77 8432.52 426
TEST994.18 4167.28 11094.16 5993.51 8271.75 21685.52 5795.33 5468.01 5497.27 80
test_894.19 4067.19 11294.15 6193.42 8971.87 21085.38 6095.35 5368.19 5296.95 106
agg_prior94.16 4366.97 12193.31 9284.49 6896.75 116
test_prior467.18 11493.92 73
test_prior86.42 7694.71 3567.35 10993.10 10396.84 11395.05 83
新几何291.41 184
旧先验191.94 10760.74 27691.50 17694.36 8765.23 7991.84 7194.55 107
原ACMM292.01 160
test22289.77 15861.60 25889.55 25289.42 25656.83 36077.28 15092.43 13752.76 23391.14 8593.09 163
segment_acmp65.94 72
testdata189.21 26177.55 109
test1287.09 5294.60 3668.86 6792.91 11082.67 8965.44 7797.55 6293.69 4894.84 92
plane_prior786.94 23561.51 259
plane_prior687.23 22762.32 24350.66 252
plane_prior489.14 198
plane_prior361.95 25179.09 8172.53 200
plane_prior293.13 11078.81 88
plane_prior187.15 229
plane_prior62.42 23993.85 7779.38 7378.80 204
n20.00 432
nn0.00 432
door-mid66.01 401
test1193.01 106
door66.57 400
HQP5-MVS63.66 208
HQP-NCC87.54 22094.06 6379.80 6474.18 179
ACMP_Plane87.54 22094.06 6379.80 6474.18 179
HQP4-MVS74.18 17995.61 16788.63 243
HQP3-MVS91.70 16878.90 202
HQP2-MVS51.63 244
NP-MVS87.41 22363.04 22490.30 179
ACMMP++_ref71.63 257
ACMMP++69.72 266
Test By Simon54.21 219