This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS90.70 390.52 891.24 189.68 15376.68 297.29 295.35 1582.87 2291.58 1397.22 379.93 599.10 983.12 9797.64 297.94 1
MVS84.66 7682.86 10390.06 290.93 12974.56 687.91 27895.54 1368.55 26672.35 20094.71 7759.78 14298.90 1981.29 11394.69 3296.74 17
OPU-MVS89.97 397.52 373.15 1296.89 697.00 983.82 299.15 295.72 597.63 397.62 2
MCST-MVS91.08 191.46 389.94 497.66 273.37 897.13 395.58 1189.33 285.77 5496.26 3272.84 2699.38 192.64 1995.93 997.08 12
DELS-MVS90.05 790.09 1189.94 493.14 7173.88 797.01 594.40 5088.32 485.71 5594.91 7274.11 1998.91 1787.26 6295.94 897.03 13
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PS-MVSNAJ88.14 1787.61 2889.71 692.06 9776.72 195.75 2193.26 9083.86 1689.55 3096.06 3853.55 21397.89 4391.10 3393.31 5294.54 105
MG-MVS87.11 3386.27 4389.62 797.79 176.27 494.96 4494.49 4478.74 8883.87 7592.94 12164.34 8596.94 10575.19 15494.09 3795.66 51
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 25
No_MVS89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 25
CHOSEN 1792x268884.98 7283.45 8889.57 1089.94 14875.14 592.07 15692.32 12481.87 3375.68 15788.27 20360.18 13698.60 2780.46 11890.27 9294.96 83
xiu_mvs_v2_base87.92 2287.38 3289.55 1191.41 12176.43 395.74 2293.12 9883.53 1989.55 3095.95 4053.45 21797.68 5091.07 3492.62 5994.54 105
LFMVS84.34 8182.73 10589.18 1294.76 3373.25 994.99 4391.89 14471.90 20282.16 8693.49 11247.98 26497.05 9182.55 10184.82 13897.25 9
iter_conf05_1186.99 3586.27 4389.15 1393.74 5272.45 1397.56 187.04 30988.32 492.60 596.57 2332.61 34897.45 6692.21 2495.80 1097.53 6
bld_raw_dy_0_6482.84 11280.75 13289.09 1493.74 5272.16 1593.16 11077.36 36089.69 174.55 17096.48 2732.35 35097.56 6292.21 2477.24 21297.53 6
MM90.87 291.52 288.92 1592.12 9671.10 2897.02 496.04 688.70 391.57 1496.19 3570.12 4098.91 1796.83 195.06 1796.76 16
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4393.96 7194.37 5272.48 18492.07 996.85 1683.82 299.15 291.53 3197.42 497.55 4
CSCG86.87 3686.26 4588.72 1795.05 3170.79 3193.83 8395.33 1668.48 26877.63 13894.35 9073.04 2498.45 3084.92 8493.71 4696.92 15
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5496.89 694.44 4671.65 21492.11 797.21 476.79 999.11 692.34 2195.36 1497.62 2
test_0728_SECOND88.70 1896.45 1270.43 3596.64 1094.37 5299.15 291.91 2994.90 2296.51 25
sasdasda86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
canonicalmvs86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
CNVR-MVS90.32 690.89 788.61 2296.76 870.65 3296.47 1494.83 3084.83 1389.07 3296.80 1970.86 3699.06 1592.64 1995.71 1196.12 39
MVS_030490.01 890.50 988.53 2390.14 14470.94 2996.47 1495.72 1087.33 689.60 2996.26 3268.44 4598.74 2495.82 494.72 3195.90 46
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6686.89 889.68 2895.78 4265.94 6699.10 992.99 1693.91 4196.58 22
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3996.64 1094.52 4271.92 20090.55 2096.93 1173.77 2199.08 1191.91 2994.90 2296.29 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
3Dnovator73.91 682.69 11780.82 13188.31 2689.57 15571.26 2392.60 13594.39 5178.84 8567.89 25792.48 13348.42 25998.52 2868.80 21394.40 3595.15 76
alignmvs87.28 3186.97 3688.24 2791.30 12371.14 2795.61 2693.56 7879.30 7487.07 4395.25 6068.43 4696.93 10787.87 5484.33 14496.65 18
NCCC89.07 1589.46 1587.91 2896.60 1069.05 6296.38 1694.64 3984.42 1486.74 4696.20 3466.56 6298.76 2389.03 4894.56 3395.92 45
WTY-MVS86.32 4685.81 5587.85 2992.82 7969.37 5695.20 3595.25 1782.71 2481.91 8794.73 7667.93 5297.63 5679.55 12482.25 16296.54 23
VNet86.20 4885.65 5987.84 3093.92 4669.99 3995.73 2495.94 778.43 9086.00 5293.07 11858.22 15797.00 9685.22 7884.33 14496.52 24
DeepC-MVS_fast79.48 287.95 2188.00 2487.79 3195.86 2768.32 7895.74 2294.11 6083.82 1783.49 7696.19 3564.53 8498.44 3183.42 9694.88 2596.61 19
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testing9185.93 5485.31 6387.78 3293.59 5771.47 2093.50 9995.08 2580.26 5680.53 10391.93 14670.43 3896.51 12380.32 11982.13 16595.37 61
SMA-MVScopyleft88.14 1788.29 2187.67 3393.21 6868.72 7093.85 7894.03 6274.18 14791.74 1296.67 2165.61 7098.42 3389.24 4596.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_yl84.28 8283.16 9687.64 3494.52 3769.24 5895.78 1995.09 2369.19 25881.09 9492.88 12457.00 17097.44 6881.11 11481.76 16996.23 37
DCV-MVSNet84.28 8283.16 9687.64 3494.52 3769.24 5895.78 1995.09 2369.19 25881.09 9492.88 12457.00 17097.44 6881.11 11481.76 16996.23 37
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8495.24 3494.49 4482.43 2788.90 3396.35 2971.89 3498.63 2688.76 4996.40 696.06 40
QAPM79.95 16377.39 18987.64 3489.63 15471.41 2193.30 10693.70 7365.34 29167.39 26591.75 15047.83 26698.96 1657.71 29489.81 9492.54 170
testing9986.01 5285.47 6087.63 3893.62 5571.25 2493.47 10295.23 1880.42 5480.60 10291.95 14571.73 3596.50 12480.02 12182.22 16395.13 77
lupinMVS87.74 2487.77 2687.63 3889.24 16871.18 2596.57 1292.90 10682.70 2587.13 4195.27 5864.99 7595.80 14789.34 4391.80 7195.93 44
testing1186.71 4286.44 4287.55 4093.54 5971.35 2293.65 9095.58 1181.36 4380.69 10092.21 14172.30 3096.46 12685.18 8083.43 15194.82 92
API-MVS82.28 12180.53 13987.54 4196.13 2270.59 3393.63 9291.04 18965.72 28875.45 16292.83 12656.11 18498.89 2064.10 25789.75 9793.15 152
SD-MVS87.49 2787.49 3087.50 4293.60 5668.82 6893.90 7592.63 11776.86 11287.90 3695.76 4366.17 6397.63 5689.06 4791.48 7796.05 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft88.77 1689.21 1687.45 4396.26 2067.56 10094.17 5894.15 5968.77 26490.74 1897.27 276.09 1298.49 2990.58 3994.91 2196.30 33
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_111021_HR86.19 4985.80 5687.37 4493.17 7069.79 4793.99 7093.76 6979.08 8178.88 12693.99 10162.25 11798.15 3685.93 7591.15 8394.15 119
MSLP-MVS++86.27 4785.91 5487.35 4592.01 10068.97 6595.04 4192.70 11179.04 8381.50 9096.50 2658.98 15296.78 11383.49 9593.93 4096.29 34
IB-MVS77.80 482.18 12280.46 14187.35 4589.14 17070.28 3795.59 2795.17 2178.85 8470.19 22485.82 24170.66 3797.67 5172.19 18166.52 28694.09 122
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
VDDNet80.50 15078.26 17287.21 4786.19 23869.79 4794.48 5191.31 17160.42 32979.34 11890.91 16438.48 31596.56 12082.16 10281.05 17595.27 71
PAPR85.15 6984.47 7487.18 4896.02 2568.29 7991.85 16993.00 10376.59 11979.03 12295.00 6761.59 12397.61 5878.16 13789.00 10195.63 52
PAPM85.89 5685.46 6187.18 4888.20 19672.42 1492.41 14392.77 10982.11 3180.34 10693.07 11868.27 4795.02 18078.39 13693.59 4894.09 122
jason86.40 4486.17 4887.11 5086.16 24070.54 3495.71 2592.19 13282.00 3284.58 6794.34 9161.86 12095.53 16787.76 5590.89 8595.27 71
jason: jason.
test1287.09 5194.60 3668.86 6692.91 10582.67 8465.44 7197.55 6393.69 4794.84 89
casdiffmvs_mvgpermissive85.66 6185.18 6587.09 5188.22 19569.35 5793.74 8791.89 14481.47 3780.10 10891.45 15564.80 8096.35 12787.23 6387.69 11295.58 54
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test84.16 8883.20 9587.05 5391.56 11569.82 4689.99 24192.05 13577.77 9982.84 8086.57 23163.93 9096.09 13674.91 15989.18 10095.25 74
HY-MVS76.49 584.28 8283.36 9487.02 5492.22 9367.74 9584.65 30394.50 4379.15 7882.23 8587.93 21266.88 5896.94 10580.53 11782.20 16496.39 32
Effi-MVS+83.82 9482.76 10486.99 5589.56 15669.40 5391.35 19386.12 32072.59 18183.22 7892.81 12759.60 14496.01 14481.76 10687.80 11195.56 55
dcpmvs_287.37 3087.55 2986.85 5695.04 3268.20 8590.36 22790.66 19779.37 7381.20 9293.67 10774.73 1596.55 12190.88 3692.00 6895.82 48
SF-MVS87.03 3487.09 3486.84 5792.70 8367.45 10593.64 9193.76 6970.78 23886.25 4896.44 2866.98 5797.79 4788.68 5094.56 3395.28 70
casdiffmvspermissive85.37 6584.87 7186.84 5788.25 19369.07 6193.04 11591.76 15181.27 4480.84 9992.07 14364.23 8696.06 14084.98 8387.43 11695.39 59
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
VDD-MVS83.06 10881.81 11986.81 5990.86 13267.70 9695.40 3091.50 16575.46 13081.78 8892.34 13740.09 30697.13 8986.85 6882.04 16695.60 53
ACMMP_NAP86.05 5185.80 5686.80 6091.58 11467.53 10291.79 17193.49 8374.93 13884.61 6695.30 5559.42 14697.92 4186.13 7294.92 2094.94 85
PHI-MVS86.83 3986.85 4086.78 6193.47 6265.55 15195.39 3195.10 2271.77 21085.69 5696.52 2462.07 11898.77 2286.06 7495.60 1296.03 42
baseline85.01 7184.44 7586.71 6288.33 19068.73 6990.24 23291.82 15081.05 4781.18 9392.50 13063.69 9496.08 13984.45 8886.71 12695.32 66
TSAR-MVS + GP.87.96 2088.37 2086.70 6393.51 6165.32 15595.15 3793.84 6578.17 9385.93 5394.80 7575.80 1398.21 3489.38 4288.78 10296.59 20
APDe-MVScopyleft87.54 2687.84 2586.65 6496.07 2366.30 13394.84 4693.78 6669.35 25588.39 3496.34 3067.74 5397.66 5490.62 3893.44 5096.01 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
testing22285.18 6884.69 7386.63 6592.91 7669.91 4392.61 13495.80 980.31 5580.38 10592.27 13868.73 4495.19 17775.94 14983.27 15394.81 93
train_agg87.21 3287.42 3186.60 6694.18 4167.28 10794.16 5993.51 8071.87 20585.52 5795.33 5368.19 4897.27 8289.09 4694.90 2295.25 74
3Dnovator+73.60 782.10 12680.60 13886.60 6690.89 13166.80 12195.20 3593.44 8574.05 14967.42 26392.49 13249.46 24997.65 5570.80 19191.68 7395.33 64
ET-MVSNet_ETH3D84.01 9083.15 9886.58 6890.78 13470.89 3094.74 4894.62 4081.44 4058.19 32993.64 10873.64 2392.35 28282.66 9978.66 19796.50 28
SteuartSystems-ACMMP86.82 4086.90 3886.58 6890.42 13866.38 13096.09 1893.87 6477.73 10084.01 7495.66 4563.39 10197.94 4087.40 6093.55 4995.42 57
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.88.11 1988.64 1786.54 7091.73 11068.04 8890.36 22793.55 7982.89 2191.29 1692.89 12372.27 3196.03 14287.99 5394.77 2695.54 56
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
GG-mvs-BLEND86.53 7191.91 10569.67 5275.02 36594.75 3378.67 13090.85 16577.91 794.56 20172.25 17893.74 4495.36 63
CDPH-MVS85.71 5985.46 6186.46 7294.75 3467.19 10993.89 7692.83 10870.90 23483.09 7995.28 5663.62 9697.36 7380.63 11694.18 3694.84 89
MAR-MVS84.18 8783.43 8986.44 7396.25 2165.93 14294.28 5694.27 5674.41 14279.16 12195.61 4753.99 20898.88 2169.62 20293.26 5394.50 109
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_prior86.42 7494.71 3567.35 10693.10 9996.84 11195.05 80
OpenMVScopyleft70.45 1178.54 19075.92 20986.41 7585.93 24671.68 1992.74 12592.51 12166.49 28264.56 28791.96 14443.88 29398.10 3754.61 30490.65 8889.44 228
MVSFormer83.75 9782.88 10286.37 7689.24 16871.18 2589.07 26090.69 19465.80 28687.13 4194.34 9164.99 7592.67 26872.83 17091.80 7195.27 71
PAPM_NR82.97 11081.84 11886.37 7694.10 4466.76 12287.66 28292.84 10769.96 24874.07 17793.57 11063.10 10897.50 6570.66 19490.58 8994.85 86
DeepC-MVS77.85 385.52 6485.24 6486.37 7688.80 17866.64 12492.15 15093.68 7481.07 4676.91 14893.64 10862.59 11398.44 3185.50 7692.84 5894.03 126
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PVSNet_Blended86.73 4186.86 3986.31 7993.76 4967.53 10296.33 1793.61 7682.34 2981.00 9793.08 11763.19 10597.29 7887.08 6591.38 7994.13 120
EPNet87.84 2388.38 1986.23 8093.30 6566.05 13795.26 3394.84 2987.09 788.06 3594.53 8166.79 5997.34 7583.89 9391.68 7395.29 68
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest051583.41 10182.49 11086.16 8189.46 15968.26 8193.54 9694.70 3674.31 14575.75 15590.92 16372.62 2896.52 12269.64 20081.50 17293.71 137
ZNCC-MVS85.33 6685.08 6786.06 8293.09 7365.65 14793.89 7693.41 8773.75 15879.94 11094.68 7860.61 13398.03 3882.63 10093.72 4594.52 107
EPMVS78.49 19175.98 20886.02 8391.21 12569.68 5180.23 34191.20 17675.25 13472.48 19678.11 32854.65 19993.69 23957.66 29583.04 15494.69 95
DP-MVS Recon82.73 11481.65 12085.98 8497.31 467.06 11395.15 3791.99 13869.08 26176.50 15293.89 10354.48 20398.20 3570.76 19285.66 13492.69 165
PatchmatchNetpermissive77.46 20674.63 22485.96 8589.55 15770.35 3679.97 34689.55 24072.23 19370.94 21376.91 33957.03 16892.79 26354.27 30681.17 17494.74 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
131480.70 14778.95 16485.94 8687.77 20967.56 10087.91 27892.55 12072.17 19667.44 26293.09 11650.27 24297.04 9471.68 18687.64 11393.23 150
MSP-MVS90.38 591.87 185.88 8792.83 7764.03 19093.06 11394.33 5482.19 3093.65 396.15 3785.89 197.19 8491.02 3597.75 196.43 30
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Anonymous20240521177.96 19975.33 21885.87 8893.73 5464.52 17094.85 4585.36 32662.52 31476.11 15390.18 17829.43 36297.29 7868.51 21577.24 21295.81 49
CostFormer82.33 12081.15 12485.86 8989.01 17368.46 7582.39 32393.01 10175.59 12880.25 10781.57 28872.03 3394.96 18379.06 12977.48 20894.16 118
patch_mono-289.71 1190.99 685.85 9096.04 2463.70 20095.04 4195.19 1986.74 991.53 1595.15 6573.86 2097.58 5993.38 1492.00 6896.28 36
CANet_DTU84.09 8983.52 8385.81 9190.30 14166.82 11991.87 16789.01 26585.27 1186.09 5193.74 10547.71 26896.98 10077.90 13989.78 9693.65 139
gg-mvs-nofinetune77.18 21074.31 23185.80 9291.42 11968.36 7771.78 36894.72 3449.61 36977.12 14545.92 39277.41 893.98 23067.62 22393.16 5495.05 80
ab-mvs80.18 15778.31 17185.80 9288.44 18565.49 15483.00 32092.67 11371.82 20877.36 14285.01 24754.50 20096.59 11776.35 14775.63 22295.32 66
ETVMVS84.22 8683.71 8185.76 9492.58 8768.25 8392.45 14295.53 1479.54 6979.46 11691.64 15370.29 3994.18 21769.16 20882.76 15994.84 89
APD-MVScopyleft85.93 5485.99 5285.76 9495.98 2665.21 15893.59 9492.58 11966.54 28186.17 5095.88 4163.83 9197.00 9686.39 7192.94 5695.06 79
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS84.73 7584.40 7685.72 9693.75 5165.01 16493.50 9993.19 9472.19 19479.22 12094.93 7059.04 15197.67 5181.55 10792.21 6394.49 110
ETV-MVS86.01 5286.11 4985.70 9790.21 14367.02 11693.43 10491.92 14181.21 4584.13 7394.07 10060.93 13095.63 15889.28 4489.81 9494.46 111
GST-MVS84.63 7784.29 7785.66 9892.82 7965.27 15693.04 11593.13 9773.20 16778.89 12394.18 9759.41 14797.85 4581.45 10992.48 6293.86 134
diffmvspermissive84.28 8283.83 8085.61 9987.40 21568.02 8990.88 21189.24 25180.54 5081.64 8992.52 12959.83 14194.52 20487.32 6185.11 13694.29 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVS-pluss85.24 6785.13 6685.56 10091.42 11965.59 14991.54 18192.51 12174.56 14180.62 10195.64 4659.15 15097.00 9686.94 6793.80 4294.07 124
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA83.91 9283.38 9385.50 10191.89 10665.16 16081.75 32692.23 12775.32 13380.53 10395.21 6356.06 18597.16 8784.86 8592.55 6194.18 116
mvs_anonymous81.36 13579.99 14685.46 10290.39 14068.40 7686.88 29390.61 19974.41 14270.31 22384.67 25263.79 9292.32 28373.13 16785.70 13395.67 50
HyFIR lowres test81.03 14279.56 15385.43 10387.81 20768.11 8790.18 23390.01 22570.65 24072.95 18786.06 23963.61 9794.50 20575.01 15779.75 18693.67 138
cascas78.18 19575.77 21185.41 10487.14 22169.11 6092.96 11891.15 18066.71 28070.47 21886.07 23837.49 32696.48 12570.15 19779.80 18590.65 208
fmvsm_l_conf0.5_n87.49 2788.19 2285.39 10586.95 22564.37 18094.30 5588.45 28680.51 5192.70 496.86 1569.98 4197.15 8895.83 388.08 10994.65 99
PVSNet_Blended_VisFu83.97 9183.50 8585.39 10590.02 14666.59 12793.77 8591.73 15277.43 10877.08 14789.81 18563.77 9396.97 10279.67 12388.21 10792.60 168
region2R84.36 8084.03 7985.36 10793.54 5964.31 18393.43 10492.95 10472.16 19778.86 12794.84 7456.97 17297.53 6481.38 11192.11 6694.24 114
tpm279.80 16577.95 17885.34 10888.28 19168.26 8181.56 32991.42 16870.11 24677.59 14080.50 30667.40 5594.26 21467.34 22577.35 20993.51 142
fmvsm_l_conf0.5_n_a87.44 2988.15 2385.30 10987.10 22264.19 18794.41 5388.14 29580.24 5992.54 696.97 1069.52 4397.17 8595.89 288.51 10594.56 102
ACMMPR84.37 7984.06 7885.28 11093.56 5864.37 18093.50 9993.15 9672.19 19478.85 12894.86 7356.69 17797.45 6681.55 10792.20 6494.02 127
test_fmvsm_n_192087.69 2588.50 1885.27 11187.05 22463.55 20793.69 8891.08 18584.18 1590.17 2497.04 867.58 5497.99 3995.72 590.03 9394.26 113
xiu_mvs_v1_base_debu82.16 12381.12 12585.26 11286.42 23368.72 7092.59 13790.44 20473.12 17084.20 7094.36 8638.04 32095.73 15284.12 9086.81 12191.33 196
xiu_mvs_v1_base82.16 12381.12 12585.26 11286.42 23368.72 7092.59 13790.44 20473.12 17084.20 7094.36 8638.04 32095.73 15284.12 9086.81 12191.33 196
xiu_mvs_v1_base_debi82.16 12381.12 12585.26 11286.42 23368.72 7092.59 13790.44 20473.12 17084.20 7094.36 8638.04 32095.73 15284.12 9086.81 12191.33 196
MGCFI-Net85.59 6385.73 5885.17 11591.41 12162.44 23292.87 12191.31 17179.65 6786.99 4595.14 6662.90 11196.12 13487.13 6484.13 14996.96 14
MP-MVScopyleft85.02 7084.97 6985.17 11592.60 8664.27 18593.24 10792.27 12673.13 16979.63 11494.43 8461.90 11997.17 8585.00 8292.56 6094.06 125
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
XVS83.87 9383.47 8785.05 11793.22 6663.78 19492.92 11992.66 11473.99 15078.18 13294.31 9355.25 19197.41 7079.16 12791.58 7593.95 129
X-MVStestdata76.86 21574.13 23585.05 11793.22 6663.78 19492.92 11992.66 11473.99 15078.18 13210.19 40755.25 19197.41 7079.16 12791.58 7593.95 129
SCA75.82 23572.76 25285.01 11986.63 23070.08 3881.06 33489.19 25471.60 21970.01 22677.09 33745.53 28490.25 31360.43 28173.27 23894.68 96
iter_conf0583.27 10482.70 10684.98 12093.32 6471.84 1894.16 5981.76 35082.74 2373.83 18088.40 20072.77 2794.61 19682.10 10375.21 22488.48 238
PGM-MVS83.25 10582.70 10684.92 12192.81 8164.07 18990.44 22392.20 13171.28 22677.23 14494.43 8455.17 19597.31 7779.33 12691.38 7993.37 145
BH-RMVSNet79.46 17177.65 18184.89 12291.68 11265.66 14693.55 9588.09 29772.93 17473.37 18391.12 16246.20 28096.12 13456.28 29985.61 13592.91 161
Anonymous2024052976.84 21874.15 23484.88 12391.02 12764.95 16693.84 8191.09 18353.57 35873.00 18587.42 22035.91 33697.32 7669.14 20972.41 24892.36 174
tpmrst80.57 14879.14 16384.84 12490.10 14568.28 8081.70 32789.72 23777.63 10475.96 15479.54 32064.94 7792.71 26575.43 15277.28 21193.55 141
fmvsm_s_conf0.5_n86.39 4586.91 3784.82 12587.36 21763.54 20894.74 4890.02 22482.52 2690.14 2596.92 1362.93 11097.84 4695.28 882.26 16193.07 156
test_fmvsmconf_n86.58 4387.17 3384.82 12585.28 25562.55 23194.26 5789.78 23083.81 1887.78 3796.33 3165.33 7296.98 10094.40 1187.55 11494.95 84
FE-MVS75.97 23273.02 24884.82 12589.78 15065.56 15077.44 35791.07 18664.55 29472.66 19079.85 31646.05 28296.69 11554.97 30380.82 17892.21 183
FA-MVS(test-final)79.12 17577.23 19184.81 12890.54 13663.98 19181.35 33291.71 15471.09 23174.85 16882.94 26952.85 22097.05 9167.97 21881.73 17193.41 144
test_fmvsmvis_n_192083.80 9583.48 8684.77 12982.51 29463.72 19891.37 19183.99 34081.42 4177.68 13795.74 4458.37 15597.58 5993.38 1486.87 12093.00 159
AdaColmapbinary78.94 17977.00 19584.76 13096.34 1765.86 14392.66 13287.97 30162.18 31670.56 21792.37 13643.53 29497.35 7464.50 25582.86 15591.05 205
新几何184.73 13192.32 9064.28 18491.46 16759.56 33679.77 11292.90 12256.95 17396.57 11963.40 26192.91 5793.34 146
fmvsm_s_conf0.5_n_a85.75 5886.09 5084.72 13285.73 24963.58 20593.79 8489.32 24881.42 4190.21 2396.91 1462.41 11597.67 5194.48 1080.56 18092.90 162
DeepPCF-MVS81.17 189.72 1091.38 484.72 13293.00 7458.16 30496.72 994.41 4886.50 1090.25 2297.83 175.46 1498.67 2592.78 1895.49 1397.32 8
EIA-MVS84.84 7384.88 7084.69 13491.30 12362.36 23593.85 7892.04 13679.45 7079.33 11994.28 9462.42 11496.35 12780.05 12091.25 8295.38 60
fmvsm_s_conf0.1_n85.61 6285.93 5384.68 13582.95 29263.48 21094.03 6989.46 24281.69 3589.86 2696.74 2061.85 12197.75 4994.74 982.01 16792.81 164
GA-MVS78.33 19476.23 20484.65 13683.65 28266.30 13391.44 18290.14 21876.01 12470.32 22284.02 25942.50 29894.72 19170.98 18977.00 21492.94 160
CP-MVS83.71 9883.40 9284.65 13693.14 7163.84 19294.59 5092.28 12571.03 23277.41 14194.92 7155.21 19496.19 13181.32 11290.70 8793.91 131
RPMNet70.42 28665.68 30584.63 13883.15 28767.96 9070.25 37190.45 20146.83 37769.97 22865.10 37656.48 18195.30 17535.79 37473.13 23990.64 209
test_fmvsmconf0.1_n85.71 5986.08 5184.62 13980.83 30862.33 23693.84 8188.81 27383.50 2087.00 4496.01 3963.36 10296.93 10794.04 1287.29 11794.61 101
tpm cat175.30 24272.21 26184.58 14088.52 18167.77 9478.16 35588.02 29861.88 32168.45 24976.37 34360.65 13194.03 22853.77 30974.11 23291.93 188
fmvsm_s_conf0.1_n_a84.76 7484.84 7284.53 14180.23 31863.50 20992.79 12388.73 27780.46 5289.84 2796.65 2260.96 12997.57 6193.80 1380.14 18292.53 171
mPP-MVS82.96 11182.44 11184.52 14292.83 7762.92 22492.76 12491.85 14871.52 22275.61 16094.24 9553.48 21696.99 9978.97 13090.73 8693.64 140
Fast-Effi-MVS+81.14 13880.01 14584.51 14390.24 14265.86 14394.12 6389.15 25773.81 15775.37 16388.26 20457.26 16594.53 20366.97 23184.92 13793.15 152
baseline283.68 10083.42 9184.48 14487.37 21666.00 13990.06 23695.93 879.71 6669.08 23690.39 17377.92 696.28 12978.91 13181.38 17391.16 203
原ACMM184.42 14593.21 6864.27 18593.40 8865.39 28979.51 11592.50 13058.11 15996.69 11565.27 25193.96 3992.32 176
SDMVSNet80.26 15578.88 16584.40 14689.25 16567.63 9985.35 29993.02 10076.77 11670.84 21587.12 22547.95 26596.09 13685.04 8174.55 22689.48 226
thisisatest053081.15 13780.07 14384.39 14788.26 19265.63 14891.40 18694.62 4071.27 22770.93 21489.18 19172.47 2996.04 14165.62 24676.89 21591.49 192
test250683.29 10382.92 10184.37 14888.39 18863.18 21792.01 15991.35 17077.66 10278.49 13191.42 15664.58 8395.09 17973.19 16689.23 9894.85 86
h-mvs3383.01 10982.56 10984.35 14989.34 16062.02 24292.72 12693.76 6981.45 3882.73 8292.25 14060.11 13797.13 8987.69 5662.96 31393.91 131
PVSNet73.49 880.05 16078.63 16784.31 15090.92 13064.97 16592.47 14191.05 18879.18 7772.43 19890.51 17037.05 33294.06 22368.06 21786.00 13193.90 133
PCF-MVS73.15 979.29 17277.63 18284.29 15186.06 24165.96 14187.03 28991.10 18269.86 25069.79 23190.64 16657.54 16496.59 11764.37 25682.29 16090.32 212
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline181.84 12981.03 12984.28 15291.60 11366.62 12591.08 20591.66 15981.87 3374.86 16791.67 15269.98 4194.92 18671.76 18464.75 30191.29 201
test_fmvsmconf0.01_n83.70 9983.52 8384.25 15375.26 35961.72 25092.17 14987.24 30882.36 2884.91 6495.41 5055.60 18996.83 11292.85 1785.87 13294.21 115
HPM-MVScopyleft83.25 10582.95 10084.17 15492.25 9262.88 22690.91 20891.86 14670.30 24477.12 14593.96 10256.75 17596.28 12982.04 10491.34 8193.34 146
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
nrg03080.93 14379.86 14884.13 15583.69 28168.83 6793.23 10891.20 17675.55 12975.06 16588.22 20763.04 10994.74 19081.88 10566.88 28388.82 232
EI-MVSNet-Vis-set83.77 9683.67 8284.06 15692.79 8263.56 20691.76 17494.81 3179.65 6777.87 13594.09 9863.35 10397.90 4279.35 12579.36 18990.74 207
BH-w/o80.49 15179.30 16084.05 15790.83 13364.36 18293.60 9389.42 24574.35 14469.09 23590.15 18055.23 19395.61 16064.61 25486.43 13092.17 184
ECVR-MVScopyleft81.29 13680.38 14284.01 15888.39 18861.96 24492.56 14086.79 31377.66 10276.63 14991.42 15646.34 27795.24 17674.36 16389.23 9894.85 86
ACMMPcopyleft81.49 13380.67 13583.93 15991.71 11162.90 22592.13 15192.22 13071.79 20971.68 20893.49 11250.32 24096.96 10378.47 13584.22 14891.93 188
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CLD-MVS82.73 11482.35 11383.86 16087.90 20367.65 9895.45 2992.18 13385.06 1272.58 19392.27 13852.46 22495.78 14884.18 8979.06 19288.16 244
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
dp75.01 24672.09 26283.76 16189.28 16466.22 13679.96 34789.75 23271.16 22867.80 25977.19 33651.81 22892.54 27450.39 31771.44 25592.51 172
MVSTER82.47 11882.05 11483.74 16292.68 8469.01 6391.90 16693.21 9179.83 6272.14 20185.71 24374.72 1694.72 19175.72 15072.49 24687.50 249
Vis-MVSNetpermissive80.92 14479.98 14783.74 16288.48 18361.80 24693.44 10388.26 29473.96 15377.73 13691.76 14949.94 24594.76 18865.84 24390.37 9194.65 99
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
sss82.71 11682.38 11283.73 16489.25 16559.58 28792.24 14794.89 2877.96 9579.86 11192.38 13556.70 17697.05 9177.26 14280.86 17794.55 103
TESTMET0.1,182.41 11981.98 11783.72 16588.08 19763.74 19692.70 12893.77 6879.30 7477.61 13987.57 21858.19 15894.08 22173.91 16586.68 12793.33 148
114514_t79.17 17477.67 18083.68 16695.32 2965.53 15292.85 12291.60 16163.49 30267.92 25490.63 16846.65 27395.72 15667.01 23083.54 15089.79 220
EI-MVSNet-UG-set83.14 10782.96 9983.67 16792.28 9163.19 21691.38 19094.68 3779.22 7676.60 15093.75 10462.64 11297.76 4878.07 13878.01 20090.05 216
thres20079.66 16678.33 17083.66 16892.54 8865.82 14593.06 11396.31 374.90 13973.30 18488.66 19559.67 14395.61 16047.84 33278.67 19689.56 225
CS-MVS-test86.14 5087.01 3583.52 16992.63 8559.36 29295.49 2891.92 14180.09 6085.46 5995.53 4961.82 12295.77 15086.77 6993.37 5195.41 58
CDS-MVSNet81.43 13480.74 13383.52 16986.26 23764.45 17492.09 15490.65 19875.83 12673.95 17989.81 18563.97 8992.91 25871.27 18782.82 15693.20 151
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_111021_LR82.02 12781.52 12183.51 17188.42 18662.88 22689.77 24588.93 26976.78 11575.55 16193.10 11550.31 24195.38 17183.82 9487.02 11992.26 182
SR-MVS82.81 11382.58 10883.50 17293.35 6361.16 25992.23 14891.28 17564.48 29581.27 9195.28 5653.71 21295.86 14682.87 9888.77 10393.49 143
BH-untuned78.68 18677.08 19283.48 17389.84 14963.74 19692.70 12888.59 28371.57 22066.83 27288.65 19651.75 22995.39 17059.03 28984.77 13991.32 199
UGNet79.87 16478.68 16683.45 17489.96 14761.51 25392.13 15190.79 19276.83 11478.85 12886.33 23538.16 31896.17 13267.93 22087.17 11892.67 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test111180.84 14580.02 14483.33 17587.87 20460.76 26792.62 13386.86 31277.86 9875.73 15691.39 15846.35 27694.70 19472.79 17288.68 10494.52 107
GeoE78.90 18077.43 18583.29 17688.95 17462.02 24292.31 14486.23 31870.24 24571.34 21289.27 19054.43 20494.04 22663.31 26380.81 17993.81 136
CS-MVS85.80 5786.65 4183.27 17792.00 10158.92 29795.31 3291.86 14679.97 6184.82 6595.40 5162.26 11695.51 16886.11 7392.08 6795.37 61
tpm78.58 18977.03 19383.22 17885.94 24564.56 16983.21 31791.14 18178.31 9173.67 18179.68 31864.01 8892.09 28866.07 24171.26 25693.03 157
PVSNet_BlendedMVS83.38 10283.43 8983.22 17893.76 4967.53 10294.06 6493.61 7679.13 7981.00 9785.14 24663.19 10597.29 7887.08 6573.91 23584.83 304
TAMVS80.37 15379.45 15683.13 18085.14 25863.37 21191.23 19990.76 19374.81 14072.65 19188.49 19760.63 13292.95 25369.41 20481.95 16893.08 155
EC-MVSNet84.53 7885.04 6883.01 18189.34 16061.37 25694.42 5291.09 18377.91 9783.24 7794.20 9658.37 15595.40 16985.35 7791.41 7892.27 181
TR-MVS78.77 18577.37 19082.95 18290.49 13760.88 26393.67 8990.07 22070.08 24774.51 17191.37 15945.69 28395.70 15760.12 28480.32 18192.29 177
tfpn200view978.79 18477.43 18582.88 18392.21 9464.49 17192.05 15796.28 473.48 16471.75 20688.26 20460.07 13995.32 17245.16 34377.58 20588.83 230
FMVSNet377.73 20376.04 20782.80 18491.20 12668.99 6491.87 16791.99 13873.35 16667.04 26883.19 26856.62 17892.14 28559.80 28669.34 26387.28 257
1112_ss80.56 14979.83 14982.77 18588.65 18060.78 26592.29 14588.36 28872.58 18272.46 19794.95 6865.09 7493.42 24566.38 23777.71 20294.10 121
v2v48277.42 20775.65 21482.73 18680.38 31467.13 11291.85 16990.23 21575.09 13669.37 23283.39 26653.79 21194.44 20671.77 18365.00 29886.63 269
VPNet78.82 18277.53 18482.70 18784.52 26866.44 12993.93 7392.23 12780.46 5272.60 19288.38 20149.18 25393.13 24872.47 17763.97 31088.55 237
CR-MVSNet73.79 25970.82 27482.70 18783.15 28767.96 9070.25 37184.00 33873.67 16269.97 22872.41 35757.82 16189.48 32452.99 31273.13 23990.64 209
HQP-MVS81.14 13880.64 13682.64 18987.54 21163.66 20394.06 6491.70 15779.80 6374.18 17390.30 17551.63 23195.61 16077.63 14078.90 19388.63 234
EPP-MVSNet81.79 13081.52 12182.61 19088.77 17960.21 27993.02 11793.66 7568.52 26772.90 18890.39 17372.19 3294.96 18374.93 15879.29 19192.67 166
APD-MVS_3200maxsize81.64 13281.32 12382.59 19192.36 8958.74 29991.39 18891.01 19063.35 30479.72 11394.62 8051.82 22796.14 13379.71 12287.93 11092.89 163
thres100view90078.37 19277.01 19482.46 19291.89 10663.21 21591.19 20396.33 172.28 19270.45 22087.89 21360.31 13495.32 17245.16 34377.58 20588.83 230
thres40078.68 18677.43 18582.43 19392.21 9464.49 17192.05 15796.28 473.48 16471.75 20688.26 20460.07 13995.32 17245.16 34377.58 20587.48 250
XXY-MVS77.94 20076.44 20182.43 19382.60 29364.44 17592.01 15991.83 14973.59 16370.00 22785.82 24154.43 20494.76 18869.63 20168.02 27688.10 245
Test_1112_low_res79.56 16878.60 16882.43 19388.24 19460.39 27692.09 15487.99 29972.10 19871.84 20487.42 22064.62 8293.04 24965.80 24477.30 21093.85 135
tttt051779.50 16978.53 16982.41 19687.22 21961.43 25589.75 24694.76 3269.29 25667.91 25588.06 21172.92 2595.63 15862.91 26773.90 23690.16 214
HPM-MVS_fast80.25 15679.55 15582.33 19791.55 11659.95 28291.32 19589.16 25665.23 29274.71 16993.07 11847.81 26795.74 15174.87 16188.23 10691.31 200
IS-MVSNet80.14 15879.41 15782.33 19787.91 20260.08 28191.97 16388.27 29272.90 17771.44 21191.73 15161.44 12493.66 24062.47 27186.53 12893.24 149
v114476.73 22174.88 22182.27 19980.23 31866.60 12691.68 17890.21 21773.69 16069.06 23781.89 28152.73 22294.40 20769.21 20765.23 29585.80 288
PVSNet_068.08 1571.81 27768.32 29382.27 19984.68 26462.31 23888.68 26690.31 21075.84 12557.93 33480.65 30537.85 32394.19 21669.94 19929.05 39790.31 213
FMVSNet276.07 22674.01 23782.26 20188.85 17567.66 9791.33 19491.61 16070.84 23565.98 27582.25 27748.03 26192.00 29058.46 29168.73 27187.10 260
tpmvs72.88 26869.76 28482.22 20290.98 12867.05 11478.22 35488.30 29063.10 30964.35 29274.98 35055.09 19694.27 21243.25 34969.57 26285.34 299
sd_testset77.08 21375.37 21682.20 20389.25 16562.11 24182.06 32489.09 26176.77 11670.84 21587.12 22541.43 30295.01 18167.23 22774.55 22689.48 226
V4276.46 22374.55 22782.19 20479.14 33267.82 9390.26 23189.42 24573.75 15868.63 24681.89 28151.31 23494.09 22071.69 18564.84 29984.66 305
SR-MVS-dyc-post81.06 14180.70 13482.15 20592.02 9858.56 30190.90 20990.45 20162.76 31178.89 12394.46 8251.26 23595.61 16078.77 13386.77 12492.28 178
v119275.98 23173.92 23882.15 20579.73 32266.24 13591.22 20089.75 23272.67 18068.49 24881.42 29149.86 24694.27 21267.08 22965.02 29785.95 285
MS-PatchMatch77.90 20276.50 20082.12 20785.99 24269.95 4291.75 17692.70 11173.97 15262.58 30884.44 25641.11 30395.78 14863.76 26092.17 6580.62 351
v14419276.05 22974.03 23682.12 20779.50 32666.55 12891.39 18889.71 23872.30 19168.17 25081.33 29351.75 22994.03 22867.94 21964.19 30585.77 289
HQP_MVS80.34 15479.75 15082.12 20786.94 22662.42 23393.13 11191.31 17178.81 8672.53 19489.14 19350.66 23895.55 16576.74 14378.53 19888.39 241
VPA-MVSNet79.03 17678.00 17682.11 21085.95 24364.48 17393.22 10994.66 3875.05 13774.04 17884.95 24852.17 22693.52 24274.90 16067.04 28288.32 243
v192192075.63 23973.49 24482.06 21179.38 32766.35 13191.07 20789.48 24171.98 19967.99 25181.22 29649.16 25593.90 23466.56 23364.56 30485.92 287
thres600view778.00 19776.66 19982.03 21291.93 10363.69 20191.30 19696.33 172.43 18770.46 21987.89 21360.31 13494.92 18642.64 35576.64 21687.48 250
v124075.21 24472.98 24981.88 21379.20 32966.00 13990.75 21689.11 26071.63 21867.41 26481.22 29647.36 26993.87 23565.46 24964.72 30285.77 289
PMMVS81.98 12882.04 11581.78 21489.76 15256.17 32491.13 20490.69 19477.96 9580.09 10993.57 11046.33 27894.99 18281.41 11087.46 11594.17 117
OPM-MVS79.00 17778.09 17481.73 21583.52 28463.83 19391.64 18090.30 21176.36 12271.97 20389.93 18446.30 27995.17 17875.10 15577.70 20386.19 277
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test-LLR80.10 15979.56 15381.72 21686.93 22861.17 25792.70 12891.54 16271.51 22375.62 15886.94 22753.83 20992.38 27972.21 17984.76 14091.60 190
test-mter79.96 16279.38 15981.72 21686.93 22861.17 25792.70 12891.54 16273.85 15575.62 15886.94 22749.84 24792.38 27972.21 17984.76 14091.60 190
dmvs_re76.93 21475.36 21781.61 21887.78 20860.71 27080.00 34587.99 29979.42 7169.02 23889.47 18846.77 27194.32 20863.38 26274.45 22989.81 219
v875.35 24173.26 24681.61 21880.67 31166.82 11989.54 24989.27 25071.65 21463.30 30080.30 31054.99 19794.06 22367.33 22662.33 32083.94 310
miper_enhance_ethall78.86 18177.97 17781.54 22088.00 20165.17 15991.41 18489.15 25775.19 13568.79 24383.98 26067.17 5692.82 26072.73 17365.30 29286.62 270
v1074.77 24872.54 25881.46 22180.33 31666.71 12389.15 25989.08 26270.94 23363.08 30379.86 31552.52 22394.04 22665.70 24562.17 32183.64 313
cl2277.94 20076.78 19781.42 22287.57 21064.93 16790.67 21888.86 27272.45 18667.63 26182.68 27364.07 8792.91 25871.79 18265.30 29286.44 271
v14876.19 22474.47 22981.36 22380.05 32064.44 17591.75 17690.23 21573.68 16167.13 26780.84 30155.92 18793.86 23768.95 21161.73 32885.76 291
testdata81.34 22489.02 17257.72 30889.84 22958.65 34085.32 6194.09 9857.03 16893.28 24669.34 20590.56 9093.03 157
EI-MVSNet78.97 17878.22 17381.25 22585.33 25362.73 22989.53 25093.21 9172.39 18972.14 20190.13 18160.99 12794.72 19167.73 22272.49 24686.29 273
MIMVSNet71.64 27868.44 29181.23 22681.97 30164.44 17573.05 36788.80 27469.67 25264.59 28574.79 35132.79 34687.82 33653.99 30776.35 21891.42 194
AUN-MVS78.37 19277.43 18581.17 22786.60 23157.45 31489.46 25291.16 17874.11 14874.40 17290.49 17155.52 19094.57 19974.73 16260.43 33991.48 193
hse-mvs281.12 14081.11 12881.16 22886.52 23257.48 31389.40 25391.16 17881.45 3882.73 8290.49 17160.11 13794.58 19787.69 5660.41 34091.41 195
Anonymous2023121173.08 26270.39 27881.13 22990.62 13563.33 21291.40 18690.06 22251.84 36364.46 29080.67 30436.49 33494.07 22263.83 25964.17 30685.98 284
UA-Net80.02 16179.65 15181.11 23089.33 16257.72 30886.33 29689.00 26877.44 10781.01 9689.15 19259.33 14895.90 14561.01 27884.28 14689.73 222
GBi-Net75.65 23773.83 23981.10 23188.85 17565.11 16190.01 23890.32 20770.84 23567.04 26880.25 31148.03 26191.54 30059.80 28669.34 26386.64 266
test175.65 23773.83 23981.10 23188.85 17565.11 16190.01 23890.32 20770.84 23567.04 26880.25 31148.03 26191.54 30059.80 28669.34 26386.64 266
FMVSNet172.71 27169.91 28281.10 23183.60 28365.11 16190.01 23890.32 20763.92 29863.56 29780.25 31136.35 33591.54 30054.46 30566.75 28486.64 266
miper_ehance_all_eth77.60 20476.44 20181.09 23485.70 25064.41 17890.65 21988.64 28272.31 19067.37 26682.52 27464.77 8192.64 27270.67 19365.30 29286.24 275
ADS-MVSNet68.54 30364.38 31881.03 23588.06 19866.90 11868.01 37884.02 33757.57 34264.48 28869.87 36738.68 31089.21 32640.87 36067.89 27786.97 261
MSDG69.54 29465.73 30480.96 23685.11 26063.71 19984.19 30583.28 34656.95 34754.50 34484.03 25831.50 35496.03 14242.87 35369.13 26883.14 324
OMC-MVS78.67 18877.91 17980.95 23785.76 24857.40 31588.49 26988.67 28073.85 15572.43 19892.10 14249.29 25294.55 20272.73 17377.89 20190.91 206
c3_l76.83 21975.47 21580.93 23885.02 26164.18 18890.39 22688.11 29671.66 21366.65 27481.64 28663.58 10092.56 27369.31 20662.86 31486.04 282
CPTT-MVS79.59 16779.16 16280.89 23991.54 11759.80 28492.10 15388.54 28560.42 32972.96 18693.28 11448.27 26092.80 26278.89 13286.50 12990.06 215
eth_miper_zixun_eth75.96 23374.40 23080.66 24084.66 26563.02 21989.28 25588.27 29271.88 20465.73 27681.65 28559.45 14592.81 26168.13 21660.53 33786.14 278
test_vis1_n_192081.66 13182.01 11680.64 24182.24 29755.09 33294.76 4786.87 31181.67 3684.40 6994.63 7938.17 31794.67 19591.98 2883.34 15292.16 185
Patchmatch-test65.86 32060.94 33480.62 24283.75 28058.83 29858.91 39275.26 36944.50 38250.95 36077.09 33758.81 15387.90 33435.13 37564.03 30895.12 78
NR-MVSNet76.05 22974.59 22580.44 24382.96 29062.18 24090.83 21391.73 15277.12 11060.96 31486.35 23359.28 14991.80 29360.74 27961.34 33287.35 255
IterMVS-LS76.49 22275.18 22080.43 24484.49 26962.74 22890.64 22088.80 27472.40 18865.16 28181.72 28460.98 12892.27 28467.74 22164.65 30386.29 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchT69.11 29765.37 30980.32 24582.07 30063.68 20267.96 38087.62 30350.86 36669.37 23265.18 37557.09 16788.53 33041.59 35866.60 28588.74 233
CNLPA74.31 25272.30 26080.32 24591.49 11861.66 25190.85 21280.72 35456.67 35063.85 29590.64 16646.75 27290.84 30853.79 30875.99 22188.47 240
cl____76.07 22674.67 22280.28 24785.15 25761.76 24890.12 23488.73 27771.16 22865.43 27881.57 28861.15 12592.95 25366.54 23462.17 32186.13 280
DIV-MVS_self_test76.07 22674.67 22280.28 24785.14 25861.75 24990.12 23488.73 27771.16 22865.42 27981.60 28761.15 12592.94 25766.54 23462.16 32386.14 278
pmmvs473.92 25771.81 26680.25 24979.17 33065.24 15787.43 28587.26 30767.64 27463.46 29883.91 26148.96 25791.53 30362.94 26665.49 29183.96 309
mvsmamba76.85 21775.71 21380.25 24983.07 28959.16 29491.44 18280.64 35576.84 11367.95 25386.33 23546.17 28194.24 21576.06 14872.92 24287.36 254
UWE-MVS80.81 14681.01 13080.20 25189.33 16257.05 31891.91 16594.71 3575.67 12775.01 16689.37 18963.13 10791.44 30567.19 22882.80 15892.12 186
DP-MVS69.90 29166.48 29880.14 25295.36 2862.93 22289.56 24776.11 36350.27 36857.69 33585.23 24539.68 30795.73 15233.35 37971.05 25781.78 341
PS-MVSNAJss77.26 20976.31 20380.13 25380.64 31259.16 29490.63 22291.06 18772.80 17868.58 24784.57 25453.55 21393.96 23172.97 16871.96 25087.27 258
tt080573.07 26370.73 27580.07 25478.37 34357.05 31887.78 28092.18 13361.23 32567.04 26886.49 23231.35 35694.58 19765.06 25267.12 28188.57 236
Fast-Effi-MVS+-dtu75.04 24573.37 24580.07 25480.86 30759.52 28891.20 20285.38 32571.90 20265.20 28084.84 25041.46 30192.97 25266.50 23672.96 24187.73 247
ACMH63.93 1768.62 30164.81 31180.03 25685.22 25663.25 21387.72 28184.66 33260.83 32751.57 35679.43 32127.29 36794.96 18341.76 35664.84 29981.88 339
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WB-MVSnew77.14 21176.18 20680.01 25786.18 23963.24 21491.26 19794.11 6071.72 21273.52 18287.29 22345.14 28893.00 25156.98 29679.42 18783.80 312
UniMVSNet_NR-MVSNet78.15 19677.55 18379.98 25884.46 27060.26 27792.25 14693.20 9377.50 10668.88 24186.61 23066.10 6492.13 28666.38 23762.55 31787.54 248
UniMVSNet (Re)77.58 20576.78 19779.98 25884.11 27660.80 26491.76 17493.17 9576.56 12069.93 23084.78 25163.32 10492.36 28164.89 25362.51 31986.78 265
test_cas_vis1_n_192080.45 15280.61 13779.97 26078.25 34457.01 32094.04 6888.33 28979.06 8282.81 8193.70 10638.65 31291.63 29790.82 3779.81 18491.27 202
DU-MVS76.86 21575.84 21079.91 26182.96 29060.26 27791.26 19791.54 16276.46 12168.88 24186.35 23356.16 18292.13 28666.38 23762.55 31787.35 255
TranMVSNet+NR-MVSNet75.86 23474.52 22879.89 26282.44 29560.64 27391.37 19191.37 16976.63 11867.65 26086.21 23752.37 22591.55 29961.84 27460.81 33587.48 250
PLCcopyleft68.80 1475.23 24373.68 24279.86 26392.93 7558.68 30090.64 22088.30 29060.90 32664.43 29190.53 16942.38 29994.57 19956.52 29776.54 21786.33 272
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS76.76 22075.74 21279.82 26484.60 26662.27 23992.60 13592.51 12176.06 12367.87 25885.34 24456.76 17490.24 31662.20 27263.69 31286.94 263
MVP-Stereo77.12 21276.23 20479.79 26581.72 30266.34 13289.29 25490.88 19170.56 24262.01 31182.88 27049.34 25094.13 21865.55 24893.80 4278.88 365
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ppachtmachnet_test67.72 30963.70 32079.77 26678.92 33466.04 13888.68 26682.90 34860.11 33355.45 34175.96 34639.19 30990.55 30939.53 36452.55 36382.71 330
FIs79.47 17079.41 15779.67 26785.95 24359.40 28991.68 17893.94 6378.06 9468.96 24088.28 20266.61 6191.77 29466.20 24074.99 22587.82 246
XVG-OURS74.25 25372.46 25979.63 26878.45 34257.59 31280.33 33987.39 30463.86 29968.76 24489.62 18740.50 30591.72 29569.00 21074.25 23189.58 223
ACMP71.68 1075.58 24074.23 23379.62 26984.97 26259.64 28590.80 21489.07 26370.39 24362.95 30487.30 22238.28 31693.87 23572.89 16971.45 25485.36 298
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR74.70 24973.08 24779.57 27078.25 34457.33 31680.49 33787.32 30563.22 30668.76 24490.12 18344.89 29091.59 29870.55 19574.09 23389.79 220
LPG-MVS_test75.82 23574.58 22679.56 27184.31 27359.37 29090.44 22389.73 23569.49 25364.86 28288.42 19838.65 31294.30 21072.56 17572.76 24385.01 302
LGP-MVS_train79.56 27184.31 27359.37 29089.73 23569.49 25364.86 28288.42 19838.65 31294.30 21072.56 17572.76 24385.01 302
UniMVSNet_ETH3D72.74 27070.53 27779.36 27378.62 34156.64 32285.01 30189.20 25363.77 30064.84 28484.44 25634.05 34391.86 29263.94 25870.89 25889.57 224
v7n71.31 28168.65 28879.28 27476.40 35560.77 26686.71 29489.45 24364.17 29758.77 32878.24 32644.59 29193.54 24157.76 29361.75 32783.52 316
Patchmatch-RL test68.17 30664.49 31679.19 27571.22 37153.93 33770.07 37371.54 37969.22 25756.79 33862.89 37956.58 17988.61 32769.53 20352.61 36295.03 82
TAPA-MVS70.22 1274.94 24773.53 24379.17 27690.40 13952.07 34489.19 25889.61 23962.69 31370.07 22592.67 12848.89 25894.32 20838.26 36979.97 18391.12 204
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM69.62 1374.34 25172.73 25479.17 27684.25 27557.87 30690.36 22789.93 22663.17 30865.64 27786.04 24037.79 32494.10 21965.89 24271.52 25385.55 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
D2MVS73.80 25872.02 26379.15 27879.15 33162.97 22088.58 26890.07 22072.94 17359.22 32378.30 32542.31 30092.70 26765.59 24772.00 24981.79 340
our_test_368.29 30564.69 31379.11 27978.92 33464.85 16888.40 27185.06 32860.32 33152.68 35176.12 34540.81 30489.80 32344.25 34855.65 35382.67 333
pmmvs573.35 26171.52 26878.86 28078.64 34060.61 27491.08 20586.90 31067.69 27163.32 29983.64 26244.33 29290.53 31062.04 27366.02 28985.46 296
RRT_MVS74.44 25072.97 25078.84 28182.36 29657.66 31089.83 24488.79 27670.61 24164.58 28684.89 24939.24 30892.65 27170.11 19866.34 28786.21 276
Effi-MVS+-dtu76.14 22575.28 21978.72 28283.22 28655.17 33189.87 24287.78 30275.42 13167.98 25281.43 29045.08 28992.52 27575.08 15671.63 25188.48 238
CHOSEN 280x42077.35 20876.95 19678.55 28387.07 22362.68 23069.71 37482.95 34768.80 26371.48 21087.27 22466.03 6584.00 36176.47 14682.81 15788.95 229
Patchmtry67.53 31263.93 31978.34 28482.12 29964.38 17968.72 37584.00 33848.23 37459.24 32272.41 35757.82 16189.27 32546.10 34056.68 35281.36 342
tfpnnormal70.10 28867.36 29678.32 28583.45 28560.97 26288.85 26392.77 10964.85 29360.83 31578.53 32443.52 29593.48 24331.73 38661.70 32980.52 352
PatchMatch-RL72.06 27669.98 27978.28 28689.51 15855.70 32883.49 31083.39 34561.24 32463.72 29682.76 27134.77 34093.03 25053.37 31177.59 20486.12 281
pm-mvs172.89 26771.09 27178.26 28779.10 33357.62 31190.80 21489.30 24967.66 27262.91 30581.78 28349.11 25692.95 25360.29 28358.89 34584.22 308
Vis-MVSNet (Re-imp)79.24 17379.57 15278.24 28888.46 18452.29 34390.41 22589.12 25974.24 14669.13 23491.91 14765.77 6890.09 32059.00 29088.09 10892.33 175
IterMVS72.65 27470.83 27278.09 28982.17 29862.96 22187.64 28386.28 31671.56 22160.44 31678.85 32345.42 28686.66 34663.30 26461.83 32584.65 306
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EG-PatchMatch MVS68.55 30265.41 30877.96 29078.69 33962.93 22289.86 24389.17 25560.55 32850.27 36177.73 33122.60 37694.06 22347.18 33572.65 24576.88 373
FC-MVSNet-test77.99 19878.08 17577.70 29184.89 26355.51 32990.27 23093.75 7276.87 11166.80 27387.59 21765.71 6990.23 31762.89 26873.94 23487.37 253
jajsoiax73.05 26471.51 26977.67 29277.46 35054.83 33388.81 26490.04 22369.13 26062.85 30683.51 26431.16 35792.75 26470.83 19069.80 25985.43 297
mvs_tets72.71 27171.11 27077.52 29377.41 35154.52 33588.45 27089.76 23168.76 26562.70 30783.26 26729.49 36192.71 26570.51 19669.62 26185.34 299
LS3D69.17 29666.40 30077.50 29491.92 10456.12 32585.12 30080.37 35646.96 37556.50 33987.51 21937.25 32793.71 23832.52 38579.40 18882.68 332
Baseline_NR-MVSNet73.99 25672.83 25177.48 29580.78 30959.29 29391.79 17184.55 33368.85 26268.99 23980.70 30256.16 18292.04 28962.67 26960.98 33481.11 345
EPNet_dtu78.80 18379.26 16177.43 29688.06 19849.71 35691.96 16491.95 14077.67 10176.56 15191.28 16058.51 15490.20 31856.37 29880.95 17692.39 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_djsdf73.76 26072.56 25777.39 29777.00 35353.93 33789.07 26090.69 19465.80 28663.92 29382.03 28043.14 29792.67 26872.83 17068.53 27285.57 293
F-COLMAP70.66 28368.44 29177.32 29886.37 23655.91 32688.00 27686.32 31556.94 34857.28 33788.07 21033.58 34492.49 27651.02 31568.37 27383.55 314
TransMVSNet (Re)70.07 28967.66 29577.31 29980.62 31359.13 29691.78 17384.94 33065.97 28560.08 31980.44 30750.78 23791.87 29148.84 32545.46 37580.94 347
ADS-MVSNet266.90 31563.44 32277.26 30088.06 19860.70 27168.01 37875.56 36757.57 34264.48 28869.87 36738.68 31084.10 35840.87 36067.89 27786.97 261
miper_lstm_enhance73.05 26471.73 26777.03 30183.80 27958.32 30381.76 32588.88 27069.80 25161.01 31378.23 32757.19 16687.51 34265.34 25059.53 34285.27 301
KD-MVS_2432*160069.03 29866.37 30177.01 30285.56 25161.06 26081.44 33090.25 21367.27 27658.00 33276.53 34154.49 20187.63 34048.04 32935.77 38982.34 335
miper_refine_blended69.03 29866.37 30177.01 30285.56 25161.06 26081.44 33090.25 21367.27 27658.00 33276.53 34154.49 20187.63 34048.04 32935.77 38982.34 335
ACMH+65.35 1667.65 31064.55 31476.96 30484.59 26757.10 31788.08 27380.79 35358.59 34153.00 35081.09 30026.63 36992.95 25346.51 33761.69 33080.82 348
JIA-IIPM66.06 31962.45 32876.88 30581.42 30554.45 33657.49 39388.67 28049.36 37063.86 29446.86 39156.06 18590.25 31349.53 32268.83 26985.95 285
OpenMVS_ROBcopyleft61.12 1866.39 31762.92 32576.80 30676.51 35457.77 30789.22 25683.41 34455.48 35453.86 34877.84 33026.28 37093.95 23234.90 37668.76 27078.68 367
anonymousdsp71.14 28269.37 28676.45 30772.95 36754.71 33484.19 30588.88 27061.92 32062.15 31079.77 31738.14 31991.44 30568.90 21267.45 28083.21 322
IterMVS-SCA-FT71.55 28069.97 28076.32 30881.48 30360.67 27287.64 28385.99 32166.17 28459.50 32178.88 32245.53 28483.65 36362.58 27061.93 32484.63 307
USDC67.43 31464.51 31576.19 30977.94 34855.29 33078.38 35285.00 32973.17 16848.36 36880.37 30821.23 37892.48 27752.15 31364.02 30980.81 349
LCM-MVSNet-Re72.93 26671.84 26576.18 31088.49 18248.02 36380.07 34470.17 38073.96 15352.25 35380.09 31449.98 24488.24 33267.35 22484.23 14792.28 178
pmmvs667.57 31164.76 31276.00 31172.82 36953.37 33988.71 26586.78 31453.19 35957.58 33678.03 32935.33 33992.41 27855.56 30154.88 35782.21 337
XVG-ACMP-BASELINE68.04 30765.53 30775.56 31274.06 36452.37 34278.43 35185.88 32262.03 31858.91 32781.21 29820.38 38191.15 30760.69 28068.18 27483.16 323
CL-MVSNet_self_test69.92 29068.09 29475.41 31373.25 36655.90 32790.05 23789.90 22769.96 24861.96 31276.54 34051.05 23687.64 33949.51 32350.59 36782.70 331
test_fmvs174.07 25473.69 24175.22 31478.91 33647.34 36889.06 26274.69 37063.68 30179.41 11791.59 15424.36 37187.77 33885.22 7876.26 21990.55 211
pmmvs-eth3d65.53 32462.32 32975.19 31569.39 37959.59 28682.80 32183.43 34362.52 31451.30 35872.49 35532.86 34587.16 34555.32 30250.73 36678.83 366
FMVSNet568.04 30765.66 30675.18 31684.43 27157.89 30583.54 30986.26 31761.83 32253.64 34973.30 35437.15 33085.08 35448.99 32461.77 32682.56 334
test_fmvs1_n72.69 27371.92 26474.99 31771.15 37247.08 37087.34 28775.67 36563.48 30378.08 13491.17 16120.16 38287.87 33584.65 8675.57 22390.01 217
test_040264.54 32761.09 33374.92 31884.10 27760.75 26887.95 27779.71 35852.03 36152.41 35277.20 33532.21 35291.64 29623.14 39261.03 33372.36 381
MDA-MVSNet_test_wron63.78 33260.16 33574.64 31978.15 34660.41 27583.49 31084.03 33656.17 35339.17 38771.59 36337.22 32883.24 36842.87 35348.73 36980.26 355
YYNet163.76 33360.14 33674.62 32078.06 34760.19 28083.46 31283.99 34056.18 35239.25 38671.56 36437.18 32983.34 36642.90 35248.70 37080.32 354
LTVRE_ROB59.60 1966.27 31863.54 32174.45 32184.00 27851.55 34667.08 38183.53 34258.78 33954.94 34380.31 30934.54 34193.23 24740.64 36268.03 27578.58 368
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS-HIRNet60.25 34255.55 34974.35 32284.37 27256.57 32371.64 36974.11 37134.44 39045.54 37642.24 39731.11 35889.81 32140.36 36376.10 22076.67 374
SixPastTwentyTwo64.92 32561.78 33274.34 32378.74 33849.76 35583.42 31379.51 35962.86 31050.27 36177.35 33230.92 35990.49 31145.89 34147.06 37282.78 326
test_vis1_n71.63 27970.73 27574.31 32469.63 37847.29 36986.91 29172.11 37563.21 30775.18 16490.17 17920.40 38085.76 35084.59 8774.42 23089.87 218
UnsupCasMVSNet_eth65.79 32163.10 32373.88 32570.71 37450.29 35481.09 33389.88 22872.58 18249.25 36674.77 35232.57 34987.43 34355.96 30041.04 38283.90 311
CMPMVSbinary48.56 2166.77 31664.41 31773.84 32670.65 37550.31 35377.79 35685.73 32445.54 37944.76 37882.14 27935.40 33890.14 31963.18 26574.54 22881.07 346
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
lessismore_v073.72 32772.93 36847.83 36561.72 39245.86 37473.76 35328.63 36589.81 32147.75 33431.37 39483.53 315
K. test v363.09 33459.61 33873.53 32876.26 35649.38 36083.27 31477.15 36264.35 29647.77 37072.32 35928.73 36387.79 33749.93 32136.69 38883.41 319
CVMVSNet74.04 25574.27 23273.33 32985.33 25343.94 37989.53 25088.39 28754.33 35770.37 22190.13 18149.17 25484.05 35961.83 27579.36 18991.99 187
UnsupCasMVSNet_bld61.60 33857.71 34273.29 33068.73 38051.64 34578.61 35089.05 26457.20 34646.11 37161.96 38228.70 36488.60 32850.08 32038.90 38679.63 359
MDA-MVSNet-bldmvs61.54 33957.70 34373.05 33179.53 32557.00 32183.08 31881.23 35157.57 34234.91 39072.45 35632.79 34686.26 34935.81 37341.95 38075.89 375
COLMAP_ROBcopyleft57.96 2062.98 33559.65 33772.98 33281.44 30453.00 34183.75 30875.53 36848.34 37348.81 36781.40 29224.14 37290.30 31232.95 38160.52 33875.65 376
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test0.0.03 172.76 26972.71 25572.88 33380.25 31747.99 36491.22 20089.45 24371.51 22362.51 30987.66 21653.83 20985.06 35550.16 31967.84 27985.58 292
Anonymous2023120667.53 31265.78 30372.79 33474.95 36047.59 36688.23 27287.32 30561.75 32358.07 33177.29 33437.79 32487.29 34442.91 35163.71 31183.48 317
WR-MVS_H70.59 28469.94 28172.53 33581.03 30651.43 34787.35 28692.03 13767.38 27560.23 31880.70 30255.84 18883.45 36546.33 33958.58 34782.72 329
AllTest61.66 33758.06 34172.46 33679.57 32351.42 34880.17 34268.61 38351.25 36445.88 37281.23 29419.86 38386.58 34738.98 36657.01 35079.39 360
TestCases72.46 33679.57 32351.42 34868.61 38351.25 36445.88 37281.23 29419.86 38386.58 34738.98 36657.01 35079.39 360
CP-MVSNet70.50 28569.91 28272.26 33880.71 31051.00 35087.23 28890.30 21167.84 27059.64 32082.69 27250.23 24382.30 37351.28 31459.28 34383.46 318
OurMVSNet-221017-064.68 32662.17 33072.21 33976.08 35847.35 36780.67 33681.02 35256.19 35151.60 35579.66 31927.05 36888.56 32953.60 31053.63 36080.71 350
PEN-MVS69.46 29568.56 28972.17 34079.27 32849.71 35686.90 29289.24 25167.24 27959.08 32582.51 27547.23 27083.54 36448.42 32757.12 34883.25 321
myMVS_eth3d72.58 27572.74 25372.10 34187.87 20449.45 35888.07 27489.01 26572.91 17563.11 30188.10 20863.63 9585.54 35132.73 38369.23 26681.32 343
PS-CasMVS69.86 29269.13 28772.07 34280.35 31550.57 35287.02 29089.75 23267.27 27659.19 32482.28 27646.58 27482.24 37450.69 31659.02 34483.39 320
TinyColmap60.32 34156.42 34872.00 34378.78 33753.18 34078.36 35375.64 36652.30 36041.59 38575.82 34814.76 39088.35 33135.84 37254.71 35874.46 377
DTE-MVSNet68.46 30467.33 29771.87 34477.94 34849.00 36186.16 29788.58 28466.36 28358.19 32982.21 27846.36 27583.87 36244.97 34655.17 35582.73 328
Anonymous2024052162.09 33659.08 33971.10 34567.19 38248.72 36283.91 30785.23 32750.38 36747.84 36971.22 36620.74 37985.51 35346.47 33858.75 34679.06 363
RPSCF64.24 32961.98 33171.01 34676.10 35745.00 37675.83 36375.94 36446.94 37658.96 32684.59 25331.40 35582.00 37547.76 33360.33 34186.04 282
ITE_SJBPF70.43 34774.44 36247.06 37177.32 36160.16 33254.04 34783.53 26323.30 37584.01 36043.07 35061.58 33180.21 357
Syy-MVS69.65 29369.52 28570.03 34887.87 20443.21 38188.07 27489.01 26572.91 17563.11 30188.10 20845.28 28785.54 35122.07 39469.23 26681.32 343
ambc69.61 34961.38 39141.35 38449.07 39885.86 32350.18 36366.40 37310.16 39588.14 33345.73 34244.20 37679.32 362
mvsany_test168.77 30068.56 28969.39 35073.57 36545.88 37580.93 33560.88 39359.65 33571.56 20990.26 17743.22 29675.05 38374.26 16462.70 31687.25 259
testgi64.48 32862.87 32669.31 35171.24 37040.62 38685.49 29879.92 35765.36 29054.18 34683.49 26523.74 37484.55 35641.60 35760.79 33682.77 327
testing370.38 28770.83 27269.03 35285.82 24743.93 38090.72 21790.56 20068.06 26960.24 31786.82 22964.83 7984.12 35726.33 39064.10 30779.04 364
MIMVSNet160.16 34357.33 34468.67 35369.71 37744.13 37878.92 34984.21 33455.05 35544.63 37971.85 36123.91 37381.54 37732.63 38455.03 35680.35 353
test_fmvs265.78 32264.84 31068.60 35466.54 38341.71 38383.27 31469.81 38154.38 35667.91 25584.54 25515.35 38781.22 37875.65 15166.16 28882.88 325
PM-MVS59.40 34456.59 34667.84 35563.63 38641.86 38276.76 35863.22 39059.01 33851.07 35972.27 36011.72 39383.25 36761.34 27650.28 36878.39 369
new-patchmatchnet59.30 34556.48 34767.79 35665.86 38544.19 37782.47 32281.77 34959.94 33443.65 38266.20 37427.67 36681.68 37639.34 36541.40 38177.50 372
KD-MVS_self_test60.87 34058.60 34067.68 35766.13 38439.93 38875.63 36484.70 33157.32 34549.57 36468.45 37029.55 36082.87 36948.09 32847.94 37180.25 356
pmmvs355.51 34951.50 35467.53 35857.90 39450.93 35180.37 33873.66 37240.63 38844.15 38164.75 37716.30 38578.97 38244.77 34740.98 38472.69 379
test20.0363.83 33162.65 32767.38 35970.58 37639.94 38786.57 29584.17 33563.29 30551.86 35477.30 33337.09 33182.47 37138.87 36854.13 35979.73 358
EU-MVSNet64.01 33063.01 32467.02 36074.40 36338.86 39183.27 31486.19 31945.11 38054.27 34581.15 29936.91 33380.01 38148.79 32657.02 34982.19 338
TDRefinement55.28 35051.58 35366.39 36159.53 39346.15 37376.23 36172.80 37344.60 38142.49 38376.28 34415.29 38882.39 37233.20 38043.75 37770.62 383
test_vis1_rt59.09 34657.31 34564.43 36268.44 38146.02 37483.05 31948.63 40251.96 36249.57 36463.86 37816.30 38580.20 38071.21 18862.79 31567.07 387
DSMNet-mixed56.78 34854.44 35163.79 36363.21 38729.44 40264.43 38464.10 38942.12 38751.32 35771.60 36231.76 35375.04 38436.23 37165.20 29686.87 264
dmvs_testset65.55 32366.45 29962.86 36479.87 32122.35 40776.55 35971.74 37777.42 10955.85 34087.77 21551.39 23380.69 37931.51 38965.92 29085.55 294
test_fmvs356.82 34754.86 35062.69 36553.59 39635.47 39375.87 36265.64 38843.91 38355.10 34271.43 3656.91 40174.40 38668.64 21452.63 36178.20 370
LF4IMVS54.01 35152.12 35259.69 36662.41 38939.91 38968.59 37668.28 38542.96 38644.55 38075.18 34914.09 39268.39 39241.36 35951.68 36470.78 382
new_pmnet49.31 35346.44 35657.93 36762.84 38840.74 38568.47 37762.96 39136.48 38935.09 38957.81 38614.97 38972.18 38832.86 38246.44 37360.88 389
mvsany_test348.86 35446.35 35756.41 36846.00 40231.67 39862.26 38647.25 40343.71 38445.54 37668.15 37110.84 39464.44 40057.95 29235.44 39173.13 378
test_f46.58 35543.45 35955.96 36945.18 40332.05 39761.18 38749.49 40133.39 39142.05 38462.48 3817.00 40065.56 39647.08 33643.21 37970.27 384
ANet_high40.27 36335.20 36655.47 37034.74 41034.47 39563.84 38571.56 37848.42 37218.80 39941.08 3989.52 39764.45 39920.18 3958.66 40667.49 386
EGC-MVSNET42.35 35938.09 36255.11 37174.57 36146.62 37271.63 37055.77 3940.04 4080.24 40962.70 38014.24 39174.91 38517.59 39746.06 37443.80 394
N_pmnet50.55 35249.11 35554.88 37277.17 3524.02 41584.36 3042.00 41348.59 37145.86 37468.82 36932.22 35182.80 37031.58 38751.38 36577.81 371
LCM-MVSNet40.54 36035.79 36554.76 37336.92 40930.81 39951.41 39669.02 38222.07 39624.63 39645.37 3934.56 40565.81 39533.67 37834.50 39267.67 385
FPMVS45.64 35743.10 36153.23 37451.42 39936.46 39264.97 38371.91 37629.13 39427.53 39461.55 3839.83 39665.01 39816.00 40055.58 35458.22 390
PMMVS237.93 36533.61 36850.92 37546.31 40124.76 40560.55 39050.05 39928.94 39520.93 39747.59 3904.41 40765.13 39725.14 39118.55 40162.87 388
WB-MVS46.23 35644.94 35850.11 37662.13 39021.23 40976.48 36055.49 39545.89 37835.78 38861.44 38435.54 33772.83 3879.96 40321.75 39856.27 391
APD_test140.50 36137.31 36450.09 37751.88 39735.27 39459.45 39152.59 39821.64 39726.12 39557.80 3874.56 40566.56 39422.64 39339.09 38548.43 393
test_method38.59 36435.16 36748.89 37854.33 39521.35 40845.32 39953.71 3977.41 40528.74 39351.62 3898.70 39852.87 40333.73 37732.89 39372.47 380
test_vis3_rt40.46 36237.79 36348.47 37944.49 40433.35 39666.56 38232.84 41032.39 39229.65 39239.13 4003.91 40868.65 39150.17 31840.99 38343.40 395
SSC-MVS44.51 35843.35 36047.99 38061.01 39218.90 41174.12 36654.36 39643.42 38534.10 39160.02 38534.42 34270.39 3909.14 40519.57 39954.68 392
Gipumacopyleft34.91 36631.44 36945.30 38170.99 37339.64 39019.85 40372.56 37420.10 39916.16 40321.47 4045.08 40471.16 38913.07 40143.70 37825.08 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft26.43 2231.84 36928.16 37242.89 38225.87 41227.58 40350.92 39749.78 40021.37 39814.17 40440.81 3992.01 41166.62 3939.61 40438.88 38734.49 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testf132.77 36729.47 37042.67 38341.89 40630.81 39952.07 39443.45 40415.45 40018.52 40044.82 3942.12 40958.38 40116.05 39830.87 39538.83 396
APD_test232.77 36729.47 37042.67 38341.89 40630.81 39952.07 39443.45 40415.45 40018.52 40044.82 3942.12 40958.38 40116.05 39830.87 39538.83 396
MVEpermissive24.84 2324.35 37119.77 37738.09 38534.56 41126.92 40426.57 40138.87 40811.73 40411.37 40527.44 4011.37 41250.42 40411.41 40214.60 40236.93 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft34.71 38651.45 39824.73 40628.48 41231.46 39317.49 40252.75 3885.80 40342.60 40718.18 39619.42 40036.81 399
E-PMN24.61 37024.00 37426.45 38743.74 40518.44 41260.86 38839.66 40615.11 4029.53 40622.10 4036.52 40246.94 4058.31 40610.14 40313.98 403
EMVS23.76 37223.20 37625.46 38841.52 40816.90 41360.56 38938.79 40914.62 4038.99 40720.24 4067.35 39945.82 4067.25 4079.46 40413.64 404
tmp_tt22.26 37323.75 37517.80 3895.23 41312.06 41435.26 40039.48 4072.82 40718.94 39844.20 39622.23 37724.64 40836.30 3709.31 40516.69 402
wuyk23d11.30 37510.95 37812.33 39048.05 40019.89 41025.89 4021.92 4143.58 4063.12 4081.37 4080.64 41315.77 4096.23 4087.77 4071.35 405
test1236.92 3789.21 3810.08 3910.03 4150.05 41681.65 3280.01 4160.02 4100.14 4110.85 4100.03 4140.02 4100.12 4100.00 4090.16 406
testmvs7.23 3779.62 3800.06 3920.04 4140.02 41784.98 3020.02 4150.03 4090.18 4101.21 4090.01 4150.02 4100.14 4090.01 4080.13 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
cdsmvs_eth3d_5k19.86 37426.47 3730.00 3930.00 4160.00 4180.00 40493.45 840.00 4110.00 41295.27 5849.56 2480.00 4120.00 4110.00 4090.00 408
pcd_1.5k_mvsjas4.46 3795.95 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41153.55 2130.00 4120.00 4110.00 4090.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
ab-mvs-re7.91 37610.55 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41294.95 680.00 4160.00 4120.00 4110.00 4090.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4090.00 408
WAC-MVS49.45 35831.56 388
FOURS193.95 4561.77 24793.96 7191.92 14162.14 31786.57 47
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
test_one_060196.32 1869.74 4994.18 5771.42 22590.67 1996.85 1674.45 18
eth-test20.00 416
eth-test0.00 416
ZD-MVS96.63 965.50 15393.50 8270.74 23985.26 6295.19 6464.92 7897.29 7887.51 5893.01 55
RE-MVS-def80.48 14092.02 9858.56 30190.90 20990.45 20162.76 31178.89 12394.46 8249.30 25178.77 13386.77 12492.28 178
IU-MVS96.46 1169.91 4395.18 2080.75 4995.28 192.34 2195.36 1496.47 29
test_241102_TWO94.41 4871.65 21492.07 997.21 474.58 1799.11 692.34 2195.36 1496.59 20
test_241102_ONE96.45 1269.38 5494.44 4671.65 21492.11 797.05 776.79 999.11 6
9.1487.63 2793.86 4794.41 5394.18 5772.76 17986.21 4996.51 2566.64 6097.88 4490.08 4094.04 38
save fliter93.84 4867.89 9295.05 4092.66 11478.19 92
test_0728_THIRD72.48 18490.55 2096.93 1176.24 1199.08 1191.53 3194.99 1896.43 30
test072696.40 1569.99 3996.76 894.33 5471.92 20091.89 1197.11 673.77 21
GSMVS94.68 96
test_part296.29 1968.16 8690.78 17
sam_mvs157.85 16094.68 96
sam_mvs54.91 198
MTGPAbinary92.23 127
test_post178.95 34820.70 40553.05 21891.50 30460.43 281
test_post23.01 40256.49 18092.67 268
patchmatchnet-post67.62 37257.62 16390.25 313
MTMP93.77 8532.52 411
gm-plane-assit88.42 18667.04 11578.62 8991.83 14897.37 7276.57 145
test9_res89.41 4194.96 1995.29 68
TEST994.18 4167.28 10794.16 5993.51 8071.75 21185.52 5795.33 5368.01 5097.27 82
test_894.19 4067.19 10994.15 6293.42 8671.87 20585.38 6095.35 5268.19 4896.95 104
agg_prior286.41 7094.75 3095.33 64
agg_prior94.16 4366.97 11793.31 8984.49 6896.75 114
test_prior467.18 11193.92 74
test_prior295.10 3975.40 13285.25 6395.61 4767.94 5187.47 5994.77 26
旧先验292.00 16259.37 33787.54 4093.47 24475.39 153
新几何291.41 184
旧先验191.94 10260.74 26991.50 16594.36 8665.23 7391.84 7094.55 103
无先验92.71 12792.61 11862.03 31897.01 9566.63 23293.97 128
原ACMM292.01 159
test22289.77 15161.60 25289.55 24889.42 24556.83 34977.28 14392.43 13452.76 22191.14 8493.09 154
testdata296.09 13661.26 277
segment_acmp65.94 66
testdata189.21 25777.55 105
plane_prior786.94 22661.51 253
plane_prior687.23 21862.32 23750.66 238
plane_prior591.31 17195.55 16576.74 14378.53 19888.39 241
plane_prior489.14 193
plane_prior361.95 24579.09 8072.53 194
plane_prior293.13 11178.81 86
plane_prior187.15 220
plane_prior62.42 23393.85 7879.38 7278.80 195
n20.00 417
nn0.00 417
door-mid66.01 387
test1193.01 101
door66.57 386
HQP5-MVS63.66 203
HQP-NCC87.54 21194.06 6479.80 6374.18 173
ACMP_Plane87.54 21194.06 6479.80 6374.18 173
BP-MVS77.63 140
HQP4-MVS74.18 17395.61 16088.63 234
HQP3-MVS91.70 15778.90 193
HQP2-MVS51.63 231
NP-MVS87.41 21463.04 21890.30 175
MDTV_nov1_ep13_2view59.90 28380.13 34367.65 27372.79 18954.33 20659.83 28592.58 169
MDTV_nov1_ep1372.61 25689.06 17168.48 7480.33 33990.11 21971.84 20771.81 20575.92 34753.01 21993.92 23348.04 32973.38 237
ACMMP++_ref71.63 251
ACMMP++69.72 260
Test By Simon54.21 207