This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS90.70 390.52 991.24 189.68 16076.68 297.29 195.35 1682.87 2291.58 1397.22 379.93 599.10 983.12 10297.64 297.94 1
MVS84.66 8082.86 11090.06 290.93 13674.56 787.91 28295.54 1468.55 27072.35 20694.71 7859.78 14898.90 2081.29 11994.69 3296.74 16
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1189.33 185.77 5496.26 3072.84 2999.38 192.64 2095.93 997.08 11
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 997.01 494.40 5188.32 385.71 5594.91 7374.11 2198.91 1887.26 6295.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 22693.43 8884.06 1486.20 4990.17 18372.42 3396.98 10193.09 1695.92 1097.29 7
PS-MVSNAJ88.14 1887.61 2989.71 792.06 10176.72 195.75 2093.26 9483.86 1589.55 2996.06 3653.55 22597.89 4391.10 3293.31 5394.54 109
MG-MVS87.11 3486.27 4689.62 897.79 176.27 494.96 4394.49 4578.74 9083.87 7592.94 12464.34 9196.94 10775.19 16394.09 3895.66 52
MSC_two_6792asdad89.60 997.31 473.22 1295.05 2799.07 1392.01 2594.77 2696.51 24
No_MVS89.60 997.31 473.22 1295.05 2799.07 1392.01 2594.77 2696.51 24
CHOSEN 1792x268884.98 7583.45 9289.57 1189.94 15575.14 692.07 15792.32 13181.87 3275.68 16488.27 20760.18 14298.60 2780.46 12590.27 9494.96 86
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12776.43 395.74 2193.12 10283.53 1889.55 2995.95 3853.45 22997.68 5091.07 3392.62 6094.54 109
LFMVS84.34 8582.73 11289.18 1394.76 3373.25 1194.99 4291.89 15571.90 20782.16 9193.49 11547.98 27997.05 9282.55 10884.82 14797.25 8
MVSMamba_PlusPlus84.97 7683.65 8688.93 1490.17 15174.04 887.84 28492.69 11862.18 32481.47 9787.64 22171.47 4096.28 13484.69 8694.74 3196.47 28
MM90.87 291.52 288.92 1592.12 10071.10 2797.02 396.04 688.70 291.57 1496.19 3270.12 4598.91 1896.83 195.06 1796.76 15
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7094.37 5372.48 18992.07 996.85 1683.82 299.15 291.53 3097.42 497.55 4
CSCG86.87 3686.26 4788.72 1795.05 3170.79 2993.83 8295.33 1768.48 27277.63 14594.35 9173.04 2798.45 3084.92 8493.71 4796.92 14
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5596.89 694.44 4771.65 21992.11 797.21 476.79 999.11 692.34 2295.36 1497.62 2
test_0728_SECOND88.70 1896.45 1270.43 3396.64 1094.37 5399.15 291.91 2894.90 2296.51 24
sasdasda86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9591.71 16580.26 5687.55 3795.25 6163.59 10496.93 10988.18 5084.34 15197.11 9
canonicalmvs86.85 3786.25 4888.66 2091.80 11371.92 1693.54 9591.71 16580.26 5687.55 3795.25 6163.59 10496.93 10988.18 5084.34 15197.11 9
CNVR-MVS90.32 690.89 888.61 2296.76 870.65 3096.47 1494.83 3184.83 1189.07 3196.80 1970.86 4199.06 1592.64 2095.71 1196.12 40
MVS_030490.32 690.90 788.55 2394.05 4570.23 3697.00 593.73 7487.30 492.15 696.15 3466.38 6798.94 1796.71 294.67 3396.47 28
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6786.89 689.68 2895.78 4065.94 7299.10 992.99 1793.91 4296.58 21
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3896.64 1094.52 4371.92 20590.55 2096.93 1173.77 2399.08 1191.91 2894.90 2296.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
3Dnovator73.91 682.69 12280.82 13988.31 2689.57 16271.26 2292.60 13694.39 5278.84 8767.89 26492.48 13648.42 27498.52 2868.80 22394.40 3695.15 78
alignmvs87.28 3286.97 3788.24 2791.30 12971.14 2695.61 2593.56 8079.30 7587.07 4295.25 6168.43 5096.93 10987.87 5384.33 15396.65 17
NCCC89.07 1689.46 1587.91 2896.60 1069.05 6396.38 1594.64 4084.42 1286.74 4596.20 3166.56 6698.76 2489.03 4794.56 3495.92 46
WTY-MVS86.32 4885.81 5787.85 2992.82 8169.37 5795.20 3495.25 1882.71 2381.91 9294.73 7767.93 5697.63 5679.55 13282.25 17196.54 22
VNet86.20 5085.65 6187.84 3093.92 4769.99 3895.73 2395.94 778.43 9386.00 5293.07 12158.22 16897.00 9785.22 7884.33 15396.52 23
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3195.86 2768.32 8095.74 2194.11 6183.82 1683.49 7796.19 3264.53 9098.44 3183.42 10194.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testing9185.93 5685.31 6687.78 3293.59 5771.47 1993.50 9895.08 2680.26 5680.53 11091.93 15070.43 4396.51 12580.32 12782.13 17495.37 63
SMA-MVScopyleft88.14 1888.29 2287.67 3393.21 6768.72 7293.85 7794.03 6374.18 15291.74 1296.67 2165.61 7698.42 3389.24 4496.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_yl84.28 8683.16 10287.64 3494.52 3769.24 5995.78 1895.09 2469.19 26281.09 10192.88 12757.00 18197.44 6681.11 12181.76 17896.23 38
DCV-MVSNet84.28 8683.16 10287.64 3494.52 3769.24 5995.78 1895.09 2469.19 26281.09 10192.88 12757.00 18197.44 6681.11 12181.76 17896.23 38
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8695.24 3394.49 4582.43 2688.90 3296.35 2771.89 3898.63 2688.76 4896.40 696.06 41
QAPM79.95 17177.39 19887.64 3489.63 16171.41 2093.30 10693.70 7565.34 29667.39 27391.75 15447.83 28198.96 1657.71 30489.81 9692.54 179
testing9986.01 5485.47 6287.63 3893.62 5571.25 2393.47 10195.23 1980.42 5480.60 10991.95 14971.73 3996.50 12680.02 12982.22 17295.13 79
lupinMVS87.74 2587.77 2787.63 3889.24 17571.18 2496.57 1292.90 11182.70 2487.13 4095.27 5964.99 8195.80 15489.34 4291.80 7295.93 45
testing1186.71 4386.44 4587.55 4093.54 5971.35 2193.65 8995.58 1181.36 4380.69 10792.21 14472.30 3496.46 12885.18 8083.43 16094.82 95
API-MVS82.28 12780.53 14787.54 4196.13 2270.59 3193.63 9191.04 20065.72 29375.45 16992.83 12956.11 19698.89 2164.10 26789.75 9993.15 161
SD-MVS87.49 2887.49 3187.50 4293.60 5668.82 6993.90 7492.63 12376.86 11787.90 3595.76 4166.17 6997.63 5689.06 4691.48 7896.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10394.17 5894.15 6068.77 26890.74 1897.27 276.09 1298.49 2990.58 3894.91 2196.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_111021_HR86.19 5185.80 5887.37 4493.17 6969.79 4793.99 6993.76 7079.08 8278.88 13393.99 10462.25 12398.15 3685.93 7591.15 8494.15 127
MSLP-MVS++86.27 4985.91 5687.35 4592.01 10568.97 6695.04 4092.70 11679.04 8581.50 9596.50 2558.98 16196.78 11583.49 10093.93 4196.29 35
IB-MVS77.80 482.18 12880.46 14987.35 4589.14 17770.28 3595.59 2695.17 2278.85 8670.19 23285.82 24770.66 4297.67 5172.19 19266.52 29394.09 130
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
VDDNet80.50 15878.26 18187.21 4786.19 24769.79 4794.48 5091.31 18260.42 33879.34 12590.91 16838.48 32896.56 12282.16 10981.05 18495.27 73
UBG86.83 3986.70 4287.20 4893.07 7369.81 4693.43 10395.56 1381.52 3681.50 9592.12 14573.58 2696.28 13484.37 9085.20 14495.51 58
PAPR85.15 7284.47 7787.18 4996.02 2568.29 8191.85 17093.00 10876.59 12479.03 12995.00 6861.59 12997.61 5878.16 14689.00 10595.63 53
PAPM85.89 5885.46 6387.18 4988.20 20372.42 1592.41 14492.77 11482.11 3080.34 11393.07 12168.27 5195.02 18778.39 14593.59 4994.09 130
jason86.40 4686.17 5087.11 5186.16 24970.54 3295.71 2492.19 14082.00 3184.58 6794.34 9261.86 12695.53 17487.76 5490.89 8695.27 73
jason: jason.
test1287.09 5294.60 3668.86 6792.91 11082.67 8965.44 7797.55 6293.69 4894.84 92
casdiffmvs_mvgpermissive85.66 6385.18 6887.09 5288.22 20269.35 5893.74 8691.89 15581.47 3780.10 11591.45 15964.80 8696.35 13287.23 6387.69 11995.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test84.16 9283.20 10187.05 5491.56 12069.82 4589.99 24692.05 14477.77 10382.84 8486.57 23863.93 9696.09 14374.91 16889.18 10295.25 76
HY-MVS76.49 584.28 8683.36 9887.02 5592.22 9567.74 9884.65 31094.50 4479.15 7982.23 9087.93 21666.88 6296.94 10780.53 12482.20 17396.39 33
Effi-MVS+83.82 9882.76 11186.99 5689.56 16369.40 5391.35 19386.12 33172.59 18683.22 8192.81 13059.60 15096.01 15181.76 11287.80 11895.56 56
RRT-MVS82.61 12381.16 13086.96 5791.10 13368.75 7087.70 28792.20 13876.97 11572.68 19587.10 23251.30 24896.41 13083.56 9987.84 11795.74 50
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8790.36 23290.66 20879.37 7481.20 9993.67 11074.73 1696.55 12390.88 3592.00 6995.82 48
SF-MVS87.03 3587.09 3586.84 5992.70 8567.45 10893.64 9093.76 7070.78 24386.25 4796.44 2666.98 6197.79 4788.68 4994.56 3495.28 72
casdiffmvspermissive85.37 6884.87 7486.84 5988.25 20069.07 6293.04 11491.76 16281.27 4480.84 10692.07 14764.23 9296.06 14784.98 8387.43 12395.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
VDD-MVS83.06 11481.81 12586.81 6190.86 13967.70 9995.40 2991.50 17675.46 13581.78 9392.34 14040.09 32097.13 9086.85 6882.04 17595.60 54
ACMMP_NAP86.05 5385.80 5886.80 6291.58 11967.53 10591.79 17293.49 8574.93 14384.61 6695.30 5659.42 15297.92 4186.13 7294.92 2094.94 88
PHI-MVS86.83 3986.85 4186.78 6393.47 6265.55 15695.39 3095.10 2371.77 21585.69 5696.52 2362.07 12498.77 2386.06 7495.60 1296.03 43
baseline85.01 7484.44 7886.71 6488.33 19768.73 7190.24 23791.82 16181.05 4781.18 10092.50 13363.69 10096.08 14684.45 8986.71 13395.32 68
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 16095.15 3693.84 6678.17 9685.93 5394.80 7675.80 1398.21 3489.38 4188.78 10796.59 19
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13894.84 4593.78 6769.35 25988.39 3396.34 2867.74 5797.66 5490.62 3793.44 5196.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
testing22285.18 7184.69 7686.63 6792.91 7769.91 4292.61 13595.80 980.31 5580.38 11292.27 14168.73 4995.19 18475.94 15783.27 16294.81 96
train_agg87.21 3387.42 3286.60 6894.18 4167.28 11094.16 5993.51 8271.87 21085.52 5795.33 5468.19 5297.27 8089.09 4594.90 2295.25 76
3Dnovator+73.60 782.10 13280.60 14686.60 6890.89 13866.80 12695.20 3493.44 8774.05 15467.42 27192.49 13549.46 26497.65 5570.80 20291.68 7495.33 66
ET-MVSNet_ETH3D84.01 9483.15 10486.58 7090.78 14170.89 2894.74 4794.62 4181.44 4058.19 33993.64 11173.64 2592.35 28882.66 10678.66 20696.50 27
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 14566.38 13596.09 1793.87 6577.73 10484.01 7495.66 4363.39 10797.94 4087.40 6093.55 5095.42 59
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11568.04 9090.36 23293.55 8182.89 2191.29 1692.89 12672.27 3596.03 14987.99 5294.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
GG-mvs-BLEND86.53 7391.91 11069.67 5275.02 37694.75 3478.67 13790.85 16977.91 794.56 20872.25 18993.74 4595.36 65
CDPH-MVS85.71 6185.46 6386.46 7494.75 3467.19 11293.89 7592.83 11370.90 23983.09 8295.28 5763.62 10297.36 7180.63 12394.18 3794.84 92
MAR-MVS84.18 9183.43 9386.44 7596.25 2165.93 14794.28 5694.27 5774.41 14779.16 12895.61 4553.99 22098.88 2269.62 21293.26 5494.50 113
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_prior86.42 7694.71 3567.35 10993.10 10396.84 11395.05 83
OpenMVScopyleft70.45 1178.54 19975.92 21886.41 7785.93 25571.68 1892.74 12692.51 12766.49 28764.56 29591.96 14843.88 30798.10 3754.61 31490.65 8989.44 237
MVSFormer83.75 10182.88 10986.37 7889.24 17571.18 2489.07 26490.69 20565.80 29187.13 4094.34 9264.99 8192.67 27572.83 18091.80 7295.27 73
PAPM_NR82.97 11681.84 12486.37 7894.10 4466.76 12787.66 28892.84 11269.96 25274.07 18393.57 11363.10 11497.50 6470.66 20590.58 9094.85 89
DeepC-MVS77.85 385.52 6785.24 6786.37 7888.80 18566.64 12992.15 15193.68 7681.07 4676.91 15593.64 11162.59 11998.44 3185.50 7692.84 5994.03 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10596.33 1693.61 7882.34 2881.00 10493.08 12063.19 11197.29 7687.08 6591.38 8094.13 128
EPNet87.84 2488.38 2086.23 8293.30 6466.05 14295.26 3294.84 3087.09 588.06 3494.53 8266.79 6397.34 7383.89 9591.68 7495.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GDP-MVS85.54 6685.32 6586.18 8387.64 21867.95 9492.91 12192.36 13077.81 10283.69 7694.31 9472.84 2996.41 13080.39 12685.95 13994.19 123
thisisatest051583.41 10782.49 11686.16 8489.46 16668.26 8393.54 9594.70 3774.31 15075.75 16290.92 16772.62 3196.52 12469.64 21081.50 18193.71 145
BP-MVS186.54 4586.68 4386.13 8587.80 21567.18 11492.97 11795.62 1079.92 6282.84 8494.14 10074.95 1596.46 12882.91 10488.96 10694.74 97
ZNCC-MVS85.33 6985.08 7086.06 8693.09 7265.65 15293.89 7593.41 9073.75 16379.94 11794.68 7960.61 13998.03 3882.63 10793.72 4694.52 111
EPMVS78.49 20075.98 21786.02 8791.21 13169.68 5180.23 35091.20 18775.25 13972.48 20278.11 33754.65 21193.69 24657.66 30583.04 16394.69 99
DP-MVS Recon82.73 11981.65 12685.98 8897.31 467.06 11795.15 3691.99 14969.08 26576.50 15993.89 10654.48 21598.20 3570.76 20385.66 14292.69 174
PatchmatchNetpermissive77.46 21574.63 23385.96 8989.55 16470.35 3479.97 35589.55 25172.23 19870.94 22176.91 34957.03 17992.79 27054.27 31681.17 18394.74 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
131480.70 15578.95 17385.94 9087.77 21767.56 10387.91 28292.55 12672.17 20167.44 27093.09 11950.27 25697.04 9571.68 19787.64 12093.23 158
MSP-MVS90.38 591.87 185.88 9192.83 7964.03 19593.06 11294.33 5582.19 2993.65 396.15 3485.89 197.19 8491.02 3497.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Anonymous20240521177.96 20875.33 22685.87 9293.73 5364.52 17594.85 4485.36 33862.52 32276.11 16090.18 18229.43 37497.29 7668.51 22577.24 22195.81 49
CostFormer82.33 12681.15 13185.86 9389.01 18068.46 7782.39 33293.01 10675.59 13380.25 11481.57 29672.03 3794.96 19079.06 13877.48 21794.16 126
patch_mono-289.71 1190.99 685.85 9496.04 2463.70 20595.04 4095.19 2086.74 791.53 1595.15 6673.86 2297.58 5993.38 1492.00 6996.28 37
CANet_DTU84.09 9383.52 8785.81 9590.30 14866.82 12491.87 16889.01 27785.27 986.09 5193.74 10847.71 28396.98 10177.90 14889.78 9893.65 147
gg-mvs-nofinetune77.18 21974.31 24085.80 9691.42 12468.36 7971.78 38194.72 3549.61 38177.12 15245.92 40777.41 893.98 23667.62 23393.16 5595.05 83
ab-mvs80.18 16578.31 18085.80 9688.44 19265.49 15983.00 32992.67 11971.82 21377.36 14985.01 25454.50 21296.59 11976.35 15675.63 23095.32 68
ETVMVS84.22 9083.71 8485.76 9892.58 8968.25 8592.45 14395.53 1579.54 7079.46 12391.64 15770.29 4494.18 22369.16 21882.76 16894.84 92
APD-MVScopyleft85.93 5685.99 5485.76 9895.98 2665.21 16393.59 9392.58 12566.54 28686.17 5095.88 3963.83 9797.00 9786.39 7192.94 5795.06 82
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS84.73 7984.40 7985.72 10093.75 5265.01 16993.50 9893.19 9872.19 19979.22 12794.93 7159.04 15997.67 5181.55 11392.21 6494.49 114
ETV-MVS86.01 5486.11 5185.70 10190.21 15067.02 12093.43 10391.92 15281.21 4584.13 7394.07 10360.93 13695.63 16589.28 4389.81 9694.46 115
GST-MVS84.63 8184.29 8085.66 10292.82 8165.27 16193.04 11493.13 10173.20 17278.89 13094.18 9959.41 15397.85 4581.45 11592.48 6393.86 142
diffmvspermissive84.28 8683.83 8385.61 10387.40 22468.02 9190.88 21289.24 26280.54 5081.64 9492.52 13259.83 14794.52 21187.32 6185.11 14594.29 118
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVS-pluss85.24 7085.13 6985.56 10491.42 12465.59 15491.54 18292.51 12774.56 14680.62 10895.64 4459.15 15697.00 9786.94 6793.80 4394.07 132
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA83.91 9683.38 9785.50 10591.89 11165.16 16581.75 33592.23 13475.32 13880.53 11095.21 6456.06 19797.16 8884.86 8592.55 6294.18 124
mvs_anonymous81.36 14379.99 15485.46 10690.39 14768.40 7886.88 29990.61 21074.41 14770.31 23184.67 25863.79 9892.32 29073.13 17785.70 14195.67 51
HyFIR lowres test81.03 15079.56 16185.43 10787.81 21468.11 8990.18 23890.01 23670.65 24572.95 19286.06 24563.61 10394.50 21275.01 16679.75 19593.67 146
cascas78.18 20475.77 22085.41 10887.14 23069.11 6192.96 11891.15 19166.71 28570.47 22686.07 24437.49 33996.48 12770.15 20879.80 19490.65 217
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10986.95 23464.37 18594.30 5588.45 29780.51 5192.70 496.86 1569.98 4697.15 8995.83 488.08 11594.65 103
PVSNet_Blended_VisFu83.97 9583.50 8985.39 10990.02 15366.59 13293.77 8491.73 16377.43 11277.08 15489.81 19063.77 9996.97 10479.67 13188.21 11392.60 177
region2R84.36 8484.03 8285.36 11193.54 5964.31 18893.43 10392.95 10972.16 20278.86 13494.84 7556.97 18397.53 6381.38 11792.11 6794.24 121
tpm279.80 17377.95 18785.34 11288.28 19868.26 8381.56 33891.42 17970.11 25077.59 14780.50 31467.40 5994.26 22167.34 23577.35 21893.51 150
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11387.10 23164.19 19294.41 5288.14 30680.24 5992.54 596.97 1069.52 4897.17 8595.89 388.51 11094.56 106
ACMMPR84.37 8384.06 8185.28 11493.56 5864.37 18593.50 9893.15 10072.19 19978.85 13594.86 7456.69 18897.45 6581.55 11392.20 6594.02 135
test_fmvsm_n_192087.69 2688.50 1985.27 11587.05 23363.55 21293.69 8791.08 19684.18 1390.17 2497.04 867.58 5897.99 3995.72 590.03 9594.26 119
xiu_mvs_v1_base_debu82.16 12981.12 13285.26 11686.42 24268.72 7292.59 13890.44 21573.12 17584.20 7094.36 8738.04 33395.73 15984.12 9286.81 12891.33 205
xiu_mvs_v1_base82.16 12981.12 13285.26 11686.42 24268.72 7292.59 13890.44 21573.12 17584.20 7094.36 8738.04 33395.73 15984.12 9286.81 12891.33 205
xiu_mvs_v1_base_debi82.16 12981.12 13285.26 11686.42 24268.72 7292.59 13890.44 21573.12 17584.20 7094.36 8738.04 33395.73 15984.12 9286.81 12891.33 205
MGCFI-Net85.59 6585.73 6085.17 11991.41 12762.44 23892.87 12291.31 18279.65 6886.99 4495.14 6762.90 11796.12 14187.13 6484.13 15896.96 13
MP-MVScopyleft85.02 7384.97 7285.17 11992.60 8864.27 19093.24 10792.27 13373.13 17479.63 12194.43 8561.90 12597.17 8585.00 8292.56 6194.06 133
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
XVS83.87 9783.47 9185.05 12193.22 6563.78 19992.92 11992.66 12073.99 15578.18 13994.31 9455.25 20397.41 6879.16 13691.58 7693.95 137
X-MVStestdata76.86 22574.13 24485.05 12193.22 6563.78 19992.92 11992.66 12073.99 15578.18 13910.19 42255.25 20397.41 6879.16 13691.58 7693.95 137
SCA75.82 24472.76 26085.01 12386.63 23970.08 3781.06 34389.19 26571.60 22470.01 23477.09 34745.53 29890.25 32160.43 29173.27 24594.68 100
PGM-MVS83.25 11082.70 11384.92 12492.81 8364.07 19490.44 22792.20 13871.28 23177.23 15194.43 8555.17 20797.31 7579.33 13591.38 8093.37 153
BH-RMVSNet79.46 18077.65 19084.89 12591.68 11765.66 15193.55 9488.09 30872.93 17973.37 18891.12 16646.20 29596.12 14156.28 30985.61 14392.91 170
Anonymous2024052976.84 22774.15 24384.88 12691.02 13464.95 17193.84 8091.09 19453.57 36973.00 19087.42 22535.91 34997.32 7469.14 21972.41 25492.36 183
tpmrst80.57 15679.14 17184.84 12790.10 15268.28 8281.70 33689.72 24877.63 10875.96 16179.54 32864.94 8392.71 27275.43 16177.28 22093.55 149
fmvsm_s_conf0.5_n86.39 4786.91 3884.82 12887.36 22663.54 21394.74 4790.02 23582.52 2590.14 2596.92 1362.93 11697.84 4695.28 882.26 17093.07 165
test_fmvsmconf_n86.58 4487.17 3484.82 12885.28 26462.55 23794.26 5789.78 24183.81 1787.78 3696.33 2965.33 7896.98 10194.40 1187.55 12194.95 87
FE-MVS75.97 24173.02 25784.82 12889.78 15765.56 15577.44 36691.07 19764.55 29972.66 19679.85 32446.05 29696.69 11754.97 31380.82 18792.21 192
FA-MVS(test-final)79.12 18477.23 20084.81 13190.54 14363.98 19681.35 34191.71 16571.09 23674.85 17582.94 27652.85 23297.05 9267.97 22881.73 18093.41 152
test_fmvsmvis_n_192083.80 9983.48 9084.77 13282.51 30463.72 20391.37 19183.99 35381.42 4177.68 14495.74 4258.37 16697.58 5993.38 1486.87 12793.00 168
AdaColmapbinary78.94 18877.00 20484.76 13396.34 1765.86 14892.66 13387.97 31262.18 32470.56 22592.37 13943.53 30897.35 7264.50 26582.86 16491.05 214
新几何184.73 13492.32 9264.28 18991.46 17859.56 34579.77 11992.90 12556.95 18496.57 12163.40 27192.91 5893.34 154
fmvsm_s_conf0.5_n_a85.75 6086.09 5284.72 13585.73 25863.58 21093.79 8389.32 25981.42 4190.21 2396.91 1462.41 12197.67 5194.48 1080.56 18992.90 171
DeepPCF-MVS81.17 189.72 1091.38 484.72 13593.00 7558.16 31396.72 994.41 4986.50 890.25 2297.83 175.46 1498.67 2592.78 1995.49 1397.32 6
EIA-MVS84.84 7784.88 7384.69 13791.30 12962.36 24193.85 7792.04 14579.45 7179.33 12694.28 9662.42 12096.35 13280.05 12891.25 8395.38 62
fmvsm_s_conf0.1_n85.61 6485.93 5584.68 13882.95 30163.48 21594.03 6889.46 25381.69 3489.86 2696.74 2061.85 12797.75 4994.74 982.01 17692.81 173
GA-MVS78.33 20376.23 21384.65 13983.65 29166.30 13891.44 18390.14 22976.01 12970.32 23084.02 26642.50 31294.72 19870.98 20077.00 22292.94 169
CP-MVS83.71 10283.40 9684.65 13993.14 7063.84 19794.59 4992.28 13271.03 23777.41 14894.92 7255.21 20696.19 13881.32 11890.70 8893.91 139
RPMNet70.42 29465.68 31584.63 14183.15 29767.96 9270.25 38490.45 21246.83 39069.97 23665.10 39056.48 19395.30 18235.79 38573.13 24690.64 218
test_fmvsmconf0.1_n85.71 6186.08 5384.62 14280.83 31862.33 24293.84 8088.81 28583.50 1987.00 4396.01 3763.36 10896.93 10994.04 1287.29 12494.61 105
tpm cat175.30 25172.21 26984.58 14388.52 18867.77 9778.16 36488.02 30961.88 33068.45 25776.37 35360.65 13794.03 23453.77 31974.11 23991.93 197
fmvsm_s_conf0.1_n_a84.76 7884.84 7584.53 14480.23 32863.50 21492.79 12488.73 28880.46 5289.84 2796.65 2260.96 13597.57 6193.80 1380.14 19192.53 180
mPP-MVS82.96 11782.44 11784.52 14592.83 7962.92 23092.76 12591.85 15971.52 22775.61 16794.24 9753.48 22896.99 10078.97 13990.73 8793.64 148
Fast-Effi-MVS+81.14 14680.01 15384.51 14690.24 14965.86 14894.12 6289.15 26873.81 16275.37 17088.26 20857.26 17694.53 21066.97 24184.92 14693.15 161
baseline283.68 10483.42 9584.48 14787.37 22566.00 14490.06 24195.93 879.71 6769.08 24490.39 17777.92 696.28 13478.91 14081.38 18291.16 212
原ACMM184.42 14893.21 6764.27 19093.40 9165.39 29479.51 12292.50 13358.11 17096.69 11765.27 26193.96 4092.32 185
SDMVSNet80.26 16378.88 17484.40 14989.25 17267.63 10285.35 30693.02 10576.77 12170.84 22387.12 23047.95 28096.09 14385.04 8174.55 23389.48 235
thisisatest053081.15 14580.07 15184.39 15088.26 19965.63 15391.40 18694.62 4171.27 23270.93 22289.18 19672.47 3296.04 14865.62 25676.89 22391.49 201
test250683.29 10982.92 10884.37 15188.39 19563.18 22392.01 16091.35 18177.66 10678.49 13891.42 16064.58 8995.09 18673.19 17689.23 10094.85 89
h-mvs3383.01 11582.56 11584.35 15289.34 16762.02 24892.72 12793.76 7081.45 3882.73 8792.25 14360.11 14397.13 9087.69 5562.96 32193.91 139
PVSNet73.49 880.05 16878.63 17684.31 15390.92 13764.97 17092.47 14291.05 19979.18 7872.43 20490.51 17437.05 34594.06 22968.06 22786.00 13893.90 141
PCF-MVS73.15 979.29 18177.63 19184.29 15486.06 25065.96 14687.03 29591.10 19369.86 25469.79 23990.64 17057.54 17596.59 11964.37 26682.29 16990.32 221
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline181.84 13581.03 13684.28 15591.60 11866.62 13091.08 20691.66 17081.87 3274.86 17491.67 15669.98 4694.92 19371.76 19564.75 30891.29 210
test_fmvsmconf0.01_n83.70 10383.52 8784.25 15675.26 37161.72 25692.17 15087.24 31982.36 2784.91 6495.41 5155.60 20196.83 11492.85 1885.87 14094.21 122
HPM-MVScopyleft83.25 11082.95 10784.17 15792.25 9462.88 23290.91 20991.86 15770.30 24877.12 15293.96 10556.75 18696.28 13482.04 11091.34 8293.34 154
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
nrg03080.93 15179.86 15684.13 15883.69 29068.83 6893.23 10891.20 18775.55 13475.06 17288.22 21163.04 11594.74 19781.88 11166.88 29088.82 241
reproduce-ours83.51 10583.33 9984.06 15992.18 9860.49 28290.74 21892.04 14564.35 30183.24 7895.59 4759.05 15797.27 8083.61 9789.17 10394.41 116
our_new_method83.51 10583.33 9984.06 15992.18 9860.49 28290.74 21892.04 14564.35 30183.24 7895.59 4759.05 15797.27 8083.61 9789.17 10394.41 116
EI-MVSNet-Vis-set83.77 10083.67 8584.06 15992.79 8463.56 21191.76 17594.81 3279.65 6877.87 14294.09 10163.35 10997.90 4279.35 13479.36 19890.74 216
BH-w/o80.49 15979.30 16884.05 16290.83 14064.36 18793.60 9289.42 25674.35 14969.09 24390.15 18555.23 20595.61 16764.61 26486.43 13792.17 193
mvsmamba81.55 14080.72 14184.03 16391.42 12466.93 12283.08 32689.13 27078.55 9267.50 26987.02 23351.79 24190.07 32987.48 5890.49 9295.10 81
ECVR-MVScopyleft81.29 14480.38 15084.01 16488.39 19561.96 25092.56 14186.79 32377.66 10676.63 15691.42 16046.34 29295.24 18374.36 17289.23 10094.85 89
ACMMPcopyleft81.49 14180.67 14383.93 16591.71 11662.90 23192.13 15292.22 13771.79 21471.68 21593.49 11550.32 25496.96 10578.47 14484.22 15791.93 197
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CLD-MVS82.73 11982.35 11983.86 16687.90 21067.65 10195.45 2892.18 14185.06 1072.58 19992.27 14152.46 23695.78 15584.18 9179.06 20188.16 252
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
dp75.01 25572.09 27083.76 16789.28 17166.22 14179.96 35689.75 24371.16 23367.80 26677.19 34651.81 24092.54 28050.39 32771.44 26192.51 181
MVSTER82.47 12482.05 12083.74 16892.68 8669.01 6491.90 16793.21 9579.83 6372.14 20785.71 24974.72 1794.72 19875.72 15972.49 25287.50 258
Vis-MVSNetpermissive80.92 15279.98 15583.74 16888.48 19061.80 25293.44 10288.26 30573.96 15877.73 14391.76 15349.94 25994.76 19565.84 25390.37 9394.65 103
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
reproduce_model83.15 11282.96 10583.73 17092.02 10259.74 29490.37 23192.08 14363.70 30882.86 8395.48 5058.62 16397.17 8583.06 10388.42 11194.26 119
sss82.71 12182.38 11883.73 17089.25 17259.58 29792.24 14894.89 2977.96 9879.86 11892.38 13856.70 18797.05 9277.26 15180.86 18694.55 107
WBMVS81.67 13780.98 13883.72 17293.07 7369.40 5394.33 5493.05 10476.84 11872.05 20984.14 26474.49 1993.88 24172.76 18368.09 28187.88 254
TESTMET0.1,182.41 12581.98 12383.72 17288.08 20463.74 20192.70 12993.77 6979.30 7577.61 14687.57 22358.19 16994.08 22773.91 17486.68 13493.33 156
114514_t79.17 18377.67 18983.68 17495.32 2965.53 15792.85 12391.60 17263.49 31067.92 26190.63 17246.65 28895.72 16367.01 24083.54 15989.79 229
EI-MVSNet-UG-set83.14 11382.96 10583.67 17592.28 9363.19 22291.38 19094.68 3879.22 7776.60 15793.75 10762.64 11897.76 4878.07 14778.01 20990.05 225
thres20079.66 17478.33 17983.66 17692.54 9065.82 15093.06 11296.31 374.90 14473.30 18988.66 20059.67 14995.61 16747.84 34378.67 20589.56 234
SPE-MVS-test86.14 5287.01 3683.52 17792.63 8759.36 30295.49 2791.92 15280.09 6085.46 5995.53 4961.82 12895.77 15786.77 6993.37 5295.41 60
CDS-MVSNet81.43 14280.74 14083.52 17786.26 24664.45 17992.09 15590.65 20975.83 13173.95 18589.81 19063.97 9592.91 26571.27 19882.82 16593.20 160
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_111021_LR82.02 13381.52 12783.51 17988.42 19362.88 23289.77 24988.93 28176.78 12075.55 16893.10 11850.31 25595.38 17883.82 9687.02 12692.26 191
SR-MVS82.81 11882.58 11483.50 18093.35 6361.16 26692.23 14991.28 18664.48 30081.27 9895.28 5753.71 22495.86 15382.87 10588.77 10893.49 151
BH-untuned78.68 19577.08 20183.48 18189.84 15663.74 20192.70 12988.59 29471.57 22566.83 28088.65 20151.75 24295.39 17759.03 29984.77 14891.32 208
UGNet79.87 17278.68 17583.45 18289.96 15461.51 25992.13 15290.79 20376.83 11978.85 13586.33 24238.16 33196.17 13967.93 23087.17 12592.67 175
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test111180.84 15380.02 15283.33 18387.87 21160.76 27492.62 13486.86 32277.86 10175.73 16391.39 16246.35 29194.70 20172.79 18288.68 10994.52 111
GeoE78.90 18977.43 19483.29 18488.95 18162.02 24892.31 14586.23 32970.24 24971.34 22089.27 19554.43 21694.04 23263.31 27380.81 18893.81 144
CS-MVS85.80 5986.65 4483.27 18592.00 10658.92 30695.31 3191.86 15779.97 6184.82 6595.40 5262.26 12295.51 17586.11 7392.08 6895.37 63
tpm78.58 19877.03 20283.22 18685.94 25464.56 17483.21 32591.14 19278.31 9473.67 18679.68 32664.01 9492.09 29566.07 25171.26 26293.03 166
PVSNet_BlendedMVS83.38 10883.43 9383.22 18693.76 5067.53 10594.06 6393.61 7879.13 8081.00 10485.14 25363.19 11197.29 7687.08 6573.91 24284.83 312
TAMVS80.37 16179.45 16483.13 18885.14 26763.37 21691.23 19990.76 20474.81 14572.65 19788.49 20260.63 13892.95 26069.41 21481.95 17793.08 164
EC-MVSNet84.53 8285.04 7183.01 18989.34 16761.37 26394.42 5191.09 19477.91 10083.24 7894.20 9858.37 16695.40 17685.35 7791.41 7992.27 190
TR-MVS78.77 19477.37 19982.95 19090.49 14460.88 27093.67 8890.07 23170.08 25174.51 17791.37 16345.69 29795.70 16460.12 29480.32 19092.29 186
tfpn200view978.79 19377.43 19482.88 19192.21 9664.49 17692.05 15896.28 473.48 16971.75 21388.26 20860.07 14595.32 17945.16 35477.58 21488.83 239
FMVSNet377.73 21276.04 21682.80 19291.20 13268.99 6591.87 16891.99 14973.35 17167.04 27683.19 27556.62 18992.14 29259.80 29669.34 26987.28 265
1112_ss80.56 15779.83 15782.77 19388.65 18760.78 27292.29 14688.36 29972.58 18772.46 20394.95 6965.09 8093.42 25266.38 24777.71 21194.10 129
MonoMVSNet76.99 22375.08 22982.73 19483.32 29563.24 21986.47 30286.37 32579.08 8266.31 28379.30 33049.80 26291.72 30279.37 13365.70 29793.23 158
v2v48277.42 21675.65 22282.73 19480.38 32467.13 11691.85 17090.23 22675.09 14169.37 24083.39 27353.79 22394.44 21371.77 19465.00 30586.63 277
VPNet78.82 19177.53 19382.70 19684.52 27766.44 13493.93 7292.23 13480.46 5272.60 19888.38 20549.18 26893.13 25572.47 18863.97 31888.55 246
CR-MVSNet73.79 26770.82 28282.70 19683.15 29767.96 9270.25 38484.00 35173.67 16769.97 23672.41 36957.82 17289.48 33352.99 32273.13 24690.64 218
HQP-MVS81.14 14680.64 14482.64 19887.54 22063.66 20894.06 6391.70 16879.80 6474.18 17990.30 17951.63 24495.61 16777.63 14978.90 20288.63 243
EPP-MVSNet81.79 13681.52 12782.61 19988.77 18660.21 28893.02 11693.66 7768.52 27172.90 19390.39 17772.19 3694.96 19074.93 16779.29 20092.67 175
APD-MVS_3200maxsize81.64 13981.32 12982.59 20092.36 9158.74 30891.39 18891.01 20163.35 31279.72 12094.62 8151.82 23996.14 14079.71 13087.93 11692.89 172
thres100view90078.37 20177.01 20382.46 20191.89 11163.21 22191.19 20396.33 172.28 19770.45 22887.89 21760.31 14095.32 17945.16 35477.58 21488.83 239
thres40078.68 19577.43 19482.43 20292.21 9664.49 17692.05 15896.28 473.48 16971.75 21388.26 20860.07 14595.32 17945.16 35477.58 21487.48 259
XXY-MVS77.94 20976.44 21082.43 20282.60 30364.44 18092.01 16091.83 16073.59 16870.00 23585.82 24754.43 21694.76 19569.63 21168.02 28388.10 253
Test_1112_low_res79.56 17678.60 17782.43 20288.24 20160.39 28592.09 15587.99 31072.10 20371.84 21187.42 22564.62 8893.04 25665.80 25477.30 21993.85 143
tttt051779.50 17778.53 17882.41 20587.22 22861.43 26289.75 25094.76 3369.29 26067.91 26288.06 21572.92 2895.63 16562.91 27773.90 24390.16 223
HPM-MVS_fast80.25 16479.55 16382.33 20691.55 12159.95 29191.32 19589.16 26765.23 29774.71 17693.07 12147.81 28295.74 15874.87 17088.23 11291.31 209
IS-MVSNet80.14 16679.41 16582.33 20687.91 20960.08 29091.97 16488.27 30372.90 18271.44 21991.73 15561.44 13093.66 24762.47 28186.53 13593.24 157
v114476.73 23074.88 23082.27 20880.23 32866.60 13191.68 17990.21 22873.69 16569.06 24581.89 28952.73 23494.40 21469.21 21765.23 30285.80 296
PVSNet_068.08 1571.81 28568.32 30182.27 20884.68 27362.31 24488.68 27090.31 22175.84 13057.93 34480.65 31337.85 33694.19 22269.94 20929.05 41090.31 222
FMVSNet276.07 23574.01 24682.26 21088.85 18267.66 10091.33 19491.61 17170.84 24065.98 28482.25 28548.03 27692.00 29758.46 30168.73 27787.10 268
tpmvs72.88 27669.76 29282.22 21190.98 13567.05 11878.22 36388.30 30163.10 31764.35 30074.98 36055.09 20894.27 21943.25 36069.57 26885.34 307
sd_testset77.08 22275.37 22482.20 21289.25 17262.11 24782.06 33389.09 27376.77 12170.84 22387.12 23041.43 31695.01 18867.23 23774.55 23389.48 235
V4276.46 23274.55 23682.19 21379.14 34267.82 9690.26 23689.42 25673.75 16368.63 25481.89 28951.31 24794.09 22671.69 19664.84 30684.66 313
SR-MVS-dyc-post81.06 14980.70 14282.15 21492.02 10258.56 31090.90 21090.45 21262.76 31978.89 13094.46 8351.26 24995.61 16778.77 14286.77 13192.28 187
v119275.98 24073.92 24782.15 21479.73 33266.24 14091.22 20089.75 24372.67 18568.49 25681.42 29949.86 26094.27 21967.08 23965.02 30485.95 292
MS-PatchMatch77.90 21176.50 20982.12 21685.99 25169.95 4191.75 17792.70 11673.97 15762.58 31784.44 26241.11 31795.78 15563.76 27092.17 6680.62 359
v14419276.05 23874.03 24582.12 21679.50 33666.55 13391.39 18889.71 24972.30 19668.17 25881.33 30151.75 24294.03 23467.94 22964.19 31385.77 297
HQP_MVS80.34 16279.75 15882.12 21686.94 23562.42 23993.13 11091.31 18278.81 8872.53 20089.14 19850.66 25295.55 17276.74 15278.53 20788.39 249
VPA-MVSNet79.03 18578.00 18582.11 21985.95 25264.48 17893.22 10994.66 3975.05 14274.04 18484.95 25552.17 23893.52 24974.90 16967.04 28988.32 251
v192192075.63 24873.49 25382.06 22079.38 33766.35 13691.07 20889.48 25271.98 20467.99 25981.22 30449.16 27093.90 24066.56 24364.56 31185.92 294
thres600view778.00 20676.66 20882.03 22191.93 10863.69 20691.30 19696.33 172.43 19270.46 22787.89 21760.31 14094.92 19342.64 36676.64 22487.48 259
v124075.21 25372.98 25881.88 22279.20 33966.00 14490.75 21789.11 27271.63 22367.41 27281.22 30447.36 28493.87 24265.46 25964.72 30985.77 297
PMMVS81.98 13482.04 12181.78 22389.76 15956.17 33291.13 20590.69 20577.96 9880.09 11693.57 11346.33 29394.99 18981.41 11687.46 12294.17 125
OPM-MVS79.00 18678.09 18381.73 22483.52 29363.83 19891.64 18190.30 22276.36 12771.97 21089.93 18946.30 29495.17 18575.10 16477.70 21286.19 284
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test-LLR80.10 16779.56 16181.72 22586.93 23761.17 26492.70 12991.54 17371.51 22875.62 16586.94 23453.83 22192.38 28572.21 19084.76 14991.60 199
test-mter79.96 17079.38 16781.72 22586.93 23761.17 26492.70 12991.54 17373.85 16075.62 16586.94 23449.84 26192.38 28572.21 19084.76 14991.60 199
dmvs_re76.93 22475.36 22581.61 22787.78 21660.71 27780.00 35487.99 31079.42 7269.02 24689.47 19346.77 28694.32 21563.38 27274.45 23689.81 228
v875.35 25073.26 25581.61 22780.67 32166.82 12489.54 25389.27 26171.65 21963.30 30980.30 31854.99 20994.06 22967.33 23662.33 32883.94 318
miper_enhance_ethall78.86 19077.97 18681.54 22988.00 20865.17 16491.41 18489.15 26875.19 14068.79 25183.98 26767.17 6092.82 26772.73 18465.30 29986.62 278
v1074.77 25772.54 26681.46 23080.33 32666.71 12889.15 26389.08 27470.94 23863.08 31279.86 32352.52 23594.04 23265.70 25562.17 32983.64 321
cl2277.94 20976.78 20681.42 23187.57 21964.93 17290.67 22188.86 28472.45 19167.63 26882.68 28064.07 9392.91 26571.79 19365.30 29986.44 279
v14876.19 23374.47 23881.36 23280.05 33064.44 18091.75 17790.23 22673.68 16667.13 27580.84 30955.92 19993.86 24468.95 22161.73 33685.76 299
testdata81.34 23389.02 17957.72 31789.84 24058.65 34985.32 6194.09 10157.03 17993.28 25369.34 21590.56 9193.03 166
EI-MVSNet78.97 18778.22 18281.25 23485.33 26262.73 23589.53 25493.21 9572.39 19472.14 20790.13 18660.99 13394.72 19867.73 23272.49 25286.29 281
MIMVSNet71.64 28668.44 29981.23 23581.97 31064.44 18073.05 37888.80 28669.67 25664.59 29474.79 36232.79 35987.82 34653.99 31776.35 22691.42 203
AUN-MVS78.37 20177.43 19481.17 23686.60 24057.45 32289.46 25691.16 18974.11 15374.40 17890.49 17555.52 20294.57 20574.73 17160.43 34791.48 202
hse-mvs281.12 14881.11 13581.16 23786.52 24157.48 32189.40 25791.16 18981.45 3882.73 8790.49 17560.11 14394.58 20387.69 5560.41 34891.41 204
Anonymous2023121173.08 27070.39 28681.13 23890.62 14263.33 21791.40 18690.06 23351.84 37464.46 29880.67 31236.49 34794.07 22863.83 26964.17 31485.98 291
UA-Net80.02 16979.65 15981.11 23989.33 16957.72 31786.33 30389.00 28077.44 11181.01 10389.15 19759.33 15495.90 15261.01 28884.28 15589.73 231
GBi-Net75.65 24673.83 24881.10 24088.85 18265.11 16690.01 24390.32 21870.84 24067.04 27680.25 31948.03 27691.54 30859.80 29669.34 26986.64 274
test175.65 24673.83 24881.10 24088.85 18265.11 16690.01 24390.32 21870.84 24067.04 27680.25 31948.03 27691.54 30859.80 29669.34 26986.64 274
FMVSNet172.71 27969.91 29081.10 24083.60 29265.11 16690.01 24390.32 21863.92 30563.56 30680.25 31936.35 34891.54 30854.46 31566.75 29186.64 274
miper_ehance_all_eth77.60 21376.44 21081.09 24385.70 25964.41 18390.65 22288.64 29372.31 19567.37 27482.52 28164.77 8792.64 27870.67 20465.30 29986.24 283
ADS-MVSNet68.54 31164.38 32881.03 24488.06 20566.90 12368.01 39284.02 35057.57 35264.48 29669.87 37938.68 32389.21 33540.87 37167.89 28486.97 269
MSDG69.54 30265.73 31480.96 24585.11 26963.71 20484.19 31383.28 35956.95 35854.50 35584.03 26531.50 36596.03 14942.87 36469.13 27483.14 332
OMC-MVS78.67 19777.91 18880.95 24685.76 25757.40 32388.49 27388.67 29173.85 16072.43 20492.10 14649.29 26794.55 20972.73 18477.89 21090.91 215
c3_l76.83 22875.47 22380.93 24785.02 27064.18 19390.39 23088.11 30771.66 21866.65 28281.64 29463.58 10692.56 27969.31 21662.86 32286.04 289
CPTT-MVS79.59 17579.16 17080.89 24891.54 12259.80 29392.10 15488.54 29660.42 33872.96 19193.28 11748.27 27592.80 26978.89 14186.50 13690.06 224
eth_miper_zixun_eth75.96 24274.40 23980.66 24984.66 27463.02 22589.28 25988.27 30371.88 20965.73 28581.65 29359.45 15192.81 26868.13 22660.53 34586.14 285
reproduce_monomvs79.49 17879.11 17280.64 25092.91 7761.47 26191.17 20493.28 9383.09 2064.04 30182.38 28366.19 6894.57 20581.19 12057.71 35685.88 295
test_vis1_n_192081.66 13882.01 12280.64 25082.24 30655.09 34094.76 4686.87 32181.67 3584.40 6994.63 8038.17 33094.67 20291.98 2783.34 16192.16 194
Patchmatch-test65.86 32960.94 34480.62 25283.75 28958.83 30758.91 40775.26 38144.50 39550.95 37277.09 34758.81 16287.90 34435.13 38664.03 31695.12 80
NR-MVSNet76.05 23874.59 23480.44 25382.96 29962.18 24690.83 21491.73 16377.12 11460.96 32386.35 24059.28 15591.80 30060.74 28961.34 34087.35 263
IterMVS-LS76.49 23175.18 22880.43 25484.49 27862.74 23490.64 22388.80 28672.40 19365.16 29081.72 29260.98 13492.27 29167.74 23164.65 31086.29 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchT69.11 30565.37 31980.32 25582.07 30963.68 20767.96 39487.62 31450.86 37869.37 24065.18 38957.09 17888.53 33941.59 36966.60 29288.74 242
CNLPA74.31 26072.30 26880.32 25591.49 12361.66 25790.85 21380.72 36656.67 36163.85 30490.64 17046.75 28790.84 31653.79 31875.99 22988.47 248
cl____76.07 23574.67 23180.28 25785.15 26661.76 25490.12 23988.73 28871.16 23365.43 28781.57 29661.15 13192.95 26066.54 24462.17 32986.13 287
DIV-MVS_self_test76.07 23574.67 23180.28 25785.14 26761.75 25590.12 23988.73 28871.16 23365.42 28881.60 29561.15 13192.94 26466.54 24462.16 33186.14 285
pmmvs473.92 26571.81 27480.25 25979.17 34065.24 16287.43 29187.26 31867.64 27863.46 30783.91 26848.96 27291.53 31162.94 27665.49 29883.96 317
UWE-MVS80.81 15481.01 13780.20 26089.33 16957.05 32691.91 16694.71 3675.67 13275.01 17389.37 19463.13 11391.44 31367.19 23882.80 16792.12 195
DP-MVS69.90 29966.48 30780.14 26195.36 2862.93 22889.56 25176.11 37550.27 38057.69 34685.23 25239.68 32195.73 15933.35 39071.05 26381.78 349
PS-MVSNAJss77.26 21876.31 21280.13 26280.64 32259.16 30490.63 22591.06 19872.80 18368.58 25584.57 26053.55 22593.96 23772.97 17871.96 25687.27 266
tt080573.07 27170.73 28380.07 26378.37 35357.05 32687.78 28592.18 14161.23 33467.04 27686.49 23931.35 36794.58 20365.06 26267.12 28888.57 245
Fast-Effi-MVS+-dtu75.04 25473.37 25480.07 26380.86 31759.52 29891.20 20285.38 33771.90 20765.20 28984.84 25641.46 31592.97 25966.50 24672.96 24887.73 256
ACMH63.93 1768.62 30964.81 32180.03 26585.22 26563.25 21887.72 28684.66 34460.83 33651.57 36879.43 32927.29 38094.96 19041.76 36764.84 30681.88 347
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WB-MVSnew77.14 22076.18 21580.01 26686.18 24863.24 21991.26 19794.11 6171.72 21773.52 18787.29 22845.14 30293.00 25856.98 30679.42 19683.80 320
UniMVSNet_NR-MVSNet78.15 20577.55 19279.98 26784.46 27960.26 28692.25 14793.20 9777.50 11068.88 24986.61 23766.10 7092.13 29366.38 24762.55 32587.54 257
UniMVSNet (Re)77.58 21476.78 20679.98 26784.11 28560.80 27191.76 17593.17 9976.56 12569.93 23884.78 25763.32 11092.36 28764.89 26362.51 32786.78 273
test_cas_vis1_n_192080.45 16080.61 14579.97 26978.25 35457.01 32894.04 6788.33 30079.06 8482.81 8693.70 10938.65 32591.63 30590.82 3679.81 19391.27 211
DU-MVS76.86 22575.84 21979.91 27082.96 29960.26 28691.26 19791.54 17376.46 12668.88 24986.35 24056.16 19492.13 29366.38 24762.55 32587.35 263
TranMVSNet+NR-MVSNet75.86 24374.52 23779.89 27182.44 30560.64 28091.37 19191.37 18076.63 12367.65 26786.21 24352.37 23791.55 30761.84 28460.81 34387.48 259
PLCcopyleft68.80 1475.23 25273.68 25179.86 27292.93 7658.68 30990.64 22388.30 30160.90 33564.43 29990.53 17342.38 31394.57 20556.52 30776.54 22586.33 280
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS76.76 22975.74 22179.82 27384.60 27562.27 24592.60 13692.51 12776.06 12867.87 26585.34 25156.76 18590.24 32462.20 28263.69 32086.94 271
MVP-Stereo77.12 22176.23 21379.79 27481.72 31166.34 13789.29 25890.88 20270.56 24662.01 32082.88 27749.34 26594.13 22465.55 25893.80 4378.88 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ppachtmachnet_test67.72 31863.70 33079.77 27578.92 34466.04 14388.68 27082.90 36160.11 34255.45 35275.96 35639.19 32290.55 31739.53 37552.55 37282.71 338
FIs79.47 17979.41 16579.67 27685.95 25259.40 29991.68 17993.94 6478.06 9768.96 24888.28 20666.61 6591.77 30166.20 25074.99 23287.82 255
XVG-OURS74.25 26172.46 26779.63 27778.45 35257.59 32080.33 34887.39 31563.86 30668.76 25289.62 19240.50 31991.72 30269.00 22074.25 23889.58 232
ACMP71.68 1075.58 24974.23 24279.62 27884.97 27159.64 29590.80 21589.07 27570.39 24762.95 31387.30 22738.28 32993.87 24272.89 17971.45 26085.36 306
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR74.70 25873.08 25679.57 27978.25 35457.33 32480.49 34687.32 31663.22 31468.76 25290.12 18844.89 30491.59 30670.55 20674.09 24089.79 229
LPG-MVS_test75.82 24474.58 23579.56 28084.31 28259.37 30090.44 22789.73 24669.49 25764.86 29188.42 20338.65 32594.30 21772.56 18672.76 24985.01 310
LGP-MVS_train79.56 28084.31 28259.37 30089.73 24669.49 25764.86 29188.42 20338.65 32594.30 21772.56 18672.76 24985.01 310
UniMVSNet_ETH3D72.74 27870.53 28579.36 28278.62 35156.64 33085.01 30889.20 26463.77 30764.84 29384.44 26234.05 35691.86 29963.94 26870.89 26489.57 233
v7n71.31 28968.65 29679.28 28376.40 36660.77 27386.71 30089.45 25464.17 30458.77 33878.24 33544.59 30593.54 24857.76 30361.75 33583.52 324
Patchmatch-RL test68.17 31564.49 32679.19 28471.22 38353.93 34570.07 38671.54 39269.22 26156.79 34962.89 39456.58 19088.61 33669.53 21352.61 37195.03 85
TAPA-MVS70.22 1274.94 25673.53 25279.17 28590.40 14652.07 35289.19 26289.61 25062.69 32170.07 23392.67 13148.89 27394.32 21538.26 38079.97 19291.12 213
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM69.62 1374.34 25972.73 26279.17 28584.25 28457.87 31590.36 23289.93 23763.17 31665.64 28686.04 24637.79 33794.10 22565.89 25271.52 25985.55 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
D2MVS73.80 26672.02 27179.15 28779.15 34162.97 22688.58 27290.07 23172.94 17859.22 33378.30 33442.31 31492.70 27465.59 25772.00 25581.79 348
our_test_368.29 31464.69 32379.11 28878.92 34464.85 17388.40 27585.06 34060.32 34052.68 36276.12 35540.81 31889.80 33244.25 35955.65 36282.67 341
pmmvs573.35 26971.52 27678.86 28978.64 35060.61 28191.08 20686.90 32067.69 27563.32 30883.64 26944.33 30690.53 31862.04 28366.02 29585.46 304
Effi-MVS+-dtu76.14 23475.28 22778.72 29083.22 29655.17 33989.87 24787.78 31375.42 13667.98 26081.43 29845.08 30392.52 28175.08 16571.63 25788.48 247
CHOSEN 280x42077.35 21776.95 20578.55 29187.07 23262.68 23669.71 38782.95 36068.80 26771.48 21887.27 22966.03 7184.00 37176.47 15582.81 16688.95 238
Patchmtry67.53 32163.93 32978.34 29282.12 30864.38 18468.72 38984.00 35148.23 38759.24 33272.41 36957.82 17289.27 33446.10 35156.68 36181.36 350
tfpnnormal70.10 29667.36 30578.32 29383.45 29460.97 26988.85 26792.77 11464.85 29860.83 32478.53 33343.52 30993.48 25031.73 39861.70 33780.52 360
PatchMatch-RL72.06 28469.98 28778.28 29489.51 16555.70 33683.49 31883.39 35861.24 33363.72 30582.76 27834.77 35393.03 25753.37 32177.59 21386.12 288
pm-mvs172.89 27571.09 27978.26 29579.10 34357.62 31990.80 21589.30 26067.66 27662.91 31481.78 29149.11 27192.95 26060.29 29358.89 35384.22 316
Vis-MVSNet (Re-imp)79.24 18279.57 16078.24 29688.46 19152.29 35190.41 22989.12 27174.24 15169.13 24291.91 15165.77 7490.09 32859.00 30088.09 11492.33 184
IterMVS72.65 28270.83 28078.09 29782.17 30762.96 22787.64 28986.28 32771.56 22660.44 32678.85 33245.42 30086.66 35663.30 27461.83 33384.65 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EG-PatchMatch MVS68.55 31065.41 31877.96 29878.69 34962.93 22889.86 24889.17 26660.55 33750.27 37377.73 34122.60 39094.06 22947.18 34672.65 25176.88 383
FC-MVSNet-test77.99 20778.08 18477.70 29984.89 27255.51 33790.27 23593.75 7376.87 11666.80 28187.59 22265.71 7590.23 32562.89 27873.94 24187.37 262
jajsoiax73.05 27271.51 27777.67 30077.46 36154.83 34188.81 26890.04 23469.13 26462.85 31583.51 27131.16 36892.75 27170.83 20169.80 26585.43 305
mvs_tets72.71 27971.11 27877.52 30177.41 36254.52 34388.45 27489.76 24268.76 26962.70 31683.26 27429.49 37392.71 27270.51 20769.62 26785.34 307
LS3D69.17 30466.40 30977.50 30291.92 10956.12 33385.12 30780.37 36846.96 38856.50 35087.51 22437.25 34093.71 24532.52 39779.40 19782.68 340
Baseline_NR-MVSNet73.99 26472.83 25977.48 30380.78 31959.29 30391.79 17284.55 34668.85 26668.99 24780.70 31056.16 19492.04 29662.67 27960.98 34281.11 353
EPNet_dtu78.80 19279.26 16977.43 30488.06 20549.71 36691.96 16591.95 15177.67 10576.56 15891.28 16458.51 16490.20 32656.37 30880.95 18592.39 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_djsdf73.76 26872.56 26577.39 30577.00 36453.93 34589.07 26490.69 20565.80 29163.92 30282.03 28843.14 31192.67 27572.83 18068.53 27885.57 301
F-COLMAP70.66 29168.44 29977.32 30686.37 24555.91 33488.00 28086.32 32656.94 35957.28 34888.07 21433.58 35792.49 28251.02 32568.37 27983.55 322
TransMVSNet (Re)70.07 29767.66 30377.31 30780.62 32359.13 30591.78 17484.94 34265.97 29060.08 32980.44 31550.78 25191.87 29848.84 33645.46 38480.94 355
ADS-MVSNet266.90 32463.44 33277.26 30888.06 20560.70 27868.01 39275.56 37957.57 35264.48 29669.87 37938.68 32384.10 36840.87 37167.89 28486.97 269
miper_lstm_enhance73.05 27271.73 27577.03 30983.80 28858.32 31281.76 33488.88 28269.80 25561.01 32278.23 33657.19 17787.51 35265.34 26059.53 35085.27 309
KD-MVS_2432*160069.03 30666.37 31077.01 31085.56 26061.06 26781.44 33990.25 22467.27 28058.00 34276.53 35154.49 21387.63 35048.04 34035.77 40182.34 343
miper_refine_blended69.03 30666.37 31077.01 31085.56 26061.06 26781.44 33990.25 22467.27 28058.00 34276.53 35154.49 21387.63 35048.04 34035.77 40182.34 343
ACMH+65.35 1667.65 31964.55 32476.96 31284.59 27657.10 32588.08 27780.79 36558.59 35053.00 36181.09 30826.63 38292.95 26046.51 34861.69 33880.82 356
JIA-IIPM66.06 32862.45 33876.88 31381.42 31554.45 34457.49 40888.67 29149.36 38263.86 30346.86 40656.06 19790.25 32149.53 33268.83 27585.95 292
OpenMVS_ROBcopyleft61.12 1866.39 32662.92 33576.80 31476.51 36557.77 31689.22 26083.41 35755.48 36553.86 35977.84 33926.28 38393.95 23834.90 38768.76 27678.68 375
anonymousdsp71.14 29069.37 29476.45 31572.95 37954.71 34284.19 31388.88 28261.92 32962.15 31979.77 32538.14 33291.44 31368.90 22267.45 28783.21 330
IterMVS-SCA-FT71.55 28869.97 28876.32 31681.48 31360.67 27987.64 28985.99 33266.17 28959.50 33178.88 33145.53 29883.65 37362.58 28061.93 33284.63 315
USDC67.43 32364.51 32576.19 31777.94 35855.29 33878.38 36185.00 34173.17 17348.36 38180.37 31621.23 39292.48 28352.15 32364.02 31780.81 357
LCM-MVSNet-Re72.93 27471.84 27376.18 31888.49 18948.02 37480.07 35370.17 39473.96 15852.25 36480.09 32249.98 25888.24 34267.35 23484.23 15692.28 187
pmmvs667.57 32064.76 32276.00 31972.82 38153.37 34788.71 26986.78 32453.19 37057.58 34778.03 33835.33 35292.41 28455.56 31154.88 36682.21 345
XVG-ACMP-BASELINE68.04 31665.53 31775.56 32074.06 37652.37 35078.43 36085.88 33362.03 32758.91 33781.21 30620.38 39591.15 31560.69 29068.18 28083.16 331
CL-MVSNet_self_test69.92 29868.09 30275.41 32173.25 37855.90 33590.05 24289.90 23869.96 25261.96 32176.54 35051.05 25087.64 34949.51 33350.59 37682.70 339
test_fmvs174.07 26273.69 25075.22 32278.91 34647.34 37989.06 26674.69 38263.68 30979.41 12491.59 15824.36 38487.77 34885.22 7876.26 22790.55 220
pmmvs-eth3d65.53 33362.32 33975.19 32369.39 39159.59 29682.80 33083.43 35662.52 32251.30 37072.49 36732.86 35887.16 35555.32 31250.73 37578.83 374
FMVSNet568.04 31665.66 31675.18 32484.43 28057.89 31483.54 31786.26 32861.83 33153.64 36073.30 36537.15 34385.08 36448.99 33561.77 33482.56 342
test_fmvs1_n72.69 28171.92 27274.99 32571.15 38447.08 38187.34 29375.67 37763.48 31178.08 14191.17 16520.16 39687.87 34584.65 8775.57 23190.01 226
test_040264.54 33761.09 34374.92 32684.10 28660.75 27587.95 28179.71 37052.03 37252.41 36377.20 34532.21 36391.64 30423.14 40661.03 34172.36 394
MDA-MVSNet_test_wron63.78 34260.16 34674.64 32778.15 35660.41 28483.49 31884.03 34956.17 36439.17 40171.59 37537.22 34183.24 37842.87 36448.73 37880.26 363
YYNet163.76 34360.14 34774.62 32878.06 35760.19 28983.46 32083.99 35356.18 36339.25 40071.56 37637.18 34283.34 37642.90 36348.70 37980.32 362
LTVRE_ROB59.60 1966.27 32763.54 33174.45 32984.00 28751.55 35567.08 39683.53 35558.78 34854.94 35480.31 31734.54 35493.23 25440.64 37368.03 28278.58 376
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS-HIRNet60.25 35455.55 36174.35 33084.37 28156.57 33171.64 38274.11 38334.44 40445.54 38942.24 41231.11 36989.81 33040.36 37476.10 22876.67 384
SixPastTwentyTwo64.92 33561.78 34274.34 33178.74 34849.76 36583.42 32179.51 37162.86 31850.27 37377.35 34230.92 37090.49 31945.89 35247.06 38182.78 334
test_vis1_n71.63 28770.73 28374.31 33269.63 39047.29 38086.91 29772.11 38863.21 31575.18 17190.17 18320.40 39485.76 36084.59 8874.42 23789.87 227
mmtdpeth68.33 31366.37 31074.21 33382.81 30251.73 35384.34 31280.42 36767.01 28471.56 21668.58 38330.52 37192.35 28875.89 15836.21 39978.56 377
UnsupCasMVSNet_eth65.79 33063.10 33373.88 33470.71 38650.29 36481.09 34289.88 23972.58 18749.25 37874.77 36332.57 36187.43 35355.96 31041.04 39183.90 319
CMPMVSbinary48.56 2166.77 32564.41 32773.84 33570.65 38750.31 36377.79 36585.73 33645.54 39244.76 39182.14 28735.40 35190.14 32763.18 27574.54 23581.07 354
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
lessismore_v073.72 33672.93 38047.83 37661.72 40745.86 38773.76 36428.63 37789.81 33047.75 34531.37 40683.53 323
K. test v363.09 34459.61 34973.53 33776.26 36749.38 37083.27 32277.15 37464.35 30147.77 38372.32 37128.73 37587.79 34749.93 33136.69 39883.41 327
CVMVSNet74.04 26374.27 24173.33 33885.33 26243.94 39289.53 25488.39 29854.33 36870.37 22990.13 18649.17 26984.05 36961.83 28579.36 19891.99 196
UnsupCasMVSNet_bld61.60 34857.71 35373.29 33968.73 39251.64 35478.61 35989.05 27657.20 35746.11 38461.96 39728.70 37688.60 33750.08 33038.90 39679.63 367
MDA-MVSNet-bldmvs61.54 34957.70 35473.05 34079.53 33557.00 32983.08 32681.23 36357.57 35234.91 40572.45 36832.79 35986.26 35935.81 38441.95 38975.89 385
COLMAP_ROBcopyleft57.96 2062.98 34559.65 34872.98 34181.44 31453.00 34983.75 31675.53 38048.34 38548.81 38081.40 30024.14 38590.30 32032.95 39260.52 34675.65 386
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test0.0.03 172.76 27772.71 26372.88 34280.25 32747.99 37591.22 20089.45 25471.51 22862.51 31887.66 22053.83 22185.06 36550.16 32967.84 28685.58 300
Anonymous2023120667.53 32165.78 31372.79 34374.95 37247.59 37788.23 27687.32 31661.75 33258.07 34177.29 34437.79 33787.29 35442.91 36263.71 31983.48 325
WR-MVS_H70.59 29269.94 28972.53 34481.03 31651.43 35687.35 29292.03 14867.38 27960.23 32880.70 31055.84 20083.45 37546.33 35058.58 35582.72 337
AllTest61.66 34758.06 35272.46 34579.57 33351.42 35780.17 35168.61 39751.25 37645.88 38581.23 30219.86 39786.58 35738.98 37757.01 35979.39 368
TestCases72.46 34579.57 33351.42 35768.61 39751.25 37645.88 38581.23 30219.86 39786.58 35738.98 37757.01 35979.39 368
CP-MVSNet70.50 29369.91 29072.26 34780.71 32051.00 36087.23 29490.30 22267.84 27459.64 33082.69 27950.23 25782.30 38351.28 32459.28 35183.46 326
OurMVSNet-221017-064.68 33662.17 34072.21 34876.08 36947.35 37880.67 34581.02 36456.19 36251.60 36779.66 32727.05 38188.56 33853.60 32053.63 36980.71 358
PEN-MVS69.46 30368.56 29772.17 34979.27 33849.71 36686.90 29889.24 26267.24 28359.08 33582.51 28247.23 28583.54 37448.42 33857.12 35783.25 329
myMVS_eth3d72.58 28372.74 26172.10 35087.87 21149.45 36888.07 27889.01 27772.91 18063.11 31088.10 21263.63 10185.54 36132.73 39569.23 27281.32 351
PS-CasMVS69.86 30069.13 29572.07 35180.35 32550.57 36287.02 29689.75 24367.27 28059.19 33482.28 28446.58 28982.24 38450.69 32659.02 35283.39 328
TinyColmap60.32 35356.42 36072.00 35278.78 34753.18 34878.36 36275.64 37852.30 37141.59 39975.82 35814.76 40488.35 34135.84 38354.71 36774.46 387
DTE-MVSNet68.46 31267.33 30671.87 35377.94 35849.00 37286.16 30488.58 29566.36 28858.19 33982.21 28646.36 29083.87 37244.97 35755.17 36482.73 336
mvs5depth61.03 35057.65 35571.18 35467.16 39547.04 38372.74 37977.49 37257.47 35560.52 32572.53 36622.84 38988.38 34049.15 33438.94 39578.11 380
Anonymous2024052162.09 34659.08 35071.10 35567.19 39448.72 37383.91 31585.23 33950.38 37947.84 38271.22 37820.74 39385.51 36346.47 34958.75 35479.06 371
RPSCF64.24 33961.98 34171.01 35676.10 36845.00 38975.83 37375.94 37646.94 38958.96 33684.59 25931.40 36682.00 38547.76 34460.33 34986.04 289
ITE_SJBPF70.43 35774.44 37447.06 38277.32 37360.16 34154.04 35883.53 27023.30 38884.01 37043.07 36161.58 33980.21 365
Syy-MVS69.65 30169.52 29370.03 35887.87 21143.21 39488.07 27889.01 27772.91 18063.11 31088.10 21245.28 30185.54 36122.07 40869.23 27281.32 351
ambc69.61 35961.38 40641.35 39749.07 41385.86 33550.18 37566.40 38710.16 41088.14 34345.73 35344.20 38579.32 370
mvsany_test168.77 30868.56 29769.39 36073.57 37745.88 38880.93 34460.88 40859.65 34471.56 21690.26 18143.22 31075.05 39574.26 17362.70 32487.25 267
testgi64.48 33862.87 33669.31 36171.24 38240.62 39985.49 30579.92 36965.36 29554.18 35783.49 27223.74 38784.55 36641.60 36860.79 34482.77 335
testing370.38 29570.83 28069.03 36285.82 25643.93 39390.72 22090.56 21168.06 27360.24 32786.82 23664.83 8584.12 36726.33 40364.10 31579.04 372
MIMVSNet160.16 35557.33 35668.67 36369.71 38944.13 39178.92 35884.21 34755.05 36644.63 39271.85 37323.91 38681.54 38732.63 39655.03 36580.35 361
test_fmvs265.78 33164.84 32068.60 36466.54 39641.71 39683.27 32269.81 39554.38 36767.91 26284.54 26115.35 40181.22 38875.65 16066.16 29482.88 333
PM-MVS59.40 35656.59 35867.84 36563.63 40041.86 39576.76 36763.22 40559.01 34751.07 37172.27 37211.72 40883.25 37761.34 28650.28 37778.39 378
new-patchmatchnet59.30 35756.48 35967.79 36665.86 39844.19 39082.47 33181.77 36259.94 34343.65 39566.20 38827.67 37981.68 38639.34 37641.40 39077.50 382
KD-MVS_self_test60.87 35158.60 35167.68 36766.13 39739.93 40275.63 37584.70 34357.32 35649.57 37668.45 38429.55 37282.87 37948.09 33947.94 38080.25 364
pmmvs355.51 36151.50 36767.53 36857.90 40950.93 36180.37 34773.66 38440.63 40244.15 39464.75 39116.30 39978.97 39244.77 35840.98 39372.69 392
test20.0363.83 34162.65 33767.38 36970.58 38839.94 40186.57 30184.17 34863.29 31351.86 36677.30 34337.09 34482.47 38138.87 37954.13 36879.73 366
EU-MVSNet64.01 34063.01 33467.02 37074.40 37538.86 40583.27 32286.19 33045.11 39354.27 35681.15 30736.91 34680.01 39148.79 33757.02 35882.19 346
TDRefinement55.28 36251.58 36666.39 37159.53 40846.15 38676.23 37072.80 38544.60 39442.49 39776.28 35415.29 40282.39 38233.20 39143.75 38670.62 396
MVStest151.35 36646.89 37064.74 37265.06 39951.10 35967.33 39572.58 38630.20 40835.30 40374.82 36127.70 37869.89 40324.44 40524.57 41273.22 390
test_vis1_rt59.09 35857.31 35764.43 37368.44 39346.02 38783.05 32848.63 41751.96 37349.57 37663.86 39316.30 39980.20 39071.21 19962.79 32367.07 400
DSMNet-mixed56.78 36054.44 36463.79 37463.21 40129.44 41764.43 39964.10 40442.12 40151.32 36971.60 37431.76 36475.04 39636.23 38265.20 30386.87 272
ttmdpeth53.34 36549.96 36863.45 37562.07 40540.04 40072.06 38065.64 40242.54 40051.88 36577.79 34013.94 40776.48 39432.93 39330.82 40973.84 389
dmvs_testset65.55 33266.45 30862.86 37679.87 33122.35 42276.55 36871.74 39077.42 11355.85 35187.77 21951.39 24680.69 38931.51 40165.92 29685.55 302
kuosan60.86 35260.24 34562.71 37781.57 31246.43 38575.70 37485.88 33357.98 35148.95 37969.53 38158.42 16576.53 39328.25 40235.87 40065.15 401
test_fmvs356.82 35954.86 36362.69 37853.59 41135.47 40875.87 37265.64 40243.91 39655.10 35371.43 3776.91 41674.40 39868.64 22452.63 37078.20 379
LF4IMVS54.01 36452.12 36559.69 37962.41 40339.91 40368.59 39068.28 39942.96 39944.55 39375.18 35914.09 40668.39 40541.36 37051.68 37370.78 395
mamv465.18 33467.43 30458.44 38077.88 36049.36 37169.40 38870.99 39348.31 38657.78 34585.53 25059.01 16051.88 41873.67 17564.32 31274.07 388
new_pmnet49.31 36846.44 37157.93 38162.84 40240.74 39868.47 39162.96 40636.48 40335.09 40457.81 40114.97 40372.18 40032.86 39446.44 38260.88 403
mvsany_test348.86 36946.35 37256.41 38246.00 41731.67 41362.26 40147.25 41843.71 39745.54 38968.15 38510.84 40964.44 41457.95 30235.44 40373.13 391
test_f46.58 37043.45 37455.96 38345.18 41832.05 41261.18 40249.49 41633.39 40542.05 39862.48 3967.00 41565.56 41047.08 34743.21 38870.27 397
ANet_high40.27 37835.20 38155.47 38434.74 42534.47 41063.84 40071.56 39148.42 38418.80 41441.08 4139.52 41264.45 41320.18 4098.66 42167.49 399
EGC-MVSNET42.35 37438.09 37755.11 38574.57 37346.62 38471.63 38355.77 4090.04 4230.24 42462.70 39514.24 40574.91 39717.59 41246.06 38343.80 409
N_pmnet50.55 36749.11 36954.88 38677.17 3634.02 43084.36 3112.00 42848.59 38345.86 38768.82 38232.22 36282.80 38031.58 39951.38 37477.81 381
LCM-MVSNet40.54 37535.79 38054.76 38736.92 42430.81 41451.41 41169.02 39622.07 41124.63 41145.37 4084.56 42065.81 40933.67 38934.50 40467.67 398
dongtai55.18 36355.46 36254.34 38876.03 37036.88 40676.07 37184.61 34551.28 37543.41 39664.61 39256.56 19167.81 40618.09 41128.50 41158.32 404
FPMVS45.64 37243.10 37653.23 38951.42 41436.46 40764.97 39871.91 38929.13 40927.53 40961.55 3989.83 41165.01 41216.00 41555.58 36358.22 405
PMMVS237.93 38033.61 38350.92 39046.31 41624.76 42060.55 40550.05 41428.94 41020.93 41247.59 4054.41 42265.13 41125.14 40418.55 41662.87 402
WB-MVS46.23 37144.94 37350.11 39162.13 40421.23 42476.48 36955.49 41045.89 39135.78 40261.44 39935.54 35072.83 3999.96 41821.75 41356.27 406
APD_test140.50 37637.31 37950.09 39251.88 41235.27 40959.45 40652.59 41321.64 41226.12 41057.80 4024.56 42066.56 40822.64 40739.09 39448.43 408
test_method38.59 37935.16 38248.89 39354.33 41021.35 42345.32 41453.71 4127.41 42028.74 40851.62 4048.70 41352.87 41733.73 38832.89 40572.47 393
test_vis3_rt40.46 37737.79 37848.47 39444.49 41933.35 41166.56 39732.84 42532.39 40629.65 40739.13 4153.91 42368.65 40450.17 32840.99 39243.40 410
SSC-MVS44.51 37343.35 37547.99 39561.01 40718.90 42674.12 37754.36 41143.42 39834.10 40660.02 40034.42 35570.39 4029.14 42019.57 41454.68 407
Gipumacopyleft34.91 38131.44 38445.30 39670.99 38539.64 40419.85 41872.56 38720.10 41416.16 41821.47 4195.08 41971.16 40113.07 41643.70 38725.08 416
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft26.43 2231.84 38428.16 38742.89 39725.87 42727.58 41850.92 41249.78 41521.37 41314.17 41940.81 4142.01 42666.62 4079.61 41938.88 39734.49 415
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testf132.77 38229.47 38542.67 39841.89 42130.81 41452.07 40943.45 41915.45 41518.52 41544.82 4092.12 42458.38 41516.05 41330.87 40738.83 411
APD_test232.77 38229.47 38542.67 39841.89 42130.81 41452.07 40943.45 41915.45 41518.52 41544.82 4092.12 42458.38 41516.05 41330.87 40738.83 411
MVEpermissive24.84 2324.35 38619.77 39238.09 40034.56 42626.92 41926.57 41638.87 42311.73 41911.37 42027.44 4161.37 42750.42 41911.41 41714.60 41736.93 413
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft34.71 40151.45 41324.73 42128.48 42731.46 40717.49 41752.75 4035.80 41842.60 42218.18 41019.42 41536.81 414
E-PMN24.61 38524.00 38926.45 40243.74 42018.44 42760.86 40339.66 42115.11 4179.53 42122.10 4186.52 41746.94 4208.31 42110.14 41813.98 418
EMVS23.76 38723.20 39125.46 40341.52 42316.90 42860.56 40438.79 42414.62 4188.99 42220.24 4217.35 41445.82 4217.25 4229.46 41913.64 419
tmp_tt22.26 38823.75 39017.80 4045.23 42812.06 42935.26 41539.48 4222.82 42218.94 41344.20 41122.23 39124.64 42336.30 3819.31 42016.69 417
wuyk23d11.30 39010.95 39312.33 40548.05 41519.89 42525.89 4171.92 4293.58 4213.12 4231.37 4230.64 42815.77 4246.23 4237.77 4221.35 420
test1236.92 3939.21 3960.08 4060.03 4300.05 43181.65 3370.01 4310.02 4250.14 4260.85 4250.03 4290.02 4250.12 4250.00 4240.16 421
testmvs7.23 3929.62 3950.06 4070.04 4290.02 43284.98 3090.02 4300.03 4240.18 4251.21 4240.01 4300.02 4250.14 4240.01 4230.13 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
cdsmvs_eth3d_5k19.86 38926.47 3880.00 4080.00 4310.00 4330.00 41993.45 860.00 4260.00 42795.27 5949.56 2630.00 4270.00 4260.00 4240.00 423
pcd_1.5k_mvsjas4.46 3945.95 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42653.55 2250.00 4270.00 4260.00 4240.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
ab-mvs-re7.91 39110.55 3940.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42794.95 690.00 4310.00 4270.00 4260.00 4240.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4240.00 423
WAC-MVS49.45 36831.56 400
FOURS193.95 4661.77 25393.96 7091.92 15262.14 32686.57 46
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
test_one_060196.32 1869.74 4994.18 5871.42 23090.67 1996.85 1674.45 20
eth-test20.00 431
eth-test0.00 431
ZD-MVS96.63 965.50 15893.50 8470.74 24485.26 6295.19 6564.92 8497.29 7687.51 5793.01 56
RE-MVS-def80.48 14892.02 10258.56 31090.90 21090.45 21262.76 31978.89 13094.46 8349.30 26678.77 14286.77 13192.28 187
IU-MVS96.46 1169.91 4295.18 2180.75 4995.28 192.34 2295.36 1496.47 28
test_241102_TWO94.41 4971.65 21992.07 997.21 474.58 1899.11 692.34 2295.36 1496.59 19
test_241102_ONE96.45 1269.38 5594.44 4771.65 21992.11 797.05 776.79 999.11 6
9.1487.63 2893.86 4894.41 5294.18 5872.76 18486.21 4896.51 2466.64 6497.88 4490.08 3994.04 39
save fliter93.84 4967.89 9595.05 3992.66 12078.19 95
test_0728_THIRD72.48 18990.55 2096.93 1176.24 1199.08 1191.53 3094.99 1896.43 31
test072696.40 1569.99 3896.76 894.33 5571.92 20591.89 1197.11 673.77 23
GSMVS94.68 100
test_part296.29 1968.16 8890.78 17
sam_mvs157.85 17194.68 100
sam_mvs54.91 210
MTGPAbinary92.23 134
test_post178.95 35720.70 42053.05 23091.50 31260.43 291
test_post23.01 41756.49 19292.67 275
patchmatchnet-post67.62 38657.62 17490.25 321
MTMP93.77 8432.52 426
gm-plane-assit88.42 19367.04 11978.62 9191.83 15297.37 7076.57 154
test9_res89.41 4094.96 1995.29 70
TEST994.18 4167.28 11094.16 5993.51 8271.75 21685.52 5795.33 5468.01 5497.27 80
test_894.19 4067.19 11294.15 6193.42 8971.87 21085.38 6095.35 5368.19 5296.95 106
agg_prior286.41 7094.75 3095.33 66
agg_prior94.16 4366.97 12193.31 9284.49 6896.75 116
test_prior467.18 11493.92 73
test_prior295.10 3875.40 13785.25 6395.61 4567.94 5587.47 5994.77 26
旧先验292.00 16359.37 34687.54 3993.47 25175.39 162
新几何291.41 184
旧先验191.94 10760.74 27691.50 17694.36 8765.23 7991.84 7194.55 107
无先验92.71 12892.61 12462.03 32797.01 9666.63 24293.97 136
原ACMM292.01 160
test22289.77 15861.60 25889.55 25289.42 25656.83 36077.28 15092.43 13752.76 23391.14 8593.09 163
testdata296.09 14361.26 287
segment_acmp65.94 72
testdata189.21 26177.55 109
plane_prior786.94 23561.51 259
plane_prior687.23 22762.32 24350.66 252
plane_prior591.31 18295.55 17276.74 15278.53 20788.39 249
plane_prior489.14 198
plane_prior361.95 25179.09 8172.53 200
plane_prior293.13 11078.81 88
plane_prior187.15 229
plane_prior62.42 23993.85 7779.38 7378.80 204
n20.00 432
nn0.00 432
door-mid66.01 401
test1193.01 106
door66.57 400
HQP5-MVS63.66 208
HQP-NCC87.54 22094.06 6379.80 6474.18 179
ACMP_Plane87.54 22094.06 6379.80 6474.18 179
BP-MVS77.63 149
HQP4-MVS74.18 17995.61 16788.63 243
HQP3-MVS91.70 16878.90 202
HQP2-MVS51.63 244
NP-MVS87.41 22363.04 22490.30 179
MDTV_nov1_ep13_2view59.90 29280.13 35267.65 27772.79 19454.33 21859.83 29592.58 178
MDTV_nov1_ep1372.61 26489.06 17868.48 7680.33 34890.11 23071.84 21271.81 21275.92 35753.01 23193.92 23948.04 34073.38 244
ACMMP++_ref71.63 257
ACMMP++69.72 266
Test By Simon54.21 219