This table lists the benchmark results for the low-res two-view scenario. This benchmark evaluates the Middlebury stereo metrics (for all metrics, smaller is better):

The mask determines whether the metric is evaluated for all pixels with ground truth, or only for pixels which are visible in both images (non-occluded).
The coverage selector allows to limit the table to results for all pixels (dense), or a given minimum fraction of pixels.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click one or more dataset result cells or column headers to show visualizations. Most visualizations are only available for training datasets. The visualizations may not work with mobile browsers.




Method Infoalllakes. 1llakes. 1ssand box 1lsand box 1sstora. room 1lstora. room 1sstora. room 2lstora. room 2sstora. room 2 1lstora. room 2 1sstora. room 2 2lstora. room 2 2sstora. room 3lstora. room 3stunnel 1ltunnel 1stunnel 2ltunnel 2stunnel 3ltunnel 3s
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-Stereotwo views1.97
1
0.64
16
2.95
8
0.17
1
0.10
1
4.83
25
0.13
2
8.60
9
4.06
4
6.42
16
4.92
4
0.44
1
0.72
1
3.57
3
1.80
5
0.00
1
0.01
25
0.00
1
0.00
1
0.05
15
0.04
15
PMTNettwo views1.99
2
0.32
1
2.21
3
0.39
2
0.23
6
5.08
27
0.49
11
5.84
1
8.22
27
3.07
1
3.29
1
0.73
2
0.75
2
8.18
28
0.94
3
0.00
1
0.00
1
0.00
1
0.00
1
0.03
10
0.00
1
R-Stereotwo views2.44
3
0.32
1
1.93
1
0.94
4
0.16
4
3.67
8
0.61
16
6.37
3
3.08
1
9.14
38
17.44
66
1.80
3
0.77
3
1.76
1
0.70
1
0.00
1
0.01
25
0.00
1
0.00
1
0.01
1
0.03
9
R-Stereo Traintwo views2.44
3
0.32
1
1.93
1
0.94
4
0.16
4
3.67
8
0.61
16
6.37
3
3.08
1
9.14
38
17.44
66
1.80
3
0.77
3
1.76
1
0.70
1
0.00
1
0.01
25
0.00
1
0.00
1
0.01
1
0.03
9
DN-CSS_ROBtwo views2.69
5
1.40
55
5.34
33
2.31
51
0.75
22
3.14
6
0.06
1
6.11
2
3.87
3
5.34
11
12.18
40
2.34
5
1.22
5
7.84
18
1.48
4
0.03
33
0.00
1
0.00
1
0.00
1
0.35
62
0.03
9
HITNettwo views2.79
6
0.77
17
4.02
19
2.03
40
0.11
3
5.58
31
0.59
14
9.24
12
5.15
8
6.42
16
7.26
11
3.66
6
2.92
16
4.07
4
3.87
29
0.00
1
0.00
1
0.00
1
0.00
1
0.06
19
0.02
3
Vladimir Tankovich, Christian Häne, Yinda Zhang, Adarsh Kowdle, Sean Fanello, Sofien Bouaziz: HITNet: Hierarchical Iterative Tile Refinement Network for Real-time Stereo Matching. CVPR 2021
ccstwo views3.04
7
0.39
7
3.08
10
1.78
27
0.52
16
2.04
1
0.50
12
13.09
53
13.71
60
3.54
4
5.36
6
5.50
12
2.45
11
4.81
6
2.88
12
0.09
48
0.08
60
0.12
76
0.10
70
0.20
43
0.50
73
AdaStereotwo views3.09
8
0.58
12
3.04
9
2.84
64
0.48
15
4.08
15
1.29
32
12.16
45
7.77
23
6.03
12
9.62
24
5.79
14
1.53
7
4.56
5
1.93
7
0.00
1
0.00
1
0.00
1
0.00
1
0.02
4
0.02
3
Xiao Song, Guorun Yang, Xinge Zhu, Hui Zhou, Zhe Wang, Jianping Shi: AdaStereo: A Simple and Efficient Approach for Adaptive Stereo Matching. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
BEATNet_4xtwo views3.24
9
1.27
49
5.89
41
1.56
18
0.10
1
5.26
28
1.07
27
10.08
19
5.50
9
6.89
21
7.73
13
4.53
9
4.13
27
5.05
7
5.27
35
0.04
38
0.05
48
0.00
1
0.00
1
0.23
53
0.23
49
DMCAtwo views3.29
10
1.05
33
4.18
22
1.60
21
2.87
71
2.11
2
0.60
15
7.95
7
4.65
7
8.62
33
8.59
19
9.24
31
4.68
34
6.25
8
3.03
14
0.04
38
0.09
64
0.06
70
0.03
50
0.18
39
0.07
18
NOSS_ROBtwo views3.30
11
0.46
8
2.62
4
2.08
41
1.01
34
5.60
32
0.74
23
10.37
26
11.48
49
5.15
9
8.43
18
5.67
13
1.73
8
7.97
20
2.34
9
0.02
23
0.06
54
0.00
1
0.00
1
0.07
20
0.14
40
CFNet_RVCtwo views3.31
12
0.94
28
2.69
5
1.50
16
2.38
61
2.81
4
0.68
20
8.35
8
7.43
19
4.45
6
9.94
25
10.20
37
4.60
32
6.49
9
3.41
22
0.00
1
0.00
1
0.03
61
0.00
1
0.22
49
0.03
9
MLCVtwo views3.44
13
0.88
21
5.60
36
1.39
12
0.25
7
4.36
18
0.33
6
7.25
5
7.28
16
9.17
40
12.24
42
5.09
10
2.47
12
9.15
40
3.23
19
0.00
1
0.00
1
0.00
1
0.00
1
0.10
23
0.02
3
DeepPruner_ROBtwo views3.52
14
1.14
43
4.06
20
1.12
7
1.65
47
3.65
7
0.83
25
13.96
61
4.47
5
7.80
25
10.84
30
7.05
21
2.16
10
8.14
26
3.08
17
0.07
46
0.03
40
0.00
1
0.01
38
0.32
58
0.06
17
STTStereotwo views3.60
15
0.93
27
6.34
49
2.71
62
2.23
58
3.68
10
0.63
19
9.42
13
6.73
12
9.87
47
6.97
9
8.84
30
3.65
20
6.85
11
3.04
15
0.00
1
0.02
35
0.01
43
0.00
1
0.02
4
0.02
3
ccs_robtwo views3.63
16
1.12
42
4.42
24
2.52
55
0.91
30
5.50
30
0.21
4
10.11
22
9.11
33
6.55
19
11.28
34
8.32
28
2.55
13
7.66
15
2.01
8
0.00
1
0.00
1
0.00
1
0.00
1
0.20
43
0.08
21
iResNettwo views3.68
17
0.91
24
7.94
65
2.97
70
0.34
9
4.44
22
0.48
10
7.70
6
9.74
37
7.72
24
12.74
45
4.03
7
2.87
15
8.05
22
3.37
21
0.02
23
0.01
25
0.00
1
0.00
1
0.10
23
0.09
23
DMCA-RVCcopylefttwo views3.68
17
1.58
64
6.33
47
1.79
28
2.33
60
4.04
14
0.68
20
9.07
10
4.57
6
8.48
32
9.34
23
10.91
41
3.45
19
6.67
10
3.78
27
0.02
23
0.11
67
0.01
43
0.04
59
0.18
39
0.12
34
CFNettwo views3.72
19
1.10
39
5.03
29
2.49
54
1.59
44
4.90
26
0.22
5
11.38
35
9.88
39
4.80
7
11.25
33
6.44
17
3.68
21
8.33
29
3.00
13
0.00
1
0.00
1
0.00
1
0.00
1
0.22
49
0.07
18
FADNet-RVC-Resampletwo views3.79
20
1.62
67
12.06
78
1.43
14
0.66
18
5.94
34
2.41
40
10.18
24
8.58
31
6.28
14
4.22
3
5.33
11
4.80
38
7.71
16
3.19
18
0.17
60
0.21
81
0.17
82
0.12
72
0.41
70
0.29
61
NLCA_NET_v2_RVCtwo views3.84
21
1.06
34
5.23
31
2.72
63
3.27
74
4.36
18
0.61
16
10.71
31
7.56
20
8.75
34
7.89
14
9.86
36
3.90
24
7.15
13
3.44
23
0.14
55
0.02
35
0.02
55
0.03
50
0.04
13
0.03
9
Zhibo Rao, Mingyi He, Yuchao Dai, Zhidong Zhu, Bo Li, and Renjie He.: NLCA-Net: A non-local context attention network for stereo matching.
CC-Net-ROBtwo views3.84
21
1.07
35
5.23
31
2.65
59
2.96
72
4.22
16
0.69
22
10.43
27
7.72
21
8.78
35
8.29
17
9.61
34
4.02
26
7.16
14
3.65
26
0.13
54
0.03
40
0.02
55
0.03
50
0.05
15
0.03
9
FADNet_RVCtwo views3.91
23
1.67
70
12.95
85
0.96
6
0.75
22
5.71
33
0.54
13
10.83
33
6.60
11
3.46
2
8.09
15
4.10
8
3.40
18
9.43
43
6.33
39
0.36
76
0.44
93
0.17
82
0.46
96
0.91
86
0.95
90
FADNet-RVCtwo views3.98
24
1.84
76
12.48
81
1.69
25
0.44
13
4.33
17
1.31
33
11.84
39
7.15
14
3.53
3
3.50
2
10.63
40
4.43
31
9.12
39
6.25
38
0.03
33
0.10
65
0.00
1
0.03
50
0.60
76
0.25
55
HSMtwo views4.00
25
0.79
18
3.16
12
1.59
20
2.17
56
6.77
40
1.11
28
12.28
46
6.35
10
6.75
20
8.11
16
13.90
56
5.37
43
8.85
37
2.71
11
0.00
1
0.00
1
0.00
1
0.00
1
0.02
4
0.02
3
TDLMtwo views4.11
26
1.11
41
3.54
14
1.62
22
1.04
35
3.91
12
7.41
84
10.60
30
10.67
43
6.38
15
12.59
44
5.95
15
4.77
36
8.79
36
3.04
15
0.58
88
0.00
1
0.01
43
0.00
1
0.19
42
0.12
34
CBMV_ROBtwo views4.14
27
0.52
9
3.14
11
1.30
10
0.77
25
6.92
41
1.97
39
10.11
22
9.58
35
8.92
37
14.20
53
7.12
22
5.90
46
8.65
33
3.50
25
0.01
18
0.05
48
0.00
1
0.00
1
0.04
13
0.09
23
CVANet_RVCtwo views4.16
28
1.16
44
3.60
15
1.94
38
1.46
42
3.92
13
4.68
66
10.89
34
8.34
29
7.58
23
10.84
30
10.27
38
6.62
50
8.56
32
2.69
10
0.39
78
0.00
1
0.00
1
0.01
38
0.21
48
0.09
23
HSM-Net_RVCpermissivetwo views4.20
29
0.32
1
2.76
6
0.63
3
0.69
20
6.95
42
1.69
37
11.96
40
8.36
30
8.83
36
12.17
39
15.18
64
4.21
29
6.91
12
3.30
20
0.02
23
0.02
35
0.00
1
0.00
1
0.01
1
0.01
2
Gengshan Yang, Joshua Manela, Michael Happold, and Deva Ramanan: Hierarchical Deep Stereo Matching on High-resolution Images. CVPR 2019
iResNet_ROBtwo views4.23
30
1.02
31
4.90
28
2.18
44
0.93
32
2.92
5
0.37
8
15.10
72
16.91
74
7.89
27
10.51
28
7.03
19
3.07
17
8.16
27
3.46
24
0.01
18
0.00
1
0.00
1
0.00
1
0.10
23
0.02
3
FADNettwo views4.23
30
1.65
69
11.75
77
1.64
24
0.80
27
4.80
24
0.77
24
13.76
60
11.65
51
3.97
5
5.24
5
9.62
35
5.14
40
8.40
30
3.78
27
0.21
64
0.04
44
0.07
71
0.05
62
1.14
91
0.10
30
iResNetv2_ROBtwo views4.28
32
1.43
56
7.17
60
2.91
65
1.26
39
4.36
18
1.62
35
13.64
59
10.25
42
9.83
46
11.41
35
7.68
24
4.00
25
7.75
17
1.85
6
0.00
1
0.00
1
0.00
1
0.00
1
0.37
64
0.09
23
StereoDRNet-Refinedtwo views4.46
33
0.62
15
3.80
18
1.92
35
0.40
11
9.35
52
0.15
3
10.02
17
8.83
32
12.69
64
11.62
37
9.34
32
3.87
23
8.06
23
8.02
52
0.00
1
0.00
1
0.01
43
0.05
62
0.20
43
0.26
58
Rohan Chabra, Julian Straub, Chris Sweeney, Richard Newcombe, Henry Fuchs: StereoDRNet. CVPR
DLCB_ROBtwo views4.51
34
0.91
24
3.78
17
2.19
45
1.07
36
6.28
35
3.09
44
9.78
16
7.72
21
10.65
51
12.97
46
13.91
57
3.71
22
8.72
34
5.30
36
0.00
1
0.00
1
0.00
1
0.00
1
0.03
10
0.10
30
NVstereo2Dtwo views4.51
34
0.82
19
6.86
58
3.28
75
3.38
78
8.16
47
3.13
45
10.51
28
15.15
65
4.90
8
6.89
8
7.87
25
4.78
37
9.88
46
3.91
30
0.01
18
0.00
1
0.00
1
0.06
64
0.02
4
0.58
78
RASNettwo views4.52
36
0.61
14
4.42
24
3.42
79
4.68
96
4.58
23
0.99
26
9.54
15
8.01
24
5.28
10
11.42
36
10.34
39
8.88
63
9.28
41
8.68
61
0.15
57
0.00
1
0.00
1
0.00
1
0.03
10
0.04
15
SGM-Foresttwo views4.96
37
0.32
1
2.84
7
1.21
8
0.64
17
10.23
62
6.64
79
11.55
36
10.98
44
10.94
54
13.59
49
11.65
47
4.30
30
8.94
38
4.63
33
0.11
51
0.04
44
0.00
1
0.00
1
0.05
15
0.46
70
Johannes L. Schönberger, Sudipta Sinha, Marc Pollefeys: Learning to Fuse Proposals from Multiple Scanline Optimizations in Semi-Global Matching. ECCV 2018
PA-Nettwo views4.98
38
1.47
58
7.42
62
2.40
52
2.14
55
8.73
49
3.64
54
12.42
47
13.11
56
7.03
22
7.57
12
7.88
26
6.52
49
10.16
48
7.82
50
0.02
23
0.03
40
0.00
1
0.00
1
0.11
27
1.07
93
Zhibo Rao, Mingyi He, Yuchao Dai, Zhelun Shen: Patch Attention Network with Generative Adversarial Model for Semi-Supervised Binocular Disparity Prediction.
AANet_RVCtwo views5.01
39
1.74
71
6.38
50
1.96
39
1.29
41
2.26
3
1.69
37
10.07
18
18.53
77
7.88
26
18.15
68
8.49
29
2.70
14
10.59
52
7.04
44
0.96
98
0.15
76
0.02
55
0.00
1
0.13
31
0.12
34
PSMNet_ROBtwo views5.02
40
1.63
68
6.03
43
1.90
34
1.83
52
9.57
56
6.35
76
15.58
77
7.23
15
6.15
13
10.48
27
12.22
49
4.16
28
8.02
21
8.71
62
0.02
23
0.01
25
0.01
43
0.10
70
0.20
43
0.12
34
CBMVpermissivetwo views5.35
41
0.91
24
3.67
16
1.62
22
0.44
13
10.09
60
7.19
83
12.49
48
12.33
55
12.22
60
14.69
55
10.93
42
6.48
48
8.51
31
4.96
34
0.02
23
0.15
76
0.00
1
0.00
1
0.17
38
0.17
44
Konstantinos Batsos, Changjiang Cai, Philippos Mordohai: CBMV: A Coalesced Bidirectional Matching Volume for Disparity Estimation. Computer Vision and Pattern Recognition (CVPR) 2018
StereoDRNettwo views5.59
42
1.75
72
6.80
57
3.12
72
4.45
91
10.61
64
4.35
61
18.80
87
9.73
36
12.22
60
6.87
7
11.44
45
4.65
33
8.09
25
8.26
57
0.02
23
0.11
67
0.00
1
0.03
50
0.20
43
0.28
60
ETE_ROBtwo views5.80
43
1.77
73
6.33
47
1.44
15
0.78
26
6.43
39
6.90
80
12.53
49
8.08
25
12.93
68
14.89
56
21.13
88
5.87
45
9.83
45
6.57
42
0.04
38
0.01
25
0.00
1
0.02
42
0.08
22
0.33
62
DRN-Testtwo views5.87
44
0.98
29
5.89
41
2.69
61
3.65
83
12.37
71
3.35
48
20.07
98
10.20
41
11.93
59
12.31
43
11.06
44
5.31
42
7.89
19
9.05
64
0.04
38
0.05
48
0.04
66
0.04
59
0.18
39
0.25
55
NCCL2two views5.88
45
1.59
65
5.44
34
1.87
31
0.92
31
9.55
55
11.55
98
12.11
42
9.94
40
9.67
45
8.85
21
22.28
90
7.41
54
8.78
35
7.17
45
0.01
18
0.00
1
0.03
61
0.00
1
0.13
31
0.23
49
NaN_ROBtwo views6.00
46
1.24
47
6.29
46
1.34
11
1.68
49
9.60
57
10.31
94
15.09
70
15.79
68
12.62
63
8.95
22
11.67
48
5.83
44
11.78
60
6.41
41
0.05
43
0.13
73
0.08
72
0.20
78
0.22
49
0.79
86
DANettwo views6.02
47
1.23
46
8.45
67
3.86
88
3.94
85
7.64
46
1.34
34
9.51
14
7.00
13
13.39
70
15.53
59
15.99
67
7.02
53
12.14
61
12.37
80
0.19
62
0.12
72
0.02
55
0.03
50
0.13
31
0.56
77
XPNet_ROBtwo views6.03
48
1.22
45
5.61
37
2.56
58
0.90
29
6.32
36
7.07
81
12.92
52
8.30
28
14.76
75
15.13
58
19.84
83
6.66
52
10.36
49
8.58
60
0.02
23
0.04
44
0.00
1
0.03
50
0.11
27
0.24
52
Anonymous Stereotwo views6.16
49
3.15
93
23.75
102
2.97
70
2.48
65
4.39
21
13.30
100
9.21
11
9.86
38
9.56
44
8.76
20
6.79
18
1.99
9
13.50
72
13.04
83
0.01
18
0.05
48
0.00
1
0.06
64
0.22
49
0.19
46
GANettwo views6.22
50
1.07
35
4.07
21
2.27
48
0.89
28
9.19
51
9.52
89
12.02
41
8.13
26
10.72
52
29.09
92
13.86
55
7.52
56
11.00
56
4.39
31
0.36
76
0.00
1
0.02
55
0.02
42
0.12
29
0.08
21
DISCOtwo views6.28
51
0.57
11
5.78
39
3.43
80
1.17
37
11.22
66
3.39
49
12.14
44
16.16
70
6.52
18
11.22
32
16.96
70
6.32
47
19.51
93
10.74
74
0.00
1
0.00
1
0.00
1
0.00
1
0.35
62
0.11
32
RYNettwo views6.34
52
0.89
23
5.88
40
1.41
13
4.48
93
15.97
82
4.18
58
13.41
55
16.49
71
10.81
53
7.00
10
14.33
59
8.72
61
9.43
43
13.71
84
0.00
1
0.01
25
0.00
1
0.00
1
0.02
4
0.07
18
GANetREF_RVCpermissivetwo views6.56
53
2.89
88
7.58
64
3.41
78
0.40
11
12.96
74
9.58
90
15.09
70
17.25
76
10.33
49
10.62
29
12.27
50
8.16
58
12.21
62
4.53
32
0.41
80
0.00
1
0.00
1
0.02
42
3.12
105
0.39
65
Zhang, Feihu and Prisacariu, Victor and Yang, Ruigang and Torr, Philip HS: GA-Net: Guided Aggregation Net for End- to-end Stereo Matching. CVPR 2019
LALA_ROBtwo views6.58
54
1.80
75
6.25
45
1.26
9
0.94
33
10.08
59
9.02
86
16.00
78
11.51
50
12.74
65
13.02
47
24.77
92
5.25
41
10.56
51
8.02
52
0.04
38
0.05
48
0.00
1
0.02
42
0.10
23
0.25
55
DeepPrunerFtwo views6.75
55
2.69
86
23.31
101
3.68
83
7.16
105
3.78
11
4.29
59
13.42
56
20.13
85
8.13
28
10.46
26
7.18
23
8.06
57
11.10
57
9.44
66
0.24
66
0.15
76
0.29
90
0.42
92
0.66
79
0.45
68
edge stereotwo views6.76
56
1.01
30
6.76
56
2.20
46
2.45
64
6.41
38
2.45
41
14.84
68
11.98
54
15.29
76
18.31
69
22.02
89
12.56
77
10.82
53
7.49
46
0.03
33
0.06
54
0.11
75
0.03
50
0.30
55
0.14
40
Abc-Nettwo views6.77
57
1.49
59
6.48
51
2.92
67
4.40
87
7.43
43
3.61
52
19.52
94
13.29
57
8.39
30
16.91
62
15.96
65
12.13
75
12.85
67
7.70
48
1.47
102
0.11
67
0.01
43
0.42
92
0.14
35
0.24
52
NCC-stereotwo views6.77
57
1.49
59
6.48
51
2.92
67
4.40
87
7.43
43
3.61
52
19.52
94
13.29
57
8.39
30
16.91
62
15.96
65
12.13
75
12.85
67
7.70
48
1.47
102
0.11
67
0.01
43
0.42
92
0.14
35
0.24
52
RPtwo views6.84
59
1.29
53
5.53
35
3.92
89
5.18
98
6.32
36
3.53
50
11.73
38
15.31
66
9.54
43
22.38
76
18.25
77
14.47
84
10.11
47
7.49
46
0.91
97
0.01
25
0.12
76
0.15
75
0.33
59
0.19
46
RGCtwo views6.88
60
2.23
82
6.13
44
4.05
90
4.73
97
8.94
50
2.78
43
15.19
74
11.74
52
11.13
55
19.34
71
17.86
74
10.42
70
13.02
69
8.03
54
0.73
91
0.01
25
0.24
89
0.41
91
0.31
57
0.38
64
Nwc_Nettwo views6.97
61
1.25
48
6.63
54
3.82
87
3.37
77
10.83
65
1.67
36
19.56
96
11.35
47
8.36
29
23.62
78
17.19
72
11.44
74
11.21
58
8.08
56
0.80
93
0.00
1
0.00
1
0.02
42
0.13
31
0.09
23
STTRV1_RVCtwo views7.02
62
1.10
39
12.88
83
3.32
76
6.92
104
11.90
70
4.00
56
15.07
69
11.94
53
9.51
41
14.57
54
11.63
46
8.73
62
12.65
66
8.06
55
3.32
108
2.75
108
0.41
98
0.12
72
1.38
96
0.11
32
ADCReftwo views7.27
63
1.38
54
16.37
91
2.52
55
3.30
76
11.63
68
3.16
46
10.80
32
9.35
34
13.03
69
25.27
86
8.17
27
8.92
64
8.06
23
21.81
99
0.15
57
0.08
60
0.16
81
0.34
88
0.38
65
0.58
78
CSANtwo views7.62
64
1.60
66
6.56
53
1.83
29
0.66
18
12.40
72
10.52
96
14.45
65
21.32
87
14.19
72
15.98
61
17.84
73
13.02
81
12.32
63
8.38
58
0.09
48
0.07
58
0.03
61
0.04
59
0.33
59
0.67
84
stereogantwo views7.69
65
0.88
21
7.08
59
3.49
81
3.93
84
18.98
89
3.23
47
16.52
80
19.58
82
9.93
48
18.92
70
20.50
86
9.04
65
14.07
76
6.14
37
0.26
68
0.04
44
0.21
87
0.03
50
0.63
78
0.33
62
pmcnntwo views7.72
66
1.27
49
9.42
70
2.91
65
3.14
73
9.44
53
6.23
73
12.56
50
16.51
72
14.53
73
24.08
80
27.44
98
8.49
59
9.32
42
8.44
59
0.06
45
0.08
60
0.00
1
0.00
1
0.30
55
0.15
42
AF-Nettwo views7.78
67
1.44
57
6.68
55
3.37
77
4.50
94
8.61
48
2.69
42
17.07
83
20.17
86
9.52
42
24.02
79
20.31
85
14.59
85
11.58
59
9.84
71
0.61
89
0.00
1
0.12
76
0.00
1
0.38
65
0.12
34
PASMtwo views7.90
68
4.22
98
21.97
99
3.25
74
3.29
75
5.39
29
6.57
78
10.57
29
19.09
79
12.77
66
13.92
51
18.11
76
9.51
67
13.79
75
10.77
76
0.19
62
0.45
94
0.29
90
1.08
103
1.49
98
1.19
95
PWCDC_ROBbinarytwo views7.92
69
3.17
95
7.48
63
5.73
101
4.40
87
10.45
63
0.35
7
14.52
66
28.19
95
10.36
50
31.27
95
7.04
20
9.14
66
13.22
71
8.78
63
2.74
107
0.02
35
0.00
1
0.00
1
1.31
95
0.17
44
ADCP+two views8.09
70
1.79
74
14.50
89
1.54
17
4.28
86
16.57
84
5.20
68
12.80
51
11.20
46
12.83
67
17.07
64
11.02
43
10.80
72
17.59
89
23.18
102
0.03
33
0.05
48
0.01
43
0.18
76
0.39
69
0.81
87
SuperBtwo views8.10
71
3.15
93
24.67
103
2.65
59
1.23
38
9.88
58
4.29
59
10.18
24
30.07
98
11.53
57
12.18
40
6.12
16
6.65
51
10.50
50
14.47
86
0.14
55
0.11
67
0.35
94
0.25
82
13.06
113
0.48
71
PWC_ROBbinarytwo views8.24
72
3.13
91
12.74
82
2.43
53
4.43
90
7.51
45
1.22
29
16.63
81
19.24
80
16.08
78
28.29
89
13.99
58
10.16
69
13.63
74
14.06
85
0.42
83
0.00
1
0.05
68
0.00
1
0.59
75
0.27
59
MDST_ROBtwo views8.37
73
0.32
1
9.03
68
4.18
93
2.42
63
26.86
102
6.14
71
19.36
91
13.52
59
27.09
101
22.75
77
9.47
33
4.74
35
15.06
81
6.34
40
0.02
23
0.02
35
0.00
1
0.00
1
0.02
4
0.13
39
STTStereo_v2two views8.41
74
1.54
62
10.97
73
5.73
101
3.60
81
26.19
99
4.41
62
10.10
20
7.42
17
19.71
86
24.99
84
14.38
60
15.83
86
10.99
54
9.53
67
0.50
86
0.46
95
0.19
85
0.25
82
0.80
83
0.66
82
G-Nettwo views8.41
74
1.54
62
10.97
73
5.73
101
3.60
81
26.19
99
4.41
62
10.10
20
7.42
17
19.71
86
24.99
84
14.38
60
15.83
86
10.99
54
9.53
67
0.50
86
0.46
95
0.19
85
0.25
82
0.80
83
0.66
82
XQCtwo views8.43
76
3.58
96
16.40
92
2.92
67
2.17
56
13.22
76
3.60
51
14.64
67
25.86
92
11.87
58
12.04
38
15.06
63
10.67
71
15.24
82
19.41
91
0.39
78
0.08
60
0.05
68
0.07
66
0.84
85
0.45
68
FBW_ROBtwo views8.50
77
1.03
32
7.98
66
1.93
37
1.28
40
13.10
75
6.23
73
22.50
102
18.98
78
18.82
83
14.91
57
19.06
80
10.04
68
18.41
90
9.83
70
0.62
90
0.22
82
1.82
109
0.82
101
0.99
89
1.36
97
RTSCtwo views9.15
78
3.00
90
13.57
87
3.72
85
1.76
51
11.82
69
0.46
9
16.95
82
36.83
105
15.80
77
15.53
59
12.91
52
7.46
55
20.01
96
21.76
98
0.31
73
0.13
73
0.01
43
0.08
67
0.57
73
0.41
67
WCMA_ROBtwo views9.21
79
0.87
20
7.37
61
2.54
57
2.13
54
13.59
77
5.80
70
11.64
37
14.01
61
24.43
99
32.99
99
27.09
97
18.02
90
12.51
65
9.85
72
0.81
94
0.07
58
0.01
43
0.01
38
0.16
37
0.23
49
MSMD_ROBtwo views9.28
80
1.09
38
4.65
27
1.58
19
0.39
10
16.52
83
4.41
62
13.60
57
14.87
64
22.34
91
39.89
106
25.67
94
20.71
99
12.42
64
6.98
43
0.34
75
0.03
40
0.00
1
0.00
1
0.05
15
0.09
23
ADCPNettwo views9.54
81
2.39
84
31.46
106
2.09
42
1.60
45
16.71
86
6.39
77
12.11
42
11.45
48
13.53
71
21.45
74
19.41
81
10.94
73
14.38
78
21.54
97
0.27
71
1.16
102
0.39
97
1.49
107
0.58
74
1.45
98
SHDtwo views9.61
82
2.60
85
12.46
80
3.69
84
3.54
80
9.47
54
1.25
30
20.16
99
37.84
108
18.19
82
21.24
73
16.96
70
12.83
80
14.47
80
16.05
88
0.32
74
0.13
73
0.01
43
0.08
67
0.38
65
0.48
71
PDISCO_ROBtwo views9.62
83
1.99
79
11.51
75
9.88
109
9.61
110
21.48
93
3.83
55
19.33
90
28.49
96
11.27
56
14.17
52
19.92
84
5.02
39
16.35
86
9.18
65
5.28
110
0.41
90
0.14
80
0.09
69
2.05
102
2.36
106
MFN_U_SF_DS_RVCtwo views9.78
84
4.27
99
14.47
88
2.29
49
2.85
70
23.40
97
13.62
101
13.60
57
19.54
81
19.42
85
24.27
81
16.74
69
8.59
60
17.05
88
7.98
51
1.25
101
1.68
106
0.17
82
2.63
109
0.72
81
1.04
91
SGM_RVCbinarytwo views10.08
85
0.60
13
3.42
13
2.30
50
0.32
8
19.41
90
6.33
75
18.95
88
14.64
62
25.14
100
24.32
82
33.34
105
18.79
94
19.86
94
12.55
82
0.25
67
0.26
85
0.22
88
0.24
81
0.34
61
0.40
66
Heiko Hirschmueller: Stereo processing by semiglobal matching and mutual information. TPAMI 2008, Volume 30(2), pp. 328-341
DPSNettwo views10.14
86
1.88
78
16.82
93
1.85
30
1.73
50
24.84
98
17.20
110
19.92
97
27.41
94
12.23
62
13.62
50
16.52
68
18.35
91
14.42
79
12.50
81
0.78
92
0.54
99
0.08
72
0.25
82
1.18
92
0.59
81
ADCLtwo views10.16
87
2.11
80
19.36
96
1.92
35
1.88
53
22.23
94
8.91
85
14.04
62
23.56
89
14.62
74
26.19
87
12.75
51
13.59
83
16.06
85
22.95
101
0.26
68
0.18
79
0.75
101
0.65
97
0.69
80
0.58
78
ADCMidtwo views10.24
88
3.13
91
20.70
97
2.21
47
2.39
62
11.23
67
6.19
72
14.17
63
11.19
45
23.20
97
22.25
75
17.89
75
19.54
96
18.51
91
26.21
105
0.45
84
0.42
92
1.10
105
1.29
104
1.56
100
1.18
94
SANettwo views10.64
89
1.86
77
10.91
72
1.76
26
0.71
21
14.62
80
9.23
88
19.18
89
37.14
106
19.22
84
27.96
88
25.86
95
19.11
95
13.02
69
10.63
73
0.08
47
0.06
54
0.03
61
0.02
42
0.62
77
0.81
87
FC-DCNNcopylefttwo views10.72
90
0.52
9
4.27
23
1.88
32
1.63
46
17.18
87
5.29
69
18.20
85
19.69
83
28.50
102
34.51
102
34.03
106
21.48
102
15.89
84
11.15
78
0.03
33
0.01
25
0.02
55
0.01
38
0.07
20
0.09
23
AnyNet_C32two views10.98
91
5.58
101
22.79
100
4.16
91
5.83
100
15.64
81
14.30
102
13.18
54
17.15
75
16.44
80
20.52
72
14.68
62
13.44
82
22.46
98
30.08
110
0.17
60
0.26
85
0.36
95
0.36
89
1.23
93
0.91
89
MeshStereopermissivetwo views11.52
92
1.52
61
4.55
26
1.89
33
1.46
42
19.87
92
5.11
67
20.66
100
15.91
69
32.67
107
34.51
102
39.34
111
21.15
100
18.74
92
12.10
79
0.11
51
0.06
54
0.01
43
0.00
1
0.45
72
0.22
48
C. Zhang, Z. Li, Y. Cheng, R. Cai, H. Chao, Y. Rui: MeshStereo: A Global Stereo Model with Mesh Alignment Regularization for View Interpolation. ICCV 2015
MFN_U_SF_RVCtwo views12.94
93
3.66
97
25.81
104
3.61
82
2.26
59
22.77
95
4.55
65
27.10
107
20.06
84
23.90
98
28.99
91
30.53
102
16.98
88
19.92
95
20.26
93
1.24
100
1.07
101
0.98
104
1.33
105
1.80
101
2.04
102
ADCStwo views13.02
94
4.93
100
28.38
105
3.17
73
2.67
68
13.61
78
10.83
97
18.70
86
33.46
101
22.59
92
24.78
83
19.59
82
18.51
93
23.40
101
32.16
112
0.10
50
0.19
80
0.37
96
0.18
76
1.26
94
1.46
99
MFMNet_retwo views13.29
95
8.60
107
18.29
94
9.75
108
7.25
107
19.65
91
14.84
106
20.71
101
30.72
99
23.03
95
28.77
90
18.85
79
26.09
107
13.55
73
9.82
69
2.44
105
1.35
105
0.34
93
0.23
80
4.78
108
6.69
110
LSMtwo views14.01
96
5.95
102
33.49
107
6.78
106
43.61
115
10.22
61
9.98
93
15.16
73
22.93
88
23.07
96
32.34
98
18.52
78
12.67
78
15.45
83
11.10
77
0.16
59
0.51
98
0.09
74
0.32
86
1.08
90
16.85
115
SAMSARAtwo views14.63
97
2.74
87
12.38
79
12.65
112
6.74
103
36.50
108
72.93
116
19.36
91
23.77
90
16.20
79
13.04
48
29.21
99
12.78
79
16.98
87
15.21
87
0.11
51
0.26
85
0.03
61
0.14
74
0.76
82
0.77
85
SPS-STEREOcopylefttwo views15.04
98
6.23
103
13.21
86
11.34
111
11.65
113
23.30
96
7.15
82
24.16
104
15.65
67
31.78
106
29.19
93
31.62
103
21.32
101
24.62
102
19.50
92
7.59
112
4.19
113
3.22
110
1.48
106
6.99
112
6.54
109
K. Yamaguchi, D. McAllester, R. Urtasun: Efficient Joint Segmentation, Occlusion Labeling, Stereo and Flow Estimation. ECCV 2014
PVDtwo views15.44
99
2.93
89
14.67
90
4.21
94
3.39
79
17.43
88
4.16
57
27.84
110
48.84
113
31.02
105
43.54
110
29.76
101
30.81
110
25.97
104
21.40
96
0.23
65
0.41
90
0.04
66
0.33
87
0.41
70
1.33
96
SGM+DAISYtwo views15.62
100
7.26
106
19.28
95
8.94
107
10.11
112
26.25
101
10.49
95
19.36
91
14.65
63
30.64
104
33.59
100
33.00
104
22.32
103
24.96
103
16.42
89
7.90
113
6.25
114
4.51
111
3.37
110
5.86
110
7.20
111
NVStereoNet_ROBtwo views16.04
101
6.75
104
12.90
84
6.37
105
7.42
108
12.89
73
9.74
91
22.78
103
25.12
91
30.32
103
46.19
112
34.37
107
25.38
105
21.48
97
21.38
95
5.94
111
3.10
111
6.07
112
10.09
114
4.01
106
8.54
113
Nikolai Smolyanskiy, Alexey Kamenev, Stan Birchfield: On the Importance of Stereo for Accurate Depth Estimation: An Efficient Semi-Supervised Deep Neural Network Approach. Arxiv
AnyNet_C01two views16.12
102
10.81
111
59.36
112
4.42
95
2.49
66
30.06
104
15.15
108
17.51
84
16.51
72
17.88
81
37.69
105
24.04
91
17.54
89
29.60
107
33.29
113
0.28
72
0.38
88
0.43
99
0.42
92
2.57
104
1.98
101
MSC_U_SF_DS_RVCtwo views16.41
103
6.93
105
21.83
98
5.94
104
2.81
69
38.71
109
14.59
103
24.55
105
34.87
103
33.66
108
34.35
101
29.24
100
24.20
104
22.59
99
17.95
90
2.52
106
2.81
109
1.17
107
1.51
108
5.89
111
2.16
103
ELAS_RVCcopylefttwo views16.54
104
2.26
83
10.09
71
5.50
100
4.46
92
28.28
103
16.72
109
25.55
106
33.54
102
40.19
110
40.30
108
36.68
109
30.03
108
29.40
106
20.61
94
0.98
99
1.21
103
0.86
103
0.70
99
1.39
97
2.16
103
A. Geiger, M. Roser, R. Urtasun: Efficient large-scale stereo matching. ACCV 2010
ELAScopylefttwo views16.72
105
2.14
81
9.23
69
4.92
97
4.53
95
32.66
107
15.11
107
27.40
108
28.68
97
40.27
111
44.90
111
38.33
110
30.50
109
26.44
105
21.94
100
0.88
95
1.23
104
0.67
100
0.89
102
1.49
98
2.18
105
A. Geiger, M. Roser, R. Urtasun: Efficient large-scale stereo matching. ACCV 2010
LE_ROBtwo views16.73
106
1.28
52
11.61
76
3.72
85
1.65
47
16.67
85
9.17
87
14.39
64
55.91
115
63.81
115
40.86
109
35.94
108
37.73
113
14.24
77
26.87
106
0.05
43
0.10
65
0.13
79
0.22
79
0.12
29
0.15
42
SGM-ForestMtwo views16.99
107
1.08
37
5.74
38
2.12
43
0.75
22
31.63
106
12.21
99
27.80
109
32.25
100
37.88
109
39.99
107
52.96
114
35.20
112
33.60
109
24.47
103
0.26
68
0.39
89
0.31
92
0.39
90
0.26
54
0.53
76
DispFullNettwo views17.47
108
26.01
113
33.98
108
22.58
114
20.86
114
13.84
79
1.28
31
16.50
79
26.27
93
19.97
88
17.17
65
20.52
87
18.49
92
22.86
100
10.76
75
5.13
109
2.83
110
30.72
114
7.72
112
20.86
114
11.01
114
RTSAtwo views18.87
109
9.32
109
86.48
114
4.95
98
6.10
101
42.08
111
14.70
104
15.49
75
41.06
110
22.65
93
32.32
96
13.77
53
19.54
96
37.98
110
28.96
107
0.41
80
0.23
83
0.00
1
0.02
42
0.91
86
0.50
73
RTStwo views18.87
109
9.32
109
86.48
114
4.95
98
6.10
101
42.08
111
14.70
104
15.49
75
41.06
110
22.65
93
32.32
96
13.77
53
19.54
96
37.98
110
28.96
107
0.41
80
0.23
83
0.00
1
0.02
42
0.91
86
0.50
73
MANEtwo views19.47
111
1.27
49
5.07
30
4.69
96
5.55
99
30.49
105
9.94
92
34.01
112
37.27
107
44.13
112
51.57
115
52.51
113
40.41
114
33.58
108
24.81
104
0.89
96
0.86
100
1.11
106
9.72
113
0.38
65
1.06
92
BEATNet-Init1two views23.31
112
9.03
108
41.67
109
4.17
92
2.53
67
45.68
113
19.47
111
33.43
111
38.45
109
47.59
114
49.10
113
59.31
115
41.80
115
38.35
112
29.21
109
0.47
85
0.50
97
0.81
102
0.66
98
2.10
103
1.86
100
MADNet+two views27.07
113
33.84
114
90.97
116
20.14
113
7.47
109
48.43
114
47.10
113
35.43
113
36.46
104
20.11
89
30.05
94
25.29
93
35.08
111
45.50
115
50.28
114
2.13
104
2.00
107
1.19
108
0.76
100
4.71
107
4.43
107
PWCKtwo views30.53
114
44.32
115
47.25
111
29.76
115
7.23
106
40.78
110
27.10
112
44.73
115
44.32
112
47.31
113
36.37
104
47.16
112
26.05
106
41.26
114
31.87
111
21.83
114
4.03
112
29.50
113
4.67
111
27.17
115
7.80
112
DPSimNet_ROBtwo views53.45
115
64.73
116
44.39
110
53.97
116
45.39
116
53.66
115
54.83
114
55.15
116
57.87
116
64.16
116
50.83
114
63.40
116
53.34
116
46.45
116
65.81
115
63.13
116
26.54
116
57.94
116
51.11
116
45.52
116
50.69
116
MADNet++two views82.84
116
82.38
117
73.57
113
87.72
117
82.97
117
93.14
116
69.15
115
86.42
117
82.50
117
93.46
117
86.70
116
86.28
117
80.92
117
88.34
117
88.84
116
86.83
117
84.17
117
72.64
117
68.92
117
80.47
117
81.42
117
MEDIAN_ROBtwo views98.41
117
99.70
118
99.30
118
97.09
118
97.02
118
96.89
117
95.77
118
97.66
118
97.28
118
98.79
120
98.94
117
99.18
118
98.14
118
96.89
118
96.88
117
99.96
120
99.16
118
100.00
118
99.99
118
99.69
118
99.88
118
AVERAGE_ROBtwo views99.62
118
99.95
119
98.81
117
100.00
123
100.00
119
98.08
118
95.47
117
100.00
121
100.00
119
100.00
121
100.00
118
100.00
121
100.00
119
100.00
121
99.99
118
100.00
122
100.00
119
100.00
118
100.00
119
100.00
121
100.00
122
DGTPSM_ROBtwo views99.90
119
100.00
120
99.99
119
99.99
121
100.00
119
100.00
119
100.00
119
99.97
119
100.00
119
98.35
118
100.00
118
99.84
119
100.00
119
99.98
119
99.99
118
99.99
121
100.00
119
100.00
118
100.00
119
100.00
121
100.00
122
DPSMNet_ROBtwo views99.91
120
100.00
120
99.99
119
99.99
121
100.00
119
100.00
119
100.00
119
99.98
120
100.00
119
98.35
118
100.00
118
99.84
119
100.00
119
99.98
119
99.99
118
100.00
122
100.00
119
100.00
118
100.00
119
100.00
121
100.00
122
DPSMtwo views99.95
121
100.00
120
100.00
121
99.76
119
100.00
119
100.00
119
100.00
119
100.00
121
100.00
119
100.00
121
100.00
118
100.00
121
100.00
119
100.00
121
100.00
121
99.21
118
100.00
119
100.00
118
100.00
119
99.99
119
99.95
119
DPSM_ROBtwo views99.95
121
100.00
120
100.00
121
99.76
119
100.00
119
100.00
119
100.00
119
100.00
121
100.00
119
100.00
121
100.00
118
100.00
121
100.00
119
100.00
121
100.00
121
99.21
118
100.00
119
100.00
118
100.00
119
99.99
119
99.95
119
LSM0two views100.00
123
100.00
120
100.00
121
100.00
123
100.00
119
100.00
119
100.00
119
100.00
121
100.00
119
100.00
121
100.00
118
100.00
121
100.00
119
100.00
121
100.00
121
100.00
122
100.00
119
100.00
118
100.00
119
100.00
121
99.99
121
FADEtwo views17.27
112
10.46
110
9.90
111
35.80
114
53.05
114
20.32
90
26.54
96
39.35
113
30.62
115
14.22
115
38.39
115
37.63
115
5.22
109
5.56
108
MSMDNettwo views1.26
6