LCM-MVSNet | | | 99.43 1 | 99.49 1 | 99.24 1 | 99.95 1 | 98.13 1 | 99.37 1 | 99.57 1 | 99.82 1 | 99.86 1 | 99.85 1 | 99.52 1 | 99.73 1 | 97.58 1 | 99.94 1 | 99.85 1 |
|
LTVRE_ROB | | 93.87 1 | 97.93 2 | 98.16 2 | 97.26 26 | 98.81 23 | 93.86 30 | 99.07 2 | 98.98 3 | 97.01 12 | 98.92 4 | 98.78 14 | 95.22 37 | 98.61 171 | 96.85 2 | 99.77 10 | 99.31 27 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TDRefinement | | | 97.68 3 | 97.60 4 | 97.93 2 | 99.02 11 | 95.95 5 | 98.61 3 | 98.81 5 | 97.41 9 | 97.28 46 | 98.46 25 | 94.62 57 | 98.84 132 | 94.64 17 | 99.53 35 | 98.99 53 |
|
UA-Net | | | 97.35 4 | 97.24 11 | 97.69 5 | 98.22 67 | 93.87 29 | 98.42 4 | 98.19 31 | 96.95 13 | 95.46 125 | 99.23 4 | 93.45 73 | 99.57 13 | 95.34 12 | 99.89 2 | 99.63 9 |
|
abl_6 | | | 97.31 5 | 97.12 13 | 97.86 3 | 98.54 41 | 95.32 7 | 96.61 24 | 98.35 16 | 95.81 30 | 97.55 35 | 97.44 64 | 96.51 9 | 99.40 40 | 94.06 30 | 99.23 76 | 98.85 75 |
|
UniMVSNet_ETH3D | | | 97.13 6 | 97.72 3 | 95.35 84 | 99.51 2 | 87.38 129 | 97.70 6 | 97.54 105 | 98.16 2 | 98.94 2 | 99.33 2 | 97.84 4 | 99.08 94 | 90.73 124 | 99.73 14 | 99.59 12 |
|
HPM-MVS_fast | | | 97.01 7 | 96.89 15 | 97.39 22 | 99.12 7 | 93.92 27 | 97.16 10 | 98.17 35 | 93.11 66 | 96.48 76 | 97.36 71 | 96.92 6 | 99.34 59 | 94.31 23 | 99.38 55 | 98.92 67 |
|
SR-MVS-dyc-post | | | 96.84 8 | 96.60 25 | 97.56 10 | 98.07 76 | 95.27 8 | 96.37 36 | 98.12 41 | 95.66 32 | 97.00 56 | 97.03 90 | 94.85 51 | 99.42 28 | 93.49 44 | 98.84 118 | 98.00 145 |
|
mvs_tets | | | 96.83 9 | 96.71 19 | 97.17 27 | 98.83 21 | 92.51 48 | 96.58 26 | 97.61 100 | 87.57 197 | 98.80 7 | 98.90 9 | 96.50 10 | 99.59 12 | 96.15 7 | 99.47 39 | 99.40 21 |
|
v7n | | | 96.82 10 | 97.31 10 | 95.33 86 | 98.54 41 | 86.81 142 | 96.83 18 | 98.07 51 | 96.59 19 | 98.46 17 | 98.43 27 | 92.91 90 | 99.52 17 | 96.25 6 | 99.76 11 | 99.65 8 |
|
APD-MVS_3200maxsize | | | 96.82 10 | 96.65 21 | 97.32 25 | 97.95 88 | 93.82 32 | 96.31 41 | 98.25 24 | 95.51 34 | 96.99 58 | 97.05 89 | 95.63 21 | 99.39 45 | 93.31 58 | 98.88 113 | 98.75 84 |
|
HPM-MVS |  | | 96.81 12 | 96.62 23 | 97.36 24 | 98.89 18 | 93.53 37 | 97.51 7 | 98.44 9 | 92.35 78 | 95.95 104 | 96.41 130 | 96.71 8 | 99.42 28 | 93.99 31 | 99.36 56 | 99.13 39 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
pmmvs6 | | | 96.80 13 | 97.36 9 | 95.15 96 | 99.12 7 | 87.82 125 | 96.68 22 | 97.86 78 | 96.10 25 | 98.14 23 | 99.28 3 | 97.94 3 | 98.21 208 | 91.38 115 | 99.69 15 | 99.42 19 |
|
OurMVSNet-221017-0 | | | 96.80 13 | 96.75 18 | 96.96 36 | 99.03 10 | 91.85 57 | 97.98 5 | 98.01 64 | 94.15 48 | 98.93 3 | 99.07 5 | 88.07 178 | 99.57 13 | 95.86 9 | 99.69 15 | 99.46 18 |
|
test1172 | | | 96.79 15 | 96.52 27 | 97.60 9 | 98.03 81 | 94.87 10 | 96.07 50 | 98.06 54 | 95.76 31 | 96.89 60 | 96.85 101 | 94.85 51 | 99.42 28 | 93.35 57 | 98.81 126 | 98.53 107 |
|
COLMAP_ROB |  | 91.06 5 | 96.75 16 | 96.62 23 | 97.13 28 | 98.38 57 | 94.31 15 | 96.79 20 | 98.32 17 | 96.69 16 | 96.86 62 | 97.56 56 | 95.48 25 | 98.77 149 | 90.11 144 | 99.44 45 | 98.31 122 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
anonymousdsp | | | 96.74 17 | 96.42 29 | 97.68 7 | 98.00 84 | 94.03 24 | 96.97 15 | 97.61 100 | 87.68 194 | 98.45 18 | 98.77 15 | 94.20 66 | 99.50 19 | 96.70 3 | 99.40 53 | 99.53 14 |
|
DTE-MVSNet | | | 96.74 17 | 97.43 5 | 94.67 111 | 99.13 5 | 84.68 178 | 96.51 28 | 97.94 76 | 98.14 3 | 98.67 12 | 98.32 29 | 95.04 44 | 99.69 2 | 93.27 61 | 99.82 8 | 99.62 10 |
|
SR-MVS | | | 96.70 19 | 96.42 29 | 97.54 11 | 98.05 78 | 94.69 11 | 96.13 47 | 98.07 51 | 95.17 36 | 96.82 64 | 96.73 112 | 95.09 43 | 99.43 27 | 92.99 73 | 98.71 136 | 98.50 109 |
|
PS-CasMVS | | | 96.69 20 | 97.43 5 | 94.49 124 | 99.13 5 | 84.09 188 | 96.61 24 | 97.97 70 | 97.91 5 | 98.64 13 | 98.13 32 | 95.24 36 | 99.65 3 | 93.39 55 | 99.84 3 | 99.72 2 |
|
PEN-MVS | | | 96.69 20 | 97.39 8 | 94.61 113 | 99.16 3 | 84.50 179 | 96.54 27 | 98.05 55 | 98.06 4 | 98.64 13 | 98.25 31 | 95.01 47 | 99.65 3 | 92.95 74 | 99.83 6 | 99.68 4 |
|
MTAPA | | | 96.65 22 | 96.38 33 | 97.47 15 | 98.95 15 | 94.05 21 | 95.88 58 | 97.62 97 | 94.46 44 | 96.29 86 | 96.94 94 | 93.56 71 | 99.37 52 | 94.29 24 | 99.42 47 | 98.99 53 |
|
test_djsdf | | | 96.62 23 | 96.49 28 | 97.01 33 | 98.55 39 | 91.77 59 | 97.15 11 | 97.37 115 | 88.98 165 | 98.26 21 | 98.86 10 | 93.35 78 | 99.60 8 | 96.41 4 | 99.45 43 | 99.66 6 |
|
ACMMP |  | | 96.61 24 | 96.34 34 | 97.43 19 | 98.61 32 | 93.88 28 | 96.95 16 | 98.18 32 | 92.26 81 | 96.33 82 | 96.84 104 | 95.10 42 | 99.40 40 | 93.47 48 | 99.33 60 | 99.02 50 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
Anonymous20231211 | | | 96.60 25 | 97.13 12 | 95.00 100 | 97.46 117 | 86.35 156 | 97.11 14 | 98.24 27 | 97.58 7 | 98.72 8 | 98.97 7 | 93.15 84 | 99.15 83 | 93.18 64 | 99.74 13 | 99.50 16 |
|
WR-MVS_H | | | 96.60 25 | 97.05 14 | 95.24 92 | 99.02 11 | 86.44 152 | 96.78 21 | 98.08 48 | 97.42 8 | 98.48 16 | 97.86 45 | 91.76 116 | 99.63 6 | 94.23 26 | 99.84 3 | 99.66 6 |
|
jajsoiax | | | 96.59 27 | 96.42 29 | 97.12 29 | 98.76 26 | 92.49 49 | 96.44 33 | 97.42 113 | 86.96 206 | 98.71 10 | 98.72 17 | 95.36 31 | 99.56 16 | 95.92 8 | 99.45 43 | 99.32 26 |
|
ACMH | | 88.36 12 | 96.59 27 | 97.43 5 | 94.07 137 | 98.56 36 | 85.33 172 | 96.33 39 | 98.30 20 | 94.66 39 | 98.72 8 | 98.30 30 | 97.51 5 | 98.00 225 | 94.87 14 | 99.59 27 | 98.86 72 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
XVS | | | 96.49 29 | 96.18 41 | 97.44 17 | 98.56 36 | 93.99 25 | 96.50 29 | 97.95 73 | 94.58 40 | 94.38 167 | 96.49 124 | 94.56 58 | 99.39 45 | 93.57 40 | 99.05 94 | 98.93 63 |
|
ACMH+ | | 88.43 11 | 96.48 30 | 96.82 16 | 95.47 81 | 98.54 41 | 89.06 96 | 95.65 65 | 98.61 7 | 96.10 25 | 98.16 22 | 97.52 59 | 96.90 7 | 98.62 170 | 90.30 136 | 99.60 25 | 98.72 90 |
|
zzz-MVS | | | 96.47 31 | 96.14 44 | 97.47 15 | 98.95 15 | 94.05 21 | 93.69 135 | 97.62 97 | 94.46 44 | 96.29 86 | 96.94 94 | 93.56 71 | 99.37 52 | 94.29 24 | 99.42 47 | 98.99 53 |
|
APDe-MVS | | | 96.46 32 | 96.64 22 | 95.93 60 | 97.68 103 | 89.38 93 | 96.90 17 | 98.41 13 | 92.52 73 | 97.43 41 | 97.92 41 | 95.11 41 | 99.50 19 | 94.45 19 | 99.30 64 | 98.92 67 |
|
ACMMPR | | | 96.46 32 | 96.14 44 | 97.41 21 | 98.60 33 | 93.82 32 | 96.30 43 | 97.96 71 | 92.35 78 | 95.57 120 | 96.61 120 | 94.93 50 | 99.41 35 | 93.78 35 | 99.15 84 | 99.00 51 |
|
mPP-MVS | | | 96.46 32 | 96.05 50 | 97.69 5 | 98.62 30 | 94.65 12 | 96.45 31 | 97.74 91 | 92.59 72 | 95.47 123 | 96.68 115 | 94.50 60 | 99.42 28 | 93.10 68 | 99.26 72 | 98.99 53 |
|
CP-MVS | | | 96.44 35 | 96.08 48 | 97.54 11 | 98.29 62 | 94.62 13 | 96.80 19 | 98.08 48 | 92.67 71 | 95.08 144 | 96.39 135 | 94.77 53 | 99.42 28 | 93.17 65 | 99.44 45 | 98.58 105 |
|
ZNCC-MVS | | | 96.42 36 | 96.20 40 | 97.07 30 | 98.80 25 | 92.79 46 | 96.08 49 | 98.16 38 | 91.74 105 | 95.34 129 | 96.36 138 | 95.68 19 | 99.44 23 | 94.41 21 | 99.28 70 | 98.97 59 |
|
region2R | | | 96.41 37 | 96.09 47 | 97.38 23 | 98.62 30 | 93.81 34 | 96.32 40 | 97.96 71 | 92.26 81 | 95.28 133 | 96.57 122 | 95.02 46 | 99.41 35 | 93.63 39 | 99.11 89 | 98.94 62 |
|
SteuartSystems-ACMMP | | | 96.40 38 | 96.30 35 | 96.71 42 | 98.63 29 | 91.96 55 | 95.70 62 | 98.01 64 | 93.34 64 | 96.64 71 | 96.57 122 | 94.99 48 | 99.36 55 | 93.48 47 | 99.34 58 | 98.82 77 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 96.39 39 | 96.17 43 | 97.04 31 | 98.51 45 | 93.37 38 | 96.30 43 | 97.98 67 | 92.35 78 | 95.63 117 | 96.47 125 | 95.37 28 | 99.27 72 | 93.78 35 | 99.14 85 | 98.48 111 |
|
LPG-MVS_test | | | 96.38 40 | 96.23 38 | 96.84 40 | 98.36 60 | 92.13 52 | 95.33 75 | 98.25 24 | 91.78 101 | 97.07 51 | 97.22 80 | 96.38 13 | 99.28 70 | 92.07 93 | 99.59 27 | 99.11 41 |
|
nrg030 | | | 96.32 41 | 96.55 26 | 95.62 75 | 97.83 92 | 88.55 109 | 95.77 61 | 98.29 23 | 92.68 69 | 98.03 25 | 97.91 42 | 95.13 40 | 98.95 117 | 93.85 33 | 99.49 38 | 99.36 24 |
|
PGM-MVS | | | 96.32 41 | 95.94 54 | 97.43 19 | 98.59 35 | 93.84 31 | 95.33 75 | 98.30 20 | 91.40 114 | 95.76 111 | 96.87 100 | 95.26 35 | 99.45 22 | 92.77 76 | 99.21 78 | 99.00 51 |
|
ACMM | | 88.83 9 | 96.30 43 | 96.07 49 | 96.97 35 | 98.39 56 | 92.95 44 | 94.74 99 | 98.03 60 | 90.82 128 | 97.15 49 | 96.85 101 | 96.25 15 | 99.00 109 | 93.10 68 | 99.33 60 | 98.95 61 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
GST-MVS | | | 96.24 44 | 95.99 53 | 97.00 34 | 98.65 28 | 92.71 47 | 95.69 64 | 98.01 64 | 92.08 86 | 95.74 113 | 96.28 143 | 95.22 37 | 99.42 28 | 93.17 65 | 99.06 91 | 98.88 71 |
|
ACMMP_NAP | | | 96.21 45 | 96.12 46 | 96.49 49 | 98.90 17 | 91.42 62 | 94.57 107 | 98.03 60 | 90.42 139 | 96.37 79 | 97.35 72 | 95.68 19 | 99.25 74 | 94.44 20 | 99.34 58 | 98.80 79 |
|
CP-MVSNet | | | 96.19 46 | 96.80 17 | 94.38 130 | 98.99 13 | 83.82 191 | 96.31 41 | 97.53 107 | 97.60 6 | 98.34 19 | 97.52 59 | 91.98 112 | 99.63 6 | 93.08 70 | 99.81 9 | 99.70 3 |
|
MP-MVS |  | | 96.14 47 | 95.68 66 | 97.51 13 | 98.81 23 | 94.06 19 | 96.10 48 | 97.78 90 | 92.73 68 | 93.48 192 | 96.72 113 | 94.23 65 | 99.42 28 | 91.99 95 | 99.29 65 | 99.05 48 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
LS3D | | | 96.11 48 | 95.83 61 | 96.95 37 | 94.75 249 | 94.20 17 | 97.34 9 | 97.98 67 | 97.31 10 | 95.32 130 | 96.77 106 | 93.08 86 | 99.20 79 | 91.79 102 | 98.16 192 | 97.44 193 |
|
MP-MVS-pluss | | | 96.08 49 | 95.92 56 | 96.57 45 | 99.06 9 | 91.21 64 | 93.25 144 | 98.32 17 | 87.89 188 | 96.86 62 | 97.38 67 | 95.55 24 | 99.39 45 | 95.47 10 | 99.47 39 | 99.11 41 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
TranMVSNet+NR-MVSNet | | | 96.07 50 | 96.26 37 | 95.50 80 | 98.26 65 | 87.69 126 | 93.75 133 | 97.86 78 | 95.96 29 | 97.48 39 | 97.14 84 | 95.33 32 | 99.44 23 | 90.79 123 | 99.76 11 | 99.38 22 |
|
PS-MVSNAJss | | | 96.01 51 | 96.04 51 | 95.89 63 | 98.82 22 | 88.51 111 | 95.57 68 | 97.88 77 | 88.72 171 | 98.81 6 | 98.86 10 | 90.77 140 | 99.60 8 | 95.43 11 | 99.53 35 | 99.57 13 |
|
SED-MVS | | | 96.00 52 | 96.41 32 | 94.76 108 | 98.51 45 | 86.97 138 | 95.21 79 | 98.10 44 | 91.95 88 | 97.63 31 | 97.25 77 | 96.48 11 | 99.35 56 | 93.29 59 | 99.29 65 | 97.95 153 |
|
DPE-MVS |  | | 95.89 53 | 95.88 57 | 95.92 62 | 97.93 89 | 89.83 84 | 93.46 140 | 98.30 20 | 92.37 76 | 97.75 28 | 96.95 93 | 95.14 39 | 99.51 18 | 91.74 104 | 99.28 70 | 98.41 117 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
#test# | | | 95.89 53 | 95.51 69 | 97.04 31 | 98.51 45 | 93.37 38 | 95.14 84 | 97.98 67 | 89.34 158 | 95.63 117 | 96.47 125 | 95.37 28 | 99.27 72 | 91.99 95 | 99.14 85 | 98.48 111 |
|
SF-MVS | | | 95.88 55 | 95.88 57 | 95.87 64 | 98.12 72 | 89.65 87 | 95.58 67 | 98.56 8 | 91.84 97 | 96.36 80 | 96.68 115 | 94.37 63 | 99.32 65 | 92.41 87 | 99.05 94 | 98.64 96 |
|
3Dnovator+ | | 92.74 2 | 95.86 56 | 95.77 64 | 96.13 52 | 96.81 147 | 90.79 72 | 96.30 43 | 97.82 84 | 96.13 24 | 94.74 158 | 97.23 79 | 91.33 126 | 99.16 82 | 93.25 62 | 98.30 176 | 98.46 113 |
|
DVP-MVS | | | 95.82 57 | 96.18 41 | 94.72 110 | 98.51 45 | 86.69 145 | 95.20 81 | 97.00 146 | 91.85 94 | 97.40 44 | 97.35 72 | 95.58 22 | 99.34 59 | 93.44 51 | 99.31 62 | 98.13 136 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
SMA-MVS |  | | 95.77 58 | 95.54 68 | 96.47 50 | 98.27 64 | 91.19 65 | 95.09 85 | 97.79 89 | 86.48 210 | 97.42 43 | 97.51 61 | 94.47 62 | 99.29 68 | 93.55 42 | 99.29 65 | 98.93 63 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
test_0402 | | | 95.73 59 | 96.22 39 | 94.26 132 | 98.19 69 | 85.77 167 | 93.24 145 | 97.24 132 | 96.88 15 | 97.69 29 | 97.77 48 | 94.12 67 | 99.13 87 | 91.54 112 | 99.29 65 | 97.88 161 |
|
ACMP | | 88.15 13 | 95.71 60 | 95.43 73 | 96.54 46 | 98.17 70 | 91.73 60 | 94.24 117 | 98.08 48 | 89.46 155 | 96.61 73 | 96.47 125 | 95.85 17 | 99.12 89 | 90.45 128 | 99.56 33 | 98.77 83 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
XVG-ACMP-BASELINE | | | 95.68 61 | 95.34 75 | 96.69 43 | 98.40 55 | 93.04 41 | 94.54 111 | 98.05 55 | 90.45 138 | 96.31 84 | 96.76 108 | 92.91 90 | 98.72 155 | 91.19 116 | 99.42 47 | 98.32 120 |
|
DP-MVS | | | 95.62 62 | 95.84 60 | 94.97 101 | 97.16 130 | 88.62 106 | 94.54 111 | 97.64 96 | 96.94 14 | 96.58 74 | 97.32 75 | 93.07 87 | 98.72 155 | 90.45 128 | 98.84 118 | 97.57 185 |
|
OPM-MVS | | | 95.61 63 | 95.45 71 | 96.08 53 | 98.49 53 | 91.00 67 | 92.65 160 | 97.33 124 | 90.05 144 | 96.77 67 | 96.85 101 | 95.04 44 | 98.56 179 | 92.77 76 | 99.06 91 | 98.70 91 |
|
RPSCF | | | 95.58 64 | 94.89 90 | 97.62 8 | 97.58 109 | 96.30 4 | 95.97 54 | 97.53 107 | 92.42 74 | 93.41 193 | 97.78 46 | 91.21 132 | 97.77 246 | 91.06 117 | 97.06 241 | 98.80 79 |
|
MIMVSNet1 | | | 95.52 65 | 95.45 71 | 95.72 72 | 99.14 4 | 89.02 97 | 96.23 46 | 96.87 159 | 93.73 56 | 97.87 26 | 98.49 24 | 90.73 144 | 99.05 99 | 86.43 215 | 99.60 25 | 99.10 44 |
|
Anonymous20240529 | | | 95.50 66 | 95.83 61 | 94.50 122 | 97.33 123 | 85.93 164 | 95.19 83 | 96.77 165 | 96.64 18 | 97.61 34 | 98.05 34 | 93.23 81 | 98.79 141 | 88.60 180 | 99.04 99 | 98.78 81 |
|
Vis-MVSNet |  | | 95.50 66 | 95.48 70 | 95.56 79 | 98.11 73 | 89.40 92 | 95.35 73 | 98.22 29 | 92.36 77 | 94.11 171 | 98.07 33 | 92.02 109 | 99.44 23 | 93.38 56 | 97.67 224 | 97.85 165 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
pm-mvs1 | | | 95.43 68 | 95.94 54 | 93.93 143 | 98.38 57 | 85.08 175 | 95.46 72 | 97.12 140 | 91.84 97 | 97.28 46 | 98.46 25 | 95.30 34 | 97.71 251 | 90.17 142 | 99.42 47 | 98.99 53 |
|
DeepC-MVS | | 91.39 4 | 95.43 68 | 95.33 76 | 95.71 73 | 97.67 104 | 90.17 78 | 93.86 131 | 98.02 62 | 87.35 199 | 96.22 92 | 97.99 38 | 94.48 61 | 99.05 99 | 92.73 79 | 99.68 18 | 97.93 155 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
XVG-OURS-SEG-HR | | | 95.38 70 | 95.00 87 | 96.51 47 | 98.10 74 | 94.07 18 | 92.46 168 | 98.13 40 | 90.69 131 | 93.75 185 | 96.25 146 | 98.03 2 | 97.02 279 | 92.08 92 | 95.55 277 | 98.45 114 |
|
UniMVSNet_NR-MVSNet | | | 95.35 71 | 95.21 81 | 95.76 70 | 97.69 102 | 88.59 107 | 92.26 181 | 97.84 82 | 94.91 37 | 96.80 65 | 95.78 169 | 90.42 149 | 99.41 35 | 91.60 109 | 99.58 31 | 99.29 28 |
|
MSP-MVS | | | 95.34 72 | 94.63 103 | 97.48 14 | 98.67 27 | 94.05 21 | 96.41 35 | 98.18 32 | 91.26 118 | 95.12 140 | 95.15 196 | 86.60 207 | 99.50 19 | 93.43 53 | 96.81 251 | 98.89 69 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
FC-MVSNet-test | | | 95.32 73 | 95.88 57 | 93.62 153 | 98.49 53 | 81.77 213 | 95.90 57 | 98.32 17 | 93.93 53 | 97.53 37 | 97.56 56 | 88.48 171 | 99.40 40 | 92.91 75 | 99.83 6 | 99.68 4 |
|
UniMVSNet (Re) | | | 95.32 73 | 95.15 83 | 95.80 67 | 97.79 93 | 88.91 99 | 92.91 152 | 98.07 51 | 93.46 62 | 96.31 84 | 95.97 158 | 90.14 154 | 99.34 59 | 92.11 90 | 99.64 23 | 99.16 36 |
|
Gipuma |  | | 95.31 75 | 95.80 63 | 93.81 150 | 97.99 87 | 90.91 69 | 96.42 34 | 97.95 73 | 96.69 16 | 91.78 243 | 98.85 12 | 91.77 115 | 95.49 317 | 91.72 105 | 99.08 90 | 95.02 281 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
DU-MVS | | | 95.28 76 | 95.12 85 | 95.75 71 | 97.75 95 | 88.59 107 | 92.58 161 | 97.81 85 | 93.99 50 | 96.80 65 | 95.90 159 | 90.10 158 | 99.41 35 | 91.60 109 | 99.58 31 | 99.26 29 |
|
NR-MVSNet | | | 95.28 76 | 95.28 79 | 95.26 91 | 97.75 95 | 87.21 133 | 95.08 86 | 97.37 115 | 93.92 54 | 97.65 30 | 95.90 159 | 90.10 158 | 99.33 64 | 90.11 144 | 99.66 21 | 99.26 29 |
|
TransMVSNet (Re) | | | 95.27 78 | 96.04 51 | 92.97 173 | 98.37 59 | 81.92 212 | 95.07 87 | 96.76 166 | 93.97 52 | 97.77 27 | 98.57 19 | 95.72 18 | 97.90 231 | 88.89 173 | 99.23 76 | 99.08 45 |
|
SD-MVS | | | 95.19 79 | 95.73 65 | 93.55 156 | 96.62 154 | 88.88 102 | 94.67 101 | 98.05 55 | 91.26 118 | 97.25 48 | 96.40 131 | 95.42 26 | 94.36 334 | 92.72 80 | 99.19 80 | 97.40 197 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
VPA-MVSNet | | | 95.14 80 | 95.67 67 | 93.58 155 | 97.76 94 | 83.15 200 | 94.58 106 | 97.58 102 | 93.39 63 | 97.05 54 | 98.04 35 | 93.25 80 | 98.51 184 | 89.75 154 | 99.59 27 | 99.08 45 |
|
xxxxxxxxxxxxxcwj | | | 95.03 81 | 94.93 88 | 95.33 86 | 97.46 117 | 88.05 119 | 92.04 189 | 98.42 12 | 87.63 195 | 96.36 80 | 96.68 115 | 94.37 63 | 99.32 65 | 92.41 87 | 99.05 94 | 98.64 96 |
|
HPM-MVS++ |  | | 95.02 82 | 94.39 110 | 96.91 38 | 97.88 90 | 93.58 36 | 94.09 123 | 96.99 148 | 91.05 123 | 92.40 227 | 95.22 195 | 91.03 138 | 99.25 74 | 92.11 90 | 98.69 139 | 97.90 159 |
|
APD-MVS |  | | 95.00 83 | 94.69 98 | 95.93 60 | 97.38 120 | 90.88 70 | 94.59 104 | 97.81 85 | 89.22 163 | 95.46 125 | 96.17 151 | 93.42 76 | 99.34 59 | 89.30 160 | 98.87 116 | 97.56 187 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PMVS |  | 87.21 14 | 94.97 84 | 95.33 76 | 93.91 145 | 98.97 14 | 97.16 2 | 95.54 69 | 95.85 205 | 96.47 20 | 93.40 195 | 97.46 63 | 95.31 33 | 95.47 318 | 86.18 219 | 98.78 130 | 89.11 345 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
TSAR-MVS + MP. | | | 94.96 85 | 94.75 95 | 95.57 78 | 98.86 20 | 88.69 103 | 96.37 36 | 96.81 161 | 85.23 230 | 94.75 157 | 97.12 85 | 91.85 114 | 99.40 40 | 93.45 49 | 98.33 171 | 98.62 100 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
SixPastTwentyTwo | | | 94.91 86 | 95.21 81 | 93.98 139 | 98.52 44 | 83.19 199 | 95.93 55 | 94.84 235 | 94.86 38 | 98.49 15 | 98.74 16 | 81.45 249 | 99.60 8 | 94.69 16 | 99.39 54 | 99.15 37 |
|
FIs | | | 94.90 87 | 95.35 74 | 93.55 156 | 98.28 63 | 81.76 214 | 95.33 75 | 98.14 39 | 93.05 67 | 97.07 51 | 97.18 82 | 87.65 185 | 99.29 68 | 91.72 105 | 99.69 15 | 99.61 11 |
|
Regformer-4 | | | 94.90 87 | 94.67 101 | 95.59 76 | 92.78 294 | 89.02 97 | 92.39 173 | 95.91 202 | 94.50 42 | 96.41 77 | 95.56 180 | 92.10 108 | 99.01 107 | 94.23 26 | 98.14 194 | 98.74 87 |
|
AllTest | | | 94.88 89 | 94.51 108 | 96.00 55 | 98.02 82 | 92.17 50 | 95.26 78 | 98.43 10 | 90.48 136 | 95.04 146 | 96.74 110 | 92.54 100 | 97.86 237 | 85.11 230 | 98.98 102 | 97.98 149 |
|
ETH3D-3000-0.1 | | | 94.86 90 | 94.55 105 | 95.81 65 | 97.61 107 | 89.72 85 | 94.05 124 | 98.37 14 | 88.09 184 | 95.06 145 | 95.85 161 | 92.58 98 | 99.10 93 | 90.33 135 | 98.99 101 | 98.62 100 |
|
Regformer-2 | | | 94.86 90 | 94.55 105 | 95.77 69 | 92.83 292 | 89.98 80 | 91.87 201 | 96.40 183 | 94.38 46 | 96.19 96 | 95.04 203 | 92.47 103 | 99.04 102 | 93.49 44 | 98.31 174 | 98.28 124 |
|
FMVSNet1 | | | 94.84 92 | 95.13 84 | 93.97 140 | 97.60 108 | 84.29 181 | 95.99 51 | 96.56 175 | 92.38 75 | 97.03 55 | 98.53 21 | 90.12 155 | 98.98 110 | 88.78 175 | 99.16 83 | 98.65 92 |
|
ANet_high | | | 94.83 93 | 96.28 36 | 90.47 255 | 96.65 151 | 73.16 321 | 94.33 115 | 98.74 6 | 96.39 22 | 98.09 24 | 98.93 8 | 93.37 77 | 98.70 161 | 90.38 131 | 99.68 18 | 99.53 14 |
|
testtj | | | 94.81 94 | 94.42 109 | 96.01 54 | 97.23 125 | 90.51 76 | 94.77 98 | 97.85 81 | 91.29 117 | 94.92 151 | 95.66 173 | 91.71 117 | 99.40 40 | 88.07 188 | 98.25 182 | 98.11 138 |
|
3Dnovator | | 92.54 3 | 94.80 95 | 94.90 89 | 94.47 125 | 95.47 229 | 87.06 135 | 96.63 23 | 97.28 130 | 91.82 100 | 94.34 169 | 97.41 65 | 90.60 147 | 98.65 169 | 92.47 85 | 98.11 198 | 97.70 177 |
|
CPTT-MVS | | | 94.74 96 | 94.12 121 | 96.60 44 | 98.15 71 | 93.01 42 | 95.84 59 | 97.66 95 | 89.21 164 | 93.28 199 | 95.46 185 | 88.89 168 | 98.98 110 | 89.80 151 | 98.82 124 | 97.80 170 |
|
XVG-OURS | | | 94.72 97 | 94.12 121 | 96.50 48 | 98.00 84 | 94.23 16 | 91.48 214 | 98.17 35 | 90.72 130 | 95.30 131 | 96.47 125 | 87.94 182 | 96.98 280 | 91.41 114 | 97.61 227 | 98.30 123 |
|
CSCG | | | 94.69 98 | 94.75 95 | 94.52 121 | 97.55 111 | 87.87 123 | 95.01 90 | 97.57 103 | 92.68 69 | 96.20 94 | 93.44 257 | 91.92 113 | 98.78 145 | 89.11 168 | 99.24 75 | 96.92 215 |
|
v10 | | | 94.68 99 | 95.27 80 | 92.90 179 | 96.57 157 | 80.15 232 | 94.65 103 | 97.57 103 | 90.68 132 | 97.43 41 | 98.00 37 | 88.18 175 | 99.15 83 | 94.84 15 | 99.55 34 | 99.41 20 |
|
v8 | | | 94.65 100 | 95.29 78 | 92.74 184 | 96.65 151 | 79.77 246 | 94.59 104 | 97.17 136 | 91.86 93 | 97.47 40 | 97.93 40 | 88.16 176 | 99.08 94 | 94.32 22 | 99.47 39 | 99.38 22 |
|
canonicalmvs | | | 94.59 101 | 94.69 98 | 94.30 131 | 95.60 226 | 87.03 137 | 95.59 66 | 98.24 27 | 91.56 111 | 95.21 139 | 92.04 291 | 94.95 49 | 98.66 167 | 91.45 113 | 97.57 228 | 97.20 207 |
|
CNVR-MVS | | | 94.58 102 | 94.29 114 | 95.46 82 | 96.94 139 | 89.35 94 | 91.81 207 | 96.80 162 | 89.66 151 | 93.90 182 | 95.44 187 | 92.80 94 | 98.72 155 | 92.74 78 | 98.52 151 | 98.32 120 |
|
GeoE | | | 94.55 103 | 94.68 100 | 94.15 134 | 97.23 125 | 85.11 174 | 94.14 121 | 97.34 123 | 88.71 172 | 95.26 134 | 95.50 183 | 94.65 56 | 99.12 89 | 90.94 121 | 98.40 159 | 98.23 127 |
|
Regformer-1 | | | 94.55 103 | 94.33 113 | 95.19 94 | 92.83 292 | 88.54 110 | 91.87 201 | 95.84 206 | 93.99 50 | 95.95 104 | 95.04 203 | 92.00 110 | 98.79 141 | 93.14 67 | 98.31 174 | 98.23 127 |
|
EG-PatchMatch MVS | | | 94.54 105 | 94.67 101 | 94.14 135 | 97.87 91 | 86.50 148 | 92.00 192 | 96.74 167 | 88.16 183 | 96.93 59 | 97.61 54 | 93.04 88 | 97.90 231 | 91.60 109 | 98.12 197 | 98.03 143 |
|
IS-MVSNet | | | 94.49 106 | 94.35 112 | 94.92 102 | 98.25 66 | 86.46 151 | 97.13 13 | 94.31 249 | 96.24 23 | 96.28 89 | 96.36 138 | 82.88 233 | 99.35 56 | 88.19 184 | 99.52 37 | 98.96 60 |
|
Baseline_NR-MVSNet | | | 94.47 107 | 95.09 86 | 92.60 191 | 98.50 52 | 80.82 228 | 92.08 187 | 96.68 169 | 93.82 55 | 96.29 86 | 98.56 20 | 90.10 158 | 97.75 249 | 90.10 146 | 99.66 21 | 99.24 31 |
|
test_part1 | | | 94.39 108 | 94.55 105 | 93.92 144 | 96.14 189 | 82.86 204 | 95.54 69 | 98.09 47 | 95.36 35 | 98.27 20 | 98.36 28 | 75.91 290 | 99.44 23 | 93.41 54 | 99.84 3 | 99.47 17 |
|
VDD-MVS | | | 94.37 109 | 94.37 111 | 94.40 129 | 97.49 114 | 86.07 162 | 93.97 128 | 93.28 266 | 94.49 43 | 96.24 90 | 97.78 46 | 87.99 181 | 98.79 141 | 88.92 171 | 99.14 85 | 98.34 119 |
|
EI-MVSNet-Vis-set | | | 94.36 110 | 94.28 115 | 94.61 113 | 92.55 296 | 85.98 163 | 92.44 169 | 94.69 242 | 93.70 57 | 96.12 99 | 95.81 165 | 91.24 130 | 98.86 129 | 93.76 38 | 98.22 187 | 98.98 58 |
|
EI-MVSNet-UG-set | | | 94.35 111 | 94.27 117 | 94.59 118 | 92.46 297 | 85.87 165 | 92.42 171 | 94.69 242 | 93.67 61 | 96.13 98 | 95.84 164 | 91.20 133 | 98.86 129 | 93.78 35 | 98.23 185 | 99.03 49 |
|
PHI-MVS | | | 94.34 112 | 93.80 126 | 95.95 57 | 95.65 221 | 91.67 61 | 94.82 96 | 97.86 78 | 87.86 189 | 93.04 210 | 94.16 235 | 91.58 120 | 98.78 145 | 90.27 138 | 98.96 108 | 97.41 194 |
|
casdiffmvs | | | 94.32 113 | 94.80 93 | 92.85 181 | 96.05 196 | 81.44 219 | 92.35 176 | 98.05 55 | 91.53 112 | 95.75 112 | 96.80 105 | 93.35 78 | 98.49 185 | 91.01 120 | 98.32 173 | 98.64 96 |
|
Regformer-3 | | | 94.28 114 | 94.23 119 | 94.46 126 | 92.78 294 | 86.28 158 | 92.39 173 | 94.70 241 | 93.69 60 | 95.97 102 | 95.56 180 | 91.34 125 | 98.48 189 | 93.45 49 | 98.14 194 | 98.62 100 |
|
tfpnnormal | | | 94.27 115 | 94.87 91 | 92.48 196 | 97.71 99 | 80.88 227 | 94.55 110 | 95.41 222 | 93.70 57 | 96.67 70 | 97.72 49 | 91.40 124 | 98.18 212 | 87.45 198 | 99.18 82 | 98.36 118 |
|
HQP_MVS | | | 94.26 116 | 93.93 123 | 95.23 93 | 97.71 99 | 88.12 117 | 94.56 108 | 97.81 85 | 91.74 105 | 93.31 196 | 95.59 175 | 86.93 199 | 98.95 117 | 89.26 164 | 98.51 153 | 98.60 103 |
|
baseline | | | 94.26 116 | 94.80 93 | 92.64 187 | 96.08 194 | 80.99 225 | 93.69 135 | 98.04 59 | 90.80 129 | 94.89 152 | 96.32 140 | 93.19 82 | 98.48 189 | 91.68 107 | 98.51 153 | 98.43 115 |
|
OMC-MVS | | | 94.22 118 | 93.69 131 | 95.81 65 | 97.25 124 | 91.27 63 | 92.27 180 | 97.40 114 | 87.10 205 | 94.56 162 | 95.42 188 | 93.74 69 | 98.11 217 | 86.62 210 | 98.85 117 | 98.06 139 |
|
LCM-MVSNet-Re | | | 94.20 119 | 94.58 104 | 93.04 170 | 95.91 207 | 83.13 201 | 93.79 132 | 99.19 2 | 92.00 87 | 98.84 5 | 98.04 35 | 93.64 70 | 99.02 105 | 81.28 267 | 98.54 149 | 96.96 214 |
|
DeepPCF-MVS | | 90.46 6 | 94.20 119 | 93.56 137 | 96.14 51 | 95.96 203 | 92.96 43 | 89.48 268 | 97.46 111 | 85.14 233 | 96.23 91 | 95.42 188 | 93.19 82 | 98.08 218 | 90.37 132 | 98.76 132 | 97.38 200 |
|
DIV-MVS_2432*1600 | | | 94.10 121 | 94.73 97 | 92.19 202 | 97.66 105 | 79.49 251 | 94.86 95 | 97.12 140 | 89.59 154 | 96.87 61 | 97.65 52 | 90.40 152 | 98.34 198 | 89.08 169 | 99.35 57 | 98.75 84 |
|
NCCC | | | 94.08 122 | 93.54 138 | 95.70 74 | 96.49 162 | 89.90 83 | 92.39 173 | 96.91 155 | 90.64 133 | 92.33 233 | 94.60 221 | 90.58 148 | 98.96 115 | 90.21 141 | 97.70 222 | 98.23 127 |
|
VDDNet | | | 94.03 123 | 94.27 117 | 93.31 165 | 98.87 19 | 82.36 208 | 95.51 71 | 91.78 296 | 97.19 11 | 96.32 83 | 98.60 18 | 84.24 224 | 98.75 150 | 87.09 203 | 98.83 123 | 98.81 78 |
|
ETH3D cwj APD-0.16 | | | 93.99 124 | 93.38 142 | 95.80 67 | 96.82 145 | 89.92 81 | 92.72 156 | 98.02 62 | 84.73 243 | 93.65 189 | 95.54 182 | 91.68 118 | 99.22 77 | 88.78 175 | 98.49 156 | 98.26 126 |
|
CS-MVS | | | 93.91 125 | 94.22 120 | 92.95 175 | 95.65 221 | 83.25 197 | 94.91 94 | 98.87 4 | 91.32 116 | 91.32 248 | 93.07 265 | 92.24 104 | 99.37 52 | 91.90 100 | 98.73 135 | 96.21 244 |
|
EPP-MVSNet | | | 93.91 125 | 93.68 132 | 94.59 118 | 98.08 75 | 85.55 170 | 97.44 8 | 94.03 254 | 94.22 47 | 94.94 149 | 96.19 148 | 82.07 244 | 99.57 13 | 87.28 202 | 98.89 111 | 98.65 92 |
|
Effi-MVS+-dtu | | | 93.90 127 | 92.60 161 | 97.77 4 | 94.74 251 | 96.67 3 | 94.00 126 | 95.41 222 | 89.94 145 | 91.93 241 | 92.13 289 | 90.12 155 | 98.97 114 | 87.68 195 | 97.48 230 | 97.67 180 |
|
IterMVS-LS | | | 93.78 128 | 94.28 115 | 92.27 199 | 96.27 178 | 79.21 258 | 91.87 201 | 96.78 163 | 91.77 103 | 96.57 75 | 97.07 87 | 87.15 194 | 98.74 153 | 91.99 95 | 99.03 100 | 98.86 72 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DeepC-MVS_fast | | 89.96 7 | 93.73 129 | 93.44 140 | 94.60 117 | 96.14 189 | 87.90 122 | 93.36 143 | 97.14 137 | 85.53 227 | 93.90 182 | 95.45 186 | 91.30 128 | 98.59 175 | 89.51 157 | 98.62 142 | 97.31 203 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MVS_111021_LR | | | 93.66 130 | 93.28 145 | 94.80 106 | 96.25 181 | 90.95 68 | 90.21 246 | 95.43 221 | 87.91 186 | 93.74 187 | 94.40 226 | 92.88 92 | 96.38 300 | 90.39 130 | 98.28 177 | 97.07 208 |
|
MVS_111021_HR | | | 93.63 131 | 93.42 141 | 94.26 132 | 96.65 151 | 86.96 140 | 89.30 274 | 96.23 191 | 88.36 180 | 93.57 191 | 94.60 221 | 93.45 73 | 97.77 246 | 90.23 140 | 98.38 164 | 98.03 143 |
|
v1144 | | | 93.50 132 | 93.81 125 | 92.57 192 | 96.28 177 | 79.61 249 | 91.86 205 | 96.96 149 | 86.95 207 | 95.91 107 | 96.32 140 | 87.65 185 | 98.96 115 | 93.51 43 | 98.88 113 | 99.13 39 |
|
v1192 | | | 93.49 133 | 93.78 127 | 92.62 190 | 96.16 187 | 79.62 248 | 91.83 206 | 97.22 134 | 86.07 218 | 96.10 100 | 96.38 136 | 87.22 192 | 99.02 105 | 94.14 29 | 98.88 113 | 99.22 32 |
|
WR-MVS | | | 93.49 133 | 93.72 129 | 92.80 183 | 97.57 110 | 80.03 238 | 90.14 250 | 95.68 209 | 93.70 57 | 96.62 72 | 95.39 191 | 87.21 193 | 99.04 102 | 87.50 197 | 99.64 23 | 99.33 25 |
|
V42 | | | 93.43 135 | 93.58 135 | 92.97 173 | 95.34 235 | 81.22 222 | 92.67 159 | 96.49 180 | 87.25 201 | 96.20 94 | 96.37 137 | 87.32 191 | 98.85 131 | 92.39 89 | 98.21 188 | 98.85 75 |
|
K. test v3 | | | 93.37 136 | 93.27 146 | 93.66 152 | 98.05 78 | 82.62 206 | 94.35 114 | 86.62 327 | 96.05 27 | 97.51 38 | 98.85 12 | 76.59 288 | 99.65 3 | 93.21 63 | 98.20 190 | 98.73 89 |
|
PM-MVS | | | 93.33 137 | 92.67 159 | 95.33 86 | 96.58 156 | 94.06 19 | 92.26 181 | 92.18 287 | 85.92 221 | 96.22 92 | 96.61 120 | 85.64 218 | 95.99 310 | 90.35 133 | 98.23 185 | 95.93 254 |
|
v1240 | | | 93.29 138 | 93.71 130 | 92.06 209 | 96.01 201 | 77.89 275 | 91.81 207 | 97.37 115 | 85.12 235 | 96.69 69 | 96.40 131 | 86.67 205 | 99.07 98 | 94.51 18 | 98.76 132 | 99.22 32 |
|
test_prior3 | | | 93.29 138 | 92.85 152 | 94.61 113 | 95.95 204 | 87.23 131 | 90.21 246 | 97.36 120 | 89.33 159 | 90.77 257 | 94.81 213 | 90.41 150 | 98.68 165 | 88.21 182 | 98.55 146 | 97.93 155 |
|
v2v482 | | | 93.29 138 | 93.63 133 | 92.29 198 | 96.35 171 | 78.82 263 | 91.77 209 | 96.28 187 | 88.45 177 | 95.70 116 | 96.26 145 | 86.02 213 | 98.90 121 | 93.02 71 | 98.81 126 | 99.14 38 |
|
alignmvs | | | 93.26 141 | 92.85 152 | 94.50 122 | 95.70 217 | 87.45 127 | 93.45 141 | 95.76 207 | 91.58 110 | 95.25 136 | 92.42 285 | 81.96 246 | 98.72 155 | 91.61 108 | 97.87 214 | 97.33 202 |
|
v1921920 | | | 93.26 141 | 93.61 134 | 92.19 202 | 96.04 200 | 78.31 269 | 91.88 200 | 97.24 132 | 85.17 232 | 96.19 96 | 96.19 148 | 86.76 204 | 99.05 99 | 94.18 28 | 98.84 118 | 99.22 32 |
|
MSLP-MVS++ | | | 93.25 143 | 93.88 124 | 91.37 226 | 96.34 172 | 82.81 205 | 93.11 146 | 97.74 91 | 89.37 157 | 94.08 173 | 95.29 194 | 90.40 152 | 96.35 302 | 90.35 133 | 98.25 182 | 94.96 282 |
|
GBi-Net | | | 93.21 144 | 92.96 149 | 93.97 140 | 95.40 231 | 84.29 181 | 95.99 51 | 96.56 175 | 88.63 173 | 95.10 141 | 98.53 21 | 81.31 251 | 98.98 110 | 86.74 206 | 98.38 164 | 98.65 92 |
|
test1 | | | 93.21 144 | 92.96 149 | 93.97 140 | 95.40 231 | 84.29 181 | 95.99 51 | 96.56 175 | 88.63 173 | 95.10 141 | 98.53 21 | 81.31 251 | 98.98 110 | 86.74 206 | 98.38 164 | 98.65 92 |
|
v144192 | | | 93.20 146 | 93.54 138 | 92.16 206 | 96.05 196 | 78.26 270 | 91.95 193 | 97.14 137 | 84.98 239 | 95.96 103 | 96.11 152 | 87.08 196 | 99.04 102 | 93.79 34 | 98.84 118 | 99.17 35 |
|
VPNet | | | 93.08 147 | 93.76 128 | 91.03 238 | 98.60 33 | 75.83 303 | 91.51 213 | 95.62 210 | 91.84 97 | 95.74 113 | 97.10 86 | 89.31 165 | 98.32 199 | 85.07 232 | 99.06 91 | 98.93 63 |
|
UGNet | | | 93.08 147 | 92.50 163 | 94.79 107 | 93.87 275 | 87.99 121 | 95.07 87 | 94.26 251 | 90.64 133 | 87.33 314 | 97.67 51 | 86.89 202 | 98.49 185 | 88.10 187 | 98.71 136 | 97.91 158 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
mvs-test1 | | | 93.07 149 | 91.80 178 | 96.89 39 | 94.74 251 | 95.83 6 | 92.17 184 | 95.41 222 | 89.94 145 | 89.85 276 | 90.59 314 | 90.12 155 | 98.88 124 | 87.68 195 | 95.66 275 | 95.97 252 |
|
TSAR-MVS + GP. | | | 93.07 149 | 92.41 165 | 95.06 99 | 95.82 210 | 90.87 71 | 90.97 225 | 92.61 281 | 88.04 185 | 94.61 161 | 93.79 249 | 88.08 177 | 97.81 241 | 89.41 159 | 98.39 162 | 96.50 231 |
|
ETV-MVS | | | 92.99 151 | 92.74 156 | 93.72 151 | 95.86 209 | 86.30 157 | 92.33 177 | 97.84 82 | 91.70 108 | 92.81 215 | 86.17 347 | 92.22 105 | 99.19 80 | 88.03 189 | 97.73 218 | 95.66 267 |
|
EI-MVSNet | | | 92.99 151 | 93.26 147 | 92.19 202 | 92.12 304 | 79.21 258 | 92.32 178 | 94.67 244 | 91.77 103 | 95.24 137 | 95.85 161 | 87.14 195 | 98.49 185 | 91.99 95 | 98.26 179 | 98.86 72 |
|
MCST-MVS | | | 92.91 153 | 92.51 162 | 94.10 136 | 97.52 112 | 85.72 168 | 91.36 218 | 97.13 139 | 80.33 276 | 92.91 214 | 94.24 231 | 91.23 131 | 98.72 155 | 89.99 148 | 97.93 211 | 97.86 163 |
|
hse-mvs3 | | | 92.89 154 | 91.99 172 | 95.58 77 | 96.97 137 | 90.55 74 | 93.94 129 | 94.01 257 | 89.23 161 | 93.95 179 | 96.19 148 | 76.88 285 | 99.14 85 | 91.02 118 | 95.71 274 | 97.04 211 |
|
QAPM | | | 92.88 155 | 92.77 154 | 93.22 168 | 95.82 210 | 83.31 195 | 96.45 31 | 97.35 122 | 83.91 248 | 93.75 185 | 96.77 106 | 89.25 166 | 98.88 124 | 84.56 238 | 97.02 243 | 97.49 190 |
|
v148 | | | 92.87 156 | 93.29 143 | 91.62 220 | 96.25 181 | 77.72 278 | 91.28 219 | 95.05 228 | 89.69 150 | 95.93 106 | 96.04 154 | 87.34 190 | 98.38 194 | 90.05 147 | 97.99 208 | 98.78 81 |
|
Anonymous20240521 | | | 92.86 157 | 93.57 136 | 90.74 249 | 96.57 157 | 75.50 305 | 94.15 120 | 95.60 211 | 89.38 156 | 95.90 108 | 97.90 44 | 80.39 258 | 97.96 229 | 92.60 83 | 99.68 18 | 98.75 84 |
|
Effi-MVS+ | | | 92.79 158 | 92.74 156 | 92.94 177 | 95.10 239 | 83.30 196 | 94.00 126 | 97.53 107 | 91.36 115 | 89.35 285 | 90.65 313 | 94.01 68 | 98.66 167 | 87.40 200 | 95.30 285 | 96.88 218 |
|
FMVSNet2 | | | 92.78 159 | 92.73 158 | 92.95 175 | 95.40 231 | 81.98 211 | 94.18 119 | 95.53 219 | 88.63 173 | 96.05 101 | 97.37 68 | 81.31 251 | 98.81 139 | 87.38 201 | 98.67 140 | 98.06 139 |
|
Fast-Effi-MVS+-dtu | | | 92.77 160 | 92.16 167 | 94.58 120 | 94.66 257 | 88.25 114 | 92.05 188 | 96.65 171 | 89.62 152 | 90.08 270 | 91.23 301 | 92.56 99 | 98.60 173 | 86.30 217 | 96.27 263 | 96.90 216 |
|
LF4IMVS | | | 92.72 161 | 92.02 171 | 94.84 105 | 95.65 221 | 91.99 54 | 92.92 151 | 96.60 173 | 85.08 237 | 92.44 225 | 93.62 252 | 86.80 203 | 96.35 302 | 86.81 205 | 98.25 182 | 96.18 245 |
|
train_agg | | | 92.71 162 | 91.83 176 | 95.35 84 | 96.45 164 | 89.46 88 | 90.60 234 | 96.92 153 | 79.37 285 | 90.49 262 | 94.39 227 | 91.20 133 | 98.88 124 | 88.66 179 | 98.43 158 | 97.72 176 |
|
VNet | | | 92.67 163 | 92.96 149 | 91.79 214 | 96.27 178 | 80.15 232 | 91.95 193 | 94.98 230 | 92.19 84 | 94.52 164 | 96.07 153 | 87.43 189 | 97.39 268 | 84.83 234 | 98.38 164 | 97.83 166 |
|
CDPH-MVS | | | 92.67 163 | 91.83 176 | 95.18 95 | 96.94 139 | 88.46 112 | 90.70 232 | 97.07 143 | 77.38 301 | 92.34 232 | 95.08 201 | 92.67 97 | 98.88 124 | 85.74 221 | 98.57 145 | 98.20 131 |
|
agg_prior1 | | | 92.60 165 | 91.76 179 | 95.10 98 | 96.20 183 | 88.89 100 | 90.37 241 | 96.88 157 | 79.67 282 | 90.21 267 | 94.41 225 | 91.30 128 | 98.78 145 | 88.46 181 | 98.37 169 | 97.64 182 |
|
Anonymous202405211 | | | 92.58 166 | 92.50 163 | 92.83 182 | 96.55 159 | 83.22 198 | 92.43 170 | 91.64 297 | 94.10 49 | 95.59 119 | 96.64 118 | 81.88 248 | 97.50 259 | 85.12 229 | 98.52 151 | 97.77 172 |
|
XXY-MVS | | | 92.58 166 | 93.16 148 | 90.84 247 | 97.75 95 | 79.84 242 | 91.87 201 | 96.22 193 | 85.94 220 | 95.53 122 | 97.68 50 | 92.69 96 | 94.48 330 | 83.21 248 | 97.51 229 | 98.21 130 |
|
MVS_Test | | | 92.57 168 | 93.29 143 | 90.40 258 | 93.53 279 | 75.85 301 | 92.52 163 | 96.96 149 | 88.73 170 | 92.35 230 | 96.70 114 | 90.77 140 | 98.37 197 | 92.53 84 | 95.49 279 | 96.99 213 |
|
TAPA-MVS | | 88.58 10 | 92.49 169 | 91.75 180 | 94.73 109 | 96.50 161 | 89.69 86 | 92.91 152 | 97.68 94 | 78.02 299 | 92.79 216 | 94.10 236 | 90.85 139 | 97.96 229 | 84.76 236 | 98.16 192 | 96.54 226 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ab-mvs | | | 92.40 170 | 92.62 160 | 91.74 216 | 97.02 135 | 81.65 215 | 95.84 59 | 95.50 220 | 86.95 207 | 92.95 213 | 97.56 56 | 90.70 145 | 97.50 259 | 79.63 285 | 97.43 232 | 96.06 249 |
|
CANet | | | 92.38 171 | 91.99 172 | 93.52 160 | 93.82 277 | 83.46 194 | 91.14 221 | 97.00 146 | 89.81 149 | 86.47 318 | 94.04 238 | 87.90 183 | 99.21 78 | 89.50 158 | 98.27 178 | 97.90 159 |
|
EIA-MVS | | | 92.35 172 | 92.03 170 | 93.30 166 | 95.81 212 | 83.97 189 | 92.80 155 | 98.17 35 | 87.71 192 | 89.79 279 | 87.56 337 | 91.17 136 | 99.18 81 | 87.97 190 | 97.27 236 | 96.77 222 |
|
DP-MVS Recon | | | 92.31 173 | 91.88 175 | 93.60 154 | 97.18 129 | 86.87 141 | 91.10 223 | 97.37 115 | 84.92 240 | 92.08 238 | 94.08 237 | 88.59 170 | 98.20 209 | 83.50 245 | 98.14 194 | 95.73 263 |
|
F-COLMAP | | | 92.28 174 | 91.06 197 | 95.95 57 | 97.52 112 | 91.90 56 | 93.53 138 | 97.18 135 | 83.98 247 | 88.70 297 | 94.04 238 | 88.41 173 | 98.55 181 | 80.17 278 | 95.99 268 | 97.39 198 |
|
OpenMVS |  | 89.45 8 | 92.27 175 | 92.13 169 | 92.68 186 | 94.53 260 | 84.10 187 | 95.70 62 | 97.03 144 | 82.44 264 | 91.14 254 | 96.42 129 | 88.47 172 | 98.38 194 | 85.95 220 | 97.47 231 | 95.55 271 |
|
hse-mvs2 | | | 92.24 176 | 91.20 193 | 95.38 83 | 96.16 187 | 90.65 73 | 92.52 163 | 92.01 294 | 89.23 161 | 93.95 179 | 92.99 268 | 76.88 285 | 98.69 163 | 91.02 118 | 96.03 266 | 96.81 220 |
|
MVSFormer | | | 92.18 177 | 92.23 166 | 92.04 210 | 94.74 251 | 80.06 236 | 97.15 11 | 97.37 115 | 88.98 165 | 88.83 289 | 92.79 273 | 77.02 282 | 99.60 8 | 96.41 4 | 96.75 254 | 96.46 233 |
|
HQP-MVS | | | 92.09 178 | 91.49 186 | 93.88 147 | 96.36 168 | 84.89 176 | 91.37 215 | 97.31 125 | 87.16 202 | 88.81 291 | 93.40 258 | 84.76 221 | 98.60 173 | 86.55 212 | 97.73 218 | 98.14 134 |
|
DELS-MVS | | | 92.05 179 | 92.16 167 | 91.72 217 | 94.44 261 | 80.13 234 | 87.62 295 | 97.25 131 | 87.34 200 | 92.22 235 | 93.18 264 | 89.54 164 | 98.73 154 | 89.67 155 | 98.20 190 | 96.30 239 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
TinyColmap | | | 92.00 180 | 92.76 155 | 89.71 272 | 95.62 225 | 77.02 286 | 90.72 231 | 96.17 196 | 87.70 193 | 95.26 134 | 96.29 142 | 92.54 100 | 96.45 297 | 81.77 262 | 98.77 131 | 95.66 267 |
|
ETH3 D test6400 | | | 91.91 181 | 91.25 192 | 93.89 146 | 96.59 155 | 84.41 180 | 92.10 186 | 97.72 93 | 78.52 295 | 91.82 242 | 93.78 250 | 88.70 169 | 99.13 87 | 83.61 244 | 98.39 162 | 98.14 134 |
|
CLD-MVS | | | 91.82 182 | 91.41 188 | 93.04 170 | 96.37 166 | 83.65 193 | 86.82 314 | 97.29 128 | 84.65 244 | 92.27 234 | 89.67 323 | 92.20 106 | 97.85 239 | 83.95 242 | 99.47 39 | 97.62 183 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
diffmvs | | | 91.74 183 | 91.93 174 | 91.15 236 | 93.06 287 | 78.17 271 | 88.77 285 | 97.51 110 | 86.28 214 | 92.42 226 | 93.96 243 | 88.04 179 | 97.46 262 | 90.69 126 | 96.67 256 | 97.82 168 |
|
CNLPA | | | 91.72 184 | 91.20 193 | 93.26 167 | 96.17 186 | 91.02 66 | 91.14 221 | 95.55 218 | 90.16 143 | 90.87 256 | 93.56 255 | 86.31 209 | 94.40 333 | 79.92 284 | 97.12 240 | 94.37 295 |
|
IterMVS-SCA-FT | | | 91.65 185 | 91.55 182 | 91.94 211 | 93.89 274 | 79.22 257 | 87.56 298 | 93.51 263 | 91.53 112 | 95.37 128 | 96.62 119 | 78.65 267 | 98.90 121 | 91.89 101 | 94.95 291 | 97.70 177 |
|
PVSNet_Blended_VisFu | | | 91.63 186 | 91.20 193 | 92.94 177 | 97.73 98 | 83.95 190 | 92.14 185 | 97.46 111 | 78.85 294 | 92.35 230 | 94.98 206 | 84.16 225 | 99.08 94 | 86.36 216 | 96.77 253 | 95.79 261 |
|
AdaColmap |  | | 91.63 186 | 91.36 189 | 92.47 197 | 95.56 227 | 86.36 155 | 92.24 183 | 96.27 188 | 88.88 169 | 89.90 275 | 92.69 276 | 91.65 119 | 98.32 199 | 77.38 304 | 97.64 225 | 92.72 328 |
|
pmmvs-eth3d | | | 91.54 188 | 90.73 205 | 93.99 138 | 95.76 215 | 87.86 124 | 90.83 228 | 93.98 258 | 78.23 298 | 94.02 178 | 96.22 147 | 82.62 239 | 96.83 286 | 86.57 211 | 98.33 171 | 97.29 204 |
|
API-MVS | | | 91.52 189 | 91.61 181 | 91.26 230 | 94.16 266 | 86.26 159 | 94.66 102 | 94.82 236 | 91.17 121 | 92.13 237 | 91.08 304 | 90.03 161 | 97.06 278 | 79.09 292 | 97.35 235 | 90.45 343 |
|
xiu_mvs_v1_base_debu | | | 91.47 190 | 91.52 183 | 91.33 227 | 95.69 218 | 81.56 216 | 89.92 257 | 96.05 199 | 83.22 252 | 91.26 250 | 90.74 308 | 91.55 121 | 98.82 134 | 89.29 161 | 95.91 269 | 93.62 314 |
|
xiu_mvs_v1_base | | | 91.47 190 | 91.52 183 | 91.33 227 | 95.69 218 | 81.56 216 | 89.92 257 | 96.05 199 | 83.22 252 | 91.26 250 | 90.74 308 | 91.55 121 | 98.82 134 | 89.29 161 | 95.91 269 | 93.62 314 |
|
xiu_mvs_v1_base_debi | | | 91.47 190 | 91.52 183 | 91.33 227 | 95.69 218 | 81.56 216 | 89.92 257 | 96.05 199 | 83.22 252 | 91.26 250 | 90.74 308 | 91.55 121 | 98.82 134 | 89.29 161 | 95.91 269 | 93.62 314 |
|
RRT_MVS | | | 91.36 193 | 90.05 218 | 95.29 90 | 89.21 341 | 88.15 116 | 92.51 167 | 94.89 233 | 86.73 209 | 95.54 121 | 95.68 172 | 61.82 343 | 99.30 67 | 94.91 13 | 99.13 88 | 98.43 115 |
|
LFMVS | | | 91.33 194 | 91.16 196 | 91.82 213 | 96.27 178 | 79.36 253 | 95.01 90 | 85.61 338 | 96.04 28 | 94.82 154 | 97.06 88 | 72.03 304 | 98.46 191 | 84.96 233 | 98.70 138 | 97.65 181 |
|
cl_fuxian | | | 91.32 195 | 91.42 187 | 91.00 241 | 92.29 299 | 76.79 292 | 87.52 301 | 96.42 182 | 85.76 224 | 94.72 160 | 93.89 246 | 82.73 236 | 98.16 214 | 90.93 122 | 98.55 146 | 98.04 142 |
|
Fast-Effi-MVS+ | | | 91.28 196 | 90.86 200 | 92.53 194 | 95.45 230 | 82.53 207 | 89.25 277 | 96.52 179 | 85.00 238 | 89.91 274 | 88.55 333 | 92.94 89 | 98.84 132 | 84.72 237 | 95.44 281 | 96.22 242 |
|
MDA-MVSNet-bldmvs | | | 91.04 197 | 90.88 199 | 91.55 222 | 94.68 256 | 80.16 231 | 85.49 326 | 92.14 290 | 90.41 140 | 94.93 150 | 95.79 166 | 85.10 219 | 96.93 283 | 85.15 227 | 94.19 308 | 97.57 185 |
|
PAPM_NR | | | 91.03 198 | 90.81 202 | 91.68 219 | 96.73 149 | 81.10 224 | 93.72 134 | 96.35 186 | 88.19 182 | 88.77 295 | 92.12 290 | 85.09 220 | 97.25 272 | 82.40 257 | 93.90 309 | 96.68 225 |
|
MVS_0304 | | | 90.96 199 | 90.15 216 | 93.37 162 | 93.17 284 | 87.06 135 | 93.62 137 | 92.43 285 | 89.60 153 | 82.25 343 | 95.50 183 | 82.56 240 | 97.83 240 | 84.41 240 | 97.83 216 | 95.22 275 |
|
MSDG | | | 90.82 200 | 90.67 206 | 91.26 230 | 94.16 266 | 83.08 202 | 86.63 319 | 96.19 194 | 90.60 135 | 91.94 240 | 91.89 292 | 89.16 167 | 95.75 312 | 80.96 273 | 94.51 301 | 94.95 283 |
|
test20.03 | | | 90.80 201 | 90.85 201 | 90.63 252 | 95.63 224 | 79.24 256 | 89.81 262 | 92.87 272 | 89.90 147 | 94.39 166 | 96.40 131 | 85.77 214 | 95.27 325 | 73.86 323 | 99.05 94 | 97.39 198 |
|
FMVSNet3 | | | 90.78 202 | 90.32 213 | 92.16 206 | 93.03 289 | 79.92 241 | 92.54 162 | 94.95 231 | 86.17 217 | 95.10 141 | 96.01 156 | 69.97 308 | 98.75 150 | 86.74 206 | 98.38 164 | 97.82 168 |
|
eth_miper_zixun_eth | | | 90.72 203 | 90.61 207 | 91.05 237 | 92.04 306 | 76.84 291 | 86.91 310 | 96.67 170 | 85.21 231 | 94.41 165 | 93.92 244 | 79.53 262 | 98.26 205 | 89.76 153 | 97.02 243 | 98.06 139 |
|
X-MVStestdata | | | 90.70 204 | 88.45 244 | 97.44 17 | 98.56 36 | 93.99 25 | 96.50 29 | 97.95 73 | 94.58 40 | 94.38 167 | 26.89 363 | 94.56 58 | 99.39 45 | 93.57 40 | 99.05 94 | 98.93 63 |
|
BH-untuned | | | 90.68 205 | 90.90 198 | 90.05 269 | 95.98 202 | 79.57 250 | 90.04 253 | 94.94 232 | 87.91 186 | 94.07 174 | 93.00 267 | 87.76 184 | 97.78 245 | 79.19 291 | 95.17 288 | 92.80 326 |
|
cl-mvsnet____ | | | 90.65 206 | 90.56 208 | 90.91 245 | 91.85 308 | 76.98 289 | 86.75 315 | 95.36 225 | 85.53 227 | 94.06 175 | 94.89 210 | 77.36 280 | 97.98 228 | 90.27 138 | 98.98 102 | 97.76 173 |
|
cl-mvsnet1 | | | 90.65 206 | 90.56 208 | 90.91 245 | 91.85 308 | 76.99 288 | 86.75 315 | 95.36 225 | 85.52 229 | 94.06 175 | 94.89 210 | 77.37 279 | 97.99 227 | 90.28 137 | 98.97 106 | 97.76 173 |
|
114514_t | | | 90.51 208 | 89.80 222 | 92.63 189 | 98.00 84 | 82.24 209 | 93.40 142 | 97.29 128 | 65.84 350 | 89.40 284 | 94.80 216 | 86.99 197 | 98.75 150 | 83.88 243 | 98.61 143 | 96.89 217 |
|
miper_ehance_all_eth | | | 90.48 209 | 90.42 211 | 90.69 250 | 91.62 313 | 76.57 294 | 86.83 313 | 96.18 195 | 83.38 250 | 94.06 175 | 92.66 278 | 82.20 242 | 98.04 220 | 89.79 152 | 97.02 243 | 97.45 192 |
|
BH-RMVSNet | | | 90.47 210 | 90.44 210 | 90.56 254 | 95.21 238 | 78.65 267 | 89.15 278 | 93.94 259 | 88.21 181 | 92.74 217 | 94.22 232 | 86.38 208 | 97.88 233 | 78.67 294 | 95.39 283 | 95.14 278 |
|
Vis-MVSNet (Re-imp) | | | 90.42 211 | 90.16 214 | 91.20 234 | 97.66 105 | 77.32 283 | 94.33 115 | 87.66 320 | 91.20 120 | 92.99 211 | 95.13 198 | 75.40 292 | 98.28 201 | 77.86 297 | 99.19 80 | 97.99 148 |
|
PLC |  | 85.34 15 | 90.40 212 | 88.92 236 | 94.85 104 | 96.53 160 | 90.02 79 | 91.58 212 | 96.48 181 | 80.16 277 | 86.14 320 | 92.18 287 | 85.73 215 | 98.25 206 | 76.87 307 | 94.61 300 | 96.30 239 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
testgi | | | 90.38 213 | 91.34 190 | 87.50 305 | 97.49 114 | 71.54 330 | 89.43 269 | 95.16 227 | 88.38 179 | 94.54 163 | 94.68 220 | 92.88 92 | 93.09 344 | 71.60 336 | 97.85 215 | 97.88 161 |
|
mvs_anonymous | | | 90.37 214 | 91.30 191 | 87.58 304 | 92.17 303 | 68.00 343 | 89.84 261 | 94.73 240 | 83.82 249 | 93.22 204 | 97.40 66 | 87.54 187 | 97.40 267 | 87.94 191 | 95.05 290 | 97.34 201 |
|
PVSNet_BlendedMVS | | | 90.35 215 | 89.96 219 | 91.54 223 | 94.81 246 | 78.80 265 | 90.14 250 | 96.93 151 | 79.43 284 | 88.68 298 | 95.06 202 | 86.27 210 | 98.15 215 | 80.27 275 | 98.04 204 | 97.68 179 |
|
UnsupCasMVSNet_eth | | | 90.33 216 | 90.34 212 | 90.28 260 | 94.64 258 | 80.24 230 | 89.69 264 | 95.88 203 | 85.77 223 | 93.94 181 | 95.69 171 | 81.99 245 | 92.98 345 | 84.21 241 | 91.30 336 | 97.62 183 |
|
MAR-MVS | | | 90.32 217 | 88.87 239 | 94.66 112 | 94.82 245 | 91.85 57 | 94.22 118 | 94.75 239 | 80.91 271 | 87.52 312 | 88.07 336 | 86.63 206 | 97.87 236 | 76.67 308 | 96.21 264 | 94.25 298 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
RPMNet | | | 90.31 218 | 90.14 217 | 90.81 248 | 91.01 320 | 78.93 260 | 92.52 163 | 98.12 41 | 91.91 91 | 89.10 286 | 96.89 99 | 68.84 309 | 99.41 35 | 90.17 142 | 92.70 325 | 94.08 299 |
|
1121 | | | 90.26 219 | 89.23 228 | 93.34 163 | 97.15 132 | 87.40 128 | 91.94 195 | 94.39 247 | 67.88 345 | 91.02 255 | 94.91 209 | 86.91 201 | 98.59 175 | 81.17 270 | 97.71 221 | 94.02 304 |
|
IterMVS | | | 90.18 220 | 90.16 214 | 90.21 264 | 93.15 285 | 75.98 300 | 87.56 298 | 92.97 271 | 86.43 212 | 94.09 172 | 96.40 131 | 78.32 271 | 97.43 264 | 87.87 192 | 94.69 298 | 97.23 205 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TAMVS | | | 90.16 221 | 89.05 233 | 93.49 161 | 96.49 162 | 86.37 154 | 90.34 243 | 92.55 282 | 80.84 274 | 92.99 211 | 94.57 223 | 81.94 247 | 98.20 209 | 73.51 324 | 98.21 188 | 95.90 257 |
|
test_yl | | | 90.11 222 | 89.73 225 | 91.26 230 | 94.09 269 | 79.82 243 | 90.44 238 | 92.65 278 | 90.90 124 | 93.19 205 | 93.30 260 | 73.90 295 | 98.03 221 | 82.23 258 | 96.87 249 | 95.93 254 |
|
DCV-MVSNet | | | 90.11 222 | 89.73 225 | 91.26 230 | 94.09 269 | 79.82 243 | 90.44 238 | 92.65 278 | 90.90 124 | 93.19 205 | 93.30 260 | 73.90 295 | 98.03 221 | 82.23 258 | 96.87 249 | 95.93 254 |
|
Patchmtry | | | 90.11 222 | 89.92 220 | 90.66 251 | 90.35 329 | 77.00 287 | 92.96 150 | 92.81 273 | 90.25 142 | 94.74 158 | 96.93 96 | 67.11 314 | 97.52 258 | 85.17 225 | 98.98 102 | 97.46 191 |
|
MVP-Stereo | | | 90.07 225 | 88.92 236 | 93.54 158 | 96.31 175 | 86.49 149 | 90.93 226 | 95.59 215 | 79.80 278 | 91.48 245 | 95.59 175 | 80.79 255 | 97.39 268 | 78.57 295 | 91.19 337 | 96.76 223 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
AUN-MVS | | | 90.05 226 | 88.30 247 | 95.32 89 | 96.09 193 | 90.52 75 | 92.42 171 | 92.05 293 | 82.08 267 | 88.45 300 | 92.86 270 | 65.76 324 | 98.69 163 | 88.91 172 | 96.07 265 | 96.75 224 |
|
CL-MVSNet_2432*1600 | | | 90.04 227 | 89.90 221 | 90.47 255 | 95.24 237 | 77.81 276 | 86.60 321 | 92.62 280 | 85.64 226 | 93.25 203 | 93.92 244 | 83.84 226 | 96.06 308 | 79.93 282 | 98.03 205 | 97.53 189 |
|
bset_n11_16_dypcd | | | 89.99 228 | 89.15 231 | 92.53 194 | 94.75 249 | 81.34 220 | 84.19 338 | 87.56 321 | 85.13 234 | 93.77 184 | 92.46 280 | 72.82 299 | 99.01 107 | 92.46 86 | 99.21 78 | 97.23 205 |
|
D2MVS | | | 89.93 229 | 89.60 227 | 90.92 243 | 94.03 271 | 78.40 268 | 88.69 287 | 94.85 234 | 78.96 292 | 93.08 207 | 95.09 200 | 74.57 293 | 96.94 281 | 88.19 184 | 98.96 108 | 97.41 194 |
|
miper_lstm_enhance | | | 89.90 230 | 89.80 222 | 90.19 266 | 91.37 317 | 77.50 280 | 83.82 342 | 95.00 229 | 84.84 241 | 93.05 209 | 94.96 207 | 76.53 289 | 95.20 326 | 89.96 149 | 98.67 140 | 97.86 163 |
|
CANet_DTU | | | 89.85 231 | 89.17 230 | 91.87 212 | 92.20 302 | 80.02 239 | 90.79 229 | 95.87 204 | 86.02 219 | 82.53 342 | 91.77 294 | 80.01 259 | 98.57 178 | 85.66 222 | 97.70 222 | 97.01 212 |
|
tttt0517 | | | 89.81 232 | 88.90 238 | 92.55 193 | 97.00 136 | 79.73 247 | 95.03 89 | 83.65 350 | 89.88 148 | 95.30 131 | 94.79 217 | 53.64 358 | 99.39 45 | 91.99 95 | 98.79 129 | 98.54 106 |
|
EPNet | | | 89.80 233 | 88.25 249 | 94.45 127 | 83.91 362 | 86.18 160 | 93.87 130 | 87.07 325 | 91.16 122 | 80.64 352 | 94.72 218 | 78.83 265 | 98.89 123 | 85.17 225 | 98.89 111 | 98.28 124 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CDS-MVSNet | | | 89.55 234 | 88.22 252 | 93.53 159 | 95.37 234 | 86.49 149 | 89.26 275 | 93.59 261 | 79.76 280 | 91.15 253 | 92.31 286 | 77.12 281 | 98.38 194 | 77.51 302 | 97.92 212 | 95.71 264 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MG-MVS | | | 89.54 235 | 89.80 222 | 88.76 287 | 94.88 242 | 72.47 327 | 89.60 265 | 92.44 284 | 85.82 222 | 89.48 283 | 95.98 157 | 82.85 234 | 97.74 250 | 81.87 261 | 95.27 286 | 96.08 248 |
|
OpenMVS_ROB |  | 85.12 16 | 89.52 236 | 89.05 233 | 90.92 243 | 94.58 259 | 81.21 223 | 91.10 223 | 93.41 265 | 77.03 305 | 93.41 193 | 93.99 242 | 83.23 230 | 97.80 242 | 79.93 282 | 94.80 295 | 93.74 311 |
|
DPM-MVS | | | 89.35 237 | 88.40 245 | 92.18 205 | 96.13 192 | 84.20 185 | 86.96 309 | 96.15 197 | 75.40 312 | 87.36 313 | 91.55 299 | 83.30 229 | 98.01 224 | 82.17 260 | 96.62 257 | 94.32 297 |
|
MVSTER | | | 89.32 238 | 88.75 240 | 91.03 238 | 90.10 331 | 76.62 293 | 90.85 227 | 94.67 244 | 82.27 265 | 95.24 137 | 95.79 166 | 61.09 346 | 98.49 185 | 90.49 127 | 98.26 179 | 97.97 152 |
|
PatchMatch-RL | | | 89.18 239 | 88.02 257 | 92.64 187 | 95.90 208 | 92.87 45 | 88.67 289 | 91.06 300 | 80.34 275 | 90.03 272 | 91.67 296 | 83.34 228 | 94.42 332 | 76.35 311 | 94.84 294 | 90.64 342 |
|
jason | | | 89.17 240 | 88.32 246 | 91.70 218 | 95.73 216 | 80.07 235 | 88.10 292 | 93.22 267 | 71.98 328 | 90.09 269 | 92.79 273 | 78.53 270 | 98.56 179 | 87.43 199 | 97.06 241 | 96.46 233 |
jason: jason. |
PCF-MVS | | 84.52 17 | 89.12 241 | 87.71 260 | 93.34 163 | 96.06 195 | 85.84 166 | 86.58 322 | 97.31 125 | 68.46 343 | 93.61 190 | 93.89 246 | 87.51 188 | 98.52 183 | 67.85 347 | 98.11 198 | 95.66 267 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
cl-mvsnet2 | | | 89.02 242 | 88.50 243 | 90.59 253 | 89.76 333 | 76.45 295 | 86.62 320 | 94.03 254 | 82.98 258 | 92.65 219 | 92.49 279 | 72.05 303 | 97.53 257 | 88.93 170 | 97.02 243 | 97.78 171 |
|
USDC | | | 89.02 242 | 89.08 232 | 88.84 286 | 95.07 240 | 74.50 312 | 88.97 280 | 96.39 184 | 73.21 322 | 93.27 200 | 96.28 143 | 82.16 243 | 96.39 299 | 77.55 301 | 98.80 128 | 95.62 270 |
|
xiu_mvs_v2_base | | | 89.00 244 | 89.19 229 | 88.46 294 | 94.86 244 | 74.63 309 | 86.97 308 | 95.60 211 | 80.88 272 | 87.83 308 | 88.62 332 | 91.04 137 | 98.81 139 | 82.51 256 | 94.38 302 | 91.93 334 |
|
new-patchmatchnet | | | 88.97 245 | 90.79 203 | 83.50 332 | 94.28 265 | 55.83 364 | 85.34 327 | 93.56 262 | 86.18 216 | 95.47 123 | 95.73 170 | 83.10 231 | 96.51 295 | 85.40 224 | 98.06 202 | 98.16 132 |
|
pmmvs4 | | | 88.95 246 | 87.70 261 | 92.70 185 | 94.30 264 | 85.60 169 | 87.22 304 | 92.16 289 | 74.62 314 | 89.75 281 | 94.19 233 | 77.97 274 | 96.41 298 | 82.71 252 | 96.36 262 | 96.09 247 |
|
N_pmnet | | | 88.90 247 | 87.25 267 | 93.83 149 | 94.40 263 | 93.81 34 | 84.73 331 | 87.09 324 | 79.36 287 | 93.26 201 | 92.43 284 | 79.29 263 | 91.68 349 | 77.50 303 | 97.22 238 | 96.00 251 |
|
PS-MVSNAJ | | | 88.86 248 | 88.99 235 | 88.48 293 | 94.88 242 | 74.71 307 | 86.69 317 | 95.60 211 | 80.88 272 | 87.83 308 | 87.37 340 | 90.77 140 | 98.82 134 | 82.52 255 | 94.37 303 | 91.93 334 |
|
Patchmatch-RL test | | | 88.81 249 | 88.52 242 | 89.69 273 | 95.33 236 | 79.94 240 | 86.22 323 | 92.71 277 | 78.46 296 | 95.80 110 | 94.18 234 | 66.25 322 | 95.33 323 | 89.22 166 | 98.53 150 | 93.78 309 |
|
Anonymous20231206 | | | 88.77 250 | 88.29 248 | 90.20 265 | 96.31 175 | 78.81 264 | 89.56 267 | 93.49 264 | 74.26 316 | 92.38 228 | 95.58 178 | 82.21 241 | 95.43 320 | 72.07 332 | 98.75 134 | 96.34 237 |
|
PVSNet_Blended | | | 88.74 251 | 88.16 255 | 90.46 257 | 94.81 246 | 78.80 265 | 86.64 318 | 96.93 151 | 74.67 313 | 88.68 298 | 89.18 329 | 86.27 210 | 98.15 215 | 80.27 275 | 96.00 267 | 94.44 294 |
|
thisisatest0530 | | | 88.69 252 | 87.52 263 | 92.20 201 | 96.33 173 | 79.36 253 | 92.81 154 | 84.01 349 | 86.44 211 | 93.67 188 | 92.68 277 | 53.62 359 | 99.25 74 | 89.65 156 | 98.45 157 | 98.00 145 |
|
ppachtmachnet_test | | | 88.61 253 | 88.64 241 | 88.50 292 | 91.76 310 | 70.99 333 | 84.59 334 | 92.98 270 | 79.30 289 | 92.38 228 | 93.53 256 | 79.57 261 | 97.45 263 | 86.50 214 | 97.17 239 | 97.07 208 |
|
UnsupCasMVSNet_bld | | | 88.50 254 | 88.03 256 | 89.90 270 | 95.52 228 | 78.88 262 | 87.39 302 | 94.02 256 | 79.32 288 | 93.06 208 | 94.02 240 | 80.72 256 | 94.27 335 | 75.16 317 | 93.08 321 | 96.54 226 |
|
miper_enhance_ethall | | | 88.42 255 | 87.87 258 | 90.07 267 | 88.67 346 | 75.52 304 | 85.10 328 | 95.59 215 | 75.68 308 | 92.49 223 | 89.45 326 | 78.96 264 | 97.88 233 | 87.86 193 | 97.02 243 | 96.81 220 |
|
1112_ss | | | 88.42 255 | 87.41 264 | 91.45 224 | 96.69 150 | 80.99 225 | 89.72 263 | 96.72 168 | 73.37 321 | 87.00 316 | 90.69 311 | 77.38 278 | 98.20 209 | 81.38 266 | 93.72 312 | 95.15 277 |
|
lupinMVS | | | 88.34 257 | 87.31 265 | 91.45 224 | 94.74 251 | 80.06 236 | 87.23 303 | 92.27 286 | 71.10 332 | 88.83 289 | 91.15 302 | 77.02 282 | 98.53 182 | 86.67 209 | 96.75 254 | 95.76 262 |
|
RRT_test8_iter05 | | | 88.21 258 | 88.17 253 | 88.33 296 | 91.62 313 | 66.82 349 | 91.73 210 | 96.60 173 | 86.34 213 | 94.14 170 | 95.38 193 | 47.72 364 | 99.11 91 | 91.78 103 | 98.26 179 | 99.06 47 |
|
YYNet1 | | | 88.17 259 | 88.24 250 | 87.93 300 | 92.21 301 | 73.62 318 | 80.75 350 | 88.77 310 | 82.51 263 | 94.99 148 | 95.11 199 | 82.70 237 | 93.70 339 | 83.33 246 | 93.83 310 | 96.48 232 |
|
MDA-MVSNet_test_wron | | | 88.16 260 | 88.23 251 | 87.93 300 | 92.22 300 | 73.71 317 | 80.71 351 | 88.84 309 | 82.52 262 | 94.88 153 | 95.14 197 | 82.70 237 | 93.61 340 | 83.28 247 | 93.80 311 | 96.46 233 |
|
MS-PatchMatch | | | 88.05 261 | 87.75 259 | 88.95 283 | 93.28 281 | 77.93 273 | 87.88 294 | 92.49 283 | 75.42 311 | 92.57 222 | 93.59 254 | 80.44 257 | 94.24 337 | 81.28 267 | 92.75 324 | 94.69 290 |
|
CR-MVSNet | | | 87.89 262 | 87.12 271 | 90.22 263 | 91.01 320 | 78.93 260 | 92.52 163 | 92.81 273 | 73.08 323 | 89.10 286 | 96.93 96 | 67.11 314 | 97.64 254 | 88.80 174 | 92.70 325 | 94.08 299 |
|
pmmvs5 | | | 87.87 263 | 87.14 270 | 90.07 267 | 93.26 283 | 76.97 290 | 88.89 282 | 92.18 287 | 73.71 320 | 88.36 301 | 93.89 246 | 76.86 287 | 96.73 289 | 80.32 274 | 96.81 251 | 96.51 228 |
|
wuyk23d | | | 87.83 264 | 90.79 203 | 78.96 341 | 90.46 328 | 88.63 105 | 92.72 156 | 90.67 304 | 91.65 109 | 98.68 11 | 97.64 53 | 96.06 16 | 77.53 361 | 59.84 356 | 99.41 52 | 70.73 359 |
|
FMVSNet5 | | | 87.82 265 | 86.56 280 | 91.62 220 | 92.31 298 | 79.81 245 | 93.49 139 | 94.81 238 | 83.26 251 | 91.36 247 | 96.93 96 | 52.77 360 | 97.49 261 | 76.07 312 | 98.03 205 | 97.55 188 |
|
GA-MVS | | | 87.70 266 | 86.82 275 | 90.31 259 | 93.27 282 | 77.22 285 | 84.72 333 | 92.79 275 | 85.11 236 | 89.82 277 | 90.07 315 | 66.80 317 | 97.76 248 | 84.56 238 | 94.27 306 | 95.96 253 |
|
TR-MVS | | | 87.70 266 | 87.17 269 | 89.27 280 | 94.11 268 | 79.26 255 | 88.69 287 | 91.86 295 | 81.94 268 | 90.69 260 | 89.79 320 | 82.82 235 | 97.42 265 | 72.65 330 | 91.98 333 | 91.14 339 |
|
thres600view7 | | | 87.66 268 | 87.10 272 | 89.36 278 | 96.05 196 | 73.17 320 | 92.72 156 | 85.31 341 | 91.89 92 | 93.29 198 | 90.97 305 | 63.42 336 | 98.39 192 | 73.23 326 | 96.99 248 | 96.51 228 |
|
PAPR | | | 87.65 269 | 86.77 277 | 90.27 261 | 92.85 291 | 77.38 282 | 88.56 290 | 96.23 191 | 76.82 307 | 84.98 326 | 89.75 322 | 86.08 212 | 97.16 275 | 72.33 331 | 93.35 315 | 96.26 241 |
|
baseline1 | | | 87.62 270 | 87.31 265 | 88.54 291 | 94.71 255 | 74.27 315 | 93.10 147 | 88.20 316 | 86.20 215 | 92.18 236 | 93.04 266 | 73.21 298 | 95.52 315 | 79.32 289 | 85.82 349 | 95.83 259 |
|
our_test_3 | | | 87.55 271 | 87.59 262 | 87.44 306 | 91.76 310 | 70.48 334 | 83.83 341 | 90.55 305 | 79.79 279 | 92.06 239 | 92.17 288 | 78.63 269 | 95.63 313 | 84.77 235 | 94.73 296 | 96.22 242 |
|
PatchT | | | 87.51 272 | 88.17 253 | 85.55 318 | 90.64 323 | 66.91 345 | 92.02 191 | 86.09 331 | 92.20 83 | 89.05 288 | 97.16 83 | 64.15 332 | 96.37 301 | 89.21 167 | 92.98 323 | 93.37 318 |
|
Test_1112_low_res | | | 87.50 273 | 86.58 279 | 90.25 262 | 96.80 148 | 77.75 277 | 87.53 300 | 96.25 189 | 69.73 339 | 86.47 318 | 93.61 253 | 75.67 291 | 97.88 233 | 79.95 280 | 93.20 317 | 95.11 279 |
|
SCA | | | 87.43 274 | 87.21 268 | 88.10 299 | 92.01 307 | 71.98 329 | 89.43 269 | 88.11 318 | 82.26 266 | 88.71 296 | 92.83 271 | 78.65 267 | 97.59 255 | 79.61 286 | 93.30 316 | 94.75 287 |
|
EU-MVSNet | | | 87.39 275 | 86.71 278 | 89.44 275 | 93.40 280 | 76.11 298 | 94.93 93 | 90.00 307 | 57.17 359 | 95.71 115 | 97.37 68 | 64.77 330 | 97.68 253 | 92.67 81 | 94.37 303 | 94.52 292 |
|
thres100view900 | | | 87.35 276 | 86.89 274 | 88.72 288 | 96.14 189 | 73.09 322 | 93.00 149 | 85.31 341 | 92.13 85 | 93.26 201 | 90.96 306 | 63.42 336 | 98.28 201 | 71.27 338 | 96.54 258 | 94.79 285 |
|
CMPMVS |  | 68.83 22 | 87.28 277 | 85.67 290 | 92.09 208 | 88.77 345 | 85.42 171 | 90.31 244 | 94.38 248 | 70.02 338 | 88.00 306 | 93.30 260 | 73.78 297 | 94.03 338 | 75.96 314 | 96.54 258 | 96.83 219 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
sss | | | 87.23 278 | 86.82 275 | 88.46 294 | 93.96 272 | 77.94 272 | 86.84 312 | 92.78 276 | 77.59 300 | 87.61 311 | 91.83 293 | 78.75 266 | 91.92 348 | 77.84 298 | 94.20 307 | 95.52 272 |
|
BH-w/o | | | 87.21 279 | 87.02 273 | 87.79 303 | 94.77 248 | 77.27 284 | 87.90 293 | 93.21 269 | 81.74 269 | 89.99 273 | 88.39 335 | 83.47 227 | 96.93 283 | 71.29 337 | 92.43 329 | 89.15 344 |
|
thres400 | | | 87.20 280 | 86.52 282 | 89.24 282 | 95.77 213 | 72.94 323 | 91.89 198 | 86.00 333 | 90.84 126 | 92.61 220 | 89.80 318 | 63.93 333 | 98.28 201 | 71.27 338 | 96.54 258 | 96.51 228 |
|
CHOSEN 1792x2688 | | | 87.19 281 | 85.92 289 | 91.00 241 | 97.13 133 | 79.41 252 | 84.51 335 | 95.60 211 | 64.14 353 | 90.07 271 | 94.81 213 | 78.26 272 | 97.14 276 | 73.34 325 | 95.38 284 | 96.46 233 |
|
HyFIR lowres test | | | 87.19 281 | 85.51 291 | 92.24 200 | 97.12 134 | 80.51 229 | 85.03 329 | 96.06 198 | 66.11 349 | 91.66 244 | 92.98 269 | 70.12 307 | 99.14 85 | 75.29 316 | 95.23 287 | 97.07 208 |
|
MIMVSNet | | | 87.13 283 | 86.54 281 | 88.89 285 | 96.05 196 | 76.11 298 | 94.39 113 | 88.51 312 | 81.37 270 | 88.27 303 | 96.75 109 | 72.38 301 | 95.52 315 | 65.71 352 | 95.47 280 | 95.03 280 |
|
tfpn200view9 | | | 87.05 284 | 86.52 282 | 88.67 289 | 95.77 213 | 72.94 323 | 91.89 198 | 86.00 333 | 90.84 126 | 92.61 220 | 89.80 318 | 63.93 333 | 98.28 201 | 71.27 338 | 96.54 258 | 94.79 285 |
|
cascas | | | 87.02 285 | 86.28 286 | 89.25 281 | 91.56 315 | 76.45 295 | 84.33 337 | 96.78 163 | 71.01 333 | 86.89 317 | 85.91 348 | 81.35 250 | 96.94 281 | 83.09 249 | 95.60 276 | 94.35 296 |
|
WTY-MVS | | | 86.93 286 | 86.50 284 | 88.24 297 | 94.96 241 | 74.64 308 | 87.19 305 | 92.07 292 | 78.29 297 | 88.32 302 | 91.59 298 | 78.06 273 | 94.27 335 | 74.88 318 | 93.15 319 | 95.80 260 |
|
HY-MVS | | 82.50 18 | 86.81 287 | 85.93 288 | 89.47 274 | 93.63 278 | 77.93 273 | 94.02 125 | 91.58 298 | 75.68 308 | 83.64 335 | 93.64 251 | 77.40 277 | 97.42 265 | 71.70 335 | 92.07 332 | 93.05 323 |
|
1314 | | | 86.46 288 | 86.33 285 | 86.87 310 | 91.65 312 | 74.54 310 | 91.94 195 | 94.10 253 | 74.28 315 | 84.78 328 | 87.33 341 | 83.03 232 | 95.00 327 | 78.72 293 | 91.16 338 | 91.06 340 |
|
ET-MVSNet_ETH3D | | | 86.15 289 | 84.27 297 | 91.79 214 | 93.04 288 | 81.28 221 | 87.17 306 | 86.14 330 | 79.57 283 | 83.65 334 | 88.66 331 | 57.10 351 | 98.18 212 | 87.74 194 | 95.40 282 | 95.90 257 |
|
Patchmatch-test | | | 86.10 290 | 86.01 287 | 86.38 315 | 90.63 324 | 74.22 316 | 89.57 266 | 86.69 326 | 85.73 225 | 89.81 278 | 92.83 271 | 65.24 328 | 91.04 351 | 77.82 300 | 95.78 273 | 93.88 308 |
|
thres200 | | | 85.85 291 | 85.18 292 | 87.88 302 | 94.44 261 | 72.52 326 | 89.08 279 | 86.21 329 | 88.57 176 | 91.44 246 | 88.40 334 | 64.22 331 | 98.00 225 | 68.35 346 | 95.88 272 | 93.12 320 |
|
EPNet_dtu | | | 85.63 292 | 84.37 295 | 89.40 277 | 86.30 356 | 74.33 314 | 91.64 211 | 88.26 314 | 84.84 241 | 72.96 361 | 89.85 316 | 71.27 306 | 97.69 252 | 76.60 309 | 97.62 226 | 96.18 245 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PatchmatchNet |  | | 85.22 293 | 84.64 294 | 86.98 309 | 89.51 338 | 69.83 340 | 90.52 236 | 87.34 323 | 78.87 293 | 87.22 315 | 92.74 275 | 66.91 316 | 96.53 293 | 81.77 262 | 86.88 348 | 94.58 291 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CVMVSNet | | | 85.16 294 | 84.72 293 | 86.48 311 | 92.12 304 | 70.19 335 | 92.32 178 | 88.17 317 | 56.15 360 | 90.64 261 | 95.85 161 | 67.97 312 | 96.69 290 | 88.78 175 | 90.52 340 | 92.56 329 |
|
JIA-IIPM | | | 85.08 295 | 83.04 304 | 91.19 235 | 87.56 348 | 86.14 161 | 89.40 271 | 84.44 348 | 88.98 165 | 82.20 344 | 97.95 39 | 56.82 353 | 96.15 304 | 76.55 310 | 83.45 353 | 91.30 338 |
|
MVS | | | 84.98 296 | 84.30 296 | 87.01 308 | 91.03 319 | 77.69 279 | 91.94 195 | 94.16 252 | 59.36 358 | 84.23 332 | 87.50 339 | 85.66 216 | 96.80 287 | 71.79 333 | 93.05 322 | 86.54 350 |
|
thisisatest0515 | | | 84.72 297 | 82.99 305 | 89.90 270 | 92.96 290 | 75.33 306 | 84.36 336 | 83.42 351 | 77.37 302 | 88.27 303 | 86.65 342 | 53.94 357 | 98.72 155 | 82.56 254 | 97.40 233 | 95.67 266 |
|
FPMVS | | | 84.50 298 | 83.28 302 | 88.16 298 | 96.32 174 | 94.49 14 | 85.76 324 | 85.47 339 | 83.09 255 | 85.20 324 | 94.26 230 | 63.79 335 | 86.58 358 | 63.72 354 | 91.88 335 | 83.40 353 |
|
tpm | | | 84.38 299 | 84.08 298 | 85.30 322 | 90.47 327 | 63.43 359 | 89.34 272 | 85.63 337 | 77.24 304 | 87.62 310 | 95.03 205 | 61.00 347 | 97.30 271 | 79.26 290 | 91.09 339 | 95.16 276 |
|
tpmvs | | | 84.22 300 | 83.97 299 | 84.94 323 | 87.09 353 | 65.18 352 | 91.21 220 | 88.35 313 | 82.87 259 | 85.21 323 | 90.96 306 | 65.24 328 | 96.75 288 | 79.60 288 | 85.25 350 | 92.90 325 |
|
ADS-MVSNet2 | | | 84.01 301 | 82.20 309 | 89.41 276 | 89.04 342 | 76.37 297 | 87.57 296 | 90.98 301 | 72.71 326 | 84.46 329 | 92.45 281 | 68.08 310 | 96.48 296 | 70.58 342 | 83.97 351 | 95.38 273 |
|
test-LLR | | | 83.58 302 | 83.17 303 | 84.79 325 | 89.68 335 | 66.86 347 | 83.08 343 | 84.52 346 | 83.07 256 | 82.85 340 | 84.78 351 | 62.86 339 | 93.49 341 | 82.85 250 | 94.86 292 | 94.03 302 |
|
baseline2 | | | 83.38 303 | 81.54 312 | 88.90 284 | 91.38 316 | 72.84 325 | 88.78 284 | 81.22 356 | 78.97 291 | 79.82 354 | 87.56 337 | 61.73 344 | 97.80 242 | 74.30 321 | 90.05 342 | 96.05 250 |
|
IB-MVS | | 77.21 19 | 83.11 304 | 81.05 315 | 89.29 279 | 91.15 318 | 75.85 301 | 85.66 325 | 86.00 333 | 79.70 281 | 82.02 347 | 86.61 343 | 48.26 363 | 98.39 192 | 77.84 298 | 92.22 330 | 93.63 313 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CostFormer | | | 83.09 305 | 82.21 308 | 85.73 317 | 89.27 340 | 67.01 344 | 90.35 242 | 86.47 328 | 70.42 336 | 83.52 337 | 93.23 263 | 61.18 345 | 96.85 285 | 77.21 305 | 88.26 346 | 93.34 319 |
|
PMMVS | | | 83.00 306 | 81.11 314 | 88.66 290 | 83.81 363 | 86.44 152 | 82.24 347 | 85.65 336 | 61.75 357 | 82.07 345 | 85.64 349 | 79.75 260 | 91.59 350 | 75.99 313 | 93.09 320 | 87.94 349 |
|
PVSNet | | 76.22 20 | 82.89 307 | 82.37 307 | 84.48 327 | 93.96 272 | 64.38 357 | 78.60 353 | 88.61 311 | 71.50 330 | 84.43 331 | 86.36 346 | 74.27 294 | 94.60 329 | 69.87 344 | 93.69 313 | 94.46 293 |
|
tpmrst | | | 82.85 308 | 82.93 306 | 82.64 334 | 87.65 347 | 58.99 362 | 90.14 250 | 87.90 319 | 75.54 310 | 83.93 333 | 91.63 297 | 66.79 319 | 95.36 321 | 81.21 269 | 81.54 357 | 93.57 317 |
|
test0.0.03 1 | | | 82.48 309 | 81.47 313 | 85.48 319 | 89.70 334 | 73.57 319 | 84.73 331 | 81.64 355 | 83.07 256 | 88.13 305 | 86.61 343 | 62.86 339 | 89.10 357 | 66.24 351 | 90.29 341 | 93.77 310 |
|
ADS-MVSNet | | | 82.25 310 | 81.55 311 | 84.34 328 | 89.04 342 | 65.30 351 | 87.57 296 | 85.13 345 | 72.71 326 | 84.46 329 | 92.45 281 | 68.08 310 | 92.33 347 | 70.58 342 | 83.97 351 | 95.38 273 |
|
DSMNet-mixed | | | 82.21 311 | 81.56 310 | 84.16 329 | 89.57 337 | 70.00 339 | 90.65 233 | 77.66 362 | 54.99 361 | 83.30 338 | 97.57 55 | 77.89 275 | 90.50 353 | 66.86 350 | 95.54 278 | 91.97 333 |
|
KD-MVS_2432*1600 | | | 82.17 312 | 80.75 319 | 86.42 313 | 82.04 364 | 70.09 337 | 81.75 348 | 90.80 302 | 82.56 260 | 90.37 265 | 89.30 327 | 42.90 369 | 96.11 306 | 74.47 319 | 92.55 327 | 93.06 321 |
|
miper_refine_blended | | | 82.17 312 | 80.75 319 | 86.42 313 | 82.04 364 | 70.09 337 | 81.75 348 | 90.80 302 | 82.56 260 | 90.37 265 | 89.30 327 | 42.90 369 | 96.11 306 | 74.47 319 | 92.55 327 | 93.06 321 |
|
gg-mvs-nofinetune | | | 82.10 314 | 81.02 316 | 85.34 321 | 87.46 351 | 71.04 331 | 94.74 99 | 67.56 364 | 96.44 21 | 79.43 355 | 98.99 6 | 45.24 365 | 96.15 304 | 67.18 349 | 92.17 331 | 88.85 346 |
|
PAPM | | | 81.91 315 | 80.11 325 | 87.31 307 | 93.87 275 | 72.32 328 | 84.02 340 | 93.22 267 | 69.47 340 | 76.13 359 | 89.84 317 | 72.15 302 | 97.23 273 | 53.27 360 | 89.02 343 | 92.37 331 |
|
tpm2 | | | 81.46 316 | 80.35 323 | 84.80 324 | 89.90 332 | 65.14 353 | 90.44 238 | 85.36 340 | 65.82 351 | 82.05 346 | 92.44 283 | 57.94 350 | 96.69 290 | 70.71 341 | 88.49 345 | 92.56 329 |
|
PMMVS2 | | | 81.31 317 | 83.44 301 | 74.92 343 | 90.52 326 | 46.49 366 | 69.19 358 | 85.23 344 | 84.30 246 | 87.95 307 | 94.71 219 | 76.95 284 | 84.36 360 | 64.07 353 | 98.09 200 | 93.89 307 |
|
new_pmnet | | | 81.22 318 | 81.01 317 | 81.86 336 | 90.92 322 | 70.15 336 | 84.03 339 | 80.25 360 | 70.83 334 | 85.97 321 | 89.78 321 | 67.93 313 | 84.65 359 | 67.44 348 | 91.90 334 | 90.78 341 |
|
test-mter | | | 81.21 319 | 80.01 326 | 84.79 325 | 89.68 335 | 66.86 347 | 83.08 343 | 84.52 346 | 73.85 319 | 82.85 340 | 84.78 351 | 43.66 368 | 93.49 341 | 82.85 250 | 94.86 292 | 94.03 302 |
|
EPMVS | | | 81.17 320 | 80.37 322 | 83.58 331 | 85.58 358 | 65.08 354 | 90.31 244 | 71.34 363 | 77.31 303 | 85.80 322 | 91.30 300 | 59.38 348 | 92.70 346 | 79.99 279 | 82.34 356 | 92.96 324 |
|
pmmvs3 | | | 80.83 321 | 78.96 329 | 86.45 312 | 87.23 352 | 77.48 281 | 84.87 330 | 82.31 353 | 63.83 354 | 85.03 325 | 89.50 325 | 49.66 361 | 93.10 343 | 73.12 328 | 95.10 289 | 88.78 348 |
|
DWT-MVSNet_test | | | 80.74 322 | 79.18 328 | 85.43 320 | 87.51 350 | 66.87 346 | 89.87 260 | 86.01 332 | 74.20 317 | 80.86 351 | 80.62 357 | 48.84 362 | 96.68 292 | 81.54 264 | 83.14 355 | 92.75 327 |
|
E-PMN | | | 80.72 323 | 80.86 318 | 80.29 339 | 85.11 359 | 68.77 342 | 72.96 355 | 81.97 354 | 87.76 191 | 83.25 339 | 83.01 355 | 62.22 342 | 89.17 356 | 77.15 306 | 94.31 305 | 82.93 354 |
|
tpm cat1 | | | 80.61 324 | 79.46 327 | 84.07 330 | 88.78 344 | 65.06 355 | 89.26 275 | 88.23 315 | 62.27 356 | 81.90 348 | 89.66 324 | 62.70 341 | 95.29 324 | 71.72 334 | 80.60 358 | 91.86 336 |
|
EMVS | | | 80.35 325 | 80.28 324 | 80.54 338 | 84.73 361 | 69.07 341 | 72.54 357 | 80.73 357 | 87.80 190 | 81.66 349 | 81.73 356 | 62.89 338 | 89.84 354 | 75.79 315 | 94.65 299 | 82.71 355 |
|
CHOSEN 280x420 | | | 80.04 326 | 77.97 332 | 86.23 316 | 90.13 330 | 74.53 311 | 72.87 356 | 89.59 308 | 66.38 348 | 76.29 358 | 85.32 350 | 56.96 352 | 95.36 321 | 69.49 345 | 94.72 297 | 88.79 347 |
|
dp | | | 79.28 327 | 78.62 330 | 81.24 337 | 85.97 357 | 56.45 363 | 86.91 310 | 85.26 343 | 72.97 324 | 81.45 350 | 89.17 330 | 56.01 355 | 95.45 319 | 73.19 327 | 76.68 359 | 91.82 337 |
|
TESTMET0.1,1 | | | 79.09 328 | 78.04 331 | 82.25 335 | 87.52 349 | 64.03 358 | 83.08 343 | 80.62 358 | 70.28 337 | 80.16 353 | 83.22 354 | 44.13 367 | 90.56 352 | 79.95 280 | 93.36 314 | 92.15 332 |
|
MVS-HIRNet | | | 78.83 329 | 80.60 321 | 73.51 344 | 93.07 286 | 47.37 365 | 87.10 307 | 78.00 361 | 68.94 341 | 77.53 357 | 97.26 76 | 71.45 305 | 94.62 328 | 63.28 355 | 88.74 344 | 78.55 358 |
|
PVSNet_0 | | 70.34 21 | 74.58 330 | 72.96 333 | 79.47 340 | 90.63 324 | 66.24 350 | 73.26 354 | 83.40 352 | 63.67 355 | 78.02 356 | 78.35 359 | 72.53 300 | 89.59 355 | 56.68 358 | 60.05 362 | 82.57 356 |
|
MVE |  | 59.87 23 | 73.86 331 | 72.65 334 | 77.47 342 | 87.00 355 | 74.35 313 | 61.37 360 | 60.93 366 | 67.27 346 | 69.69 362 | 86.49 345 | 81.24 254 | 72.33 362 | 56.45 359 | 83.45 353 | 85.74 351 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 50.44 332 | 48.94 335 | 54.93 345 | 39.68 367 | 12.38 369 | 28.59 361 | 90.09 306 | 6.82 363 | 41.10 365 | 78.41 358 | 54.41 356 | 70.69 363 | 50.12 361 | 51.26 363 | 81.72 357 |
|
tmp_tt | | | 37.97 333 | 44.33 336 | 18.88 347 | 11.80 368 | 21.54 368 | 63.51 359 | 45.66 369 | 4.23 364 | 51.34 364 | 50.48 362 | 59.08 349 | 22.11 365 | 44.50 362 | 68.35 361 | 13.00 361 |
|
cdsmvs_eth3d_5k | | | 23.35 334 | 31.13 337 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 95.58 217 | 0.00 367 | 0.00 368 | 91.15 302 | 93.43 75 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
test123 | | | 9.49 335 | 12.01 338 | 1.91 348 | 2.87 369 | 1.30 370 | 82.38 346 | 1.34 371 | 1.36 365 | 2.84 366 | 6.56 365 | 2.45 371 | 0.97 366 | 2.73 364 | 5.56 364 | 3.47 362 |
|
testmvs | | | 9.02 336 | 11.42 339 | 1.81 349 | 2.77 370 | 1.13 371 | 79.44 352 | 1.90 370 | 1.18 366 | 2.65 367 | 6.80 364 | 1.95 372 | 0.87 367 | 2.62 365 | 3.45 365 | 3.44 363 |
|
pcd_1.5k_mvsjas | | | 7.56 337 | 10.09 340 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 90.77 140 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
ab-mvs-re | | | 7.56 337 | 10.08 341 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 90.69 311 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uanet_test | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
sosnet-low-res | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
sosnet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uncertanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
Regformer | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
ZD-MVS | | | | | | 97.23 125 | 90.32 77 | | 97.54 105 | 84.40 245 | 94.78 156 | 95.79 166 | 92.76 95 | 99.39 45 | 88.72 178 | 98.40 159 | |
|
RE-MVS-def | | | | 96.66 20 | | 98.07 76 | 95.27 8 | 96.37 36 | 98.12 41 | 95.66 32 | 97.00 56 | 97.03 90 | 95.40 27 | | 93.49 44 | 98.84 118 | 98.00 145 |
|
IU-MVS | | | | | | 98.51 45 | 86.66 147 | | 96.83 160 | 72.74 325 | 95.83 109 | | | | 93.00 72 | 99.29 65 | 98.64 96 |
|
OPU-MVS | | | | | 95.15 96 | 96.84 144 | 89.43 90 | 95.21 79 | | | | 95.66 173 | 93.12 85 | 98.06 219 | 86.28 218 | 98.61 143 | 97.95 153 |
|
test_241102_TWO | | | | | | | | | 98.10 44 | 91.95 88 | 97.54 36 | 97.25 77 | 95.37 28 | 99.35 56 | 93.29 59 | 99.25 73 | 98.49 110 |
|
test_241102_ONE | | | | | | 98.51 45 | 86.97 138 | | 98.10 44 | 91.85 94 | 97.63 31 | 97.03 90 | 96.48 11 | 98.95 117 | | | |
|
9.14 | | | | 94.81 92 | | 97.49 114 | | 94.11 122 | 98.37 14 | 87.56 198 | 95.38 127 | 96.03 155 | 94.66 55 | 99.08 94 | 90.70 125 | 98.97 106 | |
|
save fliter | | | | | | 97.46 117 | 88.05 119 | 92.04 189 | 97.08 142 | 87.63 195 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 93.26 65 | 97.40 44 | 97.35 72 | 94.69 54 | 99.34 59 | 93.88 32 | 99.42 47 | 98.89 69 |
|
test_0728_SECOND | | | | | 94.88 103 | 98.55 39 | 86.72 144 | 95.20 81 | 98.22 29 | | | | | 99.38 51 | 93.44 51 | 99.31 62 | 98.53 107 |
|
test0726 | | | | | | 98.51 45 | 86.69 145 | 95.34 74 | 98.18 32 | 91.85 94 | 97.63 31 | 97.37 68 | 95.58 22 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 94.75 287 |
|
test_part2 | | | | | | 98.21 68 | 89.41 91 | | | | 96.72 68 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 66.64 320 | | | | 94.75 287 |
|
sam_mvs | | | | | | | | | | | | | 66.41 321 | | | | |
|
ambc | | | | | 92.98 172 | 96.88 142 | 83.01 203 | 95.92 56 | 96.38 185 | | 96.41 77 | 97.48 62 | 88.26 174 | 97.80 242 | 89.96 149 | 98.93 110 | 98.12 137 |
|
MTGPA |  | | | | | | | | 97.62 97 | | | | | | | | |
|
test_post1 | | | | | | | | 90.21 246 | | | | 5.85 367 | 65.36 326 | 96.00 309 | 79.61 286 | | |
|
test_post | | | | | | | | | | | | 6.07 366 | 65.74 325 | 95.84 311 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.71 295 | 66.22 323 | 97.59 255 | | | |
|
GG-mvs-BLEND | | | | | 83.24 333 | 85.06 360 | 71.03 332 | 94.99 92 | 65.55 365 | | 74.09 360 | 75.51 360 | 44.57 366 | 94.46 331 | 59.57 357 | 87.54 347 | 84.24 352 |
|
MTMP | | | | | | | | 94.82 96 | 54.62 367 | | | | | | | | |
|
gm-plane-assit | | | | | | 87.08 354 | 59.33 361 | | | 71.22 331 | | 83.58 353 | | 97.20 274 | 73.95 322 | | |
|
test9_res | | | | | | | | | | | | | | | 88.16 186 | 98.40 159 | 97.83 166 |
|
TEST9 | | | | | | 96.45 164 | 89.46 88 | 90.60 234 | 96.92 153 | 79.09 290 | 90.49 262 | 94.39 227 | 91.31 127 | 98.88 124 | | | |
|
test_8 | | | | | | 96.37 166 | 89.14 95 | 90.51 237 | 96.89 156 | 79.37 285 | 90.42 264 | 94.36 229 | 91.20 133 | 98.82 134 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 87.06 204 | 98.36 170 | 97.98 149 |
|
agg_prior | | | | | | 96.20 183 | 88.89 100 | | 96.88 157 | | 90.21 267 | | | 98.78 145 | | | |
|
TestCases | | | | | 96.00 55 | 98.02 82 | 92.17 50 | | 98.43 10 | 90.48 136 | 95.04 146 | 96.74 110 | 92.54 100 | 97.86 237 | 85.11 230 | 98.98 102 | 97.98 149 |
|
test_prior4 | | | | | | | 89.91 82 | 90.74 230 | | | | | | | | | |
|
test_prior2 | | | | | | | | 90.21 246 | | 89.33 159 | 90.77 257 | 94.81 213 | 90.41 150 | | 88.21 182 | 98.55 146 | |
|
test_prior | | | | | 94.61 113 | 95.95 204 | 87.23 131 | | 97.36 120 | | | | | 98.68 165 | | | 97.93 155 |
|
旧先验2 | | | | | | | | 90.00 255 | | 68.65 342 | 92.71 218 | | | 96.52 294 | 85.15 227 | | |
|
新几何2 | | | | | | | | 90.02 254 | | | | | | | | | |
|
新几何1 | | | | | 93.17 169 | 97.16 130 | 87.29 130 | | 94.43 246 | 67.95 344 | 91.29 249 | 94.94 208 | 86.97 198 | 98.23 207 | 81.06 272 | 97.75 217 | 93.98 305 |
|
旧先验1 | | | | | | 96.20 183 | 84.17 186 | | 94.82 236 | | | 95.57 179 | 89.57 163 | | | 97.89 213 | 96.32 238 |
|
无先验 | | | | | | | | 89.94 256 | 95.75 208 | 70.81 335 | | | | 98.59 175 | 81.17 270 | | 94.81 284 |
|
原ACMM2 | | | | | | | | 89.34 272 | | | | | | | | | |
|
原ACMM1 | | | | | 92.87 180 | 96.91 141 | 84.22 184 | | 97.01 145 | 76.84 306 | 89.64 282 | 94.46 224 | 88.00 180 | 98.70 161 | 81.53 265 | 98.01 207 | 95.70 265 |
|
test222 | | | | | | 96.95 138 | 85.27 173 | 88.83 283 | 93.61 260 | 65.09 352 | 90.74 259 | 94.85 212 | 84.62 223 | | | 97.36 234 | 93.91 306 |
|
testdata2 | | | | | | | | | | | | | | 98.03 221 | 80.24 277 | | |
|
segment_acmp | | | | | | | | | | | | | 92.14 107 | | | | |
|
testdata | | | | | 91.03 238 | 96.87 143 | 82.01 210 | | 94.28 250 | 71.55 329 | 92.46 224 | 95.42 188 | 85.65 217 | 97.38 270 | 82.64 253 | 97.27 236 | 93.70 312 |
|
testdata1 | | | | | | | | 88.96 281 | | 88.44 178 | | | | | | | |
|
test12 | | | | | 94.43 128 | 95.95 204 | 86.75 143 | | 96.24 190 | | 89.76 280 | | 89.79 162 | 98.79 141 | | 97.95 210 | 97.75 175 |
|
plane_prior7 | | | | | | 97.71 99 | 88.68 104 | | | | | | | | | | |
|
plane_prior6 | | | | | | 97.21 128 | 88.23 115 | | | | | | 86.93 199 | | | | |
|
plane_prior5 | | | | | | | | | 97.81 85 | | | | | 98.95 117 | 89.26 164 | 98.51 153 | 98.60 103 |
|
plane_prior4 | | | | | | | | | | | | 95.59 175 | | | | | |
|
plane_prior3 | | | | | | | 88.43 113 | | | 90.35 141 | 93.31 196 | | | | | | |
|
plane_prior2 | | | | | | | | 94.56 108 | | 91.74 105 | | | | | | | |
|
plane_prior1 | | | | | | 97.38 120 | | | | | | | | | | | |
|
plane_prior | | | | | | | 88.12 117 | 93.01 148 | | 88.98 165 | | | | | | 98.06 202 | |
|
n2 | | | | | | | | | 0.00 372 | | | | | | | | |
|
nn | | | | | | | | | 0.00 372 | | | | | | | | |
|
door-mid | | | | | | | | | 92.13 291 | | | | | | | | |
|
lessismore_v0 | | | | | 93.87 148 | 98.05 78 | 83.77 192 | | 80.32 359 | | 97.13 50 | 97.91 42 | 77.49 276 | 99.11 91 | 92.62 82 | 98.08 201 | 98.74 87 |
|
LGP-MVS_train | | | | | 96.84 40 | 98.36 60 | 92.13 52 | | 98.25 24 | 91.78 101 | 97.07 51 | 97.22 80 | 96.38 13 | 99.28 70 | 92.07 93 | 99.59 27 | 99.11 41 |
|
test11 | | | | | | | | | 96.65 171 | | | | | | | | |
|
door | | | | | | | | | 91.26 299 | | | | | | | | |
|
HQP5-MVS | | | | | | | 84.89 176 | | | | | | | | | | |
|
HQP-NCC | | | | | | 96.36 168 | | 91.37 215 | | 87.16 202 | 88.81 291 | | | | | | |
|
ACMP_Plane | | | | | | 96.36 168 | | 91.37 215 | | 87.16 202 | 88.81 291 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 86.55 212 | | |
|
HQP4-MVS | | | | | | | | | | | 88.81 291 | | | 98.61 171 | | | 98.15 133 |
|
HQP3-MVS | | | | | | | | | 97.31 125 | | | | | | | 97.73 218 | |
|
HQP2-MVS | | | | | | | | | | | | | 84.76 221 | | | | |
|
NP-MVS | | | | | | 96.82 145 | 87.10 134 | | | | | 93.40 258 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 42.48 367 | 88.45 291 | | 67.22 347 | 83.56 336 | | 66.80 317 | | 72.86 329 | | 94.06 301 |
|
MDTV_nov1_ep13 | | | | 83.88 300 | | 89.42 339 | 61.52 360 | 88.74 286 | 87.41 322 | 73.99 318 | 84.96 327 | 94.01 241 | 65.25 327 | 95.53 314 | 78.02 296 | 93.16 318 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 98.82 124 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.25 73 | |
|
Test By Simon | | | | | | | | | | | | | 90.61 146 | | | | |
|
ITE_SJBPF | | | | | 95.95 57 | 97.34 122 | 93.36 40 | | 96.55 178 | 91.93 90 | 94.82 154 | 95.39 191 | 91.99 111 | 97.08 277 | 85.53 223 | 97.96 209 | 97.41 194 |
|
DeepMVS_CX |  | | | | 53.83 346 | 70.38 366 | 64.56 356 | | 48.52 368 | 33.01 362 | 65.50 363 | 74.21 361 | 56.19 354 | 46.64 364 | 38.45 363 | 70.07 360 | 50.30 360 |
|