| LCM-MVSNet | | | 99.43 1 | 99.49 1 | 99.24 2 | 99.95 1 | 98.13 2 | 99.37 1 | 99.57 1 | 99.82 1 | 99.86 1 | 99.85 1 | 99.52 1 | 99.73 2 | 97.58 2 | 99.94 1 | 99.85 1 |
|
| mamv4 | | | 98.21 2 | 97.86 3 | 99.26 1 | 98.24 71 | 99.36 1 | 96.10 63 | 99.32 2 | 98.75 2 | 99.58 2 | 98.70 18 | 91.78 128 | 99.88 1 | 98.60 1 | 99.67 20 | 98.54 117 |
|
| LTVRE_ROB | | 93.87 1 | 97.93 3 | 98.16 2 | 97.26 27 | 98.81 27 | 93.86 32 | 99.07 2 | 98.98 7 | 97.01 16 | 98.92 6 | 98.78 14 | 95.22 40 | 98.61 172 | 96.85 4 | 99.77 9 | 99.31 26 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| TDRefinement | | | 97.68 4 | 97.60 5 | 97.93 3 | 99.02 12 | 95.95 9 | 98.61 3 | 98.81 10 | 97.41 11 | 97.28 56 | 98.46 32 | 94.62 64 | 98.84 130 | 94.64 34 | 99.53 37 | 98.99 54 |
|
| UA-Net | | | 97.35 5 | 97.24 12 | 97.69 5 | 98.22 72 | 93.87 31 | 98.42 6 | 98.19 43 | 96.95 17 | 95.46 143 | 99.23 4 | 93.45 84 | 99.57 16 | 95.34 29 | 99.89 2 | 99.63 9 |
|
| UniMVSNet_ETH3D | | | 97.13 6 | 97.72 4 | 95.35 83 | 99.51 2 | 87.38 133 | 97.70 8 | 97.54 118 | 98.16 3 | 98.94 4 | 99.33 2 | 97.84 4 | 99.08 96 | 90.73 142 | 99.73 13 | 99.59 12 |
|
| HPM-MVS_fast | | | 97.01 7 | 96.89 15 | 97.39 22 | 99.12 8 | 93.92 29 | 97.16 14 | 98.17 49 | 93.11 76 | 96.48 89 | 97.36 93 | 96.92 6 | 99.34 63 | 94.31 40 | 99.38 57 | 98.92 70 |
|
| SR-MVS-dyc-post | | | 96.84 8 | 96.60 26 | 97.56 11 | 98.07 81 | 95.27 10 | 96.37 46 | 98.12 55 | 95.66 36 | 97.00 67 | 97.03 123 | 94.85 58 | 99.42 34 | 93.49 62 | 98.84 131 | 98.00 158 |
|
| mvs_tets | | | 96.83 9 | 96.71 20 | 97.17 28 | 98.83 24 | 92.51 49 | 96.58 33 | 97.61 111 | 87.57 210 | 98.80 9 | 98.90 9 | 96.50 9 | 99.59 15 | 96.15 13 | 99.47 41 | 99.40 20 |
|
| v7n | | | 96.82 10 | 97.31 11 | 95.33 85 | 98.54 46 | 86.81 148 | 96.83 22 | 98.07 64 | 96.59 23 | 98.46 19 | 98.43 34 | 92.91 104 | 99.52 21 | 96.25 12 | 99.76 10 | 99.65 8 |
|
| APD-MVS_3200maxsize | | | 96.82 10 | 96.65 22 | 97.32 26 | 97.95 93 | 93.82 34 | 96.31 52 | 98.25 33 | 95.51 38 | 96.99 69 | 97.05 122 | 95.63 23 | 99.39 50 | 93.31 74 | 98.88 126 | 98.75 89 |
|
| HPM-MVS |  | | 96.81 12 | 96.62 24 | 97.36 24 | 98.89 20 | 93.53 39 | 97.51 10 | 98.44 18 | 92.35 89 | 95.95 115 | 96.41 164 | 96.71 8 | 99.42 34 | 93.99 47 | 99.36 59 | 99.13 39 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| pmmvs6 | | | 96.80 13 | 97.36 10 | 95.15 96 | 99.12 8 | 87.82 128 | 96.68 29 | 97.86 89 | 96.10 30 | 98.14 26 | 99.28 3 | 97.94 3 | 98.21 212 | 91.38 131 | 99.69 14 | 99.42 18 |
|
| OurMVSNet-221017-0 | | | 96.80 13 | 96.75 18 | 96.96 36 | 99.03 11 | 91.85 58 | 97.98 7 | 98.01 76 | 94.15 54 | 98.93 5 | 99.07 5 | 88.07 191 | 99.57 16 | 95.86 15 | 99.69 14 | 99.46 17 |
|
| testf1 | | | 96.77 15 | 96.49 28 | 97.60 9 | 99.01 14 | 96.70 4 | 96.31 52 | 98.33 24 | 94.96 41 | 97.30 54 | 97.93 55 | 96.05 16 | 97.90 238 | 89.32 181 | 99.23 84 | 98.19 141 |
|
| APD_test2 | | | 96.77 15 | 96.49 28 | 97.60 9 | 99.01 14 | 96.70 4 | 96.31 52 | 98.33 24 | 94.96 41 | 97.30 54 | 97.93 55 | 96.05 16 | 97.90 238 | 89.32 181 | 99.23 84 | 98.19 141 |
|
| COLMAP_ROB |  | 91.06 5 | 96.75 17 | 96.62 24 | 97.13 29 | 98.38 60 | 94.31 18 | 96.79 25 | 98.32 26 | 96.69 20 | 96.86 74 | 97.56 75 | 95.48 27 | 98.77 147 | 90.11 165 | 99.44 48 | 98.31 132 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| anonymousdsp | | | 96.74 18 | 96.42 31 | 97.68 7 | 98.00 89 | 94.03 26 | 96.97 19 | 97.61 111 | 87.68 208 | 98.45 20 | 98.77 15 | 94.20 74 | 99.50 23 | 96.70 6 | 99.40 55 | 99.53 14 |
|
| DTE-MVSNet | | | 96.74 18 | 97.43 6 | 94.67 113 | 99.13 6 | 84.68 194 | 96.51 37 | 97.94 87 | 98.14 4 | 98.67 14 | 98.32 36 | 95.04 48 | 99.69 5 | 93.27 77 | 99.82 7 | 99.62 10 |
|
| SR-MVS | | | 96.70 20 | 96.42 31 | 97.54 12 | 98.05 83 | 94.69 12 | 96.13 62 | 98.07 64 | 95.17 40 | 96.82 76 | 96.73 147 | 95.09 47 | 99.43 33 | 92.99 88 | 98.71 151 | 98.50 120 |
|
| PS-CasMVS | | | 96.69 21 | 97.43 6 | 94.49 126 | 99.13 6 | 84.09 205 | 96.61 32 | 97.97 81 | 97.91 6 | 98.64 15 | 98.13 42 | 95.24 38 | 99.65 6 | 93.39 72 | 99.84 3 | 99.72 2 |
|
| PEN-MVS | | | 96.69 21 | 97.39 9 | 94.61 116 | 99.16 4 | 84.50 195 | 96.54 34 | 98.05 68 | 98.06 5 | 98.64 15 | 98.25 39 | 95.01 51 | 99.65 6 | 92.95 89 | 99.83 5 | 99.68 4 |
|
| MTAPA | | | 96.65 23 | 96.38 35 | 97.47 16 | 98.95 18 | 94.05 24 | 95.88 74 | 97.62 109 | 94.46 50 | 96.29 98 | 96.94 129 | 93.56 81 | 99.37 58 | 94.29 41 | 99.42 50 | 98.99 54 |
|
| test_djsdf | | | 96.62 24 | 96.49 28 | 97.01 33 | 98.55 44 | 91.77 60 | 97.15 15 | 97.37 129 | 88.98 177 | 98.26 24 | 98.86 10 | 93.35 89 | 99.60 11 | 96.41 9 | 99.45 45 | 99.66 6 |
|
| ACMMP |  | | 96.61 25 | 96.34 36 | 97.43 19 | 98.61 37 | 93.88 30 | 96.95 20 | 98.18 45 | 92.26 92 | 96.33 94 | 96.84 137 | 95.10 46 | 99.40 47 | 93.47 65 | 99.33 65 | 99.02 51 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| Anonymous20231211 | | | 96.60 26 | 97.13 13 | 95.00 99 | 97.46 130 | 86.35 164 | 97.11 18 | 98.24 36 | 97.58 9 | 98.72 10 | 98.97 7 | 93.15 96 | 99.15 87 | 93.18 80 | 99.74 12 | 99.50 16 |
|
| WR-MVS_H | | | 96.60 26 | 97.05 14 | 95.24 91 | 99.02 12 | 86.44 160 | 96.78 26 | 98.08 61 | 97.42 10 | 98.48 18 | 97.86 62 | 91.76 131 | 99.63 9 | 94.23 42 | 99.84 3 | 99.66 6 |
|
| jajsoiax | | | 96.59 28 | 96.42 31 | 97.12 30 | 98.76 30 | 92.49 50 | 96.44 43 | 97.42 127 | 86.96 219 | 98.71 12 | 98.72 17 | 95.36 32 | 99.56 19 | 95.92 14 | 99.45 45 | 99.32 25 |
|
| ACMH | | 88.36 12 | 96.59 28 | 97.43 6 | 94.07 140 | 98.56 41 | 85.33 188 | 96.33 49 | 98.30 29 | 94.66 45 | 98.72 10 | 98.30 37 | 97.51 5 | 98.00 231 | 94.87 31 | 99.59 27 | 98.86 76 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| XVS | | | 96.49 30 | 96.18 44 | 97.44 17 | 98.56 41 | 93.99 27 | 96.50 38 | 97.95 84 | 94.58 46 | 94.38 191 | 96.49 158 | 94.56 66 | 99.39 50 | 93.57 58 | 99.05 104 | 98.93 66 |
|
| ACMH+ | | 88.43 11 | 96.48 31 | 96.82 16 | 95.47 80 | 98.54 46 | 89.06 101 | 95.65 82 | 98.61 14 | 96.10 30 | 98.16 25 | 97.52 80 | 96.90 7 | 98.62 171 | 90.30 156 | 99.60 25 | 98.72 94 |
|
| APDe-MVS |  | | 96.46 32 | 96.64 23 | 95.93 61 | 97.68 116 | 89.38 95 | 96.90 21 | 98.41 21 | 92.52 84 | 97.43 48 | 97.92 58 | 95.11 45 | 99.50 23 | 94.45 36 | 99.30 70 | 98.92 70 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| ACMMPR | | | 96.46 32 | 96.14 47 | 97.41 21 | 98.60 38 | 93.82 34 | 96.30 56 | 97.96 82 | 92.35 89 | 95.57 136 | 96.61 154 | 94.93 56 | 99.41 40 | 93.78 52 | 99.15 96 | 99.00 52 |
|
| mPP-MVS | | | 96.46 32 | 96.05 53 | 97.69 5 | 98.62 35 | 94.65 14 | 96.45 41 | 97.74 102 | 92.59 83 | 95.47 141 | 96.68 150 | 94.50 68 | 99.42 34 | 93.10 83 | 99.26 80 | 98.99 54 |
|
| CP-MVS | | | 96.44 35 | 96.08 51 | 97.54 12 | 98.29 65 | 94.62 15 | 96.80 24 | 98.08 61 | 92.67 82 | 95.08 168 | 96.39 169 | 94.77 60 | 99.42 34 | 93.17 81 | 99.44 48 | 98.58 116 |
|
| ZNCC-MVS | | | 96.42 36 | 96.20 43 | 97.07 31 | 98.80 29 | 92.79 47 | 96.08 65 | 98.16 52 | 91.74 116 | 95.34 150 | 96.36 172 | 95.68 21 | 99.44 30 | 94.41 38 | 99.28 78 | 98.97 60 |
|
| region2R | | | 96.41 37 | 96.09 49 | 97.38 23 | 98.62 35 | 93.81 36 | 96.32 51 | 97.96 82 | 92.26 92 | 95.28 155 | 96.57 156 | 95.02 50 | 99.41 40 | 93.63 56 | 99.11 99 | 98.94 64 |
|
| SteuartSystems-ACMMP | | | 96.40 38 | 96.30 38 | 96.71 41 | 98.63 34 | 91.96 56 | 95.70 79 | 98.01 76 | 93.34 73 | 96.64 84 | 96.57 156 | 94.99 52 | 99.36 59 | 93.48 64 | 99.34 63 | 98.82 80 |
| Skip Steuart: Steuart Systems R&D Blog. |
| HFP-MVS | | | 96.39 39 | 96.17 46 | 97.04 32 | 98.51 49 | 93.37 40 | 96.30 56 | 97.98 79 | 92.35 89 | 95.63 133 | 96.47 159 | 95.37 30 | 99.27 75 | 93.78 52 | 99.14 97 | 98.48 123 |
|
| LPG-MVS_test | | | 96.38 40 | 96.23 41 | 96.84 39 | 98.36 63 | 92.13 53 | 95.33 94 | 98.25 33 | 91.78 112 | 97.07 62 | 97.22 107 | 96.38 12 | 99.28 73 | 92.07 108 | 99.59 27 | 99.11 42 |
|
| nrg030 | | | 96.32 41 | 96.55 27 | 95.62 75 | 97.83 100 | 88.55 114 | 95.77 77 | 98.29 32 | 92.68 80 | 98.03 28 | 97.91 59 | 95.13 43 | 98.95 116 | 93.85 50 | 99.49 40 | 99.36 23 |
|
| PGM-MVS | | | 96.32 41 | 95.94 57 | 97.43 19 | 98.59 40 | 93.84 33 | 95.33 94 | 98.30 29 | 91.40 127 | 95.76 125 | 96.87 134 | 95.26 37 | 99.45 29 | 92.77 91 | 99.21 88 | 99.00 52 |
|
| ACMM | | 88.83 9 | 96.30 43 | 96.07 52 | 96.97 35 | 98.39 59 | 92.95 45 | 94.74 116 | 98.03 73 | 90.82 139 | 97.15 59 | 96.85 135 | 96.25 14 | 99.00 108 | 93.10 83 | 99.33 65 | 98.95 63 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| GST-MVS | | | 96.24 44 | 95.99 56 | 97.00 34 | 98.65 33 | 92.71 48 | 95.69 81 | 98.01 76 | 92.08 97 | 95.74 128 | 96.28 178 | 95.22 40 | 99.42 34 | 93.17 81 | 99.06 101 | 98.88 75 |
|
| ACMMP_NAP | | | 96.21 45 | 96.12 48 | 96.49 49 | 98.90 19 | 91.42 64 | 94.57 124 | 98.03 73 | 90.42 151 | 96.37 92 | 97.35 96 | 95.68 21 | 99.25 77 | 94.44 37 | 99.34 63 | 98.80 83 |
|
| CP-MVSNet | | | 96.19 46 | 96.80 17 | 94.38 131 | 98.99 16 | 83.82 208 | 96.31 52 | 97.53 120 | 97.60 8 | 98.34 21 | 97.52 80 | 91.98 124 | 99.63 9 | 93.08 85 | 99.81 8 | 99.70 3 |
|
| MP-MVS |  | | 96.14 47 | 95.68 72 | 97.51 14 | 98.81 27 | 94.06 22 | 96.10 63 | 97.78 100 | 92.73 79 | 93.48 217 | 96.72 148 | 94.23 73 | 99.42 34 | 91.99 110 | 99.29 73 | 99.05 49 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| LS3D | | | 96.11 48 | 95.83 66 | 96.95 37 | 94.75 281 | 94.20 20 | 97.34 12 | 97.98 79 | 97.31 12 | 95.32 151 | 96.77 139 | 93.08 99 | 99.20 83 | 91.79 117 | 98.16 206 | 97.44 211 |
|
| MP-MVS-pluss | | | 96.08 49 | 95.92 60 | 96.57 45 | 99.06 10 | 91.21 66 | 93.25 168 | 98.32 26 | 87.89 201 | 96.86 74 | 97.38 89 | 95.55 26 | 99.39 50 | 95.47 22 | 99.47 41 | 99.11 42 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| TranMVSNet+NR-MVSNet | | | 96.07 50 | 96.26 40 | 95.50 79 | 98.26 68 | 87.69 130 | 93.75 153 | 97.86 89 | 95.96 35 | 97.48 46 | 97.14 114 | 95.33 34 | 99.44 30 | 90.79 140 | 99.76 10 | 99.38 21 |
|
| PS-MVSNAJss | | | 96.01 51 | 96.04 54 | 95.89 66 | 98.82 25 | 88.51 115 | 95.57 88 | 97.88 88 | 88.72 183 | 98.81 8 | 98.86 10 | 90.77 154 | 99.60 11 | 95.43 24 | 99.53 37 | 99.57 13 |
|
| SED-MVS | | | 96.00 52 | 96.41 34 | 94.76 108 | 98.51 49 | 86.97 144 | 95.21 99 | 98.10 58 | 91.95 99 | 97.63 36 | 97.25 103 | 96.48 10 | 99.35 60 | 93.29 75 | 99.29 73 | 97.95 166 |
|
| DVP-MVS++ | | | 95.93 53 | 96.34 36 | 94.70 111 | 96.54 179 | 86.66 154 | 98.45 4 | 98.22 40 | 93.26 74 | 97.54 41 | 97.36 93 | 93.12 97 | 99.38 56 | 93.88 48 | 98.68 155 | 98.04 153 |
|
| APD_test1 | | | 95.91 54 | 95.42 83 | 97.36 24 | 98.82 25 | 96.62 7 | 95.64 83 | 97.64 107 | 93.38 72 | 95.89 120 | 97.23 105 | 93.35 89 | 97.66 266 | 88.20 208 | 98.66 159 | 97.79 185 |
|
| test_fmvsmconf0.01_n | | | 95.90 55 | 96.09 49 | 95.31 88 | 97.30 137 | 89.21 97 | 94.24 135 | 98.76 12 | 86.25 226 | 97.56 40 | 98.66 19 | 95.73 19 | 98.44 193 | 97.35 3 | 98.99 111 | 98.27 135 |
|
| DPE-MVS |  | | 95.89 56 | 95.88 62 | 95.92 63 | 97.93 94 | 89.83 85 | 93.46 162 | 98.30 29 | 92.37 87 | 97.75 33 | 96.95 128 | 95.14 42 | 99.51 22 | 91.74 118 | 99.28 78 | 98.41 127 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SF-MVS | | | 95.88 57 | 95.88 62 | 95.87 67 | 98.12 77 | 89.65 87 | 95.58 87 | 98.56 16 | 91.84 108 | 96.36 93 | 96.68 150 | 94.37 72 | 99.32 69 | 92.41 102 | 99.05 104 | 98.64 109 |
|
| 3Dnovator+ | | 92.74 2 | 95.86 58 | 95.77 69 | 96.13 53 | 96.81 163 | 90.79 74 | 96.30 56 | 97.82 94 | 96.13 29 | 94.74 182 | 97.23 105 | 91.33 138 | 99.16 86 | 93.25 78 | 98.30 192 | 98.46 124 |
|
| DVP-MVS |  | | 95.82 59 | 96.18 44 | 94.72 110 | 98.51 49 | 86.69 152 | 95.20 101 | 97.00 161 | 91.85 105 | 97.40 52 | 97.35 96 | 95.58 24 | 99.34 63 | 93.44 68 | 99.31 68 | 98.13 147 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| CS-MVS | | | 95.77 60 | 95.58 76 | 96.37 51 | 96.84 160 | 91.72 62 | 96.73 28 | 99.06 6 | 94.23 52 | 92.48 254 | 94.79 246 | 93.56 81 | 99.49 26 | 93.47 65 | 99.05 104 | 97.89 173 |
|
| SMA-MVS |  | | 95.77 60 | 95.54 77 | 96.47 50 | 98.27 67 | 91.19 67 | 95.09 104 | 97.79 99 | 86.48 222 | 97.42 50 | 97.51 83 | 94.47 71 | 99.29 71 | 93.55 60 | 99.29 73 | 98.93 66 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| test_0402 | | | 95.73 62 | 96.22 42 | 94.26 134 | 98.19 74 | 85.77 178 | 93.24 169 | 97.24 145 | 96.88 19 | 97.69 34 | 97.77 65 | 94.12 75 | 99.13 91 | 91.54 127 | 99.29 73 | 97.88 174 |
|
| ACMP | | 88.15 13 | 95.71 63 | 95.43 82 | 96.54 46 | 98.17 75 | 91.73 61 | 94.24 135 | 98.08 61 | 89.46 166 | 96.61 86 | 96.47 159 | 95.85 18 | 99.12 92 | 90.45 148 | 99.56 34 | 98.77 88 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| XVG-ACMP-BASELINE | | | 95.68 64 | 95.34 86 | 96.69 42 | 98.40 58 | 93.04 42 | 94.54 128 | 98.05 68 | 90.45 150 | 96.31 96 | 96.76 141 | 92.91 104 | 98.72 153 | 91.19 132 | 99.42 50 | 98.32 130 |
|
| DP-MVS | | | 95.62 65 | 95.84 65 | 94.97 100 | 97.16 144 | 88.62 110 | 94.54 128 | 97.64 107 | 96.94 18 | 96.58 87 | 97.32 100 | 93.07 100 | 98.72 153 | 90.45 148 | 98.84 131 | 97.57 201 |
|
| test_fmvsmconf0.1_n | | | 95.61 66 | 95.72 71 | 95.26 89 | 96.85 159 | 89.20 98 | 93.51 160 | 98.60 15 | 85.68 239 | 97.42 50 | 98.30 37 | 95.34 33 | 98.39 194 | 96.85 4 | 98.98 112 | 98.19 141 |
|
| OPM-MVS | | | 95.61 66 | 95.45 80 | 96.08 54 | 98.49 56 | 91.00 69 | 92.65 189 | 97.33 137 | 90.05 156 | 96.77 79 | 96.85 135 | 95.04 48 | 98.56 179 | 92.77 91 | 99.06 101 | 98.70 98 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| RPSCF | | | 95.58 68 | 94.89 103 | 97.62 8 | 97.58 122 | 96.30 8 | 95.97 70 | 97.53 120 | 92.42 85 | 93.41 218 | 97.78 63 | 91.21 143 | 97.77 256 | 91.06 134 | 97.06 263 | 98.80 83 |
|
| iter_conf05 | | | 95.52 69 | 96.74 19 | 91.88 222 | 97.82 101 | 77.68 309 | 97.26 13 | 98.91 8 | 97.14 14 | 99.22 3 | 98.48 30 | 87.01 210 | 99.71 3 | 95.43 24 | 99.38 57 | 98.25 136 |
|
| MIMVSNet1 | | | 95.52 69 | 95.45 80 | 95.72 72 | 99.14 5 | 89.02 102 | 96.23 59 | 96.87 173 | 93.73 63 | 97.87 29 | 98.49 29 | 90.73 158 | 99.05 101 | 86.43 245 | 99.60 25 | 99.10 45 |
|
| Anonymous20240529 | | | 95.50 71 | 95.83 66 | 94.50 124 | 97.33 136 | 85.93 174 | 95.19 103 | 96.77 181 | 96.64 22 | 97.61 39 | 98.05 46 | 93.23 93 | 98.79 141 | 88.60 205 | 99.04 109 | 98.78 85 |
|
| Vis-MVSNet |  | | 95.50 71 | 95.48 79 | 95.56 78 | 98.11 78 | 89.40 94 | 95.35 92 | 98.22 40 | 92.36 88 | 94.11 196 | 98.07 45 | 92.02 122 | 99.44 30 | 93.38 73 | 97.67 239 | 97.85 178 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| EC-MVSNet | | | 95.44 73 | 95.62 74 | 94.89 102 | 96.93 154 | 87.69 130 | 96.48 40 | 99.14 5 | 93.93 59 | 92.77 245 | 94.52 256 | 93.95 78 | 99.49 26 | 93.62 57 | 99.22 87 | 97.51 206 |
|
| test_fmvsmconf_n | | | 95.43 74 | 95.50 78 | 95.22 93 | 96.48 186 | 89.19 99 | 93.23 170 | 98.36 23 | 85.61 242 | 96.92 72 | 98.02 50 | 95.23 39 | 98.38 197 | 96.69 7 | 98.95 121 | 98.09 149 |
|
| pm-mvs1 | | | 95.43 74 | 95.94 57 | 93.93 147 | 98.38 60 | 85.08 191 | 95.46 91 | 97.12 154 | 91.84 108 | 97.28 56 | 98.46 32 | 95.30 36 | 97.71 263 | 90.17 163 | 99.42 50 | 98.99 54 |
|
| DeepC-MVS | | 91.39 4 | 95.43 74 | 95.33 87 | 95.71 73 | 97.67 117 | 90.17 81 | 93.86 150 | 98.02 75 | 87.35 212 | 96.22 104 | 97.99 53 | 94.48 70 | 99.05 101 | 92.73 94 | 99.68 17 | 97.93 168 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| tt0805 | | | 95.42 77 | 95.93 59 | 93.86 151 | 98.75 31 | 88.47 116 | 97.68 9 | 94.29 272 | 96.48 24 | 95.38 146 | 93.63 284 | 94.89 57 | 97.94 237 | 95.38 27 | 96.92 271 | 95.17 310 |
|
| XVG-OURS-SEG-HR | | | 95.38 78 | 95.00 101 | 96.51 47 | 98.10 79 | 94.07 21 | 92.46 197 | 98.13 54 | 90.69 142 | 93.75 210 | 96.25 182 | 98.03 2 | 97.02 300 | 92.08 107 | 95.55 303 | 98.45 125 |
|
| UniMVSNet_NR-MVSNet | | | 95.35 79 | 95.21 92 | 95.76 70 | 97.69 115 | 88.59 112 | 92.26 211 | 97.84 92 | 94.91 43 | 96.80 77 | 95.78 205 | 90.42 163 | 99.41 40 | 91.60 123 | 99.58 31 | 99.29 27 |
|
| MSP-MVS | | | 95.34 80 | 94.63 118 | 97.48 15 | 98.67 32 | 94.05 24 | 96.41 45 | 98.18 45 | 91.26 129 | 95.12 164 | 95.15 229 | 86.60 221 | 99.50 23 | 93.43 71 | 96.81 275 | 98.89 73 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| CS-MVS-test | | | 95.32 81 | 95.10 97 | 95.96 57 | 96.86 158 | 90.75 75 | 96.33 49 | 99.20 3 | 93.99 56 | 91.03 288 | 93.73 282 | 93.52 83 | 99.55 20 | 91.81 116 | 99.45 45 | 97.58 200 |
|
| FC-MVSNet-test | | | 95.32 81 | 95.88 62 | 93.62 159 | 98.49 56 | 81.77 235 | 95.90 73 | 98.32 26 | 93.93 59 | 97.53 43 | 97.56 75 | 88.48 184 | 99.40 47 | 92.91 90 | 99.83 5 | 99.68 4 |
|
| UniMVSNet (Re) | | | 95.32 81 | 95.15 94 | 95.80 69 | 97.79 105 | 88.91 104 | 92.91 179 | 98.07 64 | 93.46 70 | 96.31 96 | 95.97 195 | 90.14 168 | 99.34 63 | 92.11 105 | 99.64 23 | 99.16 36 |
|
| Gipuma |  | | 95.31 84 | 95.80 68 | 93.81 154 | 97.99 92 | 90.91 71 | 96.42 44 | 97.95 84 | 96.69 20 | 91.78 275 | 98.85 12 | 91.77 129 | 95.49 344 | 91.72 119 | 99.08 100 | 95.02 318 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| DU-MVS | | | 95.28 85 | 95.12 96 | 95.75 71 | 97.75 107 | 88.59 112 | 92.58 191 | 97.81 95 | 93.99 56 | 96.80 77 | 95.90 196 | 90.10 171 | 99.41 40 | 91.60 123 | 99.58 31 | 99.26 28 |
|
| NR-MVSNet | | | 95.28 85 | 95.28 90 | 95.26 89 | 97.75 107 | 87.21 137 | 95.08 105 | 97.37 129 | 93.92 61 | 97.65 35 | 95.90 196 | 90.10 171 | 99.33 68 | 90.11 165 | 99.66 21 | 99.26 28 |
|
| TransMVSNet (Re) | | | 95.27 87 | 96.04 54 | 92.97 181 | 98.37 62 | 81.92 234 | 95.07 106 | 96.76 182 | 93.97 58 | 97.77 32 | 98.57 24 | 95.72 20 | 97.90 238 | 88.89 199 | 99.23 84 | 99.08 46 |
|
| SD-MVS | | | 95.19 88 | 95.73 70 | 93.55 162 | 96.62 174 | 88.88 106 | 94.67 118 | 98.05 68 | 91.26 129 | 97.25 58 | 96.40 165 | 95.42 28 | 94.36 364 | 92.72 95 | 99.19 90 | 97.40 215 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| VPA-MVSNet | | | 95.14 89 | 95.67 73 | 93.58 161 | 97.76 106 | 83.15 218 | 94.58 123 | 97.58 115 | 93.39 71 | 97.05 65 | 98.04 48 | 93.25 92 | 98.51 185 | 89.75 175 | 99.59 27 | 99.08 46 |
|
| casdiffmvs_mvg |  | | 95.10 90 | 95.62 74 | 93.53 165 | 96.25 205 | 83.23 215 | 92.66 188 | 98.19 43 | 93.06 77 | 97.49 45 | 97.15 113 | 94.78 59 | 98.71 159 | 92.27 104 | 98.72 149 | 98.65 104 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_fmvsmvis_n_1920 | | | 95.08 91 | 95.40 84 | 94.13 138 | 96.66 169 | 87.75 129 | 93.44 164 | 98.49 17 | 85.57 243 | 98.27 22 | 97.11 117 | 94.11 76 | 97.75 259 | 96.26 11 | 98.72 149 | 96.89 240 |
|
| HPM-MVS++ |  | | 95.02 92 | 94.39 122 | 96.91 38 | 97.88 97 | 93.58 38 | 94.09 143 | 96.99 163 | 91.05 134 | 92.40 259 | 95.22 228 | 91.03 150 | 99.25 77 | 92.11 105 | 98.69 154 | 97.90 171 |
|
| APD-MVS |  | | 95.00 93 | 94.69 112 | 95.93 61 | 97.38 132 | 90.88 72 | 94.59 121 | 97.81 95 | 89.22 173 | 95.46 143 | 96.17 187 | 93.42 87 | 99.34 63 | 89.30 183 | 98.87 129 | 97.56 203 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PMVS |  | 87.21 14 | 94.97 94 | 95.33 87 | 93.91 148 | 98.97 17 | 97.16 3 | 95.54 89 | 95.85 225 | 96.47 25 | 93.40 220 | 97.46 86 | 95.31 35 | 95.47 345 | 86.18 249 | 98.78 144 | 89.11 387 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| TSAR-MVS + MP. | | | 94.96 95 | 94.75 108 | 95.57 77 | 98.86 22 | 88.69 107 | 96.37 46 | 96.81 177 | 85.23 248 | 94.75 181 | 97.12 116 | 91.85 126 | 99.40 47 | 93.45 67 | 98.33 189 | 98.62 113 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SixPastTwentyTwo | | | 94.91 96 | 95.21 92 | 93.98 142 | 98.52 48 | 83.19 217 | 95.93 71 | 94.84 259 | 94.86 44 | 98.49 17 | 98.74 16 | 81.45 272 | 99.60 11 | 94.69 33 | 99.39 56 | 99.15 37 |
|
| FIs | | | 94.90 97 | 95.35 85 | 93.55 162 | 98.28 66 | 81.76 236 | 95.33 94 | 98.14 53 | 93.05 78 | 97.07 62 | 97.18 111 | 87.65 198 | 99.29 71 | 91.72 119 | 99.69 14 | 99.61 11 |
|
| AllTest | | | 94.88 98 | 94.51 120 | 96.00 55 | 98.02 87 | 92.17 51 | 95.26 97 | 98.43 19 | 90.48 148 | 95.04 169 | 96.74 145 | 92.54 113 | 97.86 246 | 85.11 262 | 98.98 112 | 97.98 162 |
|
| FMVSNet1 | | | 94.84 99 | 95.13 95 | 93.97 143 | 97.60 120 | 84.29 198 | 95.99 67 | 96.56 194 | 92.38 86 | 97.03 66 | 98.53 26 | 90.12 169 | 98.98 109 | 88.78 201 | 99.16 95 | 98.65 104 |
|
| ANet_high | | | 94.83 100 | 96.28 39 | 90.47 276 | 96.65 170 | 73.16 353 | 94.33 132 | 98.74 13 | 96.39 27 | 98.09 27 | 98.93 8 | 93.37 88 | 98.70 160 | 90.38 151 | 99.68 17 | 99.53 14 |
|
| MVSMamba_PlusPlus | | | 94.82 101 | 95.89 61 | 91.62 234 | 97.82 101 | 78.88 288 | 96.52 35 | 97.60 113 | 97.14 14 | 94.23 194 | 98.48 30 | 87.01 210 | 99.71 3 | 95.43 24 | 98.80 140 | 96.28 267 |
|
| 3Dnovator | | 92.54 3 | 94.80 102 | 94.90 102 | 94.47 127 | 95.47 259 | 87.06 141 | 96.63 31 | 97.28 143 | 91.82 111 | 94.34 193 | 97.41 87 | 90.60 161 | 98.65 169 | 92.47 101 | 98.11 210 | 97.70 193 |
|
| CPTT-MVS | | | 94.74 103 | 94.12 135 | 96.60 44 | 98.15 76 | 93.01 43 | 95.84 75 | 97.66 106 | 89.21 174 | 93.28 224 | 95.46 218 | 88.89 182 | 98.98 109 | 89.80 172 | 98.82 137 | 97.80 184 |
|
| test_fmvsm_n_1920 | | | 94.72 104 | 94.74 110 | 94.67 113 | 96.30 200 | 88.62 110 | 93.19 171 | 98.07 64 | 85.63 241 | 97.08 61 | 97.35 96 | 90.86 151 | 97.66 266 | 95.70 16 | 98.48 176 | 97.74 191 |
|
| XVG-OURS | | | 94.72 104 | 94.12 135 | 96.50 48 | 98.00 89 | 94.23 19 | 91.48 238 | 98.17 49 | 90.72 141 | 95.30 152 | 96.47 159 | 87.94 195 | 96.98 301 | 91.41 130 | 97.61 243 | 98.30 133 |
|
| CSCG | | | 94.69 106 | 94.75 108 | 94.52 123 | 97.55 124 | 87.87 126 | 95.01 109 | 97.57 116 | 92.68 80 | 96.20 106 | 93.44 290 | 91.92 125 | 98.78 144 | 89.11 193 | 99.24 83 | 96.92 238 |
|
| v10 | | | 94.68 107 | 95.27 91 | 92.90 186 | 96.57 176 | 80.15 254 | 94.65 120 | 97.57 116 | 90.68 143 | 97.43 48 | 98.00 51 | 88.18 188 | 99.15 87 | 94.84 32 | 99.55 35 | 99.41 19 |
|
| v8 | | | 94.65 108 | 95.29 89 | 92.74 191 | 96.65 170 | 79.77 269 | 94.59 121 | 97.17 149 | 91.86 104 | 97.47 47 | 97.93 55 | 88.16 189 | 99.08 96 | 94.32 39 | 99.47 41 | 99.38 21 |
|
| sasdasda | | | 94.59 109 | 94.69 112 | 94.30 132 | 95.60 253 | 87.03 142 | 95.59 84 | 98.24 36 | 91.56 122 | 95.21 161 | 92.04 323 | 94.95 53 | 98.66 166 | 91.45 128 | 97.57 244 | 97.20 226 |
|
| canonicalmvs | | | 94.59 109 | 94.69 112 | 94.30 132 | 95.60 253 | 87.03 142 | 95.59 84 | 98.24 36 | 91.56 122 | 95.21 161 | 92.04 323 | 94.95 53 | 98.66 166 | 91.45 128 | 97.57 244 | 97.20 226 |
|
| CNVR-MVS | | | 94.58 111 | 94.29 127 | 95.46 81 | 96.94 152 | 89.35 96 | 91.81 232 | 96.80 178 | 89.66 163 | 93.90 208 | 95.44 220 | 92.80 108 | 98.72 153 | 92.74 93 | 98.52 171 | 98.32 130 |
|
| GeoE | | | 94.55 112 | 94.68 115 | 94.15 136 | 97.23 139 | 85.11 190 | 94.14 141 | 97.34 136 | 88.71 184 | 95.26 156 | 95.50 217 | 94.65 63 | 99.12 92 | 90.94 138 | 98.40 179 | 98.23 137 |
|
| EG-PatchMatch MVS | | | 94.54 113 | 94.67 116 | 94.14 137 | 97.87 99 | 86.50 156 | 92.00 219 | 96.74 183 | 88.16 197 | 96.93 71 | 97.61 72 | 93.04 101 | 97.90 238 | 91.60 123 | 98.12 209 | 98.03 156 |
|
| IS-MVSNet | | | 94.49 114 | 94.35 126 | 94.92 101 | 98.25 70 | 86.46 159 | 97.13 17 | 94.31 271 | 96.24 28 | 96.28 100 | 96.36 172 | 82.88 255 | 99.35 60 | 88.19 209 | 99.52 39 | 98.96 62 |
|
| Baseline_NR-MVSNet | | | 94.47 115 | 95.09 98 | 92.60 201 | 98.50 55 | 80.82 250 | 92.08 215 | 96.68 186 | 93.82 62 | 96.29 98 | 98.56 25 | 90.10 171 | 97.75 259 | 90.10 167 | 99.66 21 | 99.24 30 |
|
| MGCFI-Net | | | 94.44 116 | 94.67 116 | 93.75 155 | 95.56 255 | 85.47 185 | 95.25 98 | 98.24 36 | 91.53 124 | 95.04 169 | 92.21 318 | 94.94 55 | 98.54 182 | 91.56 126 | 97.66 240 | 97.24 224 |
|
| SDMVSNet | | | 94.43 117 | 95.02 99 | 92.69 193 | 97.93 94 | 82.88 223 | 91.92 224 | 95.99 222 | 93.65 68 | 95.51 138 | 98.63 21 | 94.60 65 | 96.48 319 | 87.57 223 | 99.35 60 | 98.70 98 |
|
| MM | | | 94.41 118 | 94.14 134 | 95.22 93 | 95.84 235 | 87.21 137 | 94.31 134 | 90.92 329 | 94.48 49 | 92.80 243 | 97.52 80 | 85.27 235 | 99.49 26 | 96.58 8 | 99.57 33 | 98.97 60 |
|
| VDD-MVS | | | 94.37 119 | 94.37 124 | 94.40 130 | 97.49 127 | 86.07 171 | 93.97 147 | 93.28 291 | 94.49 48 | 96.24 102 | 97.78 63 | 87.99 194 | 98.79 141 | 88.92 197 | 99.14 97 | 98.34 129 |
|
| EI-MVSNet-Vis-set | | | 94.36 120 | 94.28 128 | 94.61 116 | 92.55 328 | 85.98 173 | 92.44 199 | 94.69 265 | 93.70 64 | 96.12 110 | 95.81 201 | 91.24 141 | 98.86 127 | 93.76 55 | 98.22 201 | 98.98 58 |
|
| EI-MVSNet-UG-set | | | 94.35 121 | 94.27 130 | 94.59 120 | 92.46 331 | 85.87 176 | 92.42 201 | 94.69 265 | 93.67 67 | 96.13 109 | 95.84 200 | 91.20 144 | 98.86 127 | 93.78 52 | 98.23 199 | 99.03 50 |
|
| PHI-MVS | | | 94.34 122 | 93.80 142 | 95.95 58 | 95.65 249 | 91.67 63 | 94.82 114 | 97.86 89 | 87.86 202 | 93.04 236 | 94.16 267 | 91.58 133 | 98.78 144 | 90.27 158 | 98.96 119 | 97.41 212 |
|
| casdiffmvs |  | | 94.32 123 | 94.80 106 | 92.85 188 | 96.05 221 | 81.44 241 | 92.35 204 | 98.05 68 | 91.53 124 | 95.75 127 | 96.80 138 | 93.35 89 | 98.49 186 | 91.01 137 | 98.32 191 | 98.64 109 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| tfpnnormal | | | 94.27 124 | 94.87 104 | 92.48 205 | 97.71 112 | 80.88 249 | 94.55 127 | 95.41 244 | 93.70 64 | 96.67 83 | 97.72 66 | 91.40 137 | 98.18 216 | 87.45 225 | 99.18 92 | 98.36 128 |
|
| fmvsm_s_conf0.1_n_a | | | 94.26 125 | 94.37 124 | 93.95 146 | 97.36 134 | 85.72 180 | 94.15 139 | 95.44 241 | 83.25 276 | 95.51 138 | 98.05 46 | 92.54 113 | 97.19 291 | 95.55 20 | 97.46 250 | 98.94 64 |
|
| HQP_MVS | | | 94.26 125 | 93.93 138 | 95.23 92 | 97.71 112 | 88.12 121 | 94.56 125 | 97.81 95 | 91.74 116 | 93.31 221 | 95.59 212 | 86.93 214 | 98.95 116 | 89.26 188 | 98.51 173 | 98.60 114 |
|
| baseline | | | 94.26 125 | 94.80 106 | 92.64 195 | 96.08 219 | 80.99 247 | 93.69 156 | 98.04 72 | 90.80 140 | 94.89 176 | 96.32 174 | 93.19 94 | 98.48 190 | 91.68 121 | 98.51 173 | 98.43 126 |
|
| OMC-MVS | | | 94.22 128 | 93.69 147 | 95.81 68 | 97.25 138 | 91.27 65 | 92.27 210 | 97.40 128 | 87.10 218 | 94.56 186 | 95.42 221 | 93.74 79 | 98.11 221 | 86.62 239 | 98.85 130 | 98.06 150 |
|
| LCM-MVSNet-Re | | | 94.20 129 | 94.58 119 | 93.04 178 | 95.91 231 | 83.13 219 | 93.79 152 | 99.19 4 | 92.00 98 | 98.84 7 | 98.04 48 | 93.64 80 | 99.02 106 | 81.28 301 | 98.54 169 | 96.96 237 |
|
| DeepPCF-MVS | | 90.46 6 | 94.20 129 | 93.56 154 | 96.14 52 | 95.96 228 | 92.96 44 | 89.48 296 | 97.46 125 | 85.14 251 | 96.23 103 | 95.42 221 | 93.19 94 | 98.08 223 | 90.37 152 | 98.76 146 | 97.38 218 |
|
| fmvsm_s_conf0.1_n | | | 94.19 131 | 94.41 121 | 93.52 167 | 97.22 141 | 84.37 196 | 93.73 154 | 95.26 248 | 84.45 263 | 95.76 125 | 98.00 51 | 91.85 126 | 97.21 288 | 95.62 17 | 97.82 231 | 98.98 58 |
|
| KD-MVS_self_test | | | 94.10 132 | 94.73 111 | 92.19 212 | 97.66 118 | 79.49 275 | 94.86 113 | 97.12 154 | 89.59 165 | 96.87 73 | 97.65 69 | 90.40 165 | 98.34 202 | 89.08 194 | 99.35 60 | 98.75 89 |
|
| NCCC | | | 94.08 133 | 93.54 155 | 95.70 74 | 96.49 184 | 89.90 84 | 92.39 203 | 96.91 170 | 90.64 144 | 92.33 265 | 94.60 253 | 90.58 162 | 98.96 114 | 90.21 162 | 97.70 237 | 98.23 137 |
|
| VDDNet | | | 94.03 134 | 94.27 130 | 93.31 173 | 98.87 21 | 82.36 229 | 95.51 90 | 91.78 321 | 97.19 13 | 96.32 95 | 98.60 23 | 84.24 244 | 98.75 148 | 87.09 232 | 98.83 136 | 98.81 82 |
|
| fmvsm_s_conf0.5_n_a | | | 94.02 135 | 94.08 137 | 93.84 152 | 96.72 166 | 85.73 179 | 93.65 158 | 95.23 249 | 83.30 274 | 95.13 163 | 97.56 75 | 92.22 118 | 97.17 292 | 95.51 21 | 97.41 252 | 98.64 109 |
|
| fmvsm_s_conf0.5_n | | | 94.00 136 | 94.20 132 | 93.42 171 | 96.69 167 | 84.37 196 | 93.38 166 | 95.13 251 | 84.50 262 | 95.40 145 | 97.55 79 | 91.77 129 | 97.20 289 | 95.59 18 | 97.79 232 | 98.69 101 |
|
| dcpmvs_2 | | | 93.96 137 | 95.01 100 | 90.82 268 | 97.60 120 | 74.04 348 | 93.68 157 | 98.85 9 | 89.80 161 | 97.82 30 | 97.01 126 | 91.14 148 | 99.21 80 | 90.56 146 | 98.59 164 | 99.19 34 |
|
| sd_testset | | | 93.94 138 | 94.39 122 | 92.61 200 | 97.93 94 | 83.24 214 | 93.17 172 | 95.04 253 | 93.65 68 | 95.51 138 | 98.63 21 | 94.49 69 | 95.89 337 | 81.72 297 | 99.35 60 | 98.70 98 |
|
| EPP-MVSNet | | | 93.91 139 | 93.68 148 | 94.59 120 | 98.08 80 | 85.55 184 | 97.44 11 | 94.03 277 | 94.22 53 | 94.94 173 | 96.19 184 | 82.07 267 | 99.57 16 | 87.28 229 | 98.89 124 | 98.65 104 |
|
| Effi-MVS+-dtu | | | 93.90 140 | 92.60 179 | 97.77 4 | 94.74 282 | 96.67 6 | 94.00 145 | 95.41 244 | 89.94 157 | 91.93 274 | 92.13 321 | 90.12 169 | 98.97 113 | 87.68 222 | 97.48 248 | 97.67 196 |
|
| fmvsm_l_conf0.5_n | | | 93.79 141 | 93.81 140 | 93.73 156 | 96.16 211 | 86.26 166 | 92.46 197 | 96.72 184 | 81.69 298 | 95.77 124 | 97.11 117 | 90.83 153 | 97.82 249 | 95.58 19 | 97.99 221 | 97.11 229 |
|
| IterMVS-LS | | | 93.78 142 | 94.28 128 | 92.27 209 | 96.27 202 | 79.21 282 | 91.87 228 | 96.78 179 | 91.77 114 | 96.57 88 | 97.07 120 | 87.15 207 | 98.74 151 | 91.99 110 | 99.03 110 | 98.86 76 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| DeepC-MVS_fast | | 89.96 7 | 93.73 143 | 93.44 157 | 94.60 119 | 96.14 214 | 87.90 125 | 93.36 167 | 97.14 151 | 85.53 244 | 93.90 208 | 95.45 219 | 91.30 140 | 98.59 176 | 89.51 178 | 98.62 160 | 97.31 221 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| MVS_111021_LR | | | 93.66 144 | 93.28 161 | 94.80 106 | 96.25 205 | 90.95 70 | 90.21 273 | 95.43 243 | 87.91 199 | 93.74 212 | 94.40 258 | 92.88 106 | 96.38 324 | 90.39 150 | 98.28 193 | 97.07 230 |
|
| MVS_111021_HR | | | 93.63 145 | 93.42 158 | 94.26 134 | 96.65 170 | 86.96 146 | 89.30 303 | 96.23 210 | 88.36 193 | 93.57 215 | 94.60 253 | 93.45 84 | 97.77 256 | 90.23 161 | 98.38 183 | 98.03 156 |
|
| fmvsm_l_conf0.5_n_a | | | 93.59 146 | 93.63 149 | 93.49 169 | 96.10 217 | 85.66 182 | 92.32 206 | 96.57 193 | 81.32 301 | 95.63 133 | 97.14 114 | 90.19 167 | 97.73 262 | 95.37 28 | 98.03 217 | 97.07 230 |
|
| v1144 | | | 93.50 147 | 93.81 140 | 92.57 202 | 96.28 201 | 79.61 272 | 91.86 230 | 96.96 164 | 86.95 220 | 95.91 118 | 96.32 174 | 87.65 198 | 98.96 114 | 93.51 61 | 98.88 126 | 99.13 39 |
|
| v1192 | | | 93.49 148 | 93.78 143 | 92.62 199 | 96.16 211 | 79.62 271 | 91.83 231 | 97.22 147 | 86.07 231 | 96.10 111 | 96.38 170 | 87.22 205 | 99.02 106 | 94.14 44 | 98.88 126 | 99.22 31 |
|
| WR-MVS | | | 93.49 148 | 93.72 145 | 92.80 190 | 97.57 123 | 80.03 260 | 90.14 276 | 95.68 229 | 93.70 64 | 96.62 85 | 95.39 225 | 87.21 206 | 99.04 104 | 87.50 224 | 99.64 23 | 99.33 24 |
|
| balanced_conf03 | | | 93.45 150 | 94.17 133 | 91.28 249 | 95.81 239 | 78.40 296 | 96.20 60 | 97.48 124 | 88.56 189 | 95.29 154 | 97.20 110 | 85.56 234 | 99.21 80 | 92.52 100 | 98.91 123 | 96.24 271 |
|
| V42 | | | 93.43 151 | 93.58 152 | 92.97 181 | 95.34 265 | 81.22 244 | 92.67 187 | 96.49 199 | 87.25 214 | 96.20 106 | 96.37 171 | 87.32 204 | 98.85 129 | 92.39 103 | 98.21 202 | 98.85 79 |
|
| K. test v3 | | | 93.37 152 | 93.27 162 | 93.66 158 | 98.05 83 | 82.62 225 | 94.35 131 | 86.62 359 | 96.05 32 | 97.51 44 | 98.85 12 | 76.59 316 | 99.65 6 | 93.21 79 | 98.20 204 | 98.73 93 |
|
| PM-MVS | | | 93.33 153 | 92.67 177 | 95.33 85 | 96.58 175 | 94.06 22 | 92.26 211 | 92.18 312 | 85.92 234 | 96.22 104 | 96.61 154 | 85.64 232 | 95.99 335 | 90.35 153 | 98.23 199 | 95.93 285 |
|
| v1240 | | | 93.29 154 | 93.71 146 | 92.06 219 | 96.01 226 | 77.89 304 | 91.81 232 | 97.37 129 | 85.12 252 | 96.69 82 | 96.40 165 | 86.67 219 | 99.07 100 | 94.51 35 | 98.76 146 | 99.22 31 |
|
| v2v482 | | | 93.29 154 | 93.63 149 | 92.29 208 | 96.35 194 | 78.82 291 | 91.77 234 | 96.28 206 | 88.45 190 | 95.70 132 | 96.26 181 | 86.02 227 | 98.90 120 | 93.02 86 | 98.81 139 | 99.14 38 |
|
| alignmvs | | | 93.26 156 | 92.85 170 | 94.50 124 | 95.70 245 | 87.45 132 | 93.45 163 | 95.76 226 | 91.58 121 | 95.25 158 | 92.42 316 | 81.96 269 | 98.72 153 | 91.61 122 | 97.87 229 | 97.33 220 |
|
| v1921920 | | | 93.26 156 | 93.61 151 | 92.19 212 | 96.04 225 | 78.31 298 | 91.88 227 | 97.24 145 | 85.17 250 | 96.19 108 | 96.19 184 | 86.76 218 | 99.05 101 | 94.18 43 | 98.84 131 | 99.22 31 |
|
| MSLP-MVS++ | | | 93.25 158 | 93.88 139 | 91.37 243 | 96.34 195 | 82.81 224 | 93.11 173 | 97.74 102 | 89.37 169 | 94.08 198 | 95.29 227 | 90.40 165 | 96.35 326 | 90.35 153 | 98.25 197 | 94.96 319 |
|
| GBi-Net | | | 93.21 159 | 92.96 165 | 93.97 143 | 95.40 261 | 84.29 198 | 95.99 67 | 96.56 194 | 88.63 185 | 95.10 165 | 98.53 26 | 81.31 274 | 98.98 109 | 86.74 235 | 98.38 183 | 98.65 104 |
|
| test1 | | | 93.21 159 | 92.96 165 | 93.97 143 | 95.40 261 | 84.29 198 | 95.99 67 | 96.56 194 | 88.63 185 | 95.10 165 | 98.53 26 | 81.31 274 | 98.98 109 | 86.74 235 | 98.38 183 | 98.65 104 |
|
| v144192 | | | 93.20 161 | 93.54 155 | 92.16 216 | 96.05 221 | 78.26 299 | 91.95 220 | 97.14 151 | 84.98 256 | 95.96 114 | 96.11 188 | 87.08 209 | 99.04 104 | 93.79 51 | 98.84 131 | 99.17 35 |
|
| VPNet | | | 93.08 162 | 93.76 144 | 91.03 258 | 98.60 38 | 75.83 334 | 91.51 237 | 95.62 230 | 91.84 108 | 95.74 128 | 97.10 119 | 89.31 179 | 98.32 203 | 85.07 264 | 99.06 101 | 98.93 66 |
|
| UGNet | | | 93.08 162 | 92.50 181 | 94.79 107 | 93.87 305 | 87.99 124 | 95.07 106 | 94.26 274 | 90.64 144 | 87.33 351 | 97.67 68 | 86.89 216 | 98.49 186 | 88.10 212 | 98.71 151 | 97.91 170 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| TSAR-MVS + GP. | | | 93.07 164 | 92.41 183 | 95.06 98 | 95.82 237 | 90.87 73 | 90.97 249 | 92.61 306 | 88.04 198 | 94.61 185 | 93.79 281 | 88.08 190 | 97.81 250 | 89.41 180 | 98.39 182 | 96.50 256 |
|
| ETV-MVS | | | 92.99 165 | 92.74 173 | 93.72 157 | 95.86 233 | 86.30 165 | 92.33 205 | 97.84 92 | 91.70 119 | 92.81 242 | 86.17 383 | 92.22 118 | 99.19 84 | 88.03 216 | 97.73 234 | 95.66 299 |
|
| EI-MVSNet | | | 92.99 165 | 93.26 163 | 92.19 212 | 92.12 341 | 79.21 282 | 92.32 206 | 94.67 267 | 91.77 114 | 95.24 159 | 95.85 198 | 87.14 208 | 98.49 186 | 91.99 110 | 98.26 195 | 98.86 76 |
|
| MCST-MVS | | | 92.91 167 | 92.51 180 | 94.10 139 | 97.52 125 | 85.72 180 | 91.36 242 | 97.13 153 | 80.33 309 | 92.91 241 | 94.24 263 | 91.23 142 | 98.72 153 | 89.99 169 | 97.93 226 | 97.86 176 |
|
| h-mvs33 | | | 92.89 168 | 91.99 193 | 95.58 76 | 96.97 150 | 90.55 77 | 93.94 148 | 94.01 280 | 89.23 171 | 93.95 205 | 96.19 184 | 76.88 312 | 99.14 89 | 91.02 135 | 95.71 300 | 97.04 234 |
|
| MVS_0304 | | | 92.88 169 | 92.27 185 | 94.69 112 | 92.35 332 | 86.03 172 | 92.88 181 | 89.68 336 | 90.53 147 | 91.52 278 | 96.43 162 | 82.52 263 | 99.32 69 | 95.01 30 | 99.54 36 | 98.71 97 |
|
| QAPM | | | 92.88 169 | 92.77 171 | 93.22 176 | 95.82 237 | 83.31 212 | 96.45 41 | 97.35 135 | 83.91 268 | 93.75 210 | 96.77 139 | 89.25 180 | 98.88 123 | 84.56 270 | 97.02 265 | 97.49 207 |
|
| v148 | | | 92.87 171 | 93.29 159 | 91.62 234 | 96.25 205 | 77.72 307 | 91.28 243 | 95.05 252 | 89.69 162 | 95.93 117 | 96.04 191 | 87.34 203 | 98.38 197 | 90.05 168 | 97.99 221 | 98.78 85 |
|
| Anonymous20240521 | | | 92.86 172 | 93.57 153 | 90.74 270 | 96.57 176 | 75.50 336 | 94.15 139 | 95.60 231 | 89.38 168 | 95.90 119 | 97.90 61 | 80.39 281 | 97.96 235 | 92.60 98 | 99.68 17 | 98.75 89 |
|
| Effi-MVS+ | | | 92.79 173 | 92.74 173 | 92.94 184 | 95.10 269 | 83.30 213 | 94.00 145 | 97.53 120 | 91.36 128 | 89.35 318 | 90.65 346 | 94.01 77 | 98.66 166 | 87.40 227 | 95.30 312 | 96.88 242 |
|
| FMVSNet2 | | | 92.78 174 | 92.73 175 | 92.95 183 | 95.40 261 | 81.98 233 | 94.18 138 | 95.53 239 | 88.63 185 | 96.05 112 | 97.37 90 | 81.31 274 | 98.81 137 | 87.38 228 | 98.67 157 | 98.06 150 |
|
| Fast-Effi-MVS+-dtu | | | 92.77 175 | 92.16 187 | 94.58 122 | 94.66 287 | 88.25 119 | 92.05 216 | 96.65 188 | 89.62 164 | 90.08 304 | 91.23 334 | 92.56 112 | 98.60 174 | 86.30 247 | 96.27 289 | 96.90 239 |
|
| LF4IMVS | | | 92.72 176 | 92.02 192 | 94.84 105 | 95.65 249 | 91.99 55 | 92.92 178 | 96.60 190 | 85.08 254 | 92.44 257 | 93.62 285 | 86.80 217 | 96.35 326 | 86.81 234 | 98.25 197 | 96.18 274 |
|
| train_agg | | | 92.71 177 | 91.83 198 | 95.35 83 | 96.45 187 | 89.46 90 | 90.60 260 | 96.92 168 | 79.37 318 | 90.49 295 | 94.39 259 | 91.20 144 | 98.88 123 | 88.66 204 | 98.43 178 | 97.72 192 |
|
| VNet | | | 92.67 178 | 92.96 165 | 91.79 226 | 96.27 202 | 80.15 254 | 91.95 220 | 94.98 255 | 92.19 95 | 94.52 188 | 96.07 190 | 87.43 202 | 97.39 282 | 84.83 266 | 98.38 183 | 97.83 180 |
|
| CDPH-MVS | | | 92.67 178 | 91.83 198 | 95.18 95 | 96.94 152 | 88.46 117 | 90.70 257 | 97.07 157 | 77.38 333 | 92.34 264 | 95.08 234 | 92.67 111 | 98.88 123 | 85.74 252 | 98.57 166 | 98.20 140 |
|
| bld_raw_conf03 | | | 92.59 180 | 92.96 165 | 91.47 240 | 95.85 234 | 78.88 288 | 96.52 35 | 97.60 113 | 83.31 273 | 94.23 194 | 96.75 143 | 84.27 243 | 99.26 76 | 89.30 183 | 98.80 140 | 96.28 267 |
|
| Anonymous202405211 | | | 92.58 181 | 92.50 181 | 92.83 189 | 96.55 178 | 83.22 216 | 92.43 200 | 91.64 323 | 94.10 55 | 95.59 135 | 96.64 152 | 81.88 271 | 97.50 273 | 85.12 261 | 98.52 171 | 97.77 187 |
|
| XXY-MVS | | | 92.58 181 | 93.16 164 | 90.84 267 | 97.75 107 | 79.84 265 | 91.87 228 | 96.22 212 | 85.94 233 | 95.53 137 | 97.68 67 | 92.69 110 | 94.48 360 | 83.21 280 | 97.51 246 | 98.21 139 |
|
| MVS_Test | | | 92.57 183 | 93.29 159 | 90.40 279 | 93.53 311 | 75.85 332 | 92.52 193 | 96.96 164 | 88.73 182 | 92.35 262 | 96.70 149 | 90.77 154 | 98.37 201 | 92.53 99 | 95.49 305 | 96.99 236 |
|
| TAPA-MVS | | 88.58 10 | 92.49 184 | 91.75 200 | 94.73 109 | 96.50 183 | 89.69 86 | 92.91 179 | 97.68 105 | 78.02 331 | 92.79 244 | 94.10 268 | 90.85 152 | 97.96 235 | 84.76 268 | 98.16 206 | 96.54 251 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| patch_mono-2 | | | 92.46 185 | 92.72 176 | 91.71 230 | 96.65 170 | 78.91 287 | 88.85 313 | 97.17 149 | 83.89 269 | 92.45 256 | 96.76 141 | 89.86 175 | 97.09 296 | 90.24 160 | 98.59 164 | 99.12 41 |
|
| test_fmvs3 | | | 92.42 186 | 92.40 184 | 92.46 207 | 93.80 308 | 87.28 135 | 93.86 150 | 97.05 158 | 76.86 338 | 96.25 101 | 98.66 19 | 82.87 256 | 91.26 383 | 95.44 23 | 96.83 274 | 98.82 80 |
|
| ab-mvs | | | 92.40 187 | 92.62 178 | 91.74 228 | 97.02 148 | 81.65 237 | 95.84 75 | 95.50 240 | 86.95 220 | 92.95 240 | 97.56 75 | 90.70 159 | 97.50 273 | 79.63 320 | 97.43 251 | 96.06 279 |
|
| CANet | | | 92.38 188 | 91.99 193 | 93.52 167 | 93.82 307 | 83.46 211 | 91.14 245 | 97.00 161 | 89.81 160 | 86.47 355 | 94.04 270 | 87.90 196 | 99.21 80 | 89.50 179 | 98.27 194 | 97.90 171 |
|
| EIA-MVS | | | 92.35 189 | 92.03 191 | 93.30 174 | 95.81 239 | 83.97 206 | 92.80 183 | 98.17 49 | 87.71 206 | 89.79 312 | 87.56 373 | 91.17 147 | 99.18 85 | 87.97 217 | 97.27 256 | 96.77 246 |
|
| DP-MVS Recon | | | 92.31 190 | 91.88 196 | 93.60 160 | 97.18 143 | 86.87 147 | 91.10 247 | 97.37 129 | 84.92 257 | 92.08 271 | 94.08 269 | 88.59 183 | 98.20 213 | 83.50 277 | 98.14 208 | 95.73 294 |
|
| F-COLMAP | | | 92.28 191 | 91.06 216 | 95.95 58 | 97.52 125 | 91.90 57 | 93.53 159 | 97.18 148 | 83.98 267 | 88.70 330 | 94.04 270 | 88.41 186 | 98.55 181 | 80.17 313 | 95.99 294 | 97.39 216 |
|
| OpenMVS |  | 89.45 8 | 92.27 192 | 92.13 190 | 92.68 194 | 94.53 290 | 84.10 204 | 95.70 79 | 97.03 159 | 82.44 290 | 91.14 287 | 96.42 163 | 88.47 185 | 98.38 197 | 85.95 250 | 97.47 249 | 95.55 304 |
|
| hse-mvs2 | | | 92.24 193 | 91.20 212 | 95.38 82 | 96.16 211 | 90.65 76 | 92.52 193 | 92.01 319 | 89.23 171 | 93.95 205 | 92.99 300 | 76.88 312 | 98.69 162 | 91.02 135 | 96.03 292 | 96.81 244 |
|
| MVSFormer | | | 92.18 194 | 92.23 186 | 92.04 220 | 94.74 282 | 80.06 258 | 97.15 15 | 97.37 129 | 88.98 177 | 88.83 322 | 92.79 305 | 77.02 309 | 99.60 11 | 96.41 9 | 96.75 278 | 96.46 259 |
|
| HQP-MVS | | | 92.09 195 | 91.49 206 | 93.88 149 | 96.36 191 | 84.89 192 | 91.37 239 | 97.31 138 | 87.16 215 | 88.81 324 | 93.40 291 | 84.76 240 | 98.60 174 | 86.55 242 | 97.73 234 | 98.14 146 |
|
| DELS-MVS | | | 92.05 196 | 92.16 187 | 91.72 229 | 94.44 291 | 80.13 256 | 87.62 328 | 97.25 144 | 87.34 213 | 92.22 267 | 93.18 297 | 89.54 178 | 98.73 152 | 89.67 176 | 98.20 204 | 96.30 265 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| TinyColmap | | | 92.00 197 | 92.76 172 | 89.71 296 | 95.62 252 | 77.02 316 | 90.72 256 | 96.17 215 | 87.70 207 | 95.26 156 | 96.29 176 | 92.54 113 | 96.45 321 | 81.77 295 | 98.77 145 | 95.66 299 |
|
| CLD-MVS | | | 91.82 198 | 91.41 208 | 93.04 178 | 96.37 189 | 83.65 210 | 86.82 347 | 97.29 141 | 84.65 261 | 92.27 266 | 89.67 355 | 92.20 120 | 97.85 248 | 83.95 275 | 99.47 41 | 97.62 198 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| FA-MVS(test-final) | | | 91.81 199 | 91.85 197 | 91.68 232 | 94.95 272 | 79.99 262 | 96.00 66 | 93.44 289 | 87.80 203 | 94.02 203 | 97.29 101 | 77.60 300 | 98.45 192 | 88.04 215 | 97.49 247 | 96.61 250 |
|
| diffmvs |  | | 91.74 200 | 91.93 195 | 91.15 256 | 93.06 318 | 78.17 300 | 88.77 316 | 97.51 123 | 86.28 225 | 92.42 258 | 93.96 275 | 88.04 192 | 97.46 276 | 90.69 144 | 96.67 280 | 97.82 182 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CNLPA | | | 91.72 201 | 91.20 212 | 93.26 175 | 96.17 210 | 91.02 68 | 91.14 245 | 95.55 238 | 90.16 155 | 90.87 289 | 93.56 288 | 86.31 223 | 94.40 363 | 79.92 319 | 97.12 261 | 94.37 337 |
|
| IterMVS-SCA-FT | | | 91.65 202 | 91.55 202 | 91.94 221 | 93.89 304 | 79.22 281 | 87.56 331 | 93.51 287 | 91.53 124 | 95.37 148 | 96.62 153 | 78.65 291 | 98.90 120 | 91.89 114 | 94.95 321 | 97.70 193 |
|
| PVSNet_Blended_VisFu | | | 91.63 203 | 91.20 212 | 92.94 184 | 97.73 110 | 83.95 207 | 92.14 214 | 97.46 125 | 78.85 327 | 92.35 262 | 94.98 237 | 84.16 245 | 99.08 96 | 86.36 246 | 96.77 277 | 95.79 292 |
|
| AdaColmap |  | | 91.63 203 | 91.36 209 | 92.47 206 | 95.56 255 | 86.36 163 | 92.24 213 | 96.27 207 | 88.88 181 | 89.90 309 | 92.69 308 | 91.65 132 | 98.32 203 | 77.38 339 | 97.64 241 | 92.72 369 |
|
| pmmvs-eth3d | | | 91.54 205 | 90.73 224 | 93.99 141 | 95.76 243 | 87.86 127 | 90.83 252 | 93.98 281 | 78.23 330 | 94.02 203 | 96.22 183 | 82.62 262 | 96.83 310 | 86.57 240 | 98.33 189 | 97.29 222 |
|
| API-MVS | | | 91.52 206 | 91.61 201 | 91.26 250 | 94.16 296 | 86.26 166 | 94.66 119 | 94.82 260 | 91.17 132 | 92.13 270 | 91.08 337 | 90.03 174 | 97.06 299 | 79.09 327 | 97.35 255 | 90.45 385 |
|
| xiu_mvs_v1_base_debu | | | 91.47 207 | 91.52 203 | 91.33 245 | 95.69 246 | 81.56 238 | 89.92 283 | 96.05 219 | 83.22 277 | 91.26 283 | 90.74 341 | 91.55 134 | 98.82 132 | 89.29 185 | 95.91 295 | 93.62 356 |
|
| xiu_mvs_v1_base | | | 91.47 207 | 91.52 203 | 91.33 245 | 95.69 246 | 81.56 238 | 89.92 283 | 96.05 219 | 83.22 277 | 91.26 283 | 90.74 341 | 91.55 134 | 98.82 132 | 89.29 185 | 95.91 295 | 93.62 356 |
|
| xiu_mvs_v1_base_debi | | | 91.47 207 | 91.52 203 | 91.33 245 | 95.69 246 | 81.56 238 | 89.92 283 | 96.05 219 | 83.22 277 | 91.26 283 | 90.74 341 | 91.55 134 | 98.82 132 | 89.29 185 | 95.91 295 | 93.62 356 |
|
| LFMVS | | | 91.33 210 | 91.16 215 | 91.82 225 | 96.27 202 | 79.36 277 | 95.01 109 | 85.61 370 | 96.04 33 | 94.82 178 | 97.06 121 | 72.03 334 | 98.46 191 | 84.96 265 | 98.70 153 | 97.65 197 |
|
| c3_l | | | 91.32 211 | 91.42 207 | 91.00 261 | 92.29 334 | 76.79 322 | 87.52 334 | 96.42 202 | 85.76 237 | 94.72 184 | 93.89 278 | 82.73 259 | 98.16 218 | 90.93 139 | 98.55 167 | 98.04 153 |
|
| Fast-Effi-MVS+ | | | 91.28 212 | 90.86 219 | 92.53 204 | 95.45 260 | 82.53 226 | 89.25 306 | 96.52 198 | 85.00 255 | 89.91 308 | 88.55 367 | 92.94 102 | 98.84 130 | 84.72 269 | 95.44 307 | 96.22 272 |
|
| MDA-MVSNet-bldmvs | | | 91.04 213 | 90.88 218 | 91.55 237 | 94.68 286 | 80.16 253 | 85.49 368 | 92.14 315 | 90.41 152 | 94.93 174 | 95.79 202 | 85.10 237 | 96.93 305 | 85.15 259 | 94.19 342 | 97.57 201 |
|
| PAPM_NR | | | 91.03 214 | 90.81 221 | 91.68 232 | 96.73 165 | 81.10 246 | 93.72 155 | 96.35 205 | 88.19 195 | 88.77 328 | 92.12 322 | 85.09 238 | 97.25 286 | 82.40 290 | 93.90 347 | 96.68 249 |
|
| MSDG | | | 90.82 215 | 90.67 225 | 91.26 250 | 94.16 296 | 83.08 220 | 86.63 352 | 96.19 213 | 90.60 146 | 91.94 273 | 91.89 325 | 89.16 181 | 95.75 339 | 80.96 306 | 94.51 332 | 94.95 320 |
|
| test20.03 | | | 90.80 216 | 90.85 220 | 90.63 273 | 95.63 251 | 79.24 280 | 89.81 287 | 92.87 297 | 89.90 158 | 94.39 190 | 96.40 165 | 85.77 228 | 95.27 352 | 73.86 362 | 99.05 104 | 97.39 216 |
|
| FMVSNet3 | | | 90.78 217 | 90.32 234 | 92.16 216 | 93.03 320 | 79.92 264 | 92.54 192 | 94.95 256 | 86.17 230 | 95.10 165 | 96.01 193 | 69.97 342 | 98.75 148 | 86.74 235 | 98.38 183 | 97.82 182 |
|
| eth_miper_zixun_eth | | | 90.72 218 | 90.61 226 | 91.05 257 | 92.04 344 | 76.84 321 | 86.91 343 | 96.67 187 | 85.21 249 | 94.41 189 | 93.92 276 | 79.53 285 | 98.26 209 | 89.76 174 | 97.02 265 | 98.06 150 |
|
| X-MVStestdata | | | 90.70 219 | 88.45 266 | 97.44 17 | 98.56 41 | 93.99 27 | 96.50 38 | 97.95 84 | 94.58 46 | 94.38 191 | 26.89 409 | 94.56 66 | 99.39 50 | 93.57 58 | 99.05 104 | 98.93 66 |
|
| BH-untuned | | | 90.68 220 | 90.90 217 | 90.05 290 | 95.98 227 | 79.57 273 | 90.04 279 | 94.94 257 | 87.91 199 | 94.07 199 | 93.00 299 | 87.76 197 | 97.78 255 | 79.19 326 | 95.17 316 | 92.80 368 |
|
| cl____ | | | 90.65 221 | 90.56 228 | 90.91 265 | 91.85 349 | 76.98 319 | 86.75 348 | 95.36 246 | 85.53 244 | 94.06 200 | 94.89 240 | 77.36 306 | 97.98 234 | 90.27 158 | 98.98 112 | 97.76 188 |
|
| DIV-MVS_self_test | | | 90.65 221 | 90.56 228 | 90.91 265 | 91.85 349 | 76.99 318 | 86.75 348 | 95.36 246 | 85.52 246 | 94.06 200 | 94.89 240 | 77.37 305 | 97.99 233 | 90.28 157 | 98.97 117 | 97.76 188 |
|
| test_fmvs2 | | | 90.62 223 | 90.40 232 | 91.29 248 | 91.93 348 | 85.46 186 | 92.70 186 | 96.48 200 | 74.44 353 | 94.91 175 | 97.59 73 | 75.52 320 | 90.57 385 | 93.44 68 | 96.56 282 | 97.84 179 |
|
| 114514_t | | | 90.51 224 | 89.80 244 | 92.63 198 | 98.00 89 | 82.24 231 | 93.40 165 | 97.29 141 | 65.84 395 | 89.40 317 | 94.80 245 | 86.99 212 | 98.75 148 | 83.88 276 | 98.61 161 | 96.89 240 |
|
| miper_ehance_all_eth | | | 90.48 225 | 90.42 231 | 90.69 271 | 91.62 356 | 76.57 325 | 86.83 346 | 96.18 214 | 83.38 272 | 94.06 200 | 92.66 310 | 82.20 265 | 98.04 225 | 89.79 173 | 97.02 265 | 97.45 209 |
|
| BH-RMVSNet | | | 90.47 226 | 90.44 230 | 90.56 275 | 95.21 268 | 78.65 295 | 89.15 307 | 93.94 282 | 88.21 194 | 92.74 246 | 94.22 264 | 86.38 222 | 97.88 242 | 78.67 329 | 95.39 309 | 95.14 313 |
|
| Vis-MVSNet (Re-imp) | | | 90.42 227 | 90.16 235 | 91.20 254 | 97.66 118 | 77.32 313 | 94.33 132 | 87.66 352 | 91.20 131 | 92.99 237 | 95.13 231 | 75.40 321 | 98.28 205 | 77.86 332 | 99.19 90 | 97.99 161 |
|
| test_vis3_rt | | | 90.40 228 | 90.03 239 | 91.52 239 | 92.58 326 | 88.95 103 | 90.38 268 | 97.72 104 | 73.30 360 | 97.79 31 | 97.51 83 | 77.05 308 | 87.10 398 | 89.03 195 | 94.89 322 | 98.50 120 |
|
| PLC |  | 85.34 15 | 90.40 228 | 88.92 258 | 94.85 104 | 96.53 182 | 90.02 82 | 91.58 236 | 96.48 200 | 80.16 310 | 86.14 357 | 92.18 319 | 85.73 229 | 98.25 210 | 76.87 342 | 94.61 331 | 96.30 265 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| test1111 | | | 90.39 230 | 90.61 226 | 89.74 295 | 98.04 86 | 71.50 364 | 95.59 84 | 79.72 399 | 89.41 167 | 95.94 116 | 98.14 41 | 70.79 338 | 98.81 137 | 88.52 206 | 99.32 67 | 98.90 72 |
|
| testgi | | | 90.38 231 | 91.34 210 | 87.50 334 | 97.49 127 | 71.54 363 | 89.43 298 | 95.16 250 | 88.38 192 | 94.54 187 | 94.68 250 | 92.88 106 | 93.09 375 | 71.60 375 | 97.85 230 | 97.88 174 |
|
| mvs_anonymous | | | 90.37 232 | 91.30 211 | 87.58 333 | 92.17 340 | 68.00 378 | 89.84 286 | 94.73 264 | 83.82 270 | 93.22 230 | 97.40 88 | 87.54 200 | 97.40 281 | 87.94 218 | 95.05 319 | 97.34 219 |
|
| PVSNet_BlendedMVS | | | 90.35 233 | 89.96 240 | 91.54 238 | 94.81 277 | 78.80 293 | 90.14 276 | 96.93 166 | 79.43 317 | 88.68 331 | 95.06 235 | 86.27 224 | 98.15 219 | 80.27 309 | 98.04 216 | 97.68 195 |
|
| UnsupCasMVSNet_eth | | | 90.33 234 | 90.34 233 | 90.28 281 | 94.64 288 | 80.24 252 | 89.69 291 | 95.88 223 | 85.77 236 | 93.94 207 | 95.69 209 | 81.99 268 | 92.98 376 | 84.21 273 | 91.30 378 | 97.62 198 |
|
| MAR-MVS | | | 90.32 235 | 88.87 261 | 94.66 115 | 94.82 276 | 91.85 58 | 94.22 137 | 94.75 263 | 80.91 304 | 87.52 349 | 88.07 371 | 86.63 220 | 97.87 245 | 76.67 343 | 96.21 290 | 94.25 340 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| RPMNet | | | 90.31 236 | 90.14 238 | 90.81 269 | 91.01 364 | 78.93 284 | 92.52 193 | 98.12 55 | 91.91 102 | 89.10 319 | 96.89 133 | 68.84 344 | 99.41 40 | 90.17 163 | 92.70 367 | 94.08 341 |
|
| mvsmamba | | | 90.24 237 | 89.43 250 | 92.64 195 | 95.52 257 | 82.36 229 | 96.64 30 | 92.29 310 | 81.77 296 | 92.14 269 | 96.28 178 | 70.59 339 | 99.10 95 | 84.44 272 | 95.22 315 | 96.47 258 |
|
| IterMVS | | | 90.18 238 | 90.16 235 | 90.21 285 | 93.15 316 | 75.98 331 | 87.56 331 | 92.97 296 | 86.43 224 | 94.09 197 | 96.40 165 | 78.32 295 | 97.43 278 | 87.87 219 | 94.69 329 | 97.23 225 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| SSC-MVS | | | 90.16 239 | 92.96 165 | 81.78 378 | 97.88 97 | 48.48 410 | 90.75 254 | 87.69 351 | 96.02 34 | 96.70 81 | 97.63 71 | 85.60 233 | 97.80 251 | 85.73 253 | 98.60 163 | 99.06 48 |
|
| TAMVS | | | 90.16 239 | 89.05 254 | 93.49 169 | 96.49 184 | 86.37 162 | 90.34 270 | 92.55 307 | 80.84 307 | 92.99 237 | 94.57 255 | 81.94 270 | 98.20 213 | 73.51 363 | 98.21 202 | 95.90 288 |
|
| ECVR-MVS |  | | 90.12 241 | 90.16 235 | 90.00 291 | 97.81 103 | 72.68 358 | 95.76 78 | 78.54 402 | 89.04 175 | 95.36 149 | 98.10 43 | 70.51 340 | 98.64 170 | 87.10 231 | 99.18 92 | 98.67 102 |
|
| test_yl | | | 90.11 242 | 89.73 247 | 91.26 250 | 94.09 299 | 79.82 266 | 90.44 264 | 92.65 303 | 90.90 135 | 93.19 231 | 93.30 293 | 73.90 325 | 98.03 226 | 82.23 291 | 96.87 272 | 95.93 285 |
|
| DCV-MVSNet | | | 90.11 242 | 89.73 247 | 91.26 250 | 94.09 299 | 79.82 266 | 90.44 264 | 92.65 303 | 90.90 135 | 93.19 231 | 93.30 293 | 73.90 325 | 98.03 226 | 82.23 291 | 96.87 272 | 95.93 285 |
|
| Patchmtry | | | 90.11 242 | 89.92 241 | 90.66 272 | 90.35 373 | 77.00 317 | 92.96 177 | 92.81 298 | 90.25 154 | 94.74 182 | 96.93 130 | 67.11 351 | 97.52 272 | 85.17 257 | 98.98 112 | 97.46 208 |
|
| MVP-Stereo | | | 90.07 245 | 88.92 258 | 93.54 164 | 96.31 198 | 86.49 157 | 90.93 250 | 95.59 235 | 79.80 311 | 91.48 279 | 95.59 212 | 80.79 278 | 97.39 282 | 78.57 330 | 91.19 379 | 96.76 247 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| AUN-MVS | | | 90.05 246 | 88.30 270 | 95.32 87 | 96.09 218 | 90.52 78 | 92.42 201 | 92.05 318 | 82.08 294 | 88.45 334 | 92.86 302 | 65.76 361 | 98.69 162 | 88.91 198 | 96.07 291 | 96.75 248 |
|
| CL-MVSNet_self_test | | | 90.04 247 | 89.90 242 | 90.47 276 | 95.24 267 | 77.81 305 | 86.60 354 | 92.62 305 | 85.64 240 | 93.25 228 | 93.92 276 | 83.84 246 | 96.06 333 | 79.93 317 | 98.03 217 | 97.53 205 |
|
| D2MVS | | | 89.93 248 | 89.60 249 | 90.92 263 | 94.03 301 | 78.40 296 | 88.69 318 | 94.85 258 | 78.96 325 | 93.08 233 | 95.09 233 | 74.57 323 | 96.94 303 | 88.19 209 | 98.96 119 | 97.41 212 |
|
| miper_lstm_enhance | | | 89.90 249 | 89.80 244 | 90.19 287 | 91.37 360 | 77.50 310 | 83.82 384 | 95.00 254 | 84.84 259 | 93.05 235 | 94.96 238 | 76.53 317 | 95.20 353 | 89.96 170 | 98.67 157 | 97.86 176 |
|
| CANet_DTU | | | 89.85 250 | 89.17 252 | 91.87 223 | 92.20 338 | 80.02 261 | 90.79 253 | 95.87 224 | 86.02 232 | 82.53 386 | 91.77 327 | 80.01 282 | 98.57 178 | 85.66 254 | 97.70 237 | 97.01 235 |
|
| tttt0517 | | | 89.81 251 | 88.90 260 | 92.55 203 | 97.00 149 | 79.73 270 | 95.03 108 | 83.65 383 | 89.88 159 | 95.30 152 | 94.79 246 | 53.64 395 | 99.39 50 | 91.99 110 | 98.79 143 | 98.54 117 |
|
| EPNet | | | 89.80 252 | 88.25 274 | 94.45 128 | 83.91 408 | 86.18 168 | 93.87 149 | 87.07 357 | 91.16 133 | 80.64 396 | 94.72 248 | 78.83 289 | 98.89 122 | 85.17 257 | 98.89 124 | 98.28 134 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CDS-MVSNet | | | 89.55 253 | 88.22 277 | 93.53 165 | 95.37 264 | 86.49 157 | 89.26 304 | 93.59 284 | 79.76 313 | 91.15 286 | 92.31 317 | 77.12 307 | 98.38 197 | 77.51 337 | 97.92 227 | 95.71 295 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| MG-MVS | | | 89.54 254 | 89.80 244 | 88.76 312 | 94.88 273 | 72.47 360 | 89.60 292 | 92.44 309 | 85.82 235 | 89.48 316 | 95.98 194 | 82.85 257 | 97.74 261 | 81.87 294 | 95.27 313 | 96.08 278 |
|
| OpenMVS_ROB |  | 85.12 16 | 89.52 255 | 89.05 254 | 90.92 263 | 94.58 289 | 81.21 245 | 91.10 247 | 93.41 290 | 77.03 337 | 93.41 218 | 93.99 274 | 83.23 251 | 97.80 251 | 79.93 317 | 94.80 326 | 93.74 352 |
|
| test_vis1_n_1920 | | | 89.45 256 | 89.85 243 | 88.28 323 | 93.59 310 | 76.71 323 | 90.67 258 | 97.78 100 | 79.67 315 | 90.30 301 | 96.11 188 | 76.62 315 | 92.17 379 | 90.31 155 | 93.57 352 | 95.96 283 |
|
| WB-MVS | | | 89.44 257 | 92.15 189 | 81.32 379 | 97.73 110 | 48.22 411 | 89.73 289 | 87.98 349 | 95.24 39 | 96.05 112 | 96.99 127 | 85.18 236 | 96.95 302 | 82.45 289 | 97.97 223 | 98.78 85 |
|
| DPM-MVS | | | 89.35 258 | 88.40 267 | 92.18 215 | 96.13 216 | 84.20 202 | 86.96 342 | 96.15 216 | 75.40 347 | 87.36 350 | 91.55 332 | 83.30 250 | 98.01 230 | 82.17 293 | 96.62 281 | 94.32 339 |
|
| MVSTER | | | 89.32 259 | 88.75 262 | 91.03 258 | 90.10 376 | 76.62 324 | 90.85 251 | 94.67 267 | 82.27 291 | 95.24 159 | 95.79 202 | 61.09 382 | 98.49 186 | 90.49 147 | 98.26 195 | 97.97 165 |
|
| PatchMatch-RL | | | 89.18 260 | 88.02 282 | 92.64 195 | 95.90 232 | 92.87 46 | 88.67 320 | 91.06 326 | 80.34 308 | 90.03 306 | 91.67 329 | 83.34 249 | 94.42 362 | 76.35 347 | 94.84 325 | 90.64 384 |
|
| jason | | | 89.17 261 | 88.32 269 | 91.70 231 | 95.73 244 | 80.07 257 | 88.10 324 | 93.22 292 | 71.98 368 | 90.09 303 | 92.79 305 | 78.53 294 | 98.56 179 | 87.43 226 | 97.06 263 | 96.46 259 |
| jason: jason. |
| PCF-MVS | | 84.52 17 | 89.12 262 | 87.71 285 | 93.34 172 | 96.06 220 | 85.84 177 | 86.58 355 | 97.31 138 | 68.46 388 | 93.61 214 | 93.89 278 | 87.51 201 | 98.52 184 | 67.85 388 | 98.11 210 | 95.66 299 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| mvsany_test3 | | | 89.11 263 | 88.21 278 | 91.83 224 | 91.30 361 | 90.25 80 | 88.09 325 | 78.76 400 | 76.37 341 | 96.43 90 | 98.39 35 | 83.79 247 | 90.43 388 | 86.57 240 | 94.20 340 | 94.80 326 |
|
| FE-MVS | | | 89.06 264 | 88.29 271 | 91.36 244 | 94.78 279 | 79.57 273 | 96.77 27 | 90.99 327 | 84.87 258 | 92.96 239 | 96.29 176 | 60.69 384 | 98.80 140 | 80.18 312 | 97.11 262 | 95.71 295 |
|
| cl22 | | | 89.02 265 | 88.50 265 | 90.59 274 | 89.76 378 | 76.45 326 | 86.62 353 | 94.03 277 | 82.98 283 | 92.65 248 | 92.49 311 | 72.05 333 | 97.53 271 | 88.93 196 | 97.02 265 | 97.78 186 |
|
| USDC | | | 89.02 265 | 89.08 253 | 88.84 311 | 95.07 270 | 74.50 343 | 88.97 309 | 96.39 203 | 73.21 361 | 93.27 225 | 96.28 178 | 82.16 266 | 96.39 323 | 77.55 336 | 98.80 140 | 95.62 302 |
|
| test_vis1_n | | | 89.01 267 | 89.01 256 | 89.03 307 | 92.57 327 | 82.46 228 | 92.62 190 | 96.06 217 | 73.02 363 | 90.40 298 | 95.77 206 | 74.86 322 | 89.68 391 | 90.78 141 | 94.98 320 | 94.95 320 |
|
| xiu_mvs_v2_base | | | 89.00 268 | 89.19 251 | 88.46 321 | 94.86 275 | 74.63 340 | 86.97 341 | 95.60 231 | 80.88 305 | 87.83 343 | 88.62 366 | 91.04 149 | 98.81 137 | 82.51 288 | 94.38 334 | 91.93 375 |
|
| new-patchmatchnet | | | 88.97 269 | 90.79 222 | 83.50 373 | 94.28 295 | 55.83 408 | 85.34 370 | 93.56 286 | 86.18 229 | 95.47 141 | 95.73 208 | 83.10 252 | 96.51 318 | 85.40 256 | 98.06 214 | 98.16 144 |
|
| pmmvs4 | | | 88.95 270 | 87.70 286 | 92.70 192 | 94.30 294 | 85.60 183 | 87.22 337 | 92.16 314 | 74.62 352 | 89.75 314 | 94.19 265 | 77.97 298 | 96.41 322 | 82.71 284 | 96.36 287 | 96.09 277 |
|
| N_pmnet | | | 88.90 271 | 87.25 293 | 93.83 153 | 94.40 293 | 93.81 36 | 84.73 374 | 87.09 356 | 79.36 320 | 93.26 226 | 92.43 315 | 79.29 287 | 91.68 381 | 77.50 338 | 97.22 258 | 96.00 281 |
|
| PS-MVSNAJ | | | 88.86 272 | 88.99 257 | 88.48 320 | 94.88 273 | 74.71 338 | 86.69 350 | 95.60 231 | 80.88 305 | 87.83 343 | 87.37 376 | 90.77 154 | 98.82 132 | 82.52 287 | 94.37 335 | 91.93 375 |
|
| Patchmatch-RL test | | | 88.81 273 | 88.52 264 | 89.69 297 | 95.33 266 | 79.94 263 | 86.22 360 | 92.71 302 | 78.46 328 | 95.80 123 | 94.18 266 | 66.25 359 | 95.33 350 | 89.22 190 | 98.53 170 | 93.78 350 |
|
| Anonymous20231206 | | | 88.77 274 | 88.29 271 | 90.20 286 | 96.31 198 | 78.81 292 | 89.56 294 | 93.49 288 | 74.26 355 | 92.38 260 | 95.58 215 | 82.21 264 | 95.43 347 | 72.07 371 | 98.75 148 | 96.34 263 |
|
| PVSNet_Blended | | | 88.74 275 | 88.16 280 | 90.46 278 | 94.81 277 | 78.80 293 | 86.64 351 | 96.93 166 | 74.67 351 | 88.68 331 | 89.18 362 | 86.27 224 | 98.15 219 | 80.27 309 | 96.00 293 | 94.44 336 |
|
| test_fmvs1_n | | | 88.73 276 | 88.38 268 | 89.76 294 | 92.06 343 | 82.53 226 | 92.30 209 | 96.59 192 | 71.14 373 | 92.58 251 | 95.41 224 | 68.55 345 | 89.57 393 | 91.12 133 | 95.66 301 | 97.18 228 |
|
| thisisatest0530 | | | 88.69 277 | 87.52 288 | 92.20 211 | 96.33 196 | 79.36 277 | 92.81 182 | 84.01 382 | 86.44 223 | 93.67 213 | 92.68 309 | 53.62 396 | 99.25 77 | 89.65 177 | 98.45 177 | 98.00 158 |
|
| ppachtmachnet_test | | | 88.61 278 | 88.64 263 | 88.50 319 | 91.76 351 | 70.99 367 | 84.59 377 | 92.98 295 | 79.30 322 | 92.38 260 | 93.53 289 | 79.57 284 | 97.45 277 | 86.50 244 | 97.17 260 | 97.07 230 |
|
| UnsupCasMVSNet_bld | | | 88.50 279 | 88.03 281 | 89.90 292 | 95.52 257 | 78.88 288 | 87.39 335 | 94.02 279 | 79.32 321 | 93.06 234 | 94.02 272 | 80.72 279 | 94.27 365 | 75.16 354 | 93.08 363 | 96.54 251 |
|
| miper_enhance_ethall | | | 88.42 280 | 87.87 283 | 90.07 288 | 88.67 390 | 75.52 335 | 85.10 371 | 95.59 235 | 75.68 343 | 92.49 253 | 89.45 358 | 78.96 288 | 97.88 242 | 87.86 220 | 97.02 265 | 96.81 244 |
|
| 1112_ss | | | 88.42 280 | 87.41 289 | 91.45 241 | 96.69 167 | 80.99 247 | 89.72 290 | 96.72 184 | 73.37 359 | 87.00 353 | 90.69 344 | 77.38 304 | 98.20 213 | 81.38 300 | 93.72 350 | 95.15 312 |
|
| lupinMVS | | | 88.34 282 | 87.31 290 | 91.45 241 | 94.74 282 | 80.06 258 | 87.23 336 | 92.27 311 | 71.10 374 | 88.83 322 | 91.15 335 | 77.02 309 | 98.53 183 | 86.67 238 | 96.75 278 | 95.76 293 |
|
| test_cas_vis1_n_1920 | | | 88.25 283 | 88.27 273 | 88.20 325 | 92.19 339 | 78.92 286 | 89.45 297 | 95.44 241 | 75.29 350 | 93.23 229 | 95.65 211 | 71.58 335 | 90.23 389 | 88.05 214 | 93.55 354 | 95.44 306 |
|
| YYNet1 | | | 88.17 284 | 88.24 275 | 87.93 329 | 92.21 337 | 73.62 350 | 80.75 393 | 88.77 339 | 82.51 289 | 94.99 172 | 95.11 232 | 82.70 260 | 93.70 369 | 83.33 278 | 93.83 348 | 96.48 257 |
|
| MDA-MVSNet_test_wron | | | 88.16 285 | 88.23 276 | 87.93 329 | 92.22 336 | 73.71 349 | 80.71 394 | 88.84 338 | 82.52 288 | 94.88 177 | 95.14 230 | 82.70 260 | 93.61 370 | 83.28 279 | 93.80 349 | 96.46 259 |
|
| MS-PatchMatch | | | 88.05 286 | 87.75 284 | 88.95 308 | 93.28 313 | 77.93 302 | 87.88 327 | 92.49 308 | 75.42 346 | 92.57 252 | 93.59 287 | 80.44 280 | 94.24 367 | 81.28 301 | 92.75 366 | 94.69 332 |
|
| CR-MVSNet | | | 87.89 287 | 87.12 298 | 90.22 284 | 91.01 364 | 78.93 284 | 92.52 193 | 92.81 298 | 73.08 362 | 89.10 319 | 96.93 130 | 67.11 351 | 97.64 268 | 88.80 200 | 92.70 367 | 94.08 341 |
|
| pmmvs5 | | | 87.87 288 | 87.14 296 | 90.07 288 | 93.26 315 | 76.97 320 | 88.89 311 | 92.18 312 | 73.71 358 | 88.36 335 | 93.89 278 | 76.86 314 | 96.73 313 | 80.32 308 | 96.81 275 | 96.51 253 |
|
| wuyk23d | | | 87.83 289 | 90.79 222 | 78.96 384 | 90.46 372 | 88.63 109 | 92.72 184 | 90.67 332 | 91.65 120 | 98.68 13 | 97.64 70 | 96.06 15 | 77.53 406 | 59.84 400 | 99.41 54 | 70.73 404 |
|
| FMVSNet5 | | | 87.82 290 | 86.56 307 | 91.62 234 | 92.31 333 | 79.81 268 | 93.49 161 | 94.81 262 | 83.26 275 | 91.36 281 | 96.93 130 | 52.77 397 | 97.49 275 | 76.07 349 | 98.03 217 | 97.55 204 |
|
| GA-MVS | | | 87.70 291 | 86.82 302 | 90.31 280 | 93.27 314 | 77.22 315 | 84.72 376 | 92.79 300 | 85.11 253 | 89.82 310 | 90.07 347 | 66.80 354 | 97.76 258 | 84.56 270 | 94.27 338 | 95.96 283 |
|
| TR-MVS | | | 87.70 291 | 87.17 295 | 89.27 304 | 94.11 298 | 79.26 279 | 88.69 318 | 91.86 320 | 81.94 295 | 90.69 293 | 89.79 352 | 82.82 258 | 97.42 279 | 72.65 369 | 91.98 375 | 91.14 381 |
|
| thres600view7 | | | 87.66 293 | 87.10 299 | 89.36 302 | 96.05 221 | 73.17 352 | 92.72 184 | 85.31 373 | 91.89 103 | 93.29 223 | 90.97 338 | 63.42 373 | 98.39 194 | 73.23 365 | 96.99 270 | 96.51 253 |
|
| PAPR | | | 87.65 294 | 86.77 304 | 90.27 282 | 92.85 324 | 77.38 312 | 88.56 321 | 96.23 210 | 76.82 340 | 84.98 366 | 89.75 354 | 86.08 226 | 97.16 294 | 72.33 370 | 93.35 356 | 96.26 270 |
|
| baseline1 | | | 87.62 295 | 87.31 290 | 88.54 317 | 94.71 285 | 74.27 346 | 93.10 174 | 88.20 345 | 86.20 228 | 92.18 268 | 93.04 298 | 73.21 328 | 95.52 342 | 79.32 324 | 85.82 394 | 95.83 290 |
|
| test_fmvs1 | | | 87.59 296 | 87.27 292 | 88.54 317 | 88.32 391 | 81.26 243 | 90.43 267 | 95.72 228 | 70.55 379 | 91.70 276 | 94.63 251 | 68.13 346 | 89.42 394 | 90.59 145 | 95.34 311 | 94.94 322 |
|
| our_test_3 | | | 87.55 297 | 87.59 287 | 87.44 335 | 91.76 351 | 70.48 368 | 83.83 383 | 90.55 333 | 79.79 312 | 92.06 272 | 92.17 320 | 78.63 293 | 95.63 340 | 84.77 267 | 94.73 327 | 96.22 272 |
|
| PatchT | | | 87.51 298 | 88.17 279 | 85.55 355 | 90.64 367 | 66.91 382 | 92.02 218 | 86.09 363 | 92.20 94 | 89.05 321 | 97.16 112 | 64.15 369 | 96.37 325 | 89.21 191 | 92.98 365 | 93.37 360 |
|
| Test_1112_low_res | | | 87.50 299 | 86.58 306 | 90.25 283 | 96.80 164 | 77.75 306 | 87.53 333 | 96.25 208 | 69.73 384 | 86.47 355 | 93.61 286 | 75.67 319 | 97.88 242 | 79.95 315 | 93.20 359 | 95.11 316 |
|
| SCA | | | 87.43 300 | 87.21 294 | 88.10 327 | 92.01 345 | 71.98 362 | 89.43 298 | 88.11 347 | 82.26 292 | 88.71 329 | 92.83 303 | 78.65 291 | 97.59 269 | 79.61 321 | 93.30 357 | 94.75 329 |
|
| EU-MVSNet | | | 87.39 301 | 86.71 305 | 89.44 299 | 93.40 312 | 76.11 329 | 94.93 112 | 90.00 335 | 57.17 404 | 95.71 131 | 97.37 90 | 64.77 367 | 97.68 265 | 92.67 96 | 94.37 335 | 94.52 334 |
|
| thres100view900 | | | 87.35 302 | 86.89 301 | 88.72 313 | 96.14 214 | 73.09 354 | 93.00 176 | 85.31 373 | 92.13 96 | 93.26 226 | 90.96 339 | 63.42 373 | 98.28 205 | 71.27 377 | 96.54 283 | 94.79 327 |
|
| CMPMVS |  | 68.83 22 | 87.28 303 | 85.67 317 | 92.09 218 | 88.77 389 | 85.42 187 | 90.31 271 | 94.38 270 | 70.02 382 | 88.00 340 | 93.30 293 | 73.78 327 | 94.03 368 | 75.96 351 | 96.54 283 | 96.83 243 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| sss | | | 87.23 304 | 86.82 302 | 88.46 321 | 93.96 302 | 77.94 301 | 86.84 345 | 92.78 301 | 77.59 332 | 87.61 348 | 91.83 326 | 78.75 290 | 91.92 380 | 77.84 333 | 94.20 340 | 95.52 305 |
|
| BH-w/o | | | 87.21 305 | 87.02 300 | 87.79 332 | 94.77 280 | 77.27 314 | 87.90 326 | 93.21 294 | 81.74 297 | 89.99 307 | 88.39 369 | 83.47 248 | 96.93 305 | 71.29 376 | 92.43 371 | 89.15 386 |
|
| thres400 | | | 87.20 306 | 86.52 309 | 89.24 306 | 95.77 241 | 72.94 355 | 91.89 225 | 86.00 364 | 90.84 137 | 92.61 249 | 89.80 350 | 63.93 370 | 98.28 205 | 71.27 377 | 96.54 283 | 96.51 253 |
|
| CHOSEN 1792x2688 | | | 87.19 307 | 85.92 316 | 91.00 261 | 97.13 146 | 79.41 276 | 84.51 378 | 95.60 231 | 64.14 398 | 90.07 305 | 94.81 243 | 78.26 296 | 97.14 295 | 73.34 364 | 95.38 310 | 96.46 259 |
|
| HyFIR lowres test | | | 87.19 307 | 85.51 318 | 92.24 210 | 97.12 147 | 80.51 251 | 85.03 372 | 96.06 217 | 66.11 394 | 91.66 277 | 92.98 301 | 70.12 341 | 99.14 89 | 75.29 353 | 95.23 314 | 97.07 230 |
|
| MIMVSNet | | | 87.13 309 | 86.54 308 | 88.89 310 | 96.05 221 | 76.11 329 | 94.39 130 | 88.51 341 | 81.37 300 | 88.27 337 | 96.75 143 | 72.38 331 | 95.52 342 | 65.71 393 | 95.47 306 | 95.03 317 |
|
| tfpn200view9 | | | 87.05 310 | 86.52 309 | 88.67 314 | 95.77 241 | 72.94 355 | 91.89 225 | 86.00 364 | 90.84 137 | 92.61 249 | 89.80 350 | 63.93 370 | 98.28 205 | 71.27 377 | 96.54 283 | 94.79 327 |
|
| cascas | | | 87.02 311 | 86.28 313 | 89.25 305 | 91.56 358 | 76.45 326 | 84.33 380 | 96.78 179 | 71.01 375 | 86.89 354 | 85.91 384 | 81.35 273 | 96.94 303 | 83.09 281 | 95.60 302 | 94.35 338 |
|
| WTY-MVS | | | 86.93 312 | 86.50 311 | 88.24 324 | 94.96 271 | 74.64 339 | 87.19 338 | 92.07 317 | 78.29 329 | 88.32 336 | 91.59 331 | 78.06 297 | 94.27 365 | 74.88 355 | 93.15 361 | 95.80 291 |
|
| HY-MVS | | 82.50 18 | 86.81 313 | 85.93 315 | 89.47 298 | 93.63 309 | 77.93 302 | 94.02 144 | 91.58 324 | 75.68 343 | 83.64 377 | 93.64 283 | 77.40 303 | 97.42 279 | 71.70 374 | 92.07 374 | 93.05 365 |
|
| test_f | | | 86.65 314 | 87.13 297 | 85.19 359 | 90.28 374 | 86.11 170 | 86.52 356 | 91.66 322 | 69.76 383 | 95.73 130 | 97.21 109 | 69.51 343 | 81.28 405 | 89.15 192 | 94.40 333 | 88.17 391 |
|
| 1314 | | | 86.46 315 | 86.33 312 | 86.87 342 | 91.65 355 | 74.54 341 | 91.94 222 | 94.10 276 | 74.28 354 | 84.78 368 | 87.33 377 | 83.03 254 | 95.00 354 | 78.72 328 | 91.16 380 | 91.06 382 |
|
| ET-MVSNet_ETH3D | | | 86.15 316 | 84.27 327 | 91.79 226 | 93.04 319 | 81.28 242 | 87.17 339 | 86.14 362 | 79.57 316 | 83.65 376 | 88.66 364 | 57.10 388 | 98.18 216 | 87.74 221 | 95.40 308 | 95.90 288 |
|
| Patchmatch-test | | | 86.10 317 | 86.01 314 | 86.38 350 | 90.63 368 | 74.22 347 | 89.57 293 | 86.69 358 | 85.73 238 | 89.81 311 | 92.83 303 | 65.24 365 | 91.04 384 | 77.82 335 | 95.78 299 | 93.88 349 |
|
| thres200 | | | 85.85 318 | 85.18 319 | 87.88 331 | 94.44 291 | 72.52 359 | 89.08 308 | 86.21 361 | 88.57 188 | 91.44 280 | 88.40 368 | 64.22 368 | 98.00 231 | 68.35 386 | 95.88 298 | 93.12 362 |
|
| EPNet_dtu | | | 85.63 319 | 84.37 325 | 89.40 301 | 86.30 401 | 74.33 345 | 91.64 235 | 88.26 343 | 84.84 259 | 72.96 405 | 89.85 348 | 71.27 337 | 97.69 264 | 76.60 344 | 97.62 242 | 96.18 274 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| test_vis1_rt | | | 85.58 320 | 84.58 323 | 88.60 316 | 87.97 392 | 86.76 149 | 85.45 369 | 93.59 284 | 66.43 392 | 87.64 346 | 89.20 361 | 79.33 286 | 85.38 402 | 81.59 298 | 89.98 386 | 93.66 354 |
|
| test2506 | | | 85.42 321 | 84.57 324 | 87.96 328 | 97.81 103 | 66.53 385 | 96.14 61 | 56.35 412 | 89.04 175 | 93.55 216 | 98.10 43 | 42.88 410 | 98.68 164 | 88.09 213 | 99.18 92 | 98.67 102 |
|
| PatchmatchNet |  | | 85.22 322 | 84.64 322 | 86.98 339 | 89.51 383 | 69.83 374 | 90.52 262 | 87.34 355 | 78.87 326 | 87.22 352 | 92.74 307 | 66.91 353 | 96.53 316 | 81.77 295 | 86.88 392 | 94.58 333 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| CVMVSNet | | | 85.16 323 | 84.72 321 | 86.48 346 | 92.12 341 | 70.19 369 | 92.32 206 | 88.17 346 | 56.15 405 | 90.64 294 | 95.85 198 | 67.97 349 | 96.69 314 | 88.78 201 | 90.52 383 | 92.56 370 |
|
| JIA-IIPM | | | 85.08 324 | 83.04 336 | 91.19 255 | 87.56 394 | 86.14 169 | 89.40 300 | 84.44 381 | 88.98 177 | 82.20 387 | 97.95 54 | 56.82 390 | 96.15 329 | 76.55 346 | 83.45 398 | 91.30 380 |
|
| MVS | | | 84.98 325 | 84.30 326 | 87.01 338 | 91.03 363 | 77.69 308 | 91.94 222 | 94.16 275 | 59.36 403 | 84.23 373 | 87.50 375 | 85.66 230 | 96.80 311 | 71.79 372 | 93.05 364 | 86.54 395 |
|
| Syy-MVS | | | 84.81 326 | 84.93 320 | 84.42 366 | 91.71 353 | 63.36 400 | 85.89 363 | 81.49 390 | 81.03 302 | 85.13 363 | 81.64 399 | 77.44 302 | 95.00 354 | 85.94 251 | 94.12 343 | 94.91 323 |
|
| thisisatest0515 | | | 84.72 327 | 82.99 337 | 89.90 292 | 92.96 322 | 75.33 337 | 84.36 379 | 83.42 384 | 77.37 334 | 88.27 337 | 86.65 378 | 53.94 394 | 98.72 153 | 82.56 286 | 97.40 253 | 95.67 298 |
|
| dmvs_re | | | 84.69 328 | 83.94 330 | 86.95 340 | 92.24 335 | 82.93 222 | 89.51 295 | 87.37 354 | 84.38 265 | 85.37 360 | 85.08 390 | 72.44 330 | 86.59 399 | 68.05 387 | 91.03 382 | 91.33 379 |
|
| FPMVS | | | 84.50 329 | 83.28 334 | 88.16 326 | 96.32 197 | 94.49 17 | 85.76 366 | 85.47 371 | 83.09 280 | 85.20 362 | 94.26 262 | 63.79 372 | 86.58 400 | 63.72 396 | 91.88 377 | 83.40 398 |
|
| tpm | | | 84.38 330 | 84.08 328 | 85.30 358 | 90.47 371 | 63.43 399 | 89.34 301 | 85.63 369 | 77.24 336 | 87.62 347 | 95.03 236 | 61.00 383 | 97.30 285 | 79.26 325 | 91.09 381 | 95.16 311 |
|
| tpmvs | | | 84.22 331 | 83.97 329 | 84.94 361 | 87.09 398 | 65.18 392 | 91.21 244 | 88.35 342 | 82.87 284 | 85.21 361 | 90.96 339 | 65.24 365 | 96.75 312 | 79.60 323 | 85.25 395 | 92.90 367 |
|
| WB-MVSnew | | | 84.20 332 | 83.89 331 | 85.16 360 | 91.62 356 | 66.15 389 | 88.44 323 | 81.00 393 | 76.23 342 | 87.98 341 | 87.77 372 | 84.98 239 | 93.35 373 | 62.85 398 | 94.10 345 | 95.98 282 |
|
| ADS-MVSNet2 | | | 84.01 333 | 82.20 344 | 89.41 300 | 89.04 386 | 76.37 328 | 87.57 329 | 90.98 328 | 72.71 366 | 84.46 369 | 92.45 312 | 68.08 347 | 96.48 319 | 70.58 382 | 83.97 396 | 95.38 307 |
|
| mvsany_test1 | | | 83.91 334 | 82.93 338 | 86.84 343 | 86.18 402 | 85.93 174 | 81.11 392 | 75.03 407 | 70.80 378 | 88.57 333 | 94.63 251 | 83.08 253 | 87.38 397 | 80.39 307 | 86.57 393 | 87.21 393 |
|
| testing3 | | | 83.66 335 | 82.52 340 | 87.08 337 | 95.84 235 | 65.84 390 | 89.80 288 | 77.17 406 | 88.17 196 | 90.84 290 | 88.63 365 | 30.95 414 | 98.11 221 | 84.05 274 | 97.19 259 | 97.28 223 |
|
| test-LLR | | | 83.58 336 | 83.17 335 | 84.79 363 | 89.68 380 | 66.86 383 | 83.08 385 | 84.52 379 | 83.07 281 | 82.85 383 | 84.78 391 | 62.86 376 | 93.49 371 | 82.85 282 | 94.86 323 | 94.03 344 |
|
| testing91 | | | 83.56 337 | 82.45 341 | 86.91 341 | 92.92 323 | 67.29 379 | 86.33 358 | 88.07 348 | 86.22 227 | 84.26 372 | 85.76 385 | 48.15 400 | 97.17 292 | 76.27 348 | 94.08 346 | 96.27 269 |
|
| baseline2 | | | 83.38 338 | 81.54 348 | 88.90 309 | 91.38 359 | 72.84 357 | 88.78 315 | 81.22 392 | 78.97 324 | 79.82 398 | 87.56 373 | 61.73 380 | 97.80 251 | 74.30 359 | 90.05 385 | 96.05 280 |
|
| IB-MVS | | 77.21 19 | 83.11 339 | 81.05 351 | 89.29 303 | 91.15 362 | 75.85 332 | 85.66 367 | 86.00 364 | 79.70 314 | 82.02 390 | 86.61 379 | 48.26 399 | 98.39 194 | 77.84 333 | 92.22 372 | 93.63 355 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| CostFormer | | | 83.09 340 | 82.21 343 | 85.73 353 | 89.27 385 | 67.01 381 | 90.35 269 | 86.47 360 | 70.42 380 | 83.52 379 | 93.23 296 | 61.18 381 | 96.85 309 | 77.21 340 | 88.26 390 | 93.34 361 |
|
| PMMVS | | | 83.00 341 | 81.11 350 | 88.66 315 | 83.81 409 | 86.44 160 | 82.24 389 | 85.65 368 | 61.75 402 | 82.07 388 | 85.64 387 | 79.75 283 | 91.59 382 | 75.99 350 | 93.09 362 | 87.94 392 |
|
| testing99 | | | 82.94 342 | 81.72 345 | 86.59 344 | 92.55 328 | 66.53 385 | 86.08 362 | 85.70 367 | 85.47 247 | 83.95 374 | 85.70 386 | 45.87 401 | 97.07 298 | 76.58 345 | 93.56 353 | 96.17 276 |
|
| PVSNet | | 76.22 20 | 82.89 343 | 82.37 342 | 84.48 365 | 93.96 302 | 64.38 397 | 78.60 396 | 88.61 340 | 71.50 371 | 84.43 371 | 86.36 382 | 74.27 324 | 94.60 359 | 69.87 384 | 93.69 351 | 94.46 335 |
|
| tpmrst | | | 82.85 344 | 82.93 338 | 82.64 375 | 87.65 393 | 58.99 406 | 90.14 276 | 87.90 350 | 75.54 345 | 83.93 375 | 91.63 330 | 66.79 356 | 95.36 348 | 81.21 303 | 81.54 402 | 93.57 359 |
|
| test0.0.03 1 | | | 82.48 345 | 81.47 349 | 85.48 356 | 89.70 379 | 73.57 351 | 84.73 374 | 81.64 389 | 83.07 281 | 88.13 339 | 86.61 379 | 62.86 376 | 89.10 396 | 66.24 392 | 90.29 384 | 93.77 351 |
|
| ADS-MVSNet | | | 82.25 346 | 81.55 347 | 84.34 367 | 89.04 386 | 65.30 391 | 87.57 329 | 85.13 377 | 72.71 366 | 84.46 369 | 92.45 312 | 68.08 347 | 92.33 378 | 70.58 382 | 83.97 396 | 95.38 307 |
|
| DSMNet-mixed | | | 82.21 347 | 81.56 346 | 84.16 368 | 89.57 382 | 70.00 373 | 90.65 259 | 77.66 404 | 54.99 406 | 83.30 381 | 97.57 74 | 77.89 299 | 90.50 387 | 66.86 391 | 95.54 304 | 91.97 374 |
|
| KD-MVS_2432*1600 | | | 82.17 348 | 80.75 355 | 86.42 348 | 82.04 410 | 70.09 371 | 81.75 390 | 90.80 330 | 82.56 286 | 90.37 299 | 89.30 359 | 42.90 408 | 96.11 331 | 74.47 357 | 92.55 369 | 93.06 363 |
|
| miper_refine_blended | | | 82.17 348 | 80.75 355 | 86.42 348 | 82.04 410 | 70.09 371 | 81.75 390 | 90.80 330 | 82.56 286 | 90.37 299 | 89.30 359 | 42.90 408 | 96.11 331 | 74.47 357 | 92.55 369 | 93.06 363 |
|
| gg-mvs-nofinetune | | | 82.10 350 | 81.02 352 | 85.34 357 | 87.46 396 | 71.04 365 | 94.74 116 | 67.56 409 | 96.44 26 | 79.43 399 | 98.99 6 | 45.24 402 | 96.15 329 | 67.18 390 | 92.17 373 | 88.85 388 |
|
| testing11 | | | 81.98 351 | 80.52 358 | 86.38 350 | 92.69 325 | 67.13 380 | 85.79 365 | 84.80 378 | 82.16 293 | 81.19 395 | 85.41 388 | 45.24 402 | 96.88 308 | 74.14 360 | 93.24 358 | 95.14 313 |
|
| PAPM | | | 81.91 352 | 80.11 362 | 87.31 336 | 93.87 305 | 72.32 361 | 84.02 382 | 93.22 292 | 69.47 385 | 76.13 403 | 89.84 349 | 72.15 332 | 97.23 287 | 53.27 405 | 89.02 387 | 92.37 372 |
|
| tpm2 | | | 81.46 353 | 80.35 360 | 84.80 362 | 89.90 377 | 65.14 393 | 90.44 264 | 85.36 372 | 65.82 396 | 82.05 389 | 92.44 314 | 57.94 387 | 96.69 314 | 70.71 381 | 88.49 389 | 92.56 370 |
|
| PMMVS2 | | | 81.31 354 | 83.44 333 | 74.92 387 | 90.52 370 | 46.49 413 | 69.19 403 | 85.23 376 | 84.30 266 | 87.95 342 | 94.71 249 | 76.95 311 | 84.36 404 | 64.07 395 | 98.09 212 | 93.89 348 |
|
| new_pmnet | | | 81.22 355 | 81.01 353 | 81.86 377 | 90.92 366 | 70.15 370 | 84.03 381 | 80.25 398 | 70.83 376 | 85.97 358 | 89.78 353 | 67.93 350 | 84.65 403 | 67.44 389 | 91.90 376 | 90.78 383 |
|
| test-mter | | | 81.21 356 | 80.01 363 | 84.79 363 | 89.68 380 | 66.86 383 | 83.08 385 | 84.52 379 | 73.85 357 | 82.85 383 | 84.78 391 | 43.66 407 | 93.49 371 | 82.85 282 | 94.86 323 | 94.03 344 |
|
| EPMVS | | | 81.17 357 | 80.37 359 | 83.58 372 | 85.58 404 | 65.08 394 | 90.31 271 | 71.34 408 | 77.31 335 | 85.80 359 | 91.30 333 | 59.38 385 | 92.70 377 | 79.99 314 | 82.34 401 | 92.96 366 |
|
| EGC-MVSNET | | | 80.97 358 | 75.73 374 | 96.67 43 | 98.85 23 | 94.55 16 | 96.83 22 | 96.60 190 | 2.44 411 | 5.32 412 | 98.25 39 | 92.24 117 | 98.02 229 | 91.85 115 | 99.21 88 | 97.45 209 |
|
| pmmvs3 | | | 80.83 359 | 78.96 367 | 86.45 347 | 87.23 397 | 77.48 311 | 84.87 373 | 82.31 387 | 63.83 399 | 85.03 365 | 89.50 357 | 49.66 398 | 93.10 374 | 73.12 367 | 95.10 317 | 88.78 390 |
|
| E-PMN | | | 80.72 360 | 80.86 354 | 80.29 382 | 85.11 405 | 68.77 376 | 72.96 400 | 81.97 388 | 87.76 205 | 83.25 382 | 83.01 397 | 62.22 379 | 89.17 395 | 77.15 341 | 94.31 337 | 82.93 399 |
|
| tpm cat1 | | | 80.61 361 | 79.46 364 | 84.07 369 | 88.78 388 | 65.06 395 | 89.26 304 | 88.23 344 | 62.27 401 | 81.90 391 | 89.66 356 | 62.70 378 | 95.29 351 | 71.72 373 | 80.60 403 | 91.86 377 |
|
| testing222 | | | 80.54 362 | 78.53 369 | 86.58 345 | 92.54 330 | 68.60 377 | 86.24 359 | 82.72 386 | 83.78 271 | 82.68 385 | 84.24 393 | 39.25 412 | 95.94 336 | 60.25 399 | 95.09 318 | 95.20 309 |
|
| EMVS | | | 80.35 363 | 80.28 361 | 80.54 381 | 84.73 407 | 69.07 375 | 72.54 402 | 80.73 395 | 87.80 203 | 81.66 392 | 81.73 398 | 62.89 375 | 89.84 390 | 75.79 352 | 94.65 330 | 82.71 400 |
|
| UWE-MVS | | | 80.29 364 | 79.10 365 | 83.87 370 | 91.97 347 | 59.56 404 | 86.50 357 | 77.43 405 | 75.40 347 | 87.79 345 | 88.10 370 | 44.08 406 | 96.90 307 | 64.23 394 | 96.36 287 | 95.14 313 |
|
| CHOSEN 280x420 | | | 80.04 365 | 77.97 372 | 86.23 352 | 90.13 375 | 74.53 342 | 72.87 401 | 89.59 337 | 66.38 393 | 76.29 402 | 85.32 389 | 56.96 389 | 95.36 348 | 69.49 385 | 94.72 328 | 88.79 389 |
|
| ETVMVS | | | 79.85 366 | 77.94 373 | 85.59 354 | 92.97 321 | 66.20 388 | 86.13 361 | 80.99 394 | 81.41 299 | 83.52 379 | 83.89 394 | 41.81 411 | 94.98 357 | 56.47 403 | 94.25 339 | 95.61 303 |
|
| myMVS_eth3d | | | 79.62 367 | 78.26 370 | 83.72 371 | 91.71 353 | 61.25 402 | 85.89 363 | 81.49 390 | 81.03 302 | 85.13 363 | 81.64 399 | 32.12 413 | 95.00 354 | 71.17 380 | 94.12 343 | 94.91 323 |
|
| dp | | | 79.28 368 | 78.62 368 | 81.24 380 | 85.97 403 | 56.45 407 | 86.91 343 | 85.26 375 | 72.97 364 | 81.45 394 | 89.17 363 | 56.01 392 | 95.45 346 | 73.19 366 | 76.68 404 | 91.82 378 |
|
| TESTMET0.1,1 | | | 79.09 369 | 78.04 371 | 82.25 376 | 87.52 395 | 64.03 398 | 83.08 385 | 80.62 396 | 70.28 381 | 80.16 397 | 83.22 396 | 44.13 405 | 90.56 386 | 79.95 315 | 93.36 355 | 92.15 373 |
|
| MVS-HIRNet | | | 78.83 370 | 80.60 357 | 73.51 388 | 93.07 317 | 47.37 412 | 87.10 340 | 78.00 403 | 68.94 386 | 77.53 401 | 97.26 102 | 71.45 336 | 94.62 358 | 63.28 397 | 88.74 388 | 78.55 403 |
|
| dmvs_testset | | | 78.23 371 | 78.99 366 | 75.94 386 | 91.99 346 | 55.34 409 | 88.86 312 | 78.70 401 | 82.69 285 | 81.64 393 | 79.46 401 | 75.93 318 | 85.74 401 | 48.78 407 | 82.85 400 | 86.76 394 |
|
| PVSNet_0 | | 70.34 21 | 74.58 372 | 72.96 375 | 79.47 383 | 90.63 368 | 66.24 387 | 73.26 399 | 83.40 385 | 63.67 400 | 78.02 400 | 78.35 403 | 72.53 329 | 89.59 392 | 56.68 402 | 60.05 407 | 82.57 401 |
|
| MVE |  | 59.87 23 | 73.86 373 | 72.65 376 | 77.47 385 | 87.00 400 | 74.35 344 | 61.37 405 | 60.93 411 | 67.27 390 | 69.69 406 | 86.49 381 | 81.24 277 | 72.33 408 | 56.45 404 | 83.45 398 | 85.74 396 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| dongtai | | | 53.72 374 | 53.79 377 | 53.51 391 | 79.69 412 | 36.70 415 | 77.18 397 | 32.53 417 | 71.69 369 | 68.63 407 | 60.79 406 | 26.65 415 | 73.11 407 | 30.67 410 | 36.29 409 | 50.73 405 |
|
| test_method | | | 50.44 375 | 48.94 378 | 54.93 389 | 39.68 415 | 12.38 418 | 28.59 406 | 90.09 334 | 6.82 409 | 41.10 411 | 78.41 402 | 54.41 393 | 70.69 409 | 50.12 406 | 51.26 408 | 81.72 402 |
|
| kuosan | | | 43.63 376 | 44.25 380 | 41.78 392 | 66.04 414 | 34.37 416 | 75.56 398 | 32.62 416 | 53.25 407 | 50.46 410 | 51.18 407 | 25.28 416 | 49.13 410 | 13.44 411 | 30.41 410 | 41.84 407 |
|
| tmp_tt | | | 37.97 377 | 44.33 379 | 18.88 393 | 11.80 416 | 21.54 417 | 63.51 404 | 45.66 415 | 4.23 410 | 51.34 409 | 50.48 408 | 59.08 386 | 22.11 412 | 44.50 408 | 68.35 406 | 13.00 408 |
|
| cdsmvs_eth3d_5k | | | 23.35 378 | 31.13 381 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 95.58 237 | 0.00 414 | 0.00 415 | 91.15 335 | 93.43 86 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| test123 | | | 9.49 379 | 12.01 382 | 1.91 394 | 2.87 417 | 1.30 419 | 82.38 388 | 1.34 419 | 1.36 412 | 2.84 413 | 6.56 411 | 2.45 417 | 0.97 413 | 2.73 412 | 5.56 411 | 3.47 409 |
|
| testmvs | | | 9.02 380 | 11.42 383 | 1.81 395 | 2.77 418 | 1.13 420 | 79.44 395 | 1.90 418 | 1.18 413 | 2.65 414 | 6.80 410 | 1.95 418 | 0.87 414 | 2.62 413 | 3.45 412 | 3.44 410 |
|
| pcd_1.5k_mvsjas | | | 7.56 381 | 10.09 384 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 90.77 154 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| ab-mvs-re | | | 7.56 381 | 10.08 385 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 90.69 344 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| test_blank | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet_test | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| DCPMVS | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet-low-res | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uncertanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| Regformer | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| WAC-MVS | | | | | | | 61.25 402 | | | | | | | | 74.55 356 | | |
|
| FOURS1 | | | | | | 99.21 3 | 94.68 13 | 98.45 4 | 98.81 10 | 97.73 7 | 98.27 22 | | | | | | |
|
| MSC_two_6792asdad | | | | | 95.90 64 | 96.54 179 | 89.57 88 | | 96.87 173 | | | | | 99.41 40 | 94.06 45 | 99.30 70 | 98.72 94 |
|
| PC_three_1452 | | | | | | | | | | 75.31 349 | 95.87 121 | 95.75 207 | 92.93 103 | 96.34 328 | 87.18 230 | 98.68 155 | 98.04 153 |
|
| No_MVS | | | | | 95.90 64 | 96.54 179 | 89.57 88 | | 96.87 173 | | | | | 99.41 40 | 94.06 45 | 99.30 70 | 98.72 94 |
|
| test_one_0601 | | | | | | 98.26 68 | 87.14 139 | | 98.18 45 | 94.25 51 | 96.99 69 | 97.36 93 | 95.13 43 | | | | |
|
| eth-test2 | | | | | | 0.00 419 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 419 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 97.23 139 | 90.32 79 | | 97.54 118 | 84.40 264 | 94.78 180 | 95.79 202 | 92.76 109 | 99.39 50 | 88.72 203 | 98.40 179 | |
|
| RE-MVS-def | | | | 96.66 21 | | 98.07 81 | 95.27 10 | 96.37 46 | 98.12 55 | 95.66 36 | 97.00 67 | 97.03 123 | 95.40 29 | | 93.49 62 | 98.84 131 | 98.00 158 |
|
| IU-MVS | | | | | | 98.51 49 | 86.66 154 | | 96.83 176 | 72.74 365 | 95.83 122 | | | | 93.00 87 | 99.29 73 | 98.64 109 |
|
| OPU-MVS | | | | | 95.15 96 | 96.84 160 | 89.43 92 | 95.21 99 | | | | 95.66 210 | 93.12 97 | 98.06 224 | 86.28 248 | 98.61 161 | 97.95 166 |
|
| test_241102_TWO | | | | | | | | | 98.10 58 | 91.95 99 | 97.54 41 | 97.25 103 | 95.37 30 | 99.35 60 | 93.29 75 | 99.25 81 | 98.49 122 |
|
| test_241102_ONE | | | | | | 98.51 49 | 86.97 144 | | 98.10 58 | 91.85 105 | 97.63 36 | 97.03 123 | 96.48 10 | 98.95 116 | | | |
|
| 9.14 | | | | 94.81 105 | | 97.49 127 | | 94.11 142 | 98.37 22 | 87.56 211 | 95.38 146 | 96.03 192 | 94.66 62 | 99.08 96 | 90.70 143 | 98.97 117 | |
|
| save fliter | | | | | | 97.46 130 | 88.05 123 | 92.04 217 | 97.08 156 | 87.63 209 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 93.26 74 | 97.40 52 | 97.35 96 | 94.69 61 | 99.34 63 | 93.88 48 | 99.42 50 | 98.89 73 |
|
| test_0728_SECOND | | | | | 94.88 103 | 98.55 44 | 86.72 151 | 95.20 101 | 98.22 40 | | | | | 99.38 56 | 93.44 68 | 99.31 68 | 98.53 119 |
|
| test0726 | | | | | | 98.51 49 | 86.69 152 | 95.34 93 | 98.18 45 | 91.85 105 | 97.63 36 | 97.37 90 | 95.58 24 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.75 329 |
|
| test_part2 | | | | | | 98.21 73 | 89.41 93 | | | | 96.72 80 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 66.64 357 | | | | 94.75 329 |
|
| sam_mvs | | | | | | | | | | | | | 66.41 358 | | | | |
|
| ambc | | | | | 92.98 180 | 96.88 156 | 83.01 221 | 95.92 72 | 96.38 204 | | 96.41 91 | 97.48 85 | 88.26 187 | 97.80 251 | 89.96 170 | 98.93 122 | 98.12 148 |
|
| MTGPA |  | | | | | | | | 97.62 109 | | | | | | | | |
|
| test_post1 | | | | | | | | 90.21 273 | | | | 5.85 413 | 65.36 363 | 96.00 334 | 79.61 321 | | |
|
| test_post | | | | | | | | | | | | 6.07 412 | 65.74 362 | 95.84 338 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 91.71 328 | 66.22 360 | 97.59 269 | | | |
|
| GG-mvs-BLEND | | | | | 83.24 374 | 85.06 406 | 71.03 366 | 94.99 111 | 65.55 410 | | 74.09 404 | 75.51 404 | 44.57 404 | 94.46 361 | 59.57 401 | 87.54 391 | 84.24 397 |
|
| MTMP | | | | | | | | 94.82 114 | 54.62 413 | | | | | | | | |
|
| gm-plane-assit | | | | | | 87.08 399 | 59.33 405 | | | 71.22 372 | | 83.58 395 | | 97.20 289 | 73.95 361 | | |
|
| test9_res | | | | | | | | | | | | | | | 88.16 211 | 98.40 179 | 97.83 180 |
|
| TEST9 | | | | | | 96.45 187 | 89.46 90 | 90.60 260 | 96.92 168 | 79.09 323 | 90.49 295 | 94.39 259 | 91.31 139 | 98.88 123 | | | |
|
| test_8 | | | | | | 96.37 189 | 89.14 100 | 90.51 263 | 96.89 171 | 79.37 318 | 90.42 297 | 94.36 261 | 91.20 144 | 98.82 132 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 87.06 233 | 98.36 188 | 97.98 162 |
|
| agg_prior | | | | | | 96.20 208 | 88.89 105 | | 96.88 172 | | 90.21 302 | | | 98.78 144 | | | |
|
| TestCases | | | | | 96.00 55 | 98.02 87 | 92.17 51 | | 98.43 19 | 90.48 148 | 95.04 169 | 96.74 145 | 92.54 113 | 97.86 246 | 85.11 262 | 98.98 112 | 97.98 162 |
|
| test_prior4 | | | | | | | 89.91 83 | 90.74 255 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 90.21 273 | | 89.33 170 | 90.77 291 | 94.81 243 | 90.41 164 | | 88.21 207 | 98.55 167 | |
|
| test_prior | | | | | 94.61 116 | 95.95 229 | 87.23 136 | | 97.36 134 | | | | | 98.68 164 | | | 97.93 168 |
|
| 旧先验2 | | | | | | | | 90.00 281 | | 68.65 387 | 92.71 247 | | | 96.52 317 | 85.15 259 | | |
|
| 新几何2 | | | | | | | | 90.02 280 | | | | | | | | | |
|
| 新几何1 | | | | | 93.17 177 | 97.16 144 | 87.29 134 | | 94.43 269 | 67.95 389 | 91.29 282 | 94.94 239 | 86.97 213 | 98.23 211 | 81.06 305 | 97.75 233 | 93.98 346 |
|
| 旧先验1 | | | | | | 96.20 208 | 84.17 203 | | 94.82 260 | | | 95.57 216 | 89.57 177 | | | 97.89 228 | 96.32 264 |
|
| 无先验 | | | | | | | | 89.94 282 | 95.75 227 | 70.81 377 | | | | 98.59 176 | 81.17 304 | | 94.81 325 |
|
| 原ACMM2 | | | | | | | | 89.34 301 | | | | | | | | | |
|
| 原ACMM1 | | | | | 92.87 187 | 96.91 155 | 84.22 201 | | 97.01 160 | 76.84 339 | 89.64 315 | 94.46 257 | 88.00 193 | 98.70 160 | 81.53 299 | 98.01 220 | 95.70 297 |
|
| test222 | | | | | | 96.95 151 | 85.27 189 | 88.83 314 | 93.61 283 | 65.09 397 | 90.74 292 | 94.85 242 | 84.62 242 | | | 97.36 254 | 93.91 347 |
|
| testdata2 | | | | | | | | | | | | | | 98.03 226 | 80.24 311 | | |
|
| segment_acmp | | | | | | | | | | | | | 92.14 121 | | | | |
|
| testdata | | | | | 91.03 258 | 96.87 157 | 82.01 232 | | 94.28 273 | 71.55 370 | 92.46 255 | 95.42 221 | 85.65 231 | 97.38 284 | 82.64 285 | 97.27 256 | 93.70 353 |
|
| testdata1 | | | | | | | | 88.96 310 | | 88.44 191 | | | | | | | |
|
| test12 | | | | | 94.43 129 | 95.95 229 | 86.75 150 | | 96.24 209 | | 89.76 313 | | 89.79 176 | 98.79 141 | | 97.95 225 | 97.75 190 |
|
| plane_prior7 | | | | | | 97.71 112 | 88.68 108 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 97.21 142 | 88.23 120 | | | | | | 86.93 214 | | | | |
|
| plane_prior5 | | | | | | | | | 97.81 95 | | | | | 98.95 116 | 89.26 188 | 98.51 173 | 98.60 114 |
|
| plane_prior4 | | | | | | | | | | | | 95.59 212 | | | | | |
|
| plane_prior3 | | | | | | | 88.43 118 | | | 90.35 153 | 93.31 221 | | | | | | |
|
| plane_prior2 | | | | | | | | 94.56 125 | | 91.74 116 | | | | | | | |
|
| plane_prior1 | | | | | | 97.38 132 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 88.12 121 | 93.01 175 | | 88.98 177 | | | | | | 98.06 214 | |
|
| n2 | | | | | | | | | 0.00 420 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 420 | | | | | | | | |
|
| door-mid | | | | | | | | | 92.13 316 | | | | | | | | |
|
| lessismore_v0 | | | | | 93.87 150 | 98.05 83 | 83.77 209 | | 80.32 397 | | 97.13 60 | 97.91 59 | 77.49 301 | 99.11 94 | 92.62 97 | 98.08 213 | 98.74 92 |
|
| LGP-MVS_train | | | | | 96.84 39 | 98.36 63 | 92.13 53 | | 98.25 33 | 91.78 112 | 97.07 62 | 97.22 107 | 96.38 12 | 99.28 73 | 92.07 108 | 99.59 27 | 99.11 42 |
|
| test11 | | | | | | | | | 96.65 188 | | | | | | | | |
|
| door | | | | | | | | | 91.26 325 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 84.89 192 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 96.36 191 | | 91.37 239 | | 87.16 215 | 88.81 324 | | | | | | |
|
| ACMP_Plane | | | | | | 96.36 191 | | 91.37 239 | | 87.16 215 | 88.81 324 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 86.55 242 | | |
|
| HQP4-MVS | | | | | | | | | | | 88.81 324 | | | 98.61 172 | | | 98.15 145 |
|
| HQP3-MVS | | | | | | | | | 97.31 138 | | | | | | | 97.73 234 | |
|
| HQP2-MVS | | | | | | | | | | | | | 84.76 240 | | | | |
|
| NP-MVS | | | | | | 96.82 162 | 87.10 140 | | | | | 93.40 291 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 42.48 414 | 88.45 322 | | 67.22 391 | 83.56 378 | | 66.80 354 | | 72.86 368 | | 94.06 343 |
|
| MDTV_nov1_ep13 | | | | 83.88 332 | | 89.42 384 | 61.52 401 | 88.74 317 | 87.41 353 | 73.99 356 | 84.96 367 | 94.01 273 | 65.25 364 | 95.53 341 | 78.02 331 | 93.16 360 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 98.82 137 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 99.25 81 | |
|
| Test By Simon | | | | | | | | | | | | | 90.61 160 | | | | |
|
| ITE_SJBPF | | | | | 95.95 58 | 97.34 135 | 93.36 41 | | 96.55 197 | 91.93 101 | 94.82 178 | 95.39 225 | 91.99 123 | 97.08 297 | 85.53 255 | 97.96 224 | 97.41 212 |
|
| DeepMVS_CX |  | | | | 53.83 390 | 70.38 413 | 64.56 396 | | 48.52 414 | 33.01 408 | 65.50 408 | 74.21 405 | 56.19 391 | 46.64 411 | 38.45 409 | 70.07 405 | 50.30 406 |
|