This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 21100.00 199.87 28
mvs_tets99.90 299.90 399.90 799.96 799.79 4599.72 2999.88 4599.92 2699.98 1399.93 1799.94 499.98 2199.77 37100.00 199.92 18
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6099.12 201100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_vis3_rt99.89 399.90 399.87 2099.98 399.75 6699.70 34100.00 199.73 75100.00 199.89 3499.79 1699.88 19299.98 1100.00 199.98 3
jajsoiax99.89 399.89 599.89 1099.96 799.78 4899.70 3499.86 5099.89 3699.98 1399.90 2999.94 499.98 2199.75 38100.00 199.90 20
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 58100.00 199.90 30100.00 199.97 1199.61 3299.97 3499.75 38100.00 199.84 34
LTVRE_ROB99.19 199.88 699.87 1099.88 1699.91 2999.90 799.96 199.92 3099.90 3099.97 1999.87 4799.81 1499.95 6499.54 5999.99 1699.80 45
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7299.01 23099.99 1099.99 299.98 1399.88 4299.97 299.99 899.96 9100.00 199.98 3
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1099.93 2499.78 4899.07 21899.98 1199.99 299.98 1399.90 2999.88 899.92 11899.93 1999.99 1699.98 3
pmmvs699.86 999.86 1299.83 3199.94 1899.90 799.83 699.91 3399.85 5199.94 3499.95 1399.73 2199.90 15999.65 4699.97 5399.69 80
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3499.10 20899.98 1199.99 299.98 1399.91 2499.68 2699.93 9699.93 1999.99 1699.99 1
test_fmvsmconf_n99.85 1199.84 1999.88 1699.91 2999.73 7598.97 24299.98 1199.99 299.96 2399.85 5899.93 799.99 899.94 1699.99 1699.93 15
mvsany_test399.85 1199.88 699.75 7299.95 1599.37 18199.53 8699.98 1199.77 7399.99 799.95 1399.85 1099.94 7999.95 1299.98 3999.94 13
UniMVSNet_ETH3D99.85 1199.83 2099.90 799.89 3799.91 499.89 499.71 12799.93 2399.95 3199.89 3499.71 2299.96 5499.51 6599.97 5399.84 34
test_fmvsmvis_n_192099.84 1599.86 1299.81 3899.88 4299.55 13899.17 18199.98 1199.99 299.96 2399.84 6499.96 399.99 899.96 999.99 1699.88 24
test_fmvsm_n_192099.84 1599.85 1699.83 3199.82 7099.70 8999.17 18199.97 1899.99 299.96 2399.82 7599.94 4100.00 199.95 12100.00 199.80 45
PS-MVSNAJss99.84 1599.82 2299.89 1099.96 799.77 5399.68 4599.85 5599.95 1899.98 1399.92 2199.28 6699.98 2199.75 38100.00 199.94 13
test_djsdf99.84 1599.81 2399.91 299.94 1899.84 2499.77 1599.80 8099.73 7599.97 1999.92 2199.77 1999.98 2199.43 73100.00 199.90 20
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2099.85 5699.78 4899.03 22599.96 2399.99 299.97 1999.84 6499.78 1799.92 11899.92 2199.99 1699.92 18
test_fmvs399.83 1999.93 299.53 17399.96 798.62 27799.67 49100.00 199.95 18100.00 199.95 1399.85 1099.99 899.98 199.99 1699.98 3
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1099.85 5699.82 3499.03 22599.96 2399.99 299.97 1999.84 6499.58 3699.93 9699.92 2199.98 3999.93 15
v7n99.82 2199.80 2699.88 1699.96 799.84 2499.82 899.82 6899.84 5499.94 3499.91 2499.13 8699.96 5499.83 3199.99 1699.83 38
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 2899.88 4299.64 10999.12 20199.91 3399.98 1399.95 3199.67 17099.67 2799.99 899.94 1699.99 1699.88 24
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2699.88 4299.66 10099.11 20599.91 3399.98 1399.96 2399.64 18299.60 3499.99 899.95 1299.99 1699.88 24
anonymousdsp99.80 2399.77 3399.90 799.96 799.88 1299.73 2699.85 5599.70 8799.92 4399.93 1799.45 4799.97 3499.36 86100.00 199.85 33
pm-mvs199.79 2699.79 2799.78 5299.91 2999.83 2999.76 1999.87 4799.73 7599.89 5399.87 4799.63 2999.87 20699.54 5999.92 10199.63 125
sd_testset99.78 2799.78 3199.80 4399.80 8499.76 6099.80 1199.79 8699.97 1599.89 5399.89 3499.53 4399.99 899.36 8699.96 6699.65 110
UA-Net99.78 2799.76 3699.86 2499.72 13899.71 8299.91 399.95 2899.96 1799.71 13399.91 2499.15 8199.97 3499.50 67100.00 199.90 20
TransMVSNet (Re)99.78 2799.77 3399.81 3899.91 2999.85 1999.75 2199.86 5099.70 8799.91 4699.89 3499.60 3499.87 20699.59 5199.74 21899.71 73
SDMVSNet99.77 3099.77 3399.76 6299.80 8499.65 10699.63 6099.86 5099.97 1599.89 5399.89 3499.52 4499.99 899.42 7899.96 6699.65 110
test_cas_vis1_n_192099.76 3199.86 1299.45 19499.93 2498.40 29099.30 14099.98 1199.94 2199.99 799.89 3499.80 1599.97 3499.96 999.97 5399.97 7
test_f99.75 3299.88 699.37 22399.96 798.21 30299.51 94100.00 199.94 21100.00 199.93 1799.58 3699.94 7999.97 499.99 1699.97 7
OurMVSNet-221017-099.75 3299.71 3999.84 2899.96 799.83 2999.83 699.85 5599.80 6699.93 3799.93 1798.54 16499.93 9699.59 5199.98 3999.76 63
Vis-MVSNetpermissive99.75 3299.74 3799.79 4999.88 4299.66 10099.69 4199.92 3099.67 9699.77 10699.75 11799.61 3299.98 2199.35 8999.98 3999.72 70
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
mamv499.73 3599.74 3799.70 10199.66 16999.87 1499.69 4199.93 2999.93 2399.93 3799.86 5399.07 94100.00 199.66 4499.92 10199.24 271
test_vis1_n_192099.72 3699.88 699.27 24999.93 2497.84 32799.34 127100.00 199.99 299.99 799.82 7599.87 999.99 899.97 499.99 1699.97 7
test_fmvs299.72 3699.85 1699.34 23099.91 2998.08 31599.48 100100.00 199.90 3099.99 799.91 2499.50 4699.98 2199.98 199.99 1699.96 10
TDRefinement99.72 3699.70 4099.77 5599.90 3599.85 1999.86 599.92 3099.69 9099.78 10099.92 2199.37 5699.88 19298.93 15099.95 7999.60 150
XXY-MVS99.71 3999.67 4799.81 3899.89 3799.72 8099.59 7599.82 6899.39 14899.82 8099.84 6499.38 5499.91 14099.38 8299.93 9799.80 45
nrg03099.70 4099.66 4899.82 3599.76 11599.84 2499.61 6899.70 13299.93 2399.78 10099.68 16699.10 8799.78 30999.45 7199.96 6699.83 38
FC-MVSNet-test99.70 4099.65 5099.86 2499.88 4299.86 1899.72 2999.78 9299.90 3099.82 8099.83 6898.45 17999.87 20699.51 6599.97 5399.86 30
GeoE99.69 4299.66 4899.78 5299.76 11599.76 6099.60 7499.82 6899.46 13599.75 11599.56 23699.63 2999.95 6499.43 7399.88 13399.62 136
v1099.69 4299.69 4399.66 11599.81 7899.39 17699.66 5399.75 10599.60 11899.92 4399.87 4798.75 13599.86 22599.90 2499.99 1699.73 68
EC-MVSNet99.69 4299.69 4399.68 10599.71 14199.91 499.76 1999.96 2399.86 4599.51 21199.39 28399.57 3899.93 9699.64 4899.86 15399.20 285
test_vis1_n99.68 4599.79 2799.36 22799.94 1898.18 30599.52 87100.00 199.86 45100.00 199.88 4298.99 10599.96 5499.97 499.96 6699.95 11
test_fmvs1_n99.68 4599.81 2399.28 24699.95 1597.93 32499.49 99100.00 199.82 6099.99 799.89 3499.21 7599.98 2199.97 499.98 3999.93 15
CS-MVS-test99.68 4599.70 4099.64 12799.57 20299.83 2999.78 1399.97 1899.92 2699.50 21399.38 28599.57 3899.95 6499.69 4299.90 11399.15 296
v899.68 4599.69 4399.65 12099.80 8499.40 17299.66 5399.76 10099.64 10499.93 3799.85 5898.66 14899.84 25799.88 2899.99 1699.71 73
DTE-MVSNet99.68 4599.61 6099.88 1699.80 8499.87 1499.67 4999.71 12799.72 8099.84 7599.78 10298.67 14699.97 3499.30 9899.95 7999.80 45
casdiffmvs_mvgpermissive99.68 4599.68 4699.69 10399.81 7899.59 12899.29 14799.90 3899.71 8299.79 9699.73 12499.54 4199.84 25799.36 8699.96 6699.65 110
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS99.67 5199.70 4099.58 15599.53 22299.84 2499.79 1299.96 2399.90 3099.61 17499.41 27599.51 4599.95 6499.66 4499.89 12498.96 339
VPA-MVSNet99.66 5299.62 5699.79 4999.68 16199.75 6699.62 6399.69 14099.85 5199.80 9199.81 8198.81 12399.91 14099.47 6999.88 13399.70 76
PS-CasMVS99.66 5299.58 6899.89 1099.80 8499.85 1999.66 5399.73 11599.62 10999.84 7599.71 14098.62 15299.96 5499.30 9899.96 6699.86 30
PEN-MVS99.66 5299.59 6599.89 1099.83 6399.87 1499.66 5399.73 11599.70 8799.84 7599.73 12498.56 16199.96 5499.29 10199.94 9099.83 38
FMVSNet199.66 5299.63 5599.73 8699.78 10399.77 5399.68 4599.70 13299.67 9699.82 8099.83 6898.98 10799.90 15999.24 10599.97 5399.53 185
MIMVSNet199.66 5299.62 5699.80 4399.94 1899.87 1499.69 4199.77 9599.78 6999.93 3799.89 3497.94 23099.92 11899.65 4699.98 3999.62 136
FIs99.65 5799.58 6899.84 2899.84 5999.85 1999.66 5399.75 10599.86 4599.74 12399.79 9498.27 20299.85 24299.37 8599.93 9799.83 38
iter_conf0599.64 5899.65 5099.60 14999.68 16199.62 11699.82 899.89 4099.92 2699.93 3799.86 5398.28 19999.96 5499.54 5999.91 11199.23 275
testf199.63 5999.60 6399.72 9299.94 1899.95 299.47 10399.89 4099.43 14399.88 6199.80 8499.26 7099.90 15998.81 15899.88 13399.32 256
APD_test299.63 5999.60 6399.72 9299.94 1899.95 299.47 10399.89 4099.43 14399.88 6199.80 8499.26 7099.90 15998.81 15899.88 13399.32 256
tt080599.63 5999.57 7299.81 3899.87 4999.88 1299.58 7798.70 35099.72 8099.91 4699.60 21799.43 4899.81 29699.81 3599.53 28899.73 68
KD-MVS_self_test99.63 5999.59 6599.76 6299.84 5999.90 799.37 12299.79 8699.83 5899.88 6199.85 5898.42 18399.90 15999.60 5099.73 22399.49 207
casdiffmvspermissive99.63 5999.61 6099.67 10899.79 9699.59 12899.13 19799.85 5599.79 6899.76 11099.72 13299.33 6199.82 28199.21 10899.94 9099.59 157
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.63 5999.62 5699.66 11599.80 8499.62 11699.44 10999.80 8099.71 8299.72 12899.69 15599.15 8199.83 27299.32 9599.94 9099.53 185
Anonymous2023121199.62 6599.57 7299.76 6299.61 18199.60 12699.81 1099.73 11599.82 6099.90 4999.90 2997.97 22999.86 22599.42 7899.96 6699.80 45
DeepC-MVS98.90 499.62 6599.61 6099.67 10899.72 13899.44 15999.24 16199.71 12799.27 16399.93 3799.90 2999.70 2499.93 9698.99 13899.99 1699.64 120
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
dcpmvs_299.61 6799.64 5499.53 17399.79 9698.82 25699.58 7799.97 1899.95 1899.96 2399.76 11298.44 18099.99 899.34 9099.96 6699.78 54
WR-MVS_H99.61 6799.53 8299.87 2099.80 8499.83 2999.67 4999.75 10599.58 12199.85 7299.69 15598.18 21499.94 7999.28 10399.95 7999.83 38
ACMH98.42 699.59 6999.54 7899.72 9299.86 5299.62 11699.56 8299.79 8698.77 23899.80 9199.85 5899.64 2899.85 24298.70 17099.89 12499.70 76
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v119299.57 7099.57 7299.57 16199.77 11199.22 21399.04 22299.60 19199.18 17899.87 6999.72 13299.08 9299.85 24299.89 2799.98 3999.66 102
EG-PatchMatch MVS99.57 7099.56 7799.62 14399.77 11199.33 19199.26 15499.76 10099.32 15799.80 9199.78 10299.29 6499.87 20699.15 12099.91 11199.66 102
Gipumacopyleft99.57 7099.59 6599.49 18299.98 399.71 8299.72 2999.84 6199.81 6399.94 3499.78 10298.91 11599.71 33598.41 18599.95 7999.05 325
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v192192099.56 7399.57 7299.55 16799.75 12699.11 22799.05 21999.61 18099.15 18999.88 6199.71 14099.08 9299.87 20699.90 2499.97 5399.66 102
v124099.56 7399.58 6899.51 17899.80 8499.00 23899.00 23399.65 16299.15 18999.90 4999.75 11799.09 8999.88 19299.90 2499.96 6699.67 93
V4299.56 7399.54 7899.63 13499.79 9699.46 15299.39 11599.59 19799.24 16999.86 7099.70 14898.55 16299.82 28199.79 3699.95 7999.60 150
MVSMamba_PlusPlus99.55 7699.58 6899.47 18899.68 16199.40 17299.52 8799.70 13299.92 2699.77 10699.86 5398.28 19999.96 5499.54 5999.90 11399.05 325
v14419299.55 7699.54 7899.58 15599.78 10399.20 21899.11 20599.62 17399.18 17899.89 5399.72 13298.66 14899.87 20699.88 2899.97 5399.66 102
test20.0399.55 7699.54 7899.58 15599.79 9699.37 18199.02 22899.89 4099.60 11899.82 8099.62 20098.81 12399.89 17899.43 7399.86 15399.47 215
v114499.54 7999.53 8299.59 15299.79 9699.28 19999.10 20899.61 18099.20 17699.84 7599.73 12498.67 14699.84 25799.86 3099.98 3999.64 120
CP-MVSNet99.54 7999.43 9899.87 2099.76 11599.82 3499.57 8099.61 18099.54 12299.80 9199.64 18297.79 24199.95 6499.21 10899.94 9099.84 34
TranMVSNet+NR-MVSNet99.54 7999.47 8799.76 6299.58 19299.64 10999.30 14099.63 17099.61 11299.71 13399.56 23698.76 13399.96 5499.14 12699.92 10199.68 86
SSC-MVS99.52 8299.42 10199.83 3199.86 5299.65 10699.52 8799.81 7799.87 4299.81 8799.79 9496.78 28599.99 899.83 3199.51 29299.86 30
patch_mono-299.51 8399.46 9199.64 12799.70 14999.11 22799.04 22299.87 4799.71 8299.47 21899.79 9498.24 20499.98 2199.38 8299.96 6699.83 38
balanced_conf0399.50 8499.50 8499.50 18099.42 26899.49 14599.52 8799.75 10599.86 4599.78 10099.71 14098.20 21199.90 15999.39 8199.88 13399.10 307
v2v48299.50 8499.47 8799.58 15599.78 10399.25 20699.14 19199.58 20699.25 16799.81 8799.62 20098.24 20499.84 25799.83 3199.97 5399.64 120
ACMH+98.40 899.50 8499.43 9899.71 9799.86 5299.76 6099.32 13299.77 9599.53 12499.77 10699.76 11299.26 7099.78 30997.77 23999.88 13399.60 150
Baseline_NR-MVSNet99.49 8799.37 10999.82 3599.91 2999.84 2498.83 25899.86 5099.68 9299.65 15499.88 4297.67 24999.87 20699.03 13599.86 15399.76 63
TAMVS99.49 8799.45 9399.63 13499.48 24599.42 16699.45 10799.57 20899.66 10099.78 10099.83 6897.85 23799.86 22599.44 7299.96 6699.61 146
test_fmvs199.48 8999.65 5098.97 29099.54 21697.16 35099.11 20599.98 1199.78 6999.96 2399.81 8198.72 14099.97 3499.95 1299.97 5399.79 52
pmmvs-eth3d99.48 8999.47 8799.51 17899.77 11199.41 17198.81 26399.66 15299.42 14799.75 11599.66 17599.20 7699.76 31998.98 14099.99 1699.36 246
EI-MVSNet-UG-set99.48 8999.50 8499.42 20599.57 20298.65 27499.24 16199.46 25899.68 9299.80 9199.66 17598.99 10599.89 17899.19 11299.90 11399.72 70
APDe-MVScopyleft99.48 8999.36 11299.85 2699.55 21499.81 3999.50 9599.69 14098.99 20499.75 11599.71 14098.79 12899.93 9698.46 18399.85 15799.80 45
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PMMVS299.48 8999.45 9399.57 16199.76 11598.99 23998.09 33699.90 3898.95 21099.78 10099.58 22599.57 3899.93 9699.48 6899.95 7999.79 52
DSMNet-mixed99.48 8999.65 5098.95 29399.71 14197.27 34799.50 9599.82 6899.59 12099.41 23699.85 5899.62 31100.00 199.53 6399.89 12499.59 157
DP-MVS99.48 8999.39 10499.74 7799.57 20299.62 11699.29 14799.61 18099.87 4299.74 12399.76 11298.69 14299.87 20698.20 20199.80 19399.75 66
EI-MVSNet-Vis-set99.47 9699.49 8699.42 20599.57 20298.66 27199.24 16199.46 25899.67 9699.79 9699.65 18098.97 10999.89 17899.15 12099.89 12499.71 73
VPNet99.46 9799.37 10999.71 9799.82 7099.59 12899.48 10099.70 13299.81 6399.69 14099.58 22597.66 25399.86 22599.17 11799.44 30299.67 93
ACMM98.09 1199.46 9799.38 10699.72 9299.80 8499.69 9399.13 19799.65 16298.99 20499.64 15599.72 13299.39 5099.86 22598.23 19899.81 18899.60 150
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_vis1_rt99.45 9999.46 9199.41 21299.71 14198.63 27698.99 23899.96 2399.03 20299.95 3199.12 33498.75 13599.84 25799.82 3499.82 17999.77 58
COLMAP_ROBcopyleft98.06 1299.45 9999.37 10999.70 10199.83 6399.70 8999.38 11899.78 9299.53 12499.67 14899.78 10299.19 7799.86 22597.32 27799.87 14599.55 172
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WB-MVS99.44 10199.32 11999.80 4399.81 7899.61 12399.47 10399.81 7799.82 6099.71 13399.72 13296.60 28999.98 2199.75 3899.23 33299.82 44
mvsany_test199.44 10199.45 9399.40 21499.37 27898.64 27597.90 35999.59 19799.27 16399.92 4399.82 7599.74 2099.93 9699.55 5899.87 14599.63 125
Anonymous2024052199.44 10199.42 10199.49 18299.89 3798.96 24499.62 6399.76 10099.85 5199.82 8099.88 4296.39 29999.97 3499.59 5199.98 3999.55 172
bld_raw_conf0399.43 10499.43 9899.45 19499.42 26899.40 17299.52 8799.70 13299.73 7599.77 10699.73 12498.05 22299.91 14099.04 13499.90 11399.05 325
tfpnnormal99.43 10499.38 10699.60 14999.87 4999.75 6699.59 7599.78 9299.71 8299.90 4999.69 15598.85 12199.90 15997.25 28899.78 20399.15 296
HPM-MVS_fast99.43 10499.30 12699.80 4399.83 6399.81 3999.52 8799.70 13298.35 28699.51 21199.50 25499.31 6299.88 19298.18 20599.84 16299.69 80
3Dnovator99.15 299.43 10499.36 11299.65 12099.39 27399.42 16699.70 3499.56 21399.23 17199.35 24699.80 8499.17 7999.95 6498.21 20099.84 16299.59 157
Anonymous2024052999.42 10899.34 11499.65 12099.53 22299.60 12699.63 6099.39 27999.47 13299.76 11099.78 10298.13 21699.86 22598.70 17099.68 24399.49 207
SixPastTwentyTwo99.42 10899.30 12699.76 6299.92 2899.67 9899.70 3499.14 32899.65 10299.89 5399.90 2996.20 30699.94 7999.42 7899.92 10199.67 93
GBi-Net99.42 10899.31 12199.73 8699.49 24099.77 5399.68 4599.70 13299.44 13899.62 16899.83 6897.21 27099.90 15998.96 14499.90 11399.53 185
test199.42 10899.31 12199.73 8699.49 24099.77 5399.68 4599.70 13299.44 13899.62 16899.83 6897.21 27099.90 15998.96 14499.90 11399.53 185
MVSFormer99.41 11299.44 9699.31 24099.57 20298.40 29099.77 1599.80 8099.73 7599.63 15999.30 30498.02 22499.98 2199.43 7399.69 23899.55 172
IterMVS-LS99.41 11299.47 8799.25 25599.81 7898.09 31298.85 25599.76 10099.62 10999.83 7999.64 18298.54 16499.97 3499.15 12099.99 1699.68 86
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SED-MVS99.40 11499.28 13399.77 5599.69 15399.82 3499.20 17199.54 22599.13 19199.82 8099.63 19398.91 11599.92 11897.85 23499.70 23499.58 162
v14899.40 11499.41 10399.39 21799.76 11598.94 24699.09 21299.59 19799.17 18399.81 8799.61 20998.41 18499.69 34499.32 9599.94 9099.53 185
NR-MVSNet99.40 11499.31 12199.68 10599.43 26399.55 13899.73 2699.50 24799.46 13599.88 6199.36 29197.54 25699.87 20698.97 14299.87 14599.63 125
PVSNet_Blended_VisFu99.40 11499.38 10699.44 19999.90 3598.66 27198.94 24799.91 3397.97 31299.79 9699.73 12499.05 9999.97 3499.15 12099.99 1699.68 86
EU-MVSNet99.39 11899.62 5698.72 32199.88 4296.44 36499.56 8299.85 5599.90 3099.90 4999.85 5898.09 21899.83 27299.58 5499.95 7999.90 20
CHOSEN 1792x268899.39 11899.30 12699.65 12099.88 4299.25 20698.78 27099.88 4598.66 24999.96 2399.79 9497.45 25999.93 9699.34 9099.99 1699.78 54
DVP-MVS++99.38 12099.25 13999.77 5599.03 35299.77 5399.74 2399.61 18099.18 17899.76 11099.61 20999.00 10399.92 11897.72 24599.60 26999.62 136
EI-MVSNet99.38 12099.44 9699.21 25999.58 19298.09 31299.26 15499.46 25899.62 10999.75 11599.67 17098.54 16499.85 24299.15 12099.92 10199.68 86
UGNet99.38 12099.34 11499.49 18298.90 36298.90 25299.70 3499.35 28899.86 4598.57 34799.81 8198.50 17499.93 9699.38 8299.98 3999.66 102
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet99.37 12399.25 13999.72 9299.47 25199.56 13598.97 24299.61 18099.43 14399.67 14899.28 30897.85 23799.95 6499.17 11799.81 18899.65 110
UniMVSNet (Re)99.37 12399.26 13799.68 10599.51 22999.58 13298.98 24199.60 19199.43 14399.70 13799.36 29197.70 24599.88 19299.20 11199.87 14599.59 157
CSCG99.37 12399.29 13199.60 14999.71 14199.46 15299.43 11199.85 5598.79 23499.41 23699.60 21798.92 11399.92 11898.02 21499.92 10199.43 231
APD_test199.36 12699.28 13399.61 14699.89 3799.89 1099.32 13299.74 11199.18 17899.69 14099.75 11798.41 18499.84 25797.85 23499.70 23499.10 307
PM-MVS99.36 12699.29 13199.58 15599.83 6399.66 10098.95 24599.86 5098.85 22599.81 8799.73 12498.40 18899.92 11898.36 18899.83 17099.17 292
new-patchmatchnet99.35 12899.57 7298.71 32399.82 7096.62 36298.55 29599.75 10599.50 12699.88 6199.87 4799.31 6299.88 19299.43 73100.00 199.62 136
Anonymous2023120699.35 12899.31 12199.47 18899.74 13299.06 23799.28 14999.74 11199.23 17199.72 12899.53 24797.63 25599.88 19299.11 12899.84 16299.48 211
MTAPA99.35 12899.20 14499.80 4399.81 7899.81 3999.33 13099.53 23499.27 16399.42 23099.63 19398.21 20999.95 6497.83 23899.79 19899.65 110
FMVSNet299.35 12899.28 13399.55 16799.49 24099.35 18899.45 10799.57 20899.44 13899.70 13799.74 12097.21 27099.87 20699.03 13599.94 9099.44 225
3Dnovator+98.92 399.35 12899.24 14199.67 10899.35 28499.47 14899.62 6399.50 24799.44 13899.12 29199.78 10298.77 13299.94 7997.87 23199.72 22999.62 136
TSAR-MVS + MP.99.34 13399.24 14199.63 13499.82 7099.37 18199.26 15499.35 28898.77 23899.57 18599.70 14899.27 6999.88 19297.71 24799.75 21199.65 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
diffmvspermissive99.34 13399.32 11999.39 21799.67 16898.77 26298.57 29399.81 7799.61 11299.48 21699.41 27598.47 17599.86 22598.97 14299.90 11399.53 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS99.34 13399.30 12699.48 18699.51 22999.36 18598.12 33299.53 23499.36 15399.41 23699.61 20999.22 7499.87 20699.21 10899.68 24399.20 285
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DU-MVS99.33 13699.21 14399.71 9799.43 26399.56 13598.83 25899.53 23499.38 14999.67 14899.36 29197.67 24999.95 6499.17 11799.81 18899.63 125
ab-mvs99.33 13699.28 13399.47 18899.57 20299.39 17699.78 1399.43 26698.87 22299.57 18599.82 7598.06 22199.87 20698.69 17299.73 22399.15 296
DVP-MVScopyleft99.32 13899.17 14799.77 5599.69 15399.80 4399.14 19199.31 29799.16 18599.62 16899.61 20998.35 19299.91 14097.88 22899.72 22999.61 146
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVS_3200maxsize99.31 13999.16 14899.74 7799.53 22299.75 6699.27 15299.61 18099.19 17799.57 18599.64 18298.76 13399.90 15997.29 27999.62 25999.56 169
SteuartSystems-ACMMP99.30 14099.14 15299.76 6299.87 4999.66 10099.18 17699.60 19198.55 26099.57 18599.67 17099.03 10299.94 7997.01 29899.80 19399.69 80
Skip Steuart: Steuart Systems R&D Blog.
testgi99.29 14199.26 13799.37 22399.75 12698.81 25798.84 25699.89 4098.38 27999.75 11599.04 34499.36 5999.86 22599.08 13199.25 32899.45 220
ACMMP_NAP99.28 14299.11 16199.79 4999.75 12699.81 3998.95 24599.53 23498.27 29599.53 20499.73 12498.75 13599.87 20697.70 25099.83 17099.68 86
LCM-MVSNet-Re99.28 14299.15 15199.67 10899.33 29899.76 6099.34 12799.97 1898.93 21499.91 4699.79 9498.68 14399.93 9696.80 31199.56 27799.30 262
mvs_anonymous99.28 14299.39 10498.94 29499.19 32697.81 32999.02 22899.55 21999.78 6999.85 7299.80 8498.24 20499.86 22599.57 5599.50 29599.15 296
MVS_Test99.28 14299.31 12199.19 26299.35 28498.79 26099.36 12599.49 25199.17 18399.21 27899.67 17098.78 13099.66 36599.09 13099.66 25299.10 307
SR-MVS-dyc-post99.27 14699.11 16199.73 8699.54 21699.74 7299.26 15499.62 17399.16 18599.52 20699.64 18298.41 18499.91 14097.27 28299.61 26699.54 180
XVS99.27 14699.11 16199.75 7299.71 14199.71 8299.37 12299.61 18099.29 15998.76 33099.47 26598.47 17599.88 19297.62 25899.73 22399.67 93
OPM-MVS99.26 14899.13 15499.63 13499.70 14999.61 12398.58 28999.48 25298.50 26799.52 20699.63 19399.14 8499.76 31997.89 22799.77 20799.51 197
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HFP-MVS99.25 14999.08 17299.76 6299.73 13599.70 8999.31 13799.59 19798.36 28199.36 24599.37 28798.80 12799.91 14097.43 27199.75 21199.68 86
HPM-MVScopyleft99.25 14999.07 17699.78 5299.81 7899.75 6699.61 6899.67 14797.72 32799.35 24699.25 31599.23 7399.92 11897.21 29199.82 17999.67 93
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft99.25 14999.08 17299.74 7799.79 9699.68 9699.50 9599.65 16298.07 30699.52 20699.69 15598.57 15999.92 11897.18 29399.79 19899.63 125
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LS3D99.24 15299.11 16199.61 14698.38 39599.79 4599.57 8099.68 14399.61 11299.15 28699.71 14098.70 14199.91 14097.54 26499.68 24399.13 304
xiu_mvs_v1_base_debu99.23 15399.34 11498.91 30099.59 18798.23 29998.47 30599.66 15299.61 11299.68 14398.94 36099.39 5099.97 3499.18 11499.55 28198.51 374
xiu_mvs_v1_base99.23 15399.34 11498.91 30099.59 18798.23 29998.47 30599.66 15299.61 11299.68 14398.94 36099.39 5099.97 3499.18 11499.55 28198.51 374
xiu_mvs_v1_base_debi99.23 15399.34 11498.91 30099.59 18798.23 29998.47 30599.66 15299.61 11299.68 14398.94 36099.39 5099.97 3499.18 11499.55 28198.51 374
region2R99.23 15399.05 18299.77 5599.76 11599.70 8999.31 13799.59 19798.41 27599.32 25599.36 29198.73 13999.93 9697.29 27999.74 21899.67 93
ACMMPR99.23 15399.06 17899.76 6299.74 13299.69 9399.31 13799.59 19798.36 28199.35 24699.38 28598.61 15499.93 9697.43 27199.75 21199.67 93
XVG-ACMP-BASELINE99.23 15399.10 16999.63 13499.82 7099.58 13298.83 25899.72 12498.36 28199.60 17799.71 14098.92 11399.91 14097.08 29699.84 16299.40 236
CP-MVS99.23 15399.05 18299.75 7299.66 16999.66 10099.38 11899.62 17398.38 27999.06 29999.27 31098.79 12899.94 7997.51 26799.82 17999.66 102
DeepC-MVS_fast98.47 599.23 15399.12 15899.56 16499.28 30999.22 21398.99 23899.40 27699.08 19699.58 18299.64 18298.90 11899.83 27297.44 27099.75 21199.63 125
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS99.22 16199.04 18899.77 5599.76 11599.73 7599.28 14999.56 21398.19 30099.14 28899.29 30798.84 12299.92 11897.53 26699.80 19399.64 120
D2MVS99.22 16199.19 14599.29 24499.69 15398.74 26498.81 26399.41 26998.55 26099.68 14399.69 15598.13 21699.87 20698.82 15699.98 3999.24 271
LPG-MVS_test99.22 16199.05 18299.74 7799.82 7099.63 11499.16 18799.73 11597.56 33299.64 15599.69 15599.37 5699.89 17896.66 31999.87 14599.69 80
CDS-MVSNet99.22 16199.13 15499.50 18099.35 28499.11 22798.96 24499.54 22599.46 13599.61 17499.70 14896.31 30299.83 27299.34 9099.88 13399.55 172
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_040299.22 16199.14 15299.45 19499.79 9699.43 16399.28 14999.68 14399.54 12299.40 24199.56 23699.07 9499.82 28196.01 35099.96 6699.11 305
AllTest99.21 16699.07 17699.63 13499.78 10399.64 10999.12 20199.83 6398.63 25299.63 15999.72 13298.68 14399.75 32396.38 33799.83 17099.51 197
XVG-OURS99.21 16699.06 17899.65 12099.82 7099.62 11697.87 36099.74 11198.36 28199.66 15299.68 16699.71 2299.90 15996.84 31099.88 13399.43 231
Fast-Effi-MVS+-dtu99.20 16899.12 15899.43 20399.25 31499.69 9399.05 21999.82 6899.50 12698.97 30399.05 34298.98 10799.98 2198.20 20199.24 33098.62 365
VDD-MVS99.20 16899.11 16199.44 19999.43 26398.98 24099.50 9598.32 37299.80 6699.56 19299.69 15596.99 28099.85 24298.99 13899.73 22399.50 202
PGM-MVS99.20 16899.01 19499.77 5599.75 12699.71 8299.16 18799.72 12497.99 31099.42 23099.60 21798.81 12399.93 9696.91 30499.74 21899.66 102
SR-MVS99.19 17199.00 19899.74 7799.51 22999.72 8099.18 17699.60 19198.85 22599.47 21899.58 22598.38 18999.92 11896.92 30399.54 28699.57 167
SMA-MVScopyleft99.19 17199.00 19899.73 8699.46 25599.73 7599.13 19799.52 23997.40 34399.57 18599.64 18298.93 11299.83 27297.61 26099.79 19899.63 125
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pmmvs599.19 17199.11 16199.42 20599.76 11598.88 25398.55 29599.73 11598.82 22999.72 12899.62 20096.56 29099.82 28199.32 9599.95 7999.56 169
mPP-MVS99.19 17199.00 19899.76 6299.76 11599.68 9699.38 11899.54 22598.34 29099.01 30199.50 25498.53 16899.93 9697.18 29399.78 20399.66 102
MM99.18 17599.05 18299.55 16799.35 28498.81 25799.05 21997.79 38399.99 299.48 21699.59 22296.29 30499.95 6499.94 1699.98 3999.88 24
ETV-MVS99.18 17599.18 14699.16 26599.34 29399.28 19999.12 20199.79 8699.48 12898.93 30798.55 38199.40 4999.93 9698.51 18199.52 29198.28 384
VNet99.18 17599.06 17899.56 16499.24 31699.36 18599.33 13099.31 29799.67 9699.47 21899.57 23296.48 29399.84 25799.15 12099.30 32199.47 215
RPSCF99.18 17599.02 19199.64 12799.83 6399.85 1999.44 10999.82 6898.33 29199.50 21399.78 10297.90 23299.65 37196.78 31299.83 17099.44 225
DeepPCF-MVS98.42 699.18 17599.02 19199.67 10899.22 31999.75 6697.25 38799.47 25598.72 24399.66 15299.70 14899.29 6499.63 37498.07 21399.81 18899.62 136
EPP-MVSNet99.17 18099.00 19899.66 11599.80 8499.43 16399.70 3499.24 31399.48 12899.56 19299.77 10994.89 31999.93 9698.72 16999.89 12499.63 125
GST-MVS99.16 18198.96 21099.75 7299.73 13599.73 7599.20 17199.55 21998.22 29799.32 25599.35 29698.65 15099.91 14096.86 30799.74 21899.62 136
MVP-Stereo99.16 18199.08 17299.43 20399.48 24599.07 23599.08 21599.55 21998.63 25299.31 26099.68 16698.19 21299.78 30998.18 20599.58 27599.45 220
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-OURS-SEG-HR99.16 18198.99 20499.66 11599.84 5999.64 10998.25 32299.73 11598.39 27899.63 15999.43 27399.70 2499.90 15997.34 27698.64 36899.44 225
jason99.16 18199.11 16199.32 23799.75 12698.44 28798.26 32199.39 27998.70 24699.74 12399.30 30498.54 16499.97 3498.48 18299.82 17999.55 172
jason: jason.
DPE-MVScopyleft99.14 18598.92 21799.82 3599.57 20299.77 5398.74 27499.60 19198.55 26099.76 11099.69 15598.23 20899.92 11896.39 33699.75 21199.76 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss99.14 18598.92 21799.80 4399.83 6399.83 2998.61 28299.63 17096.84 36399.44 22499.58 22598.81 12399.91 14097.70 25099.82 17999.67 93
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs499.13 18799.06 17899.36 22799.57 20299.10 23298.01 34599.25 31098.78 23699.58 18299.44 27298.24 20499.76 31998.74 16799.93 9799.22 278
MVS_111021_LR99.13 18799.03 19099.42 20599.58 19299.32 19397.91 35899.73 11598.68 24799.31 26099.48 26199.09 8999.66 36597.70 25099.77 20799.29 265
EIA-MVS99.12 18999.01 19499.45 19499.36 28199.62 11699.34 12799.79 8698.41 27598.84 32098.89 36498.75 13599.84 25798.15 20999.51 29298.89 349
TSAR-MVS + GP.99.12 18999.04 18899.38 22099.34 29399.16 22298.15 32899.29 30198.18 30199.63 15999.62 20099.18 7899.68 35698.20 20199.74 21899.30 262
MVS_111021_HR99.12 18999.02 19199.40 21499.50 23599.11 22797.92 35699.71 12798.76 24199.08 29599.47 26599.17 7999.54 38797.85 23499.76 20999.54 180
CANet99.11 19299.05 18299.28 24698.83 36998.56 28098.71 27899.41 26999.25 16799.23 27399.22 32297.66 25399.94 7999.19 11299.97 5399.33 253
WR-MVS99.11 19298.93 21399.66 11599.30 30499.42 16698.42 31099.37 28499.04 20199.57 18599.20 32696.89 28299.86 22598.66 17499.87 14599.70 76
PHI-MVS99.11 19298.95 21199.59 15299.13 33599.59 12899.17 18199.65 16297.88 32099.25 26999.46 26898.97 10999.80 30397.26 28499.82 17999.37 243
SF-MVS99.10 19598.93 21399.62 14399.58 19299.51 14399.13 19799.65 16297.97 31299.42 23099.61 20998.86 12099.87 20696.45 33499.68 24399.49 207
mvsmamba99.08 19698.95 21199.45 19499.36 28199.18 22199.39 11598.81 34599.37 15099.35 24699.70 14896.36 30199.94 7998.66 17499.59 27399.22 278
MSDG99.08 19698.98 20799.37 22399.60 18399.13 22597.54 37399.74 11198.84 22899.53 20499.55 24399.10 8799.79 30697.07 29799.86 15399.18 290
Effi-MVS+-dtu99.07 19898.92 21799.52 17598.89 36599.78 4899.15 18999.66 15299.34 15498.92 31099.24 32097.69 24799.98 2198.11 21199.28 32498.81 356
Effi-MVS+99.06 19998.97 20899.34 23099.31 30098.98 24098.31 31799.91 3398.81 23198.79 32798.94 36099.14 8499.84 25798.79 16098.74 36299.20 285
MP-MVScopyleft99.06 19998.83 22999.76 6299.76 11599.71 8299.32 13299.50 24798.35 28698.97 30399.48 26198.37 19099.92 11895.95 35699.75 21199.63 125
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MDA-MVSNet-bldmvs99.06 19999.05 18299.07 28199.80 8497.83 32898.89 25099.72 12499.29 15999.63 15999.70 14896.47 29499.89 17898.17 20799.82 17999.50 202
MSLP-MVS++99.05 20299.09 17098.91 30099.21 32198.36 29598.82 26299.47 25598.85 22598.90 31399.56 23698.78 13099.09 40298.57 17899.68 24399.26 268
1112_ss99.05 20298.84 22799.67 10899.66 16999.29 19798.52 30199.82 6897.65 33099.43 22899.16 32896.42 29699.91 14099.07 13299.84 16299.80 45
ACMP97.51 1499.05 20298.84 22799.67 10899.78 10399.55 13898.88 25199.66 15297.11 35899.47 21899.60 21799.07 9499.89 17896.18 34599.85 15799.58 162
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS99.04 20598.79 23499.81 3899.78 10399.73 7599.35 12699.57 20898.54 26399.54 19998.99 35196.81 28499.93 9696.97 30199.53 28899.77 58
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PVSNet_BlendedMVS99.03 20699.01 19499.09 27699.54 21697.99 31898.58 28999.82 6897.62 33199.34 25099.71 14098.52 17199.77 31797.98 21999.97 5399.52 195
IS-MVSNet99.03 20698.85 22599.55 16799.80 8499.25 20699.73 2699.15 32799.37 15099.61 17499.71 14094.73 32299.81 29697.70 25099.88 13399.58 162
MGCFI-Net99.02 20899.01 19499.06 28399.11 34298.60 27899.63 6099.67 14799.63 10698.58 34597.65 39999.07 9499.57 38398.85 15298.92 34999.03 330
sasdasda99.02 20899.00 19899.09 27699.10 34498.70 26699.61 6899.66 15299.63 10698.64 33997.65 39999.04 10099.54 38798.79 16098.92 34999.04 328
xiu_mvs_v2_base99.02 20899.11 16198.77 31899.37 27898.09 31298.13 33199.51 24399.47 13299.42 23098.54 38299.38 5499.97 3498.83 15499.33 31798.24 386
Fast-Effi-MVS+99.02 20898.87 22399.46 19199.38 27699.50 14499.04 22299.79 8697.17 35498.62 34198.74 37399.34 6099.95 6498.32 19299.41 30798.92 345
canonicalmvs99.02 20899.00 19899.09 27699.10 34498.70 26699.61 6899.66 15299.63 10698.64 33997.65 39999.04 10099.54 38798.79 16098.92 34999.04 328
MCST-MVS99.02 20898.81 23199.65 12099.58 19299.49 14598.58 28999.07 33298.40 27799.04 30099.25 31598.51 17399.80 30397.31 27899.51 29299.65 110
SD-MVS99.01 21499.30 12698.15 34699.50 23599.40 17298.94 24799.61 18099.22 17599.75 11599.82 7599.54 4195.51 41197.48 26899.87 14599.54 180
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
LF4IMVS99.01 21498.92 21799.27 24999.71 14199.28 19998.59 28799.77 9598.32 29299.39 24299.41 27598.62 15299.84 25796.62 32499.84 16298.69 363
IterMVS-SCA-FT99.00 21699.16 14898.51 33099.75 12695.90 37498.07 33999.84 6199.84 5499.89 5399.73 12496.01 30999.99 899.33 93100.00 199.63 125
MS-PatchMatch99.00 21698.97 20899.09 27699.11 34298.19 30398.76 27299.33 29198.49 26999.44 22499.58 22598.21 20999.69 34498.20 20199.62 25999.39 238
PS-MVSNAJ99.00 21699.08 17298.76 31999.37 27898.10 31198.00 34799.51 24399.47 13299.41 23698.50 38499.28 6699.97 3498.83 15499.34 31698.20 390
CNVR-MVS98.99 21998.80 23399.56 16499.25 31499.43 16398.54 29899.27 30598.58 25898.80 32599.43 27398.53 16899.70 33897.22 29099.59 27399.54 180
VDDNet98.97 22098.82 23099.42 20599.71 14198.81 25799.62 6398.68 35199.81 6399.38 24399.80 8494.25 32699.85 24298.79 16099.32 31999.59 157
IterMVS98.97 22099.16 14898.42 33499.74 13295.64 37798.06 34199.83 6399.83 5899.85 7299.74 12096.10 30899.99 899.27 104100.00 199.63 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TinyColmap98.97 22098.93 21399.07 28199.46 25598.19 30397.75 36499.75 10598.79 23499.54 19999.70 14898.97 10999.62 37596.63 32399.83 17099.41 235
HPM-MVS++copyleft98.96 22398.70 24099.74 7799.52 22799.71 8298.86 25399.19 32398.47 27198.59 34499.06 34198.08 22099.91 14096.94 30299.60 26999.60 150
lupinMVS98.96 22398.87 22399.24 25799.57 20298.40 29098.12 33299.18 32498.28 29499.63 15999.13 33098.02 22499.97 3498.22 19999.69 23899.35 249
USDC98.96 22398.93 21399.05 28499.54 21697.99 31897.07 39399.80 8098.21 29899.75 11599.77 10998.43 18199.64 37397.90 22699.88 13399.51 197
YYNet198.95 22698.99 20498.84 31199.64 17497.14 35298.22 32499.32 29398.92 21699.59 18099.66 17597.40 26199.83 27298.27 19599.90 11399.55 172
MDA-MVSNet_test_wron98.95 22698.99 20498.85 30999.64 17497.16 35098.23 32399.33 29198.93 21499.56 19299.66 17597.39 26399.83 27298.29 19399.88 13399.55 172
Test_1112_low_res98.95 22698.73 23699.63 13499.68 16199.15 22498.09 33699.80 8097.14 35699.46 22299.40 27996.11 30799.89 17899.01 13799.84 16299.84 34
CANet_DTU98.91 22998.85 22599.09 27698.79 37598.13 30798.18 32599.31 29799.48 12898.86 31899.51 25196.56 29099.95 6499.05 13399.95 7999.19 288
HyFIR lowres test98.91 22998.64 24299.73 8699.85 5699.47 14898.07 33999.83 6398.64 25199.89 5399.60 21792.57 344100.00 199.33 9399.97 5399.72 70
HQP_MVS98.90 23198.68 24199.55 16799.58 19299.24 21098.80 26699.54 22598.94 21199.14 28899.25 31597.24 26899.82 28195.84 36099.78 20399.60 150
sss98.90 23198.77 23599.27 24999.48 24598.44 28798.72 27699.32 29397.94 31699.37 24499.35 29696.31 30299.91 14098.85 15299.63 25899.47 215
OMC-MVS98.90 23198.72 23799.44 19999.39 27399.42 16698.58 28999.64 16897.31 34899.44 22499.62 20098.59 15699.69 34496.17 34699.79 19899.22 278
ppachtmachnet_test98.89 23499.12 15898.20 34599.66 16995.24 38397.63 36999.68 14399.08 19699.78 10099.62 20098.65 15099.88 19298.02 21499.96 6699.48 211
new_pmnet98.88 23598.89 22198.84 31199.70 14997.62 33698.15 32899.50 24797.98 31199.62 16899.54 24598.15 21599.94 7997.55 26399.84 16298.95 341
K. test v398.87 23698.60 24599.69 10399.93 2499.46 15299.74 2394.97 40099.78 6999.88 6199.88 4293.66 33499.97 3499.61 4999.95 7999.64 120
APD-MVScopyleft98.87 23698.59 24799.71 9799.50 23599.62 11699.01 23099.57 20896.80 36599.54 19999.63 19398.29 19899.91 14095.24 37299.71 23299.61 146
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
our_test_398.85 23899.09 17098.13 34799.66 16994.90 38797.72 36599.58 20699.07 19899.64 15599.62 20098.19 21299.93 9698.41 18599.95 7999.55 172
UnsupCasMVSNet_eth98.83 23998.57 25199.59 15299.68 16199.45 15798.99 23899.67 14799.48 12899.55 19799.36 29194.92 31899.86 22598.95 14896.57 40299.45 220
NCCC98.82 24098.57 25199.58 15599.21 32199.31 19498.61 28299.25 31098.65 25098.43 35499.26 31397.86 23599.81 29696.55 32599.27 32799.61 146
PMVScopyleft92.94 2198.82 24098.81 23198.85 30999.84 5997.99 31899.20 17199.47 25599.71 8299.42 23099.82 7598.09 21899.47 39593.88 39199.85 15799.07 323
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FMVSNet398.80 24298.63 24499.32 23799.13 33598.72 26599.10 20899.48 25299.23 17199.62 16899.64 18292.57 34499.86 22598.96 14499.90 11399.39 238
Patchmtry98.78 24398.54 25599.49 18298.89 36599.19 21999.32 13299.67 14799.65 10299.72 12899.79 9491.87 35299.95 6498.00 21899.97 5399.33 253
Vis-MVSNet (Re-imp)98.77 24498.58 25099.34 23099.78 10398.88 25399.61 6899.56 21399.11 19599.24 27299.56 23693.00 34299.78 30997.43 27199.89 12499.35 249
CLD-MVS98.76 24598.57 25199.33 23399.57 20298.97 24297.53 37599.55 21996.41 36899.27 26799.13 33099.07 9499.78 30996.73 31599.89 12499.23 275
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous20240521198.75 24698.46 26099.63 13499.34 29399.66 10099.47 10397.65 38499.28 16299.56 19299.50 25493.15 33899.84 25798.62 17699.58 27599.40 236
CPTT-MVS98.74 24798.44 26299.64 12799.61 18199.38 17899.18 17699.55 21996.49 36799.27 26799.37 28797.11 27699.92 11895.74 36399.67 24999.62 136
F-COLMAP98.74 24798.45 26199.62 14399.57 20299.47 14898.84 25699.65 16296.31 37198.93 30799.19 32797.68 24899.87 20696.52 32799.37 31299.53 185
N_pmnet98.73 24998.53 25699.35 22999.72 13898.67 26898.34 31494.65 40198.35 28699.79 9699.68 16698.03 22399.93 9698.28 19499.92 10199.44 225
c3_l98.72 25098.71 23898.72 32199.12 33797.22 34997.68 36899.56 21398.90 21899.54 19999.48 26196.37 30099.73 32997.88 22899.88 13399.21 281
CL-MVSNet_self_test98.71 25198.56 25499.15 26799.22 31998.66 27197.14 39099.51 24398.09 30599.54 19999.27 31096.87 28399.74 32698.43 18498.96 34699.03 330
PVSNet_Blended98.70 25298.59 24799.02 28699.54 21697.99 31897.58 37299.82 6895.70 37999.34 25098.98 35498.52 17199.77 31797.98 21999.83 17099.30 262
dmvs_re98.69 25398.48 25899.31 24099.55 21499.42 16699.54 8598.38 36999.32 15798.72 33398.71 37496.76 28699.21 40096.01 35099.35 31599.31 260
eth_miper_zixun_eth98.68 25498.71 23898.60 32699.10 34496.84 35997.52 37799.54 22598.94 21199.58 18299.48 26196.25 30599.76 31998.01 21799.93 9799.21 281
PatchMatch-RL98.68 25498.47 25999.30 24399.44 26099.28 19998.14 33099.54 22597.12 35799.11 29299.25 31597.80 24099.70 33896.51 32899.30 32198.93 343
miper_lstm_enhance98.65 25698.60 24598.82 31699.20 32497.33 34697.78 36399.66 15299.01 20399.59 18099.50 25494.62 32399.85 24298.12 21099.90 11399.26 268
h-mvs3398.61 25798.34 27399.44 19999.60 18398.67 26899.27 15299.44 26399.68 9299.32 25599.49 25892.50 347100.00 199.24 10596.51 40399.65 110
MVS_030498.61 25798.30 27799.52 17597.88 40698.95 24598.76 27294.11 40599.84 5499.32 25599.57 23295.57 31599.95 6499.68 4399.98 3999.68 86
CVMVSNet98.61 25798.88 22297.80 35899.58 19293.60 39599.26 15499.64 16899.66 10099.72 12899.67 17093.26 33799.93 9699.30 9899.81 18899.87 28
Patchmatch-RL test98.60 26098.36 27099.33 23399.77 11199.07 23598.27 31999.87 4798.91 21799.74 12399.72 13290.57 36999.79 30698.55 17999.85 15799.11 305
RPMNet98.60 26098.53 25698.83 31399.05 35098.12 30899.30 14099.62 17399.86 4599.16 28499.74 12092.53 34699.92 11898.75 16698.77 35898.44 379
AdaColmapbinary98.60 26098.35 27299.38 22099.12 33799.22 21398.67 27999.42 26897.84 32498.81 32399.27 31097.32 26699.81 29695.14 37499.53 28899.10 307
miper_ehance_all_eth98.59 26398.59 24798.59 32798.98 35897.07 35397.49 37899.52 23998.50 26799.52 20699.37 28796.41 29899.71 33597.86 23299.62 25999.00 337
WTY-MVS98.59 26398.37 26999.26 25299.43 26398.40 29098.74 27499.13 33098.10 30399.21 27899.24 32094.82 32099.90 15997.86 23298.77 35899.49 207
CNLPA98.57 26598.34 27399.28 24699.18 32999.10 23298.34 31499.41 26998.48 27098.52 34998.98 35497.05 27899.78 30995.59 36599.50 29598.96 339
CDPH-MVS98.56 26698.20 28499.61 14699.50 23599.46 15298.32 31699.41 26995.22 38499.21 27899.10 33898.34 19499.82 28195.09 37699.66 25299.56 169
UnsupCasMVSNet_bld98.55 26798.27 28099.40 21499.56 21399.37 18197.97 35299.68 14397.49 33999.08 29599.35 29695.41 31799.82 28197.70 25098.19 38399.01 336
cl____98.54 26898.41 26598.92 29899.03 35297.80 33197.46 37999.59 19798.90 21899.60 17799.46 26893.85 33099.78 30997.97 22199.89 12499.17 292
DIV-MVS_self_test98.54 26898.42 26498.92 29899.03 35297.80 33197.46 37999.59 19798.90 21899.60 17799.46 26893.87 32999.78 30997.97 22199.89 12499.18 290
FA-MVS(test-final)98.52 27098.32 27599.10 27599.48 24598.67 26899.77 1598.60 35897.35 34699.63 15999.80 8493.07 34099.84 25797.92 22499.30 32198.78 359
hse-mvs298.52 27098.30 27799.16 26599.29 30698.60 27898.77 27199.02 33699.68 9299.32 25599.04 34492.50 34799.85 24299.24 10597.87 39399.03 330
MG-MVS98.52 27098.39 26798.94 29499.15 33297.39 34598.18 32599.21 32098.89 22199.23 27399.63 19397.37 26499.74 32694.22 38599.61 26699.69 80
DP-MVS Recon98.50 27398.23 28199.31 24099.49 24099.46 15298.56 29499.63 17094.86 39098.85 31999.37 28797.81 23999.59 38196.08 34799.44 30298.88 350
CMPMVSbinary77.52 2398.50 27398.19 28799.41 21298.33 39799.56 13599.01 23099.59 19795.44 38199.57 18599.80 8495.64 31299.46 39796.47 33299.92 10199.21 281
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
114514_t98.49 27598.11 29299.64 12799.73 13599.58 13299.24 16199.76 10089.94 40299.42 23099.56 23697.76 24499.86 22597.74 24499.82 17999.47 215
PMMVS98.49 27598.29 27999.11 27398.96 35998.42 28997.54 37399.32 29397.53 33698.47 35298.15 39197.88 23499.82 28197.46 26999.24 33099.09 312
MVSTER98.47 27798.22 28299.24 25799.06 34998.35 29699.08 21599.46 25899.27 16399.75 11599.66 17588.61 38099.85 24299.14 12699.92 10199.52 195
LFMVS98.46 27898.19 28799.26 25299.24 31698.52 28399.62 6396.94 39299.87 4299.31 26099.58 22591.04 36099.81 29698.68 17399.42 30699.45 220
PatchT98.45 27998.32 27598.83 31398.94 36098.29 29799.24 16198.82 34499.84 5499.08 29599.76 11291.37 35599.94 7998.82 15699.00 34498.26 385
MIMVSNet98.43 28098.20 28499.11 27399.53 22298.38 29499.58 7798.61 35698.96 20899.33 25299.76 11290.92 36299.81 29697.38 27499.76 20999.15 296
PVSNet97.47 1598.42 28198.44 26298.35 33799.46 25596.26 36896.70 39899.34 29097.68 32999.00 30299.13 33097.40 26199.72 33197.59 26299.68 24399.08 318
CHOSEN 280x42098.41 28298.41 26598.40 33599.34 29395.89 37596.94 39599.44 26398.80 23399.25 26999.52 24993.51 33699.98 2198.94 14999.98 3999.32 256
BH-RMVSNet98.41 28298.14 29099.21 25999.21 32198.47 28498.60 28498.26 37398.35 28698.93 30799.31 30297.20 27399.66 36594.32 38399.10 33799.51 197
QAPM98.40 28497.99 29899.65 12099.39 27399.47 14899.67 4999.52 23991.70 39998.78 32999.80 8498.55 16299.95 6494.71 38099.75 21199.53 185
API-MVS98.38 28598.39 26798.35 33798.83 36999.26 20399.14 19199.18 32498.59 25798.66 33898.78 37198.61 15499.57 38394.14 38699.56 27796.21 405
HQP-MVS98.36 28698.02 29799.39 21799.31 30098.94 24697.98 34999.37 28497.45 34098.15 36398.83 36796.67 28799.70 33894.73 37899.67 24999.53 185
PAPM_NR98.36 28698.04 29599.33 23399.48 24598.93 24998.79 26999.28 30497.54 33598.56 34898.57 37997.12 27599.69 34494.09 38798.90 35399.38 240
PLCcopyleft97.35 1698.36 28697.99 29899.48 18699.32 29999.24 21098.50 30399.51 24395.19 38698.58 34598.96 35896.95 28199.83 27295.63 36499.25 32899.37 243
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
train_agg98.35 28997.95 30299.57 16199.35 28499.35 18898.11 33499.41 26994.90 38897.92 37398.99 35198.02 22499.85 24295.38 37099.44 30299.50 202
CR-MVSNet98.35 28998.20 28498.83 31399.05 35098.12 30899.30 14099.67 14797.39 34499.16 28499.79 9491.87 35299.91 14098.78 16498.77 35898.44 379
WB-MVSnew98.34 29198.14 29098.96 29198.14 40497.90 32698.27 31997.26 39198.63 25298.80 32598.00 39497.77 24299.90 15997.37 27598.98 34599.09 312
DPM-MVS98.28 29297.94 30699.32 23799.36 28199.11 22797.31 38598.78 34796.88 36198.84 32099.11 33797.77 24299.61 37994.03 38999.36 31399.23 275
alignmvs98.28 29297.96 30199.25 25599.12 33798.93 24999.03 22598.42 36699.64 10498.72 33397.85 39690.86 36599.62 37598.88 15199.13 33499.19 288
test_yl98.25 29497.95 30299.13 27199.17 33098.47 28499.00 23398.67 35398.97 20699.22 27699.02 34991.31 35699.69 34497.26 28498.93 34799.24 271
DCV-MVSNet98.25 29497.95 30299.13 27199.17 33098.47 28499.00 23398.67 35398.97 20699.22 27699.02 34991.31 35699.69 34497.26 28498.93 34799.24 271
MAR-MVS98.24 29697.92 30899.19 26298.78 37799.65 10699.17 18199.14 32895.36 38298.04 37098.81 37097.47 25899.72 33195.47 36899.06 33898.21 388
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
OpenMVScopyleft98.12 1098.23 29797.89 31199.26 25299.19 32699.26 20399.65 5899.69 14091.33 40098.14 36799.77 10998.28 19999.96 5495.41 36999.55 28198.58 370
BH-untuned98.22 29898.09 29398.58 32999.38 27697.24 34898.55 29598.98 33997.81 32599.20 28398.76 37297.01 27999.65 37194.83 37798.33 37698.86 352
HY-MVS98.23 998.21 29997.95 30298.99 28899.03 35298.24 29899.61 6898.72 34996.81 36498.73 33299.51 25194.06 32799.86 22596.91 30498.20 38198.86 352
Syy-MVS98.17 30097.85 31299.15 26798.50 39298.79 26098.60 28499.21 32097.89 31896.76 39496.37 41595.47 31699.57 38399.10 12998.73 36499.09 312
EPNet98.13 30197.77 31699.18 26494.57 41497.99 31899.24 16197.96 37899.74 7497.29 38799.62 20093.13 33999.97 3498.59 17799.83 17099.58 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SCA98.11 30298.36 27097.36 36999.20 32492.99 39798.17 32798.49 36398.24 29699.10 29499.57 23296.01 30999.94 7996.86 30799.62 25999.14 301
Patchmatch-test98.10 30397.98 30098.48 33299.27 31196.48 36399.40 11399.07 33298.81 23199.23 27399.57 23290.11 37399.87 20696.69 31699.64 25699.09 312
pmmvs398.08 30497.80 31398.91 30099.41 27197.69 33597.87 36099.66 15295.87 37599.50 21399.51 25190.35 37199.97 3498.55 17999.47 29999.08 318
JIA-IIPM98.06 30597.92 30898.50 33198.59 38897.02 35498.80 26698.51 36199.88 4197.89 37599.87 4791.89 35199.90 15998.16 20897.68 39598.59 368
miper_enhance_ethall98.03 30697.94 30698.32 34098.27 39896.43 36596.95 39499.41 26996.37 37099.43 22898.96 35894.74 32199.69 34497.71 24799.62 25998.83 355
TAPA-MVS97.92 1398.03 30697.55 32299.46 19199.47 25199.44 15998.50 30399.62 17386.79 40399.07 29899.26 31398.26 20399.62 37597.28 28199.73 22399.31 260
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
131498.00 30897.90 31098.27 34498.90 36297.45 34299.30 14099.06 33494.98 38797.21 38999.12 33498.43 18199.67 36195.58 36698.56 37197.71 397
GA-MVS97.99 30997.68 31998.93 29799.52 22798.04 31697.19 38999.05 33598.32 29298.81 32398.97 35689.89 37699.41 39898.33 19199.05 34099.34 252
MVS-HIRNet97.86 31098.22 28296.76 37899.28 30991.53 40598.38 31292.60 40899.13 19199.31 26099.96 1297.18 27499.68 35698.34 19099.83 17099.07 323
FE-MVS97.85 31197.42 32499.15 26799.44 26098.75 26399.77 1598.20 37595.85 37699.33 25299.80 8488.86 37999.88 19296.40 33599.12 33598.81 356
AUN-MVS97.82 31297.38 32599.14 27099.27 31198.53 28198.72 27699.02 33698.10 30397.18 39099.03 34889.26 37899.85 24297.94 22397.91 39199.03 330
FMVSNet597.80 31397.25 32999.42 20598.83 36998.97 24299.38 11899.80 8098.87 22299.25 26999.69 15580.60 40099.91 14098.96 14499.90 11399.38 240
ADS-MVSNet297.78 31497.66 32198.12 34899.14 33395.36 38099.22 16898.75 34896.97 35998.25 35999.64 18290.90 36399.94 7996.51 32899.56 27799.08 318
test111197.74 31598.16 28996.49 38399.60 18389.86 41399.71 3391.21 40999.89 3699.88 6199.87 4793.73 33399.90 15999.56 5699.99 1699.70 76
ECVR-MVScopyleft97.73 31698.04 29596.78 37799.59 18790.81 40999.72 2990.43 41199.89 3699.86 7099.86 5393.60 33599.89 17899.46 7099.99 1699.65 110
baseline197.73 31697.33 32698.96 29199.30 30497.73 33399.40 11398.42 36699.33 15699.46 22299.21 32491.18 35899.82 28198.35 18991.26 40999.32 256
tpmrst97.73 31698.07 29496.73 38098.71 38492.00 40199.10 20898.86 34198.52 26598.92 31099.54 24591.90 35099.82 28198.02 21499.03 34298.37 381
ADS-MVSNet97.72 31997.67 32097.86 35699.14 33394.65 38899.22 16898.86 34196.97 35998.25 35999.64 18290.90 36399.84 25796.51 32899.56 27799.08 318
PatchmatchNetpermissive97.65 32097.80 31397.18 37498.82 37292.49 39999.17 18198.39 36898.12 30298.79 32799.58 22590.71 36799.89 17897.23 28999.41 30799.16 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051797.62 32197.20 33098.90 30699.76 11597.40 34499.48 10094.36 40299.06 20099.70 13799.49 25884.55 39599.94 7998.73 16899.65 25499.36 246
EPNet_dtu97.62 32197.79 31597.11 37696.67 41192.31 40098.51 30298.04 37699.24 16995.77 40399.47 26593.78 33299.66 36598.98 14099.62 25999.37 243
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d97.58 32399.13 15492.93 39099.69 15399.49 14599.52 8799.77 9597.97 31299.96 2399.79 9499.84 1299.94 7995.85 35999.82 17979.36 408
cl2297.56 32497.28 32798.40 33598.37 39696.75 36097.24 38899.37 28497.31 34899.41 23699.22 32287.30 38299.37 39997.70 25099.62 25999.08 318
PAPR97.56 32497.07 33299.04 28598.80 37398.11 31097.63 36999.25 31094.56 39398.02 37198.25 38997.43 26099.68 35690.90 39898.74 36299.33 253
thisisatest053097.45 32696.95 33698.94 29499.68 16197.73 33399.09 21294.19 40498.61 25699.56 19299.30 30484.30 39699.93 9698.27 19599.54 28699.16 294
TR-MVS97.44 32797.15 33198.32 34098.53 39097.46 34198.47 30597.91 38096.85 36298.21 36298.51 38396.42 29699.51 39392.16 39497.29 39897.98 394
tpmvs97.39 32897.69 31896.52 38298.41 39491.76 40299.30 14098.94 34097.74 32697.85 37899.55 24392.40 34999.73 32996.25 34298.73 36498.06 393
test0.0.03 197.37 32996.91 33998.74 32097.72 40797.57 33797.60 37197.36 39098.00 30899.21 27898.02 39290.04 37499.79 30698.37 18795.89 40698.86 352
OpenMVS_ROBcopyleft97.31 1797.36 33096.84 34098.89 30799.29 30699.45 15798.87 25299.48 25286.54 40599.44 22499.74 12097.34 26599.86 22591.61 39599.28 32497.37 401
dmvs_testset97.27 33196.83 34198.59 32799.46 25597.55 33899.25 16096.84 39398.78 23697.24 38897.67 39897.11 27698.97 40486.59 40898.54 37299.27 266
BH-w/o97.20 33297.01 33497.76 35999.08 34895.69 37698.03 34498.52 36095.76 37897.96 37298.02 39295.62 31399.47 39592.82 39397.25 39998.12 392
test-LLR97.15 33396.95 33697.74 36198.18 40195.02 38597.38 38196.10 39498.00 30897.81 38098.58 37790.04 37499.91 14097.69 25698.78 35698.31 382
tpm97.15 33396.95 33697.75 36098.91 36194.24 39099.32 13297.96 37897.71 32898.29 35799.32 30086.72 39099.92 11898.10 21296.24 40599.09 312
E-PMN97.14 33597.43 32396.27 38598.79 37591.62 40495.54 40399.01 33899.44 13898.88 31499.12 33492.78 34399.68 35694.30 38499.03 34297.50 398
cascas96.99 33696.82 34297.48 36597.57 41095.64 37796.43 40099.56 21391.75 39897.13 39297.61 40295.58 31498.63 40696.68 31799.11 33698.18 391
thisisatest051596.98 33796.42 34498.66 32499.42 26897.47 34097.27 38694.30 40397.24 35099.15 28698.86 36685.01 39399.87 20697.10 29599.39 30998.63 364
EMVS96.96 33897.28 32795.99 38898.76 38091.03 40795.26 40598.61 35699.34 15498.92 31098.88 36593.79 33199.66 36592.87 39299.05 34097.30 402
dp96.86 33997.07 33296.24 38698.68 38690.30 41299.19 17598.38 36997.35 34698.23 36199.59 22287.23 38399.82 28196.27 34198.73 36498.59 368
baseline296.83 34096.28 34698.46 33399.09 34796.91 35798.83 25893.87 40797.23 35196.23 40298.36 38688.12 38199.90 15996.68 31798.14 38698.57 371
ET-MVSNet_ETH3D96.78 34196.07 35098.91 30099.26 31397.92 32597.70 36796.05 39797.96 31592.37 40998.43 38587.06 38499.90 15998.27 19597.56 39698.91 346
tpm cat196.78 34196.98 33596.16 38798.85 36890.59 41199.08 21599.32 29392.37 39697.73 38499.46 26891.15 35999.69 34496.07 34898.80 35598.21 388
PCF-MVS96.03 1896.73 34395.86 35499.33 23399.44 26099.16 22296.87 39699.44 26386.58 40498.95 30599.40 27994.38 32599.88 19287.93 40299.80 19398.95 341
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CostFormer96.71 34496.79 34396.46 38498.90 36290.71 41099.41 11298.68 35194.69 39298.14 36799.34 29986.32 39299.80 30397.60 26198.07 38998.88 350
MVEpermissive92.54 2296.66 34596.11 34998.31 34299.68 16197.55 33897.94 35495.60 39999.37 15090.68 41098.70 37596.56 29098.61 40786.94 40799.55 28198.77 361
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres600view796.60 34696.16 34897.93 35399.63 17696.09 37299.18 17697.57 38598.77 23898.72 33397.32 40487.04 38599.72 33188.57 40098.62 36997.98 394
EPMVS96.53 34796.32 34597.17 37598.18 40192.97 39899.39 11589.95 41298.21 29898.61 34299.59 22286.69 39199.72 33196.99 29999.23 33298.81 356
testing396.48 34895.63 35999.01 28799.23 31897.81 32998.90 24999.10 33198.72 24397.84 37997.92 39572.44 41299.85 24297.21 29199.33 31799.35 249
thres40096.40 34995.89 35297.92 35499.58 19296.11 37099.00 23397.54 38898.43 27298.52 34996.98 40786.85 38799.67 36187.62 40398.51 37397.98 394
thres100view90096.39 35096.03 35197.47 36699.63 17695.93 37399.18 17697.57 38598.75 24298.70 33697.31 40587.04 38599.67 36187.62 40398.51 37396.81 403
tpm296.35 35196.22 34796.73 38098.88 36791.75 40399.21 17098.51 36193.27 39597.89 37599.21 32484.83 39499.70 33896.04 34998.18 38498.75 362
FPMVS96.32 35295.50 36098.79 31799.60 18398.17 30698.46 30998.80 34697.16 35596.28 39999.63 19382.19 39799.09 40288.45 40198.89 35499.10 307
tfpn200view996.30 35395.89 35297.53 36399.58 19296.11 37099.00 23397.54 38898.43 27298.52 34996.98 40786.85 38799.67 36187.62 40398.51 37396.81 403
TESTMET0.1,196.24 35495.84 35597.41 36898.24 39993.84 39397.38 38195.84 39898.43 27297.81 38098.56 38079.77 40299.89 17897.77 23998.77 35898.52 373
test-mter96.23 35595.73 35797.74 36198.18 40195.02 38597.38 38196.10 39497.90 31797.81 38098.58 37779.12 40599.91 14097.69 25698.78 35698.31 382
UWE-MVS96.21 35695.78 35697.49 36498.53 39093.83 39498.04 34293.94 40698.96 20898.46 35398.17 39079.86 40199.87 20696.99 29999.06 33898.78 359
ETVMVS96.14 35795.22 36798.89 30798.80 37398.01 31798.66 28098.35 37198.71 24597.18 39096.31 41774.23 41199.75 32396.64 32298.13 38898.90 347
X-MVStestdata96.09 35894.87 37099.75 7299.71 14199.71 8299.37 12299.61 18099.29 15998.76 33061.30 41898.47 17599.88 19297.62 25899.73 22399.67 93
thres20096.09 35895.68 35897.33 37199.48 24596.22 36998.53 30097.57 38598.06 30798.37 35696.73 41186.84 38999.61 37986.99 40698.57 37096.16 406
testing1196.05 36095.41 36297.97 35198.78 37795.27 38298.59 28798.23 37498.86 22496.56 39796.91 40975.20 40899.69 34497.26 28498.29 37898.93 343
testing9196.00 36195.32 36598.02 34998.76 38095.39 37998.38 31298.65 35598.82 22996.84 39396.71 41275.06 40999.71 33596.46 33398.23 38098.98 338
KD-MVS_2432*160095.89 36295.41 36297.31 37294.96 41293.89 39197.09 39199.22 31797.23 35198.88 31499.04 34479.23 40399.54 38796.24 34396.81 40098.50 377
miper_refine_blended95.89 36295.41 36297.31 37294.96 41293.89 39197.09 39199.22 31797.23 35198.88 31499.04 34479.23 40399.54 38796.24 34396.81 40098.50 377
gg-mvs-nofinetune95.87 36495.17 36997.97 35198.19 40096.95 35599.69 4189.23 41399.89 3696.24 40199.94 1681.19 39899.51 39393.99 39098.20 38197.44 399
testing9995.86 36595.19 36897.87 35598.76 38095.03 38498.62 28198.44 36598.68 24796.67 39696.66 41374.31 41099.69 34496.51 32898.03 39098.90 347
PVSNet_095.53 1995.85 36695.31 36697.47 36698.78 37793.48 39695.72 40299.40 27696.18 37397.37 38597.73 39795.73 31199.58 38295.49 36781.40 41099.36 246
tmp_tt95.75 36795.42 36196.76 37889.90 41694.42 38998.86 25397.87 38278.01 40799.30 26599.69 15597.70 24595.89 40999.29 10198.14 38699.95 11
MVS95.72 36894.63 37398.99 28898.56 38997.98 32399.30 14098.86 34172.71 40997.30 38699.08 33998.34 19499.74 32689.21 39998.33 37699.26 268
myMVS_eth3d95.63 36994.73 37198.34 33998.50 39296.36 36698.60 28499.21 32097.89 31896.76 39496.37 41572.10 41399.57 38394.38 38298.73 36499.09 312
PAPM95.61 37094.71 37298.31 34299.12 33796.63 36196.66 39998.46 36490.77 40196.25 40098.68 37693.01 34199.69 34481.60 40997.86 39498.62 365
testing22295.60 37194.59 37498.61 32598.66 38797.45 34298.54 29897.90 38198.53 26496.54 39896.47 41470.62 41599.81 29695.91 35898.15 38598.56 372
IB-MVS95.41 2095.30 37294.46 37697.84 35798.76 38095.33 38197.33 38496.07 39696.02 37495.37 40697.41 40376.17 40799.96 5497.54 26495.44 40898.22 387
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test250694.73 37394.59 37495.15 38999.59 18785.90 41599.75 2174.01 41799.89 3699.71 13399.86 5379.00 40699.90 15999.52 6499.99 1699.65 110
test_method91.72 37492.32 37789.91 39293.49 41570.18 41890.28 40699.56 21361.71 41095.39 40599.52 24993.90 32899.94 7998.76 16598.27 37999.62 136
dongtai89.37 37588.91 37890.76 39199.19 32677.46 41695.47 40487.82 41592.28 39794.17 40898.82 36971.22 41495.54 41063.85 41097.34 39799.27 266
EGC-MVSNET89.05 37685.52 37999.64 12799.89 3799.78 4899.56 8299.52 23924.19 41149.96 41299.83 6899.15 8199.92 11897.71 24799.85 15799.21 281
kuosan85.65 37784.57 38088.90 39397.91 40577.11 41796.37 40187.62 41685.24 40685.45 41196.83 41069.94 41690.98 41245.90 41195.83 40798.62 365
test12329.31 37833.05 38318.08 39425.93 41812.24 41997.53 37510.93 41911.78 41224.21 41350.08 42221.04 4178.60 41323.51 41232.43 41233.39 409
testmvs28.94 37933.33 38115.79 39526.03 4179.81 42096.77 39715.67 41811.55 41323.87 41450.74 42119.03 4188.53 41423.21 41333.07 41129.03 410
cdsmvs_eth3d_5k24.88 38033.17 3820.00 3960.00 4190.00 4210.00 40799.62 1730.00 4140.00 41599.13 33099.82 130.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas16.61 38122.14 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 199.28 660.00 4150.00 4140.00 4130.00 411
test_blank8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
sosnet8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
Regformer8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
uanet8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.26 39011.02 3930.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.16 3280.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS96.36 36695.20 373
FOURS199.83 6399.89 1099.74 2399.71 12799.69 9099.63 159
MSC_two_6792asdad99.74 7799.03 35299.53 14199.23 31499.92 11897.77 23999.69 23899.78 54
PC_three_145297.56 33299.68 14399.41 27599.09 8997.09 40896.66 31999.60 26999.62 136
No_MVS99.74 7799.03 35299.53 14199.23 31499.92 11897.77 23999.69 23899.78 54
test_one_060199.63 17699.76 6099.55 21999.23 17199.31 26099.61 20998.59 156
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.43 26399.61 12399.43 26696.38 36999.11 29299.07 34097.86 23599.92 11894.04 38899.49 297
RE-MVS-def99.13 15499.54 21699.74 7299.26 15499.62 17399.16 18599.52 20699.64 18298.57 15997.27 28299.61 26699.54 180
IU-MVS99.69 15399.77 5399.22 31797.50 33899.69 14097.75 24399.70 23499.77 58
OPU-MVS99.29 24499.12 33799.44 15999.20 17199.40 27999.00 10398.84 40596.54 32699.60 26999.58 162
test_241102_TWO99.54 22599.13 19199.76 11099.63 19398.32 19799.92 11897.85 23499.69 23899.75 66
test_241102_ONE99.69 15399.82 3499.54 22599.12 19499.82 8099.49 25898.91 11599.52 392
9.1498.64 24299.45 25998.81 26399.60 19197.52 33799.28 26699.56 23698.53 16899.83 27295.36 37199.64 256
save fliter99.53 22299.25 20698.29 31899.38 28399.07 198
test_0728_THIRD99.18 17899.62 16899.61 20998.58 15899.91 14097.72 24599.80 19399.77 58
test_0728_SECOND99.83 3199.70 14999.79 4599.14 19199.61 18099.92 11897.88 22899.72 22999.77 58
test072699.69 15399.80 4399.24 16199.57 20899.16 18599.73 12799.65 18098.35 192
GSMVS99.14 301
test_part299.62 18099.67 9899.55 197
sam_mvs190.81 36699.14 301
sam_mvs90.52 370
ambc99.20 26199.35 28498.53 28199.17 18199.46 25899.67 14899.80 8498.46 17899.70 33897.92 22499.70 23499.38 240
MTGPAbinary99.53 234
test_post199.14 19151.63 42089.54 37799.82 28196.86 307
test_post52.41 41990.25 37299.86 225
patchmatchnet-post99.62 20090.58 36899.94 79
GG-mvs-BLEND97.36 36997.59 40896.87 35899.70 3488.49 41494.64 40797.26 40680.66 39999.12 40191.50 39696.50 40496.08 407
MTMP99.09 21298.59 359
gm-plane-assit97.59 40889.02 41493.47 39498.30 38799.84 25796.38 337
test9_res95.10 37599.44 30299.50 202
TEST999.35 28499.35 18898.11 33499.41 26994.83 39197.92 37398.99 35198.02 22499.85 242
test_899.34 29399.31 19498.08 33899.40 27694.90 38897.87 37798.97 35698.02 22499.84 257
agg_prior294.58 38199.46 30199.50 202
agg_prior99.35 28499.36 18599.39 27997.76 38399.85 242
TestCases99.63 13499.78 10399.64 10999.83 6398.63 25299.63 15999.72 13298.68 14399.75 32396.38 33799.83 17099.51 197
test_prior499.19 21998.00 347
test_prior297.95 35397.87 32198.05 36999.05 34297.90 23295.99 35399.49 297
test_prior99.46 19199.35 28499.22 21399.39 27999.69 34499.48 211
旧先验297.94 35495.33 38398.94 30699.88 19296.75 313
新几何298.04 342
新几何199.52 17599.50 23599.22 21399.26 30795.66 38098.60 34399.28 30897.67 24999.89 17895.95 35699.32 31999.45 220
旧先验199.49 24099.29 19799.26 30799.39 28397.67 24999.36 31399.46 219
无先验98.01 34599.23 31495.83 37799.85 24295.79 36299.44 225
原ACMM297.92 356
原ACMM199.37 22399.47 25198.87 25599.27 30596.74 36698.26 35899.32 30097.93 23199.82 28195.96 35599.38 31099.43 231
test22299.51 22999.08 23497.83 36299.29 30195.21 38598.68 33799.31 30297.28 26799.38 31099.43 231
testdata299.89 17895.99 353
segment_acmp98.37 190
testdata99.42 20599.51 22998.93 24999.30 30096.20 37298.87 31799.40 27998.33 19699.89 17896.29 34099.28 32499.44 225
testdata197.72 36597.86 323
test1299.54 17299.29 30699.33 19199.16 32698.43 35497.54 25699.82 28199.47 29999.48 211
plane_prior799.58 19299.38 178
plane_prior699.47 25199.26 20397.24 268
plane_prior599.54 22599.82 28195.84 36099.78 20399.60 150
plane_prior499.25 315
plane_prior399.31 19498.36 28199.14 288
plane_prior298.80 26698.94 211
plane_prior199.51 229
plane_prior99.24 21098.42 31097.87 32199.71 232
n20.00 420
nn0.00 420
door-mid99.83 63
lessismore_v099.64 12799.86 5299.38 17890.66 41099.89 5399.83 6894.56 32499.97 3499.56 5699.92 10199.57 167
LGP-MVS_train99.74 7799.82 7099.63 11499.73 11597.56 33299.64 15599.69 15599.37 5699.89 17896.66 31999.87 14599.69 80
test1199.29 301
door99.77 95
HQP5-MVS98.94 246
HQP-NCC99.31 30097.98 34997.45 34098.15 363
ACMP_Plane99.31 30097.98 34997.45 34098.15 363
BP-MVS94.73 378
HQP4-MVS98.15 36399.70 33899.53 185
HQP3-MVS99.37 28499.67 249
HQP2-MVS96.67 287
NP-MVS99.40 27299.13 22598.83 367
MDTV_nov1_ep13_2view91.44 40699.14 19197.37 34599.21 27891.78 35496.75 31399.03 330
MDTV_nov1_ep1397.73 31798.70 38590.83 40899.15 18998.02 37798.51 26698.82 32299.61 20990.98 36199.66 36596.89 30698.92 349
ACMMP++_ref99.94 90
ACMMP++99.79 198
Test By Simon98.41 184
ITE_SJBPF99.38 22099.63 17699.44 15999.73 11598.56 25999.33 25299.53 24798.88 11999.68 35696.01 35099.65 25499.02 335
DeepMVS_CXcopyleft97.98 35099.69 15396.95 35599.26 30775.51 40895.74 40498.28 38896.47 29499.62 37591.23 39797.89 39297.38 400