This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 996.99 4599.69 299.57 1599.02 1899.62 1499.36 2198.53 999.52 18398.58 2899.95 599.66 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 596.34 6699.18 599.20 3699.67 299.73 499.65 599.15 399.86 2697.22 6899.92 1499.77 11
pmmvs699.07 499.24 498.56 4999.81 296.38 6398.87 999.30 2899.01 1999.63 1399.66 399.27 299.68 12397.75 5199.89 2399.62 33
mamv499.05 598.91 899.46 298.94 11399.62 297.98 6399.70 599.49 399.78 299.22 3395.92 12199.95 399.31 499.83 4098.83 207
mvs_tets98.90 698.94 698.75 3299.69 1096.48 6198.54 2299.22 3396.23 12299.71 699.48 1098.77 799.93 498.89 1799.95 599.84 5
TDRefinement98.90 698.86 999.02 799.54 2598.06 999.34 499.44 2098.85 2499.00 4799.20 3597.42 4299.59 16297.21 6999.76 5699.40 97
UA-Net98.88 898.76 1499.22 399.11 9297.89 1499.47 399.32 2699.08 1397.87 16199.67 296.47 10099.92 697.88 4399.98 299.85 3
DTE-MVSNet98.79 998.86 998.59 4799.55 2296.12 7398.48 2999.10 5399.36 599.29 3099.06 5397.27 4899.93 497.71 5399.91 1799.70 24
jajsoiax98.77 1098.79 1398.74 3599.66 1296.48 6198.45 3099.12 5095.83 14999.67 999.37 1998.25 1399.92 698.77 2099.94 899.82 6
PEN-MVS98.75 1198.85 1198.44 5699.58 1895.67 9098.45 3099.15 4599.33 699.30 2999.00 5697.27 4899.92 697.64 5799.92 1499.75 18
v7n98.73 1298.99 597.95 9799.64 1394.20 15598.67 1499.14 4899.08 1399.42 2299.23 3296.53 9599.91 1499.27 599.93 1199.73 20
PS-CasMVS98.73 1298.85 1198.39 6099.55 2295.47 10198.49 2799.13 4999.22 999.22 3598.96 6297.35 4499.92 697.79 4999.93 1199.79 9
test_djsdf98.73 1298.74 1798.69 4099.63 1496.30 6898.67 1499.02 7896.50 11099.32 2899.44 1497.43 4199.92 698.73 2299.95 599.86 2
anonymousdsp98.72 1598.63 2198.99 1199.62 1597.29 3898.65 1899.19 3895.62 15899.35 2799.37 1997.38 4399.90 1798.59 2799.91 1799.77 11
WR-MVS_H98.65 1698.62 2398.75 3299.51 2896.61 5798.55 2199.17 4099.05 1699.17 3798.79 7695.47 14299.89 2097.95 4299.91 1799.75 18
OurMVSNet-221017-098.61 1798.61 2598.63 4599.77 596.35 6599.17 699.05 6898.05 5099.61 1599.52 793.72 19299.88 2298.72 2499.88 2499.65 31
test_fmvsmconf0.01_n98.57 1898.74 1798.06 8799.39 4494.63 13596.70 14999.82 195.44 16999.64 1299.52 798.96 499.74 7799.38 399.86 2899.81 7
testf198.57 1898.45 3198.93 1999.79 398.78 397.69 8699.42 2297.69 6498.92 5298.77 7997.80 2599.25 26796.27 10299.69 7698.76 217
APD_test298.57 1898.45 3198.93 1999.79 398.78 397.69 8699.42 2297.69 6498.92 5298.77 7997.80 2599.25 26796.27 10299.69 7698.76 217
Anonymous2023121198.55 2198.76 1497.94 9898.79 13294.37 14798.84 1199.15 4599.37 499.67 999.43 1595.61 13899.72 8898.12 3599.86 2899.73 20
nrg03098.54 2298.62 2398.32 6499.22 6695.66 9197.90 7199.08 6098.31 3999.02 4498.74 8297.68 3099.61 15997.77 5099.85 3599.70 24
PS-MVSNAJss98.53 2398.63 2198.21 7799.68 1194.82 12898.10 5599.21 3496.91 9499.75 399.45 1395.82 12799.92 698.80 1999.96 499.89 1
MIMVSNet198.51 2498.45 3198.67 4199.72 896.71 5198.76 1298.89 10598.49 3499.38 2499.14 4695.44 14499.84 3296.47 9399.80 4899.47 76
pm-mvs198.47 2598.67 1997.86 10299.52 2794.58 13898.28 4199.00 8797.57 6899.27 3199.22 3398.32 1299.50 18897.09 7599.75 6399.50 59
ACMH93.61 998.44 2698.76 1497.51 12699.43 3793.54 17998.23 4599.05 6897.40 8099.37 2599.08 5298.79 699.47 19897.74 5299.71 7299.50 59
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet98.42 2798.46 2998.30 6799.46 3495.22 11798.27 4398.84 12699.05 1699.01 4598.65 9295.37 14599.90 1797.57 5899.91 1799.77 11
test_fmvsmconf0.1_n98.41 2898.54 2698.03 9299.16 8094.61 13696.18 17799.73 395.05 18599.60 1699.34 2498.68 899.72 8899.21 799.85 3599.76 16
TransMVSNet (Re)98.38 2998.67 1997.51 12699.51 2893.39 18598.20 5098.87 11498.23 4399.48 1899.27 2998.47 1199.55 17596.52 9199.53 12599.60 34
TranMVSNet+NR-MVSNet98.33 3098.30 3998.43 5799.07 9895.87 8296.73 14799.05 6898.67 2798.84 5998.45 11197.58 3899.88 2296.45 9499.86 2899.54 50
HPM-MVS_fast98.32 3198.13 4298.88 2499.54 2597.48 3198.35 3499.03 7695.88 14597.88 15898.22 14898.15 1699.74 7796.50 9299.62 9099.42 94
ANet_high98.31 3298.94 696.41 21299.33 5189.64 26597.92 6999.56 1799.27 799.66 1199.50 997.67 3199.83 3497.55 5999.98 299.77 11
test_fmvsmconf_n98.30 3398.41 3497.99 9598.94 11394.60 13796.00 19299.64 1394.99 18899.43 2199.18 3998.51 1099.71 10299.13 1099.84 3799.67 26
VPA-MVSNet98.27 3498.46 2997.70 11299.06 9993.80 16897.76 8199.00 8798.40 3699.07 4398.98 5996.89 7599.75 6897.19 7299.79 5099.55 49
Vis-MVSNetpermissive98.27 3498.34 3698.07 8599.33 5195.21 11998.04 5899.46 1897.32 8497.82 16599.11 4996.75 8599.86 2697.84 4699.36 17799.15 148
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
COLMAP_ROBcopyleft94.48 698.25 3698.11 4498.64 4499.21 7397.35 3697.96 6499.16 4198.34 3898.78 6498.52 10397.32 4599.45 20594.08 21999.67 8299.13 153
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 3798.31 3797.98 9699.39 4495.22 11797.55 9799.20 3698.21 4499.25 3398.51 10598.21 1499.40 22394.79 19099.72 6999.32 113
FC-MVSNet-test98.16 3898.37 3597.56 12199.49 3293.10 19298.35 3499.21 3498.43 3598.89 5598.83 7594.30 17799.81 3797.87 4499.91 1799.77 11
SR-MVS-dyc-post98.14 3997.84 6899.02 798.81 12898.05 1097.55 9798.86 11797.77 5698.20 12198.07 16496.60 9399.76 6295.49 14399.20 20899.26 130
MTAPA98.14 3997.84 6899.06 499.44 3697.90 1397.25 11398.73 15497.69 6497.90 15697.96 17995.81 13199.82 3596.13 10799.61 9699.45 82
APDe-MVScopyleft98.14 3998.03 5198.47 5598.72 14096.04 7698.07 5799.10 5395.96 13898.59 7998.69 8796.94 6999.81 3796.64 8699.58 10499.57 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.13 4297.90 6198.79 3098.79 13297.31 3797.55 9798.92 10297.72 6198.25 11798.13 15697.10 5699.75 6895.44 15099.24 20699.32 113
HPM-MVScopyleft98.11 4397.83 7198.92 2299.42 3997.46 3298.57 1999.05 6895.43 17097.41 18497.50 21997.98 1999.79 4495.58 14199.57 10799.50 59
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS98.09 4498.01 5398.32 6498.45 18096.69 5398.52 2599.69 698.07 4996.07 26697.19 24496.88 7799.86 2697.50 6199.73 6598.41 252
test_fmvsmvis_n_192098.08 4598.47 2896.93 17799.03 10593.29 18796.32 16799.65 1095.59 16099.71 699.01 5597.66 3399.60 16199.44 299.83 4097.90 307
test_fmvsm_n_192098.08 4598.29 4097.43 13998.88 12193.95 16396.17 18199.57 1595.66 15599.52 1798.71 8597.04 6299.64 14399.21 799.87 2698.69 226
Gipumacopyleft98.07 4798.31 3797.36 14599.76 796.28 6998.51 2699.10 5398.76 2696.79 22399.34 2496.61 9198.82 32196.38 9799.50 13996.98 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ACMMPcopyleft98.05 4897.75 8198.93 1999.23 6397.60 2398.09 5698.96 9795.75 15397.91 15598.06 16996.89 7599.76 6295.32 15899.57 10799.43 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM93.33 1198.05 4897.79 7598.85 2599.15 8397.55 2796.68 15098.83 13295.21 17698.36 10398.13 15698.13 1899.62 15296.04 11199.54 12199.39 102
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SteuartSystems-ACMMP98.02 5097.76 7998.79 3099.43 3797.21 4297.15 11998.90 10496.58 10598.08 13797.87 18897.02 6499.76 6295.25 16199.59 10299.40 97
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.00 5197.66 8899.01 998.77 13697.93 1297.38 10998.83 13297.32 8498.06 14097.85 18996.65 8899.77 5795.00 18199.11 22299.32 113
SDMVSNet97.97 5298.26 4197.11 16299.41 4092.21 21496.92 13298.60 17998.58 3198.78 6499.39 1697.80 2599.62 15294.98 18499.86 2899.52 55
sd_testset97.97 5298.12 4397.51 12699.41 4093.44 18297.96 6498.25 21898.58 3198.78 6499.39 1698.21 1499.56 17192.65 25499.86 2899.52 55
DVP-MVS++97.96 5497.90 6198.12 8397.75 26395.40 10299.03 798.89 10596.62 10198.62 7598.30 13196.97 6799.75 6895.70 12999.25 20399.21 138
Anonymous2024052997.96 5498.04 5097.71 11198.69 14794.28 15397.86 7398.31 21598.79 2599.23 3498.86 7495.76 13399.61 15995.49 14399.36 17799.23 136
XVS97.96 5497.63 9498.94 1699.15 8397.66 2097.77 7998.83 13297.42 7596.32 25297.64 20896.49 9899.72 8895.66 13499.37 17499.45 82
NR-MVSNet97.96 5497.86 6798.26 6998.73 13895.54 9498.14 5398.73 15497.79 5599.42 2297.83 19094.40 17599.78 4795.91 12199.76 5699.46 78
APD_test197.95 5897.68 8698.75 3299.60 1698.60 697.21 11799.08 6096.57 10898.07 13998.38 12096.22 11599.14 28594.71 19799.31 19598.52 244
ACMMPR97.95 5897.62 9698.94 1699.20 7597.56 2697.59 9498.83 13296.05 13197.46 18297.63 20996.77 8499.76 6295.61 13899.46 15199.49 67
FMVSNet197.95 5898.08 4697.56 12199.14 9093.67 17398.23 4598.66 17197.41 7999.00 4799.19 3695.47 14299.73 8395.83 12699.76 5699.30 118
SED-MVS97.94 6197.90 6198.07 8599.22 6695.35 10796.79 14098.83 13296.11 12899.08 4198.24 14397.87 2399.72 8895.44 15099.51 13599.14 151
HFP-MVS97.94 6197.64 9298.83 2699.15 8397.50 3097.59 9498.84 12696.05 13197.49 17797.54 21597.07 5999.70 11095.61 13899.46 15199.30 118
LPG-MVS_test97.94 6197.67 8798.74 3599.15 8397.02 4397.09 12499.02 7895.15 18098.34 10698.23 14597.91 2199.70 11094.41 20599.73 6599.50 59
FIs97.93 6498.07 4797.48 13499.38 4692.95 19598.03 6099.11 5198.04 5198.62 7598.66 8993.75 19199.78 4797.23 6799.84 3799.73 20
ZNCC-MVS97.92 6597.62 9698.83 2699.32 5397.24 4097.45 10498.84 12695.76 15196.93 21697.43 22397.26 5099.79 4496.06 10899.53 12599.45 82
region2R97.92 6597.59 9998.92 2299.22 6697.55 2797.60 9298.84 12696.00 13697.22 18997.62 21096.87 7999.76 6295.48 14699.43 16399.46 78
CP-MVS97.92 6597.56 10298.99 1198.99 10897.82 1697.93 6898.96 9796.11 12896.89 21997.45 22196.85 8099.78 4795.19 16499.63 8999.38 104
CS-MVS-test97.91 6897.84 6898.14 8198.52 16996.03 7898.38 3399.67 798.11 4795.50 28996.92 26296.81 8399.87 2496.87 8499.76 5698.51 245
mPP-MVS97.91 6897.53 10599.04 599.22 6697.87 1597.74 8498.78 14696.04 13397.10 20097.73 20396.53 9599.78 4795.16 16899.50 13999.46 78
EC-MVSNet97.90 7097.94 6097.79 10698.66 14995.14 12098.31 3899.66 997.57 6895.95 27097.01 25696.99 6699.82 3597.66 5699.64 8798.39 255
ACMMP_NAP97.89 7197.63 9498.67 4199.35 4996.84 4896.36 16498.79 14295.07 18497.88 15898.35 12397.24 5299.72 8896.05 11099.58 10499.45 82
PGM-MVS97.88 7297.52 10698.96 1499.20 7597.62 2297.09 12499.06 6495.45 16797.55 17297.94 18297.11 5599.78 4794.77 19399.46 15199.48 73
DP-MVS97.87 7397.89 6497.81 10598.62 15694.82 12897.13 12298.79 14298.98 2098.74 7098.49 10695.80 13299.49 19395.04 17899.44 15599.11 161
RPSCF97.87 7397.51 10798.95 1599.15 8398.43 797.56 9699.06 6496.19 12598.48 8998.70 8694.72 16299.24 27194.37 20899.33 19099.17 145
KD-MVS_self_test97.86 7598.07 4797.25 15499.22 6692.81 19897.55 9798.94 10097.10 9098.85 5898.88 7295.03 15599.67 13197.39 6599.65 8599.26 130
test_040297.84 7697.97 5797.47 13599.19 7794.07 15896.71 14898.73 15498.66 2898.56 8198.41 11696.84 8199.69 11894.82 18899.81 4598.64 230
iter_conf0597.83 7798.49 2795.84 23998.88 12189.05 27898.87 999.42 2299.18 1099.73 499.12 4793.04 20499.91 1498.38 3099.78 5398.58 237
UniMVSNet_NR-MVSNet97.83 7797.65 8998.37 6198.72 14095.78 8495.66 21499.02 7898.11 4798.31 11297.69 20694.65 16799.85 2997.02 7999.71 7299.48 73
UniMVSNet (Re)97.83 7797.65 8998.35 6398.80 13095.86 8395.92 20099.04 7597.51 7298.22 12097.81 19594.68 16599.78 4797.14 7399.75 6399.41 96
casdiffmvs_mvgpermissive97.83 7798.11 4497.00 17498.57 16292.10 22295.97 19599.18 3997.67 6799.00 4798.48 11097.64 3499.50 18896.96 8199.54 12199.40 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GST-MVS97.82 8197.49 11098.81 2899.23 6397.25 3997.16 11898.79 14295.96 13897.53 17397.40 22596.93 7199.77 5795.04 17899.35 18299.42 94
DeepC-MVS95.41 497.82 8197.70 8298.16 7898.78 13595.72 8696.23 17599.02 7893.92 22398.62 7598.99 5897.69 2999.62 15296.18 10699.87 2699.15 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.1_n_a97.80 8398.01 5397.18 15799.17 7992.51 20696.57 15399.15 4593.68 23098.89 5599.30 2796.42 10499.37 23599.03 1399.83 4099.66 28
DU-MVS97.79 8497.60 9898.36 6298.73 13895.78 8495.65 21698.87 11497.57 6898.31 11297.83 19094.69 16399.85 2997.02 7999.71 7299.46 78
DVP-MVScopyleft97.78 8597.65 8998.16 7899.24 6195.51 9696.74 14398.23 22195.92 14298.40 9798.28 13697.06 6099.71 10295.48 14699.52 13099.26 130
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
LS3D97.77 8697.50 10998.57 4896.24 33897.58 2598.45 3098.85 12198.58 3197.51 17597.94 18295.74 13499.63 14795.19 16498.97 23698.51 245
GeoE97.75 8797.70 8297.89 10098.88 12194.53 13997.10 12398.98 9395.75 15397.62 17097.59 21297.61 3799.77 5796.34 9999.44 15599.36 110
fmvsm_s_conf0.1_n97.73 8898.02 5296.85 18399.09 9591.43 23796.37 16399.11 5194.19 21399.01 4599.25 3096.30 11099.38 23099.00 1499.88 2499.73 20
3Dnovator+96.13 397.73 8897.59 9998.15 8098.11 22095.60 9298.04 5898.70 16398.13 4696.93 21698.45 11195.30 14899.62 15295.64 13698.96 23799.24 135
tfpnnormal97.72 9097.97 5796.94 17699.26 5792.23 21397.83 7698.45 19398.25 4299.13 3998.66 8996.65 8899.69 11893.92 22799.62 9098.91 194
Baseline_NR-MVSNet97.72 9097.79 7597.50 13099.56 2093.29 18795.44 22698.86 11798.20 4598.37 10099.24 3194.69 16399.55 17595.98 11799.79 5099.65 31
MP-MVS-pluss97.69 9297.36 11598.70 3999.50 3196.84 4895.38 23398.99 9092.45 27298.11 13298.31 12797.25 5199.77 5796.60 8899.62 9099.48 73
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EG-PatchMatch MVS97.69 9297.79 7597.40 14399.06 9993.52 18095.96 19798.97 9694.55 20498.82 6198.76 8197.31 4699.29 25997.20 7199.44 15599.38 104
fmvsm_l_conf0.5_n97.68 9497.81 7397.27 15198.92 11792.71 20395.89 20299.41 2593.36 23899.00 4798.44 11396.46 10299.65 13999.09 1199.76 5699.45 82
fmvsm_s_conf0.5_n_a97.65 9597.83 7197.13 16198.80 13092.51 20696.25 17399.06 6493.67 23198.64 7399.00 5696.23 11499.36 23898.99 1599.80 4899.53 53
DPE-MVScopyleft97.64 9697.35 11698.50 5298.85 12696.18 7095.21 24798.99 9095.84 14898.78 6498.08 16296.84 8199.81 3793.98 22599.57 10799.52 55
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVScopyleft97.64 9697.18 12899.00 1099.32 5397.77 1897.49 10398.73 15496.27 11995.59 28697.75 20096.30 11099.78 4793.70 23599.48 14699.45 82
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
fmvsm_s_conf0.5_n97.62 9897.89 6496.80 18798.79 13291.44 23696.14 18299.06 6494.19 21398.82 6198.98 5996.22 11599.38 23098.98 1699.86 2899.58 36
3Dnovator96.53 297.61 9997.64 9297.50 13097.74 26693.65 17798.49 2798.88 11296.86 9697.11 19998.55 10095.82 12799.73 8395.94 11999.42 16699.13 153
fmvsm_l_conf0.5_n_a97.60 10097.76 7997.11 16298.92 11792.28 21195.83 20599.32 2693.22 24498.91 5498.49 10696.31 10999.64 14399.07 1299.76 5699.40 97
SF-MVS97.60 10097.39 11398.22 7498.93 11595.69 8897.05 12699.10 5395.32 17397.83 16497.88 18796.44 10399.72 8894.59 20299.39 17299.25 134
v897.60 10098.06 4996.23 21998.71 14389.44 27097.43 10798.82 14097.29 8698.74 7099.10 5093.86 18799.68 12398.61 2699.94 899.56 47
XVG-ACMP-BASELINE97.58 10397.28 12198.49 5399.16 8096.90 4796.39 15998.98 9395.05 18598.06 14098.02 17395.86 12399.56 17194.37 20899.64 8799.00 177
v1097.55 10497.97 5796.31 21798.60 15889.64 26597.44 10599.02 7896.60 10398.72 7299.16 4393.48 19699.72 8898.76 2199.92 1499.58 36
OPM-MVS97.54 10597.25 12298.41 5899.11 9296.61 5795.24 24598.46 19294.58 20398.10 13498.07 16497.09 5899.39 22795.16 16899.44 15599.21 138
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XXY-MVS97.54 10597.70 8297.07 16899.46 3492.21 21497.22 11699.00 8794.93 19198.58 8098.92 6697.31 4699.41 22194.44 20399.43 16399.59 35
casdiffmvspermissive97.50 10797.81 7396.56 20398.51 17191.04 24395.83 20599.09 5897.23 8798.33 10998.30 13197.03 6399.37 23596.58 9099.38 17399.28 125
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SixPastTwentyTwo97.49 10897.57 10197.26 15399.56 2092.33 21098.28 4196.97 29698.30 4199.45 2099.35 2388.43 28799.89 2098.01 4099.76 5699.54 50
SMA-MVScopyleft97.48 10997.11 13098.60 4698.83 12796.67 5496.74 14398.73 15491.61 28598.48 8998.36 12296.53 9599.68 12395.17 16699.54 12199.45 82
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP92.54 1397.47 11097.10 13198.55 5099.04 10496.70 5296.24 17498.89 10593.71 22797.97 15097.75 20097.44 4099.63 14793.22 24799.70 7599.32 113
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS97.45 11196.92 14599.03 699.26 5797.70 1997.66 8898.89 10595.65 15698.51 8496.46 28992.15 23299.81 3795.14 17198.58 27999.58 36
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
tt080597.44 11297.56 10297.11 16299.55 2296.36 6498.66 1795.66 32198.31 3997.09 20595.45 32897.17 5498.50 35598.67 2597.45 33596.48 368
baseline97.44 11297.78 7896.43 20998.52 16990.75 25096.84 13599.03 7696.51 10997.86 16298.02 17396.67 8799.36 23897.09 7599.47 14899.19 142
MVSMamba_PlusPlus97.43 11497.98 5695.78 24298.88 12189.70 26298.03 6098.85 12199.18 1096.84 22199.12 4793.04 20499.91 1498.38 3099.55 11697.73 320
TSAR-MVS + MP.97.42 11597.23 12498.00 9499.38 4695.00 12497.63 9198.20 22593.00 25698.16 12798.06 16995.89 12299.72 8895.67 13399.10 22499.28 125
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG97.40 11697.30 11897.69 11498.95 11094.83 12797.28 11298.99 9096.35 11898.13 13195.95 31495.99 11999.66 13794.36 21099.73 6598.59 236
test_fmvs397.38 11797.56 10296.84 18598.63 15492.81 19897.60 9299.61 1490.87 29798.76 6999.66 394.03 18397.90 37999.24 699.68 8099.81 7
XVG-OURS-SEG-HR97.38 11797.07 13498.30 6799.01 10797.41 3594.66 27299.02 7895.20 17798.15 12997.52 21798.83 598.43 36094.87 18696.41 35999.07 168
VDD-MVS97.37 11997.25 12297.74 10998.69 14794.50 14297.04 12795.61 32598.59 3098.51 8498.72 8392.54 22399.58 16496.02 11399.49 14299.12 158
SD-MVS97.37 11997.70 8296.35 21498.14 21695.13 12196.54 15598.92 10295.94 14099.19 3698.08 16297.74 2895.06 39995.24 16299.54 12198.87 204
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS97.36 12197.10 13198.14 8198.91 11996.77 5096.20 17698.63 17793.82 22498.54 8298.33 12593.98 18499.05 30095.99 11699.45 15498.61 235
LCM-MVSNet-Re97.33 12297.33 11797.32 14898.13 21993.79 16996.99 12999.65 1096.74 9999.47 1998.93 6596.91 7499.84 3290.11 30999.06 23198.32 264
EI-MVSNet-UG-set97.32 12397.40 11297.09 16697.34 30692.01 22595.33 23997.65 27197.74 5998.30 11498.14 15495.04 15499.69 11897.55 5999.52 13099.58 36
EI-MVSNet-Vis-set97.32 12397.39 11397.11 16297.36 30392.08 22395.34 23897.65 27197.74 5998.29 11598.11 16095.05 15399.68 12397.50 6199.50 13999.56 47
VPNet97.26 12597.49 11096.59 19999.47 3390.58 25296.27 16998.53 18697.77 5698.46 9298.41 11694.59 16899.68 12394.61 19899.29 19899.52 55
sasdasda97.23 12697.21 12697.30 14997.65 27994.39 14497.84 7499.05 6897.42 7596.68 23193.85 35497.63 3599.33 24796.29 10098.47 28598.18 281
canonicalmvs97.23 12697.21 12697.30 14997.65 27994.39 14497.84 7499.05 6897.42 7596.68 23193.85 35497.63 3599.33 24796.29 10098.47 28598.18 281
MGCFI-Net97.20 12897.23 12497.08 16797.68 27293.71 17297.79 7799.09 5897.40 8096.59 23893.96 35297.67 3199.35 24296.43 9598.50 28498.17 283
AllTest97.20 12896.92 14598.06 8799.08 9696.16 7197.14 12199.16 4194.35 20897.78 16698.07 16495.84 12499.12 28991.41 27599.42 16698.91 194
dcpmvs_297.12 13097.99 5594.51 30599.11 9284.00 36197.75 8299.65 1097.38 8299.14 3898.42 11595.16 15199.96 295.52 14299.78 5399.58 36
XVG-OURS97.12 13096.74 15498.26 6998.99 10897.45 3393.82 30799.05 6895.19 17898.32 11097.70 20595.22 15098.41 36194.27 21298.13 30098.93 190
Anonymous2024052197.07 13297.51 10795.76 24399.35 4988.18 29597.78 7898.40 20297.11 8998.34 10699.04 5489.58 27399.79 4498.09 3799.93 1199.30 118
test_vis3_rt97.04 13396.98 13997.23 15698.44 18195.88 8196.82 13799.67 790.30 30699.27 3199.33 2694.04 18296.03 39897.14 7397.83 31399.78 10
V4297.04 13397.16 12996.68 19698.59 16091.05 24296.33 16698.36 20794.60 20097.99 14698.30 13193.32 19899.62 15297.40 6499.53 12599.38 104
APD-MVScopyleft97.00 13596.53 16998.41 5898.55 16596.31 6796.32 16798.77 14792.96 26197.44 18397.58 21495.84 12499.74 7791.96 26499.35 18299.19 142
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft96.99 13696.38 17798.81 2898.64 15097.59 2495.97 19598.20 22595.51 16495.06 29896.53 28594.10 18199.70 11094.29 21199.15 21599.13 153
GBi-Net96.99 13696.80 15197.56 12197.96 23193.67 17398.23 4598.66 17195.59 16097.99 14699.19 3689.51 27799.73 8394.60 19999.44 15599.30 118
test196.99 13696.80 15197.56 12197.96 23193.67 17398.23 4598.66 17195.59 16097.99 14699.19 3689.51 27799.73 8394.60 19999.44 15599.30 118
VDDNet96.98 13996.84 14897.41 14299.40 4393.26 18997.94 6795.31 33399.26 898.39 9999.18 3987.85 29799.62 15295.13 17399.09 22599.35 112
PHI-MVS96.96 14096.53 16998.25 7297.48 29396.50 6096.76 14298.85 12193.52 23396.19 26296.85 26595.94 12099.42 21293.79 23199.43 16398.83 207
IS-MVSNet96.93 14196.68 15797.70 11299.25 6094.00 16198.57 1996.74 30598.36 3798.14 13097.98 17888.23 29099.71 10293.10 25099.72 6999.38 104
CNVR-MVS96.92 14296.55 16698.03 9298.00 22995.54 9494.87 26398.17 23194.60 20096.38 24997.05 25295.67 13699.36 23895.12 17499.08 22699.19 142
IterMVS-LS96.92 14297.29 11995.79 24198.51 17188.13 29895.10 25098.66 17196.99 9198.46 9298.68 8892.55 22199.74 7796.91 8299.79 5099.50 59
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS96.90 14496.81 15097.16 15898.56 16492.20 21794.33 28098.12 24097.34 8398.20 12197.33 23692.81 21199.75 6894.79 19099.81 4599.54 50
DeepPCF-MVS94.58 596.90 14496.43 17598.31 6697.48 29397.23 4192.56 34198.60 17992.84 26398.54 8297.40 22596.64 9098.78 32594.40 20799.41 17098.93 190
balanced_conf0396.88 14697.29 11995.63 25097.66 27789.47 26997.95 6698.89 10595.94 14097.77 16898.55 10092.23 23099.68 12397.05 7899.61 9697.73 320
MM96.87 14796.62 15997.62 11897.72 26893.30 18696.39 15992.61 36497.90 5496.76 22898.64 9390.46 26099.81 3799.16 999.94 899.76 16
v114496.84 14897.08 13396.13 22698.42 18389.28 27395.41 23098.67 16994.21 21197.97 15098.31 12793.06 20399.65 13998.06 3999.62 9099.45 82
VNet96.84 14896.83 14996.88 18198.06 22192.02 22496.35 16597.57 27797.70 6397.88 15897.80 19692.40 22899.54 17894.73 19598.96 23799.08 166
EPP-MVSNet96.84 14896.58 16397.65 11699.18 7893.78 17098.68 1396.34 30997.91 5397.30 18698.06 16988.46 28699.85 2993.85 22999.40 17199.32 113
v119296.83 15197.06 13596.15 22598.28 19389.29 27295.36 23498.77 14793.73 22698.11 13298.34 12493.02 20999.67 13198.35 3299.58 10499.50 59
MVS_111021_LR96.82 15296.55 16697.62 11898.27 19595.34 10993.81 30998.33 21194.59 20296.56 24196.63 28096.61 9198.73 33094.80 18999.34 18598.78 213
Effi-MVS+-dtu96.81 15396.09 18898.99 1196.90 32698.69 596.42 15898.09 24295.86 14795.15 29695.54 32594.26 17899.81 3794.06 22098.51 28398.47 249
UGNet96.81 15396.56 16597.58 12096.64 32993.84 16797.75 8297.12 29096.47 11393.62 33698.88 7293.22 20199.53 18095.61 13899.69 7699.36 110
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
v2v48296.78 15597.06 13595.95 23398.57 16288.77 28595.36 23498.26 21795.18 17997.85 16398.23 14592.58 21999.63 14797.80 4899.69 7699.45 82
v124096.74 15697.02 13895.91 23698.18 20788.52 28795.39 23298.88 11293.15 25298.46 9298.40 11992.80 21299.71 10298.45 2999.49 14299.49 67
DeepC-MVS_fast94.34 796.74 15696.51 17197.44 13897.69 27194.15 15696.02 19098.43 19693.17 25197.30 18697.38 23195.48 14199.28 26193.74 23299.34 18598.88 202
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR96.73 15896.54 16897.27 15198.35 18893.66 17693.42 31998.36 20794.74 19496.58 23996.76 27496.54 9498.99 30794.87 18699.27 20199.15 148
v192192096.72 15996.96 14295.99 22998.21 20188.79 28495.42 22898.79 14293.22 24498.19 12598.26 14192.68 21599.70 11098.34 3399.55 11699.49 67
FMVSNet296.72 15996.67 15896.87 18297.96 23191.88 22797.15 11998.06 24895.59 16098.50 8698.62 9489.51 27799.65 13994.99 18399.60 10099.07 168
PMVScopyleft89.60 1796.71 16196.97 14095.95 23399.51 2897.81 1797.42 10897.49 27897.93 5295.95 27098.58 9696.88 7796.91 39289.59 31799.36 17793.12 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v14419296.69 16296.90 14796.03 22898.25 19788.92 27995.49 22498.77 14793.05 25498.09 13598.29 13592.51 22699.70 11098.11 3699.56 11099.47 76
CPTT-MVS96.69 16296.08 18998.49 5398.89 12096.64 5697.25 11398.77 14792.89 26296.01 26997.13 24692.23 23099.67 13192.24 26199.34 18599.17 145
HQP_MVS96.66 16496.33 18097.68 11598.70 14594.29 15096.50 15698.75 15196.36 11696.16 26396.77 27291.91 24299.46 20192.59 25699.20 20899.28 125
EI-MVSNet96.63 16596.93 14395.74 24497.26 31188.13 29895.29 24397.65 27196.99 9197.94 15398.19 15092.55 22199.58 16496.91 8299.56 11099.50 59
patch_mono-296.59 16696.93 14395.55 25698.88 12187.12 32094.47 27799.30 2894.12 21696.65 23698.41 11694.98 15899.87 2495.81 12899.78 5399.66 28
ab-mvs96.59 16696.59 16296.60 19898.64 15092.21 21498.35 3497.67 26794.45 20596.99 21198.79 7694.96 15999.49 19390.39 30699.07 22898.08 287
v14896.58 16896.97 14095.42 26298.63 15487.57 31195.09 25197.90 25395.91 14498.24 11897.96 17993.42 19799.39 22796.04 11199.52 13099.29 124
test20.0396.58 16896.61 16196.48 20798.49 17591.72 23195.68 21397.69 26696.81 9798.27 11697.92 18594.18 18098.71 33390.78 29299.66 8499.00 177
NCCC96.52 17095.99 19398.10 8497.81 24795.68 8995.00 25998.20 22595.39 17195.40 29296.36 29593.81 18999.45 20593.55 23898.42 28999.17 145
pmmvs-eth3d96.49 17196.18 18597.42 14198.25 19794.29 15094.77 26898.07 24789.81 31397.97 15098.33 12593.11 20299.08 29795.46 14999.84 3798.89 198
OMC-MVS96.48 17296.00 19297.91 9998.30 19096.01 7994.86 26498.60 17991.88 28197.18 19497.21 24396.11 11799.04 30190.49 30599.34 18598.69 226
TSAR-MVS + GP.96.47 17396.12 18697.49 13397.74 26695.23 11494.15 29196.90 29893.26 24298.04 14396.70 27694.41 17498.89 31694.77 19399.14 21698.37 257
Fast-Effi-MVS+-dtu96.44 17496.12 18697.39 14497.18 31494.39 14495.46 22598.73 15496.03 13594.72 30694.92 33896.28 11399.69 11893.81 23097.98 30598.09 286
K. test v396.44 17496.28 18196.95 17599.41 4091.53 23397.65 8990.31 38798.89 2398.93 5199.36 2184.57 32199.92 697.81 4799.56 11099.39 102
MSLP-MVS++96.42 17696.71 15595.57 25397.82 24690.56 25495.71 20998.84 12694.72 19596.71 23097.39 22994.91 16098.10 37795.28 15999.02 23398.05 296
test_fmvs296.38 17796.45 17496.16 22497.85 23891.30 23896.81 13899.45 1989.24 31898.49 8799.38 1888.68 28497.62 38498.83 1899.32 19299.57 43
Anonymous20240521196.34 17895.98 19497.43 13998.25 19793.85 16696.74 14394.41 34297.72 6198.37 10098.03 17287.15 30299.53 18094.06 22099.07 22898.92 193
bld_raw_conf0396.30 17996.50 17295.71 24797.70 27089.70 26298.03 6098.85 12192.51 27196.84 22198.43 11491.53 24599.70 11095.07 17799.55 11697.73 320
h-mvs3396.29 18095.63 21098.26 6998.50 17496.11 7496.90 13397.09 29196.58 10597.21 19198.19 15084.14 32399.78 4795.89 12296.17 36698.89 198
MVS_Test96.27 18196.79 15394.73 29596.94 32486.63 32896.18 17798.33 21194.94 18996.07 26698.28 13695.25 14999.26 26597.21 6997.90 31098.30 268
MCST-MVS96.24 18295.80 20397.56 12198.75 13794.13 15794.66 27298.17 23190.17 30996.21 26096.10 30895.14 15299.43 21094.13 21898.85 25199.13 153
mvsany_test396.21 18395.93 19897.05 16997.40 30194.33 14995.76 20894.20 34489.10 31999.36 2699.60 693.97 18597.85 38095.40 15798.63 27498.99 180
Effi-MVS+96.19 18496.01 19196.71 19397.43 29992.19 21896.12 18399.10 5395.45 16793.33 34794.71 34197.23 5399.56 17193.21 24897.54 32998.37 257
DELS-MVS96.17 18596.23 18295.99 22997.55 28990.04 25792.38 35098.52 18794.13 21596.55 24397.06 25194.99 15799.58 16495.62 13799.28 19998.37 257
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVSFormer96.14 18696.36 17895.49 25997.68 27287.81 30798.67 1499.02 7896.50 11094.48 31396.15 30386.90 30399.92 698.73 2299.13 21898.74 219
ETV-MVS96.13 18795.90 19996.82 18697.76 26193.89 16495.40 23198.95 9995.87 14695.58 28791.00 38996.36 10899.72 8893.36 24198.83 25496.85 355
testgi96.07 18896.50 17294.80 29199.26 5787.69 31095.96 19798.58 18395.08 18398.02 14596.25 29997.92 2097.60 38588.68 33198.74 26299.11 161
LF4IMVS96.07 18895.63 21097.36 14598.19 20495.55 9395.44 22698.82 14092.29 27595.70 28396.55 28392.63 21898.69 33691.75 27399.33 19097.85 311
EIA-MVS96.04 19095.77 20596.85 18397.80 25192.98 19496.12 18399.16 4194.65 19893.77 33191.69 38395.68 13599.67 13194.18 21598.85 25197.91 306
diffmvspermissive96.04 19096.23 18295.46 26197.35 30488.03 30193.42 31999.08 6094.09 21996.66 23496.93 26093.85 18899.29 25996.01 11598.67 26999.06 170
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
alignmvs96.01 19295.52 21397.50 13097.77 26094.71 13096.07 18696.84 29997.48 7396.78 22794.28 35085.50 31499.40 22396.22 10498.73 26598.40 253
TinyColmap96.00 19396.34 17994.96 28297.90 23687.91 30394.13 29498.49 19094.41 20698.16 12797.76 19796.29 11298.68 33990.52 30299.42 16698.30 268
PVSNet_Blended_VisFu95.95 19495.80 20396.42 21099.28 5590.62 25195.31 24199.08 6088.40 33196.97 21498.17 15392.11 23499.78 4793.64 23699.21 20798.86 205
SSC-MVS95.92 19597.03 13792.58 35599.28 5578.39 39196.68 15095.12 33598.90 2299.11 4098.66 8991.36 24899.68 12395.00 18199.16 21499.67 26
UnsupCasMVSNet_eth95.91 19695.73 20696.44 20898.48 17791.52 23495.31 24198.45 19395.76 15197.48 17997.54 21589.53 27698.69 33694.43 20494.61 38499.13 153
QAPM95.88 19795.57 21296.80 18797.90 23691.84 22998.18 5298.73 15488.41 33096.42 24798.13 15694.73 16199.75 6888.72 32998.94 24098.81 210
CANet95.86 19895.65 20996.49 20696.41 33590.82 24794.36 27998.41 20094.94 18992.62 36496.73 27592.68 21599.71 10295.12 17499.60 10098.94 186
IterMVS-SCA-FT95.86 19896.19 18494.85 28897.68 27285.53 33992.42 34797.63 27596.99 9198.36 10398.54 10287.94 29299.75 6897.07 7799.08 22699.27 129
test_f95.82 20095.88 20195.66 24997.61 28493.21 19195.61 22098.17 23186.98 34698.42 9599.47 1190.46 26094.74 40197.71 5398.45 28799.03 173
test_vis1_n_192095.77 20196.41 17693.85 32198.55 16584.86 35195.91 20199.71 492.72 26697.67 16998.90 7087.44 30098.73 33097.96 4198.85 25197.96 303
hse-mvs295.77 20195.09 22397.79 10697.84 24395.51 9695.66 21495.43 33096.58 10597.21 19196.16 30284.14 32399.54 17895.89 12296.92 34398.32 264
MVS_030495.71 20395.18 21997.33 14794.85 37992.82 19695.36 23490.89 38095.51 16495.61 28597.82 19388.39 28899.78 4798.23 3499.91 1799.40 97
MVP-Stereo95.69 20495.28 21596.92 17898.15 21493.03 19395.64 21998.20 22590.39 30596.63 23797.73 20391.63 24499.10 29591.84 26997.31 33998.63 232
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet-bldmvs95.69 20495.67 20795.74 24498.48 17788.76 28692.84 33197.25 28396.00 13697.59 17197.95 18191.38 24799.46 20193.16 24996.35 36198.99 180
test_vis1_n95.67 20695.89 20095.03 27798.18 20789.89 26096.94 13199.28 3088.25 33498.20 12198.92 6686.69 30697.19 38797.70 5598.82 25598.00 301
new-patchmatchnet95.67 20696.58 16392.94 34697.48 29380.21 38692.96 32998.19 23094.83 19298.82 6198.79 7693.31 19999.51 18795.83 12699.04 23299.12 158
xiu_mvs_v1_base_debu95.62 20895.96 19594.60 29998.01 22588.42 28893.99 29998.21 22292.98 25795.91 27294.53 34496.39 10599.72 8895.43 15398.19 29795.64 379
xiu_mvs_v1_base95.62 20895.96 19594.60 29998.01 22588.42 28893.99 29998.21 22292.98 25795.91 27294.53 34496.39 10599.72 8895.43 15398.19 29795.64 379
xiu_mvs_v1_base_debi95.62 20895.96 19594.60 29998.01 22588.42 28893.99 29998.21 22292.98 25795.91 27294.53 34496.39 10599.72 8895.43 15398.19 29795.64 379
DP-MVS Recon95.55 21195.13 22196.80 18798.51 17193.99 16294.60 27498.69 16490.20 30895.78 27996.21 30192.73 21498.98 30990.58 30198.86 25097.42 338
WB-MVS95.50 21296.62 15992.11 36499.21 7377.26 39996.12 18395.40 33198.62 2998.84 5998.26 14191.08 25199.50 18893.37 24098.70 26799.58 36
Fast-Effi-MVS+95.49 21395.07 22496.75 19197.67 27692.82 19694.22 28798.60 17991.61 28593.42 34592.90 36596.73 8699.70 11092.60 25597.89 31197.74 319
TAMVS95.49 21394.94 22897.16 15898.31 18993.41 18495.07 25496.82 30191.09 29597.51 17597.82 19389.96 26999.42 21288.42 33499.44 15598.64 230
OpenMVScopyleft94.22 895.48 21595.20 21796.32 21697.16 31591.96 22697.74 8498.84 12687.26 34194.36 31598.01 17593.95 18699.67 13190.70 29898.75 26197.35 341
CLD-MVS95.47 21695.07 22496.69 19598.27 19592.53 20591.36 36498.67 16991.22 29495.78 27994.12 35195.65 13798.98 30990.81 29099.72 6998.57 238
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
train_agg95.46 21794.66 24497.88 10197.84 24395.23 11493.62 31398.39 20387.04 34493.78 32995.99 31094.58 16999.52 18391.76 27298.90 24498.89 198
CDPH-MVS95.45 21894.65 24597.84 10498.28 19394.96 12593.73 31198.33 21185.03 36795.44 29096.60 28195.31 14799.44 20890.01 31199.13 21899.11 161
IterMVS95.42 21995.83 20294.20 31697.52 29083.78 36392.41 34897.47 28095.49 16698.06 14098.49 10687.94 29299.58 16496.02 11399.02 23399.23 136
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvs_anonymous95.36 22096.07 19093.21 33796.29 33781.56 37894.60 27497.66 26993.30 24196.95 21598.91 6993.03 20899.38 23096.60 8897.30 34098.69 226
test_cas_vis1_n_192095.34 22195.67 20794.35 31198.21 20186.83 32695.61 22099.26 3190.45 30498.17 12698.96 6284.43 32298.31 36996.74 8599.17 21397.90 307
MSDG95.33 22295.13 22195.94 23597.40 30191.85 22891.02 37598.37 20695.30 17496.31 25495.99 31094.51 17298.38 36489.59 31797.65 32697.60 330
LFMVS95.32 22394.88 23496.62 19798.03 22291.47 23597.65 8990.72 38399.11 1297.89 15798.31 12779.20 34899.48 19693.91 22899.12 22198.93 190
F-COLMAP95.30 22494.38 26398.05 9198.64 15096.04 7695.61 22098.66 17189.00 32293.22 34896.40 29392.90 21099.35 24287.45 34997.53 33098.77 216
Anonymous2023120695.27 22595.06 22695.88 23798.72 14089.37 27195.70 21097.85 25688.00 33796.98 21397.62 21091.95 23999.34 24589.21 32299.53 12598.94 186
FMVSNet395.26 22694.94 22896.22 22196.53 33290.06 25695.99 19397.66 26994.11 21797.99 14697.91 18680.22 34699.63 14794.60 19999.44 15598.96 183
test_fmvs1_n95.21 22795.28 21594.99 28098.15 21489.13 27796.81 13899.43 2186.97 34797.21 19198.92 6683.00 33297.13 38898.09 3798.94 24098.72 222
c3_l95.20 22895.32 21494.83 29096.19 34286.43 33191.83 35998.35 21093.47 23597.36 18597.26 24088.69 28399.28 26195.41 15699.36 17798.78 213
D2MVS95.18 22995.17 22095.21 26897.76 26187.76 30994.15 29197.94 25189.77 31496.99 21197.68 20787.45 29999.14 28595.03 18099.81 4598.74 219
N_pmnet95.18 22994.23 26698.06 8797.85 23896.55 5992.49 34291.63 37289.34 31698.09 13597.41 22490.33 26399.06 29991.58 27499.31 19598.56 239
HQP-MVS95.17 23194.58 25396.92 17897.85 23892.47 20894.26 28198.43 19693.18 24892.86 35595.08 33290.33 26399.23 27390.51 30398.74 26299.05 172
Vis-MVSNet (Re-imp)95.11 23294.85 23595.87 23899.12 9189.17 27497.54 10294.92 33796.50 11096.58 23997.27 23983.64 32799.48 19688.42 33499.67 8298.97 182
AdaColmapbinary95.11 23294.62 24996.58 20097.33 30894.45 14394.92 26198.08 24393.15 25293.98 32795.53 32694.34 17699.10 29585.69 36198.61 27696.20 373
API-MVS95.09 23495.01 22795.31 26596.61 33094.02 16096.83 13697.18 28795.60 15995.79 27794.33 34994.54 17198.37 36685.70 36098.52 28193.52 394
CL-MVSNet_self_test95.04 23594.79 24195.82 24097.51 29189.79 26191.14 37296.82 30193.05 25496.72 22996.40 29390.82 25599.16 28391.95 26598.66 27198.50 247
CNLPA95.04 23594.47 25896.75 19197.81 24795.25 11394.12 29597.89 25494.41 20694.57 30995.69 31990.30 26698.35 36786.72 35698.76 26096.64 363
Patchmtry95.03 23794.59 25296.33 21594.83 38190.82 24796.38 16297.20 28596.59 10497.49 17798.57 9777.67 35599.38 23092.95 25399.62 9098.80 211
PVSNet_BlendedMVS95.02 23894.93 23095.27 26697.79 25687.40 31594.14 29398.68 16688.94 32394.51 31198.01 17593.04 20499.30 25589.77 31599.49 14299.11 161
TAPA-MVS93.32 1294.93 23994.23 26697.04 17198.18 20794.51 14095.22 24698.73 15481.22 38696.25 25895.95 31493.80 19098.98 30989.89 31398.87 24897.62 328
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FA-MVS(test-final)94.91 24094.89 23394.99 28097.51 29188.11 30098.27 4395.20 33492.40 27496.68 23198.60 9583.44 32899.28 26193.34 24298.53 28097.59 331
mvsmamba94.91 24094.41 26296.40 21397.65 27991.30 23897.92 6995.32 33291.50 28895.54 28898.38 12083.06 33199.68 12392.46 25997.84 31298.23 275
eth_miper_zixun_eth94.89 24294.93 23094.75 29495.99 35086.12 33491.35 36598.49 19093.40 23697.12 19897.25 24186.87 30599.35 24295.08 17698.82 25598.78 213
CDS-MVSNet94.88 24394.12 27197.14 16097.64 28293.57 17893.96 30397.06 29390.05 31096.30 25596.55 28386.10 30899.47 19890.10 31099.31 19598.40 253
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch94.83 24494.91 23294.57 30296.81 32787.10 32194.23 28697.34 28288.74 32697.14 19697.11 24891.94 24098.23 37392.99 25197.92 30898.37 257
pmmvs494.82 24594.19 26996.70 19497.42 30092.75 20292.09 35596.76 30386.80 34995.73 28297.22 24289.28 28098.89 31693.28 24599.14 21698.46 251
miper_lstm_enhance94.81 24694.80 24094.85 28896.16 34486.45 33091.14 37298.20 22593.49 23497.03 20897.37 23384.97 31899.26 26595.28 15999.56 11098.83 207
cl____94.73 24794.64 24695.01 27895.85 35687.00 32291.33 36698.08 24393.34 23997.10 20097.33 23684.01 32699.30 25595.14 17199.56 11098.71 225
DIV-MVS_self_test94.73 24794.64 24695.01 27895.86 35587.00 32291.33 36698.08 24393.34 23997.10 20097.34 23584.02 32599.31 25295.15 17099.55 11698.72 222
YYNet194.73 24794.84 23694.41 30997.47 29785.09 34890.29 38295.85 31992.52 26897.53 17397.76 19791.97 23899.18 27893.31 24496.86 34698.95 184
MDA-MVSNet_test_wron94.73 24794.83 23894.42 30897.48 29385.15 34690.28 38395.87 31892.52 26897.48 17997.76 19791.92 24199.17 28293.32 24396.80 35198.94 186
UnsupCasMVSNet_bld94.72 25194.26 26596.08 22798.62 15690.54 25593.38 32198.05 24990.30 30697.02 20996.80 27189.54 27499.16 28388.44 33396.18 36598.56 239
miper_ehance_all_eth94.69 25294.70 24394.64 29695.77 36186.22 33391.32 36898.24 22091.67 28397.05 20796.65 27988.39 28899.22 27594.88 18598.34 29198.49 248
BH-untuned94.69 25294.75 24294.52 30497.95 23487.53 31294.07 29697.01 29493.99 22197.10 20095.65 32192.65 21798.95 31487.60 34496.74 35297.09 345
RPMNet94.68 25494.60 25094.90 28595.44 36988.15 29696.18 17798.86 11797.43 7494.10 32098.49 10679.40 34799.76 6295.69 13195.81 36996.81 359
Patchmatch-RL test94.66 25594.49 25695.19 26998.54 16788.91 28092.57 34098.74 15391.46 28998.32 11097.75 20077.31 36098.81 32396.06 10899.61 9697.85 311
CANet_DTU94.65 25694.21 26895.96 23195.90 35289.68 26493.92 30497.83 26093.19 24790.12 38595.64 32288.52 28599.57 17093.27 24699.47 14898.62 233
pmmvs594.63 25794.34 26495.50 25897.63 28388.34 29194.02 29797.13 28987.15 34395.22 29597.15 24587.50 29899.27 26493.99 22499.26 20298.88 202
PAPM_NR94.61 25894.17 27095.96 23198.36 18791.23 24095.93 19997.95 25092.98 25793.42 34594.43 34890.53 25898.38 36487.60 34496.29 36398.27 272
PatchMatch-RL94.61 25893.81 27897.02 17398.19 20495.72 8693.66 31297.23 28488.17 33594.94 30395.62 32391.43 24698.57 34887.36 35097.68 32396.76 361
BH-RMVSNet94.56 26094.44 26194.91 28397.57 28687.44 31493.78 31096.26 31093.69 22996.41 24896.50 28892.10 23599.00 30585.96 35897.71 32098.31 266
USDC94.56 26094.57 25594.55 30397.78 25986.43 33192.75 33498.65 17685.96 35596.91 21897.93 18490.82 25598.74 32990.71 29799.59 10298.47 249
test111194.53 26294.81 23993.72 32499.06 9981.94 37698.31 3883.87 40596.37 11598.49 8799.17 4281.49 33799.73 8396.64 8699.86 2899.49 67
test_fmvs194.51 26394.60 25094.26 31595.91 35187.92 30295.35 23799.02 7886.56 35196.79 22398.52 10382.64 33497.00 39197.87 4498.71 26697.88 309
ppachtmachnet_test94.49 26494.84 23693.46 33096.16 34482.10 37390.59 37997.48 27990.53 30397.01 21097.59 21291.01 25299.36 23893.97 22699.18 21298.94 186
test_yl94.40 26594.00 27495.59 25196.95 32289.52 26794.75 26995.55 32796.18 12696.79 22396.14 30581.09 34199.18 27890.75 29397.77 31498.07 289
DCV-MVSNet94.40 26594.00 27495.59 25196.95 32289.52 26794.75 26995.55 32796.18 12696.79 22396.14 30581.09 34199.18 27890.75 29397.77 31498.07 289
jason94.39 26794.04 27395.41 26498.29 19187.85 30692.74 33696.75 30485.38 36495.29 29396.15 30388.21 29199.65 13994.24 21399.34 18598.74 219
jason: jason.
ECVR-MVScopyleft94.37 26894.48 25794.05 32098.95 11083.10 36698.31 3882.48 40796.20 12398.23 11999.16 4381.18 34099.66 13795.95 11899.83 4099.38 104
EU-MVSNet94.25 26994.47 25893.60 32798.14 21682.60 37197.24 11592.72 36185.08 36598.48 8998.94 6482.59 33598.76 32897.47 6399.53 12599.44 92
xiu_mvs_v2_base94.22 27094.63 24892.99 34497.32 30984.84 35292.12 35397.84 25891.96 27994.17 31893.43 35696.07 11899.71 10291.27 27897.48 33294.42 389
sss94.22 27093.72 27995.74 24497.71 26989.95 25993.84 30696.98 29588.38 33293.75 33295.74 31887.94 29298.89 31691.02 28498.10 30198.37 257
MVSTER94.21 27293.93 27795.05 27695.83 35786.46 32995.18 24897.65 27192.41 27397.94 15398.00 17772.39 38299.58 16496.36 9899.56 11099.12 158
MAR-MVS94.21 27293.03 29097.76 10896.94 32497.44 3496.97 13097.15 28887.89 33992.00 36992.73 37092.14 23399.12 28983.92 37597.51 33196.73 362
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
our_test_394.20 27494.58 25393.07 33996.16 34481.20 38190.42 38196.84 29990.72 29997.14 19697.13 24690.47 25999.11 29294.04 22398.25 29598.91 194
1112_ss94.12 27593.42 28496.23 21998.59 16090.85 24694.24 28598.85 12185.49 36092.97 35394.94 33686.01 30999.64 14391.78 27197.92 30898.20 279
PS-MVSNAJ94.10 27694.47 25893.00 34397.35 30484.88 35091.86 35897.84 25891.96 27994.17 31892.50 37495.82 12799.71 10291.27 27897.48 33294.40 390
CHOSEN 1792x268894.10 27693.41 28596.18 22399.16 8090.04 25792.15 35298.68 16679.90 39196.22 25997.83 19087.92 29699.42 21289.18 32399.65 8599.08 166
MG-MVS94.08 27894.00 27494.32 31297.09 31885.89 33693.19 32795.96 31692.52 26894.93 30497.51 21889.54 27498.77 32687.52 34897.71 32098.31 266
PLCcopyleft91.02 1694.05 27992.90 29397.51 12698.00 22995.12 12294.25 28498.25 21886.17 35391.48 37495.25 33091.01 25299.19 27785.02 37096.69 35498.22 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_vis1_rt94.03 28093.65 28095.17 27195.76 36293.42 18393.97 30298.33 21184.68 37193.17 34995.89 31692.53 22594.79 40093.50 23994.97 38097.31 342
114514_t93.96 28193.22 28896.19 22299.06 9990.97 24595.99 19398.94 10073.88 40493.43 34496.93 26092.38 22999.37 23589.09 32499.28 19998.25 274
PVSNet_Blended93.96 28193.65 28094.91 28397.79 25687.40 31591.43 36398.68 16684.50 37494.51 31194.48 34793.04 20499.30 25589.77 31598.61 27698.02 299
AUN-MVS93.95 28392.69 30197.74 10997.80 25195.38 10495.57 22395.46 32991.26 29392.64 36296.10 30874.67 37199.55 17593.72 23496.97 34298.30 268
lupinMVS93.77 28493.28 28695.24 26797.68 27287.81 30792.12 35396.05 31284.52 37394.48 31395.06 33486.90 30399.63 14793.62 23799.13 21898.27 272
PatchT93.75 28593.57 28294.29 31495.05 37787.32 31796.05 18792.98 35797.54 7194.25 31698.72 8375.79 36899.24 27195.92 12095.81 36996.32 370
EPNet93.72 28692.62 30497.03 17287.61 41292.25 21296.27 16991.28 37696.74 9987.65 39897.39 22985.00 31799.64 14392.14 26299.48 14699.20 141
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test93.72 28692.65 30296.91 18098.93 11591.81 23091.23 37098.52 18782.69 37996.46 24696.52 28780.38 34599.90 1790.36 30798.79 25799.03 173
DPM-MVS93.68 28892.77 30096.42 21097.91 23592.54 20491.17 37197.47 28084.99 36993.08 35194.74 34089.90 27099.00 30587.54 34698.09 30297.72 323
PMMVS293.66 28994.07 27292.45 35997.57 28680.67 38486.46 39796.00 31493.99 22197.10 20097.38 23189.90 27097.82 38188.76 32899.47 14898.86 205
OpenMVS_ROBcopyleft91.80 1493.64 29093.05 28995.42 26297.31 31091.21 24195.08 25396.68 30781.56 38396.88 22096.41 29190.44 26299.25 26785.39 36697.67 32495.80 377
Patchmatch-test93.60 29193.25 28794.63 29796.14 34887.47 31396.04 18894.50 34193.57 23296.47 24596.97 25776.50 36398.61 34590.67 29998.41 29097.81 315
WTY-MVS93.55 29293.00 29295.19 26997.81 24787.86 30493.89 30596.00 31489.02 32194.07 32295.44 32986.27 30799.33 24787.69 34296.82 34998.39 255
Test_1112_low_res93.53 29392.86 29495.54 25798.60 15888.86 28292.75 33498.69 16482.66 38092.65 36196.92 26284.75 31999.56 17190.94 28697.76 31698.19 280
mvsany_test193.47 29493.03 29094.79 29294.05 39392.12 21990.82 37790.01 39185.02 36897.26 18898.28 13693.57 19497.03 38992.51 25895.75 37495.23 385
MIMVSNet93.42 29592.86 29495.10 27498.17 21088.19 29498.13 5493.69 34792.07 27695.04 30198.21 14980.95 34399.03 30481.42 38598.06 30398.07 289
FMVSNet593.39 29692.35 30696.50 20595.83 35790.81 24997.31 11098.27 21692.74 26596.27 25698.28 13662.23 39899.67 13190.86 28899.36 17799.03 173
SCA93.38 29793.52 28392.96 34596.24 33881.40 38093.24 32594.00 34591.58 28794.57 30996.97 25787.94 29299.42 21289.47 31997.66 32598.06 293
tttt051793.31 29892.56 30595.57 25398.71 14387.86 30497.44 10587.17 39995.79 15097.47 18196.84 26664.12 39699.81 3796.20 10599.32 19299.02 176
CR-MVSNet93.29 29992.79 29794.78 29395.44 36988.15 29696.18 17797.20 28584.94 37094.10 32098.57 9777.67 35599.39 22795.17 16695.81 36996.81 359
cl2293.25 30092.84 29694.46 30794.30 38786.00 33591.09 37496.64 30890.74 29895.79 27796.31 29778.24 35298.77 32694.15 21798.34 29198.62 233
wuyk23d93.25 30095.20 21787.40 38796.07 34995.38 10497.04 12794.97 33695.33 17299.70 898.11 16098.14 1791.94 40577.76 39699.68 8074.89 405
miper_enhance_ethall93.14 30292.78 29994.20 31693.65 39685.29 34389.97 38597.85 25685.05 36696.15 26594.56 34385.74 31199.14 28593.74 23298.34 29198.17 283
baseline193.14 30292.64 30394.62 29897.34 30687.20 31996.67 15293.02 35694.71 19696.51 24495.83 31781.64 33698.60 34790.00 31288.06 40198.07 289
FE-MVS92.95 30492.22 30895.11 27297.21 31388.33 29298.54 2293.66 35089.91 31296.21 26098.14 15470.33 38999.50 18887.79 34098.24 29697.51 334
X-MVStestdata92.86 30590.83 33298.94 1699.15 8397.66 2097.77 7998.83 13297.42 7596.32 25236.50 40996.49 9899.72 8895.66 13499.37 17499.45 82
GA-MVS92.83 30692.15 31094.87 28796.97 32187.27 31890.03 38496.12 31191.83 28294.05 32394.57 34276.01 36798.97 31392.46 25997.34 33898.36 262
CMPMVSbinary73.10 2392.74 30791.39 31996.77 19093.57 39894.67 13394.21 28897.67 26780.36 39093.61 33796.60 28182.85 33397.35 38684.86 37198.78 25898.29 271
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thisisatest053092.71 30891.76 31695.56 25598.42 18388.23 29396.03 18987.35 39894.04 22096.56 24195.47 32764.03 39799.77 5794.78 19299.11 22298.68 229
HY-MVS91.43 1592.58 30991.81 31494.90 28596.49 33388.87 28197.31 11094.62 33985.92 35690.50 38096.84 26685.05 31699.40 22383.77 37895.78 37296.43 369
TR-MVS92.54 31092.20 30993.57 32896.49 33386.66 32793.51 31794.73 33889.96 31194.95 30293.87 35390.24 26898.61 34581.18 38694.88 38195.45 383
PMMVS92.39 31191.08 32696.30 21893.12 40092.81 19890.58 38095.96 31679.17 39491.85 37192.27 37590.29 26798.66 34189.85 31496.68 35597.43 337
131492.38 31292.30 30792.64 35495.42 37185.15 34695.86 20396.97 29685.40 36390.62 37793.06 36391.12 25097.80 38286.74 35595.49 37794.97 387
new_pmnet92.34 31391.69 31794.32 31296.23 34089.16 27592.27 35192.88 35884.39 37695.29 29396.35 29685.66 31296.74 39684.53 37397.56 32897.05 346
CVMVSNet92.33 31492.79 29790.95 37197.26 31175.84 40395.29 24392.33 36681.86 38196.27 25698.19 15081.44 33898.46 35994.23 21498.29 29498.55 241
PAPR92.22 31591.27 32395.07 27595.73 36488.81 28391.97 35697.87 25585.80 35890.91 37692.73 37091.16 24998.33 36879.48 39095.76 37398.08 287
DSMNet-mixed92.19 31691.83 31393.25 33496.18 34383.68 36496.27 16993.68 34976.97 40192.54 36599.18 3989.20 28298.55 35183.88 37698.60 27897.51 334
BH-w/o92.14 31791.94 31192.73 35297.13 31785.30 34292.46 34495.64 32289.33 31794.21 31792.74 36989.60 27298.24 37281.68 38494.66 38394.66 388
PCF-MVS89.43 1892.12 31890.64 33596.57 20297.80 25193.48 18189.88 38998.45 19374.46 40396.04 26895.68 32090.71 25799.31 25273.73 40199.01 23596.91 352
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Syy-MVS92.09 31991.80 31592.93 34795.19 37482.65 36992.46 34491.35 37490.67 30191.76 37287.61 40185.64 31398.50 35594.73 19596.84 34797.65 326
dmvs_re92.08 32091.27 32394.51 30597.16 31592.79 20195.65 21692.64 36394.11 21792.74 35890.98 39083.41 32994.44 40380.72 38794.07 38796.29 371
thres600view792.03 32191.43 31893.82 32298.19 20484.61 35496.27 16990.39 38496.81 9796.37 25093.11 35873.44 38099.49 19380.32 38897.95 30797.36 339
PatchmatchNetpermissive91.98 32291.87 31292.30 36194.60 38479.71 38795.12 24993.59 35289.52 31593.61 33797.02 25477.94 35399.18 27890.84 28994.57 38698.01 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas91.89 32391.35 32093.51 32994.27 38885.60 33888.86 39498.61 17879.32 39392.16 36891.44 38589.22 28198.12 37690.80 29197.47 33496.82 358
JIA-IIPM91.79 32490.69 33495.11 27293.80 39590.98 24494.16 29091.78 37196.38 11490.30 38399.30 2772.02 38398.90 31588.28 33690.17 39795.45 383
thres100view90091.76 32591.26 32593.26 33398.21 20184.50 35596.39 15990.39 38496.87 9596.33 25193.08 36273.44 38099.42 21278.85 39397.74 31795.85 375
thres40091.68 32691.00 32793.71 32598.02 22384.35 35795.70 21090.79 38196.26 12095.90 27592.13 37873.62 37799.42 21278.85 39397.74 31797.36 339
tfpn200view991.55 32791.00 32793.21 33798.02 22384.35 35795.70 21090.79 38196.26 12095.90 27592.13 37873.62 37799.42 21278.85 39397.74 31795.85 375
WB-MVSnew91.50 32891.29 32192.14 36394.85 37980.32 38593.29 32488.77 39488.57 32994.03 32492.21 37692.56 22098.28 37180.21 38997.08 34197.81 315
ADS-MVSNet291.47 32990.51 33794.36 31095.51 36785.63 33795.05 25695.70 32083.46 37792.69 35996.84 26679.15 34999.41 22185.66 36290.52 39598.04 297
EPNet_dtu91.39 33090.75 33393.31 33290.48 40982.61 37094.80 26592.88 35893.39 23781.74 40694.90 33981.36 33999.11 29288.28 33698.87 24898.21 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D91.12 33189.67 34395.47 26096.41 33589.15 27691.54 36290.23 38889.07 32086.78 40292.84 36769.39 39199.44 20894.16 21696.61 35697.82 313
PVSNet86.72 1991.10 33290.97 32991.49 36897.56 28878.04 39387.17 39694.60 34084.65 37292.34 36692.20 37787.37 30198.47 35885.17 36997.69 32297.96 303
tpm91.08 33390.85 33191.75 36795.33 37278.09 39295.03 25891.27 37788.75 32593.53 34097.40 22571.24 38499.30 25591.25 28093.87 38897.87 310
thres20091.00 33490.42 33892.77 35197.47 29783.98 36294.01 29891.18 37895.12 18295.44 29091.21 38773.93 37399.31 25277.76 39697.63 32795.01 386
ADS-MVSNet90.95 33590.26 33993.04 34095.51 36782.37 37295.05 25693.41 35383.46 37792.69 35996.84 26679.15 34998.70 33485.66 36290.52 39598.04 297
tpmvs90.79 33690.87 33090.57 37492.75 40476.30 40195.79 20793.64 35191.04 29691.91 37096.26 29877.19 36198.86 32089.38 32189.85 39896.56 366
thisisatest051590.43 33789.18 34994.17 31897.07 31985.44 34089.75 39087.58 39788.28 33393.69 33591.72 38265.27 39599.58 16490.59 30098.67 26997.50 336
tpmrst90.31 33890.61 33689.41 37994.06 39272.37 41095.06 25593.69 34788.01 33692.32 36796.86 26477.45 35798.82 32191.04 28387.01 40297.04 347
test0.0.03 190.11 33989.21 34692.83 34993.89 39486.87 32591.74 36088.74 39592.02 27794.71 30791.14 38873.92 37494.48 40283.75 37992.94 39097.16 344
MVS90.02 34089.20 34792.47 35894.71 38286.90 32495.86 20396.74 30564.72 40690.62 37792.77 36892.54 22398.39 36379.30 39195.56 37692.12 398
pmmvs390.00 34188.90 35193.32 33194.20 39185.34 34191.25 36992.56 36578.59 39593.82 32895.17 33167.36 39498.69 33689.08 32598.03 30495.92 374
CHOSEN 280x42089.98 34289.19 34892.37 36095.60 36681.13 38286.22 39897.09 29181.44 38587.44 39993.15 35773.99 37299.47 19888.69 33099.07 22896.52 367
test-LLR89.97 34389.90 34190.16 37594.24 38974.98 40489.89 38689.06 39292.02 27789.97 38690.77 39173.92 37498.57 34891.88 26797.36 33696.92 350
FPMVS89.92 34488.63 35293.82 32298.37 18696.94 4691.58 36193.34 35488.00 33790.32 38297.10 24970.87 38791.13 40671.91 40496.16 36793.39 396
test250689.86 34589.16 35091.97 36598.95 11076.83 40098.54 2261.07 41496.20 12397.07 20699.16 4355.19 40899.69 11896.43 9599.83 4099.38 104
CostFormer89.75 34689.25 34491.26 37094.69 38378.00 39495.32 24091.98 36981.50 38490.55 37996.96 25971.06 38698.89 31688.59 33292.63 39296.87 353
testing389.72 34788.26 35694.10 31997.66 27784.30 35994.80 26588.25 39694.66 19795.07 29792.51 37341.15 41499.43 21091.81 27098.44 28898.55 241
testing9189.67 34888.55 35393.04 34095.90 35281.80 37792.71 33893.71 34693.71 22790.18 38490.15 39557.11 40099.22 27587.17 35396.32 36298.12 285
baseline289.65 34988.44 35593.25 33495.62 36582.71 36893.82 30785.94 40288.89 32487.35 40092.54 37271.23 38599.33 24786.01 35794.60 38597.72 323
E-PMN89.52 35089.78 34288.73 38193.14 39977.61 39583.26 40392.02 36894.82 19393.71 33393.11 35875.31 36996.81 39385.81 35996.81 35091.77 400
EPMVS89.26 35188.55 35391.39 36992.36 40579.11 39095.65 21679.86 40888.60 32893.12 35096.53 28570.73 38898.10 37790.75 29389.32 39996.98 348
testing9989.21 35288.04 35892.70 35395.78 36081.00 38392.65 33992.03 36793.20 24689.90 38890.08 39755.25 40699.14 28587.54 34695.95 36897.97 302
EMVS89.06 35389.22 34588.61 38293.00 40177.34 39782.91 40490.92 37994.64 19992.63 36391.81 38176.30 36597.02 39083.83 37796.90 34591.48 401
testing1188.93 35487.63 36292.80 35095.87 35481.49 37992.48 34391.54 37391.62 28488.27 39690.24 39355.12 40999.11 29287.30 35196.28 36497.81 315
KD-MVS_2432*160088.93 35487.74 35992.49 35688.04 41081.99 37489.63 39195.62 32391.35 29195.06 29893.11 35856.58 40298.63 34385.19 36795.07 37896.85 355
miper_refine_blended88.93 35487.74 35992.49 35688.04 41081.99 37489.63 39195.62 32391.35 29195.06 29893.11 35856.58 40298.63 34385.19 36795.07 37896.85 355
IB-MVS85.98 2088.63 35786.95 36793.68 32695.12 37684.82 35390.85 37690.17 38987.55 34088.48 39591.34 38658.01 39999.59 16287.24 35293.80 38996.63 365
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm288.47 35887.69 36190.79 37294.98 37877.34 39795.09 25191.83 37077.51 40089.40 39096.41 29167.83 39398.73 33083.58 38092.60 39396.29 371
MVS-HIRNet88.40 35990.20 34082.99 38897.01 32060.04 41393.11 32885.61 40384.45 37588.72 39499.09 5184.72 32098.23 37382.52 38296.59 35790.69 403
gg-mvs-nofinetune88.28 36086.96 36692.23 36292.84 40384.44 35698.19 5174.60 41099.08 1387.01 40199.47 1156.93 40198.23 37378.91 39295.61 37594.01 392
dp88.08 36188.05 35788.16 38692.85 40268.81 41294.17 28992.88 35885.47 36191.38 37596.14 30568.87 39298.81 32386.88 35483.80 40596.87 353
tpm cat188.01 36287.33 36390.05 37894.48 38576.28 40294.47 27794.35 34373.84 40589.26 39195.61 32473.64 37698.30 37084.13 37486.20 40395.57 382
test-mter87.92 36387.17 36490.16 37594.24 38974.98 40489.89 38689.06 39286.44 35289.97 38690.77 39154.96 41098.57 34891.88 26797.36 33696.92 350
PAPM87.64 36485.84 37193.04 34096.54 33184.99 34988.42 39595.57 32679.52 39283.82 40393.05 36480.57 34498.41 36162.29 40792.79 39195.71 378
ETVMVS87.62 36585.75 37293.22 33696.15 34783.26 36592.94 33090.37 38691.39 29090.37 38188.45 39951.93 41198.64 34273.76 40096.38 36097.75 318
UWE-MVS87.57 36686.72 36890.13 37795.21 37373.56 40791.94 35783.78 40688.73 32793.00 35292.87 36655.22 40799.25 26781.74 38397.96 30697.59 331
testing22287.35 36785.50 37492.93 34795.79 35982.83 36792.40 34990.10 39092.80 26488.87 39389.02 39848.34 41298.70 33475.40 39996.74 35297.27 343
dmvs_testset87.30 36886.99 36588.24 38496.71 32877.48 39694.68 27186.81 40192.64 26789.61 38987.01 40385.91 31093.12 40461.04 40888.49 40094.13 391
TESTMET0.1,187.20 36986.57 36989.07 38093.62 39772.84 40989.89 38687.01 40085.46 36289.12 39290.20 39456.00 40597.72 38390.91 28796.92 34396.64 363
myMVS_eth3d87.16 37085.61 37391.82 36695.19 37479.32 38892.46 34491.35 37490.67 30191.76 37287.61 40141.96 41398.50 35582.66 38196.84 34797.65 326
MVEpermissive73.61 2286.48 37185.92 37088.18 38596.23 34085.28 34481.78 40575.79 40986.01 35482.53 40591.88 38092.74 21387.47 40871.42 40594.86 38291.78 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet_081.89 2184.49 37283.21 37588.34 38395.76 36274.97 40683.49 40292.70 36278.47 39687.94 39786.90 40483.38 33096.63 39773.44 40266.86 40893.40 395
EGC-MVSNET83.08 37377.93 37698.53 5199.57 1997.55 2798.33 3798.57 1844.71 41110.38 41298.90 7095.60 13999.50 18895.69 13199.61 9698.55 241
test_method66.88 37466.13 37769.11 39062.68 41525.73 41849.76 40696.04 31314.32 41064.27 41091.69 38373.45 37988.05 40776.06 39866.94 40793.54 393
dongtai63.43 37563.37 37863.60 39183.91 41353.17 41585.14 39943.40 41777.91 39980.96 40779.17 40736.36 41577.10 40937.88 41045.63 40960.54 406
tmp_tt57.23 37662.50 37941.44 39334.77 41649.21 41783.93 40160.22 41515.31 40971.11 40979.37 40670.09 39044.86 41264.76 40682.93 40630.25 408
kuosan54.81 37754.94 38054.42 39274.43 41450.03 41684.98 40044.27 41661.80 40762.49 41170.43 40835.16 41658.04 41119.30 41141.61 41055.19 407
cdsmvs_eth3d_5k24.22 37832.30 3810.00 3960.00 4190.00 4210.00 40798.10 2410.00 4140.00 41595.06 33497.54 390.00 4150.00 4140.00 4130.00 411
test12312.59 37915.49 3823.87 3946.07 4172.55 41990.75 3782.59 4192.52 4125.20 41413.02 4114.96 4171.85 4145.20 4129.09 4117.23 409
testmvs12.33 38015.23 3833.64 3955.77 4182.23 42088.99 3933.62 4182.30 4135.29 41313.09 4104.52 4181.95 4135.16 4138.32 4126.75 410
pcd_1.5k_mvsjas7.98 38110.65 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41495.82 1270.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.91 38210.55 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41594.94 3360.00 4190.00 4150.00 4140.00 4130.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.32 38885.41 365
FOURS199.59 1798.20 899.03 799.25 3298.96 2198.87 57
MSC_two_6792asdad98.22 7497.75 26395.34 10998.16 23599.75 6895.87 12499.51 13599.57 43
PC_three_145287.24 34298.37 10097.44 22297.00 6596.78 39592.01 26399.25 20399.21 138
No_MVS98.22 7497.75 26395.34 10998.16 23599.75 6895.87 12499.51 13599.57 43
test_one_060199.05 10395.50 9998.87 11497.21 8898.03 14498.30 13196.93 71
eth-test20.00 419
eth-test0.00 419
ZD-MVS98.43 18295.94 8098.56 18590.72 29996.66 23497.07 25095.02 15699.74 7791.08 28298.93 242
RE-MVS-def97.88 6698.81 12898.05 1097.55 9798.86 11797.77 5698.20 12198.07 16496.94 6995.49 14399.20 20899.26 130
IU-MVS99.22 6695.40 10298.14 23885.77 35998.36 10395.23 16399.51 13599.49 67
OPU-MVS97.64 11798.01 22595.27 11296.79 14097.35 23496.97 6798.51 35491.21 28199.25 20399.14 151
test_241102_TWO98.83 13296.11 12898.62 7598.24 14396.92 7399.72 8895.44 15099.49 14299.49 67
test_241102_ONE99.22 6695.35 10798.83 13296.04 13399.08 4198.13 15697.87 2399.33 247
9.1496.69 15698.53 16896.02 19098.98 9393.23 24397.18 19497.46 22096.47 10099.62 15292.99 25199.32 192
save fliter98.48 17794.71 13094.53 27698.41 20095.02 187
test_0728_THIRD96.62 10198.40 9798.28 13697.10 5699.71 10295.70 12999.62 9099.58 36
test_0728_SECOND98.25 7299.23 6395.49 10096.74 14398.89 10599.75 6895.48 14699.52 13099.53 53
test072699.24 6195.51 9696.89 13498.89 10595.92 14298.64 7398.31 12797.06 60
GSMVS98.06 293
test_part299.03 10596.07 7598.08 137
sam_mvs177.80 35498.06 293
sam_mvs77.38 358
ambc96.56 20398.23 20091.68 23297.88 7298.13 23998.42 9598.56 9994.22 17999.04 30194.05 22299.35 18298.95 184
MTGPAbinary98.73 154
test_post194.98 26010.37 41376.21 36699.04 30189.47 319
test_post10.87 41276.83 36299.07 298
patchmatchnet-post96.84 26677.36 35999.42 212
GG-mvs-BLEND90.60 37391.00 40784.21 36098.23 4572.63 41382.76 40484.11 40556.14 40496.79 39472.20 40392.09 39490.78 402
MTMP96.55 15474.60 410
gm-plane-assit91.79 40671.40 41181.67 38290.11 39698.99 30784.86 371
test9_res91.29 27798.89 24799.00 177
TEST997.84 24395.23 11493.62 31398.39 20386.81 34893.78 32995.99 31094.68 16599.52 183
test_897.81 24795.07 12393.54 31698.38 20587.04 34493.71 33395.96 31394.58 16999.52 183
agg_prior290.34 30898.90 24499.10 165
agg_prior97.80 25194.96 12598.36 20793.49 34199.53 180
TestCases98.06 8799.08 9696.16 7199.16 4194.35 20897.78 16698.07 16495.84 12499.12 28991.41 27599.42 16698.91 194
test_prior495.38 10493.61 315
test_prior293.33 32394.21 21194.02 32596.25 29993.64 19391.90 26698.96 237
test_prior97.46 13697.79 25694.26 15498.42 19999.34 24598.79 212
旧先验293.35 32277.95 39895.77 28198.67 34090.74 296
新几何293.43 318
新几何197.25 15498.29 19194.70 13297.73 26477.98 39794.83 30596.67 27892.08 23699.45 20588.17 33898.65 27397.61 329
旧先验197.80 25193.87 16597.75 26397.04 25393.57 19498.68 26898.72 222
无先验93.20 32697.91 25280.78 38799.40 22387.71 34197.94 305
原ACMM292.82 332
原ACMM196.58 20098.16 21292.12 21998.15 23785.90 35793.49 34196.43 29092.47 22799.38 23087.66 34398.62 27598.23 275
test22298.17 21093.24 19092.74 33697.61 27675.17 40294.65 30896.69 27790.96 25498.66 27197.66 325
testdata299.46 20187.84 339
segment_acmp95.34 146
testdata95.70 24898.16 21290.58 25297.72 26580.38 38995.62 28497.02 25492.06 23798.98 30989.06 32698.52 28197.54 333
testdata192.77 33393.78 225
test1297.46 13697.61 28494.07 15897.78 26293.57 33993.31 19999.42 21298.78 25898.89 198
plane_prior798.70 14594.67 133
plane_prior698.38 18594.37 14791.91 242
plane_prior598.75 15199.46 20192.59 25699.20 20899.28 125
plane_prior496.77 272
plane_prior394.51 14095.29 17596.16 263
plane_prior296.50 15696.36 116
plane_prior198.49 175
plane_prior94.29 15095.42 22894.31 21098.93 242
n20.00 420
nn0.00 420
door-mid98.17 231
lessismore_v097.05 16999.36 4892.12 21984.07 40498.77 6898.98 5985.36 31599.74 7797.34 6699.37 17499.30 118
LGP-MVS_train98.74 3599.15 8397.02 4399.02 7895.15 18098.34 10698.23 14597.91 2199.70 11094.41 20599.73 6599.50 59
test1198.08 243
door97.81 261
HQP5-MVS92.47 208
HQP-NCC97.85 23894.26 28193.18 24892.86 355
ACMP_Plane97.85 23894.26 28193.18 24892.86 355
BP-MVS90.51 303
HQP4-MVS92.87 35499.23 27399.06 170
HQP3-MVS98.43 19698.74 262
HQP2-MVS90.33 263
NP-MVS98.14 21693.72 17195.08 332
MDTV_nov1_ep13_2view57.28 41494.89 26280.59 38894.02 32578.66 35185.50 36497.82 313
MDTV_nov1_ep1391.28 32294.31 38673.51 40894.80 26593.16 35586.75 35093.45 34397.40 22576.37 36498.55 35188.85 32796.43 358
ACMMP++_ref99.52 130
ACMMP++99.55 116
Test By Simon94.51 172
ITE_SJBPF97.85 10398.64 15096.66 5598.51 18995.63 15797.22 18997.30 23895.52 14098.55 35190.97 28598.90 24498.34 263
DeepMVS_CXcopyleft77.17 38990.94 40885.28 34474.08 41252.51 40880.87 40888.03 40075.25 37070.63 41059.23 40984.94 40475.62 404