LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 1 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 3 |
|
LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 38 | 99.71 7 | 96.99 46 | 99.69 2 | 99.57 4 | 99.02 15 | 99.62 10 | 99.36 14 | 98.53 7 | 99.52 182 | 98.58 12 | 99.95 5 | 99.66 22 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 43 | 99.77 3 | 96.34 65 | 99.18 5 | 99.20 16 | 99.67 2 | 99.73 3 | 99.65 4 | 99.15 3 | 99.86 20 | 97.22 46 | 99.92 14 | 99.77 8 |
|
pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 49 | 99.81 2 | 96.38 63 | 98.87 9 | 99.30 11 | 99.01 16 | 99.63 9 | 99.66 3 | 99.27 2 | 99.68 125 | 97.75 30 | 99.89 22 | 99.62 25 |
|
mvs_tets | | | 98.90 5 | 98.94 6 | 98.75 33 | 99.69 8 | 96.48 61 | 98.54 20 | 99.22 13 | 96.23 112 | 99.71 4 | 99.48 7 | 98.77 6 | 99.93 2 | 98.89 3 | 99.95 5 | 99.84 5 |
|
TDRefinement | | | 98.90 5 | 98.86 8 | 99.02 9 | 99.54 21 | 98.06 8 | 99.34 4 | 99.44 8 | 98.85 20 | 99.00 36 | 99.20 23 | 97.42 32 | 99.59 160 | 97.21 48 | 99.76 42 | 99.40 84 |
|
UA-Net | | | 98.88 7 | 98.76 13 | 99.22 2 | 99.11 84 | 97.89 14 | 99.47 3 | 99.32 10 | 99.08 10 | 97.87 141 | 99.67 2 | 96.47 88 | 99.92 4 | 97.88 23 | 99.98 2 | 99.85 3 |
|
DTE-MVSNet | | | 98.79 8 | 98.86 8 | 98.59 47 | 99.55 19 | 96.12 72 | 98.48 25 | 99.10 31 | 99.36 4 | 99.29 23 | 99.06 39 | 97.27 38 | 99.93 2 | 97.71 32 | 99.91 17 | 99.70 18 |
|
jajsoiax | | | 98.77 9 | 98.79 12 | 98.74 35 | 99.66 10 | 96.48 61 | 98.45 26 | 99.12 28 | 95.83 139 | 99.67 6 | 99.37 12 | 98.25 10 | 99.92 4 | 98.77 5 | 99.94 8 | 99.82 6 |
|
PEN-MVS | | | 98.75 10 | 98.85 10 | 98.44 56 | 99.58 15 | 95.67 89 | 98.45 26 | 99.15 24 | 99.33 5 | 99.30 21 | 99.00 41 | 97.27 38 | 99.92 4 | 97.64 34 | 99.92 14 | 99.75 13 |
|
v7n | | | 98.73 11 | 98.99 5 | 97.95 96 | 99.64 11 | 94.20 155 | 98.67 13 | 99.14 26 | 99.08 10 | 99.42 15 | 99.23 21 | 96.53 83 | 99.91 12 | 99.27 2 | 99.93 10 | 99.73 15 |
|
PS-CasMVS | | | 98.73 11 | 98.85 10 | 98.39 60 | 99.55 19 | 95.47 101 | 98.49 23 | 99.13 27 | 99.22 8 | 99.22 27 | 98.96 45 | 97.35 34 | 99.92 4 | 97.79 28 | 99.93 10 | 99.79 7 |
|
test_djsdf | | | 98.73 11 | 98.74 16 | 98.69 40 | 99.63 12 | 96.30 67 | 98.67 13 | 99.02 52 | 96.50 100 | 99.32 20 | 99.44 10 | 97.43 31 | 99.92 4 | 98.73 7 | 99.95 5 | 99.86 2 |
|
anonymousdsp | | | 98.72 14 | 98.63 19 | 98.99 13 | 99.62 13 | 97.29 39 | 98.65 16 | 99.19 18 | 95.62 147 | 99.35 19 | 99.37 12 | 97.38 33 | 99.90 13 | 98.59 11 | 99.91 17 | 99.77 8 |
|
WR-MVS_H | | | 98.65 15 | 98.62 21 | 98.75 33 | 99.51 24 | 96.61 57 | 98.55 19 | 99.17 19 | 99.05 13 | 99.17 29 | 98.79 55 | 95.47 127 | 99.89 16 | 97.95 21 | 99.91 17 | 99.75 13 |
|
OurMVSNet-221017-0 | | | 98.61 16 | 98.61 23 | 98.63 45 | 99.77 3 | 96.35 64 | 99.17 6 | 99.05 43 | 98.05 41 | 99.61 11 | 99.52 5 | 93.72 180 | 99.88 18 | 98.72 9 | 99.88 23 | 99.65 23 |
|
Anonymous20231211 | | | 98.55 17 | 98.76 13 | 97.94 97 | 98.79 112 | 94.37 147 | 98.84 10 | 99.15 24 | 99.37 3 | 99.67 6 | 99.43 11 | 95.61 120 | 99.72 86 | 98.12 16 | 99.86 25 | 99.73 15 |
|
nrg030 | | | 98.54 18 | 98.62 21 | 98.32 65 | 99.22 59 | 95.66 90 | 97.90 60 | 99.08 37 | 98.31 33 | 99.02 34 | 98.74 59 | 97.68 24 | 99.61 158 | 97.77 29 | 99.85 28 | 99.70 18 |
|
PS-MVSNAJss | | | 98.53 19 | 98.63 19 | 98.21 78 | 99.68 9 | 94.82 129 | 98.10 49 | 99.21 14 | 96.91 85 | 99.75 2 | 99.45 9 | 95.82 108 | 99.92 4 | 98.80 4 | 99.96 4 | 99.89 1 |
|
MIMVSNet1 | | | 98.51 20 | 98.45 26 | 98.67 41 | 99.72 6 | 96.71 52 | 98.76 11 | 98.89 79 | 98.49 28 | 99.38 17 | 99.14 33 | 95.44 129 | 99.84 25 | 96.47 71 | 99.80 36 | 99.47 62 |
|
pm-mvs1 | | | 98.47 21 | 98.67 17 | 97.86 103 | 99.52 23 | 94.58 139 | 98.28 36 | 99.00 60 | 97.57 61 | 99.27 24 | 99.22 22 | 98.32 9 | 99.50 187 | 97.09 54 | 99.75 46 | 99.50 45 |
|
ACMH | | 93.61 9 | 98.44 22 | 98.76 13 | 97.51 129 | 99.43 34 | 93.54 180 | 98.23 39 | 99.05 43 | 97.40 73 | 99.37 18 | 99.08 37 | 98.79 5 | 99.47 195 | 97.74 31 | 99.71 54 | 99.50 45 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CP-MVSNet | | | 98.42 23 | 98.46 24 | 98.30 68 | 99.46 30 | 95.22 117 | 98.27 38 | 98.84 99 | 99.05 13 | 99.01 35 | 98.65 67 | 95.37 130 | 99.90 13 | 97.57 36 | 99.91 17 | 99.77 8 |
|
abl_6 | | | 98.42 23 | 98.19 32 | 99.09 3 | 99.16 71 | 98.10 6 | 97.73 72 | 99.11 29 | 97.76 50 | 98.62 52 | 98.27 103 | 97.88 19 | 99.80 38 | 95.67 108 | 99.50 115 | 99.38 88 |
|
TransMVSNet (Re) | | | 98.38 25 | 98.67 17 | 97.51 129 | 99.51 24 | 93.39 184 | 98.20 44 | 98.87 87 | 98.23 36 | 99.48 12 | 99.27 19 | 98.47 8 | 99.55 173 | 96.52 68 | 99.53 101 | 99.60 26 |
|
TranMVSNet+NR-MVSNet | | | 98.33 26 | 98.30 31 | 98.43 57 | 99.07 88 | 95.87 80 | 96.73 129 | 99.05 43 | 98.67 24 | 98.84 42 | 98.45 80 | 97.58 28 | 99.88 18 | 96.45 72 | 99.86 25 | 99.54 38 |
|
HPM-MVS_fast | | | 98.32 27 | 98.13 33 | 98.88 24 | 99.54 21 | 97.48 32 | 98.35 29 | 99.03 50 | 95.88 134 | 97.88 138 | 98.22 110 | 98.15 12 | 99.74 75 | 96.50 70 | 99.62 69 | 99.42 81 |
|
ANet_high | | | 98.31 28 | 98.94 6 | 96.41 205 | 99.33 45 | 89.64 251 | 97.92 59 | 99.56 5 | 99.27 6 | 99.66 8 | 99.50 6 | 97.67 25 | 99.83 28 | 97.55 37 | 99.98 2 | 99.77 8 |
|
VPA-MVSNet | | | 98.27 29 | 98.46 24 | 97.70 115 | 99.06 89 | 93.80 169 | 97.76 68 | 99.00 60 | 98.40 30 | 99.07 33 | 98.98 43 | 96.89 64 | 99.75 65 | 97.19 51 | 99.79 38 | 99.55 37 |
|
Vis-MVSNet |  | | 98.27 29 | 98.34 28 | 98.07 87 | 99.33 45 | 95.21 119 | 98.04 52 | 99.46 7 | 97.32 75 | 97.82 146 | 99.11 34 | 96.75 72 | 99.86 20 | 97.84 25 | 99.36 159 | 99.15 140 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
COLMAP_ROB |  | 94.48 6 | 98.25 31 | 98.11 34 | 98.64 44 | 99.21 66 | 97.35 37 | 97.96 55 | 99.16 20 | 98.34 32 | 98.78 45 | 98.52 75 | 97.32 35 | 99.45 202 | 94.08 193 | 99.67 61 | 99.13 146 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMH+ | | 93.58 10 | 98.23 32 | 98.31 29 | 97.98 95 | 99.39 39 | 95.22 117 | 97.55 81 | 99.20 16 | 98.21 37 | 99.25 25 | 98.51 76 | 98.21 11 | 99.40 219 | 94.79 163 | 99.72 51 | 99.32 101 |
|
FC-MVSNet-test | | | 98.16 33 | 98.37 27 | 97.56 124 | 99.49 28 | 93.10 191 | 98.35 29 | 99.21 14 | 98.43 29 | 98.89 39 | 98.83 54 | 94.30 165 | 99.81 32 | 97.87 24 | 99.91 17 | 99.77 8 |
|
SR-MVS-dyc-post | | | 98.14 34 | 97.84 51 | 99.02 9 | 98.81 109 | 98.05 9 | 97.55 81 | 98.86 90 | 97.77 47 | 98.20 99 | 98.07 125 | 96.60 80 | 99.76 58 | 95.49 118 | 99.20 192 | 99.26 120 |
|
MTAPA | | | 98.14 34 | 97.84 51 | 99.06 4 | 99.44 32 | 97.90 12 | 97.25 98 | 98.73 129 | 97.69 57 | 97.90 135 | 97.96 140 | 95.81 112 | 99.82 29 | 96.13 81 | 99.61 75 | 99.45 69 |
|
APDe-MVS | | | 98.14 34 | 98.03 40 | 98.47 55 | 98.72 120 | 96.04 75 | 98.07 51 | 99.10 31 | 95.96 128 | 98.59 57 | 98.69 63 | 96.94 58 | 99.81 32 | 96.64 62 | 99.58 83 | 99.57 32 |
|
APD-MVS_3200maxsize | | | 98.13 37 | 97.90 45 | 98.79 31 | 98.79 112 | 97.31 38 | 97.55 81 | 98.92 76 | 97.72 54 | 98.25 94 | 98.13 117 | 97.10 45 | 99.75 65 | 95.44 125 | 99.24 190 | 99.32 101 |
|
HPM-MVS |  | | 98.11 38 | 97.83 53 | 98.92 22 | 99.42 36 | 97.46 33 | 98.57 17 | 99.05 43 | 95.43 157 | 97.41 166 | 97.50 188 | 97.98 15 | 99.79 39 | 95.58 117 | 99.57 86 | 99.50 45 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
test1172 | | | 98.08 39 | 97.76 59 | 99.05 6 | 98.78 114 | 98.07 7 | 97.41 93 | 98.85 94 | 97.57 61 | 98.15 106 | 97.96 140 | 96.60 80 | 99.76 58 | 95.30 134 | 99.18 197 | 99.33 100 |
|
Gipuma |  | | 98.07 40 | 98.31 29 | 97.36 150 | 99.76 5 | 96.28 68 | 98.51 22 | 99.10 31 | 98.76 23 | 96.79 201 | 99.34 17 | 96.61 78 | 98.82 306 | 96.38 74 | 99.50 115 | 96.98 315 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ACMMP |  | | 98.05 41 | 97.75 61 | 98.93 21 | 99.23 56 | 97.60 23 | 98.09 50 | 98.96 71 | 95.75 143 | 97.91 134 | 98.06 130 | 96.89 64 | 99.76 58 | 95.32 133 | 99.57 86 | 99.43 80 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
ACMM | | 93.33 11 | 98.05 41 | 97.79 55 | 98.85 25 | 99.15 74 | 97.55 27 | 96.68 131 | 98.83 106 | 95.21 163 | 98.36 79 | 98.13 117 | 98.13 14 | 99.62 151 | 96.04 87 | 99.54 98 | 99.39 86 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
SteuartSystems-ACMMP | | | 98.02 43 | 97.76 59 | 98.79 31 | 99.43 34 | 97.21 43 | 97.15 104 | 98.90 78 | 96.58 96 | 98.08 116 | 97.87 154 | 97.02 53 | 99.76 58 | 95.25 137 | 99.59 81 | 99.40 84 |
Skip Steuart: Steuart Systems R&D Blog. |
zzz-MVS | | | 98.01 44 | 97.66 67 | 99.06 4 | 99.44 32 | 97.90 12 | 95.66 184 | 98.73 129 | 97.69 57 | 97.90 135 | 97.96 140 | 95.81 112 | 99.82 29 | 96.13 81 | 99.61 75 | 99.45 69 |
|
SR-MVS | | | 98.00 45 | 97.66 67 | 99.01 11 | 98.77 116 | 97.93 11 | 97.38 94 | 98.83 106 | 97.32 75 | 98.06 118 | 97.85 155 | 96.65 75 | 99.77 53 | 95.00 156 | 99.11 208 | 99.32 101 |
|
DVP-MVS++ | | | 97.96 46 | 97.90 45 | 98.12 84 | 97.75 243 | 95.40 102 | 99.03 7 | 98.89 79 | 96.62 92 | 98.62 52 | 98.30 94 | 96.97 56 | 99.75 65 | 95.70 104 | 99.25 187 | 99.21 129 |
|
Anonymous20240529 | | | 97.96 46 | 98.04 39 | 97.71 113 | 98.69 127 | 94.28 152 | 97.86 62 | 98.31 194 | 98.79 22 | 99.23 26 | 98.86 53 | 95.76 115 | 99.61 158 | 95.49 118 | 99.36 159 | 99.23 127 |
|
XVS | | | 97.96 46 | 97.63 74 | 98.94 18 | 99.15 74 | 97.66 20 | 97.77 66 | 98.83 106 | 97.42 69 | 96.32 225 | 97.64 176 | 96.49 86 | 99.72 86 | 95.66 110 | 99.37 156 | 99.45 69 |
|
NR-MVSNet | | | 97.96 46 | 97.86 50 | 98.26 70 | 98.73 118 | 95.54 94 | 98.14 47 | 98.73 129 | 97.79 46 | 99.42 15 | 97.83 157 | 94.40 163 | 99.78 43 | 95.91 97 | 99.76 42 | 99.46 64 |
|
ACMMPR | | | 97.95 50 | 97.62 76 | 98.94 18 | 99.20 67 | 97.56 26 | 97.59 78 | 98.83 106 | 96.05 121 | 97.46 163 | 97.63 177 | 96.77 71 | 99.76 58 | 95.61 114 | 99.46 128 | 99.49 53 |
|
FMVSNet1 | | | 97.95 50 | 98.08 35 | 97.56 124 | 99.14 82 | 93.67 174 | 98.23 39 | 98.66 149 | 97.41 72 | 99.00 36 | 99.19 24 | 95.47 127 | 99.73 81 | 95.83 102 | 99.76 42 | 99.30 107 |
|
SED-MVS | | | 97.94 52 | 97.90 45 | 98.07 87 | 99.22 59 | 95.35 107 | 96.79 122 | 98.83 106 | 96.11 118 | 99.08 31 | 98.24 105 | 97.87 20 | 99.72 86 | 95.44 125 | 99.51 111 | 99.14 143 |
|
HFP-MVS | | | 97.94 52 | 97.64 72 | 98.83 26 | 99.15 74 | 97.50 30 | 97.59 78 | 98.84 99 | 96.05 121 | 97.49 157 | 97.54 183 | 97.07 48 | 99.70 109 | 95.61 114 | 99.46 128 | 99.30 107 |
|
LPG-MVS_test | | | 97.94 52 | 97.67 66 | 98.74 35 | 99.15 74 | 97.02 44 | 97.09 109 | 99.02 52 | 95.15 167 | 98.34 82 | 98.23 107 | 97.91 17 | 99.70 109 | 94.41 178 | 99.73 48 | 99.50 45 |
|
FIs | | | 97.93 55 | 98.07 36 | 97.48 136 | 99.38 40 | 92.95 194 | 98.03 54 | 99.11 29 | 98.04 42 | 98.62 52 | 98.66 65 | 93.75 179 | 99.78 43 | 97.23 45 | 99.84 29 | 99.73 15 |
|
ZNCC-MVS | | | 97.92 56 | 97.62 76 | 98.83 26 | 99.32 47 | 97.24 41 | 97.45 88 | 98.84 99 | 95.76 141 | 96.93 196 | 97.43 194 | 97.26 40 | 99.79 39 | 96.06 84 | 99.53 101 | 99.45 69 |
|
region2R | | | 97.92 56 | 97.59 79 | 98.92 22 | 99.22 59 | 97.55 27 | 97.60 77 | 98.84 99 | 96.00 126 | 97.22 170 | 97.62 178 | 96.87 67 | 99.76 58 | 95.48 121 | 99.43 141 | 99.46 64 |
|
CP-MVS | | | 97.92 56 | 97.56 82 | 98.99 13 | 98.99 97 | 97.82 16 | 97.93 57 | 98.96 71 | 96.11 118 | 96.89 199 | 97.45 192 | 96.85 68 | 99.78 43 | 95.19 140 | 99.63 68 | 99.38 88 |
|
mPP-MVS | | | 97.91 59 | 97.53 83 | 99.04 7 | 99.22 59 | 97.87 15 | 97.74 70 | 98.78 120 | 96.04 123 | 97.10 180 | 97.73 169 | 96.53 83 | 99.78 43 | 95.16 144 | 99.50 115 | 99.46 64 |
|
DROMVSNet | | | 97.90 60 | 97.94 44 | 97.79 107 | 98.66 129 | 95.14 120 | 98.31 33 | 99.66 2 | 97.57 61 | 95.95 242 | 97.01 229 | 96.99 55 | 99.82 29 | 97.66 33 | 99.64 66 | 98.39 241 |
|
ACMMP_NAP | | | 97.89 61 | 97.63 74 | 98.67 41 | 99.35 43 | 96.84 49 | 96.36 142 | 98.79 116 | 95.07 171 | 97.88 138 | 98.35 86 | 97.24 42 | 99.72 86 | 96.05 86 | 99.58 83 | 99.45 69 |
|
PGM-MVS | | | 97.88 62 | 97.52 84 | 98.96 16 | 99.20 67 | 97.62 22 | 97.09 109 | 99.06 41 | 95.45 155 | 97.55 151 | 97.94 145 | 97.11 44 | 99.78 43 | 94.77 166 | 99.46 128 | 99.48 59 |
|
DP-MVS | | | 97.87 63 | 97.89 48 | 97.81 106 | 98.62 135 | 94.82 129 | 97.13 107 | 98.79 116 | 98.98 17 | 98.74 48 | 98.49 77 | 95.80 114 | 99.49 189 | 95.04 153 | 99.44 133 | 99.11 155 |
|
RPSCF | | | 97.87 63 | 97.51 85 | 98.95 17 | 99.15 74 | 98.43 3 | 97.56 80 | 99.06 41 | 96.19 115 | 98.48 66 | 98.70 62 | 94.72 149 | 99.24 259 | 94.37 181 | 99.33 174 | 99.17 136 |
|
KD-MVS_self_test | | | 97.86 65 | 98.07 36 | 97.25 157 | 99.22 59 | 92.81 197 | 97.55 81 | 98.94 74 | 97.10 81 | 98.85 41 | 98.88 51 | 95.03 141 | 99.67 130 | 97.39 43 | 99.65 64 | 99.26 120 |
|
test_0402 | | | 97.84 66 | 97.97 41 | 97.47 137 | 99.19 69 | 94.07 158 | 96.71 130 | 98.73 129 | 98.66 25 | 98.56 59 | 98.41 82 | 96.84 69 | 99.69 117 | 94.82 161 | 99.81 33 | 98.64 221 |
|
UniMVSNet_NR-MVSNet | | | 97.83 67 | 97.65 69 | 98.37 61 | 98.72 120 | 95.78 82 | 95.66 184 | 99.02 52 | 98.11 40 | 98.31 89 | 97.69 174 | 94.65 154 | 99.85 22 | 97.02 57 | 99.71 54 | 99.48 59 |
|
UniMVSNet (Re) | | | 97.83 67 | 97.65 69 | 98.35 64 | 98.80 111 | 95.86 81 | 95.92 171 | 99.04 49 | 97.51 66 | 98.22 98 | 97.81 161 | 94.68 152 | 99.78 43 | 97.14 53 | 99.75 46 | 99.41 83 |
|
GST-MVS | | | 97.82 69 | 97.49 88 | 98.81 29 | 99.23 56 | 97.25 40 | 97.16 103 | 98.79 116 | 95.96 128 | 97.53 152 | 97.40 196 | 96.93 60 | 99.77 53 | 95.04 153 | 99.35 164 | 99.42 81 |
|
DeepC-MVS | | 95.41 4 | 97.82 69 | 97.70 62 | 98.16 79 | 98.78 114 | 95.72 84 | 96.23 151 | 99.02 52 | 93.92 211 | 98.62 52 | 98.99 42 | 97.69 23 | 99.62 151 | 96.18 80 | 99.87 24 | 99.15 140 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DU-MVS | | | 97.79 71 | 97.60 78 | 98.36 62 | 98.73 118 | 95.78 82 | 95.65 187 | 98.87 87 | 97.57 61 | 98.31 89 | 97.83 157 | 94.69 150 | 99.85 22 | 97.02 57 | 99.71 54 | 99.46 64 |
|
DVP-MVS |  | | 97.78 72 | 97.65 69 | 98.16 79 | 99.24 54 | 95.51 96 | 96.74 125 | 98.23 200 | 95.92 131 | 98.40 73 | 98.28 99 | 97.06 50 | 99.71 100 | 95.48 121 | 99.52 106 | 99.26 120 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
LS3D | | | 97.77 73 | 97.50 87 | 98.57 48 | 96.24 313 | 97.58 25 | 98.45 26 | 98.85 94 | 98.58 27 | 97.51 154 | 97.94 145 | 95.74 116 | 99.63 143 | 95.19 140 | 98.97 222 | 98.51 233 |
|
GeoE | | | 97.75 74 | 97.70 62 | 97.89 100 | 98.88 106 | 94.53 140 | 97.10 108 | 98.98 66 | 95.75 143 | 97.62 149 | 97.59 180 | 97.61 27 | 99.77 53 | 96.34 76 | 99.44 133 | 99.36 96 |
|
3Dnovator+ | | 96.13 3 | 97.73 75 | 97.59 79 | 98.15 82 | 98.11 196 | 95.60 92 | 98.04 52 | 98.70 139 | 98.13 39 | 96.93 196 | 98.45 80 | 95.30 134 | 99.62 151 | 95.64 112 | 98.96 223 | 99.24 126 |
|
tfpnnormal | | | 97.72 76 | 97.97 41 | 96.94 171 | 99.26 50 | 92.23 207 | 97.83 64 | 98.45 171 | 98.25 35 | 99.13 30 | 98.66 65 | 96.65 75 | 99.69 117 | 93.92 202 | 99.62 69 | 98.91 188 |
|
Baseline_NR-MVSNet | | | 97.72 76 | 97.79 55 | 97.50 132 | 99.56 17 | 93.29 185 | 95.44 194 | 98.86 90 | 98.20 38 | 98.37 76 | 99.24 20 | 94.69 150 | 99.55 173 | 95.98 93 | 99.79 38 | 99.65 23 |
|
MP-MVS-pluss | | | 97.69 78 | 97.36 94 | 98.70 39 | 99.50 27 | 96.84 49 | 95.38 201 | 98.99 63 | 92.45 252 | 98.11 110 | 98.31 90 | 97.25 41 | 99.77 53 | 96.60 64 | 99.62 69 | 99.48 59 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
EG-PatchMatch MVS | | | 97.69 78 | 97.79 55 | 97.40 147 | 99.06 89 | 93.52 181 | 95.96 167 | 98.97 70 | 94.55 191 | 98.82 43 | 98.76 58 | 97.31 36 | 99.29 251 | 97.20 50 | 99.44 133 | 99.38 88 |
|
DPE-MVS |  | | 97.64 80 | 97.35 95 | 98.50 52 | 98.85 107 | 96.18 69 | 95.21 216 | 98.99 63 | 95.84 138 | 98.78 45 | 98.08 123 | 96.84 69 | 99.81 32 | 93.98 200 | 99.57 86 | 99.52 42 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MP-MVS |  | | 97.64 80 | 97.18 107 | 99.00 12 | 99.32 47 | 97.77 18 | 97.49 87 | 98.73 129 | 96.27 109 | 95.59 257 | 97.75 166 | 96.30 96 | 99.78 43 | 93.70 210 | 99.48 123 | 99.45 69 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
#test# | | | 97.62 82 | 97.22 105 | 98.83 26 | 99.15 74 | 97.50 30 | 96.81 121 | 98.84 99 | 94.25 200 | 97.49 157 | 97.54 183 | 97.07 48 | 99.70 109 | 94.37 181 | 99.46 128 | 99.30 107 |
|
3Dnovator | | 96.53 2 | 97.61 83 | 97.64 72 | 97.50 132 | 97.74 246 | 93.65 178 | 98.49 23 | 98.88 85 | 96.86 87 | 97.11 179 | 98.55 73 | 95.82 108 | 99.73 81 | 95.94 95 | 99.42 144 | 99.13 146 |
|
SF-MVS | | | 97.60 84 | 97.39 92 | 98.22 75 | 98.93 102 | 95.69 86 | 97.05 111 | 99.10 31 | 95.32 160 | 97.83 144 | 97.88 152 | 96.44 90 | 99.72 86 | 94.59 173 | 99.39 153 | 99.25 124 |
|
v8 | | | 97.60 84 | 98.06 38 | 96.23 212 | 98.71 123 | 89.44 255 | 97.43 91 | 98.82 114 | 97.29 77 | 98.74 48 | 99.10 35 | 93.86 175 | 99.68 125 | 98.61 10 | 99.94 8 | 99.56 35 |
|
XVG-ACMP-BASELINE | | | 97.58 86 | 97.28 100 | 98.49 53 | 99.16 71 | 96.90 48 | 96.39 139 | 98.98 66 | 95.05 172 | 98.06 118 | 98.02 134 | 95.86 104 | 99.56 169 | 94.37 181 | 99.64 66 | 99.00 171 |
|
v10 | | | 97.55 87 | 97.97 41 | 96.31 209 | 98.60 138 | 89.64 251 | 97.44 89 | 99.02 52 | 96.60 94 | 98.72 50 | 99.16 30 | 93.48 184 | 99.72 86 | 98.76 6 | 99.92 14 | 99.58 28 |
|
OPM-MVS | | | 97.54 88 | 97.25 101 | 98.41 58 | 99.11 84 | 96.61 57 | 95.24 214 | 98.46 170 | 94.58 190 | 98.10 113 | 98.07 125 | 97.09 47 | 99.39 224 | 95.16 144 | 99.44 133 | 99.21 129 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
XXY-MVS | | | 97.54 88 | 97.70 62 | 97.07 165 | 99.46 30 | 92.21 208 | 97.22 101 | 99.00 60 | 94.93 178 | 98.58 58 | 98.92 48 | 97.31 36 | 99.41 217 | 94.44 176 | 99.43 141 | 99.59 27 |
|
Regformer-4 | | | 97.53 90 | 97.47 90 | 97.71 113 | 97.35 275 | 93.91 163 | 95.26 211 | 98.14 216 | 97.97 43 | 98.34 82 | 97.89 150 | 95.49 124 | 99.71 100 | 97.41 41 | 99.42 144 | 99.51 44 |
|
casdiffmvs | | | 97.50 91 | 97.81 54 | 96.56 196 | 98.51 148 | 91.04 230 | 95.83 176 | 99.09 36 | 97.23 78 | 98.33 86 | 98.30 94 | 97.03 52 | 99.37 230 | 96.58 66 | 99.38 155 | 99.28 115 |
|
SixPastTwentyTwo | | | 97.49 92 | 97.57 81 | 97.26 156 | 99.56 17 | 92.33 204 | 98.28 36 | 96.97 280 | 98.30 34 | 99.45 14 | 99.35 16 | 88.43 267 | 99.89 16 | 98.01 20 | 99.76 42 | 99.54 38 |
|
SMA-MVS |  | | 97.48 93 | 97.11 110 | 98.60 46 | 98.83 108 | 96.67 54 | 96.74 125 | 98.73 129 | 91.61 263 | 98.48 66 | 98.36 85 | 96.53 83 | 99.68 125 | 95.17 142 | 99.54 98 | 99.45 69 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMP | | 92.54 13 | 97.47 94 | 97.10 111 | 98.55 50 | 99.04 94 | 96.70 53 | 96.24 150 | 98.89 79 | 93.71 216 | 97.97 129 | 97.75 166 | 97.44 30 | 99.63 143 | 93.22 219 | 99.70 57 | 99.32 101 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MSP-MVS | | | 97.45 95 | 96.92 123 | 99.03 8 | 99.26 50 | 97.70 19 | 97.66 73 | 98.89 79 | 95.65 145 | 98.51 62 | 96.46 262 | 92.15 215 | 99.81 32 | 95.14 147 | 98.58 264 | 99.58 28 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
baseline | | | 97.44 96 | 97.78 58 | 96.43 202 | 98.52 147 | 90.75 237 | 96.84 119 | 99.03 50 | 96.51 99 | 97.86 142 | 98.02 134 | 96.67 74 | 99.36 232 | 97.09 54 | 99.47 125 | 99.19 133 |
|
TSAR-MVS + MP. | | | 97.42 97 | 97.23 104 | 98.00 94 | 99.38 40 | 95.00 124 | 97.63 76 | 98.20 204 | 93.00 240 | 98.16 104 | 98.06 130 | 95.89 103 | 99.72 86 | 95.67 108 | 99.10 210 | 99.28 115 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
Regformer-2 | | | 97.41 98 | 97.24 103 | 97.93 98 | 97.21 287 | 94.72 132 | 94.85 237 | 98.27 195 | 97.74 51 | 98.11 110 | 97.50 188 | 95.58 122 | 99.69 117 | 96.57 67 | 99.31 178 | 99.37 95 |
|
CSCG | | | 97.40 99 | 97.30 97 | 97.69 117 | 98.95 99 | 94.83 128 | 97.28 97 | 98.99 63 | 96.35 108 | 98.13 109 | 95.95 290 | 95.99 101 | 99.66 136 | 94.36 184 | 99.73 48 | 98.59 227 |
|
XVG-OURS-SEG-HR | | | 97.38 100 | 97.07 114 | 98.30 68 | 99.01 96 | 97.41 36 | 94.66 244 | 99.02 52 | 95.20 164 | 98.15 106 | 97.52 186 | 98.83 4 | 98.43 339 | 94.87 159 | 96.41 331 | 99.07 162 |
|
VDD-MVS | | | 97.37 101 | 97.25 101 | 97.74 111 | 98.69 127 | 94.50 143 | 97.04 112 | 95.61 309 | 98.59 26 | 98.51 62 | 98.72 60 | 92.54 208 | 99.58 162 | 96.02 89 | 99.49 119 | 99.12 151 |
|
SD-MVS | | | 97.37 101 | 97.70 62 | 96.35 206 | 98.14 191 | 95.13 121 | 96.54 134 | 98.92 76 | 95.94 130 | 99.19 28 | 98.08 123 | 97.74 22 | 95.06 368 | 95.24 138 | 99.54 98 | 98.87 198 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
PM-MVS | | | 97.36 103 | 97.10 111 | 98.14 83 | 98.91 104 | 96.77 51 | 96.20 152 | 98.63 155 | 93.82 213 | 98.54 60 | 98.33 88 | 93.98 173 | 99.05 284 | 95.99 92 | 99.45 132 | 98.61 226 |
|
LCM-MVSNet-Re | | | 97.33 104 | 97.33 96 | 97.32 152 | 98.13 194 | 93.79 170 | 96.99 115 | 99.65 3 | 96.74 90 | 99.47 13 | 98.93 47 | 96.91 63 | 99.84 25 | 90.11 283 | 99.06 217 | 98.32 250 |
|
EI-MVSNet-UG-set | | | 97.32 105 | 97.40 91 | 97.09 164 | 97.34 279 | 92.01 216 | 95.33 205 | 97.65 253 | 97.74 51 | 98.30 91 | 98.14 116 | 95.04 140 | 99.69 117 | 97.55 37 | 99.52 106 | 99.58 28 |
|
EI-MVSNet-Vis-set | | | 97.32 105 | 97.39 92 | 97.11 162 | 97.36 274 | 92.08 214 | 95.34 204 | 97.65 253 | 97.74 51 | 98.29 92 | 98.11 121 | 95.05 138 | 99.68 125 | 97.50 39 | 99.50 115 | 99.56 35 |
|
Regformer-1 | | | 97.27 107 | 97.16 108 | 97.61 122 | 97.21 287 | 93.86 166 | 94.85 237 | 98.04 230 | 97.62 60 | 98.03 122 | 97.50 188 | 95.34 131 | 99.63 143 | 96.52 68 | 99.31 178 | 99.35 98 |
|
VPNet | | | 97.26 108 | 97.49 88 | 96.59 192 | 99.47 29 | 90.58 239 | 96.27 146 | 98.53 164 | 97.77 47 | 98.46 69 | 98.41 82 | 94.59 156 | 99.68 125 | 94.61 169 | 99.29 182 | 99.52 42 |
|
Regformer-3 | | | 97.25 109 | 97.29 98 | 97.11 162 | 97.35 275 | 92.32 205 | 95.26 211 | 97.62 258 | 97.67 59 | 98.17 103 | 97.89 150 | 95.05 138 | 99.56 169 | 97.16 52 | 99.42 144 | 99.46 64 |
|
xxxxxxxxxxxxxcwj | | | 97.24 110 | 97.03 117 | 97.89 100 | 98.48 154 | 94.71 133 | 94.53 249 | 99.07 40 | 95.02 174 | 97.83 144 | 97.88 152 | 96.44 90 | 99.72 86 | 94.59 173 | 99.39 153 | 99.25 124 |
|
canonicalmvs | | | 97.23 111 | 97.21 106 | 97.30 153 | 97.65 254 | 94.39 145 | 97.84 63 | 99.05 43 | 97.42 69 | 96.68 208 | 93.85 331 | 97.63 26 | 99.33 240 | 96.29 77 | 98.47 268 | 98.18 266 |
|
AllTest | | | 97.20 112 | 96.92 123 | 98.06 89 | 99.08 86 | 96.16 70 | 97.14 106 | 99.16 20 | 94.35 196 | 97.78 147 | 98.07 125 | 95.84 105 | 99.12 274 | 91.41 247 | 99.42 144 | 98.91 188 |
|
XVG-OURS | | | 97.12 113 | 96.74 132 | 98.26 70 | 98.99 97 | 97.45 34 | 93.82 279 | 99.05 43 | 95.19 165 | 98.32 87 | 97.70 172 | 95.22 136 | 98.41 340 | 94.27 186 | 98.13 279 | 98.93 183 |
|
Anonymous20240521 | | | 97.07 114 | 97.51 85 | 95.76 233 | 99.35 43 | 88.18 277 | 97.78 65 | 98.40 181 | 97.11 80 | 98.34 82 | 99.04 40 | 89.58 254 | 99.79 39 | 98.09 18 | 99.93 10 | 99.30 107 |
|
V42 | | | 97.04 115 | 97.16 108 | 96.68 189 | 98.59 140 | 91.05 229 | 96.33 144 | 98.36 186 | 94.60 187 | 97.99 125 | 98.30 94 | 93.32 186 | 99.62 151 | 97.40 42 | 99.53 101 | 99.38 88 |
|
APD-MVS |  | | 97.00 116 | 96.53 146 | 98.41 58 | 98.55 144 | 96.31 66 | 96.32 145 | 98.77 121 | 92.96 245 | 97.44 165 | 97.58 182 | 95.84 105 | 99.74 75 | 91.96 234 | 99.35 164 | 99.19 133 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HPM-MVS++ |  | | 96.99 117 | 96.38 153 | 98.81 29 | 98.64 130 | 97.59 24 | 95.97 166 | 98.20 204 | 95.51 153 | 95.06 266 | 96.53 258 | 94.10 170 | 99.70 109 | 94.29 185 | 99.15 199 | 99.13 146 |
|
GBi-Net | | | 96.99 117 | 96.80 129 | 97.56 124 | 97.96 208 | 93.67 174 | 98.23 39 | 98.66 149 | 95.59 150 | 97.99 125 | 99.19 24 | 89.51 258 | 99.73 81 | 94.60 170 | 99.44 133 | 99.30 107 |
|
test1 | | | 96.99 117 | 96.80 129 | 97.56 124 | 97.96 208 | 93.67 174 | 98.23 39 | 98.66 149 | 95.59 150 | 97.99 125 | 99.19 24 | 89.51 258 | 99.73 81 | 94.60 170 | 99.44 133 | 99.30 107 |
|
VDDNet | | | 96.98 120 | 96.84 126 | 97.41 146 | 99.40 38 | 93.26 186 | 97.94 56 | 95.31 315 | 99.26 7 | 98.39 75 | 99.18 27 | 87.85 276 | 99.62 151 | 95.13 149 | 99.09 211 | 99.35 98 |
|
PHI-MVS | | | 96.96 121 | 96.53 146 | 98.25 73 | 97.48 265 | 96.50 60 | 96.76 124 | 98.85 94 | 93.52 219 | 96.19 234 | 96.85 237 | 95.94 102 | 99.42 208 | 93.79 206 | 99.43 141 | 98.83 201 |
|
IS-MVSNet | | | 96.93 122 | 96.68 135 | 97.70 115 | 99.25 53 | 94.00 161 | 98.57 17 | 96.74 289 | 98.36 31 | 98.14 108 | 97.98 139 | 88.23 269 | 99.71 100 | 93.10 222 | 99.72 51 | 99.38 88 |
|
CNVR-MVS | | | 96.92 123 | 96.55 143 | 98.03 93 | 98.00 206 | 95.54 94 | 94.87 235 | 98.17 210 | 94.60 187 | 96.38 222 | 97.05 225 | 95.67 118 | 99.36 232 | 95.12 150 | 99.08 212 | 99.19 133 |
|
IterMVS-LS | | | 96.92 123 | 97.29 98 | 95.79 232 | 98.51 148 | 88.13 280 | 95.10 219 | 98.66 149 | 96.99 82 | 98.46 69 | 98.68 64 | 92.55 206 | 99.74 75 | 96.91 60 | 99.79 38 | 99.50 45 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
WR-MVS | | | 96.90 125 | 96.81 128 | 97.16 159 | 98.56 143 | 92.20 210 | 94.33 253 | 98.12 219 | 97.34 74 | 98.20 99 | 97.33 207 | 92.81 197 | 99.75 65 | 94.79 163 | 99.81 33 | 99.54 38 |
|
DeepPCF-MVS | | 94.58 5 | 96.90 125 | 96.43 152 | 98.31 67 | 97.48 265 | 97.23 42 | 92.56 311 | 98.60 157 | 92.84 247 | 98.54 60 | 97.40 196 | 96.64 77 | 98.78 310 | 94.40 180 | 99.41 150 | 98.93 183 |
|
ETH3D-3000-0.1 | | | 96.89 127 | 96.46 151 | 98.16 79 | 98.62 135 | 95.69 86 | 95.96 167 | 98.98 66 | 93.36 224 | 97.04 187 | 97.31 209 | 94.93 145 | 99.63 143 | 92.60 226 | 99.34 167 | 99.17 136 |
|
v1144 | | | 96.84 128 | 97.08 113 | 96.13 218 | 98.42 160 | 89.28 258 | 95.41 198 | 98.67 147 | 94.21 201 | 97.97 129 | 98.31 90 | 93.06 191 | 99.65 138 | 98.06 19 | 99.62 69 | 99.45 69 |
|
VNet | | | 96.84 128 | 96.83 127 | 96.88 175 | 98.06 197 | 92.02 215 | 96.35 143 | 97.57 260 | 97.70 56 | 97.88 138 | 97.80 162 | 92.40 212 | 99.54 176 | 94.73 168 | 98.96 223 | 99.08 160 |
|
EPP-MVSNet | | | 96.84 128 | 96.58 140 | 97.65 119 | 99.18 70 | 93.78 171 | 98.68 12 | 96.34 293 | 97.91 45 | 97.30 168 | 98.06 130 | 88.46 266 | 99.85 22 | 93.85 204 | 99.40 151 | 99.32 101 |
|
v1192 | | | 96.83 131 | 97.06 115 | 96.15 217 | 98.28 170 | 89.29 257 | 95.36 202 | 98.77 121 | 93.73 215 | 98.11 110 | 98.34 87 | 93.02 195 | 99.67 130 | 98.35 14 | 99.58 83 | 99.50 45 |
|
MVS_111021_LR | | | 96.82 132 | 96.55 143 | 97.62 121 | 98.27 172 | 95.34 109 | 93.81 281 | 98.33 191 | 94.59 189 | 96.56 214 | 96.63 253 | 96.61 78 | 98.73 315 | 94.80 162 | 99.34 167 | 98.78 207 |
|
Effi-MVS+-dtu | | | 96.81 133 | 96.09 166 | 98.99 13 | 96.90 300 | 98.69 2 | 96.42 138 | 98.09 221 | 95.86 136 | 95.15 265 | 95.54 301 | 94.26 166 | 99.81 32 | 94.06 194 | 98.51 267 | 98.47 236 |
|
UGNet | | | 96.81 133 | 96.56 142 | 97.58 123 | 96.64 303 | 93.84 168 | 97.75 69 | 97.12 274 | 96.47 103 | 93.62 309 | 98.88 51 | 93.22 189 | 99.53 178 | 95.61 114 | 99.69 58 | 99.36 96 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
v2v482 | | | 96.78 135 | 97.06 115 | 95.95 225 | 98.57 142 | 88.77 268 | 95.36 202 | 98.26 197 | 95.18 166 | 97.85 143 | 98.23 107 | 92.58 205 | 99.63 143 | 97.80 27 | 99.69 58 | 99.45 69 |
|
test_part1 | | | 96.77 136 | 96.53 146 | 97.47 137 | 98.04 198 | 92.92 195 | 97.93 57 | 98.85 94 | 98.83 21 | 99.30 21 | 99.07 38 | 79.25 318 | 99.79 39 | 97.59 35 | 99.93 10 | 99.69 20 |
|
v1240 | | | 96.74 137 | 97.02 118 | 95.91 228 | 98.18 184 | 88.52 270 | 95.39 200 | 98.88 85 | 93.15 236 | 98.46 69 | 98.40 84 | 92.80 198 | 99.71 100 | 98.45 13 | 99.49 119 | 99.49 53 |
|
DeepC-MVS_fast | | 94.34 7 | 96.74 137 | 96.51 149 | 97.44 143 | 97.69 249 | 94.15 156 | 96.02 162 | 98.43 174 | 93.17 235 | 97.30 168 | 97.38 202 | 95.48 126 | 99.28 253 | 93.74 207 | 99.34 167 | 98.88 196 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MVS_111021_HR | | | 96.73 139 | 96.54 145 | 97.27 154 | 98.35 165 | 93.66 177 | 93.42 291 | 98.36 186 | 94.74 182 | 96.58 212 | 96.76 246 | 96.54 82 | 98.99 291 | 94.87 159 | 99.27 185 | 99.15 140 |
|
v1921920 | | | 96.72 140 | 96.96 121 | 95.99 221 | 98.21 179 | 88.79 267 | 95.42 196 | 98.79 116 | 93.22 230 | 98.19 102 | 98.26 104 | 92.68 201 | 99.70 109 | 98.34 15 | 99.55 95 | 99.49 53 |
|
FMVSNet2 | | | 96.72 140 | 96.67 136 | 96.87 176 | 97.96 208 | 91.88 218 | 97.15 104 | 98.06 228 | 95.59 150 | 98.50 64 | 98.62 68 | 89.51 258 | 99.65 138 | 94.99 157 | 99.60 79 | 99.07 162 |
|
PMVS |  | 89.60 17 | 96.71 142 | 96.97 119 | 95.95 225 | 99.51 24 | 97.81 17 | 97.42 92 | 97.49 261 | 97.93 44 | 95.95 242 | 98.58 69 | 96.88 66 | 96.91 362 | 89.59 291 | 99.36 159 | 93.12 362 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
testtj | | | 96.69 143 | 96.13 163 | 98.36 62 | 98.46 158 | 96.02 77 | 96.44 137 | 98.70 139 | 94.26 199 | 96.79 201 | 97.13 217 | 94.07 171 | 99.75 65 | 90.53 275 | 98.80 243 | 99.31 106 |
|
v144192 | | | 96.69 143 | 96.90 125 | 96.03 220 | 98.25 175 | 88.92 262 | 95.49 192 | 98.77 121 | 93.05 238 | 98.09 114 | 98.29 98 | 92.51 210 | 99.70 109 | 98.11 17 | 99.56 89 | 99.47 62 |
|
CPTT-MVS | | | 96.69 143 | 96.08 167 | 98.49 53 | 98.89 105 | 96.64 56 | 97.25 98 | 98.77 121 | 92.89 246 | 96.01 241 | 97.13 217 | 92.23 214 | 99.67 130 | 92.24 231 | 99.34 167 | 99.17 136 |
|
HQP_MVS | | | 96.66 146 | 96.33 156 | 97.68 118 | 98.70 125 | 94.29 149 | 96.50 135 | 98.75 125 | 96.36 106 | 96.16 235 | 96.77 244 | 91.91 226 | 99.46 198 | 92.59 228 | 99.20 192 | 99.28 115 |
|
EI-MVSNet | | | 96.63 147 | 96.93 122 | 95.74 234 | 97.26 284 | 88.13 280 | 95.29 209 | 97.65 253 | 96.99 82 | 97.94 132 | 98.19 112 | 92.55 206 | 99.58 162 | 96.91 60 | 99.56 89 | 99.50 45 |
|
CS-MVS-test | | | 96.62 148 | 96.59 138 | 96.69 187 | 97.88 216 | 93.16 189 | 97.21 102 | 99.53 6 | 95.61 148 | 93.72 304 | 95.33 305 | 95.49 124 | 99.69 117 | 95.37 132 | 99.19 196 | 97.22 309 |
|
ab-mvs | | | 96.59 149 | 96.59 138 | 96.60 191 | 98.64 130 | 92.21 208 | 98.35 29 | 97.67 249 | 94.45 192 | 96.99 191 | 98.79 55 | 94.96 144 | 99.49 189 | 90.39 280 | 99.07 214 | 98.08 269 |
|
v148 | | | 96.58 150 | 96.97 119 | 95.42 248 | 98.63 134 | 87.57 291 | 95.09 221 | 97.90 234 | 95.91 133 | 98.24 96 | 97.96 140 | 93.42 185 | 99.39 224 | 96.04 87 | 99.52 106 | 99.29 114 |
|
test20.03 | | | 96.58 150 | 96.61 137 | 96.48 200 | 98.49 152 | 91.72 222 | 95.68 183 | 97.69 248 | 96.81 88 | 98.27 93 | 97.92 148 | 94.18 169 | 98.71 317 | 90.78 264 | 99.66 63 | 99.00 171 |
|
NCCC | | | 96.52 152 | 95.99 171 | 98.10 85 | 97.81 225 | 95.68 88 | 95.00 230 | 98.20 204 | 95.39 158 | 95.40 261 | 96.36 269 | 93.81 177 | 99.45 202 | 93.55 213 | 98.42 269 | 99.17 136 |
|
pmmvs-eth3d | | | 96.49 153 | 96.18 162 | 97.42 145 | 98.25 175 | 94.29 149 | 94.77 241 | 98.07 227 | 89.81 284 | 97.97 129 | 98.33 88 | 93.11 190 | 99.08 281 | 95.46 124 | 99.84 29 | 98.89 192 |
|
OMC-MVS | | | 96.48 154 | 96.00 170 | 97.91 99 | 98.30 167 | 96.01 78 | 94.86 236 | 98.60 157 | 91.88 260 | 97.18 174 | 97.21 215 | 96.11 99 | 99.04 285 | 90.49 279 | 99.34 167 | 98.69 218 |
|
TSAR-MVS + GP. | | | 96.47 155 | 96.12 164 | 97.49 135 | 97.74 246 | 95.23 114 | 94.15 264 | 96.90 282 | 93.26 228 | 98.04 121 | 96.70 249 | 94.41 162 | 98.89 301 | 94.77 166 | 99.14 200 | 98.37 243 |
|
Fast-Effi-MVS+-dtu | | | 96.44 156 | 96.12 164 | 97.39 148 | 97.18 289 | 94.39 145 | 95.46 193 | 98.73 129 | 96.03 125 | 94.72 274 | 94.92 315 | 96.28 98 | 99.69 117 | 93.81 205 | 97.98 284 | 98.09 268 |
|
K. test v3 | | | 96.44 156 | 96.28 157 | 96.95 170 | 99.41 37 | 91.53 224 | 97.65 74 | 90.31 358 | 98.89 19 | 98.93 38 | 99.36 14 | 84.57 296 | 99.92 4 | 97.81 26 | 99.56 89 | 99.39 86 |
|
MSLP-MVS++ | | | 96.42 158 | 96.71 133 | 95.57 240 | 97.82 224 | 90.56 241 | 95.71 179 | 98.84 99 | 94.72 183 | 96.71 207 | 97.39 200 | 94.91 146 | 98.10 354 | 95.28 135 | 99.02 219 | 98.05 278 |
|
Anonymous202405211 | | | 96.34 159 | 95.98 172 | 97.43 144 | 98.25 175 | 93.85 167 | 96.74 125 | 94.41 322 | 97.72 54 | 98.37 76 | 98.03 133 | 87.15 280 | 99.53 178 | 94.06 194 | 99.07 214 | 98.92 187 |
|
h-mvs33 | | | 96.29 160 | 95.63 184 | 98.26 70 | 98.50 151 | 96.11 73 | 96.90 117 | 97.09 275 | 96.58 96 | 97.21 172 | 98.19 112 | 84.14 297 | 99.78 43 | 95.89 98 | 96.17 335 | 98.89 192 |
|
MVS_Test | | | 96.27 161 | 96.79 131 | 94.73 276 | 96.94 298 | 86.63 306 | 96.18 153 | 98.33 191 | 94.94 176 | 96.07 238 | 98.28 99 | 95.25 135 | 99.26 256 | 97.21 48 | 97.90 288 | 98.30 254 |
|
MCST-MVS | | | 96.24 162 | 95.80 178 | 97.56 124 | 98.75 117 | 94.13 157 | 94.66 244 | 98.17 210 | 90.17 281 | 96.21 233 | 96.10 283 | 95.14 137 | 99.43 207 | 94.13 192 | 98.85 239 | 99.13 146 |
|
ETH3D cwj APD-0.16 | | | 96.23 163 | 95.61 186 | 98.09 86 | 97.91 212 | 95.65 91 | 94.94 232 | 98.74 127 | 91.31 269 | 96.02 240 | 97.08 222 | 94.05 172 | 99.69 117 | 91.51 246 | 98.94 227 | 98.93 183 |
|
mvs-test1 | | | 96.20 164 | 95.50 189 | 98.32 65 | 96.90 300 | 98.16 5 | 95.07 224 | 98.09 221 | 95.86 136 | 93.63 308 | 94.32 327 | 94.26 166 | 99.71 100 | 94.06 194 | 97.27 316 | 97.07 312 |
|
Effi-MVS+ | | | 96.19 165 | 96.01 169 | 96.71 185 | 97.43 271 | 92.19 211 | 96.12 156 | 99.10 31 | 95.45 155 | 93.33 321 | 94.71 318 | 97.23 43 | 99.56 169 | 93.21 220 | 97.54 305 | 98.37 243 |
|
DELS-MVS | | | 96.17 166 | 96.23 159 | 95.99 221 | 97.55 262 | 90.04 244 | 92.38 316 | 98.52 165 | 94.13 204 | 96.55 216 | 97.06 224 | 94.99 143 | 99.58 162 | 95.62 113 | 99.28 183 | 98.37 243 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVSFormer | | | 96.14 167 | 96.36 154 | 95.49 245 | 97.68 250 | 87.81 287 | 98.67 13 | 99.02 52 | 96.50 100 | 94.48 283 | 96.15 278 | 86.90 281 | 99.92 4 | 98.73 7 | 99.13 204 | 98.74 212 |
|
ETV-MVS | | | 96.13 168 | 95.90 176 | 96.82 179 | 97.76 241 | 93.89 164 | 95.40 199 | 98.95 73 | 95.87 135 | 95.58 258 | 91.00 362 | 96.36 95 | 99.72 86 | 93.36 214 | 98.83 241 | 96.85 322 |
|
testgi | | | 96.07 169 | 96.50 150 | 94.80 273 | 99.26 50 | 87.69 290 | 95.96 167 | 98.58 160 | 95.08 170 | 98.02 124 | 96.25 273 | 97.92 16 | 97.60 359 | 88.68 305 | 98.74 249 | 99.11 155 |
|
LF4IMVS | | | 96.07 169 | 95.63 184 | 97.36 150 | 98.19 181 | 95.55 93 | 95.44 194 | 98.82 114 | 92.29 254 | 95.70 255 | 96.55 256 | 92.63 204 | 98.69 319 | 91.75 243 | 99.33 174 | 97.85 288 |
|
EIA-MVS | | | 96.04 171 | 95.77 180 | 96.85 177 | 97.80 229 | 92.98 193 | 96.12 156 | 99.16 20 | 94.65 185 | 93.77 302 | 91.69 356 | 95.68 117 | 99.67 130 | 94.18 189 | 98.85 239 | 97.91 286 |
|
diffmvs | | | 96.04 171 | 96.23 159 | 95.46 247 | 97.35 275 | 88.03 282 | 93.42 291 | 99.08 37 | 94.09 206 | 96.66 209 | 96.93 233 | 93.85 176 | 99.29 251 | 96.01 91 | 98.67 254 | 99.06 164 |
|
alignmvs | | | 96.01 173 | 95.52 188 | 97.50 132 | 97.77 240 | 94.71 133 | 96.07 158 | 96.84 283 | 97.48 67 | 96.78 205 | 94.28 328 | 85.50 289 | 99.40 219 | 96.22 78 | 98.73 252 | 98.40 239 |
|
TinyColmap | | | 96.00 174 | 96.34 155 | 94.96 264 | 97.90 214 | 87.91 283 | 94.13 267 | 98.49 168 | 94.41 193 | 98.16 104 | 97.76 163 | 96.29 97 | 98.68 322 | 90.52 276 | 99.42 144 | 98.30 254 |
|
CS-MVS | | | 95.98 175 | 96.24 158 | 95.20 255 | 97.26 284 | 89.88 247 | 95.84 175 | 99.39 9 | 93.89 212 | 94.28 286 | 95.15 308 | 94.81 147 | 99.62 151 | 96.11 83 | 99.40 151 | 96.10 340 |
|
PVSNet_Blended_VisFu | | | 95.95 176 | 95.80 178 | 96.42 203 | 99.28 49 | 90.62 238 | 95.31 207 | 99.08 37 | 88.40 298 | 96.97 194 | 98.17 115 | 92.11 217 | 99.78 43 | 93.64 211 | 99.21 191 | 98.86 199 |
|
test_prior3 | | | 95.91 177 | 95.39 190 | 97.46 140 | 97.79 235 | 94.26 153 | 93.33 296 | 98.42 177 | 94.21 201 | 94.02 295 | 96.25 273 | 93.64 181 | 99.34 237 | 91.90 236 | 98.96 223 | 98.79 205 |
|
UnsupCasMVSNet_eth | | | 95.91 177 | 95.73 181 | 96.44 201 | 98.48 154 | 91.52 225 | 95.31 207 | 98.45 171 | 95.76 141 | 97.48 160 | 97.54 183 | 89.53 257 | 98.69 319 | 94.43 177 | 94.61 350 | 99.13 146 |
|
QAPM | | | 95.88 179 | 95.57 187 | 96.80 180 | 97.90 214 | 91.84 220 | 98.18 46 | 98.73 129 | 88.41 297 | 96.42 220 | 98.13 117 | 94.73 148 | 99.75 65 | 88.72 303 | 98.94 227 | 98.81 203 |
|
CANet | | | 95.86 180 | 95.65 183 | 96.49 199 | 96.41 309 | 90.82 234 | 94.36 252 | 98.41 179 | 94.94 176 | 92.62 335 | 96.73 247 | 92.68 201 | 99.71 100 | 95.12 150 | 99.60 79 | 98.94 179 |
|
IterMVS-SCA-FT | | | 95.86 180 | 96.19 161 | 94.85 270 | 97.68 250 | 85.53 317 | 92.42 314 | 97.63 257 | 96.99 82 | 98.36 79 | 98.54 74 | 87.94 271 | 99.75 65 | 97.07 56 | 99.08 212 | 99.27 119 |
|
hse-mvs2 | | | 95.77 182 | 95.09 198 | 97.79 107 | 97.84 221 | 95.51 96 | 95.66 184 | 95.43 314 | 96.58 96 | 97.21 172 | 96.16 277 | 84.14 297 | 99.54 176 | 95.89 98 | 96.92 318 | 98.32 250 |
|
MVP-Stereo | | | 95.69 183 | 95.28 192 | 96.92 172 | 98.15 190 | 93.03 192 | 95.64 189 | 98.20 204 | 90.39 278 | 96.63 211 | 97.73 169 | 91.63 229 | 99.10 279 | 91.84 240 | 97.31 314 | 98.63 223 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
MDA-MVSNet-bldmvs | | | 95.69 183 | 95.67 182 | 95.74 234 | 98.48 154 | 88.76 269 | 92.84 303 | 97.25 267 | 96.00 126 | 97.59 150 | 97.95 144 | 91.38 231 | 99.46 198 | 93.16 221 | 96.35 332 | 98.99 174 |
|
new-patchmatchnet | | | 95.67 185 | 96.58 140 | 92.94 319 | 97.48 265 | 80.21 354 | 92.96 302 | 98.19 209 | 94.83 180 | 98.82 43 | 98.79 55 | 93.31 187 | 99.51 186 | 95.83 102 | 99.04 218 | 99.12 151 |
|
xiu_mvs_v1_base_debu | | | 95.62 186 | 95.96 173 | 94.60 280 | 98.01 202 | 88.42 271 | 93.99 272 | 98.21 201 | 92.98 241 | 95.91 244 | 94.53 321 | 96.39 92 | 99.72 86 | 95.43 128 | 98.19 276 | 95.64 346 |
|
xiu_mvs_v1_base | | | 95.62 186 | 95.96 173 | 94.60 280 | 98.01 202 | 88.42 271 | 93.99 272 | 98.21 201 | 92.98 241 | 95.91 244 | 94.53 321 | 96.39 92 | 99.72 86 | 95.43 128 | 98.19 276 | 95.64 346 |
|
xiu_mvs_v1_base_debi | | | 95.62 186 | 95.96 173 | 94.60 280 | 98.01 202 | 88.42 271 | 93.99 272 | 98.21 201 | 92.98 241 | 95.91 244 | 94.53 321 | 96.39 92 | 99.72 86 | 95.43 128 | 98.19 276 | 95.64 346 |
|
DP-MVS Recon | | | 95.55 189 | 95.13 196 | 96.80 180 | 98.51 148 | 93.99 162 | 94.60 246 | 98.69 142 | 90.20 280 | 95.78 251 | 96.21 276 | 92.73 200 | 98.98 293 | 90.58 274 | 98.86 237 | 97.42 305 |
|
MVS_0304 | | | 95.50 190 | 95.05 202 | 96.84 178 | 96.28 312 | 93.12 190 | 97.00 114 | 96.16 295 | 95.03 173 | 89.22 357 | 97.70 172 | 90.16 249 | 99.48 192 | 94.51 175 | 99.34 167 | 97.93 285 |
|
Fast-Effi-MVS+ | | | 95.49 191 | 95.07 199 | 96.75 183 | 97.67 253 | 92.82 196 | 94.22 260 | 98.60 157 | 91.61 263 | 93.42 319 | 92.90 341 | 96.73 73 | 99.70 109 | 92.60 226 | 97.89 289 | 97.74 293 |
|
TAMVS | | | 95.49 191 | 94.94 204 | 97.16 159 | 98.31 166 | 93.41 183 | 95.07 224 | 96.82 285 | 91.09 272 | 97.51 154 | 97.82 160 | 89.96 250 | 99.42 208 | 88.42 308 | 99.44 133 | 98.64 221 |
|
OpenMVS |  | 94.22 8 | 95.48 193 | 95.20 193 | 96.32 208 | 97.16 290 | 91.96 217 | 97.74 70 | 98.84 99 | 87.26 307 | 94.36 285 | 98.01 136 | 93.95 174 | 99.67 130 | 90.70 270 | 98.75 248 | 97.35 308 |
|
CLD-MVS | | | 95.47 194 | 95.07 199 | 96.69 187 | 98.27 172 | 92.53 201 | 91.36 329 | 98.67 147 | 91.22 271 | 95.78 251 | 94.12 329 | 95.65 119 | 98.98 293 | 90.81 262 | 99.72 51 | 98.57 228 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
train_agg | | | 95.46 195 | 94.66 219 | 97.88 102 | 97.84 221 | 95.23 114 | 93.62 285 | 98.39 182 | 87.04 311 | 93.78 300 | 95.99 285 | 94.58 157 | 99.52 182 | 91.76 242 | 98.90 231 | 98.89 192 |
|
CDPH-MVS | | | 95.45 196 | 94.65 220 | 97.84 105 | 98.28 170 | 94.96 125 | 93.73 283 | 98.33 191 | 85.03 333 | 95.44 259 | 96.60 254 | 95.31 133 | 99.44 205 | 90.01 285 | 99.13 204 | 99.11 155 |
|
IterMVS | | | 95.42 197 | 95.83 177 | 94.20 293 | 97.52 263 | 83.78 338 | 92.41 315 | 97.47 264 | 95.49 154 | 98.06 118 | 98.49 77 | 87.94 271 | 99.58 162 | 96.02 89 | 99.02 219 | 99.23 127 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
agg_prior1 | | | 95.39 198 | 94.60 225 | 97.75 110 | 97.80 229 | 94.96 125 | 93.39 293 | 98.36 186 | 87.20 309 | 93.49 314 | 95.97 288 | 94.65 154 | 99.53 178 | 91.69 244 | 98.86 237 | 98.77 210 |
|
mvs_anonymous | | | 95.36 199 | 96.07 168 | 93.21 311 | 96.29 311 | 81.56 349 | 94.60 246 | 97.66 251 | 93.30 227 | 96.95 195 | 98.91 49 | 93.03 194 | 99.38 227 | 96.60 64 | 97.30 315 | 98.69 218 |
|
MSDG | | | 95.33 200 | 95.13 196 | 95.94 227 | 97.40 273 | 91.85 219 | 91.02 340 | 98.37 185 | 95.30 161 | 96.31 227 | 95.99 285 | 94.51 160 | 98.38 343 | 89.59 291 | 97.65 302 | 97.60 300 |
|
LFMVS | | | 95.32 201 | 94.88 209 | 96.62 190 | 98.03 199 | 91.47 226 | 97.65 74 | 90.72 355 | 99.11 9 | 97.89 137 | 98.31 90 | 79.20 319 | 99.48 192 | 93.91 203 | 99.12 207 | 98.93 183 |
|
F-COLMAP | | | 95.30 202 | 94.38 237 | 98.05 92 | 98.64 130 | 96.04 75 | 95.61 190 | 98.66 149 | 89.00 291 | 93.22 322 | 96.40 266 | 92.90 196 | 99.35 235 | 87.45 322 | 97.53 306 | 98.77 210 |
|
Anonymous20231206 | | | 95.27 203 | 95.06 201 | 95.88 229 | 98.72 120 | 89.37 256 | 95.70 180 | 97.85 237 | 88.00 303 | 96.98 193 | 97.62 178 | 91.95 222 | 99.34 237 | 89.21 296 | 99.53 101 | 98.94 179 |
|
FMVSNet3 | | | 95.26 204 | 94.94 204 | 96.22 214 | 96.53 306 | 90.06 243 | 95.99 164 | 97.66 251 | 94.11 205 | 97.99 125 | 97.91 149 | 80.22 316 | 99.63 143 | 94.60 170 | 99.44 133 | 98.96 176 |
|
c3_l | | | 95.20 205 | 95.32 191 | 94.83 272 | 96.19 317 | 86.43 309 | 91.83 324 | 98.35 190 | 93.47 221 | 97.36 167 | 97.26 212 | 88.69 264 | 99.28 253 | 95.41 131 | 99.36 159 | 98.78 207 |
|
D2MVS | | | 95.18 206 | 95.17 195 | 95.21 254 | 97.76 241 | 87.76 289 | 94.15 264 | 97.94 232 | 89.77 285 | 96.99 191 | 97.68 175 | 87.45 278 | 99.14 272 | 95.03 155 | 99.81 33 | 98.74 212 |
|
N_pmnet | | | 95.18 206 | 94.23 240 | 98.06 89 | 97.85 217 | 96.55 59 | 92.49 312 | 91.63 346 | 89.34 287 | 98.09 114 | 97.41 195 | 90.33 243 | 99.06 283 | 91.58 245 | 99.31 178 | 98.56 229 |
|
HQP-MVS | | | 95.17 208 | 94.58 228 | 96.92 172 | 97.85 217 | 92.47 202 | 94.26 254 | 98.43 174 | 93.18 232 | 92.86 327 | 95.08 309 | 90.33 243 | 99.23 261 | 90.51 277 | 98.74 249 | 99.05 166 |
|
Vis-MVSNet (Re-imp) | | | 95.11 209 | 94.85 210 | 95.87 230 | 99.12 83 | 89.17 259 | 97.54 86 | 94.92 317 | 96.50 100 | 96.58 212 | 97.27 211 | 83.64 301 | 99.48 192 | 88.42 308 | 99.67 61 | 98.97 175 |
|
AdaColmap |  | | 95.11 209 | 94.62 224 | 96.58 193 | 97.33 281 | 94.45 144 | 94.92 233 | 98.08 223 | 93.15 236 | 93.98 298 | 95.53 302 | 94.34 164 | 99.10 279 | 85.69 333 | 98.61 261 | 96.20 339 |
|
API-MVS | | | 95.09 211 | 95.01 203 | 95.31 251 | 96.61 304 | 94.02 160 | 96.83 120 | 97.18 271 | 95.60 149 | 95.79 249 | 94.33 326 | 94.54 159 | 98.37 345 | 85.70 332 | 98.52 265 | 93.52 359 |
|
CL-MVSNet_self_test | | | 95.04 212 | 94.79 216 | 95.82 231 | 97.51 264 | 89.79 249 | 91.14 337 | 96.82 285 | 93.05 238 | 96.72 206 | 96.40 266 | 90.82 237 | 99.16 270 | 91.95 235 | 98.66 256 | 98.50 234 |
|
CNLPA | | | 95.04 212 | 94.47 233 | 96.75 183 | 97.81 225 | 95.25 113 | 94.12 268 | 97.89 235 | 94.41 193 | 94.57 278 | 95.69 295 | 90.30 246 | 98.35 346 | 86.72 327 | 98.76 247 | 96.64 331 |
|
Patchmtry | | | 95.03 214 | 94.59 227 | 96.33 207 | 94.83 345 | 90.82 234 | 96.38 141 | 97.20 269 | 96.59 95 | 97.49 157 | 98.57 70 | 77.67 326 | 99.38 227 | 92.95 225 | 99.62 69 | 98.80 204 |
|
PVSNet_BlendedMVS | | | 95.02 215 | 94.93 206 | 95.27 252 | 97.79 235 | 87.40 295 | 94.14 266 | 98.68 144 | 88.94 292 | 94.51 281 | 98.01 136 | 93.04 192 | 99.30 247 | 89.77 289 | 99.49 119 | 99.11 155 |
|
TAPA-MVS | | 93.32 12 | 94.93 216 | 94.23 240 | 97.04 167 | 98.18 184 | 94.51 141 | 95.22 215 | 98.73 129 | 81.22 350 | 96.25 231 | 95.95 290 | 93.80 178 | 98.98 293 | 89.89 287 | 98.87 235 | 97.62 298 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
RRT_MVS | | | 94.90 217 | 94.07 246 | 97.39 148 | 93.18 362 | 93.21 188 | 95.26 211 | 97.49 261 | 93.94 210 | 98.25 94 | 97.85 155 | 72.96 353 | 99.84 25 | 97.90 22 | 99.78 41 | 99.14 143 |
|
eth_miper_zixun_eth | | | 94.89 218 | 94.93 206 | 94.75 275 | 95.99 324 | 86.12 312 | 91.35 330 | 98.49 168 | 93.40 222 | 97.12 178 | 97.25 213 | 86.87 283 | 99.35 235 | 95.08 152 | 98.82 242 | 98.78 207 |
|
CDS-MVSNet | | | 94.88 219 | 94.12 245 | 97.14 161 | 97.64 255 | 93.57 179 | 93.96 275 | 97.06 277 | 90.05 282 | 96.30 228 | 96.55 256 | 86.10 285 | 99.47 195 | 90.10 284 | 99.31 178 | 98.40 239 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MS-PatchMatch | | | 94.83 220 | 94.91 208 | 94.57 283 | 96.81 302 | 87.10 300 | 94.23 259 | 97.34 266 | 88.74 295 | 97.14 176 | 97.11 220 | 91.94 223 | 98.23 350 | 92.99 223 | 97.92 286 | 98.37 243 |
|
pmmvs4 | | | 94.82 221 | 94.19 243 | 96.70 186 | 97.42 272 | 92.75 199 | 92.09 321 | 96.76 287 | 86.80 314 | 95.73 254 | 97.22 214 | 89.28 261 | 98.89 301 | 93.28 217 | 99.14 200 | 98.46 238 |
|
miper_lstm_enhance | | | 94.81 222 | 94.80 215 | 94.85 270 | 96.16 319 | 86.45 308 | 91.14 337 | 98.20 204 | 93.49 220 | 97.03 188 | 97.37 204 | 84.97 293 | 99.26 256 | 95.28 135 | 99.56 89 | 98.83 201 |
|
ETH3 D test6400 | | | 94.77 223 | 93.87 254 | 97.47 137 | 98.12 195 | 93.73 172 | 94.56 248 | 98.70 139 | 85.45 328 | 94.70 276 | 95.93 292 | 91.77 228 | 99.63 143 | 86.45 328 | 99.14 200 | 99.05 166 |
|
cl____ | | | 94.73 224 | 94.64 221 | 95.01 262 | 95.85 327 | 87.00 301 | 91.33 331 | 98.08 223 | 93.34 225 | 97.10 180 | 97.33 207 | 84.01 300 | 99.30 247 | 95.14 147 | 99.56 89 | 98.71 217 |
|
DIV-MVS_self_test | | | 94.73 224 | 94.64 221 | 95.01 262 | 95.86 326 | 87.00 301 | 91.33 331 | 98.08 223 | 93.34 225 | 97.10 180 | 97.34 206 | 84.02 299 | 99.31 244 | 95.15 146 | 99.55 95 | 98.72 215 |
|
YYNet1 | | | 94.73 224 | 94.84 211 | 94.41 288 | 97.47 269 | 85.09 326 | 90.29 346 | 95.85 304 | 92.52 249 | 97.53 152 | 97.76 163 | 91.97 221 | 99.18 265 | 93.31 216 | 96.86 321 | 98.95 177 |
|
MDA-MVSNet_test_wron | | | 94.73 224 | 94.83 213 | 94.42 287 | 97.48 265 | 85.15 324 | 90.28 347 | 95.87 303 | 92.52 249 | 97.48 160 | 97.76 163 | 91.92 225 | 99.17 269 | 93.32 215 | 96.80 324 | 98.94 179 |
|
UnsupCasMVSNet_bld | | | 94.72 228 | 94.26 239 | 96.08 219 | 98.62 135 | 90.54 242 | 93.38 294 | 98.05 229 | 90.30 279 | 97.02 189 | 96.80 243 | 89.54 255 | 99.16 270 | 88.44 307 | 96.18 334 | 98.56 229 |
|
miper_ehance_all_eth | | | 94.69 229 | 94.70 218 | 94.64 277 | 95.77 330 | 86.22 311 | 91.32 333 | 98.24 199 | 91.67 262 | 97.05 186 | 96.65 252 | 88.39 268 | 99.22 263 | 94.88 158 | 98.34 271 | 98.49 235 |
|
BH-untuned | | | 94.69 229 | 94.75 217 | 94.52 285 | 97.95 211 | 87.53 292 | 94.07 269 | 97.01 278 | 93.99 208 | 97.10 180 | 95.65 297 | 92.65 203 | 98.95 298 | 87.60 318 | 96.74 325 | 97.09 311 |
|
RPMNet | | | 94.68 231 | 94.60 225 | 94.90 267 | 95.44 337 | 88.15 278 | 96.18 153 | 98.86 90 | 97.43 68 | 94.10 291 | 98.49 77 | 79.40 317 | 99.76 58 | 95.69 106 | 95.81 337 | 96.81 326 |
|
Patchmatch-RL test | | | 94.66 232 | 94.49 231 | 95.19 256 | 98.54 145 | 88.91 263 | 92.57 310 | 98.74 127 | 91.46 266 | 98.32 87 | 97.75 166 | 77.31 331 | 98.81 308 | 96.06 84 | 99.61 75 | 97.85 288 |
|
CANet_DTU | | | 94.65 233 | 94.21 242 | 95.96 223 | 95.90 325 | 89.68 250 | 93.92 276 | 97.83 241 | 93.19 231 | 90.12 352 | 95.64 298 | 88.52 265 | 99.57 168 | 93.27 218 | 99.47 125 | 98.62 224 |
|
pmmvs5 | | | 94.63 234 | 94.34 238 | 95.50 244 | 97.63 256 | 88.34 274 | 94.02 270 | 97.13 273 | 87.15 310 | 95.22 264 | 97.15 216 | 87.50 277 | 99.27 255 | 93.99 199 | 99.26 186 | 98.88 196 |
|
PAPM_NR | | | 94.61 235 | 94.17 244 | 95.96 223 | 98.36 164 | 91.23 227 | 95.93 170 | 97.95 231 | 92.98 241 | 93.42 319 | 94.43 325 | 90.53 240 | 98.38 343 | 87.60 318 | 96.29 333 | 98.27 258 |
|
PatchMatch-RL | | | 94.61 235 | 93.81 255 | 97.02 169 | 98.19 181 | 95.72 84 | 93.66 284 | 97.23 268 | 88.17 301 | 94.94 271 | 95.62 299 | 91.43 230 | 98.57 330 | 87.36 323 | 97.68 299 | 96.76 328 |
|
BH-RMVSNet | | | 94.56 237 | 94.44 236 | 94.91 265 | 97.57 258 | 87.44 294 | 93.78 282 | 96.26 294 | 93.69 217 | 96.41 221 | 96.50 261 | 92.10 218 | 99.00 289 | 85.96 330 | 97.71 296 | 98.31 252 |
|
USDC | | | 94.56 237 | 94.57 230 | 94.55 284 | 97.78 239 | 86.43 309 | 92.75 306 | 98.65 154 | 85.96 319 | 96.91 198 | 97.93 147 | 90.82 237 | 98.74 314 | 90.71 269 | 99.59 81 | 98.47 236 |
|
test1111 | | | 94.53 239 | 94.81 214 | 93.72 299 | 99.06 89 | 81.94 348 | 98.31 33 | 83.87 371 | 96.37 105 | 98.49 65 | 99.17 29 | 81.49 307 | 99.73 81 | 96.64 62 | 99.86 25 | 99.49 53 |
|
bset_n11_16_dypcd | | | 94.53 239 | 93.95 252 | 96.25 211 | 97.56 260 | 89.85 248 | 88.52 359 | 91.32 348 | 94.90 179 | 97.51 154 | 96.38 268 | 82.34 305 | 99.78 43 | 97.22 46 | 99.80 36 | 99.12 151 |
|
ppachtmachnet_test | | | 94.49 241 | 94.84 211 | 93.46 305 | 96.16 319 | 82.10 345 | 90.59 343 | 97.48 263 | 90.53 277 | 97.01 190 | 97.59 180 | 91.01 234 | 99.36 232 | 93.97 201 | 99.18 197 | 98.94 179 |
|
test_yl | | | 94.40 242 | 94.00 249 | 95.59 238 | 96.95 296 | 89.52 253 | 94.75 242 | 95.55 311 | 96.18 116 | 96.79 201 | 96.14 280 | 81.09 311 | 99.18 265 | 90.75 265 | 97.77 290 | 98.07 271 |
|
DCV-MVSNet | | | 94.40 242 | 94.00 249 | 95.59 238 | 96.95 296 | 89.52 253 | 94.75 242 | 95.55 311 | 96.18 116 | 96.79 201 | 96.14 280 | 81.09 311 | 99.18 265 | 90.75 265 | 97.77 290 | 98.07 271 |
|
jason | | | 94.39 244 | 94.04 248 | 95.41 250 | 98.29 168 | 87.85 286 | 92.74 308 | 96.75 288 | 85.38 330 | 95.29 262 | 96.15 278 | 88.21 270 | 99.65 138 | 94.24 187 | 99.34 167 | 98.74 212 |
jason: jason. |
ECVR-MVS |  | | 94.37 245 | 94.48 232 | 94.05 296 | 98.95 99 | 83.10 340 | 98.31 33 | 82.48 372 | 96.20 113 | 98.23 97 | 99.16 30 | 81.18 310 | 99.66 136 | 95.95 94 | 99.83 31 | 99.38 88 |
|
1121 | | | 94.26 246 | 93.26 263 | 97.27 154 | 98.26 174 | 94.73 131 | 95.86 172 | 97.71 247 | 77.96 362 | 94.53 280 | 96.71 248 | 91.93 224 | 99.40 219 | 87.71 314 | 98.64 259 | 97.69 296 |
|
EU-MVSNet | | | 94.25 247 | 94.47 233 | 93.60 302 | 98.14 191 | 82.60 343 | 97.24 100 | 92.72 338 | 85.08 331 | 98.48 66 | 98.94 46 | 82.59 304 | 98.76 313 | 97.47 40 | 99.53 101 | 99.44 79 |
|
xiu_mvs_v2_base | | | 94.22 248 | 94.63 223 | 92.99 317 | 97.32 282 | 84.84 329 | 92.12 319 | 97.84 239 | 91.96 258 | 94.17 289 | 93.43 332 | 96.07 100 | 99.71 100 | 91.27 250 | 97.48 308 | 94.42 355 |
|
sss | | | 94.22 248 | 93.72 256 | 95.74 234 | 97.71 248 | 89.95 246 | 93.84 278 | 96.98 279 | 88.38 299 | 93.75 303 | 95.74 294 | 87.94 271 | 98.89 301 | 91.02 256 | 98.10 280 | 98.37 243 |
|
MVSTER | | | 94.21 250 | 93.93 253 | 95.05 261 | 95.83 328 | 86.46 307 | 95.18 217 | 97.65 253 | 92.41 253 | 97.94 132 | 98.00 138 | 72.39 354 | 99.58 162 | 96.36 75 | 99.56 89 | 99.12 151 |
|
MAR-MVS | | | 94.21 250 | 93.03 267 | 97.76 109 | 96.94 298 | 97.44 35 | 96.97 116 | 97.15 272 | 87.89 305 | 92.00 340 | 92.73 345 | 92.14 216 | 99.12 274 | 83.92 346 | 97.51 307 | 96.73 329 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
our_test_3 | | | 94.20 252 | 94.58 228 | 93.07 313 | 96.16 319 | 81.20 351 | 90.42 345 | 96.84 283 | 90.72 275 | 97.14 176 | 97.13 217 | 90.47 241 | 99.11 277 | 94.04 198 | 98.25 275 | 98.91 188 |
|
1112_ss | | | 94.12 253 | 93.42 260 | 96.23 212 | 98.59 140 | 90.85 233 | 94.24 258 | 98.85 94 | 85.49 325 | 92.97 325 | 94.94 313 | 86.01 286 | 99.64 141 | 91.78 241 | 97.92 286 | 98.20 264 |
|
PS-MVSNAJ | | | 94.10 254 | 94.47 233 | 93.00 316 | 97.35 275 | 84.88 328 | 91.86 323 | 97.84 239 | 91.96 258 | 94.17 289 | 92.50 348 | 95.82 108 | 99.71 100 | 91.27 250 | 97.48 308 | 94.40 356 |
|
CHOSEN 1792x2688 | | | 94.10 254 | 93.41 261 | 96.18 216 | 99.16 71 | 90.04 244 | 92.15 318 | 98.68 144 | 79.90 355 | 96.22 232 | 97.83 157 | 87.92 275 | 99.42 208 | 89.18 297 | 99.65 64 | 99.08 160 |
|
MG-MVS | | | 94.08 256 | 94.00 249 | 94.32 290 | 97.09 292 | 85.89 314 | 93.19 300 | 95.96 301 | 92.52 249 | 94.93 272 | 97.51 187 | 89.54 255 | 98.77 311 | 87.52 321 | 97.71 296 | 98.31 252 |
|
PLC |  | 91.02 16 | 94.05 257 | 92.90 269 | 97.51 129 | 98.00 206 | 95.12 122 | 94.25 257 | 98.25 198 | 86.17 317 | 91.48 343 | 95.25 306 | 91.01 234 | 99.19 264 | 85.02 341 | 96.69 326 | 98.22 262 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
114514_t | | | 93.96 258 | 93.22 265 | 96.19 215 | 99.06 89 | 90.97 232 | 95.99 164 | 98.94 74 | 73.88 368 | 93.43 318 | 96.93 233 | 92.38 213 | 99.37 230 | 89.09 298 | 99.28 183 | 98.25 260 |
|
PVSNet_Blended | | | 93.96 258 | 93.65 257 | 94.91 265 | 97.79 235 | 87.40 295 | 91.43 328 | 98.68 144 | 84.50 338 | 94.51 281 | 94.48 324 | 93.04 192 | 99.30 247 | 89.77 289 | 98.61 261 | 98.02 281 |
|
AUN-MVS | | | 93.95 260 | 92.69 277 | 97.74 111 | 97.80 229 | 95.38 104 | 95.57 191 | 95.46 313 | 91.26 270 | 92.64 333 | 96.10 283 | 74.67 342 | 99.55 173 | 93.72 209 | 96.97 317 | 98.30 254 |
|
lupinMVS | | | 93.77 261 | 93.28 262 | 95.24 253 | 97.68 250 | 87.81 287 | 92.12 319 | 96.05 297 | 84.52 337 | 94.48 283 | 95.06 311 | 86.90 281 | 99.63 143 | 93.62 212 | 99.13 204 | 98.27 258 |
|
PatchT | | | 93.75 262 | 93.57 258 | 94.29 292 | 95.05 343 | 87.32 297 | 96.05 159 | 92.98 334 | 97.54 65 | 94.25 287 | 98.72 60 | 75.79 339 | 99.24 259 | 95.92 96 | 95.81 337 | 96.32 337 |
|
EPNet | | | 93.72 263 | 92.62 280 | 97.03 168 | 87.61 377 | 92.25 206 | 96.27 146 | 91.28 349 | 96.74 90 | 87.65 363 | 97.39 200 | 85.00 292 | 99.64 141 | 92.14 232 | 99.48 123 | 99.20 132 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
HyFIR lowres test | | | 93.72 263 | 92.65 278 | 96.91 174 | 98.93 102 | 91.81 221 | 91.23 335 | 98.52 165 | 82.69 343 | 96.46 219 | 96.52 260 | 80.38 315 | 99.90 13 | 90.36 281 | 98.79 244 | 99.03 168 |
|
DPM-MVS | | | 93.68 265 | 92.77 276 | 96.42 203 | 97.91 212 | 92.54 200 | 91.17 336 | 97.47 264 | 84.99 334 | 93.08 324 | 94.74 317 | 89.90 251 | 99.00 289 | 87.54 320 | 98.09 281 | 97.72 294 |
|
PMMVS2 | | | 93.66 266 | 94.07 246 | 92.45 327 | 97.57 258 | 80.67 353 | 86.46 362 | 96.00 299 | 93.99 208 | 97.10 180 | 97.38 202 | 89.90 251 | 97.82 356 | 88.76 302 | 99.47 125 | 98.86 199 |
|
OpenMVS_ROB |  | 91.80 14 | 93.64 267 | 93.05 266 | 95.42 248 | 97.31 283 | 91.21 228 | 95.08 223 | 96.68 291 | 81.56 347 | 96.88 200 | 96.41 264 | 90.44 242 | 99.25 258 | 85.39 337 | 97.67 300 | 95.80 344 |
|
Patchmatch-test | | | 93.60 268 | 93.25 264 | 94.63 278 | 96.14 322 | 87.47 293 | 96.04 160 | 94.50 321 | 93.57 218 | 96.47 218 | 96.97 230 | 76.50 334 | 98.61 327 | 90.67 271 | 98.41 270 | 97.81 292 |
|
WTY-MVS | | | 93.55 269 | 93.00 268 | 95.19 256 | 97.81 225 | 87.86 284 | 93.89 277 | 96.00 299 | 89.02 290 | 94.07 293 | 95.44 304 | 86.27 284 | 99.33 240 | 87.69 316 | 96.82 322 | 98.39 241 |
|
Test_1112_low_res | | | 93.53 270 | 92.86 270 | 95.54 243 | 98.60 138 | 88.86 265 | 92.75 306 | 98.69 142 | 82.66 344 | 92.65 332 | 96.92 235 | 84.75 294 | 99.56 169 | 90.94 258 | 97.76 292 | 98.19 265 |
|
MIMVSNet | | | 93.42 271 | 92.86 270 | 95.10 259 | 98.17 186 | 88.19 276 | 98.13 48 | 93.69 325 | 92.07 255 | 95.04 269 | 98.21 111 | 80.95 313 | 99.03 288 | 81.42 354 | 98.06 282 | 98.07 271 |
|
FMVSNet5 | | | 93.39 272 | 92.35 283 | 96.50 198 | 95.83 328 | 90.81 236 | 97.31 95 | 98.27 195 | 92.74 248 | 96.27 229 | 98.28 99 | 62.23 369 | 99.67 130 | 90.86 260 | 99.36 159 | 99.03 168 |
|
SCA | | | 93.38 273 | 93.52 259 | 92.96 318 | 96.24 313 | 81.40 350 | 93.24 298 | 94.00 324 | 91.58 265 | 94.57 278 | 96.97 230 | 87.94 271 | 99.42 208 | 89.47 293 | 97.66 301 | 98.06 275 |
|
tttt0517 | | | 93.31 274 | 92.56 281 | 95.57 240 | 98.71 123 | 87.86 284 | 97.44 89 | 87.17 366 | 95.79 140 | 97.47 162 | 96.84 238 | 64.12 367 | 99.81 32 | 96.20 79 | 99.32 176 | 99.02 170 |
|
CR-MVSNet | | | 93.29 275 | 92.79 273 | 94.78 274 | 95.44 337 | 88.15 278 | 96.18 153 | 97.20 269 | 84.94 335 | 94.10 291 | 98.57 70 | 77.67 326 | 99.39 224 | 95.17 142 | 95.81 337 | 96.81 326 |
|
cl22 | | | 93.25 276 | 92.84 272 | 94.46 286 | 94.30 351 | 86.00 313 | 91.09 339 | 96.64 292 | 90.74 274 | 95.79 249 | 96.31 271 | 78.24 323 | 98.77 311 | 94.15 191 | 98.34 271 | 98.62 224 |
|
wuyk23d | | | 93.25 276 | 95.20 193 | 87.40 352 | 96.07 323 | 95.38 104 | 97.04 112 | 94.97 316 | 95.33 159 | 99.70 5 | 98.11 121 | 98.14 13 | 91.94 370 | 77.76 363 | 99.68 60 | 74.89 370 |
|
miper_enhance_ethall | | | 93.14 278 | 92.78 275 | 94.20 293 | 93.65 359 | 85.29 321 | 89.97 349 | 97.85 237 | 85.05 332 | 96.15 237 | 94.56 320 | 85.74 287 | 99.14 272 | 93.74 207 | 98.34 271 | 98.17 267 |
|
baseline1 | | | 93.14 278 | 92.64 279 | 94.62 279 | 97.34 279 | 87.20 299 | 96.67 132 | 93.02 333 | 94.71 184 | 96.51 217 | 95.83 293 | 81.64 306 | 98.60 329 | 90.00 286 | 88.06 365 | 98.07 271 |
|
X-MVStestdata | | | 92.86 280 | 90.83 305 | 98.94 18 | 99.15 74 | 97.66 20 | 97.77 66 | 98.83 106 | 97.42 69 | 96.32 225 | 36.50 372 | 96.49 86 | 99.72 86 | 95.66 110 | 99.37 156 | 99.45 69 |
|
GA-MVS | | | 92.83 281 | 92.15 286 | 94.87 269 | 96.97 295 | 87.27 298 | 90.03 348 | 96.12 296 | 91.83 261 | 94.05 294 | 94.57 319 | 76.01 338 | 98.97 297 | 92.46 230 | 97.34 313 | 98.36 248 |
|
CMPMVS |  | 73.10 23 | 92.74 282 | 91.39 294 | 96.77 182 | 93.57 361 | 94.67 137 | 94.21 261 | 97.67 249 | 80.36 354 | 93.61 310 | 96.60 254 | 82.85 303 | 97.35 360 | 84.86 342 | 98.78 245 | 98.29 257 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
thisisatest0530 | | | 92.71 283 | 91.76 291 | 95.56 242 | 98.42 160 | 88.23 275 | 96.03 161 | 87.35 365 | 94.04 207 | 96.56 214 | 95.47 303 | 64.03 368 | 99.77 53 | 94.78 165 | 99.11 208 | 98.68 220 |
|
HY-MVS | | 91.43 15 | 92.58 284 | 91.81 290 | 94.90 267 | 96.49 307 | 88.87 264 | 97.31 95 | 94.62 319 | 85.92 320 | 90.50 349 | 96.84 238 | 85.05 291 | 99.40 219 | 83.77 349 | 95.78 340 | 96.43 336 |
|
TR-MVS | | | 92.54 285 | 92.20 285 | 93.57 303 | 96.49 307 | 86.66 305 | 93.51 289 | 94.73 318 | 89.96 283 | 94.95 270 | 93.87 330 | 90.24 248 | 98.61 327 | 81.18 355 | 94.88 347 | 95.45 350 |
|
RRT_test8_iter05 | | | 92.46 286 | 92.52 282 | 92.29 330 | 95.33 340 | 77.43 362 | 95.73 178 | 98.55 163 | 94.41 193 | 97.46 163 | 97.72 171 | 57.44 372 | 99.74 75 | 96.92 59 | 99.14 200 | 99.69 20 |
|
PMMVS | | | 92.39 287 | 91.08 299 | 96.30 210 | 93.12 365 | 92.81 197 | 90.58 344 | 95.96 301 | 79.17 358 | 91.85 342 | 92.27 349 | 90.29 247 | 98.66 324 | 89.85 288 | 96.68 327 | 97.43 304 |
|
1314 | | | 92.38 288 | 92.30 284 | 92.64 323 | 95.42 339 | 85.15 324 | 95.86 172 | 96.97 280 | 85.40 329 | 90.62 346 | 93.06 339 | 91.12 233 | 97.80 357 | 86.74 326 | 95.49 344 | 94.97 353 |
|
new_pmnet | | | 92.34 289 | 91.69 292 | 94.32 290 | 96.23 315 | 89.16 260 | 92.27 317 | 92.88 335 | 84.39 340 | 95.29 262 | 96.35 270 | 85.66 288 | 96.74 366 | 84.53 344 | 97.56 304 | 97.05 313 |
|
CVMVSNet | | | 92.33 290 | 92.79 273 | 90.95 338 | 97.26 284 | 75.84 368 | 95.29 209 | 92.33 341 | 81.86 345 | 96.27 229 | 98.19 112 | 81.44 308 | 98.46 338 | 94.23 188 | 98.29 274 | 98.55 231 |
|
PAPR | | | 92.22 291 | 91.27 297 | 95.07 260 | 95.73 332 | 88.81 266 | 91.97 322 | 97.87 236 | 85.80 322 | 90.91 345 | 92.73 345 | 91.16 232 | 98.33 347 | 79.48 357 | 95.76 341 | 98.08 269 |
|
DSMNet-mixed | | | 92.19 292 | 91.83 289 | 93.25 309 | 96.18 318 | 83.68 339 | 96.27 146 | 93.68 327 | 76.97 365 | 92.54 336 | 99.18 27 | 89.20 263 | 98.55 333 | 83.88 347 | 98.60 263 | 97.51 302 |
|
BH-w/o | | | 92.14 293 | 91.94 287 | 92.73 322 | 97.13 291 | 85.30 320 | 92.46 313 | 95.64 306 | 89.33 288 | 94.21 288 | 92.74 344 | 89.60 253 | 98.24 349 | 81.68 353 | 94.66 349 | 94.66 354 |
|
PCF-MVS | | 89.43 18 | 92.12 294 | 90.64 308 | 96.57 195 | 97.80 229 | 93.48 182 | 89.88 353 | 98.45 171 | 74.46 367 | 96.04 239 | 95.68 296 | 90.71 239 | 99.31 244 | 73.73 366 | 99.01 221 | 96.91 319 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
thres600view7 | | | 92.03 295 | 91.43 293 | 93.82 297 | 98.19 181 | 84.61 331 | 96.27 146 | 90.39 356 | 96.81 88 | 96.37 223 | 93.11 334 | 73.44 351 | 99.49 189 | 80.32 356 | 97.95 285 | 97.36 306 |
|
PatchmatchNet |  | | 91.98 296 | 91.87 288 | 92.30 329 | 94.60 348 | 79.71 355 | 95.12 218 | 93.59 329 | 89.52 286 | 93.61 310 | 97.02 227 | 77.94 324 | 99.18 265 | 90.84 261 | 94.57 352 | 98.01 282 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
cascas | | | 91.89 297 | 91.35 295 | 93.51 304 | 94.27 352 | 85.60 316 | 88.86 358 | 98.61 156 | 79.32 357 | 92.16 339 | 91.44 358 | 89.22 262 | 98.12 353 | 90.80 263 | 97.47 310 | 96.82 325 |
|
JIA-IIPM | | | 91.79 298 | 90.69 307 | 95.11 258 | 93.80 358 | 90.98 231 | 94.16 263 | 91.78 345 | 96.38 104 | 90.30 351 | 99.30 18 | 72.02 355 | 98.90 299 | 88.28 310 | 90.17 362 | 95.45 350 |
|
thres100view900 | | | 91.76 299 | 91.26 298 | 93.26 308 | 98.21 179 | 84.50 332 | 96.39 139 | 90.39 356 | 96.87 86 | 96.33 224 | 93.08 338 | 73.44 351 | 99.42 208 | 78.85 360 | 97.74 293 | 95.85 342 |
|
thres400 | | | 91.68 300 | 91.00 300 | 93.71 300 | 98.02 200 | 84.35 334 | 95.70 180 | 90.79 353 | 96.26 110 | 95.90 247 | 92.13 351 | 73.62 348 | 99.42 208 | 78.85 360 | 97.74 293 | 97.36 306 |
|
tfpn200view9 | | | 91.55 301 | 91.00 300 | 93.21 311 | 98.02 200 | 84.35 334 | 95.70 180 | 90.79 353 | 96.26 110 | 95.90 247 | 92.13 351 | 73.62 348 | 99.42 208 | 78.85 360 | 97.74 293 | 95.85 342 |
|
ADS-MVSNet2 | | | 91.47 302 | 90.51 310 | 94.36 289 | 95.51 335 | 85.63 315 | 95.05 227 | 95.70 305 | 83.46 341 | 92.69 330 | 96.84 238 | 79.15 320 | 99.41 217 | 85.66 334 | 90.52 360 | 98.04 279 |
|
EPNet_dtu | | | 91.39 303 | 90.75 306 | 93.31 307 | 90.48 374 | 82.61 342 | 94.80 239 | 92.88 335 | 93.39 223 | 81.74 371 | 94.90 316 | 81.36 309 | 99.11 277 | 88.28 310 | 98.87 235 | 98.21 263 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ET-MVSNet_ETH3D | | | 91.12 304 | 89.67 316 | 95.47 246 | 96.41 309 | 89.15 261 | 91.54 327 | 90.23 359 | 89.07 289 | 86.78 367 | 92.84 342 | 69.39 362 | 99.44 205 | 94.16 190 | 96.61 328 | 97.82 290 |
|
PVSNet | | 86.72 19 | 91.10 305 | 90.97 302 | 91.49 334 | 97.56 260 | 78.04 359 | 87.17 361 | 94.60 320 | 84.65 336 | 92.34 337 | 92.20 350 | 87.37 279 | 98.47 337 | 85.17 340 | 97.69 298 | 97.96 283 |
|
tpm | | | 91.08 306 | 90.85 304 | 91.75 333 | 95.33 340 | 78.09 358 | 95.03 229 | 91.27 350 | 88.75 294 | 93.53 313 | 97.40 196 | 71.24 356 | 99.30 247 | 91.25 252 | 93.87 353 | 97.87 287 |
|
thres200 | | | 91.00 307 | 90.42 311 | 92.77 321 | 97.47 269 | 83.98 337 | 94.01 271 | 91.18 351 | 95.12 169 | 95.44 259 | 91.21 360 | 73.93 344 | 99.31 244 | 77.76 363 | 97.63 303 | 95.01 352 |
|
ADS-MVSNet | | | 90.95 308 | 90.26 312 | 93.04 314 | 95.51 335 | 82.37 344 | 95.05 227 | 93.41 330 | 83.46 341 | 92.69 330 | 96.84 238 | 79.15 320 | 98.70 318 | 85.66 334 | 90.52 360 | 98.04 279 |
|
tpmvs | | | 90.79 309 | 90.87 303 | 90.57 341 | 92.75 369 | 76.30 366 | 95.79 177 | 93.64 328 | 91.04 273 | 91.91 341 | 96.26 272 | 77.19 332 | 98.86 305 | 89.38 295 | 89.85 363 | 96.56 334 |
|
thisisatest0515 | | | 90.43 310 | 89.18 322 | 94.17 295 | 97.07 293 | 85.44 318 | 89.75 354 | 87.58 364 | 88.28 300 | 93.69 307 | 91.72 355 | 65.27 366 | 99.58 162 | 90.59 273 | 98.67 254 | 97.50 303 |
|
tpmrst | | | 90.31 311 | 90.61 309 | 89.41 345 | 94.06 356 | 72.37 374 | 95.06 226 | 93.69 325 | 88.01 302 | 92.32 338 | 96.86 236 | 77.45 328 | 98.82 306 | 91.04 255 | 87.01 367 | 97.04 314 |
|
test0.0.03 1 | | | 90.11 312 | 89.21 319 | 92.83 320 | 93.89 357 | 86.87 304 | 91.74 325 | 88.74 363 | 92.02 256 | 94.71 275 | 91.14 361 | 73.92 345 | 94.48 369 | 83.75 350 | 92.94 355 | 97.16 310 |
|
MVS | | | 90.02 313 | 89.20 320 | 92.47 326 | 94.71 346 | 86.90 303 | 95.86 172 | 96.74 289 | 64.72 370 | 90.62 346 | 92.77 343 | 92.54 208 | 98.39 342 | 79.30 358 | 95.56 343 | 92.12 363 |
|
pmmvs3 | | | 90.00 314 | 88.90 324 | 93.32 306 | 94.20 355 | 85.34 319 | 91.25 334 | 92.56 340 | 78.59 359 | 93.82 299 | 95.17 307 | 67.36 365 | 98.69 319 | 89.08 299 | 98.03 283 | 95.92 341 |
|
CHOSEN 280x420 | | | 89.98 315 | 89.19 321 | 92.37 328 | 95.60 334 | 81.13 352 | 86.22 363 | 97.09 275 | 81.44 349 | 87.44 364 | 93.15 333 | 73.99 343 | 99.47 195 | 88.69 304 | 99.07 214 | 96.52 335 |
|
test-LLR | | | 89.97 316 | 89.90 314 | 90.16 342 | 94.24 353 | 74.98 369 | 89.89 350 | 89.06 361 | 92.02 256 | 89.97 353 | 90.77 363 | 73.92 345 | 98.57 330 | 91.88 238 | 97.36 311 | 96.92 317 |
|
FPMVS | | | 89.92 317 | 88.63 325 | 93.82 297 | 98.37 163 | 96.94 47 | 91.58 326 | 93.34 331 | 88.00 303 | 90.32 350 | 97.10 221 | 70.87 359 | 91.13 371 | 71.91 369 | 96.16 336 | 93.39 361 |
|
test2506 | | | 89.86 318 | 89.16 323 | 91.97 332 | 98.95 99 | 76.83 365 | 98.54 20 | 61.07 379 | 96.20 113 | 97.07 185 | 99.16 30 | 55.19 378 | 99.69 117 | 96.43 73 | 99.83 31 | 99.38 88 |
|
CostFormer | | | 89.75 319 | 89.25 317 | 91.26 337 | 94.69 347 | 78.00 360 | 95.32 206 | 91.98 343 | 81.50 348 | 90.55 348 | 96.96 232 | 71.06 358 | 98.89 301 | 88.59 306 | 92.63 357 | 96.87 320 |
|
baseline2 | | | 89.65 320 | 88.44 327 | 93.25 309 | 95.62 333 | 82.71 341 | 93.82 279 | 85.94 368 | 88.89 293 | 87.35 365 | 92.54 347 | 71.23 357 | 99.33 240 | 86.01 329 | 94.60 351 | 97.72 294 |
|
E-PMN | | | 89.52 321 | 89.78 315 | 88.73 347 | 93.14 364 | 77.61 361 | 83.26 366 | 92.02 342 | 94.82 181 | 93.71 305 | 93.11 334 | 75.31 340 | 96.81 363 | 85.81 331 | 96.81 323 | 91.77 365 |
|
EPMVS | | | 89.26 322 | 88.55 326 | 91.39 335 | 92.36 370 | 79.11 356 | 95.65 187 | 79.86 373 | 88.60 296 | 93.12 323 | 96.53 258 | 70.73 360 | 98.10 354 | 90.75 265 | 89.32 364 | 96.98 315 |
|
EMVS | | | 89.06 323 | 89.22 318 | 88.61 348 | 93.00 366 | 77.34 363 | 82.91 367 | 90.92 352 | 94.64 186 | 92.63 334 | 91.81 354 | 76.30 336 | 97.02 361 | 83.83 348 | 96.90 320 | 91.48 366 |
|
KD-MVS_2432*1600 | | | 88.93 324 | 87.74 329 | 92.49 324 | 88.04 375 | 81.99 346 | 89.63 355 | 95.62 307 | 91.35 267 | 95.06 266 | 93.11 334 | 56.58 374 | 98.63 325 | 85.19 338 | 95.07 345 | 96.85 322 |
|
miper_refine_blended | | | 88.93 324 | 87.74 329 | 92.49 324 | 88.04 375 | 81.99 346 | 89.63 355 | 95.62 307 | 91.35 267 | 95.06 266 | 93.11 334 | 56.58 374 | 98.63 325 | 85.19 338 | 95.07 345 | 96.85 322 |
|
IB-MVS | | 85.98 20 | 88.63 326 | 86.95 335 | 93.68 301 | 95.12 342 | 84.82 330 | 90.85 341 | 90.17 360 | 87.55 306 | 88.48 360 | 91.34 359 | 58.01 371 | 99.59 160 | 87.24 324 | 93.80 354 | 96.63 333 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
tpm2 | | | 88.47 327 | 87.69 331 | 90.79 339 | 94.98 344 | 77.34 363 | 95.09 221 | 91.83 344 | 77.51 364 | 89.40 355 | 96.41 264 | 67.83 364 | 98.73 315 | 83.58 351 | 92.60 358 | 96.29 338 |
|
MVS-HIRNet | | | 88.40 328 | 90.20 313 | 82.99 353 | 97.01 294 | 60.04 377 | 93.11 301 | 85.61 369 | 84.45 339 | 88.72 359 | 99.09 36 | 84.72 295 | 98.23 350 | 82.52 352 | 96.59 329 | 90.69 368 |
|
gg-mvs-nofinetune | | | 88.28 329 | 86.96 334 | 92.23 331 | 92.84 368 | 84.44 333 | 98.19 45 | 74.60 375 | 99.08 10 | 87.01 366 | 99.47 8 | 56.93 373 | 98.23 350 | 78.91 359 | 95.61 342 | 94.01 357 |
|
dp | | | 88.08 330 | 88.05 328 | 88.16 351 | 92.85 367 | 68.81 376 | 94.17 262 | 92.88 335 | 85.47 326 | 91.38 344 | 96.14 280 | 68.87 363 | 98.81 308 | 86.88 325 | 83.80 370 | 96.87 320 |
|
tpm cat1 | | | 88.01 331 | 87.33 332 | 90.05 344 | 94.48 349 | 76.28 367 | 94.47 251 | 94.35 323 | 73.84 369 | 89.26 356 | 95.61 300 | 73.64 347 | 98.30 348 | 84.13 345 | 86.20 368 | 95.57 349 |
|
test-mter | | | 87.92 332 | 87.17 333 | 90.16 342 | 94.24 353 | 74.98 369 | 89.89 350 | 89.06 361 | 86.44 316 | 89.97 353 | 90.77 363 | 54.96 379 | 98.57 330 | 91.88 238 | 97.36 311 | 96.92 317 |
|
DWT-MVSNet_test | | | 87.92 332 | 86.77 336 | 91.39 335 | 93.18 362 | 78.62 357 | 95.10 219 | 91.42 347 | 85.58 324 | 88.00 361 | 88.73 367 | 60.60 370 | 98.90 299 | 90.60 272 | 87.70 366 | 96.65 330 |
|
PAPM | | | 87.64 334 | 85.84 339 | 93.04 314 | 96.54 305 | 84.99 327 | 88.42 360 | 95.57 310 | 79.52 356 | 83.82 368 | 93.05 340 | 80.57 314 | 98.41 340 | 62.29 372 | 92.79 356 | 95.71 345 |
|
TESTMET0.1,1 | | | 87.20 335 | 86.57 337 | 89.07 346 | 93.62 360 | 72.84 373 | 89.89 350 | 87.01 367 | 85.46 327 | 89.12 358 | 90.20 365 | 56.00 377 | 97.72 358 | 90.91 259 | 96.92 318 | 96.64 331 |
|
MVE |  | 73.61 22 | 86.48 336 | 85.92 338 | 88.18 350 | 96.23 315 | 85.28 322 | 81.78 368 | 75.79 374 | 86.01 318 | 82.53 370 | 91.88 353 | 92.74 199 | 87.47 373 | 71.42 370 | 94.86 348 | 91.78 364 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PVSNet_0 | | 81.89 21 | 84.49 337 | 83.21 340 | 88.34 349 | 95.76 331 | 74.97 371 | 83.49 365 | 92.70 339 | 78.47 360 | 87.94 362 | 86.90 369 | 83.38 302 | 96.63 367 | 73.44 367 | 66.86 373 | 93.40 360 |
|
EGC-MVSNET | | | 83.08 338 | 77.93 341 | 98.53 51 | 99.57 16 | 97.55 27 | 98.33 32 | 98.57 161 | 4.71 374 | 10.38 375 | 98.90 50 | 95.60 121 | 99.50 187 | 95.69 106 | 99.61 75 | 98.55 231 |
|
test_method | | | 66.88 339 | 66.13 342 | 69.11 355 | 62.68 378 | 25.73 380 | 49.76 369 | 96.04 298 | 14.32 373 | 64.27 374 | 91.69 356 | 73.45 350 | 88.05 372 | 76.06 365 | 66.94 372 | 93.54 358 |
|
tmp_tt | | | 57.23 340 | 62.50 343 | 41.44 356 | 34.77 379 | 49.21 379 | 83.93 364 | 60.22 380 | 15.31 372 | 71.11 373 | 79.37 371 | 70.09 361 | 44.86 375 | 64.76 371 | 82.93 371 | 30.25 371 |
|
cdsmvs_eth3d_5k | | | 24.22 341 | 32.30 344 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 98.10 220 | 0.00 377 | 0.00 378 | 95.06 311 | 97.54 29 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
test123 | | | 12.59 342 | 15.49 345 | 3.87 357 | 6.07 380 | 2.55 381 | 90.75 342 | 2.59 382 | 2.52 375 | 5.20 377 | 13.02 374 | 4.96 380 | 1.85 377 | 5.20 374 | 9.09 374 | 7.23 372 |
|
testmvs | | | 12.33 343 | 15.23 346 | 3.64 358 | 5.77 381 | 2.23 382 | 88.99 357 | 3.62 381 | 2.30 376 | 5.29 376 | 13.09 373 | 4.52 381 | 1.95 376 | 5.16 375 | 8.32 375 | 6.75 373 |
|
pcd_1.5k_mvsjas | | | 7.98 344 | 10.65 347 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 95.82 108 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
ab-mvs-re | | | 7.91 345 | 10.55 348 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 94.94 313 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
test_blank | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uanet_test | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
sosnet-low-res | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
sosnet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uncertanet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
Regformer | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uanet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
FOURS1 | | | | | | 99.59 14 | 98.20 4 | 99.03 7 | 99.25 12 | 98.96 18 | 98.87 40 | | | | | | |
|
MSC_two_6792asdad | | | | | 98.22 75 | 97.75 243 | 95.34 109 | | 98.16 213 | | | | | 99.75 65 | 95.87 100 | 99.51 111 | 99.57 32 |
|
PC_three_1452 | | | | | | | | | | 87.24 308 | 98.37 76 | 97.44 193 | 97.00 54 | 96.78 365 | 92.01 233 | 99.25 187 | 99.21 129 |
|
No_MVS | | | | | 98.22 75 | 97.75 243 | 95.34 109 | | 98.16 213 | | | | | 99.75 65 | 95.87 100 | 99.51 111 | 99.57 32 |
|
test_one_0601 | | | | | | 99.05 93 | 95.50 99 | | 98.87 87 | 97.21 79 | 98.03 122 | 98.30 94 | 96.93 60 | | | | |
|
eth-test2 | | | | | | 0.00 382 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 382 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 98.43 159 | 95.94 79 | | 98.56 162 | 90.72 275 | 96.66 209 | 97.07 223 | 95.02 142 | 99.74 75 | 91.08 254 | 98.93 229 | |
|
RE-MVS-def | | | | 97.88 49 | | 98.81 109 | 98.05 9 | 97.55 81 | 98.86 90 | 97.77 47 | 98.20 99 | 98.07 125 | 96.94 58 | | 95.49 118 | 99.20 192 | 99.26 120 |
|
IU-MVS | | | | | | 99.22 59 | 95.40 102 | | 98.14 216 | 85.77 323 | 98.36 79 | | | | 95.23 139 | 99.51 111 | 99.49 53 |
|
OPU-MVS | | | | | 97.64 120 | 98.01 202 | 95.27 112 | 96.79 122 | | | | 97.35 205 | 96.97 56 | 98.51 336 | 91.21 253 | 99.25 187 | 99.14 143 |
|
test_241102_TWO | | | | | | | | | 98.83 106 | 96.11 118 | 98.62 52 | 98.24 105 | 96.92 62 | 99.72 86 | 95.44 125 | 99.49 119 | 99.49 53 |
|
test_241102_ONE | | | | | | 99.22 59 | 95.35 107 | | 98.83 106 | 96.04 123 | 99.08 31 | 98.13 117 | 97.87 20 | 99.33 240 | | | |
|
9.14 | | | | 96.69 134 | | 98.53 146 | | 96.02 162 | 98.98 66 | 93.23 229 | 97.18 174 | 97.46 191 | 96.47 88 | 99.62 151 | 92.99 223 | 99.32 176 | |
|
save fliter | | | | | | 98.48 154 | 94.71 133 | 94.53 249 | 98.41 179 | 95.02 174 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 96.62 92 | 98.40 73 | 98.28 99 | 97.10 45 | 99.71 100 | 95.70 104 | 99.62 69 | 99.58 28 |
|
test_0728_SECOND | | | | | 98.25 73 | 99.23 56 | 95.49 100 | 96.74 125 | 98.89 79 | | | | | 99.75 65 | 95.48 121 | 99.52 106 | 99.53 41 |
|
test0726 | | | | | | 99.24 54 | 95.51 96 | 96.89 118 | 98.89 79 | 95.92 131 | 98.64 51 | 98.31 90 | 97.06 50 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 98.06 275 |
|
test_part2 | | | | | | 99.03 95 | 96.07 74 | | | | 98.08 116 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.80 325 | | | | 98.06 275 |
|
sam_mvs | | | | | | | | | | | | | 77.38 329 | | | | |
|
ambc | | | | | 96.56 196 | 98.23 178 | 91.68 223 | 97.88 61 | 98.13 218 | | 98.42 72 | 98.56 72 | 94.22 168 | 99.04 285 | 94.05 197 | 99.35 164 | 98.95 177 |
|
MTGPA |  | | | | | | | | 98.73 129 | | | | | | | | |
|
test_post1 | | | | | | | | 94.98 231 | | | | 10.37 376 | 76.21 337 | 99.04 285 | 89.47 293 | | |
|
test_post | | | | | | | | | | | | 10.87 375 | 76.83 333 | 99.07 282 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 96.84 238 | 77.36 330 | 99.42 208 | | | |
|
GG-mvs-BLEND | | | | | 90.60 340 | 91.00 372 | 84.21 336 | 98.23 39 | 72.63 378 | | 82.76 369 | 84.11 370 | 56.14 376 | 96.79 364 | 72.20 368 | 92.09 359 | 90.78 367 |
|
MTMP | | | | | | | | 96.55 133 | 74.60 375 | | | | | | | | |
|
gm-plane-assit | | | | | | 91.79 371 | 71.40 375 | | | 81.67 346 | | 90.11 366 | | 98.99 291 | 84.86 342 | | |
|
test9_res | | | | | | | | | | | | | | | 91.29 249 | 98.89 234 | 99.00 171 |
|
TEST9 | | | | | | 97.84 221 | 95.23 114 | 93.62 285 | 98.39 182 | 86.81 313 | 93.78 300 | 95.99 285 | 94.68 152 | 99.52 182 | | | |
|
test_8 | | | | | | 97.81 225 | 95.07 123 | 93.54 288 | 98.38 184 | 87.04 311 | 93.71 305 | 95.96 289 | 94.58 157 | 99.52 182 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 90.34 282 | 98.90 231 | 99.10 159 |
|
agg_prior | | | | | | 97.80 229 | 94.96 125 | | 98.36 186 | | 93.49 314 | | | 99.53 178 | | | |
|
TestCases | | | | | 98.06 89 | 99.08 86 | 96.16 70 | | 99.16 20 | 94.35 196 | 97.78 147 | 98.07 125 | 95.84 105 | 99.12 274 | 91.41 247 | 99.42 144 | 98.91 188 |
|
test_prior4 | | | | | | | 95.38 104 | 93.61 287 | | | | | | | | | |
|
test_prior2 | | | | | | | | 93.33 296 | | 94.21 201 | 94.02 295 | 96.25 273 | 93.64 181 | | 91.90 236 | 98.96 223 | |
|
test_prior | | | | | 97.46 140 | 97.79 235 | 94.26 153 | | 98.42 177 | | | | | 99.34 237 | | | 98.79 205 |
|
旧先验2 | | | | | | | | 93.35 295 | | 77.95 363 | 95.77 253 | | | 98.67 323 | 90.74 268 | | |
|
新几何2 | | | | | | | | 93.43 290 | | | | | | | | | |
|
新几何1 | | | | | 97.25 157 | 98.29 168 | 94.70 136 | | 97.73 245 | 77.98 361 | 94.83 273 | 96.67 251 | 92.08 219 | 99.45 202 | 88.17 312 | 98.65 258 | 97.61 299 |
|
旧先验1 | | | | | | 97.80 229 | 93.87 165 | | 97.75 244 | | | 97.04 226 | 93.57 183 | | | 98.68 253 | 98.72 215 |
|
无先验 | | | | | | | | 93.20 299 | 97.91 233 | 80.78 351 | | | | 99.40 219 | 87.71 314 | | 97.94 284 |
|
原ACMM2 | | | | | | | | 92.82 304 | | | | | | | | | |
|
原ACMM1 | | | | | 96.58 193 | 98.16 188 | 92.12 212 | | 98.15 215 | 85.90 321 | 93.49 314 | 96.43 263 | 92.47 211 | 99.38 227 | 87.66 317 | 98.62 260 | 98.23 261 |
|
test222 | | | | | | 98.17 186 | 93.24 187 | 92.74 308 | 97.61 259 | 75.17 366 | 94.65 277 | 96.69 250 | 90.96 236 | | | 98.66 256 | 97.66 297 |
|
testdata2 | | | | | | | | | | | | | | 99.46 198 | 87.84 313 | | |
|
segment_acmp | | | | | | | | | | | | | 95.34 131 | | | | |
|
testdata | | | | | 95.70 237 | 98.16 188 | 90.58 239 | | 97.72 246 | 80.38 353 | 95.62 256 | 97.02 227 | 92.06 220 | 98.98 293 | 89.06 300 | 98.52 265 | 97.54 301 |
|
testdata1 | | | | | | | | 92.77 305 | | 93.78 214 | | | | | | | |
|
test12 | | | | | 97.46 140 | 97.61 257 | 94.07 158 | | 97.78 243 | | 93.57 312 | | 93.31 187 | 99.42 208 | | 98.78 245 | 98.89 192 |
|
plane_prior7 | | | | | | 98.70 125 | 94.67 137 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.38 162 | 94.37 147 | | | | | | 91.91 226 | | | | |
|
plane_prior5 | | | | | | | | | 98.75 125 | | | | | 99.46 198 | 92.59 228 | 99.20 192 | 99.28 115 |
|
plane_prior4 | | | | | | | | | | | | 96.77 244 | | | | | |
|
plane_prior3 | | | | | | | 94.51 141 | | | 95.29 162 | 96.16 235 | | | | | | |
|
plane_prior2 | | | | | | | | 96.50 135 | | 96.36 106 | | | | | | | |
|
plane_prior1 | | | | | | 98.49 152 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.29 149 | 95.42 196 | | 94.31 198 | | | | | | 98.93 229 | |
|
n2 | | | | | | | | | 0.00 383 | | | | | | | | |
|
nn | | | | | | | | | 0.00 383 | | | | | | | | |
|
door-mid | | | | | | | | | 98.17 210 | | | | | | | | |
|
lessismore_v0 | | | | | 97.05 166 | 99.36 42 | 92.12 212 | | 84.07 370 | | 98.77 47 | 98.98 43 | 85.36 290 | 99.74 75 | 97.34 44 | 99.37 156 | 99.30 107 |
|
LGP-MVS_train | | | | | 98.74 35 | 99.15 74 | 97.02 44 | | 99.02 52 | 95.15 167 | 98.34 82 | 98.23 107 | 97.91 17 | 99.70 109 | 94.41 178 | 99.73 48 | 99.50 45 |
|
test11 | | | | | | | | | 98.08 223 | | | | | | | | |
|
door | | | | | | | | | 97.81 242 | | | | | | | | |
|
HQP5-MVS | | | | | | | 92.47 202 | | | | | | | | | | |
|
HQP-NCC | | | | | | 97.85 217 | | 94.26 254 | | 93.18 232 | 92.86 327 | | | | | | |
|
ACMP_Plane | | | | | | 97.85 217 | | 94.26 254 | | 93.18 232 | 92.86 327 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 90.51 277 | | |
|
HQP4-MVS | | | | | | | | | | | 92.87 326 | | | 99.23 261 | | | 99.06 164 |
|
HQP3-MVS | | | | | | | | | 98.43 174 | | | | | | | 98.74 249 | |
|
HQP2-MVS | | | | | | | | | | | | | 90.33 243 | | | | |
|
NP-MVS | | | | | | 98.14 191 | 93.72 173 | | | | | 95.08 309 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 57.28 378 | 94.89 234 | | 80.59 352 | 94.02 295 | | 78.66 322 | | 85.50 336 | | 97.82 290 |
|
MDTV_nov1_ep13 | | | | 91.28 296 | | 94.31 350 | 73.51 372 | 94.80 239 | 93.16 332 | 86.75 315 | 93.45 317 | 97.40 196 | 76.37 335 | 98.55 333 | 88.85 301 | 96.43 330 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 106 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.55 95 | |
|
Test By Simon | | | | | | | | | | | | | 94.51 160 | | | | |
|
ITE_SJBPF | | | | | 97.85 104 | 98.64 130 | 96.66 55 | | 98.51 167 | 95.63 146 | 97.22 170 | 97.30 210 | 95.52 123 | 98.55 333 | 90.97 257 | 98.90 231 | 98.34 249 |
|
DeepMVS_CX |  | | | | 77.17 354 | 90.94 373 | 85.28 322 | | 74.08 377 | 52.51 371 | 80.87 372 | 88.03 368 | 75.25 341 | 70.63 374 | 59.23 373 | 84.94 369 | 75.62 369 |
|