This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4699.69 299.57 499.02 1599.62 1099.36 1498.53 799.52 18298.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6599.18 599.20 1699.67 299.73 399.65 499.15 399.86 2097.22 4699.92 1499.77 8
pmmvs699.07 499.24 498.56 4999.81 296.38 6398.87 999.30 1199.01 1699.63 999.66 399.27 299.68 12597.75 3099.89 2299.62 25
mvs_tets98.90 598.94 698.75 3399.69 896.48 6198.54 2099.22 1396.23 11299.71 499.48 798.77 699.93 298.89 399.95 599.84 5
TDRefinement98.90 598.86 899.02 999.54 2198.06 899.34 499.44 898.85 2099.00 3699.20 2397.42 3299.59 16097.21 4899.76 4299.40 84
UA-Net98.88 798.76 1399.22 299.11 8497.89 1499.47 399.32 1099.08 1097.87 14199.67 296.47 8899.92 497.88 2399.98 299.85 3
DTE-MVSNet98.79 898.86 898.59 4799.55 1996.12 7298.48 2599.10 3199.36 499.29 2399.06 3997.27 3899.93 297.71 3299.91 1799.70 18
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 6198.45 2699.12 2895.83 13999.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
PEN-MVS98.75 1098.85 1098.44 5699.58 1595.67 8998.45 2699.15 2499.33 599.30 2199.00 4197.27 3899.92 497.64 3499.92 1499.75 13
v7n98.73 1198.99 597.95 9699.64 1194.20 15598.67 1399.14 2699.08 1099.42 1599.23 2196.53 8399.91 1299.27 299.93 1099.73 15
PS-CasMVS98.73 1198.85 1098.39 6099.55 1995.47 10198.49 2399.13 2799.22 899.22 2798.96 4597.35 3499.92 497.79 2899.93 1099.79 7
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6798.67 1399.02 5296.50 10099.32 2099.44 1097.43 3199.92 498.73 799.95 599.86 2
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3998.65 1699.19 1895.62 14799.35 1999.37 1297.38 3399.90 1398.59 1199.91 1799.77 8
WR-MVS_H98.65 1598.62 2198.75 3399.51 2496.61 5798.55 1999.17 1999.05 1399.17 2998.79 5595.47 12799.89 1697.95 2199.91 1799.75 13
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6499.17 699.05 4398.05 4199.61 1199.52 593.72 18099.88 1898.72 999.88 2399.65 23
Anonymous2023121198.55 1798.76 1397.94 9798.79 11294.37 14798.84 1099.15 2499.37 399.67 699.43 1195.61 12099.72 8698.12 1699.86 2599.73 15
nrg03098.54 1898.62 2198.32 6599.22 5995.66 9097.90 6099.08 3798.31 3399.02 3498.74 5997.68 2499.61 15897.77 2999.85 2899.70 18
PS-MVSNAJss98.53 1998.63 1998.21 7899.68 994.82 12998.10 4999.21 1496.91 8599.75 299.45 995.82 10899.92 498.80 499.96 499.89 1
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5298.76 1198.89 7998.49 2899.38 1799.14 3395.44 12999.84 2596.47 7199.80 3699.47 62
pm-mvs198.47 2198.67 1797.86 10399.52 2394.58 13998.28 3699.00 6097.57 6199.27 2499.22 2298.32 999.50 18797.09 5499.75 4699.50 45
ACMH93.61 998.44 2298.76 1397.51 12999.43 3493.54 18098.23 3999.05 4397.40 7399.37 1899.08 3798.79 599.47 19597.74 3199.71 5499.50 45
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet98.42 2398.46 2498.30 6899.46 3095.22 11798.27 3898.84 9999.05 1399.01 3598.65 6795.37 13099.90 1397.57 3699.91 1799.77 8
abl_698.42 2398.19 3299.09 399.16 7198.10 697.73 7299.11 2997.76 5098.62 5298.27 10397.88 1999.80 3895.67 10899.50 11599.38 88
TransMVSNet (Re)98.38 2598.67 1797.51 12999.51 2493.39 18498.20 4498.87 8798.23 3699.48 1299.27 1998.47 899.55 17396.52 6899.53 10199.60 26
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5799.07 8895.87 8096.73 12999.05 4398.67 2498.84 4298.45 8097.58 2899.88 1896.45 7299.86 2599.54 38
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 2197.48 3298.35 2999.03 5095.88 13497.88 13898.22 11098.15 1299.74 7596.50 7099.62 6999.42 81
ANet_high98.31 2898.94 696.41 20599.33 4589.64 25197.92 5999.56 599.27 699.66 899.50 697.67 2599.83 2897.55 3799.98 299.77 8
VPA-MVSNet98.27 2998.46 2497.70 11599.06 8993.80 16997.76 6899.00 6098.40 3099.07 3398.98 4396.89 6499.75 6597.19 5199.79 3899.55 37
Vis-MVSNetpermissive98.27 2998.34 2898.07 8799.33 4595.21 11998.04 5299.46 797.32 7597.82 14699.11 3496.75 7299.86 2097.84 2599.36 15999.15 140
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6697.35 3797.96 5599.16 2098.34 3298.78 4598.52 7597.32 3599.45 20294.08 19399.67 6199.13 146
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 3298.31 2997.98 9599.39 3995.22 11797.55 8199.20 1698.21 3799.25 2598.51 7698.21 1199.40 21994.79 16399.72 5199.32 101
FC-MVSNet-test98.16 3398.37 2797.56 12499.49 2893.10 19198.35 2999.21 1498.43 2998.89 3998.83 5494.30 16599.81 3297.87 2499.91 1799.77 8
SR-MVS-dyc-post98.14 3497.84 5199.02 998.81 10998.05 997.55 8198.86 9097.77 4798.20 9998.07 12596.60 8099.76 5895.49 11899.20 19299.26 120
MTAPA98.14 3497.84 5199.06 499.44 3297.90 1297.25 9898.73 12997.69 5797.90 13597.96 14095.81 11299.82 2996.13 8199.61 7599.45 69
APDe-MVS98.14 3498.03 4098.47 5598.72 12096.04 7598.07 5199.10 3195.96 12898.59 5798.69 6396.94 5899.81 3296.64 6299.58 8399.57 32
APD-MVS_3200maxsize98.13 3797.90 4598.79 3198.79 11297.31 3897.55 8198.92 7697.72 5498.25 9498.13 11797.10 4599.75 6595.44 12599.24 19099.32 101
HPM-MVScopyleft98.11 3897.83 5398.92 2299.42 3697.46 3398.57 1799.05 4395.43 15797.41 16697.50 18897.98 1599.79 3995.58 11799.57 8699.50 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test117298.08 3997.76 5999.05 698.78 11498.07 797.41 9398.85 9497.57 6198.15 10697.96 14096.60 8099.76 5895.30 13499.18 19799.33 100
Gipumacopyleft98.07 4098.31 2997.36 15099.76 596.28 6898.51 2299.10 3198.76 2396.79 20199.34 1796.61 7898.82 30696.38 7499.50 11596.98 315
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ACMMPcopyleft98.05 4197.75 6198.93 2199.23 5697.60 2398.09 5098.96 7195.75 14397.91 13498.06 13096.89 6499.76 5895.32 13399.57 8699.43 80
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM93.33 1198.05 4197.79 5598.85 2599.15 7497.55 2796.68 13198.83 10695.21 16398.36 7998.13 11798.13 1499.62 15196.04 8799.54 9899.39 86
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SteuartSystems-ACMMP98.02 4397.76 5998.79 3199.43 3497.21 4397.15 10498.90 7896.58 9698.08 11697.87 15497.02 5399.76 5895.25 13799.59 8199.40 84
Skip Steuart: Steuart Systems R&D Blog.
zzz-MVS98.01 4497.66 6799.06 499.44 3297.90 1295.66 18498.73 12997.69 5797.90 13597.96 14095.81 11299.82 2996.13 8199.61 7599.45 69
SR-MVS98.00 4597.66 6799.01 1198.77 11697.93 1197.38 9498.83 10697.32 7598.06 11897.85 15596.65 7599.77 5395.00 15699.11 20899.32 101
DVP-MVS++97.96 4697.90 4598.12 8497.75 24395.40 10299.03 798.89 7996.62 9298.62 5298.30 9496.97 5699.75 6595.70 10499.25 18799.21 129
Anonymous2024052997.96 4698.04 3997.71 11398.69 12794.28 15297.86 6298.31 19498.79 2299.23 2698.86 5395.76 11599.61 15895.49 11899.36 15999.23 127
XVS97.96 4697.63 7498.94 1899.15 7497.66 2097.77 6698.83 10697.42 6996.32 22597.64 17696.49 8699.72 8695.66 11099.37 15699.45 69
NR-MVSNet97.96 4697.86 5098.26 7098.73 11895.54 9498.14 4798.73 12997.79 4699.42 1597.83 15794.40 16399.78 4395.91 9799.76 4299.46 64
ACMMPR97.95 5097.62 7698.94 1899.20 6797.56 2697.59 7898.83 10696.05 12197.46 16397.63 17796.77 7199.76 5895.61 11499.46 12899.49 53
FMVSNet197.95 5098.08 3597.56 12499.14 8293.67 17498.23 3998.66 14997.41 7299.00 3699.19 2495.47 12799.73 8195.83 10299.76 4299.30 107
SED-MVS97.94 5297.90 4598.07 8799.22 5995.35 10796.79 12298.83 10696.11 11899.08 3198.24 10597.87 2099.72 8695.44 12599.51 11199.14 143
HFP-MVS97.94 5297.64 7298.83 2699.15 7497.50 3097.59 7898.84 9996.05 12197.49 15797.54 18397.07 4899.70 10995.61 11499.46 12899.30 107
LPG-MVS_test97.94 5297.67 6698.74 3599.15 7497.02 4497.09 10999.02 5295.15 16798.34 8298.23 10797.91 1799.70 10994.41 17899.73 4899.50 45
FIs97.93 5598.07 3697.48 13699.38 4092.95 19498.03 5499.11 2998.04 4298.62 5298.66 6593.75 17999.78 4397.23 4599.84 2999.73 15
ZNCC-MVS97.92 5697.62 7698.83 2699.32 4797.24 4197.45 8898.84 9995.76 14196.93 19697.43 19497.26 4099.79 3996.06 8499.53 10199.45 69
region2R97.92 5697.59 7998.92 2299.22 5997.55 2797.60 7798.84 9996.00 12697.22 17097.62 17896.87 6799.76 5895.48 12199.43 14199.46 64
CP-MVS97.92 5697.56 8298.99 1398.99 9797.82 1697.93 5798.96 7196.11 11896.89 19997.45 19296.85 6899.78 4395.19 14099.63 6899.38 88
mPP-MVS97.91 5997.53 8399.04 799.22 5997.87 1597.74 7098.78 12096.04 12397.10 18097.73 16996.53 8399.78 4395.16 14499.50 11599.46 64
DROMVSNet97.90 6097.94 4497.79 10798.66 12995.14 12098.31 3399.66 297.57 6195.95 24297.01 22996.99 5599.82 2997.66 3399.64 6698.39 241
ACMMP_NAP97.89 6197.63 7498.67 4199.35 4396.84 4996.36 14298.79 11695.07 17197.88 13898.35 8697.24 4299.72 8696.05 8699.58 8399.45 69
PGM-MVS97.88 6297.52 8498.96 1699.20 6797.62 2297.09 10999.06 4195.45 15597.55 15197.94 14597.11 4499.78 4394.77 16699.46 12899.48 59
DP-MVS97.87 6397.89 4897.81 10698.62 13594.82 12997.13 10798.79 11698.98 1798.74 4898.49 7795.80 11499.49 18995.04 15399.44 13399.11 155
RPSCF97.87 6397.51 8598.95 1799.15 7498.43 397.56 8099.06 4196.19 11598.48 6698.70 6294.72 14999.24 25994.37 18199.33 17499.17 136
KD-MVS_self_test97.86 6598.07 3697.25 15799.22 5992.81 19797.55 8198.94 7497.10 8198.85 4198.88 5195.03 14199.67 13097.39 4399.65 6499.26 120
test_040297.84 6697.97 4197.47 13799.19 6994.07 15896.71 13098.73 12998.66 2598.56 5998.41 8296.84 6999.69 11794.82 16199.81 3398.64 221
UniMVSNet_NR-MVSNet97.83 6797.65 6998.37 6198.72 12095.78 8295.66 18499.02 5298.11 4098.31 8997.69 17494.65 15499.85 2297.02 5799.71 5499.48 59
UniMVSNet (Re)97.83 6797.65 6998.35 6498.80 11195.86 8195.92 17199.04 4997.51 6698.22 9897.81 16194.68 15299.78 4397.14 5399.75 4699.41 83
GST-MVS97.82 6997.49 8898.81 2999.23 5697.25 4097.16 10398.79 11695.96 12897.53 15297.40 19696.93 6099.77 5395.04 15399.35 16499.42 81
DeepC-MVS95.41 497.82 6997.70 6298.16 7998.78 11495.72 8496.23 15199.02 5293.92 21198.62 5298.99 4297.69 2399.62 15196.18 8099.87 2499.15 140
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DU-MVS97.79 7197.60 7898.36 6298.73 11895.78 8295.65 18798.87 8797.57 6198.31 8997.83 15794.69 15099.85 2297.02 5799.71 5499.46 64
DVP-MVScopyleft97.78 7297.65 6998.16 7999.24 5495.51 9696.74 12598.23 20095.92 13198.40 7398.28 9997.06 5099.71 10095.48 12199.52 10699.26 120
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
LS3D97.77 7397.50 8798.57 4896.24 31397.58 2598.45 2698.85 9498.58 2797.51 15497.94 14595.74 11699.63 14395.19 14098.97 22298.51 233
GeoE97.75 7497.70 6297.89 10098.88 10694.53 14097.10 10898.98 6695.75 14397.62 14997.59 18097.61 2799.77 5396.34 7699.44 13399.36 96
3Dnovator+96.13 397.73 7597.59 7998.15 8298.11 19695.60 9298.04 5298.70 13998.13 3996.93 19698.45 8095.30 13499.62 15195.64 11298.96 22399.24 126
tfpnnormal97.72 7697.97 4196.94 17199.26 5092.23 20797.83 6498.45 17198.25 3599.13 3098.66 6596.65 7599.69 11793.92 20299.62 6998.91 188
Baseline_NR-MVSNet97.72 7697.79 5597.50 13299.56 1793.29 18595.44 19498.86 9098.20 3898.37 7699.24 2094.69 15099.55 17395.98 9399.79 3899.65 23
MP-MVS-pluss97.69 7897.36 9498.70 3999.50 2796.84 4995.38 20198.99 6392.45 25298.11 11098.31 9097.25 4199.77 5396.60 6499.62 6999.48 59
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EG-PatchMatch MVS97.69 7897.79 5597.40 14799.06 8993.52 18195.96 16798.97 7094.55 19198.82 4398.76 5897.31 3699.29 25197.20 5099.44 13399.38 88
DPE-MVScopyleft97.64 8097.35 9598.50 5298.85 10796.18 6995.21 21698.99 6395.84 13898.78 4598.08 12396.84 6999.81 3293.98 20099.57 8699.52 42
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVScopyleft97.64 8097.18 10799.00 1299.32 4797.77 1897.49 8798.73 12996.27 10995.59 25797.75 16696.30 9699.78 4393.70 21099.48 12399.45 69
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
#test#97.62 8297.22 10598.83 2699.15 7497.50 3096.81 12198.84 9994.25 20097.49 15797.54 18397.07 4899.70 10994.37 18199.46 12899.30 107
3Dnovator96.53 297.61 8397.64 7297.50 13297.74 24693.65 17898.49 2398.88 8596.86 8797.11 17998.55 7395.82 10899.73 8195.94 9599.42 14499.13 146
SF-MVS97.60 8497.39 9298.22 7598.93 10295.69 8697.05 11199.10 3195.32 16097.83 14497.88 15296.44 9099.72 8694.59 17399.39 15399.25 124
v897.60 8498.06 3896.23 21298.71 12389.44 25597.43 9198.82 11497.29 7798.74 4899.10 3593.86 17599.68 12598.61 1099.94 899.56 35
XVG-ACMP-BASELINE97.58 8697.28 10098.49 5399.16 7196.90 4896.39 13998.98 6695.05 17298.06 11898.02 13495.86 10499.56 16994.37 18199.64 6699.00 171
v1097.55 8797.97 4196.31 20998.60 13889.64 25197.44 8999.02 5296.60 9498.72 5099.16 3093.48 18499.72 8698.76 699.92 1499.58 28
OPM-MVS97.54 8897.25 10198.41 5899.11 8496.61 5795.24 21498.46 17094.58 19098.10 11398.07 12597.09 4799.39 22495.16 14499.44 13399.21 129
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XXY-MVS97.54 8897.70 6297.07 16599.46 3092.21 20897.22 10199.00 6094.93 17898.58 5898.92 4897.31 3699.41 21794.44 17699.43 14199.59 27
Regformer-497.53 9097.47 9097.71 11397.35 27593.91 16395.26 21198.14 21697.97 4398.34 8297.89 15095.49 12499.71 10097.41 4199.42 14499.51 44
casdiffmvs97.50 9197.81 5496.56 19698.51 14891.04 23095.83 17699.09 3697.23 7898.33 8698.30 9497.03 5299.37 23096.58 6699.38 15599.28 115
SixPastTwentyTwo97.49 9297.57 8197.26 15699.56 1792.33 20498.28 3696.97 28098.30 3499.45 1499.35 1688.43 26799.89 1698.01 2099.76 4299.54 38
SMA-MVScopyleft97.48 9397.11 11098.60 4698.83 10896.67 5496.74 12598.73 12991.61 26398.48 6698.36 8596.53 8399.68 12595.17 14299.54 9899.45 69
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP92.54 1397.47 9497.10 11198.55 5099.04 9496.70 5396.24 15098.89 7993.71 21697.97 12997.75 16697.44 3099.63 14393.22 21999.70 5799.32 101
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS97.45 9596.92 12399.03 899.26 5097.70 1997.66 7398.89 7995.65 14598.51 6296.46 26292.15 21599.81 3295.14 14798.58 26499.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
baseline97.44 9697.78 5896.43 20298.52 14790.75 23796.84 11999.03 5096.51 9997.86 14298.02 13496.67 7499.36 23297.09 5499.47 12599.19 133
TSAR-MVS + MP.97.42 9797.23 10498.00 9499.38 4095.00 12497.63 7698.20 20493.00 24098.16 10498.06 13095.89 10399.72 8695.67 10899.10 21099.28 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-297.41 9897.24 10397.93 9897.21 28794.72 13294.85 23798.27 19597.74 5198.11 11097.50 18895.58 12299.69 11796.57 6799.31 17899.37 95
CSCG97.40 9997.30 9797.69 11798.95 9994.83 12897.28 9798.99 6396.35 10898.13 10995.95 29095.99 10199.66 13694.36 18499.73 4898.59 227
XVG-OURS-SEG-HR97.38 10097.07 11498.30 6899.01 9697.41 3694.66 24499.02 5295.20 16498.15 10697.52 18698.83 498.43 33994.87 15996.41 33199.07 162
VDD-MVS97.37 10197.25 10197.74 11198.69 12794.50 14397.04 11295.61 30998.59 2698.51 6298.72 6092.54 20899.58 16296.02 8999.49 11999.12 151
SD-MVS97.37 10197.70 6296.35 20698.14 19195.13 12196.54 13498.92 7695.94 13099.19 2898.08 12397.74 2295.06 36895.24 13899.54 9898.87 198
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS97.36 10397.10 11198.14 8398.91 10496.77 5196.20 15298.63 15593.82 21398.54 6098.33 8893.98 17399.05 28495.99 9299.45 13298.61 226
LCM-MVSNet-Re97.33 10497.33 9697.32 15298.13 19493.79 17096.99 11599.65 396.74 9099.47 1398.93 4796.91 6399.84 2590.11 28399.06 21798.32 250
EI-MVSNet-UG-set97.32 10597.40 9197.09 16497.34 27992.01 21695.33 20597.65 25397.74 5198.30 9198.14 11695.04 14099.69 11797.55 3799.52 10699.58 28
EI-MVSNet-Vis-set97.32 10597.39 9297.11 16297.36 27492.08 21495.34 20497.65 25397.74 5198.29 9298.11 12195.05 13899.68 12597.50 3999.50 11599.56 35
Regformer-197.27 10797.16 10897.61 12297.21 28793.86 16694.85 23798.04 23097.62 6098.03 12297.50 18895.34 13199.63 14396.52 6899.31 17899.35 98
VPNet97.26 10897.49 8896.59 19299.47 2990.58 23996.27 14698.53 16497.77 4798.46 6998.41 8294.59 15699.68 12594.61 16999.29 18299.52 42
Regformer-397.25 10997.29 9897.11 16297.35 27592.32 20595.26 21197.62 25897.67 5998.17 10397.89 15095.05 13899.56 16997.16 5299.42 14499.46 64
xxxxxxxxxxxxxcwj97.24 11097.03 11797.89 10098.48 15494.71 13394.53 24999.07 4095.02 17497.83 14497.88 15296.44 9099.72 8694.59 17399.39 15399.25 124
canonicalmvs97.23 11197.21 10697.30 15397.65 25494.39 14597.84 6399.05 4397.42 6996.68 20893.85 33197.63 2699.33 24096.29 7798.47 26898.18 266
AllTest97.20 11296.92 12398.06 8999.08 8696.16 7097.14 10699.16 2094.35 19697.78 14798.07 12595.84 10599.12 27491.41 24799.42 14498.91 188
XVG-OURS97.12 11396.74 13298.26 7098.99 9797.45 3493.82 27999.05 4395.19 16598.32 8797.70 17295.22 13698.41 34094.27 18698.13 27998.93 183
Anonymous2024052197.07 11497.51 8595.76 23399.35 4388.18 27797.78 6598.40 18197.11 8098.34 8299.04 4089.58 25499.79 3998.09 1899.93 1099.30 107
V4297.04 11597.16 10896.68 18998.59 14091.05 22996.33 14498.36 18694.60 18797.99 12598.30 9493.32 18699.62 15197.40 4299.53 10199.38 88
APD-MVScopyleft97.00 11696.53 14698.41 5898.55 14496.31 6696.32 14598.77 12192.96 24597.44 16597.58 18295.84 10599.74 7591.96 23499.35 16499.19 133
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVS++copyleft96.99 11796.38 15398.81 2998.64 13097.59 2495.97 16698.20 20495.51 15395.06 26696.53 25894.10 17099.70 10994.29 18599.15 19999.13 146
GBi-Net96.99 11796.80 12997.56 12497.96 20893.67 17498.23 3998.66 14995.59 15097.99 12599.19 2489.51 25899.73 8194.60 17099.44 13399.30 107
test196.99 11796.80 12997.56 12497.96 20893.67 17498.23 3998.66 14995.59 15097.99 12599.19 2489.51 25899.73 8194.60 17099.44 13399.30 107
VDDNet96.98 12096.84 12697.41 14699.40 3893.26 18697.94 5695.31 31599.26 798.39 7599.18 2787.85 27699.62 15195.13 14999.09 21199.35 98
PHI-MVS96.96 12196.53 14698.25 7397.48 26596.50 6096.76 12498.85 9493.52 21996.19 23496.85 23795.94 10299.42 20893.79 20699.43 14198.83 201
IS-MVSNet96.93 12296.68 13597.70 11599.25 5394.00 16198.57 1796.74 28998.36 3198.14 10897.98 13988.23 26999.71 10093.10 22299.72 5199.38 88
CNVR-MVS96.92 12396.55 14398.03 9398.00 20695.54 9494.87 23598.17 21094.60 18796.38 22297.05 22595.67 11899.36 23295.12 15099.08 21299.19 133
IterMVS-LS96.92 12397.29 9895.79 23298.51 14888.13 28095.10 21998.66 14996.99 8298.46 6998.68 6492.55 20699.74 7596.91 6099.79 3899.50 45
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS96.90 12596.81 12897.16 15998.56 14392.20 21094.33 25398.12 21997.34 7498.20 9997.33 20792.81 19799.75 6594.79 16399.81 3399.54 38
DeepPCF-MVS94.58 596.90 12596.43 15298.31 6797.48 26597.23 4292.56 31198.60 15792.84 24798.54 6097.40 19696.64 7798.78 31094.40 18099.41 15098.93 183
ETH3D-3000-0.196.89 12796.46 15198.16 7998.62 13595.69 8695.96 16798.98 6693.36 22497.04 18797.31 20994.93 14599.63 14392.60 22699.34 16799.17 136
v114496.84 12897.08 11396.13 21898.42 16089.28 25895.41 19898.67 14794.21 20197.97 12998.31 9093.06 19199.65 13898.06 1999.62 6999.45 69
VNet96.84 12896.83 12796.88 17598.06 19792.02 21596.35 14397.57 26097.70 5697.88 13897.80 16292.40 21299.54 17694.73 16898.96 22399.08 160
EPP-MVSNet96.84 12896.58 14097.65 11999.18 7093.78 17198.68 1296.34 29397.91 4597.30 16898.06 13088.46 26699.85 2293.85 20499.40 15199.32 101
v119296.83 13197.06 11596.15 21798.28 17089.29 25795.36 20298.77 12193.73 21598.11 11098.34 8793.02 19599.67 13098.35 1499.58 8399.50 45
MVS_111021_LR96.82 13296.55 14397.62 12198.27 17295.34 10993.81 28198.33 19194.59 18996.56 21496.63 25396.61 7898.73 31594.80 16299.34 16798.78 207
Effi-MVS+-dtu96.81 13396.09 16698.99 1396.90 30098.69 296.42 13898.09 22195.86 13695.15 26595.54 30194.26 16699.81 3294.06 19498.51 26798.47 236
UGNet96.81 13396.56 14297.58 12396.64 30393.84 16897.75 6997.12 27496.47 10393.62 30998.88 5193.22 18999.53 17895.61 11499.69 5899.36 96
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
v2v48296.78 13597.06 11595.95 22598.57 14288.77 26895.36 20298.26 19795.18 16697.85 14398.23 10792.58 20599.63 14397.80 2799.69 5899.45 69
test_part196.77 13696.53 14697.47 13798.04 19892.92 19597.93 5798.85 9498.83 2199.30 2199.07 3879.25 31899.79 3997.59 3599.93 1099.69 20
v124096.74 13797.02 11895.91 22898.18 18488.52 27095.39 20098.88 8593.15 23698.46 6998.40 8492.80 19899.71 10098.45 1399.49 11999.49 53
DeepC-MVS_fast94.34 796.74 13796.51 14997.44 14397.69 24994.15 15696.02 16298.43 17493.17 23597.30 16897.38 20295.48 12699.28 25393.74 20799.34 16798.88 196
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR96.73 13996.54 14597.27 15498.35 16593.66 17793.42 29198.36 18694.74 18296.58 21296.76 24696.54 8298.99 29194.87 15999.27 18599.15 140
v192192096.72 14096.96 12195.99 22198.21 17988.79 26795.42 19698.79 11693.22 23098.19 10298.26 10492.68 20199.70 10998.34 1599.55 9599.49 53
FMVSNet296.72 14096.67 13696.87 17697.96 20891.88 21897.15 10498.06 22895.59 15098.50 6498.62 6889.51 25899.65 13894.99 15799.60 7999.07 162
PMVScopyleft89.60 1796.71 14296.97 11995.95 22599.51 2497.81 1797.42 9297.49 26197.93 4495.95 24298.58 6996.88 6696.91 36289.59 29199.36 15993.12 362
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testtj96.69 14396.13 16398.36 6298.46 15896.02 7796.44 13798.70 13994.26 19996.79 20197.13 21794.07 17199.75 6590.53 27598.80 24399.31 106
v14419296.69 14396.90 12596.03 22098.25 17588.92 26295.49 19298.77 12193.05 23898.09 11498.29 9892.51 21099.70 10998.11 1799.56 8999.47 62
CPTT-MVS96.69 14396.08 16798.49 5398.89 10596.64 5697.25 9898.77 12192.89 24696.01 24197.13 21792.23 21499.67 13092.24 23199.34 16799.17 136
HQP_MVS96.66 14696.33 15697.68 11898.70 12594.29 14996.50 13598.75 12596.36 10696.16 23596.77 24491.91 22699.46 19892.59 22899.20 19299.28 115
EI-MVSNet96.63 14796.93 12295.74 23497.26 28488.13 28095.29 20997.65 25396.99 8297.94 13298.19 11292.55 20699.58 16296.91 6099.56 8999.50 45
CS-MVS-test96.62 14896.59 13896.69 18797.88 21693.16 18997.21 10299.53 695.61 14893.72 30495.33 30595.49 12499.69 11795.37 13299.19 19697.22 309
ab-mvs96.59 14996.59 13896.60 19198.64 13092.21 20898.35 2997.67 24994.45 19296.99 19198.79 5594.96 14499.49 18990.39 28099.07 21498.08 269
v14896.58 15096.97 11995.42 24898.63 13487.57 29195.09 22197.90 23495.91 13398.24 9697.96 14093.42 18599.39 22496.04 8799.52 10699.29 114
test20.0396.58 15096.61 13796.48 20098.49 15291.72 22295.68 18397.69 24896.81 8898.27 9397.92 14894.18 16998.71 31790.78 26499.66 6399.00 171
NCCC96.52 15295.99 17198.10 8597.81 22595.68 8895.00 23098.20 20495.39 15895.40 26196.36 26993.81 17799.45 20293.55 21398.42 26999.17 136
pmmvs-eth3d96.49 15396.18 16297.42 14598.25 17594.29 14994.77 24198.07 22789.81 28497.97 12998.33 8893.11 19099.08 28195.46 12499.84 2998.89 192
OMC-MVS96.48 15496.00 17097.91 9998.30 16796.01 7894.86 23698.60 15791.88 26097.18 17497.21 21596.11 9999.04 28590.49 27999.34 16798.69 218
TSAR-MVS + GP.96.47 15596.12 16497.49 13597.74 24695.23 11494.15 26496.90 28293.26 22898.04 12196.70 24994.41 16298.89 30194.77 16699.14 20098.37 243
Fast-Effi-MVS+-dtu96.44 15696.12 16497.39 14897.18 28994.39 14595.46 19398.73 12996.03 12594.72 27494.92 31596.28 9899.69 11793.81 20597.98 28498.09 268
K. test v396.44 15696.28 15796.95 17099.41 3791.53 22497.65 7490.31 35898.89 1998.93 3899.36 1484.57 29699.92 497.81 2699.56 8999.39 86
MSLP-MVS++96.42 15896.71 13395.57 24097.82 22490.56 24195.71 17998.84 9994.72 18396.71 20797.39 20094.91 14698.10 35495.28 13599.02 21998.05 278
Anonymous20240521196.34 15995.98 17297.43 14498.25 17593.85 16796.74 12594.41 32297.72 5498.37 7698.03 13387.15 28099.53 17894.06 19499.07 21498.92 187
h-mvs3396.29 16095.63 18498.26 7098.50 15196.11 7396.90 11797.09 27596.58 9697.21 17298.19 11284.14 29799.78 4395.89 9896.17 33598.89 192
MVS_Test96.27 16196.79 13194.73 27696.94 29886.63 30696.18 15398.33 19194.94 17696.07 23898.28 9995.25 13599.26 25697.21 4897.90 28898.30 254
MCST-MVS96.24 16295.80 17897.56 12498.75 11794.13 15794.66 24498.17 21090.17 28196.21 23396.10 28395.14 13799.43 20794.13 19298.85 23999.13 146
ETH3D cwj APD-0.1696.23 16395.61 18698.09 8697.91 21295.65 9194.94 23298.74 12791.31 26996.02 24097.08 22294.05 17299.69 11791.51 24698.94 22798.93 183
mvs-test196.20 16495.50 18998.32 6596.90 30098.16 595.07 22498.09 22195.86 13693.63 30894.32 32794.26 16699.71 10094.06 19497.27 31697.07 312
Effi-MVS+96.19 16596.01 16996.71 18597.43 27192.19 21196.12 15699.10 3195.45 15593.33 32194.71 31897.23 4399.56 16993.21 22097.54 30598.37 243
DELS-MVS96.17 16696.23 15995.99 22197.55 26290.04 24492.38 31698.52 16594.13 20496.55 21697.06 22494.99 14399.58 16295.62 11399.28 18398.37 243
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVSFormer96.14 16796.36 15495.49 24597.68 25087.81 28798.67 1399.02 5296.50 10094.48 28396.15 27886.90 28199.92 498.73 799.13 20498.74 212
ETV-MVS96.13 16895.90 17696.82 17997.76 24193.89 16495.40 19998.95 7395.87 13595.58 25891.00 36296.36 9599.72 8693.36 21498.83 24196.85 322
testgi96.07 16996.50 15094.80 27399.26 5087.69 29095.96 16798.58 16095.08 17098.02 12496.25 27397.92 1697.60 35988.68 30598.74 24999.11 155
LF4IMVS96.07 16995.63 18497.36 15098.19 18195.55 9395.44 19498.82 11492.29 25495.70 25596.55 25692.63 20498.69 31991.75 24399.33 17497.85 288
EIA-MVS96.04 17195.77 18096.85 17797.80 22992.98 19396.12 15699.16 2094.65 18593.77 30291.69 35695.68 11799.67 13094.18 18998.85 23997.91 286
diffmvs96.04 17196.23 15995.46 24797.35 27588.03 28293.42 29199.08 3794.09 20696.66 20996.93 23393.85 17699.29 25196.01 9198.67 25499.06 164
alignmvs96.01 17395.52 18897.50 13297.77 24094.71 13396.07 15896.84 28397.48 6796.78 20594.28 32885.50 28999.40 21996.22 7898.73 25298.40 239
TinyColmap96.00 17496.34 15594.96 26497.90 21487.91 28394.13 26798.49 16894.41 19398.16 10497.76 16396.29 9798.68 32290.52 27699.42 14498.30 254
CS-MVS95.98 17596.24 15895.20 25597.26 28489.88 24795.84 17599.39 993.89 21294.28 28695.15 30894.81 14799.62 15196.11 8399.40 15196.10 340
PVSNet_Blended_VisFu95.95 17695.80 17896.42 20399.28 4990.62 23895.31 20799.08 3788.40 29896.97 19498.17 11592.11 21799.78 4393.64 21199.21 19198.86 199
test_prior395.91 17795.39 19097.46 14097.79 23594.26 15393.33 29698.42 17794.21 20194.02 29596.25 27393.64 18199.34 23791.90 23698.96 22398.79 205
UnsupCasMVSNet_eth95.91 17795.73 18196.44 20198.48 15491.52 22595.31 20798.45 17195.76 14197.48 16097.54 18389.53 25798.69 31994.43 17794.61 35099.13 146
QAPM95.88 17995.57 18796.80 18097.90 21491.84 22098.18 4698.73 12988.41 29796.42 22098.13 11794.73 14899.75 6588.72 30398.94 22798.81 203
CANet95.86 18095.65 18396.49 19996.41 30990.82 23494.36 25298.41 17994.94 17692.62 33596.73 24792.68 20199.71 10095.12 15099.60 7998.94 179
IterMVS-SCA-FT95.86 18096.19 16194.85 27097.68 25085.53 31792.42 31497.63 25796.99 8298.36 7998.54 7487.94 27199.75 6597.07 5699.08 21299.27 119
hse-mvs295.77 18295.09 19897.79 10797.84 22195.51 9695.66 18495.43 31496.58 9697.21 17296.16 27784.14 29799.54 17695.89 9896.92 31898.32 250
MVP-Stereo95.69 18395.28 19296.92 17298.15 19093.03 19295.64 18998.20 20490.39 27896.63 21197.73 16991.63 22999.10 27991.84 24097.31 31498.63 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet-bldmvs95.69 18395.67 18295.74 23498.48 15488.76 26992.84 30397.25 26796.00 12697.59 15097.95 14491.38 23199.46 19893.16 22196.35 33298.99 174
new-patchmatchnet95.67 18596.58 14092.94 31997.48 26580.21 35492.96 30298.19 20994.83 18098.82 4398.79 5593.31 18799.51 18695.83 10299.04 21899.12 151
xiu_mvs_v1_base_debu95.62 18695.96 17394.60 28098.01 20288.42 27193.99 27298.21 20192.98 24195.91 24494.53 32196.39 9299.72 8695.43 12898.19 27695.64 346
xiu_mvs_v1_base95.62 18695.96 17394.60 28098.01 20288.42 27193.99 27298.21 20192.98 24195.91 24494.53 32196.39 9299.72 8695.43 12898.19 27695.64 346
xiu_mvs_v1_base_debi95.62 18695.96 17394.60 28098.01 20288.42 27193.99 27298.21 20192.98 24195.91 24494.53 32196.39 9299.72 8695.43 12898.19 27695.64 346
DP-MVS Recon95.55 18995.13 19696.80 18098.51 14893.99 16294.60 24698.69 14290.20 28095.78 25196.21 27692.73 20098.98 29390.58 27498.86 23797.42 305
MVS_030495.50 19095.05 20296.84 17896.28 31293.12 19097.00 11496.16 29595.03 17389.22 35797.70 17290.16 24999.48 19294.51 17599.34 16797.93 285
Fast-Effi-MVS+95.49 19195.07 19996.75 18397.67 25392.82 19694.22 26098.60 15791.61 26393.42 31992.90 34196.73 7399.70 10992.60 22697.89 28997.74 293
TAMVS95.49 19194.94 20497.16 15998.31 16693.41 18395.07 22496.82 28591.09 27297.51 15497.82 16089.96 25099.42 20888.42 30899.44 13398.64 221
OpenMVScopyleft94.22 895.48 19395.20 19396.32 20897.16 29091.96 21797.74 7098.84 9987.26 30794.36 28598.01 13693.95 17499.67 13090.70 27098.75 24897.35 308
CLD-MVS95.47 19495.07 19996.69 18798.27 17292.53 20191.36 32998.67 14791.22 27195.78 25194.12 32995.65 11998.98 29390.81 26299.72 5198.57 228
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
train_agg95.46 19594.66 21997.88 10297.84 22195.23 11493.62 28598.39 18287.04 31193.78 30095.99 28594.58 15799.52 18291.76 24298.90 23198.89 192
CDPH-MVS95.45 19694.65 22097.84 10598.28 17094.96 12593.73 28398.33 19185.03 33395.44 25996.60 25495.31 13399.44 20590.01 28599.13 20499.11 155
IterMVS95.42 19795.83 17794.20 29397.52 26383.78 33892.41 31597.47 26495.49 15498.06 11898.49 7787.94 27199.58 16296.02 8999.02 21999.23 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
agg_prior195.39 19894.60 22597.75 11097.80 22994.96 12593.39 29398.36 18687.20 30993.49 31495.97 28894.65 15499.53 17891.69 24498.86 23798.77 210
mvs_anonymous95.36 19996.07 16893.21 31196.29 31181.56 34994.60 24697.66 25193.30 22796.95 19598.91 4993.03 19499.38 22796.60 6497.30 31598.69 218
MSDG95.33 20095.13 19695.94 22797.40 27391.85 21991.02 34098.37 18595.30 16196.31 22795.99 28594.51 16098.38 34389.59 29197.65 30297.60 300
LFMVS95.32 20194.88 20996.62 19098.03 19991.47 22697.65 7490.72 35599.11 997.89 13798.31 9079.20 31999.48 19293.91 20399.12 20798.93 183
F-COLMAP95.30 20294.38 23798.05 9298.64 13096.04 7595.61 19098.66 14989.00 29193.22 32296.40 26692.90 19699.35 23587.45 32297.53 30698.77 210
Anonymous2023120695.27 20395.06 20195.88 22998.72 12089.37 25695.70 18097.85 23788.00 30396.98 19397.62 17891.95 22299.34 23789.21 29699.53 10198.94 179
FMVSNet395.26 20494.94 20496.22 21496.53 30690.06 24395.99 16497.66 25194.11 20597.99 12597.91 14980.22 31699.63 14394.60 17099.44 13398.96 176
c3_l95.20 20595.32 19194.83 27296.19 31786.43 30991.83 32498.35 19093.47 22197.36 16797.26 21288.69 26499.28 25395.41 13199.36 15998.78 207
D2MVS95.18 20695.17 19595.21 25497.76 24187.76 28994.15 26497.94 23289.77 28596.99 19197.68 17587.45 27899.14 27295.03 15599.81 3398.74 212
N_pmnet95.18 20694.23 24098.06 8997.85 21796.55 5992.49 31291.63 34689.34 28798.09 11497.41 19590.33 24399.06 28391.58 24599.31 17898.56 229
HQP-MVS95.17 20894.58 22896.92 17297.85 21792.47 20294.26 25498.43 17493.18 23292.86 32795.08 30990.33 24399.23 26190.51 27798.74 24999.05 166
Vis-MVSNet (Re-imp)95.11 20994.85 21095.87 23099.12 8389.17 25997.54 8694.92 31796.50 10096.58 21297.27 21183.64 30199.48 19288.42 30899.67 6198.97 175
AdaColmapbinary95.11 20994.62 22496.58 19397.33 28194.45 14494.92 23398.08 22393.15 23693.98 29895.53 30294.34 16499.10 27985.69 33398.61 26196.20 339
API-MVS95.09 21195.01 20395.31 25196.61 30494.02 16096.83 12097.18 27195.60 14995.79 24994.33 32694.54 15998.37 34585.70 33298.52 26593.52 359
CL-MVSNet_self_test95.04 21294.79 21695.82 23197.51 26489.79 24991.14 33796.82 28593.05 23896.72 20696.40 26690.82 23799.16 27091.95 23598.66 25698.50 234
CNLPA95.04 21294.47 23396.75 18397.81 22595.25 11394.12 26897.89 23594.41 19394.57 27895.69 29590.30 24698.35 34686.72 32798.76 24796.64 331
Patchmtry95.03 21494.59 22796.33 20794.83 34590.82 23496.38 14197.20 26996.59 9597.49 15798.57 7077.67 32699.38 22792.95 22599.62 6998.80 204
PVSNet_BlendedMVS95.02 21594.93 20695.27 25297.79 23587.40 29594.14 26698.68 14488.94 29294.51 28198.01 13693.04 19299.30 24789.77 28999.49 11999.11 155
TAPA-MVS93.32 1294.93 21694.23 24097.04 16798.18 18494.51 14195.22 21598.73 12981.22 35096.25 23195.95 29093.80 17898.98 29389.89 28798.87 23597.62 298
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
RRT_MVS94.90 21794.07 24697.39 14893.18 36293.21 18895.26 21197.49 26193.94 21098.25 9497.85 15572.96 35399.84 2597.90 2299.78 4199.14 143
eth_miper_zixun_eth94.89 21894.93 20694.75 27595.99 32486.12 31291.35 33098.49 16893.40 22297.12 17897.25 21386.87 28399.35 23595.08 15298.82 24298.78 207
CDS-MVSNet94.88 21994.12 24597.14 16197.64 25593.57 17993.96 27597.06 27790.05 28296.30 22896.55 25686.10 28599.47 19590.10 28499.31 17898.40 239
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch94.83 22094.91 20894.57 28396.81 30287.10 30094.23 25997.34 26688.74 29597.14 17697.11 22091.94 22398.23 35092.99 22397.92 28698.37 243
pmmvs494.82 22194.19 24396.70 18697.42 27292.75 19992.09 32196.76 28786.80 31495.73 25497.22 21489.28 26198.89 30193.28 21799.14 20098.46 238
miper_lstm_enhance94.81 22294.80 21594.85 27096.16 31986.45 30891.14 33798.20 20493.49 22097.03 18897.37 20484.97 29399.26 25695.28 13599.56 8998.83 201
ETH3 D test640094.77 22393.87 25497.47 13798.12 19593.73 17294.56 24898.70 13985.45 32894.70 27695.93 29291.77 22899.63 14386.45 32899.14 20099.05 166
cl____94.73 22494.64 22195.01 26295.85 32787.00 30191.33 33198.08 22393.34 22597.10 18097.33 20784.01 30099.30 24795.14 14799.56 8998.71 217
DIV-MVS_self_test94.73 22494.64 22195.01 26295.86 32687.00 30191.33 33198.08 22393.34 22597.10 18097.34 20684.02 29999.31 24495.15 14699.55 9598.72 215
YYNet194.73 22494.84 21194.41 28897.47 26985.09 32690.29 34695.85 30492.52 24997.53 15297.76 16391.97 22199.18 26593.31 21696.86 32198.95 177
MDA-MVSNet_test_wron94.73 22494.83 21394.42 28797.48 26585.15 32490.28 34795.87 30392.52 24997.48 16097.76 16391.92 22599.17 26993.32 21596.80 32498.94 179
UnsupCasMVSNet_bld94.72 22894.26 23996.08 21998.62 13590.54 24293.38 29498.05 22990.30 27997.02 18996.80 24389.54 25599.16 27088.44 30796.18 33498.56 229
miper_ehance_all_eth94.69 22994.70 21894.64 27795.77 33086.22 31191.32 33398.24 19991.67 26297.05 18696.65 25288.39 26899.22 26394.88 15898.34 27198.49 235
BH-untuned94.69 22994.75 21794.52 28597.95 21187.53 29294.07 26997.01 27893.99 20897.10 18095.65 29792.65 20398.95 29887.60 31896.74 32597.09 311
RPMNet94.68 23194.60 22594.90 26795.44 33788.15 27896.18 15398.86 9097.43 6894.10 29198.49 7779.40 31799.76 5895.69 10695.81 33796.81 326
Patchmatch-RL test94.66 23294.49 23195.19 25698.54 14588.91 26392.57 31098.74 12791.46 26698.32 8797.75 16677.31 33198.81 30896.06 8499.61 7597.85 288
CANet_DTU94.65 23394.21 24295.96 22395.90 32589.68 25093.92 27697.83 24193.19 23190.12 35295.64 29888.52 26599.57 16893.27 21899.47 12598.62 224
pmmvs594.63 23494.34 23895.50 24497.63 25688.34 27494.02 27097.13 27387.15 31095.22 26497.15 21687.50 27799.27 25593.99 19999.26 18698.88 196
PAPM_NR94.61 23594.17 24495.96 22398.36 16491.23 22795.93 17097.95 23192.98 24193.42 31994.43 32590.53 24098.38 34387.60 31896.29 33398.27 258
PatchMatch-RL94.61 23593.81 25597.02 16998.19 18195.72 8493.66 28497.23 26888.17 30194.94 27195.62 29991.43 23098.57 33087.36 32397.68 29996.76 328
BH-RMVSNet94.56 23794.44 23694.91 26597.57 25887.44 29493.78 28296.26 29493.69 21796.41 22196.50 26192.10 21899.00 28985.96 33097.71 29698.31 252
USDC94.56 23794.57 23094.55 28497.78 23986.43 30992.75 30698.65 15485.96 31996.91 19897.93 14790.82 23798.74 31490.71 26999.59 8198.47 236
test111194.53 23994.81 21493.72 29999.06 8981.94 34898.31 3383.87 37196.37 10598.49 6599.17 2981.49 30799.73 8196.64 6299.86 2599.49 53
bset_n11_16_dypcd94.53 23993.95 25296.25 21197.56 26089.85 24888.52 35991.32 34894.90 17997.51 15496.38 26882.34 30599.78 4397.22 4699.80 3699.12 151
ppachtmachnet_test94.49 24194.84 21193.46 30596.16 31982.10 34590.59 34397.48 26390.53 27797.01 19097.59 18091.01 23499.36 23293.97 20199.18 19798.94 179
test_yl94.40 24294.00 24995.59 23896.95 29689.52 25394.75 24295.55 31196.18 11696.79 20196.14 28081.09 31199.18 26590.75 26597.77 29098.07 271
DCV-MVSNet94.40 24294.00 24995.59 23896.95 29689.52 25394.75 24295.55 31196.18 11696.79 20196.14 28081.09 31199.18 26590.75 26597.77 29098.07 271
jason94.39 24494.04 24895.41 25098.29 16887.85 28692.74 30896.75 28885.38 33095.29 26296.15 27888.21 27099.65 13894.24 18799.34 16798.74 212
jason: jason.
ECVR-MVScopyleft94.37 24594.48 23294.05 29698.95 9983.10 34098.31 3382.48 37296.20 11398.23 9799.16 3081.18 31099.66 13695.95 9499.83 3199.38 88
112194.26 24693.26 26397.27 15498.26 17494.73 13195.86 17297.71 24777.96 36294.53 28096.71 24891.93 22499.40 21987.71 31498.64 25997.69 296
EU-MVSNet94.25 24794.47 23393.60 30298.14 19182.60 34397.24 10092.72 33885.08 33198.48 6698.94 4682.59 30498.76 31397.47 4099.53 10199.44 79
xiu_mvs_v2_base94.22 24894.63 22392.99 31797.32 28284.84 32992.12 31997.84 23991.96 25894.17 28993.43 33296.07 10099.71 10091.27 25097.48 30894.42 355
sss94.22 24893.72 25695.74 23497.71 24889.95 24693.84 27896.98 27988.38 29993.75 30395.74 29487.94 27198.89 30191.02 25698.10 28098.37 243
MVSTER94.21 25093.93 25395.05 26195.83 32886.46 30795.18 21797.65 25392.41 25397.94 13298.00 13872.39 35499.58 16296.36 7599.56 8999.12 151
MAR-MVS94.21 25093.03 26797.76 10996.94 29897.44 3596.97 11697.15 27287.89 30592.00 34092.73 34592.14 21699.12 27483.92 34697.51 30796.73 329
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
our_test_394.20 25294.58 22893.07 31396.16 31981.20 35190.42 34596.84 28390.72 27597.14 17697.13 21790.47 24199.11 27794.04 19898.25 27598.91 188
1112_ss94.12 25393.42 26096.23 21298.59 14090.85 23394.24 25898.85 9485.49 32592.97 32594.94 31386.01 28699.64 14191.78 24197.92 28698.20 264
PS-MVSNAJ94.10 25494.47 23393.00 31697.35 27584.88 32891.86 32397.84 23991.96 25894.17 28992.50 34895.82 10899.71 10091.27 25097.48 30894.40 356
CHOSEN 1792x268894.10 25493.41 26196.18 21699.16 7190.04 24492.15 31898.68 14479.90 35596.22 23297.83 15787.92 27599.42 20889.18 29799.65 6499.08 160
MG-MVS94.08 25694.00 24994.32 29097.09 29285.89 31493.19 30095.96 30192.52 24994.93 27297.51 18789.54 25598.77 31187.52 32197.71 29698.31 252
PLCcopyleft91.02 1694.05 25792.90 26997.51 12998.00 20695.12 12294.25 25798.25 19886.17 31791.48 34395.25 30691.01 23499.19 26485.02 34196.69 32698.22 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
114514_t93.96 25893.22 26596.19 21599.06 8990.97 23295.99 16498.94 7473.88 36893.43 31896.93 23392.38 21399.37 23089.09 29899.28 18398.25 260
PVSNet_Blended93.96 25893.65 25794.91 26597.79 23587.40 29591.43 32898.68 14484.50 33894.51 28194.48 32493.04 19299.30 24789.77 28998.61 26198.02 281
AUN-MVS93.95 26092.69 27797.74 11197.80 22995.38 10495.57 19195.46 31391.26 27092.64 33396.10 28374.67 34299.55 17393.72 20996.97 31798.30 254
lupinMVS93.77 26193.28 26295.24 25397.68 25087.81 28792.12 31996.05 29784.52 33794.48 28395.06 31186.90 28199.63 14393.62 21299.13 20498.27 258
PatchT93.75 26293.57 25894.29 29295.05 34387.32 29796.05 15992.98 33497.54 6594.25 28798.72 6075.79 33999.24 25995.92 9695.81 33796.32 337
EPNet93.72 26392.62 28097.03 16887.61 37792.25 20696.27 14691.28 34996.74 9087.65 36397.39 20085.00 29299.64 14192.14 23299.48 12399.20 132
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test93.72 26392.65 27896.91 17498.93 10291.81 22191.23 33598.52 16582.69 34396.46 21996.52 26080.38 31599.90 1390.36 28198.79 24499.03 168
DPM-MVS93.68 26592.77 27696.42 20397.91 21292.54 20091.17 33697.47 26484.99 33493.08 32494.74 31789.90 25199.00 28987.54 32098.09 28197.72 294
PMMVS293.66 26694.07 24692.45 32797.57 25880.67 35386.46 36296.00 29993.99 20897.10 18097.38 20289.90 25197.82 35688.76 30299.47 12598.86 199
OpenMVS_ROBcopyleft91.80 1493.64 26793.05 26695.42 24897.31 28391.21 22895.08 22396.68 29181.56 34796.88 20096.41 26490.44 24299.25 25885.39 33797.67 30095.80 344
Patchmatch-test93.60 26893.25 26494.63 27896.14 32287.47 29396.04 16094.50 32193.57 21896.47 21896.97 23076.50 33498.61 32790.67 27198.41 27097.81 292
WTY-MVS93.55 26993.00 26895.19 25697.81 22587.86 28493.89 27796.00 29989.02 29094.07 29395.44 30486.27 28499.33 24087.69 31696.82 32298.39 241
Test_1112_low_res93.53 27092.86 27095.54 24398.60 13888.86 26592.75 30698.69 14282.66 34492.65 33296.92 23584.75 29499.56 16990.94 25897.76 29298.19 265
MIMVSNet93.42 27192.86 27095.10 25998.17 18688.19 27698.13 4893.69 32592.07 25595.04 26998.21 11180.95 31399.03 28881.42 35498.06 28298.07 271
FMVSNet593.39 27292.35 28396.50 19895.83 32890.81 23697.31 9598.27 19592.74 24896.27 22998.28 9962.23 36999.67 13090.86 26099.36 15999.03 168
SCA93.38 27393.52 25992.96 31896.24 31381.40 35093.24 29894.00 32491.58 26594.57 27896.97 23087.94 27199.42 20889.47 29397.66 30198.06 275
tttt051793.31 27492.56 28195.57 24098.71 12387.86 28497.44 8987.17 36695.79 14097.47 16296.84 23864.12 36799.81 3296.20 7999.32 17699.02 170
CR-MVSNet93.29 27592.79 27394.78 27495.44 33788.15 27896.18 15397.20 26984.94 33594.10 29198.57 7077.67 32699.39 22495.17 14295.81 33796.81 326
cl2293.25 27692.84 27294.46 28694.30 35186.00 31391.09 33996.64 29290.74 27495.79 24996.31 27178.24 32398.77 31194.15 19198.34 27198.62 224
wuyk23d93.25 27695.20 19387.40 35296.07 32395.38 10497.04 11294.97 31695.33 15999.70 598.11 12198.14 1391.94 37077.76 36399.68 6074.89 370
miper_enhance_ethall93.14 27892.78 27594.20 29393.65 35985.29 32189.97 34997.85 23785.05 33296.15 23794.56 32085.74 28799.14 27293.74 20798.34 27198.17 267
baseline193.14 27892.64 27994.62 27997.34 27987.20 29996.67 13293.02 33394.71 18496.51 21795.83 29381.64 30698.60 32990.00 28688.06 36598.07 271
X-MVStestdata92.86 28090.83 30598.94 1899.15 7497.66 2097.77 6698.83 10697.42 6996.32 22536.50 37296.49 8699.72 8695.66 11099.37 15699.45 69
GA-MVS92.83 28192.15 28694.87 26996.97 29587.27 29890.03 34896.12 29691.83 26194.05 29494.57 31976.01 33898.97 29792.46 23097.34 31398.36 248
CMPMVSbinary73.10 2392.74 28291.39 29496.77 18293.57 36194.67 13794.21 26197.67 24980.36 35493.61 31096.60 25482.85 30397.35 36084.86 34298.78 24598.29 257
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thisisatest053092.71 28391.76 29195.56 24298.42 16088.23 27596.03 16187.35 36594.04 20796.56 21495.47 30364.03 36899.77 5394.78 16599.11 20898.68 220
HY-MVS91.43 1592.58 28491.81 29094.90 26796.49 30788.87 26497.31 9594.62 31985.92 32090.50 34996.84 23885.05 29199.40 21983.77 34995.78 34096.43 336
TR-MVS92.54 28592.20 28593.57 30396.49 30786.66 30593.51 28994.73 31889.96 28394.95 27093.87 33090.24 24898.61 32781.18 35594.88 34795.45 350
RRT_test8_iter0592.46 28692.52 28292.29 33095.33 34077.43 36295.73 17898.55 16394.41 19397.46 16397.72 17157.44 37299.74 7596.92 5999.14 20099.69 20
PMMVS92.39 28791.08 29996.30 21093.12 36592.81 19790.58 34495.96 30179.17 35891.85 34292.27 34990.29 24798.66 32489.85 28896.68 32797.43 304
131492.38 28892.30 28492.64 32395.42 33985.15 32495.86 17296.97 28085.40 32990.62 34693.06 33991.12 23397.80 35786.74 32695.49 34494.97 353
new_pmnet92.34 28991.69 29294.32 29096.23 31589.16 26092.27 31792.88 33584.39 34095.29 26296.35 27085.66 28896.74 36684.53 34497.56 30497.05 313
CVMVSNet92.33 29092.79 27390.95 33897.26 28475.84 36895.29 20992.33 34181.86 34596.27 22998.19 11281.44 30898.46 33894.23 18898.29 27498.55 231
PAPR92.22 29191.27 29795.07 26095.73 33288.81 26691.97 32297.87 23685.80 32290.91 34592.73 34591.16 23298.33 34779.48 35795.76 34198.08 269
DSMNet-mixed92.19 29291.83 28993.25 30996.18 31883.68 33996.27 14693.68 32776.97 36592.54 33699.18 2789.20 26398.55 33383.88 34798.60 26397.51 302
BH-w/o92.14 29391.94 28792.73 32297.13 29185.30 32092.46 31395.64 30689.33 28894.21 28892.74 34489.60 25398.24 34981.68 35394.66 34994.66 354
PCF-MVS89.43 1892.12 29490.64 30896.57 19597.80 22993.48 18289.88 35398.45 17174.46 36796.04 23995.68 29690.71 23999.31 24473.73 36699.01 22196.91 319
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres600view792.03 29591.43 29393.82 29798.19 18184.61 33196.27 14690.39 35696.81 8896.37 22393.11 33473.44 35199.49 18980.32 35697.95 28597.36 306
PatchmatchNetpermissive91.98 29691.87 28892.30 32994.60 34879.71 35595.12 21893.59 32989.52 28693.61 31097.02 22777.94 32499.18 26590.84 26194.57 35298.01 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
cascas91.89 29791.35 29593.51 30494.27 35285.60 31688.86 35898.61 15679.32 35792.16 33991.44 35889.22 26298.12 35390.80 26397.47 31096.82 325
JIA-IIPM91.79 29890.69 30795.11 25893.80 35890.98 23194.16 26391.78 34596.38 10490.30 35199.30 1872.02 35598.90 29988.28 31090.17 36295.45 350
thres100view90091.76 29991.26 29893.26 30898.21 17984.50 33296.39 13990.39 35696.87 8696.33 22493.08 33873.44 35199.42 20878.85 36097.74 29395.85 342
thres40091.68 30091.00 30093.71 30098.02 20084.35 33495.70 18090.79 35396.26 11095.90 24792.13 35173.62 34899.42 20878.85 36097.74 29397.36 306
tfpn200view991.55 30191.00 30093.21 31198.02 20084.35 33495.70 18090.79 35396.26 11095.90 24792.13 35173.62 34899.42 20878.85 36097.74 29395.85 342
ADS-MVSNet291.47 30290.51 31094.36 28995.51 33585.63 31595.05 22795.70 30583.46 34192.69 33096.84 23879.15 32099.41 21785.66 33490.52 36098.04 279
EPNet_dtu91.39 30390.75 30693.31 30790.48 37482.61 34294.80 23992.88 33593.39 22381.74 37194.90 31681.36 30999.11 27788.28 31098.87 23598.21 263
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ET-MVSNet_ETH3D91.12 30489.67 31695.47 24696.41 30989.15 26191.54 32790.23 35989.07 28986.78 36792.84 34269.39 36299.44 20594.16 19096.61 32897.82 290
PVSNet86.72 1991.10 30590.97 30291.49 33497.56 26078.04 35987.17 36194.60 32084.65 33692.34 33792.20 35087.37 27998.47 33785.17 34097.69 29897.96 283
tpm91.08 30690.85 30491.75 33395.33 34078.09 35895.03 22991.27 35088.75 29493.53 31397.40 19671.24 35699.30 24791.25 25293.87 35397.87 287
thres20091.00 30790.42 31192.77 32197.47 26983.98 33794.01 27191.18 35195.12 16995.44 25991.21 36073.93 34499.31 24477.76 36397.63 30395.01 352
ADS-MVSNet90.95 30890.26 31293.04 31495.51 33582.37 34495.05 22793.41 33083.46 34192.69 33096.84 23879.15 32098.70 31885.66 33490.52 36098.04 279
tpmvs90.79 30990.87 30390.57 34192.75 36976.30 36695.79 17793.64 32891.04 27391.91 34196.26 27277.19 33298.86 30589.38 29589.85 36396.56 334
thisisatest051590.43 31089.18 32294.17 29597.07 29385.44 31889.75 35487.58 36488.28 30093.69 30791.72 35565.27 36699.58 16290.59 27398.67 25497.50 303
tpmrst90.31 31190.61 30989.41 34594.06 35672.37 37495.06 22693.69 32588.01 30292.32 33896.86 23677.45 32898.82 30691.04 25587.01 36797.04 314
test0.0.03 190.11 31289.21 31992.83 32093.89 35786.87 30491.74 32588.74 36392.02 25694.71 27591.14 36173.92 34594.48 36983.75 35092.94 35597.16 310
MVS90.02 31389.20 32092.47 32694.71 34686.90 30395.86 17296.74 28964.72 37090.62 34692.77 34392.54 20898.39 34279.30 35895.56 34392.12 363
pmmvs390.00 31488.90 32493.32 30694.20 35585.34 31991.25 33492.56 34078.59 35993.82 29995.17 30767.36 36598.69 31989.08 29998.03 28395.92 341
CHOSEN 280x42089.98 31589.19 32192.37 32895.60 33481.13 35286.22 36397.09 27581.44 34987.44 36493.15 33373.99 34399.47 19588.69 30499.07 21496.52 335
test-LLR89.97 31689.90 31490.16 34294.24 35374.98 36989.89 35089.06 36192.02 25689.97 35390.77 36373.92 34598.57 33091.88 23897.36 31196.92 317
FPMVS89.92 31788.63 32593.82 29798.37 16396.94 4791.58 32693.34 33188.00 30390.32 35097.10 22170.87 35991.13 37171.91 36996.16 33693.39 361
test250689.86 31889.16 32391.97 33298.95 9976.83 36598.54 2061.07 37996.20 11397.07 18599.16 3055.19 37899.69 11796.43 7399.83 3199.38 88
CostFormer89.75 31989.25 31791.26 33794.69 34778.00 36095.32 20691.98 34381.50 34890.55 34896.96 23271.06 35898.89 30188.59 30692.63 35796.87 320
baseline289.65 32088.44 32793.25 30995.62 33382.71 34193.82 27985.94 36888.89 29387.35 36592.54 34771.23 35799.33 24086.01 32994.60 35197.72 294
E-PMN89.52 32189.78 31588.73 34793.14 36477.61 36183.26 36692.02 34294.82 18193.71 30593.11 33475.31 34096.81 36385.81 33196.81 32391.77 365
EPMVS89.26 32288.55 32691.39 33592.36 37079.11 35695.65 18779.86 37388.60 29693.12 32396.53 25870.73 36098.10 35490.75 26589.32 36496.98 315
EMVS89.06 32389.22 31888.61 34893.00 36677.34 36382.91 36790.92 35294.64 18692.63 33491.81 35476.30 33697.02 36183.83 34896.90 32091.48 366
KD-MVS_2432*160088.93 32487.74 32992.49 32488.04 37581.99 34689.63 35595.62 30791.35 26795.06 26693.11 33456.58 37498.63 32585.19 33895.07 34596.85 322
miper_refine_blended88.93 32487.74 32992.49 32488.04 37581.99 34689.63 35595.62 30791.35 26795.06 26693.11 33456.58 37498.63 32585.19 33895.07 34596.85 322
IB-MVS85.98 2088.63 32686.95 33593.68 30195.12 34284.82 33090.85 34190.17 36087.55 30688.48 36091.34 35958.01 37199.59 16087.24 32493.80 35496.63 333
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm288.47 32787.69 33190.79 33994.98 34477.34 36395.09 22191.83 34477.51 36489.40 35596.41 26467.83 36498.73 31583.58 35192.60 35896.29 338
MVS-HIRNet88.40 32890.20 31382.99 35397.01 29460.04 37793.11 30185.61 36984.45 33988.72 35999.09 3684.72 29598.23 35082.52 35296.59 32990.69 368
gg-mvs-nofinetune88.28 32986.96 33492.23 33192.84 36884.44 33398.19 4574.60 37599.08 1087.01 36699.47 856.93 37398.23 35078.91 35995.61 34294.01 357
dp88.08 33088.05 32888.16 35192.85 36768.81 37694.17 26292.88 33585.47 32691.38 34496.14 28068.87 36398.81 30886.88 32583.80 37096.87 320
tpm cat188.01 33187.33 33290.05 34494.48 34976.28 36794.47 25194.35 32373.84 36989.26 35695.61 30073.64 34798.30 34884.13 34586.20 36895.57 349
test-mter87.92 33287.17 33390.16 34294.24 35374.98 36989.89 35089.06 36186.44 31689.97 35390.77 36354.96 37998.57 33091.88 23897.36 31196.92 317
DWT-MVSNet_test87.92 33286.77 33691.39 33593.18 36278.62 35795.10 21991.42 34785.58 32488.00 36188.73 36760.60 37098.90 29990.60 27287.70 36696.65 330
PAPM87.64 33485.84 33993.04 31496.54 30584.99 32788.42 36095.57 31079.52 35683.82 36893.05 34080.57 31498.41 34062.29 37292.79 35695.71 345
TESTMET0.1,187.20 33586.57 33789.07 34693.62 36072.84 37389.89 35087.01 36785.46 32789.12 35890.20 36556.00 37797.72 35890.91 25996.92 31896.64 331
MVEpermissive73.61 2286.48 33685.92 33888.18 35096.23 31585.28 32281.78 36875.79 37486.01 31882.53 37091.88 35392.74 19987.47 37371.42 37094.86 34891.78 364
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet_081.89 2184.49 33783.21 34088.34 34995.76 33174.97 37183.49 36592.70 33978.47 36087.94 36286.90 36983.38 30296.63 36773.44 36766.86 37393.40 360
EGC-MVSNET83.08 33877.93 34198.53 5199.57 1697.55 2798.33 3298.57 1614.71 37410.38 37598.90 5095.60 12199.50 18795.69 10699.61 7598.55 231
test_method66.88 33966.13 34269.11 35562.68 37825.73 38049.76 36996.04 29814.32 37364.27 37491.69 35673.45 35088.05 37276.06 36566.94 37293.54 358
tmp_tt57.23 34062.50 34341.44 35634.77 37949.21 37983.93 36460.22 38015.31 37271.11 37379.37 37170.09 36144.86 37564.76 37182.93 37130.25 371
cdsmvs_eth3d_5k24.22 34132.30 3440.00 3590.00 3820.00 3830.00 37098.10 2200.00 3770.00 37895.06 31197.54 290.00 3780.00 3760.00 3760.00 374
test12312.59 34215.49 3453.87 3576.07 3802.55 38190.75 3422.59 3822.52 3755.20 37713.02 3744.96 3801.85 3775.20 3749.09 3747.23 372
testmvs12.33 34315.23 3463.64 3585.77 3812.23 38288.99 3573.62 3812.30 3765.29 37613.09 3734.52 3811.95 3765.16 3758.32 3756.75 373
pcd_1.5k_mvsjas7.98 34410.65 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37795.82 1080.00 3780.00 3760.00 3760.00 374
ab-mvs-re7.91 34510.55 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37894.94 3130.00 3820.00 3780.00 3760.00 3760.00 374
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.59 1498.20 499.03 799.25 1298.96 1898.87 40
MSC_two_6792asdad98.22 7597.75 24395.34 10998.16 21399.75 6595.87 10099.51 11199.57 32
PC_three_145287.24 30898.37 7697.44 19397.00 5496.78 36592.01 23399.25 18799.21 129
No_MVS98.22 7597.75 24395.34 10998.16 21399.75 6595.87 10099.51 11199.57 32
test_one_060199.05 9395.50 9998.87 8797.21 7998.03 12298.30 9496.93 60
eth-test20.00 382
eth-test0.00 382
ZD-MVS98.43 15995.94 7998.56 16290.72 27596.66 20997.07 22395.02 14299.74 7591.08 25498.93 229
RE-MVS-def97.88 4998.81 10998.05 997.55 8198.86 9097.77 4798.20 9998.07 12596.94 5895.49 11899.20 19299.26 120
IU-MVS99.22 5995.40 10298.14 21685.77 32398.36 7995.23 13999.51 11199.49 53
OPU-MVS97.64 12098.01 20295.27 11296.79 12297.35 20596.97 5698.51 33691.21 25399.25 18799.14 143
test_241102_TWO98.83 10696.11 11898.62 5298.24 10596.92 6299.72 8695.44 12599.49 11999.49 53
test_241102_ONE99.22 5995.35 10798.83 10696.04 12399.08 3198.13 11797.87 2099.33 240
9.1496.69 13498.53 14696.02 16298.98 6693.23 22997.18 17497.46 19196.47 8899.62 15192.99 22399.32 176
save fliter98.48 15494.71 13394.53 24998.41 17995.02 174
test_0728_THIRD96.62 9298.40 7398.28 9997.10 4599.71 10095.70 10499.62 6999.58 28
test_0728_SECOND98.25 7399.23 5695.49 10096.74 12598.89 7999.75 6595.48 12199.52 10699.53 41
test072699.24 5495.51 9696.89 11898.89 7995.92 13198.64 5198.31 9097.06 50
GSMVS98.06 275
test_part299.03 9596.07 7498.08 116
sam_mvs177.80 32598.06 275
sam_mvs77.38 329
ambc96.56 19698.23 17891.68 22397.88 6198.13 21898.42 7298.56 7294.22 16899.04 28594.05 19799.35 16498.95 177
MTGPAbinary98.73 129
test_post194.98 23110.37 37676.21 33799.04 28589.47 293
test_post10.87 37576.83 33399.07 282
patchmatchnet-post96.84 23877.36 33099.42 208
GG-mvs-BLEND90.60 34091.00 37284.21 33698.23 3972.63 37882.76 36984.11 37056.14 37696.79 36472.20 36892.09 35990.78 367
MTMP96.55 13374.60 375
gm-plane-assit91.79 37171.40 37581.67 34690.11 36698.99 29184.86 342
test9_res91.29 24998.89 23499.00 171
TEST997.84 22195.23 11493.62 28598.39 18286.81 31393.78 30095.99 28594.68 15299.52 182
test_897.81 22595.07 12393.54 28898.38 18487.04 31193.71 30595.96 28994.58 15799.52 182
agg_prior290.34 28298.90 23199.10 159
agg_prior97.80 22994.96 12598.36 18693.49 31499.53 178
TestCases98.06 8999.08 8696.16 7099.16 2094.35 19697.78 14798.07 12595.84 10599.12 27491.41 24799.42 14498.91 188
test_prior495.38 10493.61 287
test_prior293.33 29694.21 20194.02 29596.25 27393.64 18191.90 23698.96 223
test_prior97.46 14097.79 23594.26 15398.42 17799.34 23798.79 205
旧先验293.35 29577.95 36395.77 25398.67 32390.74 268
新几何293.43 290
新几何197.25 15798.29 16894.70 13697.73 24577.98 36194.83 27396.67 25192.08 21999.45 20288.17 31298.65 25897.61 299
旧先验197.80 22993.87 16597.75 24497.04 22693.57 18398.68 25398.72 215
无先验93.20 29997.91 23380.78 35199.40 21987.71 31497.94 284
原ACMM292.82 304
原ACMM196.58 19398.16 18892.12 21298.15 21585.90 32193.49 31496.43 26392.47 21199.38 22787.66 31798.62 26098.23 261
test22298.17 18693.24 18792.74 30897.61 25975.17 36694.65 27796.69 25090.96 23698.66 25697.66 297
testdata299.46 19887.84 313
segment_acmp95.34 131
testdata95.70 23798.16 18890.58 23997.72 24680.38 35395.62 25697.02 22792.06 22098.98 29389.06 30098.52 26597.54 301
testdata192.77 30593.78 214
test1297.46 14097.61 25794.07 15897.78 24393.57 31293.31 18799.42 20898.78 24598.89 192
plane_prior798.70 12594.67 137
plane_prior698.38 16294.37 14791.91 226
plane_prior598.75 12599.46 19892.59 22899.20 19299.28 115
plane_prior496.77 244
plane_prior394.51 14195.29 16296.16 235
plane_prior296.50 13596.36 106
plane_prior198.49 152
plane_prior94.29 14995.42 19694.31 19898.93 229
n20.00 383
nn0.00 383
door-mid98.17 210
lessismore_v097.05 16699.36 4292.12 21284.07 37098.77 4798.98 4385.36 29099.74 7597.34 4499.37 15699.30 107
LGP-MVS_train98.74 3599.15 7497.02 4499.02 5295.15 16798.34 8298.23 10797.91 1799.70 10994.41 17899.73 4899.50 45
test1198.08 223
door97.81 242
HQP5-MVS92.47 202
HQP-NCC97.85 21794.26 25493.18 23292.86 327
ACMP_Plane97.85 21794.26 25493.18 23292.86 327
BP-MVS90.51 277
HQP4-MVS92.87 32699.23 26199.06 164
HQP3-MVS98.43 17498.74 249
HQP2-MVS90.33 243
NP-MVS98.14 19193.72 17395.08 309
MDTV_nov1_ep13_2view57.28 37894.89 23480.59 35294.02 29578.66 32285.50 33697.82 290
MDTV_nov1_ep1391.28 29694.31 35073.51 37294.80 23993.16 33286.75 31593.45 31797.40 19676.37 33598.55 33388.85 30196.43 330
ACMMP++_ref99.52 106
ACMMP++99.55 95
Test By Simon94.51 160
ITE_SJBPF97.85 10498.64 13096.66 5598.51 16795.63 14697.22 17097.30 21095.52 12398.55 33390.97 25798.90 23198.34 249
DeepMVS_CXcopyleft77.17 35490.94 37385.28 32274.08 37752.51 37180.87 37288.03 36875.25 34170.63 37459.23 37384.94 36975.62 369