This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1499.69 499.58 2699.90 299.86 799.78 599.58 399.95 1599.00 3399.95 1699.78 14
pmmvs699.67 399.70 399.60 1399.90 499.27 2099.53 799.76 799.64 1299.84 899.83 299.50 599.87 8399.36 1499.92 3499.64 39
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5599.90 199.78 499.63 1499.78 1099.67 1699.48 699.81 15999.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets99.63 599.67 599.49 4899.88 798.61 8799.34 1399.71 1099.27 4399.90 499.74 899.68 299.97 399.55 899.99 599.88 3
jajsoiax99.58 699.61 799.48 5099.87 1098.61 8799.28 2799.66 1799.09 6599.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
ANet_high99.57 799.67 599.28 7999.89 698.09 12799.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
v7n99.53 899.57 899.41 6099.88 798.54 9599.45 999.61 2299.66 1199.68 1999.66 1798.44 3999.95 1599.73 299.96 1499.75 22
test_djsdf99.52 999.51 999.53 3699.86 1198.74 7699.39 1199.56 4099.11 5699.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5999.34 1399.69 1398.93 7999.65 2299.72 1198.93 1999.95 1599.11 27100.00 199.82 9
UA-Net99.47 1199.40 1499.70 299.49 8499.29 1799.80 399.72 999.82 399.04 11199.81 398.05 6799.96 898.85 4199.99 599.86 6
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12399.20 3299.65 1899.48 2499.92 399.71 1298.07 6499.96 899.53 9100.00 199.93 1
pm-mvs199.44 1399.48 1199.33 7499.80 1798.63 8499.29 2399.63 1999.30 4199.65 2299.60 2599.16 1499.82 14699.07 2999.83 6299.56 71
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 1798.58 9099.27 2999.57 3399.39 3299.75 1299.62 2199.17 1299.83 13699.06 3099.62 15399.66 34
DTE-MVSNet99.43 1599.35 1799.66 499.71 3099.30 1699.31 1899.51 5599.64 1299.56 2899.46 4398.23 5299.97 398.78 4499.93 2599.72 25
TDRefinement99.42 1699.38 1599.55 2699.76 2299.33 1599.68 599.71 1099.38 3399.53 3399.61 2398.64 2899.80 16898.24 7499.84 5699.52 93
PEN-MVS99.41 1799.34 1999.62 699.73 2499.14 4899.29 2399.54 4899.62 1799.56 2899.42 4998.16 6099.96 898.78 4499.93 2599.77 16
nrg03099.40 1899.35 1799.54 2999.58 5199.13 5198.98 5599.48 6799.68 999.46 4399.26 6998.62 2999.73 22199.17 2699.92 3499.76 20
PS-CasMVS99.40 1899.33 2099.62 699.71 3099.10 5699.29 2399.53 5199.53 2399.46 4399.41 5198.23 5299.95 1598.89 3999.95 1699.81 11
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3499.41 1099.59 2499.59 2099.71 1499.57 2797.12 13499.90 4999.21 2399.87 5299.54 83
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6199.63 699.58 2699.44 2999.78 1099.76 696.39 17699.92 3599.44 1399.92 3499.68 31
Vis-MVSNetpermissive99.34 2299.36 1699.27 8299.73 2498.26 11099.17 3799.78 499.11 5699.27 7399.48 4198.82 2199.95 1598.94 3599.93 2599.59 55
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
WR-MVS_H99.33 2399.22 2799.65 599.71 3099.24 2399.32 1599.55 4499.46 2799.50 3999.34 6097.30 12399.93 2898.90 3799.93 2599.77 16
VPA-MVSNet99.30 2499.30 2399.28 7999.49 8498.36 10699.00 5299.45 7899.63 1499.52 3599.44 4898.25 5099.88 6799.09 2899.84 5699.62 44
Anonymous2023121199.27 2599.27 2499.26 8599.29 12298.18 12099.49 899.51 5599.70 899.80 999.68 1496.84 14999.83 13699.21 2399.91 4099.77 16
FC-MVSNet-test99.27 2599.25 2599.34 7299.77 2098.37 10599.30 2299.57 3399.61 1999.40 5299.50 3697.12 13499.85 10599.02 3299.94 2199.80 12
DIV-MVS_2432*160099.25 2799.18 2899.44 5699.63 4899.06 6098.69 7399.54 4899.31 3999.62 2799.53 3397.36 12199.86 9199.24 2299.71 11799.39 150
ACMH96.65 799.25 2799.24 2699.26 8599.72 2998.38 10499.07 4699.55 4498.30 11199.65 2299.45 4799.22 999.76 20698.44 6599.77 9099.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet99.21 2999.09 3499.56 2499.65 4398.96 6599.13 4199.34 11899.42 3099.33 6299.26 6997.01 14199.94 2398.74 4999.93 2599.79 13
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5599.37 11098.87 6798.39 10599.42 9099.42 3099.36 5899.06 10198.38 4299.95 1598.34 7199.90 4499.57 66
FMVSNet199.17 3099.17 2999.17 9499.55 6598.24 11299.20 3299.44 8199.21 4599.43 4799.55 2997.82 8399.86 9198.42 6799.89 4899.41 141
FIs99.14 3299.09 3499.29 7799.70 3698.28 10999.13 4199.52 5499.48 2499.24 8099.41 5196.79 15599.82 14698.69 5299.88 4999.76 20
XXY-MVS99.14 3299.15 3299.10 10699.76 2297.74 17098.85 6499.62 2098.48 10299.37 5699.49 3998.75 2499.86 9198.20 7799.80 7799.71 26
ACMH+96.62 999.08 3499.00 3999.33 7499.71 3098.83 7098.60 7999.58 2699.11 5699.53 3399.18 8098.81 2299.67 24896.71 17199.77 9099.50 100
GeoE99.05 3598.99 4199.25 8799.44 10098.35 10798.73 7099.56 4098.42 10498.91 13698.81 17398.94 1899.91 4598.35 7099.73 10699.49 104
Gipumacopyleft99.03 3699.16 3098.64 17199.94 298.51 9799.32 1599.75 899.58 2298.60 17999.62 2198.22 5599.51 30497.70 10799.73 10697.89 314
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v899.01 3799.16 3098.57 18499.47 9496.31 22898.90 5999.47 7399.03 6899.52 3599.57 2796.93 14599.81 15999.60 499.98 999.60 49
HPM-MVS_fast99.01 3798.82 4999.57 1899.71 3099.35 1199.00 5299.50 5797.33 18998.94 13398.86 15998.75 2499.82 14697.53 11399.71 11799.56 71
APDe-MVS98.99 3998.79 5299.60 1399.21 13699.15 4598.87 6199.48 6797.57 16399.35 5999.24 7297.83 8099.89 5897.88 9699.70 12299.75 22
abl_698.99 3998.78 5399.61 999.45 9899.46 398.60 7999.50 5798.59 9699.24 8099.04 11198.54 3499.89 5896.45 19399.62 15399.50 100
EG-PatchMatch MVS98.99 3999.01 3898.94 13499.50 7797.47 18398.04 13999.59 2498.15 12899.40 5299.36 5798.58 3299.76 20698.78 4499.68 13399.59 55
COLMAP_ROBcopyleft96.50 1098.99 3998.85 4799.41 6099.58 5199.10 5698.74 6899.56 4099.09 6599.33 6299.19 7898.40 4199.72 22995.98 21899.76 9999.42 138
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Baseline_NR-MVSNet98.98 4398.86 4699.36 6499.82 1698.55 9297.47 20199.57 3399.37 3499.21 8499.61 2396.76 15899.83 13698.06 8599.83 6299.71 26
v1098.97 4499.11 3398.55 18999.44 10096.21 23098.90 5999.55 4498.73 8899.48 4099.60 2596.63 16599.83 13699.70 399.99 599.61 48
DeepC-MVS97.60 498.97 4498.93 4299.10 10699.35 11597.98 14398.01 14599.46 7597.56 16599.54 3099.50 3698.97 1699.84 12298.06 8599.92 3499.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline98.96 4699.02 3798.76 16199.38 10897.26 19498.49 9499.50 5798.86 8299.19 8699.06 10198.23 5299.69 23698.71 5199.76 9999.33 178
casdiffmvs98.95 4799.00 3998.81 15199.38 10897.33 18997.82 16399.57 3399.17 5399.35 5999.17 8498.35 4699.69 23698.46 6499.73 10699.41 141
NR-MVSNet98.95 4798.82 4999.36 6499.16 15498.72 8199.22 3199.20 16899.10 6299.72 1398.76 18196.38 17899.86 9198.00 9099.82 6599.50 100
Anonymous2024052998.93 4998.87 4499.12 10299.19 14398.22 11799.01 5098.99 22399.25 4499.54 3099.37 5497.04 13799.80 16897.89 9399.52 18999.35 170
DP-MVS98.93 4998.81 5199.28 7999.21 13698.45 10198.46 9999.33 12399.63 1499.48 4099.15 9097.23 13199.75 21397.17 12899.66 14499.63 43
SED-MVS98.91 5198.72 5999.49 4899.49 8499.17 3698.10 13099.31 13098.03 13299.66 2099.02 11598.36 4399.88 6796.91 14799.62 15399.41 141
ACMM96.08 1298.91 5198.73 5799.48 5099.55 6599.14 4898.07 13399.37 10297.62 15899.04 11198.96 13498.84 2099.79 18197.43 11799.65 14599.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tfpnnormal98.90 5398.90 4398.91 13899.67 4097.82 16299.00 5299.44 8199.45 2899.51 3899.24 7298.20 5799.86 9195.92 22099.69 12899.04 233
MTAPA98.88 5498.64 7199.61 999.67 4099.36 998.43 10299.20 16898.83 8598.89 14098.90 14696.98 14399.92 3597.16 12999.70 12299.56 71
VPNet98.87 5598.83 4899.01 12799.70 3697.62 17898.43 10299.35 11299.47 2699.28 7199.05 10896.72 16199.82 14698.09 8399.36 21799.59 55
UniMVSNet (Re)98.87 5598.71 6199.35 6999.24 12998.73 7997.73 17399.38 9898.93 7999.12 9398.73 18496.77 15699.86 9198.63 5499.80 7799.46 122
UniMVSNet_NR-MVSNet98.86 5798.68 6699.40 6299.17 15298.74 7697.68 17799.40 9499.14 5499.06 10498.59 21496.71 16299.93 2898.57 5799.77 9099.53 89
APD-MVS_3200maxsize98.84 5898.61 7699.53 3699.19 14399.27 2098.49 9499.33 12398.64 9099.03 11498.98 12997.89 7799.85 10596.54 18799.42 20899.46 122
PM-MVS98.82 5998.72 5999.12 10299.64 4698.54 9597.98 14899.68 1497.62 15899.34 6199.18 8097.54 10399.77 19997.79 9999.74 10399.04 233
DU-MVS98.82 5998.63 7299.39 6399.16 15498.74 7697.54 19399.25 15798.84 8499.06 10498.76 18196.76 15899.93 2898.57 5799.77 9099.50 100
SR-MVS-dyc-post98.81 6198.55 8399.57 1899.20 14099.38 598.48 9799.30 13998.64 9098.95 12798.96 13497.49 11299.86 9196.56 18399.39 21299.45 126
3Dnovator98.27 298.81 6198.73 5799.05 12098.76 23697.81 16499.25 3099.30 13998.57 10098.55 18999.33 6297.95 7699.90 4997.16 12999.67 13999.44 131
zzz-MVS98.79 6398.52 8699.61 999.67 4099.36 997.33 21099.20 16898.83 8598.89 14098.90 14696.98 14399.92 3597.16 12999.70 12299.56 71
HPM-MVScopyleft98.79 6398.53 8599.59 1799.65 4399.29 1799.16 3899.43 8796.74 22698.61 17798.38 23798.62 2999.87 8396.47 19199.67 13999.59 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP98.79 6398.54 8499.54 2999.73 2499.16 4098.23 11699.31 13097.92 13998.90 13798.90 14698.00 7099.88 6796.15 21299.72 11399.58 61
Skip Steuart: Steuart Systems R&D Blog.
V4298.78 6698.78 5398.76 16199.44 10097.04 20798.27 11399.19 17397.87 14399.25 7999.16 8696.84 14999.78 19399.21 2399.84 5699.46 122
test20.0398.78 6698.77 5598.78 15899.46 9597.20 20097.78 16599.24 16299.04 6799.41 4998.90 14697.65 9399.76 20697.70 10799.79 8299.39 150
DVP-MVS98.77 6898.52 8699.52 4199.50 7799.21 2698.02 14298.84 24697.97 13599.08 10199.02 11597.61 9899.88 6796.99 14199.63 15099.48 112
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test117298.76 6998.49 9399.57 1899.18 15099.37 898.39 10599.31 13098.43 10398.90 13798.88 15597.49 11299.86 9196.43 19599.37 21699.48 112
test_040298.76 6998.71 6198.93 13599.56 6298.14 12598.45 10199.34 11899.28 4298.95 12798.91 14398.34 4799.79 18195.63 23799.91 4098.86 261
ACMMP_NAP98.75 7198.48 9599.57 1899.58 5199.29 1797.82 16399.25 15796.94 21898.78 15899.12 9498.02 6899.84 12297.13 13399.67 13999.59 55
SixPastTwentyTwo98.75 7198.62 7399.16 9799.83 1597.96 14899.28 2798.20 29099.37 3499.70 1599.65 1992.65 27299.93 2899.04 3199.84 5699.60 49
ACMMPcopyleft98.75 7198.50 9099.52 4199.56 6299.16 4098.87 6199.37 10297.16 20998.82 15599.01 12297.71 8999.87 8396.29 20499.69 12899.54 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Regformer-498.73 7498.68 6698.89 14199.02 18597.22 19797.17 22599.06 20399.21 4599.17 9198.85 16297.45 11599.86 9198.48 6399.70 12299.60 49
XVS98.72 7598.45 10199.53 3699.46 9599.21 2698.65 7499.34 11898.62 9497.54 25898.63 20797.50 10999.83 13696.79 16099.53 18699.56 71
SR-MVS98.71 7698.43 10599.57 1899.18 15099.35 1198.36 10899.29 14698.29 11498.88 14498.85 16297.53 10599.87 8396.14 21399.31 22599.48 112
HFP-MVS98.71 7698.44 10399.51 4599.49 8499.16 4098.52 8899.31 13097.47 17298.58 18398.50 22497.97 7499.85 10596.57 18099.59 16499.53 89
LPG-MVS_test98.71 7698.46 9999.47 5399.57 5598.97 6298.23 11699.48 6796.60 23199.10 9899.06 10198.71 2699.83 13695.58 24099.78 8699.62 44
ACMMPR98.70 7998.42 10799.54 2999.52 7299.14 4898.52 8899.31 13097.47 17298.56 18798.54 21897.75 8799.88 6796.57 18099.59 16499.58 61
CP-MVS98.70 7998.42 10799.52 4199.36 11199.12 5398.72 7199.36 10697.54 16798.30 20798.40 23397.86 7999.89 5896.53 18899.72 11399.56 71
Anonymous2024052198.69 8198.87 4498.16 22499.77 2095.11 26199.08 4499.44 8199.34 3799.33 6299.55 2994.10 25099.94 2399.25 2099.96 1499.42 138
region2R98.69 8198.40 10999.54 2999.53 7099.17 3698.52 8899.31 13097.46 17798.44 19798.51 22197.83 8099.88 6796.46 19299.58 17099.58 61
EI-MVSNet-UG-set98.69 8198.71 6198.62 17699.10 16696.37 22597.23 21798.87 23999.20 4899.19 8698.99 12597.30 12399.85 10598.77 4799.79 8299.65 38
3Dnovator+97.89 398.69 8198.51 8899.24 8998.81 23198.40 10299.02 4999.19 17398.99 7198.07 22299.28 6597.11 13699.84 12296.84 15899.32 22399.47 120
ZNCC-MVS98.68 8598.40 10999.54 2999.57 5599.21 2698.46 9999.29 14697.28 19598.11 21998.39 23598.00 7099.87 8396.86 15799.64 14799.55 79
EI-MVSNet-Vis-set98.68 8598.70 6498.63 17499.09 16996.40 22497.23 21798.86 24499.20 4899.18 9098.97 13197.29 12599.85 10598.72 5099.78 8699.64 39
CSCG98.68 8598.50 9099.20 9299.45 9898.63 8498.56 8499.57 3397.87 14398.85 14898.04 26697.66 9299.84 12296.72 16999.81 6999.13 222
PGM-MVS98.66 8898.37 11599.55 2699.53 7099.18 3598.23 11699.49 6597.01 21698.69 16798.88 15598.00 7099.89 5895.87 22499.59 16499.58 61
GBi-Net98.65 8998.47 9799.17 9498.90 20998.24 11299.20 3299.44 8198.59 9698.95 12799.55 2994.14 24699.86 9197.77 10199.69 12899.41 141
test198.65 8998.47 9799.17 9498.90 20998.24 11299.20 3299.44 8198.59 9698.95 12799.55 2994.14 24699.86 9197.77 10199.69 12899.41 141
LCM-MVSNet-Re98.64 9198.48 9599.11 10498.85 22098.51 9798.49 9499.83 398.37 10599.69 1799.46 4398.21 5699.92 3594.13 27799.30 22898.91 256
mPP-MVS98.64 9198.34 11999.54 2999.54 6899.17 3698.63 7699.24 16297.47 17298.09 22198.68 19397.62 9799.89 5896.22 20799.62 15399.57 66
TSAR-MVS + MP.98.63 9398.49 9399.06 11899.64 4697.90 15398.51 9298.94 22696.96 21799.24 8098.89 15497.83 8099.81 15996.88 15499.49 20099.48 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LS3D98.63 9398.38 11499.36 6497.25 33999.38 599.12 4399.32 12599.21 4598.44 19798.88 15597.31 12299.80 16896.58 17899.34 22198.92 253
RPSCF98.62 9598.36 11699.42 5799.65 4399.42 498.55 8599.57 3397.72 15298.90 13799.26 6996.12 18599.52 30095.72 23199.71 11799.32 180
CS-MVS98.61 9698.60 7898.65 16998.82 22898.21 11898.79 6799.77 698.34 10797.55 25697.69 28898.27 4999.87 8398.52 6199.62 15397.88 316
GST-MVS98.61 9698.30 12499.52 4199.51 7499.20 3298.26 11499.25 15797.44 18098.67 16998.39 23597.68 9099.85 10596.00 21699.51 19299.52 93
Regformer-398.61 9698.61 7698.63 17499.02 18596.53 22297.17 22598.84 24699.13 5599.10 9898.85 16297.24 13099.79 18198.41 6899.70 12299.57 66
v119298.60 9998.66 6998.41 20499.27 12495.88 23797.52 19599.36 10697.41 18299.33 6299.20 7796.37 17999.82 14699.57 699.92 3499.55 79
v114498.60 9998.66 6998.41 20499.36 11195.90 23697.58 18999.34 11897.51 16899.27 7399.15 9096.34 18199.80 16899.47 1299.93 2599.51 96
Regformer-298.60 9998.46 9999.02 12698.85 22097.71 17296.91 24199.09 19998.98 7399.01 11598.64 20397.37 12099.84 12297.75 10699.57 17499.52 93
DPE-MVScopyleft98.59 10298.26 12899.57 1899.27 12499.15 4597.01 23299.39 9697.67 15499.44 4698.99 12597.53 10599.89 5895.40 24499.68 13399.66 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.57 10398.23 13299.60 1399.69 3899.35 1197.16 22799.38 9894.87 27998.97 12498.99 12598.01 6999.88 6797.29 12399.70 12299.58 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS98.56 10498.32 12399.25 8799.41 10698.73 7997.13 22999.18 17797.10 21298.75 16398.92 14298.18 5899.65 26196.68 17399.56 17999.37 160
VDD-MVS98.56 10498.39 11299.07 11399.13 16198.07 13398.59 8197.01 32099.59 2099.11 9599.27 6794.82 22999.79 18198.34 7199.63 15099.34 172
v2v48298.56 10498.62 7398.37 20899.42 10595.81 24097.58 18999.16 18697.90 14199.28 7199.01 12295.98 19499.79 18199.33 1599.90 4499.51 96
XVG-ACMP-BASELINE98.56 10498.34 11999.22 9199.54 6898.59 8997.71 17499.46 7597.25 19898.98 12198.99 12597.54 10399.84 12295.88 22199.74 10399.23 202
Regformer-198.55 10898.44 10398.87 14398.85 22097.29 19196.91 24198.99 22398.97 7498.99 11998.64 20397.26 12999.81 15997.79 9999.57 17499.51 96
v124098.55 10898.62 7398.32 21199.22 13495.58 24397.51 19799.45 7897.16 20999.45 4599.24 7296.12 18599.85 10599.60 499.88 4999.55 79
IterMVS-LS98.55 10898.70 6498.09 22699.48 9294.73 26797.22 22099.39 9698.97 7499.38 5499.31 6496.00 19099.93 2898.58 5599.97 1199.60 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419298.54 11198.57 8298.45 20199.21 13695.98 23497.63 18299.36 10697.15 21199.32 6899.18 8095.84 20199.84 12299.50 1099.91 4099.54 83
v192192098.54 11198.60 7898.38 20799.20 14095.76 24297.56 19199.36 10697.23 20499.38 5499.17 8496.02 18899.84 12299.57 699.90 4499.54 83
SF-MVS98.53 11398.27 12799.32 7699.31 11898.75 7598.19 12099.41 9196.77 22598.83 15198.90 14697.80 8499.82 14695.68 23499.52 18999.38 157
XVG-OURS98.53 11398.34 11999.11 10499.50 7798.82 7295.97 28599.50 5797.30 19399.05 10998.98 12999.35 799.32 32995.72 23199.68 13399.18 214
UGNet98.53 11398.45 10198.79 15597.94 31196.96 21099.08 4498.54 27599.10 6296.82 29699.47 4296.55 16899.84 12298.56 6099.94 2199.55 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
#test#98.50 11698.16 14199.51 4599.49 8499.16 4098.03 14099.31 13096.30 24398.58 18398.50 22497.97 7499.85 10595.68 23499.59 16499.53 89
XVG-OURS-SEG-HR98.49 11798.28 12699.14 10099.49 8498.83 7096.54 25999.48 6797.32 19199.11 9598.61 21299.33 899.30 33296.23 20698.38 30099.28 192
FMVSNet298.49 11798.40 10998.75 16398.90 20997.14 20698.61 7899.13 19398.59 9699.19 8699.28 6594.14 24699.82 14697.97 9199.80 7799.29 191
pmmvs-eth3d98.47 11998.34 11998.86 14599.30 12197.76 16797.16 22799.28 14895.54 26399.42 4899.19 7897.27 12699.63 26697.89 9399.97 1199.20 207
MP-MVScopyleft98.46 12098.09 14899.54 2999.57 5599.22 2598.50 9399.19 17397.61 16097.58 25398.66 19897.40 11899.88 6794.72 25799.60 16299.54 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v14898.45 12198.60 7898.00 23599.44 10094.98 26297.44 20499.06 20398.30 11199.32 6898.97 13196.65 16499.62 26898.37 6999.85 5499.39 150
xxxxxxxxxxxxxcwj98.44 12298.24 13099.06 11899.11 16297.97 14496.53 26099.54 4898.24 11798.83 15198.90 14697.80 8499.82 14695.68 23499.52 18999.38 157
AllTest98.44 12298.20 13499.16 9799.50 7798.55 9298.25 11599.58 2696.80 22398.88 14499.06 10197.65 9399.57 28594.45 26499.61 16099.37 160
VNet98.42 12498.30 12498.79 15598.79 23597.29 19198.23 11698.66 26999.31 3998.85 14898.80 17494.80 23299.78 19398.13 7999.13 25699.31 184
ab-mvs98.41 12598.36 11698.59 18099.19 14397.23 19599.32 1598.81 25297.66 15598.62 17599.40 5396.82 15299.80 16895.88 22199.51 19298.75 277
ACMP95.32 1598.41 12598.09 14899.36 6499.51 7498.79 7497.68 17799.38 9895.76 26098.81 15798.82 17198.36 4399.82 14694.75 25499.77 9099.48 112
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SMA-MVScopyleft98.40 12798.03 15599.51 4599.16 15499.21 2698.05 13799.22 16594.16 29598.98 12199.10 9897.52 10799.79 18196.45 19399.64 14799.53 89
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS98.40 12798.00 15799.61 999.57 5599.25 2298.57 8399.35 11297.55 16699.31 7097.71 28594.61 23699.88 6796.14 21399.19 24699.70 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS98.40 12798.68 6697.54 26298.96 19697.99 13997.88 15699.36 10698.20 12399.63 2599.04 11198.76 2395.33 36396.56 18399.74 10399.31 184
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EI-MVSNet98.40 12798.51 8898.04 23399.10 16694.73 26797.20 22198.87 23998.97 7499.06 10499.02 11596.00 19099.80 16898.58 5599.82 6599.60 49
WR-MVS98.40 12798.19 13699.03 12399.00 18897.65 17596.85 24498.94 22698.57 10098.89 14098.50 22495.60 20799.85 10597.54 11299.85 5499.59 55
new-patchmatchnet98.35 13298.74 5697.18 27799.24 12992.23 32096.42 26899.48 6798.30 11199.69 1799.53 3397.44 11699.82 14698.84 4299.77 9099.49 104
canonicalmvs98.34 13398.26 12898.58 18198.46 28297.82 16298.96 5699.46 7599.19 5297.46 26595.46 34498.59 3199.46 31398.08 8498.71 28998.46 292
testgi98.32 13498.39 11298.13 22599.57 5595.54 24497.78 16599.49 6597.37 18699.19 8697.65 29098.96 1799.49 30696.50 19098.99 27499.34 172
DeepPCF-MVS96.93 598.32 13498.01 15699.23 9098.39 28798.97 6295.03 32099.18 17796.88 22199.33 6298.78 17798.16 6099.28 33596.74 16699.62 15399.44 131
MVS_111021_LR98.30 13698.12 14698.83 14899.16 15498.03 13796.09 28299.30 13997.58 16298.10 22098.24 24998.25 5099.34 32696.69 17299.65 14599.12 223
EPP-MVSNet98.30 13698.04 15499.07 11399.56 6297.83 15999.29 2398.07 29699.03 6898.59 18199.13 9392.16 27699.90 4996.87 15599.68 13399.49 104
DeepC-MVS_fast96.85 698.30 13698.15 14398.75 16398.61 26597.23 19597.76 17099.09 19997.31 19298.75 16398.66 19897.56 10299.64 26396.10 21599.55 18199.39 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS98.29 13997.95 16099.34 7298.44 28499.16 4098.12 12799.38 9896.01 25298.06 22398.43 23197.80 8499.67 24895.69 23399.58 17099.20 207
Fast-Effi-MVS+-dtu98.27 14098.09 14898.81 15198.43 28598.11 12697.61 18599.50 5798.64 9097.39 27097.52 29898.12 6399.95 1596.90 15298.71 28998.38 298
DELS-MVS98.27 14098.20 13498.48 19898.86 21896.70 21995.60 30499.20 16897.73 15198.45 19698.71 18797.50 10999.82 14698.21 7699.59 16498.93 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu98.26 14297.90 16599.35 6998.02 30799.49 298.02 14299.16 18698.29 11497.64 24897.99 26896.44 17499.95 1596.66 17498.93 27998.60 287
MVSFormer98.26 14298.43 10597.77 24498.88 21593.89 29399.39 1199.56 4099.11 5698.16 21498.13 25693.81 25399.97 399.26 1899.57 17499.43 135
MVS_111021_HR98.25 14498.08 15198.75 16399.09 16997.46 18495.97 28599.27 15197.60 16197.99 22898.25 24898.15 6299.38 32396.87 15599.57 17499.42 138
TAMVS98.24 14598.05 15398.80 15399.07 17397.18 20297.88 15698.81 25296.66 23099.17 9199.21 7594.81 23199.77 19996.96 14599.88 4999.44 131
diffmvs98.22 14698.24 13098.17 22399.00 18895.44 24996.38 27099.58 2697.79 14998.53 19298.50 22496.76 15899.74 21797.95 9299.64 14799.34 172
Anonymous2023120698.21 14798.21 13398.20 22199.51 7495.43 25098.13 12599.32 12596.16 24698.93 13498.82 17196.00 19099.83 13697.32 12299.73 10699.36 166
VDDNet98.21 14797.95 16099.01 12799.58 5197.74 17099.01 5097.29 31699.67 1098.97 12499.50 3690.45 28599.80 16897.88 9699.20 24299.48 112
IS-MVSNet98.19 14997.90 16599.08 11099.57 5597.97 14499.31 1898.32 28599.01 7098.98 12199.03 11491.59 28099.79 18195.49 24299.80 7799.48 112
MVS_Test98.18 15098.36 11697.67 24998.48 28094.73 26798.18 12199.02 21697.69 15398.04 22699.11 9697.22 13299.56 28898.57 5798.90 28098.71 280
TSAR-MVS + GP.98.18 15097.98 15898.77 16098.71 24597.88 15496.32 27398.66 26996.33 24099.23 8398.51 22197.48 11499.40 31997.16 12999.46 20499.02 236
CNVR-MVS98.17 15297.87 16799.07 11398.67 25898.24 11297.01 23298.93 22897.25 19897.62 24998.34 24297.27 12699.57 28596.42 19699.33 22299.39 150
PVSNet_Blended_VisFu98.17 15298.15 14398.22 22099.73 2495.15 25897.36 20899.68 1494.45 28898.99 11999.27 6796.87 14899.94 2397.13 13399.91 4099.57 66
HPM-MVS++copyleft98.10 15497.64 18399.48 5099.09 16999.13 5197.52 19598.75 26297.46 17796.90 29197.83 27996.01 18999.84 12295.82 22899.35 21999.46 122
APD-MVScopyleft98.10 15497.67 17899.42 5799.11 16298.93 6697.76 17099.28 14894.97 27698.72 16698.77 17997.04 13799.85 10593.79 28899.54 18299.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVP-Stereo98.08 15697.92 16398.57 18498.96 19696.79 21597.90 15599.18 17796.41 23898.46 19598.95 13895.93 19799.60 27596.51 18998.98 27699.31 184
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PMMVS298.07 15798.08 15198.04 23399.41 10694.59 27394.59 33499.40 9497.50 16998.82 15598.83 16896.83 15199.84 12297.50 11599.81 6999.71 26
ETH3D-3000-0.198.03 15897.62 18599.29 7799.11 16298.80 7397.47 20199.32 12595.54 26398.43 20098.62 20996.61 16699.77 19993.95 28299.49 20099.30 187
ETV-MVS98.03 15897.86 16898.56 18898.69 25398.07 13397.51 19799.50 5798.10 12997.50 26295.51 34298.41 4099.88 6796.27 20599.24 23797.71 328
Effi-MVS+98.02 16097.82 17098.62 17698.53 27797.19 20197.33 21099.68 1497.30 19396.68 29997.46 30398.56 3399.80 16896.63 17698.20 30598.86 261
MSLP-MVS++98.02 16098.14 14597.64 25398.58 27095.19 25797.48 19999.23 16497.47 17297.90 23198.62 20997.04 13798.81 35497.55 11099.41 20998.94 251
EIA-MVS98.00 16297.74 17498.80 15398.72 24298.09 12798.05 13799.60 2397.39 18496.63 30195.55 34197.68 9099.80 16896.73 16899.27 23298.52 290
MCST-MVS98.00 16297.63 18499.10 10699.24 12998.17 12296.89 24398.73 26595.66 26197.92 22997.70 28797.17 13399.66 25696.18 21199.23 23899.47 120
K. test v398.00 16297.66 18199.03 12399.79 1997.56 17999.19 3692.47 35499.62 1799.52 3599.66 1789.61 29099.96 899.25 2099.81 6999.56 71
HQP_MVS97.99 16597.67 17898.93 13599.19 14397.65 17597.77 16899.27 15198.20 12397.79 23997.98 26994.90 22599.70 23294.42 26699.51 19299.45 126
MDA-MVSNet-bldmvs97.94 16697.91 16498.06 23199.44 10094.96 26396.63 25799.15 19298.35 10698.83 15199.11 9694.31 24399.85 10596.60 17798.72 28799.37 160
test_part197.91 16797.46 19799.27 8298.80 23398.18 12099.07 4699.36 10699.75 599.63 2599.49 3982.20 34099.89 5898.87 4099.95 1699.74 24
Anonymous20240521197.90 16897.50 19199.08 11098.90 20998.25 11198.53 8796.16 33298.87 8199.11 9598.86 15990.40 28699.78 19397.36 12099.31 22599.19 212
LF4IMVS97.90 16897.69 17798.52 19399.17 15297.66 17497.19 22499.47 7396.31 24297.85 23598.20 25396.71 16299.52 30094.62 25899.72 11398.38 298
UnsupCasMVSNet_eth97.89 17097.60 18798.75 16399.31 11897.17 20397.62 18399.35 11298.72 8998.76 16298.68 19392.57 27399.74 21797.76 10595.60 34999.34 172
TinyColmap97.89 17097.98 15897.60 25598.86 21894.35 27696.21 27899.44 8197.45 17999.06 10498.88 15597.99 7399.28 33594.38 27099.58 17099.18 214
OMC-MVS97.88 17297.49 19299.04 12298.89 21498.63 8496.94 23699.25 15795.02 27498.53 19298.51 22197.27 12699.47 31193.50 29699.51 19299.01 237
CANet97.87 17397.76 17298.19 22297.75 31995.51 24696.76 25099.05 20797.74 15096.93 28598.21 25295.59 20899.89 5897.86 9899.93 2599.19 212
xiu_mvs_v1_base_debu97.86 17498.17 13896.92 28898.98 19393.91 29096.45 26599.17 18397.85 14598.41 20197.14 31698.47 3699.92 3598.02 8799.05 26396.92 340
xiu_mvs_v1_base97.86 17498.17 13896.92 28898.98 19393.91 29096.45 26599.17 18397.85 14598.41 20197.14 31698.47 3699.92 3598.02 8799.05 26396.92 340
xiu_mvs_v1_base_debi97.86 17498.17 13896.92 28898.98 19393.91 29096.45 26599.17 18397.85 14598.41 20197.14 31698.47 3699.92 3598.02 8799.05 26396.92 340
NCCC97.86 17497.47 19699.05 12098.61 26598.07 13396.98 23498.90 23497.63 15797.04 28297.93 27495.99 19399.66 25695.31 24598.82 28399.43 135
PMVScopyleft91.26 2097.86 17497.94 16297.65 25199.71 3097.94 15198.52 8898.68 26898.99 7197.52 26099.35 5897.41 11798.18 35891.59 32599.67 13996.82 343
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
IterMVS-SCA-FT97.85 17998.18 13796.87 29199.27 12491.16 33595.53 30699.25 15799.10 6299.41 4999.35 5893.10 26399.96 898.65 5399.94 2199.49 104
D2MVS97.84 18097.84 16997.83 24199.14 15994.74 26696.94 23698.88 23795.84 25798.89 14098.96 13494.40 24199.69 23697.55 11099.95 1699.05 229
CPTT-MVS97.84 18097.36 20299.27 8299.31 11898.46 10098.29 11199.27 15194.90 27897.83 23698.37 23994.90 22599.84 12293.85 28799.54 18299.51 96
mvs-test197.83 18297.48 19598.89 14198.02 30799.20 3297.20 22199.16 18698.29 11496.46 31197.17 31396.44 17499.92 3596.66 17497.90 31897.54 334
mvs_anonymous97.83 18298.16 14196.87 29198.18 29991.89 32297.31 21298.90 23497.37 18698.83 15199.46 4396.28 18299.79 18198.90 3798.16 30898.95 247
testtj97.79 18497.25 20899.42 5799.03 18398.85 6897.78 16599.18 17795.83 25898.12 21898.50 22495.50 21299.86 9192.23 31899.07 26299.54 83
hse-mvs397.77 18597.33 20699.10 10699.21 13697.84 15898.35 10998.57 27499.11 5698.58 18399.02 11588.65 29999.96 898.11 8096.34 34299.49 104
IterMVS97.73 18698.11 14796.57 29899.24 12990.28 33695.52 30899.21 16698.86 8299.33 6299.33 6293.11 26299.94 2398.49 6299.94 2199.48 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG97.71 18797.52 19098.28 21698.91 20896.82 21494.42 33799.37 10297.65 15698.37 20698.29 24797.40 11899.33 32894.09 27899.22 23998.68 286
CDS-MVSNet97.69 18897.35 20398.69 16798.73 24097.02 20996.92 24098.75 26295.89 25698.59 18198.67 19592.08 27899.74 21796.72 16999.81 6999.32 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch97.68 18997.75 17397.45 26798.23 29793.78 29697.29 21398.84 24696.10 24898.64 17298.65 20096.04 18799.36 32496.84 15899.14 25399.20 207
Fast-Effi-MVS+97.67 19097.38 20098.57 18498.71 24597.43 18697.23 21799.45 7894.82 28096.13 31596.51 32498.52 3599.91 4596.19 20998.83 28298.37 300
EU-MVSNet97.66 19198.50 9095.13 32599.63 4885.84 35298.35 10998.21 28998.23 11999.54 3099.46 4395.02 22399.68 24598.24 7499.87 5299.87 4
MVS_030497.64 19297.35 20398.52 19397.87 31596.69 22098.59 8198.05 29897.44 18093.74 35298.85 16293.69 25799.88 6798.11 8099.81 6998.98 242
pmmvs597.64 19297.49 19298.08 22999.14 15995.12 26096.70 25499.05 20793.77 30198.62 17598.83 16893.23 25999.75 21398.33 7399.76 9999.36 166
N_pmnet97.63 19497.17 21398.99 12999.27 12497.86 15695.98 28493.41 35195.25 27299.47 4298.90 14695.63 20699.85 10596.91 14799.73 10699.27 194
YYNet197.60 19597.67 17897.39 27199.04 18093.04 30795.27 31398.38 28497.25 19898.92 13598.95 13895.48 21499.73 22196.99 14198.74 28599.41 141
MDA-MVSNet_test_wron97.60 19597.66 18197.41 27099.04 18093.09 30395.27 31398.42 28197.26 19798.88 14498.95 13895.43 21599.73 22197.02 13898.72 28799.41 141
pmmvs497.58 19797.28 20798.51 19598.84 22396.93 21295.40 31298.52 27793.60 30398.61 17798.65 20095.10 22299.60 27596.97 14499.79 8298.99 241
ETH3D cwj APD-0.1697.55 19897.00 22299.19 9398.51 27898.64 8396.85 24499.13 19394.19 29497.65 24798.40 23395.78 20299.81 15993.37 29999.16 24999.12 223
PVSNet_BlendedMVS97.55 19897.53 18997.60 25598.92 20593.77 29796.64 25699.43 8794.49 28497.62 24999.18 8096.82 15299.67 24894.73 25599.93 2599.36 166
ppachtmachnet_test97.50 20097.74 17496.78 29698.70 24991.23 33494.55 33599.05 20796.36 23999.21 8498.79 17696.39 17699.78 19396.74 16699.82 6599.34 172
FMVSNet397.50 20097.24 21098.29 21598.08 30595.83 23997.86 15998.91 23397.89 14298.95 12798.95 13887.06 30399.81 15997.77 10199.69 12899.23 202
CHOSEN 1792x268897.49 20297.14 21798.54 19299.68 3996.09 23396.50 26399.62 2091.58 32698.84 15098.97 13192.36 27499.88 6796.76 16499.95 1699.67 33
CLD-MVS97.49 20297.16 21498.48 19899.07 17397.03 20894.71 32799.21 16694.46 28698.06 22397.16 31497.57 10199.48 30994.46 26399.78 8698.95 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_prior397.48 20497.00 22298.95 13298.69 25397.95 14995.74 29999.03 21296.48 23596.11 31697.63 29295.92 19899.59 27994.16 27299.20 24299.30 187
hse-mvs297.46 20597.07 21898.64 17198.73 24097.33 18997.45 20397.64 30999.11 5698.58 18397.98 26988.65 29999.79 18198.11 8097.39 32698.81 267
Vis-MVSNet (Re-imp)97.46 20597.16 21498.34 21099.55 6596.10 23198.94 5798.44 28098.32 11098.16 21498.62 20988.76 29699.73 22193.88 28599.79 8299.18 214
jason97.45 20797.35 20397.76 24599.24 12993.93 28995.86 29398.42 28194.24 29298.50 19498.13 25694.82 22999.91 4597.22 12699.73 10699.43 135
jason: jason.
CL-MVSNet_2432*160097.44 20897.22 21198.08 22998.57 27295.78 24194.30 34098.79 25596.58 23398.60 17998.19 25494.74 23599.64 26396.41 19798.84 28198.82 264
DSMNet-mixed97.42 20997.60 18796.87 29199.15 15891.46 32698.54 8699.12 19592.87 31297.58 25399.63 2096.21 18399.90 4995.74 23099.54 18299.27 194
USDC97.41 21097.40 19897.44 26898.94 19993.67 29995.17 31699.53 5194.03 29898.97 12499.10 9895.29 21799.34 32695.84 22799.73 10699.30 187
our_test_397.39 21197.73 17696.34 30298.70 24989.78 33894.61 33398.97 22596.50 23499.04 11198.85 16295.98 19499.84 12297.26 12599.67 13999.41 141
cl_fuxian97.36 21297.37 20197.31 27298.09 30493.25 30295.01 32199.16 18697.05 21398.77 16198.72 18692.88 26899.64 26396.93 14699.76 9999.05 229
alignmvs97.35 21396.88 23098.78 15898.54 27598.09 12797.71 17497.69 30699.20 4897.59 25295.90 33688.12 30299.55 29198.18 7898.96 27798.70 282
Patchmtry97.35 21396.97 22498.50 19797.31 33896.47 22398.18 12198.92 23198.95 7898.78 15899.37 5485.44 31899.85 10595.96 21999.83 6299.17 218
DP-MVS Recon97.33 21596.92 22798.57 18499.09 16997.99 13996.79 24799.35 11293.18 30797.71 24398.07 26595.00 22499.31 33093.97 28099.13 25698.42 297
QAPM97.31 21696.81 23598.82 14998.80 23397.49 18299.06 4899.19 17390.22 33897.69 24599.16 8696.91 14699.90 4990.89 33699.41 20999.07 227
UnsupCasMVSNet_bld97.30 21796.92 22798.45 20199.28 12396.78 21896.20 27999.27 15195.42 26898.28 20998.30 24693.16 26199.71 23094.99 24997.37 32798.87 260
F-COLMAP97.30 21796.68 24299.14 10099.19 14398.39 10397.27 21699.30 13992.93 31096.62 30298.00 26795.73 20499.68 24592.62 31398.46 29999.35 170
1112_ss97.29 21996.86 23198.58 18199.34 11796.32 22796.75 25199.58 2693.14 30896.89 29297.48 30192.11 27799.86 9196.91 14799.54 18299.57 66
CANet_DTU97.26 22097.06 21997.84 24097.57 32694.65 27196.19 28098.79 25597.23 20495.14 33898.24 24993.22 26099.84 12297.34 12199.84 5699.04 233
Patchmatch-RL test97.26 22097.02 22197.99 23699.52 7295.53 24596.13 28199.71 1097.47 17299.27 7399.16 8684.30 32799.62 26897.89 9399.77 9098.81 267
CDPH-MVS97.26 22096.66 24599.07 11399.00 18898.15 12396.03 28399.01 21991.21 33297.79 23997.85 27896.89 14799.69 23692.75 31099.38 21599.39 150
PatchMatch-RL97.24 22396.78 23698.61 17899.03 18397.83 15996.36 27199.06 20393.49 30697.36 27297.78 28195.75 20399.49 30693.44 29798.77 28498.52 290
eth_miper_zixun_eth97.23 22497.25 20897.17 27898.00 30992.77 31194.71 32799.18 17797.27 19698.56 18798.74 18391.89 27999.69 23697.06 13799.81 6999.05 229
sss97.21 22596.93 22598.06 23198.83 22595.22 25696.75 25198.48 27994.49 28497.27 27397.90 27592.77 27099.80 16896.57 18099.32 22399.16 221
LFMVS97.20 22696.72 23998.64 17198.72 24296.95 21198.93 5894.14 34899.74 798.78 15899.01 12284.45 32499.73 22197.44 11699.27 23299.25 198
HyFIR lowres test97.19 22796.60 24898.96 13199.62 5097.28 19395.17 31699.50 5794.21 29399.01 11598.32 24586.61 30699.99 297.10 13599.84 5699.60 49
miper_lstm_enhance97.18 22897.16 21497.25 27698.16 30092.85 30995.15 31899.31 13097.25 19898.74 16598.78 17790.07 28799.78 19397.19 12799.80 7799.11 225
CNLPA97.17 22996.71 24098.55 18998.56 27398.05 13696.33 27298.93 22896.91 22097.06 28197.39 30694.38 24299.45 31591.66 32299.18 24898.14 306
xiu_mvs_v2_base97.16 23097.49 19296.17 30798.54 27592.46 31595.45 31098.84 24697.25 19897.48 26496.49 32598.31 4899.90 4996.34 20198.68 29196.15 351
AdaColmapbinary97.14 23196.71 24098.46 20098.34 28997.80 16596.95 23598.93 22895.58 26296.92 28697.66 28995.87 20099.53 29690.97 33399.14 25398.04 309
train_agg97.10 23296.45 25599.07 11398.71 24598.08 13195.96 28799.03 21291.64 32495.85 32297.53 29696.47 17299.76 20693.67 29099.16 24999.36 166
OpenMVScopyleft96.65 797.09 23396.68 24298.32 21198.32 29097.16 20498.86 6399.37 10289.48 34296.29 31499.15 9096.56 16799.90 4992.90 30499.20 24297.89 314
PS-MVSNAJ97.08 23497.39 19996.16 30998.56 27392.46 31595.24 31598.85 24597.25 19897.49 26395.99 33498.07 6499.90 4996.37 19898.67 29296.12 352
RRT_MVS97.07 23596.57 25098.58 18195.89 35996.33 22697.36 20898.77 25897.85 14599.08 10199.12 9482.30 33799.96 898.82 4399.90 4499.45 126
miper_ehance_all_eth97.06 23697.03 22097.16 28097.83 31693.06 30494.66 33099.09 19995.99 25398.69 16798.45 23092.73 27199.61 27496.79 16099.03 26798.82 264
agg_prior197.06 23696.40 25699.03 12398.68 25697.99 13995.76 29799.01 21991.73 32395.59 32597.50 29996.49 17199.77 19993.71 28999.14 25399.34 172
lupinMVS97.06 23696.86 23197.65 25198.88 21593.89 29395.48 30997.97 29993.53 30498.16 21497.58 29493.81 25399.91 4596.77 16399.57 17499.17 218
API-MVS97.04 23996.91 22997.42 26997.88 31498.23 11698.18 12198.50 27897.57 16397.39 27096.75 32196.77 15699.15 34490.16 33999.02 27094.88 357
cl-mvsnet____97.02 24096.83 23497.58 25797.82 31794.04 28394.66 33099.16 18697.04 21498.63 17398.71 18788.68 29899.69 23697.00 13999.81 6999.00 240
cl-mvsnet197.02 24096.84 23397.58 25797.82 31794.03 28494.66 33099.16 18697.04 21498.63 17398.71 18788.69 29799.69 23697.00 13999.81 6999.01 237
RPMNet97.02 24096.93 22597.30 27397.71 32194.22 27798.11 12899.30 13999.37 3496.91 28899.34 6086.72 30599.87 8397.53 11397.36 32997.81 321
HQP-MVS97.00 24396.49 25498.55 18998.67 25896.79 21596.29 27499.04 21096.05 24995.55 32996.84 31993.84 25199.54 29492.82 30799.26 23599.32 180
bset_n11_16_dypcd96.99 24496.56 25198.27 21799.00 18895.25 25392.18 35794.05 34998.75 8799.01 11598.38 23788.98 29599.93 2898.77 4799.92 3499.64 39
new_pmnet96.99 24496.76 23797.67 24998.72 24294.89 26495.95 28998.20 29092.62 31598.55 18998.54 21894.88 22899.52 30093.96 28199.44 20798.59 289
Test_1112_low_res96.99 24496.55 25298.31 21399.35 11595.47 24895.84 29699.53 5191.51 32896.80 29798.48 22991.36 28199.83 13696.58 17899.53 18699.62 44
PVSNet_Blended96.88 24796.68 24297.47 26698.92 20593.77 29794.71 32799.43 8790.98 33497.62 24997.36 30996.82 15299.67 24894.73 25599.56 17998.98 242
MVSTER96.86 24896.55 25297.79 24397.91 31394.21 27997.56 19198.87 23997.49 17199.06 10499.05 10880.72 34299.80 16898.44 6599.82 6599.37 160
BH-untuned96.83 24996.75 23897.08 28198.74 23993.33 30196.71 25398.26 28796.72 22798.44 19797.37 30895.20 21999.47 31191.89 32097.43 32598.44 295
BH-RMVSNet96.83 24996.58 24997.58 25798.47 28194.05 28296.67 25597.36 31296.70 22997.87 23397.98 26995.14 22199.44 31690.47 33898.58 29799.25 198
PAPM_NR96.82 25196.32 25998.30 21499.07 17396.69 22097.48 19998.76 25995.81 25996.61 30396.47 32794.12 24999.17 34290.82 33797.78 31999.06 228
MG-MVS96.77 25296.61 24797.26 27598.31 29193.06 30495.93 29098.12 29596.45 23797.92 22998.73 18493.77 25599.39 32191.19 33299.04 26699.33 178
112196.73 25396.00 26498.91 13898.95 19897.76 16798.07 13398.73 26587.65 35096.54 30498.13 25694.52 23899.73 22192.38 31699.02 27099.24 201
test_yl96.69 25496.29 26097.90 23798.28 29295.24 25497.29 21397.36 31298.21 12098.17 21297.86 27686.27 30899.55 29194.87 25298.32 30198.89 257
DCV-MVSNet96.69 25496.29 26097.90 23798.28 29295.24 25497.29 21397.36 31298.21 12098.17 21297.86 27686.27 30899.55 29194.87 25298.32 30198.89 257
WTY-MVS96.67 25696.27 26297.87 23998.81 23194.61 27296.77 24997.92 30194.94 27797.12 27697.74 28491.11 28299.82 14693.89 28498.15 30999.18 214
PatchT96.65 25796.35 25797.54 26297.40 33495.32 25297.98 14896.64 32899.33 3896.89 29299.42 4984.32 32699.81 15997.69 10997.49 32297.48 335
TAPA-MVS96.21 1196.63 25895.95 26698.65 16998.93 20198.09 12796.93 23899.28 14883.58 35798.13 21797.78 28196.13 18499.40 31993.52 29499.29 23098.45 294
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MIMVSNet96.62 25996.25 26397.71 24899.04 18094.66 27099.16 3896.92 32497.23 20497.87 23399.10 9886.11 31299.65 26191.65 32399.21 24198.82 264
Patchmatch-test96.55 26096.34 25897.17 27898.35 28893.06 30498.40 10497.79 30297.33 18998.41 20198.67 19583.68 33199.69 23695.16 24699.31 22598.77 275
PMMVS96.51 26195.98 26598.09 22697.53 32995.84 23894.92 32398.84 24691.58 32696.05 32095.58 34095.68 20599.66 25695.59 23998.09 31298.76 276
PLCcopyleft94.65 1696.51 26195.73 27098.85 14698.75 23897.91 15296.42 26899.06 20390.94 33595.59 32597.38 30794.41 24099.59 27990.93 33498.04 31699.05 229
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
114514_t96.50 26395.77 26898.69 16799.48 9297.43 18697.84 16199.55 4481.42 35996.51 30798.58 21595.53 20999.67 24893.41 29899.58 17098.98 242
MAR-MVS96.47 26495.70 27198.79 15597.92 31299.12 5398.28 11298.60 27392.16 32195.54 33296.17 33294.77 23499.52 30089.62 34198.23 30397.72 327
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETH3 D test640096.46 26595.59 27699.08 11098.88 21598.21 11896.53 26099.18 17788.87 34697.08 27997.79 28093.64 25899.77 19988.92 34399.40 21199.28 192
SCA96.41 26696.66 24595.67 31598.24 29588.35 34395.85 29596.88 32596.11 24797.67 24698.67 19593.10 26399.85 10594.16 27299.22 23998.81 267
DPM-MVS96.32 26795.59 27698.51 19598.76 23697.21 19994.54 33698.26 28791.94 32296.37 31297.25 31193.06 26599.43 31791.42 32898.74 28598.89 257
CMPMVSbinary75.91 2396.29 26895.44 28198.84 14796.25 35598.69 8297.02 23199.12 19588.90 34597.83 23698.86 15989.51 29198.90 35291.92 31999.51 19298.92 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CR-MVSNet96.28 26995.95 26697.28 27497.71 32194.22 27798.11 12898.92 23192.31 31896.91 28899.37 5485.44 31899.81 15997.39 11997.36 32997.81 321
CVMVSNet96.25 27097.21 21293.38 34199.10 16680.56 36597.20 22198.19 29296.94 21899.00 11899.02 11589.50 29299.80 16896.36 20099.59 16499.78 14
AUN-MVS96.24 27195.45 28098.60 17998.70 24997.22 19797.38 20697.65 30795.95 25495.53 33397.96 27382.11 34199.79 18196.31 20297.44 32498.80 272
EPNet96.14 27295.44 28198.25 21890.76 36695.50 24797.92 15294.65 34198.97 7492.98 35398.85 16289.12 29499.87 8395.99 21799.68 13399.39 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d96.06 27397.62 18591.38 34498.65 26498.57 9198.85 6496.95 32296.86 22299.90 499.16 8699.18 1198.40 35789.23 34299.77 9077.18 361
miper_enhance_ethall96.01 27495.74 26996.81 29596.41 35392.27 31993.69 34998.89 23691.14 33398.30 20797.35 31090.58 28499.58 28496.31 20299.03 26798.60 287
FMVSNet596.01 27495.20 28998.41 20497.53 32996.10 23198.74 6899.50 5797.22 20798.03 22799.04 11169.80 36299.88 6797.27 12499.71 11799.25 198
baseline195.96 27695.44 28197.52 26498.51 27893.99 28798.39 10596.09 33498.21 12098.40 20597.76 28386.88 30499.63 26695.42 24389.27 36198.95 247
HY-MVS95.94 1395.90 27795.35 28597.55 26197.95 31094.79 26598.81 6696.94 32392.28 31995.17 33798.57 21689.90 28999.75 21391.20 33197.33 33198.10 307
GA-MVS95.86 27895.32 28697.49 26598.60 26794.15 28193.83 34797.93 30095.49 26696.68 29997.42 30583.21 33299.30 33296.22 20798.55 29899.01 237
OpenMVS_ROBcopyleft95.38 1495.84 27995.18 29097.81 24298.41 28697.15 20597.37 20798.62 27283.86 35698.65 17198.37 23994.29 24499.68 24588.41 34498.62 29596.60 346
cl-mvsnet295.79 28095.39 28496.98 28596.77 34792.79 31094.40 33898.53 27694.59 28397.89 23298.17 25582.82 33699.24 33796.37 19899.03 26798.92 253
131495.74 28195.60 27596.17 30797.53 32992.75 31298.07 13398.31 28691.22 33194.25 34496.68 32295.53 20999.03 34691.64 32497.18 33296.74 344
PVSNet93.40 1795.67 28295.70 27195.57 31898.83 22588.57 34192.50 35497.72 30492.69 31496.49 31096.44 32893.72 25699.43 31793.61 29199.28 23198.71 280
tttt051795.64 28394.98 29497.64 25399.36 11193.81 29598.72 7190.47 36098.08 13098.67 16998.34 24273.88 35999.92 3597.77 10199.51 19299.20 207
PatchmatchNetpermissive95.58 28495.67 27395.30 32497.34 33687.32 34797.65 18196.65 32795.30 27197.07 28098.69 19184.77 32199.75 21394.97 25098.64 29398.83 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TR-MVS95.55 28595.12 29296.86 29497.54 32893.94 28896.49 26496.53 32994.36 29197.03 28396.61 32394.26 24599.16 34386.91 34896.31 34397.47 336
JIA-IIPM95.52 28695.03 29397.00 28396.85 34594.03 28496.93 23895.82 33699.20 4894.63 34299.71 1283.09 33399.60 27594.42 26694.64 35397.36 337
CHOSEN 280x42095.51 28795.47 27895.65 31798.25 29488.27 34493.25 35198.88 23793.53 30494.65 34197.15 31586.17 31099.93 2897.41 11899.93 2598.73 279
ADS-MVSNet295.43 28894.98 29496.76 29798.14 30191.74 32397.92 15297.76 30390.23 33696.51 30798.91 14385.61 31599.85 10592.88 30596.90 33598.69 283
PAPR95.29 28994.47 29997.75 24697.50 33395.14 25994.89 32498.71 26791.39 33095.35 33695.48 34394.57 23799.14 34584.95 35197.37 32798.97 246
thisisatest053095.27 29094.45 30097.74 24799.19 14394.37 27597.86 15990.20 36197.17 20898.22 21197.65 29073.53 36099.90 4996.90 15299.35 21998.95 247
ADS-MVSNet95.24 29194.93 29696.18 30698.14 30190.10 33797.92 15297.32 31590.23 33696.51 30798.91 14385.61 31599.74 21792.88 30596.90 33598.69 283
RRT_test8_iter0595.24 29195.13 29195.57 31897.32 33787.02 34997.99 14699.41 9198.06 13199.12 9399.05 10866.85 36799.85 10598.93 3699.47 20399.84 8
BH-w/o95.13 29394.89 29795.86 31198.20 29891.31 33095.65 30297.37 31193.64 30296.52 30695.70 33993.04 26699.02 34788.10 34595.82 34897.24 338
tpmrst95.07 29495.46 27993.91 33597.11 34184.36 35997.62 18396.96 32194.98 27596.35 31398.80 17485.46 31799.59 27995.60 23896.23 34497.79 324
pmmvs395.03 29594.40 30196.93 28797.70 32392.53 31495.08 31997.71 30588.57 34797.71 24398.08 26479.39 34999.82 14696.19 20999.11 26098.43 296
tpmvs95.02 29695.25 28794.33 33196.39 35485.87 35198.08 13296.83 32695.46 26795.51 33498.69 19185.91 31399.53 29694.16 27296.23 34497.58 332
EPNet_dtu94.93 29794.78 29895.38 32393.58 36387.68 34696.78 24895.69 33897.35 18889.14 36198.09 26388.15 30199.49 30694.95 25199.30 22898.98 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas94.79 29894.33 30496.15 31096.02 35892.36 31892.34 35699.26 15685.34 35595.08 33994.96 35192.96 26798.53 35694.41 26998.59 29697.56 333
tpm94.67 29994.34 30395.66 31697.68 32588.42 34297.88 15694.90 34094.46 28696.03 32198.56 21778.66 35199.79 18195.88 22195.01 35298.78 274
test0.0.03 194.51 30093.69 30996.99 28496.05 35693.61 30094.97 32293.49 35096.17 24497.57 25594.88 35282.30 33799.01 34993.60 29294.17 35798.37 300
thres600view794.45 30193.83 30796.29 30399.06 17791.53 32597.99 14694.24 34698.34 10797.44 26795.01 34879.84 34599.67 24884.33 35298.23 30397.66 329
PCF-MVS92.86 1894.36 30293.00 31998.42 20398.70 24997.56 17993.16 35299.11 19779.59 36097.55 25697.43 30492.19 27599.73 22179.85 36099.45 20697.97 313
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata94.32 30392.59 32199.53 3699.46 9599.21 2698.65 7499.34 11898.62 9497.54 25845.85 36397.50 10999.83 13696.79 16099.53 18699.56 71
MVS-HIRNet94.32 30395.62 27490.42 34598.46 28275.36 36696.29 27489.13 36395.25 27295.38 33599.75 792.88 26899.19 34194.07 27999.39 21296.72 345
ET-MVSNet_ETH3D94.30 30593.21 31597.58 25798.14 30194.47 27494.78 32693.24 35394.72 28189.56 36095.87 33778.57 35399.81 15996.91 14797.11 33498.46 292
thres100view90094.19 30693.67 31095.75 31499.06 17791.35 32998.03 14094.24 34698.33 10997.40 26994.98 35079.84 34599.62 26883.05 35498.08 31396.29 347
E-PMN94.17 30794.37 30293.58 33896.86 34485.71 35490.11 35997.07 31998.17 12697.82 23897.19 31284.62 32398.94 35089.77 34097.68 32196.09 353
thres40094.14 30893.44 31296.24 30598.93 20191.44 32797.60 18694.29 34497.94 13797.10 27794.31 35679.67 34799.62 26883.05 35498.08 31397.66 329
thisisatest051594.12 30993.16 31696.97 28698.60 26792.90 30893.77 34890.61 35994.10 29696.91 28895.87 33774.99 35899.80 16894.52 26199.12 25998.20 303
tfpn200view994.03 31093.44 31295.78 31398.93 20191.44 32797.60 18694.29 34497.94 13797.10 27794.31 35679.67 34799.62 26883.05 35498.08 31396.29 347
CostFormer93.97 31193.78 30894.51 33097.53 32985.83 35397.98 14895.96 33589.29 34494.99 34098.63 20778.63 35299.62 26894.54 26096.50 34098.09 308
test-LLR93.90 31293.85 30694.04 33396.53 34984.62 35794.05 34492.39 35596.17 24494.12 34695.07 34682.30 33799.67 24895.87 22498.18 30697.82 319
EMVS93.83 31394.02 30593.23 34296.83 34684.96 35589.77 36096.32 33197.92 13997.43 26896.36 33186.17 31098.93 35187.68 34697.73 32095.81 354
baseline293.73 31492.83 32096.42 30197.70 32391.28 33296.84 24689.77 36293.96 30092.44 35595.93 33579.14 35099.77 19992.94 30396.76 33998.21 302
thres20093.72 31593.14 31795.46 32298.66 26391.29 33196.61 25894.63 34297.39 18496.83 29593.71 35979.88 34499.56 28882.40 35798.13 31095.54 356
EPMVS93.72 31593.27 31495.09 32696.04 35787.76 34598.13 12585.01 36594.69 28296.92 28698.64 20378.47 35599.31 33095.04 24796.46 34198.20 303
dp93.47 31793.59 31193.13 34396.64 34881.62 36497.66 17996.42 33092.80 31396.11 31698.64 20378.55 35499.59 27993.31 30092.18 36098.16 305
FPMVS93.44 31892.23 32397.08 28199.25 12897.86 15695.61 30397.16 31892.90 31193.76 35198.65 20075.94 35795.66 36179.30 36197.49 32297.73 326
tpm cat193.29 31993.13 31893.75 33697.39 33584.74 35697.39 20597.65 30783.39 35894.16 34598.41 23282.86 33599.39 32191.56 32695.35 35197.14 339
MVS93.19 32092.09 32496.50 30096.91 34394.03 28498.07 13398.06 29768.01 36194.56 34396.48 32695.96 19699.30 33283.84 35396.89 33796.17 349
tpm293.09 32192.58 32294.62 32997.56 32786.53 35097.66 17995.79 33786.15 35394.07 34898.23 25175.95 35699.53 29690.91 33596.86 33897.81 321
KD-MVS_2432*160092.87 32291.99 32695.51 32091.37 36489.27 33994.07 34298.14 29395.42 26897.25 27496.44 32867.86 36499.24 33791.28 32996.08 34698.02 310
miper_refine_blended92.87 32291.99 32695.51 32091.37 36489.27 33994.07 34298.14 29395.42 26897.25 27496.44 32867.86 36499.24 33791.28 32996.08 34698.02 310
DWT-MVSNet_test92.75 32492.05 32594.85 32796.48 35187.21 34897.83 16294.99 33992.22 32092.72 35494.11 35870.75 36199.46 31395.01 24894.33 35697.87 317
MVEpermissive83.40 2292.50 32591.92 32894.25 33298.83 22591.64 32492.71 35383.52 36695.92 25586.46 36495.46 34495.20 21995.40 36280.51 35998.64 29395.73 355
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
gg-mvs-nofinetune92.37 32691.20 33195.85 31295.80 36092.38 31799.31 1881.84 36799.75 591.83 35799.74 868.29 36399.02 34787.15 34797.12 33396.16 350
test-mter92.33 32791.76 33094.04 33396.53 34984.62 35794.05 34492.39 35594.00 29994.12 34695.07 34665.63 37099.67 24895.87 22498.18 30697.82 319
IB-MVS91.63 1992.24 32890.90 33296.27 30497.22 34091.24 33394.36 33993.33 35292.37 31792.24 35694.58 35566.20 36999.89 5893.16 30294.63 35497.66 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,192.19 32991.77 32993.46 33996.48 35182.80 36294.05 34491.52 35894.45 28894.00 34994.88 35266.65 36899.56 28895.78 22998.11 31198.02 310
PAPM91.88 33090.34 33396.51 29998.06 30692.56 31392.44 35597.17 31786.35 35290.38 35996.01 33386.61 30699.21 34070.65 36395.43 35097.75 325
PVSNet_089.98 2191.15 33190.30 33493.70 33797.72 32084.34 36090.24 35897.42 31090.20 33993.79 35093.09 36090.90 28398.89 35386.57 34972.76 36397.87 317
test_method79.78 33279.50 33580.62 34680.21 36745.76 36970.82 36198.41 28331.08 36480.89 36597.71 28584.85 32097.37 36091.51 32780.03 36298.75 277
tmp_tt78.77 33378.73 33678.90 34758.45 36874.76 36894.20 34178.26 36939.16 36386.71 36392.82 36180.50 34375.19 36586.16 35092.29 35986.74 360
cdsmvs_eth3d_5k24.66 33432.88 3370.00 3500.00 3710.00 3720.00 36299.10 1980.00 3670.00 36897.58 29499.21 100.00 3680.00 3660.00 3660.00 364
testmvs17.12 33520.53 3386.87 34912.05 3694.20 37193.62 3506.73 3704.62 36610.41 36624.33 3648.28 3723.56 3679.69 36515.07 36412.86 363
test12317.04 33620.11 3397.82 34810.25 3704.91 37094.80 3254.47 3714.93 36510.00 36724.28 3659.69 3713.64 36610.14 36412.43 36514.92 362
pcd_1.5k_mvsjas8.17 33710.90 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36898.07 640.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.12 33810.83 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36897.48 3010.00 3730.00 3680.00 3660.00 3660.00 364
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ZD-MVS99.01 18798.84 6999.07 20294.10 29698.05 22598.12 25996.36 18099.86 9192.70 31299.19 246
RE-MVS-def98.58 8199.20 14099.38 598.48 9799.30 13998.64 9098.95 12798.96 13497.75 8796.56 18399.39 21299.45 126
IU-MVS99.49 8499.15 4598.87 23992.97 30999.41 4996.76 16499.62 15399.66 34
OPU-MVS98.82 14998.59 26998.30 10898.10 13098.52 22098.18 5898.75 35594.62 25899.48 20299.41 141
test_241102_TWO99.30 13998.03 13299.26 7799.02 11597.51 10899.88 6796.91 14799.60 16299.66 34
test_241102_ONE99.49 8499.17 3699.31 13097.98 13499.66 2098.90 14698.36 4399.48 309
9.1497.78 17199.07 17397.53 19499.32 12595.53 26598.54 19198.70 19097.58 10099.76 20694.32 27199.46 204
save fliter99.11 16297.97 14496.53 26099.02 21698.24 117
test_0728_THIRD98.17 12699.08 10199.02 11597.89 7799.88 6797.07 13699.71 11799.70 29
test_0728_SECOND99.60 1399.50 7799.23 2498.02 14299.32 12599.88 6796.99 14199.63 15099.68 31
test072699.50 7799.21 2698.17 12499.35 11297.97 13599.26 7799.06 10197.61 98
GSMVS98.81 267
test_part299.36 11199.10 5699.05 109
sam_mvs184.74 32298.81 267
sam_mvs84.29 328
ambc98.24 21998.82 22895.97 23598.62 7799.00 22299.27 7399.21 7596.99 14299.50 30596.55 18699.50 19999.26 197
MTGPAbinary99.20 168
test_post197.59 18820.48 36783.07 33499.66 25694.16 272
test_post21.25 36683.86 33099.70 232
patchmatchnet-post98.77 17984.37 32599.85 105
GG-mvs-BLEND94.76 32894.54 36292.13 32199.31 1880.47 36888.73 36291.01 36267.59 36698.16 35982.30 35894.53 35593.98 358
MTMP97.93 15191.91 357
gm-plane-assit94.83 36181.97 36388.07 34994.99 34999.60 27591.76 321
test9_res93.28 30199.15 25299.38 157
TEST998.71 24598.08 13195.96 28799.03 21291.40 32995.85 32297.53 29696.52 16999.76 206
test_898.67 25898.01 13895.91 29299.02 21691.64 32495.79 32497.50 29996.47 17299.76 206
agg_prior292.50 31599.16 24999.37 160
agg_prior98.68 25697.99 13999.01 21995.59 32599.77 199
TestCases99.16 9799.50 7798.55 9299.58 2696.80 22398.88 14499.06 10197.65 9399.57 28594.45 26499.61 16099.37 160
test_prior497.97 14495.86 293
test_prior295.74 29996.48 23596.11 31697.63 29295.92 19894.16 27299.20 242
test_prior98.95 13298.69 25397.95 14999.03 21299.59 27999.30 187
旧先验295.76 29788.56 34897.52 26099.66 25694.48 262
新几何295.93 290
新几何198.91 13898.94 19997.76 16798.76 25987.58 35196.75 29898.10 26194.80 23299.78 19392.73 31199.00 27399.20 207
旧先验198.82 22897.45 18598.76 25998.34 24295.50 21299.01 27299.23 202
无先验95.74 29998.74 26489.38 34399.73 22192.38 31699.22 206
原ACMM295.53 306
原ACMM198.35 20998.90 20996.25 22998.83 25192.48 31696.07 31998.10 26195.39 21699.71 23092.61 31498.99 27499.08 226
test22298.92 20596.93 21295.54 30598.78 25785.72 35496.86 29498.11 26094.43 23999.10 26199.23 202
testdata299.79 18192.80 309
segment_acmp97.02 140
testdata98.09 22698.93 20195.40 25198.80 25490.08 34097.45 26698.37 23995.26 21899.70 23293.58 29398.95 27899.17 218
testdata195.44 31196.32 241
test1298.93 13598.58 27097.83 15998.66 26996.53 30595.51 21199.69 23699.13 25699.27 194
plane_prior799.19 14397.87 155
plane_prior698.99 19297.70 17394.90 225
plane_prior599.27 15199.70 23294.42 26699.51 19299.45 126
plane_prior497.98 269
plane_prior397.78 16697.41 18297.79 239
plane_prior297.77 16898.20 123
plane_prior199.05 179
plane_prior97.65 17597.07 23096.72 22799.36 217
n20.00 372
nn0.00 372
door-mid99.57 33
lessismore_v098.97 13099.73 2497.53 18186.71 36499.37 5699.52 3589.93 28899.92 3598.99 3499.72 11399.44 131
LGP-MVS_train99.47 5399.57 5598.97 6299.48 6796.60 23199.10 9899.06 10198.71 2699.83 13695.58 24099.78 8699.62 44
test1198.87 239
door99.41 91
HQP5-MVS96.79 215
HQP-NCC98.67 25896.29 27496.05 24995.55 329
ACMP_Plane98.67 25896.29 27496.05 24995.55 329
BP-MVS92.82 307
HQP4-MVS95.56 32899.54 29499.32 180
HQP3-MVS99.04 21099.26 235
HQP2-MVS93.84 251
NP-MVS98.84 22397.39 18896.84 319
MDTV_nov1_ep13_2view74.92 36797.69 17690.06 34197.75 24285.78 31493.52 29498.69 283
MDTV_nov1_ep1395.22 28897.06 34283.20 36197.74 17296.16 33294.37 29096.99 28498.83 16883.95 32999.53 29693.90 28397.95 317
ACMMP++_ref99.77 90
ACMMP++99.68 133
Test By Simon96.52 169
ITE_SJBPF98.87 14399.22 13498.48 9999.35 11297.50 16998.28 20998.60 21397.64 9699.35 32593.86 28699.27 23298.79 273
DeepMVS_CXcopyleft93.44 34098.24 29594.21 27994.34 34364.28 36291.34 35894.87 35489.45 29392.77 36477.54 36293.14 35893.35 359