This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 10100.00 199.85 18
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1699.69 499.58 5699.90 299.86 1899.78 899.58 699.95 2399.00 6299.95 2999.78 31
pmmvs699.67 399.70 399.60 1199.90 499.27 2399.53 899.76 2999.64 1899.84 2099.83 399.50 899.87 10199.36 3799.92 5299.64 60
LTVRE_ROB98.40 199.67 399.71 299.56 2299.85 1699.11 6099.90 199.78 2799.63 2099.78 2899.67 2599.48 999.81 18099.30 4099.97 1999.77 33
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets99.63 599.67 599.49 4899.88 998.61 9199.34 1999.71 3499.27 5799.90 1299.74 1399.68 499.97 599.55 2899.99 599.88 14
jajsoiax99.58 699.61 899.48 5099.87 1298.61 9199.28 3699.66 4699.09 8399.89 1599.68 2099.53 799.97 599.50 3299.99 599.87 15
test_fmvsmconf0.01_n99.57 799.63 799.36 6399.87 1298.13 13098.08 16499.95 199.45 3699.98 299.75 1199.80 199.97 599.82 799.99 599.99 1
ANet_high99.57 799.67 599.28 8499.89 698.09 13499.14 5399.93 499.82 399.93 699.81 599.17 1899.94 3599.31 39100.00 199.82 23
v7n99.53 999.57 999.41 5999.88 998.54 9999.45 1099.61 5299.66 1699.68 4199.66 2798.44 6199.95 2399.73 1899.96 2399.75 41
test_djsdf99.52 1099.51 1199.53 3499.86 1498.74 8199.39 1699.56 7099.11 7399.70 3799.73 1599.00 2299.97 599.26 4499.98 1299.89 11
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6499.34 1999.69 3898.93 9999.65 4799.72 1698.93 2699.95 2399.11 53100.00 199.82 23
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7299.78 2398.11 13197.77 20699.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1299.99 599.96 5
UA-Net99.47 1399.40 2099.70 299.49 11399.29 2099.80 399.72 3399.82 399.04 14299.81 598.05 9199.96 1298.85 7099.99 599.86 17
PS-MVSNAJss99.46 1499.49 1299.35 6999.90 498.15 12799.20 4499.65 4799.48 3299.92 899.71 1798.07 8899.96 1299.53 29100.00 199.93 8
test_fmvsmconf_n99.44 1599.48 1499.31 8299.64 6898.10 13397.68 21799.84 1899.29 5599.92 899.57 4199.60 599.96 1299.74 1799.98 1299.89 11
mamv499.44 1599.39 2199.58 1699.30 15799.74 299.04 6499.81 2399.77 599.82 2199.57 4197.82 10799.98 499.53 2999.89 6999.01 256
pm-mvs199.44 1599.48 1499.33 7799.80 2098.63 8899.29 3299.63 4899.30 5499.65 4799.60 3899.16 2099.82 16799.07 5699.83 9099.56 94
TransMVSNet (Re)99.44 1599.47 1699.36 6399.80 2098.58 9499.27 3899.57 6399.39 4399.75 3299.62 3399.17 1899.83 15799.06 5799.62 18799.66 55
DTE-MVSNet99.43 1999.35 2499.66 499.71 4599.30 1899.31 2699.51 8599.64 1899.56 5499.46 6798.23 7399.97 598.78 7399.93 4199.72 43
TDRefinement99.42 2099.38 2299.55 2499.76 2999.33 1799.68 599.71 3499.38 4499.53 6199.61 3698.64 4499.80 18798.24 10699.84 8399.52 115
PEN-MVS99.41 2199.34 2699.62 699.73 3699.14 5399.29 3299.54 7899.62 2399.56 5499.42 7498.16 8499.96 1298.78 7399.93 4199.77 33
nrg03099.40 2299.35 2499.54 2799.58 7599.13 5698.98 7199.48 9699.68 1499.46 7299.26 10198.62 4799.73 24099.17 5299.92 5299.76 37
PS-CasMVS99.40 2299.33 2799.62 699.71 4599.10 6199.29 3299.53 8199.53 3099.46 7299.41 7798.23 7399.95 2398.89 6999.95 2999.81 26
MIMVSNet199.38 2499.32 2999.55 2499.86 1499.19 3899.41 1399.59 5499.59 2699.71 3599.57 4197.12 15899.90 6599.21 4999.87 7499.54 105
OurMVSNet-221017-099.37 2599.31 3199.53 3499.91 398.98 6699.63 699.58 5699.44 3899.78 2899.76 1096.39 19899.92 5199.44 3599.92 5299.68 51
Vis-MVSNetpermissive99.34 2699.36 2399.27 8799.73 3698.26 11799.17 4999.78 2799.11 7399.27 10799.48 6598.82 3199.95 2398.94 6599.93 4199.59 77
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsm_n_192099.33 2799.45 1898.99 13499.57 7997.73 17797.93 18599.83 2099.22 6099.93 699.30 9599.42 1099.96 1299.85 599.99 599.29 209
WR-MVS_H99.33 2799.22 4199.65 599.71 4599.24 2699.32 2299.55 7499.46 3599.50 6899.34 8897.30 14799.93 4298.90 6799.93 4199.77 33
VPA-MVSNet99.30 2999.30 3399.28 8499.49 11398.36 11399.00 6899.45 11099.63 2099.52 6399.44 7298.25 7199.88 8499.09 5599.84 8399.62 64
sd_testset99.28 3099.31 3199.19 10099.68 5698.06 14399.41 1399.30 17299.69 1299.63 5099.68 2099.25 1499.96 1297.25 16499.92 5299.57 88
Anonymous2023121199.27 3199.27 3699.26 8999.29 15998.18 12599.49 999.51 8599.70 1199.80 2699.68 2096.84 17399.83 15799.21 4999.91 5999.77 33
FC-MVSNet-test99.27 3199.25 3999.34 7299.77 2698.37 11099.30 3199.57 6399.61 2599.40 8499.50 5897.12 15899.85 12299.02 6199.94 3699.80 27
test_fmvsmvis_n_192099.26 3399.49 1298.54 20399.66 6296.97 21998.00 17899.85 1599.24 5999.92 899.50 5899.39 1199.95 2399.89 399.98 1298.71 306
testf199.25 3499.16 4799.51 4399.89 699.63 498.71 9799.69 3898.90 10199.43 7799.35 8498.86 2899.67 26897.81 13599.81 9799.24 219
APD_test299.25 3499.16 4799.51 4399.89 699.63 498.71 9799.69 3898.90 10199.43 7799.35 8498.86 2899.67 26897.81 13599.81 9799.24 219
KD-MVS_self_test99.25 3499.18 4499.44 5699.63 7299.06 6598.69 9999.54 7899.31 5299.62 5399.53 5497.36 14599.86 10999.24 4899.71 15499.39 172
ACMH96.65 799.25 3499.24 4099.26 8999.72 4298.38 10899.07 6099.55 7498.30 13699.65 4799.45 7199.22 1599.76 22398.44 9799.77 12399.64 60
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SDMVSNet99.23 3899.32 2998.96 13899.68 5697.35 19798.84 8899.48 9699.69 1299.63 5099.68 2099.03 2199.96 1297.97 12699.92 5299.57 88
fmvsm_l_conf0.5_n99.21 3999.28 3599.02 13199.64 6897.28 20197.82 19999.76 2998.73 10999.82 2199.09 14298.81 3299.95 2399.86 499.96 2399.83 20
CP-MVSNet99.21 3999.09 5699.56 2299.65 6398.96 7199.13 5499.34 15299.42 4199.33 9699.26 10197.01 16699.94 3598.74 7899.93 4199.79 28
fmvsm_l_conf0.5_n_a99.19 4199.27 3698.94 14199.65 6397.05 21597.80 20299.76 2998.70 11299.78 2899.11 13698.79 3499.95 2399.85 599.96 2399.83 20
fmvsm_s_conf0.1_n_a99.17 4299.30 3398.80 15999.75 3396.59 23697.97 18499.86 1398.22 14499.88 1799.71 1798.59 5099.84 14099.73 1899.98 1299.98 2
TranMVSNet+NR-MVSNet99.17 4299.07 5999.46 5599.37 14498.87 7498.39 13699.42 12399.42 4199.36 9199.06 14398.38 6499.95 2398.34 10299.90 6599.57 88
FMVSNet199.17 4299.17 4599.17 10199.55 9198.24 11999.20 4499.44 11499.21 6299.43 7799.55 4897.82 10799.86 10998.42 9999.89 6999.41 162
fmvsm_s_conf0.1_n99.16 4599.33 2798.64 18099.71 4596.10 24997.87 19599.85 1598.56 12499.90 1299.68 2098.69 4199.85 12299.72 2099.98 1299.97 3
test_vis3_rt99.14 4699.17 4599.07 11999.78 2398.38 10898.92 7799.94 297.80 17699.91 1199.67 2597.15 15798.91 39199.76 1599.56 21099.92 9
FIs99.14 4699.09 5699.29 8399.70 5298.28 11699.13 5499.52 8499.48 3299.24 11699.41 7796.79 17999.82 16798.69 8399.88 7199.76 37
XXY-MVS99.14 4699.15 5299.10 11399.76 2997.74 17598.85 8699.62 4998.48 12799.37 8999.49 6498.75 3699.86 10998.20 10999.80 10799.71 44
CS-MVS99.13 4999.10 5599.24 9499.06 21399.15 4899.36 1899.88 1199.36 4898.21 24698.46 26598.68 4299.93 4299.03 6099.85 7998.64 315
CS-MVS-test99.13 4999.09 5699.26 8999.13 19898.97 6799.31 2699.88 1199.44 3898.16 24998.51 25798.64 4499.93 4298.91 6699.85 7998.88 282
test_fmvs399.12 5199.41 1998.25 23599.76 2995.07 28699.05 6399.94 297.78 17899.82 2199.84 298.56 5499.71 24899.96 199.96 2399.97 3
casdiffmvs_mvgpermissive99.12 5199.16 4798.99 13499.43 13297.73 17798.00 17899.62 4999.22 6099.55 5699.22 11198.93 2699.75 23098.66 8499.81 9799.50 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.5_n_a99.10 5399.20 4398.78 16599.55 9196.59 23697.79 20399.82 2298.21 14599.81 2599.53 5498.46 6099.84 14099.70 2199.97 1999.90 10
fmvsm_s_conf0.5_n99.09 5499.26 3898.61 18899.55 9196.09 25297.74 21199.81 2398.55 12599.85 1999.55 4898.60 4999.84 14099.69 2399.98 1299.89 11
EC-MVSNet99.09 5499.05 6099.20 9899.28 16098.93 7299.24 4099.84 1899.08 8598.12 25498.37 27398.72 3899.90 6599.05 5899.77 12398.77 300
ACMH+96.62 999.08 5699.00 6399.33 7799.71 4598.83 7698.60 10799.58 5699.11 7399.53 6199.18 12098.81 3299.67 26896.71 21399.77 12399.50 121
GeoE99.05 5798.99 6599.25 9299.44 12798.35 11498.73 9499.56 7098.42 12998.91 16798.81 21098.94 2599.91 6098.35 10199.73 14299.49 125
iter_conf0599.03 5899.22 4198.46 21399.32 15296.55 24099.55 799.70 3799.75 699.82 2199.50 5896.17 20799.94 3599.27 4299.86 7798.88 282
Gipumacopyleft99.03 5899.16 4798.64 18099.94 298.51 10199.32 2299.75 3299.58 2898.60 21299.62 3398.22 7699.51 33397.70 14499.73 14297.89 361
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v899.01 6099.16 4798.57 19599.47 12296.31 24698.90 7899.47 10499.03 8999.52 6399.57 4196.93 16999.81 18099.60 2499.98 1299.60 71
HPM-MVS_fast99.01 6098.82 7899.57 1799.71 4599.35 1399.00 6899.50 8797.33 22098.94 16498.86 19998.75 3699.82 16797.53 15199.71 15499.56 94
APDe-MVScopyleft98.99 6298.79 8199.60 1199.21 17499.15 4898.87 8399.48 9697.57 19399.35 9399.24 10697.83 10499.89 7597.88 13299.70 15999.75 41
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EG-PatchMatch MVS98.99 6299.01 6298.94 14199.50 10697.47 19098.04 17199.59 5498.15 15699.40 8499.36 8398.58 5399.76 22398.78 7399.68 16799.59 77
COLMAP_ROBcopyleft96.50 1098.99 6298.85 7699.41 5999.58 7599.10 6198.74 9099.56 7099.09 8399.33 9699.19 11698.40 6399.72 24795.98 26099.76 13599.42 159
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Baseline_NR-MVSNet98.98 6598.86 7599.36 6399.82 1998.55 9697.47 24499.57 6399.37 4599.21 11999.61 3696.76 18299.83 15798.06 11999.83 9099.71 44
v1098.97 6699.11 5398.55 20099.44 12796.21 24898.90 7899.55 7498.73 10999.48 6999.60 3896.63 18999.83 15799.70 2199.99 599.61 70
DeepC-MVS97.60 498.97 6698.93 6899.10 11399.35 14997.98 15098.01 17799.46 10697.56 19699.54 5799.50 5898.97 2399.84 14098.06 11999.92 5299.49 125
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline98.96 6899.02 6198.76 16999.38 13897.26 20398.49 12499.50 8798.86 10499.19 12199.06 14398.23 7399.69 25698.71 8199.76 13599.33 198
casdiffmvspermissive98.95 6999.00 6398.81 15799.38 13897.33 19897.82 19999.57 6399.17 7199.35 9399.17 12498.35 6899.69 25698.46 9699.73 14299.41 162
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet98.95 6998.82 7899.36 6399.16 19198.72 8699.22 4199.20 20399.10 8099.72 3398.76 21996.38 20099.86 10998.00 12499.82 9399.50 121
Anonymous2024052998.93 7198.87 7299.12 10999.19 18198.22 12499.01 6698.99 25099.25 5899.54 5799.37 8097.04 16299.80 18797.89 12999.52 22299.35 191
DP-MVS98.93 7198.81 8099.28 8499.21 17498.45 10598.46 12999.33 15799.63 2099.48 6999.15 13097.23 15399.75 23097.17 16799.66 17899.63 63
SED-MVS98.91 7398.72 8899.49 4899.49 11399.17 4098.10 16299.31 16498.03 15999.66 4499.02 15598.36 6599.88 8496.91 18999.62 18799.41 162
ACMM96.08 1298.91 7398.73 8699.48 5099.55 9199.14 5398.07 16699.37 13797.62 18799.04 14298.96 17798.84 3099.79 20097.43 15599.65 17999.49 125
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVS++98.90 7598.70 9499.51 4398.43 32299.15 4899.43 1199.32 15998.17 15299.26 11199.02 15598.18 8099.88 8497.07 17799.45 23699.49 125
tfpnnormal98.90 7598.90 7198.91 14699.67 6097.82 16799.00 6899.44 11499.45 3699.51 6799.24 10698.20 7999.86 10995.92 26299.69 16299.04 252
MTAPA98.88 7798.64 10399.61 999.67 6099.36 1298.43 13299.20 20398.83 10898.89 17098.90 18996.98 16899.92 5197.16 16899.70 15999.56 94
mvsany_test398.87 7898.92 6998.74 17599.38 13896.94 22398.58 10999.10 22896.49 27399.96 499.81 598.18 8099.45 34798.97 6499.79 11299.83 20
VPNet98.87 7898.83 7799.01 13299.70 5297.62 18498.43 13299.35 14699.47 3499.28 10599.05 15096.72 18599.82 16798.09 11699.36 24799.59 77
UniMVSNet (Re)98.87 7898.71 9199.35 6999.24 16798.73 8497.73 21399.38 13398.93 9999.12 12798.73 22296.77 18099.86 10998.63 8799.80 10799.46 144
UniMVSNet_NR-MVSNet98.86 8198.68 9799.40 6199.17 18998.74 8197.68 21799.40 12999.14 7299.06 13598.59 24996.71 18699.93 4298.57 9099.77 12399.53 112
APD-MVS_3200maxsize98.84 8298.61 11099.53 3499.19 18199.27 2398.49 12499.33 15798.64 11399.03 14598.98 17297.89 10199.85 12296.54 23099.42 24099.46 144
MVSMamba_PlusPlus98.83 8398.98 6698.36 22599.32 15296.58 23898.90 7899.41 12599.75 698.72 19699.50 5896.17 20799.94 3599.27 4299.78 11798.57 322
APD_test198.83 8398.66 10099.34 7299.78 2399.47 798.42 13499.45 11098.28 14198.98 14999.19 11697.76 11199.58 31096.57 22299.55 21398.97 265
PM-MVS98.82 8598.72 8899.12 10999.64 6898.54 9997.98 18199.68 4397.62 18799.34 9599.18 12097.54 13099.77 21797.79 13799.74 13999.04 252
DU-MVS98.82 8598.63 10499.39 6299.16 19198.74 8197.54 23699.25 19298.84 10799.06 13598.76 21996.76 18299.93 4298.57 9099.77 12399.50 121
SR-MVS-dyc-post98.81 8798.55 11599.57 1799.20 17899.38 998.48 12799.30 17298.64 11398.95 15798.96 17797.49 13999.86 10996.56 22699.39 24399.45 148
3Dnovator98.27 298.81 8798.73 8699.05 12698.76 26597.81 17099.25 3999.30 17298.57 12298.55 22199.33 9097.95 9999.90 6597.16 16899.67 17399.44 152
HPM-MVScopyleft98.79 8998.53 11899.59 1599.65 6399.29 2099.16 5099.43 12096.74 26398.61 21098.38 27298.62 4799.87 10196.47 23499.67 17399.59 77
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP98.79 8998.54 11799.54 2799.73 3699.16 4498.23 14799.31 16497.92 16798.90 16898.90 18998.00 9499.88 8496.15 25399.72 14999.58 83
Skip Steuart: Steuart Systems R&D Blog.
dcpmvs_298.78 9199.11 5397.78 26699.56 8793.67 33099.06 6199.86 1399.50 3199.66 4499.26 10197.21 15599.99 298.00 12499.91 5999.68 51
V4298.78 9198.78 8298.76 16999.44 12797.04 21698.27 14499.19 20797.87 17199.25 11599.16 12696.84 17399.78 21199.21 4999.84 8399.46 144
test20.0398.78 9198.77 8398.78 16599.46 12397.20 20897.78 20499.24 19799.04 8899.41 8198.90 18997.65 11899.76 22397.70 14499.79 11299.39 172
DVP-MVScopyleft98.77 9498.52 11999.52 3999.50 10699.21 2998.02 17498.84 27497.97 16299.08 13399.02 15597.61 12499.88 8496.99 18399.63 18499.48 135
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_040298.76 9598.71 9198.93 14399.56 8798.14 12998.45 13199.34 15299.28 5698.95 15798.91 18698.34 6999.79 20095.63 27799.91 5998.86 285
ACMMP_NAP98.75 9698.48 12799.57 1799.58 7599.29 2097.82 19999.25 19296.94 25298.78 18799.12 13598.02 9299.84 14097.13 17399.67 17399.59 77
SixPastTwentyTwo98.75 9698.62 10699.16 10499.83 1897.96 15499.28 3698.20 31799.37 4599.70 3799.65 3092.65 30299.93 4299.04 5999.84 8399.60 71
ACMMPcopyleft98.75 9698.50 12299.52 3999.56 8799.16 4498.87 8399.37 13797.16 24198.82 18499.01 16497.71 11499.87 10196.29 24599.69 16299.54 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVS98.72 9998.45 13299.53 3499.46 12399.21 2998.65 10199.34 15298.62 11797.54 29598.63 24397.50 13699.83 15796.79 20299.53 21999.56 94
SSC-MVS98.71 10098.74 8498.62 18599.72 4296.08 25498.74 9098.64 29899.74 999.67 4399.24 10694.57 26499.95 2399.11 5399.24 26799.82 23
SR-MVS98.71 10098.43 13599.57 1799.18 18899.35 1398.36 13999.29 18098.29 13998.88 17398.85 20297.53 13299.87 10196.14 25499.31 25599.48 135
HFP-MVS98.71 10098.44 13499.51 4399.49 11399.16 4498.52 11699.31 16497.47 20498.58 21698.50 26197.97 9899.85 12296.57 22299.59 19899.53 112
LPG-MVS_test98.71 10098.46 13199.47 5399.57 7998.97 6798.23 14799.48 9696.60 26899.10 13199.06 14398.71 3999.83 15795.58 28099.78 11799.62 64
test_fmvs298.70 10498.97 6797.89 25999.54 9694.05 31298.55 11299.92 696.78 26199.72 3399.78 896.60 19099.67 26899.91 299.90 6599.94 7
ACMMPR98.70 10498.42 13799.54 2799.52 10199.14 5398.52 11699.31 16497.47 20498.56 21998.54 25397.75 11299.88 8496.57 22299.59 19899.58 83
CP-MVS98.70 10498.42 13799.52 3999.36 14599.12 5898.72 9599.36 14197.54 19998.30 24098.40 26997.86 10399.89 7596.53 23199.72 14999.56 94
tt080598.69 10798.62 10698.90 14999.75 3399.30 1899.15 5296.97 35098.86 10498.87 17797.62 32698.63 4698.96 38899.41 3698.29 33998.45 330
Anonymous2024052198.69 10798.87 7298.16 24399.77 2695.11 28599.08 5799.44 11499.34 4999.33 9699.55 4894.10 27899.94 3599.25 4699.96 2399.42 159
region2R98.69 10798.40 13999.54 2799.53 9999.17 4098.52 11699.31 16497.46 20998.44 23198.51 25797.83 10499.88 8496.46 23599.58 20399.58 83
EI-MVSNet-UG-set98.69 10798.71 9198.62 18599.10 20296.37 24397.23 26098.87 26599.20 6499.19 12198.99 16897.30 14799.85 12298.77 7699.79 11299.65 59
3Dnovator+97.89 398.69 10798.51 12099.24 9498.81 26098.40 10699.02 6599.19 20798.99 9298.07 25899.28 9797.11 16099.84 14096.84 20099.32 25399.47 142
ZNCC-MVS98.68 11298.40 13999.54 2799.57 7999.21 2998.46 12999.29 18097.28 22698.11 25598.39 27098.00 9499.87 10196.86 19999.64 18199.55 101
EI-MVSNet-Vis-set98.68 11298.70 9498.63 18499.09 20596.40 24297.23 26098.86 27099.20 6499.18 12598.97 17497.29 14999.85 12298.72 8099.78 11799.64 60
CSCG98.68 11298.50 12299.20 9899.45 12698.63 8898.56 11199.57 6397.87 17198.85 17898.04 30197.66 11799.84 14096.72 21199.81 9799.13 241
test_f98.67 11598.87 7298.05 25299.72 4295.59 26498.51 12199.81 2396.30 28399.78 2899.82 496.14 20998.63 39699.82 799.93 4199.95 6
PGM-MVS98.66 11698.37 14699.55 2499.53 9999.18 3998.23 14799.49 9497.01 24998.69 19998.88 19698.00 9499.89 7595.87 26699.59 19899.58 83
GBi-Net98.65 11798.47 12999.17 10198.90 24198.24 11999.20 4499.44 11498.59 11998.95 15799.55 4894.14 27499.86 10997.77 13899.69 16299.41 162
test198.65 11798.47 12999.17 10198.90 24198.24 11999.20 4499.44 11498.59 11998.95 15799.55 4894.14 27499.86 10997.77 13899.69 16299.41 162
LCM-MVSNet-Re98.64 11998.48 12799.11 11198.85 25298.51 10198.49 12499.83 2098.37 13099.69 3999.46 6798.21 7899.92 5194.13 31799.30 25898.91 277
mPP-MVS98.64 11998.34 15099.54 2799.54 9699.17 4098.63 10399.24 19797.47 20498.09 25798.68 23197.62 12399.89 7596.22 24899.62 18799.57 88
balanced_conf0398.63 12198.72 8898.38 22298.66 29396.68 23598.90 7899.42 12398.99 9298.97 15399.19 11695.81 22899.85 12298.77 7699.77 12398.60 318
TSAR-MVS + MP.98.63 12198.49 12699.06 12599.64 6897.90 15898.51 12198.94 25296.96 25099.24 11698.89 19597.83 10499.81 18096.88 19699.49 23299.48 135
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LS3D98.63 12198.38 14599.36 6397.25 38299.38 999.12 5699.32 15999.21 6298.44 23198.88 19697.31 14699.80 18796.58 22099.34 25198.92 274
RPSCF98.62 12498.36 14799.42 5799.65 6399.42 898.55 11299.57 6397.72 18198.90 16899.26 10196.12 21199.52 32995.72 27399.71 15499.32 200
GST-MVS98.61 12598.30 15599.52 3999.51 10399.20 3598.26 14599.25 19297.44 21298.67 20198.39 27097.68 11599.85 12296.00 25899.51 22499.52 115
v119298.60 12698.66 10098.41 21999.27 16295.88 25897.52 23899.36 14197.41 21399.33 9699.20 11496.37 20199.82 16799.57 2699.92 5299.55 101
v114498.60 12698.66 10098.41 21999.36 14595.90 25797.58 23299.34 15297.51 20099.27 10799.15 13096.34 20399.80 18799.47 3499.93 4199.51 118
DPE-MVScopyleft98.59 12898.26 16199.57 1799.27 16299.15 4897.01 27399.39 13197.67 18399.44 7698.99 16897.53 13299.89 7595.40 28499.68 16799.66 55
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.57 12998.23 16599.60 1199.69 5499.35 1397.16 26899.38 13394.87 32498.97 15398.99 16898.01 9399.88 8497.29 16199.70 15999.58 83
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS98.56 13098.32 15499.25 9299.41 13598.73 8497.13 27099.18 21197.10 24498.75 19398.92 18598.18 8099.65 28496.68 21599.56 21099.37 181
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VDD-MVS98.56 13098.39 14299.07 11999.13 19898.07 14098.59 10897.01 34899.59 2699.11 12899.27 9994.82 25699.79 20098.34 10299.63 18499.34 193
v2v48298.56 13098.62 10698.37 22499.42 13395.81 26197.58 23299.16 21897.90 16999.28 10599.01 16495.98 22199.79 20099.33 3899.90 6599.51 118
XVG-ACMP-BASELINE98.56 13098.34 15099.22 9799.54 9698.59 9397.71 21499.46 10697.25 22998.98 14998.99 16897.54 13099.84 14095.88 26399.74 13999.23 221
v124098.55 13498.62 10698.32 22999.22 17295.58 26697.51 24099.45 11097.16 24199.45 7599.24 10696.12 21199.85 12299.60 2499.88 7199.55 101
IterMVS-LS98.55 13498.70 9498.09 24599.48 12094.73 29497.22 26399.39 13198.97 9599.38 8799.31 9496.00 21699.93 4298.58 8899.97 1999.60 71
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419298.54 13698.57 11498.45 21599.21 17495.98 25597.63 22599.36 14197.15 24399.32 10299.18 12095.84 22799.84 14099.50 3299.91 5999.54 105
v192192098.54 13698.60 11198.38 22299.20 17895.76 26397.56 23499.36 14197.23 23599.38 8799.17 12496.02 21499.84 14099.57 2699.90 6599.54 105
SF-MVS98.53 13898.27 16099.32 7999.31 15498.75 8098.19 15199.41 12596.77 26298.83 18198.90 18997.80 10999.82 16795.68 27699.52 22299.38 179
XVG-OURS98.53 13898.34 15099.11 11199.50 10698.82 7895.97 32999.50 8797.30 22499.05 14098.98 17299.35 1299.32 36695.72 27399.68 16799.18 233
UGNet98.53 13898.45 13298.79 16297.94 35096.96 22199.08 5798.54 30299.10 8096.82 33599.47 6696.55 19299.84 14098.56 9399.94 3699.55 101
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WB-MVS98.52 14198.55 11598.43 21799.65 6395.59 26498.52 11698.77 28599.65 1799.52 6399.00 16794.34 27099.93 4298.65 8598.83 31299.76 37
patch_mono-298.51 14298.63 10498.17 24199.38 13894.78 29197.36 25099.69 3898.16 15598.49 22799.29 9697.06 16199.97 598.29 10599.91 5999.76 37
XVG-OURS-SEG-HR98.49 14398.28 15799.14 10799.49 11398.83 7696.54 29799.48 9697.32 22299.11 12898.61 24799.33 1399.30 36996.23 24798.38 33599.28 211
FMVSNet298.49 14398.40 13998.75 17198.90 24197.14 21498.61 10699.13 22498.59 11999.19 12199.28 9794.14 27499.82 16797.97 12699.80 10799.29 209
pmmvs-eth3d98.47 14598.34 15098.86 15199.30 15797.76 17397.16 26899.28 18395.54 30699.42 8099.19 11697.27 15099.63 29097.89 12999.97 1999.20 226
MP-MVScopyleft98.46 14698.09 18099.54 2799.57 7999.22 2898.50 12399.19 20797.61 19097.58 29198.66 23697.40 14399.88 8494.72 29899.60 19499.54 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v14898.45 14798.60 11198.00 25599.44 12794.98 28797.44 24699.06 23398.30 13699.32 10298.97 17496.65 18899.62 29398.37 10099.85 7999.39 172
AllTest98.44 14898.20 16799.16 10499.50 10698.55 9698.25 14699.58 5696.80 25998.88 17399.06 14397.65 11899.57 31294.45 30599.61 19299.37 181
VNet98.42 14998.30 15598.79 16298.79 26497.29 20098.23 14798.66 29599.31 5298.85 17898.80 21194.80 25999.78 21198.13 11399.13 28499.31 204
ab-mvs98.41 15098.36 14798.59 19199.19 18197.23 20499.32 2298.81 27997.66 18498.62 20899.40 7996.82 17699.80 18795.88 26399.51 22498.75 303
ACMP95.32 1598.41 15098.09 18099.36 6399.51 10398.79 7997.68 21799.38 13395.76 30098.81 18698.82 20898.36 6599.82 16794.75 29599.77 12399.48 135
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n_192098.40 15298.92 6996.81 32999.74 3590.76 37898.15 15699.91 798.33 13399.89 1599.55 4895.07 24999.88 8499.76 1599.93 4199.79 28
SMA-MVScopyleft98.40 15298.03 18799.51 4399.16 19199.21 2998.05 16999.22 20094.16 34098.98 14999.10 13997.52 13499.79 20096.45 23699.64 18199.53 112
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS98.40 15298.00 18999.61 999.57 7999.25 2598.57 11099.35 14697.55 19899.31 10497.71 31994.61 26399.88 8496.14 25499.19 27699.70 49
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS98.40 15298.68 9797.54 29098.96 22997.99 14797.88 19299.36 14198.20 14999.63 5099.04 15298.76 3595.33 40896.56 22699.74 13999.31 204
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EI-MVSNet98.40 15298.51 12098.04 25399.10 20294.73 29497.20 26498.87 26598.97 9599.06 13599.02 15596.00 21699.80 18798.58 8899.82 9399.60 71
WR-MVS98.40 15298.19 16999.03 12999.00 22297.65 18196.85 28398.94 25298.57 12298.89 17098.50 26195.60 23399.85 12297.54 15099.85 7999.59 77
bld_raw_conf0398.38 15898.39 14298.33 22898.69 28396.58 23898.90 7899.41 12597.57 19398.72 19699.20 11495.48 23999.86 10997.76 14299.78 11798.57 322
new-patchmatchnet98.35 15998.74 8497.18 30999.24 16792.23 35796.42 30599.48 9698.30 13699.69 3999.53 5497.44 14199.82 16798.84 7199.77 12399.49 125
MGCFI-Net98.34 16098.28 15798.51 20698.47 31697.59 18598.96 7299.48 9699.18 7097.40 30795.50 37698.66 4399.50 33498.18 11098.71 32098.44 332
sasdasda98.34 16098.26 16198.58 19298.46 31897.82 16798.96 7299.46 10699.19 6897.46 30295.46 37998.59 5099.46 34598.08 11798.71 32098.46 327
canonicalmvs98.34 16098.26 16198.58 19298.46 31897.82 16798.96 7299.46 10699.19 6897.46 30295.46 37998.59 5099.46 34598.08 11798.71 32098.46 327
test_cas_vis1_n_192098.33 16398.68 9797.27 30699.69 5492.29 35598.03 17299.85 1597.62 18799.96 499.62 3393.98 27999.74 23599.52 3199.86 7799.79 28
testgi98.32 16498.39 14298.13 24499.57 7995.54 26797.78 20499.49 9497.37 21799.19 12197.65 32398.96 2499.49 33796.50 23398.99 30199.34 193
DeepPCF-MVS96.93 598.32 16498.01 18899.23 9698.39 32798.97 6795.03 36499.18 21196.88 25599.33 9698.78 21598.16 8499.28 37396.74 20899.62 18799.44 152
test_vis1_n98.31 16698.50 12297.73 27599.76 2994.17 31098.68 10099.91 796.31 28199.79 2799.57 4192.85 29899.42 35299.79 1299.84 8399.60 71
MVS_111021_LR98.30 16798.12 17898.83 15499.16 19198.03 14596.09 32599.30 17297.58 19298.10 25698.24 28498.25 7199.34 36396.69 21499.65 17999.12 242
EPP-MVSNet98.30 16798.04 18699.07 11999.56 8797.83 16499.29 3298.07 32399.03 8998.59 21499.13 13492.16 30799.90 6596.87 19799.68 16799.49 125
DeepC-MVS_fast96.85 698.30 16798.15 17598.75 17198.61 29897.23 20497.76 20999.09 23097.31 22398.75 19398.66 23697.56 12899.64 28796.10 25799.55 21399.39 172
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS98.29 17097.95 19399.34 7298.44 32199.16 4498.12 15999.38 13396.01 29298.06 25998.43 26797.80 10999.67 26895.69 27599.58 20399.20 226
Fast-Effi-MVS+-dtu98.27 17198.09 18098.81 15798.43 32298.11 13197.61 22899.50 8798.64 11397.39 30997.52 33198.12 8799.95 2396.90 19498.71 32098.38 339
DELS-MVS98.27 17198.20 16798.48 21198.86 24996.70 23395.60 34699.20 20397.73 18098.45 23098.71 22597.50 13699.82 16798.21 10899.59 19898.93 273
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu98.26 17397.90 19999.35 6998.02 34799.49 698.02 17499.16 21898.29 13997.64 28697.99 30396.44 19799.95 2396.66 21698.93 30898.60 318
MVSFormer98.26 17398.43 13597.77 26798.88 24793.89 32499.39 1699.56 7099.11 7398.16 24998.13 29193.81 28299.97 599.26 4499.57 20799.43 156
MVS_111021_HR98.25 17598.08 18398.75 17199.09 20597.46 19195.97 32999.27 18697.60 19197.99 26498.25 28398.15 8699.38 35896.87 19799.57 20799.42 159
TAMVS98.24 17698.05 18598.80 15999.07 20997.18 21097.88 19298.81 27996.66 26799.17 12699.21 11294.81 25899.77 21796.96 18799.88 7199.44 152
MM98.22 17797.99 19098.91 14698.66 29396.97 21997.89 19194.44 38299.54 2998.95 15799.14 13393.50 28699.92 5199.80 1199.96 2399.85 18
diffmvspermissive98.22 17798.24 16498.17 24199.00 22295.44 27296.38 30799.58 5697.79 17798.53 22498.50 26196.76 18299.74 23597.95 12899.64 18199.34 193
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2023120698.21 17998.21 16698.20 23999.51 10395.43 27398.13 15799.32 15996.16 28698.93 16598.82 20896.00 21699.83 15797.32 16099.73 14299.36 187
VDDNet98.21 17997.95 19399.01 13299.58 7597.74 17599.01 6697.29 34299.67 1598.97 15399.50 5890.45 32199.80 18797.88 13299.20 27399.48 135
IS-MVSNet98.19 18197.90 19999.08 11799.57 7997.97 15199.31 2698.32 31299.01 9198.98 14999.03 15491.59 31299.79 20095.49 28299.80 10799.48 135
MVS_Test98.18 18298.36 14797.67 27798.48 31594.73 29498.18 15299.02 24497.69 18298.04 26299.11 13697.22 15499.56 31598.57 9098.90 31098.71 306
TSAR-MVS + GP.98.18 18297.98 19198.77 16898.71 27497.88 15996.32 31198.66 29596.33 27999.23 11898.51 25797.48 14099.40 35497.16 16899.46 23499.02 255
CNVR-MVS98.17 18497.87 20199.07 11998.67 28898.24 11997.01 27398.93 25497.25 22997.62 28798.34 27797.27 15099.57 31296.42 23799.33 25299.39 172
PVSNet_Blended_VisFu98.17 18498.15 17598.22 23899.73 3695.15 28297.36 25099.68 4394.45 33498.99 14899.27 9996.87 17299.94 3597.13 17399.91 5999.57 88
HPM-MVS++copyleft98.10 18697.64 21899.48 5099.09 20599.13 5697.52 23898.75 28997.46 20996.90 33097.83 31496.01 21599.84 14095.82 27099.35 24999.46 144
APD-MVScopyleft98.10 18697.67 21399.42 5799.11 20098.93 7297.76 20999.28 18394.97 32198.72 19698.77 21797.04 16299.85 12293.79 32799.54 21599.49 125
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_fmvs1_n98.09 18898.28 15797.52 29299.68 5693.47 33498.63 10399.93 495.41 31399.68 4199.64 3191.88 31199.48 34099.82 799.87 7499.62 64
MVP-Stereo98.08 18997.92 19798.57 19598.96 22996.79 22797.90 19099.18 21196.41 27798.46 22998.95 18195.93 22499.60 30096.51 23298.98 30399.31 204
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PMMVS298.07 19098.08 18398.04 25399.41 13594.59 30094.59 37899.40 12997.50 20198.82 18498.83 20596.83 17599.84 14097.50 15399.81 9799.71 44
ETV-MVS98.03 19197.86 20298.56 19998.69 28398.07 14097.51 24099.50 8798.10 15797.50 29995.51 37598.41 6299.88 8496.27 24699.24 26797.71 373
Effi-MVS+98.02 19297.82 20498.62 18598.53 31297.19 20997.33 25299.68 4397.30 22496.68 33997.46 33598.56 5499.80 18796.63 21798.20 34298.86 285
MSLP-MVS++98.02 19298.14 17797.64 28198.58 30595.19 28197.48 24299.23 19997.47 20497.90 26898.62 24597.04 16298.81 39497.55 14899.41 24198.94 272
EIA-MVS98.00 19497.74 20898.80 15998.72 27198.09 13498.05 16999.60 5397.39 21596.63 34195.55 37497.68 11599.80 18796.73 21099.27 26298.52 325
MCST-MVS98.00 19497.63 21999.10 11399.24 16798.17 12696.89 28298.73 29295.66 30197.92 26697.70 32197.17 15699.66 27996.18 25299.23 26999.47 142
K. test v398.00 19497.66 21699.03 12999.79 2297.56 18699.19 4892.47 39499.62 2399.52 6399.66 2789.61 32699.96 1299.25 4699.81 9799.56 94
HQP_MVS97.99 19797.67 21398.93 14399.19 18197.65 18197.77 20699.27 18698.20 14997.79 27897.98 30494.90 25299.70 25294.42 30799.51 22499.45 148
MDA-MVSNet-bldmvs97.94 19897.91 19898.06 25099.44 12794.96 28896.63 29599.15 22398.35 13198.83 18199.11 13694.31 27199.85 12296.60 21998.72 31899.37 181
Anonymous20240521197.90 19997.50 22699.08 11798.90 24198.25 11898.53 11596.16 36598.87 10399.11 12898.86 19990.40 32299.78 21197.36 15899.31 25599.19 231
LF4IMVS97.90 19997.69 21298.52 20599.17 18997.66 18097.19 26799.47 10496.31 28197.85 27498.20 28896.71 18699.52 32994.62 29999.72 14998.38 339
UnsupCasMVSNet_eth97.89 20197.60 22198.75 17199.31 15497.17 21197.62 22699.35 14698.72 11198.76 19298.68 23192.57 30399.74 23597.76 14295.60 39499.34 193
TinyColmap97.89 20197.98 19197.60 28398.86 24994.35 30596.21 31799.44 11497.45 21199.06 13598.88 19697.99 9799.28 37394.38 31199.58 20399.18 233
OMC-MVS97.88 20397.49 22799.04 12898.89 24698.63 8896.94 27799.25 19295.02 31998.53 22498.51 25797.27 15099.47 34393.50 33599.51 22499.01 256
CANet97.87 20497.76 20698.19 24097.75 35795.51 26996.76 28899.05 23697.74 17996.93 32498.21 28795.59 23499.89 7597.86 13499.93 4199.19 231
xiu_mvs_v1_base_debu97.86 20598.17 17196.92 32298.98 22693.91 32196.45 30299.17 21597.85 17398.41 23497.14 34798.47 5799.92 5198.02 12199.05 29096.92 385
xiu_mvs_v1_base97.86 20598.17 17196.92 32298.98 22693.91 32196.45 30299.17 21597.85 17398.41 23497.14 34798.47 5799.92 5198.02 12199.05 29096.92 385
xiu_mvs_v1_base_debi97.86 20598.17 17196.92 32298.98 22693.91 32196.45 30299.17 21597.85 17398.41 23497.14 34798.47 5799.92 5198.02 12199.05 29096.92 385
NCCC97.86 20597.47 23099.05 12698.61 29898.07 14096.98 27598.90 26097.63 18697.04 32097.93 30995.99 22099.66 27995.31 28598.82 31499.43 156
PMVScopyleft91.26 2097.86 20597.94 19597.65 27999.71 4597.94 15698.52 11698.68 29498.99 9297.52 29799.35 8497.41 14298.18 40091.59 36599.67 17396.82 388
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
IterMVS-SCA-FT97.85 21098.18 17096.87 32599.27 16291.16 37395.53 34899.25 19299.10 8099.41 8199.35 8493.10 29199.96 1298.65 8599.94 3699.49 125
D2MVS97.84 21197.84 20397.83 26299.14 19694.74 29396.94 27798.88 26395.84 29898.89 17098.96 17794.40 26899.69 25697.55 14899.95 2999.05 248
CPTT-MVS97.84 21197.36 23599.27 8799.31 15498.46 10498.29 14299.27 18694.90 32397.83 27598.37 27394.90 25299.84 14093.85 32699.54 21599.51 118
mvs_anonymous97.83 21398.16 17496.87 32598.18 33991.89 35997.31 25498.90 26097.37 21798.83 18199.46 6796.28 20499.79 20098.90 6798.16 34698.95 268
h-mvs3397.77 21497.33 23899.10 11399.21 17497.84 16398.35 14098.57 30199.11 7398.58 21699.02 15588.65 33599.96 1298.11 11496.34 38699.49 125
test_vis1_rt97.75 21597.72 21197.83 26298.81 26096.35 24497.30 25599.69 3894.61 32897.87 27198.05 30096.26 20598.32 39998.74 7898.18 34398.82 288
IterMVS97.73 21698.11 17996.57 33499.24 16790.28 38195.52 35099.21 20198.86 10499.33 9699.33 9093.11 29099.94 3598.49 9599.94 3699.48 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvs197.72 21797.94 19597.07 31698.66 29392.39 35297.68 21799.81 2395.20 31799.54 5799.44 7291.56 31399.41 35399.78 1499.77 12399.40 171
MSDG97.71 21897.52 22598.28 23498.91 24096.82 22694.42 38199.37 13797.65 18598.37 23998.29 28297.40 14399.33 36594.09 31899.22 27098.68 313
CDS-MVSNet97.69 21997.35 23698.69 17798.73 26997.02 21896.92 28198.75 28995.89 29798.59 21498.67 23392.08 30999.74 23596.72 21199.81 9799.32 200
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch97.68 22097.75 20797.45 29898.23 33793.78 32797.29 25698.84 27496.10 28898.64 20598.65 23896.04 21399.36 35996.84 20099.14 28299.20 226
Fast-Effi-MVS+97.67 22197.38 23398.57 19598.71 27497.43 19497.23 26099.45 11094.82 32596.13 35596.51 35598.52 5699.91 6096.19 25098.83 31298.37 341
EU-MVSNet97.66 22298.50 12295.13 36799.63 7285.84 39798.35 14098.21 31698.23 14399.54 5799.46 6795.02 25099.68 26598.24 10699.87 7499.87 15
pmmvs597.64 22397.49 22798.08 24899.14 19695.12 28496.70 29299.05 23693.77 34798.62 20898.83 20593.23 28799.75 23098.33 10499.76 13599.36 187
N_pmnet97.63 22497.17 24598.99 13499.27 16297.86 16195.98 32893.41 39195.25 31599.47 7198.90 18995.63 23299.85 12296.91 18999.73 14299.27 212
mvsany_test197.60 22597.54 22397.77 26797.72 35895.35 27595.36 35697.13 34694.13 34199.71 3599.33 9097.93 10099.30 36997.60 14798.94 30798.67 314
YYNet197.60 22597.67 21397.39 30299.04 21793.04 34195.27 35798.38 31197.25 22998.92 16698.95 18195.48 23999.73 24096.99 18398.74 31699.41 162
MDA-MVSNet_test_wron97.60 22597.66 21697.41 30199.04 21793.09 33795.27 35798.42 30897.26 22898.88 17398.95 18195.43 24199.73 24097.02 18098.72 31899.41 162
pmmvs497.58 22897.28 23998.51 20698.84 25396.93 22495.40 35598.52 30493.60 34998.61 21098.65 23895.10 24899.60 30096.97 18699.79 11298.99 261
mvsmamba97.57 22997.26 24098.51 20698.69 28396.73 23298.74 9097.25 34397.03 24897.88 27099.23 11090.95 31799.87 10196.61 21899.00 29998.91 277
PVSNet_BlendedMVS97.55 23097.53 22497.60 28398.92 23793.77 32896.64 29499.43 12094.49 33097.62 28799.18 12096.82 17699.67 26894.73 29699.93 4199.36 187
ppachtmachnet_test97.50 23197.74 20896.78 33198.70 27891.23 37294.55 37999.05 23696.36 27899.21 11998.79 21396.39 19899.78 21196.74 20899.82 9399.34 193
FMVSNet397.50 23197.24 24298.29 23398.08 34595.83 26097.86 19698.91 25997.89 17098.95 15798.95 18187.06 34199.81 18097.77 13899.69 16299.23 221
CHOSEN 1792x268897.49 23397.14 24998.54 20399.68 5696.09 25296.50 30099.62 4991.58 37298.84 18098.97 17492.36 30499.88 8496.76 20699.95 2999.67 54
CLD-MVS97.49 23397.16 24698.48 21199.07 20997.03 21794.71 37199.21 20194.46 33298.06 25997.16 34597.57 12799.48 34094.46 30499.78 11798.95 268
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
hse-mvs297.46 23597.07 25098.64 18098.73 26997.33 19897.45 24597.64 33599.11 7398.58 21697.98 30488.65 33599.79 20098.11 11497.39 36998.81 292
Vis-MVSNet (Re-imp)97.46 23597.16 24698.34 22799.55 9196.10 24998.94 7598.44 30798.32 13598.16 24998.62 24588.76 33199.73 24093.88 32499.79 11299.18 233
jason97.45 23797.35 23697.76 27099.24 16793.93 32095.86 33798.42 30894.24 33898.50 22698.13 29194.82 25699.91 6097.22 16599.73 14299.43 156
jason: jason.
CL-MVSNet_self_test97.44 23897.22 24398.08 24898.57 30795.78 26294.30 38498.79 28296.58 27098.60 21298.19 28994.74 26299.64 28796.41 23898.84 31198.82 288
MVS_030497.44 23897.01 25498.72 17696.42 39996.74 23197.20 26491.97 39898.46 12898.30 24098.79 21392.74 30099.91 6099.30 4099.94 3699.52 115
DSMNet-mixed97.42 24097.60 22196.87 32599.15 19591.46 36398.54 11499.12 22592.87 36097.58 29199.63 3296.21 20699.90 6595.74 27299.54 21599.27 212
USDC97.41 24197.40 23197.44 29998.94 23193.67 33095.17 36099.53 8194.03 34498.97 15399.10 13995.29 24399.34 36395.84 26999.73 14299.30 207
our_test_397.39 24297.73 21096.34 33998.70 27889.78 38394.61 37798.97 25196.50 27299.04 14298.85 20295.98 22199.84 14097.26 16399.67 17399.41 162
c3_l97.36 24397.37 23497.31 30398.09 34493.25 33695.01 36599.16 21897.05 24598.77 19098.72 22492.88 29699.64 28796.93 18899.76 13599.05 248
alignmvs97.35 24496.88 26198.78 16598.54 31098.09 13497.71 21497.69 33299.20 6497.59 29095.90 36888.12 34099.55 31898.18 11098.96 30598.70 309
Patchmtry97.35 24496.97 25598.50 21097.31 38196.47 24198.18 15298.92 25798.95 9898.78 18799.37 8085.44 35699.85 12295.96 26199.83 9099.17 237
DP-MVS Recon97.33 24696.92 25898.57 19599.09 20597.99 14796.79 28599.35 14693.18 35497.71 28298.07 29995.00 25199.31 36793.97 32099.13 28498.42 336
QAPM97.31 24796.81 26898.82 15598.80 26397.49 18999.06 6199.19 20790.22 38497.69 28499.16 12696.91 17099.90 6590.89 37899.41 24199.07 246
UnsupCasMVSNet_bld97.30 24896.92 25898.45 21599.28 16096.78 23096.20 31899.27 18695.42 31098.28 24398.30 28193.16 28999.71 24894.99 29097.37 37098.87 284
F-COLMAP97.30 24896.68 27599.14 10799.19 18198.39 10797.27 25999.30 17292.93 35896.62 34298.00 30295.73 23099.68 26592.62 35398.46 33499.35 191
1112_ss97.29 25096.86 26298.58 19299.34 15196.32 24596.75 28999.58 5693.14 35596.89 33197.48 33392.11 30899.86 10996.91 18999.54 21599.57 88
CANet_DTU97.26 25197.06 25197.84 26197.57 36694.65 29896.19 31998.79 28297.23 23595.14 37698.24 28493.22 28899.84 14097.34 15999.84 8399.04 252
Patchmatch-RL test97.26 25197.02 25397.99 25699.52 10195.53 26896.13 32399.71 3497.47 20499.27 10799.16 12684.30 36599.62 29397.89 12999.77 12398.81 292
CDPH-MVS97.26 25196.66 27899.07 11999.00 22298.15 12796.03 32799.01 24791.21 37897.79 27897.85 31396.89 17199.69 25692.75 35099.38 24699.39 172
PatchMatch-RL97.24 25496.78 26998.61 18899.03 22097.83 16496.36 30899.06 23393.49 35297.36 31197.78 31595.75 22999.49 33793.44 33698.77 31598.52 325
eth_miper_zixun_eth97.23 25597.25 24197.17 31198.00 34892.77 34594.71 37199.18 21197.27 22798.56 21998.74 22191.89 31099.69 25697.06 17999.81 9799.05 248
sss97.21 25696.93 25698.06 25098.83 25595.22 28096.75 28998.48 30694.49 33097.27 31297.90 31092.77 29999.80 18796.57 22299.32 25399.16 240
LFMVS97.20 25796.72 27298.64 18098.72 27196.95 22298.93 7694.14 38899.74 998.78 18799.01 16484.45 36299.73 24097.44 15499.27 26299.25 216
HyFIR lowres test97.19 25896.60 28298.96 13899.62 7497.28 20195.17 36099.50 8794.21 33999.01 14698.32 28086.61 34499.99 297.10 17599.84 8399.60 71
miper_lstm_enhance97.18 25997.16 24697.25 30898.16 34092.85 34395.15 36299.31 16497.25 22998.74 19598.78 21590.07 32399.78 21197.19 16699.80 10799.11 243
CNLPA97.17 26096.71 27398.55 20098.56 30898.05 14496.33 31098.93 25496.91 25497.06 31997.39 33894.38 26999.45 34791.66 36299.18 27898.14 350
xiu_mvs_v2_base97.16 26197.49 22796.17 34898.54 31092.46 35095.45 35298.84 27497.25 22997.48 30196.49 35698.31 7099.90 6596.34 24298.68 32596.15 396
AdaColmapbinary97.14 26296.71 27398.46 21398.34 32997.80 17196.95 27698.93 25495.58 30596.92 32597.66 32295.87 22699.53 32590.97 37599.14 28298.04 355
train_agg97.10 26396.45 28799.07 11998.71 27498.08 13895.96 33199.03 24191.64 37095.85 36197.53 32996.47 19599.76 22393.67 32999.16 27999.36 187
OpenMVScopyleft96.65 797.09 26496.68 27598.32 22998.32 33097.16 21298.86 8599.37 13789.48 38896.29 35399.15 13096.56 19199.90 6592.90 34499.20 27397.89 361
PS-MVSNAJ97.08 26597.39 23296.16 35098.56 30892.46 35095.24 35998.85 27397.25 22997.49 30095.99 36598.07 8899.90 6596.37 23998.67 32696.12 397
miper_ehance_all_eth97.06 26697.03 25297.16 31397.83 35493.06 33894.66 37499.09 23095.99 29398.69 19998.45 26692.73 30199.61 29996.79 20299.03 29498.82 288
lupinMVS97.06 26696.86 26297.65 27998.88 24793.89 32495.48 35197.97 32593.53 35098.16 24997.58 32793.81 28299.91 6096.77 20599.57 20799.17 237
API-MVS97.04 26896.91 26097.42 30097.88 35398.23 12398.18 15298.50 30597.57 19397.39 30996.75 35296.77 18099.15 38290.16 38199.02 29794.88 402
cl____97.02 26996.83 26597.58 28597.82 35594.04 31494.66 37499.16 21897.04 24698.63 20698.71 22588.68 33499.69 25697.00 18199.81 9799.00 260
DIV-MVS_self_test97.02 26996.84 26497.58 28597.82 35594.03 31594.66 37499.16 21897.04 24698.63 20698.71 22588.69 33299.69 25697.00 18199.81 9799.01 256
RPMNet97.02 26996.93 25697.30 30497.71 36094.22 30698.11 16099.30 17299.37 4596.91 32799.34 8886.72 34399.87 10197.53 15197.36 37297.81 366
HQP-MVS97.00 27296.49 28698.55 20098.67 28896.79 22796.29 31399.04 23996.05 28995.55 36796.84 35093.84 28099.54 32392.82 34799.26 26599.32 200
FA-MVS(test-final)96.99 27396.82 26697.50 29498.70 27894.78 29199.34 1996.99 34995.07 31898.48 22899.33 9088.41 33899.65 28496.13 25698.92 30998.07 354
new_pmnet96.99 27396.76 27097.67 27798.72 27194.89 28995.95 33398.20 31792.62 36398.55 22198.54 25394.88 25599.52 32993.96 32199.44 23998.59 321
Test_1112_low_res96.99 27396.55 28498.31 23199.35 14995.47 27195.84 34099.53 8191.51 37496.80 33698.48 26491.36 31499.83 15796.58 22099.53 21999.62 64
PVSNet_Blended96.88 27696.68 27597.47 29798.92 23793.77 32894.71 37199.43 12090.98 38097.62 28797.36 34196.82 17699.67 26894.73 29699.56 21098.98 262
MVSTER96.86 27796.55 28497.79 26597.91 35294.21 30897.56 23498.87 26597.49 20399.06 13599.05 15080.72 37899.80 18798.44 9799.82 9399.37 181
BH-untuned96.83 27896.75 27197.08 31498.74 26893.33 33596.71 29198.26 31496.72 26498.44 23197.37 34095.20 24599.47 34391.89 35997.43 36798.44 332
BH-RMVSNet96.83 27896.58 28397.58 28598.47 31694.05 31296.67 29397.36 33896.70 26697.87 27197.98 30495.14 24799.44 34990.47 38098.58 33299.25 216
PAPM_NR96.82 28096.32 29098.30 23299.07 20996.69 23497.48 24298.76 28695.81 29996.61 34396.47 35894.12 27799.17 38090.82 37997.78 35899.06 247
MG-MVS96.77 28196.61 28097.26 30798.31 33193.06 33895.93 33498.12 32296.45 27697.92 26698.73 22293.77 28499.39 35691.19 37399.04 29399.33 198
test_yl96.69 28296.29 29197.90 25798.28 33295.24 27897.29 25697.36 33898.21 14598.17 24797.86 31186.27 34699.55 31894.87 29398.32 33698.89 279
DCV-MVSNet96.69 28296.29 29197.90 25798.28 33295.24 27897.29 25697.36 33898.21 14598.17 24797.86 31186.27 34699.55 31894.87 29398.32 33698.89 279
WTY-MVS96.67 28496.27 29397.87 26098.81 26094.61 29996.77 28797.92 32794.94 32297.12 31597.74 31891.11 31699.82 16793.89 32398.15 34799.18 233
PatchT96.65 28596.35 28897.54 29097.40 37895.32 27697.98 18196.64 35999.33 5096.89 33199.42 7484.32 36499.81 18097.69 14697.49 36397.48 379
TAPA-MVS96.21 1196.63 28695.95 29698.65 17998.93 23398.09 13496.93 27999.28 18383.58 40198.13 25397.78 31596.13 21099.40 35493.52 33399.29 26098.45 330
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MIMVSNet96.62 28796.25 29497.71 27699.04 21794.66 29799.16 5096.92 35497.23 23597.87 27199.10 13986.11 35099.65 28491.65 36399.21 27298.82 288
Patchmatch-test96.55 28896.34 28997.17 31198.35 32893.06 33898.40 13597.79 32897.33 22098.41 23498.67 23383.68 36999.69 25695.16 28899.31 25598.77 300
PMMVS96.51 28995.98 29598.09 24597.53 37195.84 25994.92 36798.84 27491.58 37296.05 35995.58 37395.68 23199.66 27995.59 27998.09 35098.76 302
PLCcopyleft94.65 1696.51 28995.73 30098.85 15298.75 26797.91 15796.42 30599.06 23390.94 38195.59 36497.38 33994.41 26799.59 30490.93 37698.04 35699.05 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
114514_t96.50 29195.77 29898.69 17799.48 12097.43 19497.84 19899.55 7481.42 40496.51 34798.58 25095.53 23599.67 26893.41 33799.58 20398.98 262
test111196.49 29296.82 26695.52 36199.42 13387.08 39499.22 4187.14 40799.11 7399.46 7299.58 4088.69 33299.86 10998.80 7299.95 2999.62 64
MAR-MVS96.47 29395.70 30198.79 16297.92 35199.12 5898.28 14398.60 30092.16 36895.54 37096.17 36394.77 26199.52 32989.62 38398.23 34097.72 372
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ECVR-MVScopyleft96.42 29496.61 28095.85 35399.38 13888.18 39099.22 4186.00 40999.08 8599.36 9199.57 4188.47 33799.82 16798.52 9499.95 2999.54 105
SCA96.41 29596.66 27895.67 35798.24 33588.35 38895.85 33996.88 35596.11 28797.67 28598.67 23393.10 29199.85 12294.16 31399.22 27098.81 292
DPM-MVS96.32 29695.59 30698.51 20698.76 26597.21 20794.54 38098.26 31491.94 36996.37 35197.25 34393.06 29399.43 35091.42 36898.74 31698.89 279
CMPMVSbinary75.91 2396.29 29795.44 31298.84 15396.25 40298.69 8797.02 27299.12 22588.90 39197.83 27598.86 19989.51 32798.90 39291.92 35899.51 22498.92 274
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CR-MVSNet96.28 29895.95 29697.28 30597.71 36094.22 30698.11 16098.92 25792.31 36696.91 32799.37 8085.44 35699.81 18097.39 15797.36 37297.81 366
CVMVSNet96.25 29997.21 24493.38 38599.10 20280.56 41297.20 26498.19 31996.94 25299.00 14799.02 15589.50 32899.80 18796.36 24199.59 19899.78 31
AUN-MVS96.24 30095.45 31198.60 19098.70 27897.22 20697.38 24897.65 33395.95 29595.53 37197.96 30882.11 37799.79 20096.31 24397.44 36698.80 297
EPNet96.14 30195.44 31298.25 23590.76 41395.50 27097.92 18794.65 38098.97 9592.98 39698.85 20289.12 33099.87 10195.99 25999.68 16799.39 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d96.06 30297.62 22091.38 38898.65 29798.57 9598.85 8696.95 35296.86 25799.90 1299.16 12699.18 1798.40 39889.23 38599.77 12377.18 408
Syy-MVS96.04 30395.56 30897.49 29597.10 38694.48 30196.18 32096.58 36095.65 30294.77 37992.29 40591.27 31599.36 35998.17 11298.05 35498.63 316
miper_enhance_ethall96.01 30495.74 29996.81 32996.41 40092.27 35693.69 39398.89 26291.14 37998.30 24097.35 34290.58 32099.58 31096.31 24399.03 29498.60 318
FMVSNet596.01 30495.20 32198.41 21997.53 37196.10 24998.74 9099.50 8797.22 23898.03 26399.04 15269.80 39899.88 8497.27 16299.71 15499.25 216
dmvs_re95.98 30695.39 31597.74 27398.86 24997.45 19298.37 13895.69 37597.95 16496.56 34495.95 36690.70 31997.68 40288.32 38796.13 39098.11 351
baseline195.96 30795.44 31297.52 29298.51 31493.99 31898.39 13696.09 36798.21 14598.40 23897.76 31786.88 34299.63 29095.42 28389.27 40698.95 268
HY-MVS95.94 1395.90 30895.35 31797.55 28997.95 34994.79 29098.81 8996.94 35392.28 36795.17 37598.57 25189.90 32599.75 23091.20 37297.33 37498.10 352
GA-MVS95.86 30995.32 31897.49 29598.60 30094.15 31193.83 39197.93 32695.49 30896.68 33997.42 33783.21 37099.30 36996.22 24898.55 33399.01 256
OpenMVS_ROBcopyleft95.38 1495.84 31095.18 32297.81 26498.41 32697.15 21397.37 24998.62 29983.86 40098.65 20498.37 27394.29 27299.68 26588.41 38698.62 33096.60 391
cl2295.79 31195.39 31596.98 31996.77 39392.79 34494.40 38298.53 30394.59 32997.89 26998.17 29082.82 37499.24 37596.37 23999.03 29498.92 274
131495.74 31295.60 30596.17 34897.53 37192.75 34698.07 16698.31 31391.22 37794.25 38596.68 35395.53 23599.03 38491.64 36497.18 37696.74 389
WB-MVSnew95.73 31395.57 30796.23 34596.70 39490.70 37996.07 32693.86 38995.60 30497.04 32095.45 38296.00 21699.55 31891.04 37498.31 33898.43 334
PVSNet93.40 1795.67 31495.70 30195.57 36098.83 25588.57 38692.50 39897.72 33092.69 36296.49 35096.44 35993.72 28599.43 35093.61 33099.28 26198.71 306
FE-MVS95.66 31594.95 32797.77 26798.53 31295.28 27799.40 1596.09 36793.11 35697.96 26599.26 10179.10 38799.77 21792.40 35698.71 32098.27 345
tttt051795.64 31694.98 32597.64 28199.36 14593.81 32698.72 9590.47 40298.08 15898.67 20198.34 27773.88 39699.92 5197.77 13899.51 22499.20 226
PatchmatchNetpermissive95.58 31795.67 30395.30 36697.34 38087.32 39397.65 22396.65 35895.30 31497.07 31898.69 22984.77 35999.75 23094.97 29198.64 32798.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TR-MVS95.55 31895.12 32396.86 32897.54 36993.94 31996.49 30196.53 36294.36 33797.03 32296.61 35494.26 27399.16 38186.91 39396.31 38797.47 380
JIA-IIPM95.52 31995.03 32497.00 31796.85 39194.03 31596.93 27995.82 37199.20 6494.63 38399.71 1783.09 37199.60 30094.42 30794.64 39897.36 382
CHOSEN 280x42095.51 32095.47 30995.65 35998.25 33488.27 38993.25 39598.88 26393.53 35094.65 38297.15 34686.17 34899.93 4297.41 15699.93 4198.73 305
ADS-MVSNet295.43 32194.98 32596.76 33298.14 34191.74 36097.92 18797.76 32990.23 38296.51 34798.91 18685.61 35399.85 12292.88 34596.90 37998.69 310
PAPR95.29 32294.47 33197.75 27197.50 37695.14 28394.89 36898.71 29391.39 37695.35 37495.48 37894.57 26499.14 38384.95 39697.37 37098.97 265
thisisatest053095.27 32394.45 33297.74 27399.19 18194.37 30497.86 19690.20 40397.17 24098.22 24597.65 32373.53 39799.90 6596.90 19499.35 24998.95 268
ADS-MVSNet95.24 32494.93 32896.18 34798.14 34190.10 38297.92 18797.32 34190.23 38296.51 34798.91 18685.61 35399.74 23592.88 34596.90 37998.69 310
BH-w/o95.13 32594.89 32995.86 35298.20 33891.31 36795.65 34497.37 33793.64 34896.52 34695.70 37293.04 29499.02 38588.10 38895.82 39397.24 383
tpmrst95.07 32695.46 31093.91 37897.11 38584.36 40597.62 22696.96 35194.98 32096.35 35298.80 21185.46 35599.59 30495.60 27896.23 38897.79 369
pmmvs395.03 32794.40 33396.93 32197.70 36292.53 34995.08 36397.71 33188.57 39297.71 28298.08 29879.39 38599.82 16796.19 25099.11 28898.43 334
tpmvs95.02 32895.25 31994.33 37396.39 40185.87 39698.08 16496.83 35695.46 30995.51 37298.69 22985.91 35199.53 32594.16 31396.23 38897.58 377
EPNet_dtu94.93 32994.78 33095.38 36593.58 40987.68 39296.78 28695.69 37597.35 21989.14 40698.09 29788.15 33999.49 33794.95 29299.30 25898.98 262
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas94.79 33094.33 33696.15 35196.02 40592.36 35492.34 40099.26 19185.34 39995.08 37794.96 38892.96 29598.53 39794.41 31098.59 33197.56 378
tpm94.67 33194.34 33595.66 35897.68 36588.42 38797.88 19294.90 37894.46 33296.03 36098.56 25278.66 38899.79 20095.88 26395.01 39798.78 299
test0.0.03 194.51 33293.69 34196.99 31896.05 40393.61 33394.97 36693.49 39096.17 28497.57 29394.88 38982.30 37599.01 38793.60 33194.17 40198.37 341
thres600view794.45 33393.83 33996.29 34199.06 21391.53 36297.99 18094.24 38698.34 13297.44 30595.01 38579.84 38199.67 26884.33 39798.23 34097.66 374
PCF-MVS92.86 1894.36 33493.00 35198.42 21898.70 27897.56 18693.16 39699.11 22779.59 40597.55 29497.43 33692.19 30699.73 24079.85 40599.45 23697.97 360
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata94.32 33592.59 35399.53 3499.46 12399.21 2998.65 10199.34 15298.62 11797.54 29545.85 40997.50 13699.83 15796.79 20299.53 21999.56 94
MVS-HIRNet94.32 33595.62 30490.42 38998.46 31875.36 41396.29 31389.13 40595.25 31595.38 37399.75 1192.88 29699.19 37994.07 31999.39 24396.72 390
ET-MVSNet_ETH3D94.30 33793.21 34797.58 28598.14 34194.47 30294.78 37093.24 39394.72 32689.56 40495.87 36978.57 39099.81 18096.91 18997.11 37898.46 327
thres100view90094.19 33893.67 34295.75 35699.06 21391.35 36698.03 17294.24 38698.33 13397.40 30794.98 38779.84 38199.62 29383.05 39998.08 35196.29 392
E-PMN94.17 33994.37 33493.58 38296.86 39085.71 39990.11 40497.07 34798.17 15297.82 27797.19 34484.62 36198.94 38989.77 38297.68 36096.09 398
thres40094.14 34093.44 34496.24 34498.93 23391.44 36497.60 22994.29 38497.94 16597.10 31694.31 39479.67 38399.62 29383.05 39998.08 35197.66 374
thisisatest051594.12 34193.16 34896.97 32098.60 30092.90 34293.77 39290.61 40194.10 34296.91 32795.87 36974.99 39599.80 18794.52 30299.12 28798.20 347
tfpn200view994.03 34293.44 34495.78 35598.93 23391.44 36497.60 22994.29 38497.94 16597.10 31694.31 39479.67 38399.62 29383.05 39998.08 35196.29 392
CostFormer93.97 34393.78 34094.51 37297.53 37185.83 39897.98 18195.96 36989.29 39094.99 37898.63 24378.63 38999.62 29394.54 30196.50 38498.09 353
test-LLR93.90 34493.85 33894.04 37696.53 39684.62 40394.05 38892.39 39596.17 28494.12 38795.07 38382.30 37599.67 26895.87 26698.18 34397.82 364
EMVS93.83 34594.02 33793.23 38696.83 39284.96 40089.77 40596.32 36497.92 16797.43 30696.36 36286.17 34898.93 39087.68 38997.73 35995.81 399
baseline293.73 34692.83 35296.42 33897.70 36291.28 36996.84 28489.77 40493.96 34692.44 39995.93 36779.14 38699.77 21792.94 34396.76 38398.21 346
thres20093.72 34793.14 34995.46 36498.66 29391.29 36896.61 29694.63 38197.39 21596.83 33493.71 39779.88 38099.56 31582.40 40298.13 34895.54 401
EPMVS93.72 34793.27 34695.09 36996.04 40487.76 39198.13 15785.01 41094.69 32796.92 32598.64 24178.47 39299.31 36795.04 28996.46 38598.20 347
testing393.51 34992.09 35897.75 27198.60 30094.40 30397.32 25395.26 37797.56 19696.79 33795.50 37653.57 41499.77 21795.26 28698.97 30499.08 244
dp93.47 35093.59 34393.13 38796.64 39581.62 41197.66 22196.42 36392.80 36196.11 35698.64 24178.55 39199.59 30493.31 33892.18 40598.16 349
FPMVS93.44 35192.23 35697.08 31499.25 16697.86 16195.61 34597.16 34592.90 35993.76 39398.65 23875.94 39495.66 40679.30 40697.49 36397.73 371
testing9193.32 35292.27 35596.47 33797.54 36991.25 37096.17 32296.76 35797.18 23993.65 39493.50 39965.11 40899.63 29093.04 34297.45 36598.53 324
tpm cat193.29 35393.13 35093.75 38097.39 37984.74 40197.39 24797.65 33383.39 40294.16 38698.41 26882.86 37399.39 35691.56 36695.35 39697.14 384
MVS93.19 35492.09 35896.50 33696.91 38994.03 31598.07 16698.06 32468.01 40794.56 38496.48 35795.96 22399.30 36983.84 39896.89 38196.17 394
tpm293.09 35592.58 35494.62 37197.56 36786.53 39597.66 22195.79 37286.15 39794.07 38998.23 28675.95 39399.53 32590.91 37796.86 38297.81 366
testing1193.08 35692.02 36096.26 34397.56 36790.83 37796.32 31195.70 37396.47 27592.66 39893.73 39664.36 40999.59 30493.77 32897.57 36198.37 341
testing9993.04 35791.98 36396.23 34597.53 37190.70 37996.35 30995.94 37096.87 25693.41 39593.43 40063.84 41099.59 30493.24 34097.19 37598.40 337
dmvs_testset92.94 35892.21 35795.13 36798.59 30390.99 37497.65 22392.09 39796.95 25194.00 39093.55 39892.34 30596.97 40572.20 40892.52 40397.43 381
KD-MVS_2432*160092.87 35991.99 36195.51 36291.37 41189.27 38494.07 38698.14 32095.42 31097.25 31396.44 35967.86 40099.24 37591.28 37096.08 39198.02 356
miper_refine_blended92.87 35991.99 36195.51 36291.37 41189.27 38494.07 38698.14 32095.42 31097.25 31396.44 35967.86 40099.24 37591.28 37096.08 39198.02 356
ETVMVS92.60 36191.08 37097.18 30997.70 36293.65 33296.54 29795.70 37396.51 27194.68 38192.39 40461.80 41199.50 33486.97 39197.41 36898.40 337
MVEpermissive83.40 2292.50 36291.92 36494.25 37498.83 25591.64 36192.71 39783.52 41195.92 29686.46 40995.46 37995.20 24595.40 40780.51 40498.64 32795.73 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test250692.39 36391.89 36593.89 37999.38 13882.28 40999.32 2266.03 41599.08 8598.77 19099.57 4166.26 40599.84 14098.71 8199.95 2999.54 105
UWE-MVS92.38 36491.76 36794.21 37597.16 38484.65 40295.42 35488.45 40695.96 29496.17 35495.84 37166.36 40499.71 24891.87 36098.64 32798.28 344
gg-mvs-nofinetune92.37 36591.20 36995.85 35395.80 40692.38 35399.31 2681.84 41299.75 691.83 40199.74 1368.29 39999.02 38587.15 39097.12 37796.16 395
test-mter92.33 36691.76 36794.04 37696.53 39684.62 40394.05 38892.39 39594.00 34594.12 38795.07 38365.63 40799.67 26895.87 26698.18 34397.82 364
IB-MVS91.63 1992.24 36790.90 37196.27 34297.22 38391.24 37194.36 38393.33 39292.37 36592.24 40094.58 39366.20 40699.89 7593.16 34194.63 39997.66 374
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,192.19 36891.77 36693.46 38396.48 39882.80 40894.05 38891.52 40094.45 33494.00 39094.88 38966.65 40399.56 31595.78 27198.11 34998.02 356
testing22291.96 36990.37 37396.72 33397.47 37792.59 34796.11 32494.76 37996.83 25892.90 39792.87 40257.92 41299.55 31886.93 39297.52 36298.00 359
myMVS_eth3d91.92 37090.45 37296.30 34097.10 38690.90 37596.18 32096.58 36095.65 30294.77 37992.29 40553.88 41399.36 35989.59 38498.05 35498.63 316
PAPM91.88 37190.34 37496.51 33598.06 34692.56 34892.44 39997.17 34486.35 39690.38 40396.01 36486.61 34499.21 37870.65 40995.43 39597.75 370
PVSNet_089.98 2191.15 37290.30 37593.70 38197.72 35884.34 40690.24 40297.42 33690.20 38593.79 39293.09 40190.90 31898.89 39386.57 39472.76 40997.87 363
EGC-MVSNET85.24 37380.54 37699.34 7299.77 2699.20 3599.08 5799.29 18012.08 41120.84 41299.42 7497.55 12999.85 12297.08 17699.72 14998.96 267
test_method79.78 37479.50 37780.62 39080.21 41545.76 41870.82 40698.41 31031.08 41080.89 41097.71 31984.85 35897.37 40391.51 36780.03 40798.75 303
tmp_tt78.77 37578.73 37878.90 39158.45 41674.76 41594.20 38578.26 41439.16 40986.71 40892.82 40380.50 37975.19 41186.16 39592.29 40486.74 405
dongtai76.24 37675.95 37977.12 39292.39 41067.91 41690.16 40359.44 41782.04 40389.42 40594.67 39249.68 41581.74 41048.06 41077.66 40881.72 406
kuosan69.30 37768.95 38070.34 39387.68 41465.00 41791.11 40159.90 41669.02 40674.46 41188.89 40848.58 41668.03 41228.61 41172.33 41077.99 407
cdsmvs_eth3d_5k24.66 37832.88 3810.00 3960.00 4190.00 4210.00 40799.10 2280.00 4140.00 41597.58 32799.21 160.00 4150.00 4140.00 4130.00 411
testmvs17.12 37920.53 3826.87 39512.05 4174.20 42093.62 3946.73 4184.62 41310.41 41324.33 4108.28 4183.56 4149.69 41315.07 41112.86 410
test12317.04 38020.11 3837.82 39410.25 4184.91 41994.80 3694.47 4194.93 41210.00 41424.28 4119.69 4173.64 41310.14 41212.43 41214.92 409
pcd_1.5k_mvsjas8.17 38110.90 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41498.07 880.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.12 38210.83 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41597.48 3330.00 4190.00 4150.00 4140.00 4130.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS90.90 37591.37 369
FOURS199.73 3699.67 399.43 1199.54 7899.43 4099.26 111
MSC_two_6792asdad99.32 7998.43 32298.37 11098.86 27099.89 7597.14 17199.60 19499.71 44
PC_three_145293.27 35399.40 8498.54 25398.22 7697.00 40495.17 28799.45 23699.49 125
No_MVS99.32 7998.43 32298.37 11098.86 27099.89 7597.14 17199.60 19499.71 44
test_one_060199.39 13799.20 3599.31 16498.49 12698.66 20399.02 15597.64 121
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.01 22198.84 7599.07 23294.10 34298.05 26198.12 29396.36 20299.86 10992.70 35299.19 276
RE-MVS-def98.58 11399.20 17899.38 998.48 12799.30 17298.64 11398.95 15798.96 17797.75 11296.56 22699.39 24399.45 148
IU-MVS99.49 11399.15 4898.87 26592.97 35799.41 8196.76 20699.62 18799.66 55
OPU-MVS98.82 15598.59 30398.30 11598.10 16298.52 25698.18 8098.75 39594.62 29999.48 23399.41 162
test_241102_TWO99.30 17298.03 15999.26 11199.02 15597.51 13599.88 8496.91 18999.60 19499.66 55
test_241102_ONE99.49 11399.17 4099.31 16497.98 16199.66 4498.90 18998.36 6599.48 340
9.1497.78 20599.07 20997.53 23799.32 15995.53 30798.54 22398.70 22897.58 12699.76 22394.32 31299.46 234
save fliter99.11 20097.97 15196.53 29999.02 24498.24 142
test_0728_THIRD98.17 15299.08 13399.02 15597.89 10199.88 8497.07 17799.71 15499.70 49
test_0728_SECOND99.60 1199.50 10699.23 2798.02 17499.32 15999.88 8496.99 18399.63 18499.68 51
test072699.50 10699.21 2998.17 15599.35 14697.97 16299.26 11199.06 14397.61 124
GSMVS98.81 292
test_part299.36 14599.10 6199.05 140
sam_mvs184.74 36098.81 292
sam_mvs84.29 366
ambc98.24 23798.82 25895.97 25698.62 10599.00 24999.27 10799.21 11296.99 16799.50 33496.55 22999.50 23199.26 215
MTGPAbinary99.20 203
test_post197.59 23120.48 41383.07 37299.66 27994.16 313
test_post21.25 41283.86 36899.70 252
patchmatchnet-post98.77 21784.37 36399.85 122
GG-mvs-BLEND94.76 37094.54 40892.13 35899.31 2680.47 41388.73 40791.01 40767.59 40298.16 40182.30 40394.53 40093.98 403
MTMP97.93 18591.91 399
gm-plane-assit94.83 40781.97 41088.07 39494.99 38699.60 30091.76 361
test9_res93.28 33999.15 28199.38 179
TEST998.71 27498.08 13895.96 33199.03 24191.40 37595.85 36197.53 32996.52 19399.76 223
test_898.67 28898.01 14695.91 33699.02 24491.64 37095.79 36397.50 33296.47 19599.76 223
agg_prior292.50 35599.16 27999.37 181
agg_prior98.68 28797.99 14799.01 24795.59 36499.77 217
TestCases99.16 10499.50 10698.55 9699.58 5696.80 25998.88 17399.06 14397.65 11899.57 31294.45 30599.61 19299.37 181
test_prior497.97 15195.86 337
test_prior295.74 34296.48 27496.11 35697.63 32595.92 22594.16 31399.20 273
test_prior98.95 14098.69 28397.95 15599.03 24199.59 30499.30 207
旧先验295.76 34188.56 39397.52 29799.66 27994.48 303
新几何295.93 334
新几何198.91 14698.94 23197.76 17398.76 28687.58 39596.75 33898.10 29594.80 25999.78 21192.73 35199.00 29999.20 226
旧先验198.82 25897.45 19298.76 28698.34 27795.50 23899.01 29899.23 221
无先验95.74 34298.74 29189.38 38999.73 24092.38 35799.22 225
原ACMM295.53 348
原ACMM198.35 22698.90 24196.25 24798.83 27892.48 36496.07 35898.10 29595.39 24299.71 24892.61 35498.99 30199.08 244
test22298.92 23796.93 22495.54 34798.78 28485.72 39896.86 33398.11 29494.43 26699.10 28999.23 221
testdata299.79 20092.80 349
segment_acmp97.02 165
testdata98.09 24598.93 23395.40 27498.80 28190.08 38697.45 30498.37 27395.26 24499.70 25293.58 33298.95 30699.17 237
testdata195.44 35396.32 280
test1298.93 14398.58 30597.83 16498.66 29596.53 34595.51 23799.69 25699.13 28499.27 212
plane_prior799.19 18197.87 160
plane_prior698.99 22597.70 17994.90 252
plane_prior599.27 18699.70 25294.42 30799.51 22499.45 148
plane_prior497.98 304
plane_prior397.78 17297.41 21397.79 278
plane_prior297.77 20698.20 149
plane_prior199.05 216
plane_prior97.65 18197.07 27196.72 26499.36 247
n20.00 420
nn0.00 420
door-mid99.57 63
lessismore_v098.97 13799.73 3697.53 18886.71 40899.37 8999.52 5789.93 32499.92 5198.99 6399.72 14999.44 152
LGP-MVS_train99.47 5399.57 7998.97 6799.48 9696.60 26899.10 13199.06 14398.71 3999.83 15795.58 28099.78 11799.62 64
test1198.87 265
door99.41 125
HQP5-MVS96.79 227
HQP-NCC98.67 28896.29 31396.05 28995.55 367
ACMP_Plane98.67 28896.29 31396.05 28995.55 367
BP-MVS92.82 347
HQP4-MVS95.56 36699.54 32399.32 200
HQP3-MVS99.04 23999.26 265
HQP2-MVS93.84 280
NP-MVS98.84 25397.39 19696.84 350
MDTV_nov1_ep13_2view74.92 41497.69 21690.06 38797.75 28185.78 35293.52 33398.69 310
MDTV_nov1_ep1395.22 32097.06 38883.20 40797.74 21196.16 36594.37 33696.99 32398.83 20583.95 36799.53 32593.90 32297.95 357
ACMMP++_ref99.77 123
ACMMP++99.68 167
Test By Simon96.52 193
ITE_SJBPF98.87 15099.22 17298.48 10399.35 14697.50 20198.28 24398.60 24897.64 12199.35 36293.86 32599.27 26298.79 298
DeepMVS_CXcopyleft93.44 38498.24 33594.21 30894.34 38364.28 40891.34 40294.87 39189.45 32992.77 40977.54 40793.14 40293.35 404