This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 19
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1999.34 1599.69 499.58 5499.90 299.86 1899.78 899.58 699.95 2399.00 6299.95 3299.78 33
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2899.64 1599.84 2099.83 399.50 899.87 10199.36 3899.92 5599.64 64
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2699.63 1799.78 2699.67 2599.48 999.81 17999.30 4399.97 2099.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3399.27 5899.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4499.09 8299.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 16
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13298.08 16099.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
ANet_high99.57 799.67 599.28 8699.89 698.09 13699.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3699.31 41100.00 199.82 25
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 5099.66 1399.68 3999.66 2798.44 5999.95 2399.73 1999.96 2599.75 43
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6899.11 7299.70 3599.73 1599.00 2299.97 499.26 4499.98 1299.89 11
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3698.93 9799.65 4599.72 1698.93 2699.95 2399.11 53100.00 199.82 25
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2698.11 13397.77 20499.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1399.99 599.96 5
UA-Net99.47 1399.40 2099.70 299.49 11699.29 1999.80 399.72 3299.82 399.04 14399.81 598.05 8999.96 1298.85 7099.99 599.86 18
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12999.20 4599.65 4599.48 3299.92 899.71 1798.07 8699.96 1299.53 30100.00 199.93 8
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7198.10 13597.68 21599.84 1899.29 5699.92 899.57 4299.60 599.96 1299.74 1899.98 1299.89 11
pm-mvs199.44 1599.48 1499.33 7899.80 2398.63 8999.29 3399.63 4699.30 5599.65 4599.60 3999.16 2099.82 16699.07 5699.83 9399.56 98
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2398.58 9599.27 3999.57 6199.39 4399.75 3099.62 3499.17 1899.83 15699.06 5799.62 18799.66 59
DTE-MVSNet99.43 1899.35 2399.66 499.71 4899.30 1799.31 2799.51 8499.64 1599.56 5399.46 6698.23 7199.97 498.78 7399.93 4499.72 46
TDRefinement99.42 1999.38 2199.55 2399.76 3299.33 1699.68 599.71 3399.38 4499.53 6099.61 3798.64 4399.80 18698.24 10799.84 8699.52 119
PEN-MVS99.41 2099.34 2599.62 699.73 3999.14 5299.29 3399.54 7799.62 2099.56 5399.42 7498.16 8299.96 1298.78 7399.93 4499.77 35
nrg03099.40 2199.35 2399.54 2799.58 7899.13 5598.98 7299.48 9599.68 1199.46 7199.26 10198.62 4699.73 23999.17 5299.92 5599.76 39
PS-CasMVS99.40 2199.33 2699.62 699.71 4899.10 6099.29 3399.53 8099.53 2999.46 7199.41 7798.23 7199.95 2398.89 6999.95 3299.81 28
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5299.59 2399.71 3399.57 4297.12 15599.90 6599.21 4999.87 7899.54 109
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5499.44 3899.78 2699.76 1096.39 19599.92 5199.44 3699.92 5599.68 55
Vis-MVSNetpermissive99.34 2599.36 2299.27 8999.73 3998.26 11899.17 5099.78 2699.11 7299.27 10899.48 6498.82 3199.95 2398.94 6599.93 4499.59 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsm_n_192099.33 2699.45 1898.99 13699.57 8297.73 17897.93 18199.83 2099.22 6199.93 699.30 9599.42 1099.96 1299.85 599.99 599.29 214
WR-MVS_H99.33 2699.22 4099.65 599.71 4899.24 2599.32 2399.55 7299.46 3599.50 6799.34 8897.30 14499.93 4198.90 6799.93 4499.77 35
VPA-MVSNet99.30 2899.30 3299.28 8699.49 11698.36 11499.00 6999.45 10799.63 1799.52 6299.44 7198.25 6999.88 8499.09 5599.84 8699.62 68
sd_testset99.28 2999.31 3099.19 10299.68 5998.06 14599.41 1399.30 16799.69 999.63 4899.68 2099.25 1499.96 1297.25 16299.92 5599.57 92
Anonymous2023121199.27 3099.27 3599.26 9199.29 15998.18 12699.49 899.51 8499.70 899.80 2499.68 2096.84 17099.83 15699.21 4999.91 6399.77 35
FC-MVSNet-test99.27 3099.25 3899.34 7399.77 2998.37 11199.30 3299.57 6199.61 2299.40 8399.50 5997.12 15599.85 12299.02 6199.94 4099.80 29
test_fmvsmvis_n_192099.26 3299.49 1298.54 20499.66 6596.97 21998.00 17499.85 1599.24 6099.92 899.50 5999.39 1199.95 2399.89 399.98 1298.71 308
testf199.25 3399.16 4599.51 4399.89 699.63 398.71 9299.69 3698.90 9999.43 7699.35 8498.86 2899.67 26797.81 13499.81 10099.24 224
APD_test299.25 3399.16 4599.51 4399.89 699.63 398.71 9299.69 3698.90 9999.43 7699.35 8498.86 2899.67 26797.81 13499.81 10099.24 224
KD-MVS_self_test99.25 3399.18 4299.44 5799.63 7599.06 6498.69 9499.54 7799.31 5399.62 5199.53 5497.36 14299.86 11099.24 4899.71 15499.39 177
ACMH96.65 799.25 3399.24 3999.26 9199.72 4598.38 10999.07 6299.55 7298.30 13399.65 4599.45 7099.22 1599.76 22298.44 9899.77 12499.64 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvsmamba99.24 3799.15 5099.49 4899.83 2098.85 7499.41 1399.55 7299.54 2799.40 8399.52 5795.86 22399.91 6099.32 4099.95 3299.70 52
SDMVSNet99.23 3899.32 2898.96 14099.68 5997.35 19798.84 8499.48 9599.69 999.63 4899.68 2099.03 2199.96 1297.97 12599.92 5599.57 92
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13399.64 7197.28 20197.82 19799.76 2898.73 10799.82 2199.09 14098.81 3299.95 2399.86 499.96 2599.83 22
CP-MVSNet99.21 3999.09 5599.56 2199.65 6698.96 7099.13 5599.34 14799.42 4199.33 9799.26 10197.01 16399.94 3698.74 7799.93 4499.79 30
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14399.65 6697.05 21597.80 20099.76 2898.70 11099.78 2699.11 13498.79 3499.95 2399.85 599.96 2599.83 22
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 16199.75 3696.59 23397.97 18099.86 1398.22 14199.88 1799.71 1798.59 4999.84 13999.73 1999.98 1299.98 2
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5699.37 14798.87 7398.39 13199.42 12099.42 4199.36 9299.06 14198.38 6299.95 2398.34 10399.90 7099.57 92
FMVSNet199.17 4299.17 4399.17 10399.55 9498.24 12099.20 4599.44 11199.21 6399.43 7699.55 4897.82 10599.86 11098.42 10099.89 7499.41 165
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18299.71 4896.10 24497.87 19299.85 1598.56 12299.90 1299.68 2098.69 4199.85 12299.72 2199.98 1299.97 3
test_vis3_rt99.14 4699.17 4399.07 12199.78 2698.38 10998.92 7699.94 297.80 17499.91 1199.67 2597.15 15498.91 38899.76 1699.56 21099.92 9
FIs99.14 4699.09 5599.29 8499.70 5598.28 11799.13 5599.52 8399.48 3299.24 11799.41 7796.79 17699.82 16698.69 8299.88 7599.76 39
XXY-MVS99.14 4699.15 5099.10 11599.76 3297.74 17698.85 8299.62 4798.48 12599.37 9099.49 6398.75 3699.86 11098.20 11099.80 11099.71 47
CS-MVS99.13 4999.10 5499.24 9699.06 21399.15 4799.36 1999.88 1199.36 4898.21 24698.46 26498.68 4299.93 4199.03 6099.85 8298.64 317
CS-MVS-test99.13 4999.09 5599.26 9199.13 19898.97 6699.31 2799.88 1199.44 3898.16 24998.51 25698.64 4399.93 4198.91 6699.85 8298.88 285
test_fmvs399.12 5199.41 1998.25 23199.76 3295.07 28299.05 6599.94 297.78 17699.82 2199.84 298.56 5299.71 24799.96 199.96 2599.97 3
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13699.43 13597.73 17898.00 17499.62 4799.22 6199.55 5599.22 11098.93 2699.75 22998.66 8499.81 10099.50 124
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16799.55 9496.59 23397.79 20199.82 2298.21 14299.81 2399.53 5498.46 5899.84 13999.70 2299.97 2099.90 10
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 19099.55 9496.09 24797.74 20999.81 2398.55 12399.85 1999.55 4898.60 4899.84 13999.69 2499.98 1299.89 11
RRT_MVS99.09 5498.94 6799.55 2399.87 1298.82 7899.48 998.16 31799.49 3199.59 5299.65 3094.79 25799.95 2399.45 3599.96 2599.88 14
EC-MVSNet99.09 5499.05 5999.20 10099.28 16098.93 7199.24 4199.84 1899.08 8498.12 25498.37 27298.72 3899.90 6599.05 5899.77 12498.77 302
ACMH+96.62 999.08 5799.00 6299.33 7899.71 4898.83 7698.60 10299.58 5499.11 7299.53 6099.18 11798.81 3299.67 26796.71 21199.77 12499.50 124
bld_raw_dy_0_6499.07 5899.00 6299.29 8499.85 1798.18 12699.11 5899.40 12399.33 5099.38 8799.44 7195.21 24099.97 499.31 4199.98 1299.73 45
GeoE99.05 5998.99 6599.25 9499.44 13098.35 11598.73 8999.56 6898.42 12698.91 16798.81 21098.94 2599.91 6098.35 10299.73 14299.49 128
Gipumacopyleft99.03 6099.16 4598.64 18299.94 298.51 10299.32 2399.75 3199.58 2598.60 21299.62 3498.22 7499.51 33297.70 14299.73 14297.89 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v899.01 6199.16 4598.57 19699.47 12596.31 24198.90 7799.47 10299.03 8899.52 6299.57 4296.93 16699.81 17999.60 2599.98 1299.60 75
HPM-MVS_fast99.01 6198.82 7899.57 1699.71 4899.35 1299.00 6999.50 8697.33 21898.94 16498.86 19998.75 3699.82 16697.53 14999.71 15499.56 98
APDe-MVScopyleft98.99 6398.79 8199.60 1199.21 17499.15 4798.87 7999.48 9597.57 19299.35 9499.24 10697.83 10299.89 7597.88 13199.70 15999.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EG-PatchMatch MVS98.99 6399.01 6198.94 14399.50 10997.47 19098.04 16799.59 5298.15 15399.40 8399.36 8398.58 5199.76 22298.78 7399.68 16799.59 81
COLMAP_ROBcopyleft96.50 1098.99 6398.85 7699.41 6099.58 7899.10 6098.74 8699.56 6899.09 8299.33 9799.19 11498.40 6199.72 24695.98 25799.76 13599.42 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Baseline_NR-MVSNet98.98 6698.86 7599.36 6499.82 2298.55 9797.47 24299.57 6199.37 4599.21 12099.61 3796.76 17999.83 15698.06 11899.83 9399.71 47
v1098.97 6799.11 5298.55 20199.44 13096.21 24398.90 7799.55 7298.73 10799.48 6899.60 3996.63 18699.83 15699.70 2299.99 599.61 74
DeepC-MVS97.60 498.97 6798.93 6899.10 11599.35 15297.98 15298.01 17399.46 10497.56 19499.54 5699.50 5998.97 2399.84 13998.06 11899.92 5599.49 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline98.96 6999.02 6098.76 17199.38 14197.26 20398.49 11999.50 8698.86 10299.19 12299.06 14198.23 7199.69 25598.71 8099.76 13599.33 203
casdiffmvspermissive98.95 7099.00 6298.81 15999.38 14197.33 19897.82 19799.57 6199.17 7099.35 9499.17 12198.35 6699.69 25598.46 9799.73 14299.41 165
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet98.95 7098.82 7899.36 6499.16 19198.72 8799.22 4299.20 19899.10 7999.72 3198.76 21896.38 19799.86 11098.00 12399.82 9699.50 124
Anonymous2024052998.93 7298.87 7299.12 11199.19 18198.22 12599.01 6798.99 24799.25 5999.54 5699.37 8097.04 15999.80 18697.89 12899.52 22299.35 196
DP-MVS98.93 7298.81 8099.28 8699.21 17498.45 10698.46 12499.33 15299.63 1799.48 6899.15 12797.23 15099.75 22997.17 16599.66 17899.63 67
SED-MVS98.91 7498.72 8899.49 4899.49 11699.17 3998.10 15899.31 15998.03 15799.66 4299.02 15398.36 6399.88 8496.91 18799.62 18799.41 165
ACMM96.08 1298.91 7498.73 8699.48 5199.55 9499.14 5298.07 16299.37 13297.62 18699.04 14398.96 17598.84 3099.79 19997.43 15399.65 17999.49 128
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVS++98.90 7698.70 9399.51 4398.43 31999.15 4799.43 1199.32 15498.17 14999.26 11299.02 15398.18 7899.88 8497.07 17599.45 23699.49 128
tfpnnormal98.90 7698.90 7198.91 14899.67 6397.82 16999.00 6999.44 11199.45 3699.51 6699.24 10698.20 7799.86 11095.92 25999.69 16299.04 257
MTAPA98.88 7898.64 10299.61 999.67 6399.36 1198.43 12799.20 19898.83 10698.89 17098.90 18996.98 16599.92 5197.16 16699.70 15999.56 98
mvsany_test398.87 7998.92 6998.74 17899.38 14196.94 22398.58 10499.10 22596.49 27099.96 499.81 598.18 7899.45 34498.97 6499.79 11599.83 22
VPNet98.87 7998.83 7799.01 13499.70 5597.62 18598.43 12799.35 14199.47 3499.28 10699.05 14896.72 18299.82 16698.09 11699.36 24799.59 81
UniMVSNet (Re)98.87 7998.71 9099.35 7099.24 16798.73 8597.73 21199.38 12898.93 9799.12 12898.73 22196.77 17799.86 11098.63 8799.80 11099.46 147
UniMVSNet_NR-MVSNet98.86 8298.68 9699.40 6299.17 18998.74 8297.68 21599.40 12399.14 7199.06 13698.59 24896.71 18399.93 4198.57 9099.77 12499.53 116
APD-MVS_3200maxsize98.84 8398.61 10999.53 3499.19 18199.27 2298.49 11999.33 15298.64 11199.03 14698.98 17097.89 9999.85 12296.54 22799.42 24099.46 147
APD_test198.83 8498.66 9999.34 7399.78 2699.47 698.42 12999.45 10798.28 13898.98 15099.19 11497.76 10899.58 30996.57 21999.55 21398.97 269
PM-MVS98.82 8598.72 8899.12 11199.64 7198.54 10097.98 17799.68 4197.62 18699.34 9699.18 11797.54 12799.77 21697.79 13699.74 13999.04 257
DU-MVS98.82 8598.63 10399.39 6399.16 19198.74 8297.54 23499.25 18798.84 10599.06 13698.76 21896.76 17999.93 4198.57 9099.77 12499.50 124
SR-MVS-dyc-post98.81 8798.55 11499.57 1699.20 17899.38 898.48 12299.30 16798.64 11198.95 15798.96 17597.49 13699.86 11096.56 22399.39 24399.45 151
3Dnovator98.27 298.81 8798.73 8699.05 12898.76 26697.81 17199.25 4099.30 16798.57 12098.55 22199.33 9097.95 9799.90 6597.16 16699.67 17399.44 155
HPM-MVScopyleft98.79 8998.53 11799.59 1599.65 6699.29 1999.16 5199.43 11796.74 26098.61 21098.38 27198.62 4699.87 10196.47 23199.67 17399.59 81
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP98.79 8998.54 11699.54 2799.73 3999.16 4398.23 14399.31 15997.92 16598.90 16898.90 18998.00 9299.88 8496.15 25099.72 14999.58 87
Skip Steuart: Steuart Systems R&D Blog.
dcpmvs_298.78 9199.11 5297.78 26399.56 9093.67 32799.06 6399.86 1399.50 3099.66 4299.26 10197.21 15299.99 298.00 12399.91 6399.68 55
V4298.78 9198.78 8298.76 17199.44 13097.04 21698.27 14099.19 20297.87 16999.25 11699.16 12396.84 17099.78 21099.21 4999.84 8699.46 147
test20.0398.78 9198.77 8398.78 16799.46 12697.20 20897.78 20299.24 19299.04 8799.41 8098.90 18997.65 11599.76 22297.70 14299.79 11599.39 177
DVP-MVScopyleft98.77 9498.52 11899.52 3999.50 10999.21 2898.02 17098.84 27197.97 16099.08 13499.02 15397.61 12199.88 8496.99 18199.63 18499.48 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_040298.76 9598.71 9098.93 14599.56 9098.14 13198.45 12699.34 14799.28 5798.95 15798.91 18698.34 6799.79 19995.63 27499.91 6398.86 287
ACMMP_NAP98.75 9698.48 12699.57 1699.58 7899.29 1997.82 19799.25 18796.94 24998.78 18999.12 13398.02 9099.84 13997.13 17199.67 17399.59 81
SixPastTwentyTwo98.75 9698.62 10599.16 10699.83 2097.96 15699.28 3798.20 31499.37 4599.70 3599.65 3092.65 29899.93 4199.04 5999.84 8699.60 75
ACMMPcopyleft98.75 9698.50 12199.52 3999.56 9099.16 4398.87 7999.37 13297.16 23998.82 18699.01 16297.71 11199.87 10196.29 24299.69 16299.54 109
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVS98.72 9998.45 13199.53 3499.46 12699.21 2898.65 9699.34 14798.62 11597.54 29498.63 24297.50 13399.83 15696.79 20099.53 21999.56 98
SSC-MVS98.71 10098.74 8498.62 18799.72 4596.08 24998.74 8698.64 29599.74 699.67 4199.24 10694.57 26199.95 2399.11 5399.24 26799.82 25
SR-MVS98.71 10098.43 13499.57 1699.18 18899.35 1298.36 13499.29 17598.29 13698.88 17498.85 20297.53 12999.87 10196.14 25199.31 25599.48 138
HFP-MVS98.71 10098.44 13399.51 4399.49 11699.16 4398.52 11199.31 15997.47 20298.58 21698.50 26097.97 9699.85 12296.57 21999.59 19899.53 116
LPG-MVS_test98.71 10098.46 13099.47 5499.57 8298.97 6698.23 14399.48 9596.60 26599.10 13299.06 14198.71 3999.83 15695.58 27799.78 12099.62 68
test_fmvs298.70 10498.97 6697.89 25699.54 9994.05 30998.55 10799.92 696.78 25899.72 3199.78 896.60 18799.67 26799.91 299.90 7099.94 7
ACMMPR98.70 10498.42 13699.54 2799.52 10499.14 5298.52 11199.31 15997.47 20298.56 21998.54 25297.75 10999.88 8496.57 21999.59 19899.58 87
CP-MVS98.70 10498.42 13699.52 3999.36 14899.12 5798.72 9099.36 13697.54 19798.30 24198.40 26897.86 10199.89 7596.53 22899.72 14999.56 98
tt080598.69 10798.62 10598.90 15199.75 3699.30 1799.15 5396.97 34798.86 10298.87 17897.62 32598.63 4598.96 38599.41 3798.29 33698.45 328
Anonymous2024052198.69 10798.87 7298.16 23999.77 2995.11 28199.08 5999.44 11199.34 4999.33 9799.55 4894.10 27599.94 3699.25 4699.96 2599.42 162
region2R98.69 10798.40 13899.54 2799.53 10299.17 3998.52 11199.31 15997.46 20798.44 23198.51 25697.83 10299.88 8496.46 23299.58 20399.58 87
EI-MVSNet-UG-set98.69 10798.71 9098.62 18799.10 20296.37 23897.23 25898.87 26299.20 6599.19 12298.99 16697.30 14499.85 12298.77 7699.79 11599.65 63
3Dnovator+97.89 398.69 10798.51 11999.24 9698.81 26198.40 10799.02 6699.19 20298.99 9198.07 25899.28 9797.11 15799.84 13996.84 19899.32 25399.47 145
ZNCC-MVS98.68 11298.40 13899.54 2799.57 8299.21 2898.46 12499.29 17597.28 22498.11 25598.39 26998.00 9299.87 10196.86 19799.64 18199.55 105
EI-MVSNet-Vis-set98.68 11298.70 9398.63 18699.09 20596.40 23797.23 25898.86 26799.20 6599.18 12698.97 17297.29 14699.85 12298.72 7999.78 12099.64 64
CSCG98.68 11298.50 12199.20 10099.45 12998.63 8998.56 10699.57 6197.87 16998.85 17998.04 30097.66 11499.84 13996.72 20999.81 10099.13 246
test_f98.67 11598.87 7298.05 24899.72 4595.59 26098.51 11699.81 2396.30 28099.78 2699.82 496.14 20498.63 39399.82 899.93 4499.95 6
PGM-MVS98.66 11698.37 14499.55 2399.53 10299.18 3898.23 14399.49 9397.01 24698.69 19998.88 19698.00 9299.89 7595.87 26399.59 19899.58 87
GBi-Net98.65 11798.47 12899.17 10398.90 24198.24 12099.20 4599.44 11198.59 11798.95 15799.55 4894.14 27199.86 11097.77 13799.69 16299.41 165
test198.65 11798.47 12899.17 10398.90 24198.24 12099.20 4599.44 11198.59 11798.95 15799.55 4894.14 27199.86 11097.77 13799.69 16299.41 165
LCM-MVSNet-Re98.64 11998.48 12699.11 11398.85 25298.51 10298.49 11999.83 2098.37 12799.69 3799.46 6698.21 7699.92 5194.13 31499.30 25898.91 281
mPP-MVS98.64 11998.34 14899.54 2799.54 9999.17 3998.63 9899.24 19297.47 20298.09 25798.68 23097.62 12099.89 7596.22 24599.62 18799.57 92
TSAR-MVS + MP.98.63 12198.49 12599.06 12799.64 7197.90 16098.51 11698.94 24996.96 24799.24 11798.89 19597.83 10299.81 17996.88 19499.49 23299.48 138
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LS3D98.63 12198.38 14399.36 6497.25 38099.38 899.12 5799.32 15499.21 6398.44 23198.88 19697.31 14399.80 18696.58 21799.34 25198.92 278
RPSCF98.62 12398.36 14599.42 5899.65 6699.42 798.55 10799.57 6197.72 18098.90 16899.26 10196.12 20699.52 32895.72 27099.71 15499.32 205
GST-MVS98.61 12498.30 15399.52 3999.51 10699.20 3498.26 14199.25 18797.44 21098.67 20198.39 26997.68 11299.85 12296.00 25599.51 22499.52 119
v119298.60 12598.66 9998.41 21899.27 16295.88 25497.52 23699.36 13697.41 21199.33 9799.20 11396.37 19899.82 16699.57 2799.92 5599.55 105
v114498.60 12598.66 9998.41 21899.36 14895.90 25397.58 23099.34 14797.51 19899.27 10899.15 12796.34 20099.80 18699.47 3499.93 4499.51 121
DPE-MVScopyleft98.59 12798.26 15899.57 1699.27 16299.15 4797.01 27099.39 12697.67 18299.44 7598.99 16697.53 12999.89 7595.40 28199.68 16799.66 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.57 12898.23 16199.60 1199.69 5799.35 1297.16 26599.38 12894.87 32198.97 15498.99 16698.01 9199.88 8497.29 15999.70 15999.58 87
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS98.56 12998.32 15299.25 9499.41 13898.73 8597.13 26799.18 20697.10 24298.75 19598.92 18598.18 7899.65 28396.68 21399.56 21099.37 186
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VDD-MVS98.56 12998.39 14199.07 12199.13 19898.07 14298.59 10397.01 34599.59 2399.11 12999.27 9994.82 25299.79 19998.34 10399.63 18499.34 198
v2v48298.56 12998.62 10598.37 22299.42 13695.81 25797.58 23099.16 21397.90 16799.28 10699.01 16295.98 21799.79 19999.33 3999.90 7099.51 121
XVG-ACMP-BASELINE98.56 12998.34 14899.22 9999.54 9998.59 9497.71 21299.46 10497.25 22798.98 15098.99 16697.54 12799.84 13995.88 26099.74 13999.23 226
v124098.55 13398.62 10598.32 22599.22 17295.58 26297.51 23899.45 10797.16 23999.45 7499.24 10696.12 20699.85 12299.60 2599.88 7599.55 105
IterMVS-LS98.55 13398.70 9398.09 24199.48 12394.73 29097.22 26199.39 12698.97 9399.38 8799.31 9496.00 21299.93 4198.58 8899.97 2099.60 75
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419298.54 13598.57 11398.45 21399.21 17495.98 25197.63 22399.36 13697.15 24199.32 10399.18 11795.84 22499.84 13999.50 3299.91 6399.54 109
v192192098.54 13598.60 11098.38 22199.20 17895.76 25997.56 23299.36 13697.23 23399.38 8799.17 12196.02 21099.84 13999.57 2799.90 7099.54 109
SF-MVS98.53 13798.27 15799.32 8099.31 15598.75 8198.19 14799.41 12196.77 25998.83 18398.90 18997.80 10699.82 16695.68 27399.52 22299.38 184
XVG-OURS98.53 13798.34 14899.11 11399.50 10998.82 7895.97 32699.50 8697.30 22299.05 14198.98 17099.35 1299.32 36395.72 27099.68 16799.18 238
UGNet98.53 13798.45 13198.79 16497.94 34796.96 22199.08 5998.54 29999.10 7996.82 33299.47 6596.55 18999.84 13998.56 9399.94 4099.55 105
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WB-MVS98.52 14098.55 11498.43 21699.65 6695.59 26098.52 11198.77 28299.65 1499.52 6299.00 16594.34 26799.93 4198.65 8598.83 31199.76 39
patch_mono-298.51 14198.63 10398.17 23799.38 14194.78 28797.36 24899.69 3698.16 15298.49 22799.29 9697.06 15899.97 498.29 10699.91 6399.76 39
XVG-OURS-SEG-HR98.49 14298.28 15599.14 10999.49 11698.83 7696.54 29499.48 9597.32 22099.11 12998.61 24699.33 1399.30 36696.23 24498.38 33299.28 216
FMVSNet298.49 14298.40 13898.75 17498.90 24197.14 21498.61 10199.13 22098.59 11799.19 12299.28 9794.14 27199.82 16697.97 12599.80 11099.29 214
pmmvs-eth3d98.47 14498.34 14898.86 15399.30 15897.76 17497.16 26599.28 17895.54 30399.42 7999.19 11497.27 14799.63 28997.89 12899.97 2099.20 231
MP-MVScopyleft98.46 14598.09 17699.54 2799.57 8299.22 2798.50 11899.19 20297.61 18997.58 29098.66 23597.40 14099.88 8494.72 29599.60 19499.54 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v14898.45 14698.60 11098.00 25199.44 13094.98 28397.44 24499.06 23098.30 13399.32 10398.97 17296.65 18599.62 29298.37 10199.85 8299.39 177
AllTest98.44 14798.20 16399.16 10699.50 10998.55 9798.25 14299.58 5496.80 25698.88 17499.06 14197.65 11599.57 31194.45 30299.61 19299.37 186
VNet98.42 14898.30 15398.79 16498.79 26597.29 20098.23 14398.66 29299.31 5398.85 17998.80 21194.80 25599.78 21098.13 11399.13 28499.31 209
ab-mvs98.41 14998.36 14598.59 19399.19 18197.23 20499.32 2398.81 27697.66 18398.62 20899.40 7996.82 17399.80 18695.88 26099.51 22498.75 305
ACMP95.32 1598.41 14998.09 17699.36 6499.51 10698.79 8097.68 21599.38 12895.76 29798.81 18898.82 20898.36 6399.82 16694.75 29299.77 12499.48 138
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n_192098.40 15198.92 6996.81 32699.74 3890.76 37598.15 15299.91 798.33 13099.89 1599.55 4895.07 24599.88 8499.76 1699.93 4499.79 30
SMA-MVScopyleft98.40 15198.03 18399.51 4399.16 19199.21 2898.05 16599.22 19594.16 33798.98 15099.10 13797.52 13199.79 19996.45 23399.64 18199.53 116
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS98.40 15198.00 18599.61 999.57 8299.25 2498.57 10599.35 14197.55 19699.31 10597.71 31894.61 26099.88 8496.14 25199.19 27699.70 52
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS98.40 15198.68 9697.54 28798.96 22997.99 14997.88 18999.36 13698.20 14699.63 4899.04 15098.76 3595.33 40596.56 22399.74 13999.31 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EI-MVSNet98.40 15198.51 11998.04 24999.10 20294.73 29097.20 26298.87 26298.97 9399.06 13699.02 15396.00 21299.80 18698.58 8899.82 9699.60 75
WR-MVS98.40 15198.19 16599.03 13199.00 22297.65 18296.85 28098.94 24998.57 12098.89 17098.50 26095.60 22999.85 12297.54 14899.85 8299.59 81
new-patchmatchnet98.35 15798.74 8497.18 30699.24 16792.23 35496.42 30299.48 9598.30 13399.69 3799.53 5497.44 13899.82 16698.84 7199.77 12499.49 128
canonicalmvs98.34 15898.26 15898.58 19498.46 31697.82 16998.96 7399.46 10499.19 6997.46 30195.46 37798.59 4999.46 34398.08 11798.71 31998.46 326
test_cas_vis1_n_192098.33 15998.68 9697.27 30399.69 5792.29 35298.03 16899.85 1597.62 18699.96 499.62 3493.98 27699.74 23499.52 3199.86 8199.79 30
testgi98.32 16098.39 14198.13 24099.57 8295.54 26397.78 20299.49 9397.37 21599.19 12297.65 32298.96 2499.49 33596.50 23098.99 30099.34 198
DeepPCF-MVS96.93 598.32 16098.01 18499.23 9898.39 32498.97 6695.03 36199.18 20696.88 25299.33 9798.78 21498.16 8299.28 37096.74 20699.62 18799.44 155
test_vis1_n98.31 16298.50 12197.73 27299.76 3294.17 30798.68 9599.91 796.31 27899.79 2599.57 4292.85 29599.42 34999.79 1399.84 8699.60 75
MVS_111021_LR98.30 16398.12 17498.83 15699.16 19198.03 14796.09 32299.30 16797.58 19198.10 25698.24 28398.25 6999.34 36096.69 21299.65 17999.12 247
EPP-MVSNet98.30 16398.04 18299.07 12199.56 9097.83 16699.29 3398.07 32199.03 8898.59 21499.13 13192.16 30399.90 6596.87 19599.68 16799.49 128
DeepC-MVS_fast96.85 698.30 16398.15 17198.75 17498.61 29697.23 20497.76 20799.09 22797.31 22198.75 19598.66 23597.56 12599.64 28696.10 25499.55 21399.39 177
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS98.29 16697.95 18999.34 7398.44 31899.16 4398.12 15599.38 12896.01 28998.06 25998.43 26697.80 10699.67 26795.69 27299.58 20399.20 231
Fast-Effi-MVS+-dtu98.27 16798.09 17698.81 15998.43 31998.11 13397.61 22699.50 8698.64 11197.39 30697.52 33098.12 8599.95 2396.90 19298.71 31998.38 336
DELS-MVS98.27 16798.20 16398.48 21098.86 24996.70 23195.60 34399.20 19897.73 17898.45 23098.71 22497.50 13399.82 16698.21 10999.59 19898.93 277
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu98.26 16997.90 19599.35 7098.02 34499.49 598.02 17099.16 21398.29 13697.64 28597.99 30296.44 19499.95 2396.66 21498.93 30798.60 320
MVSFormer98.26 16998.43 13497.77 26498.88 24793.89 32199.39 1799.56 6899.11 7298.16 24998.13 29093.81 27999.97 499.26 4499.57 20799.43 159
MVS_111021_HR98.25 17198.08 17998.75 17499.09 20597.46 19195.97 32699.27 18197.60 19097.99 26498.25 28298.15 8499.38 35596.87 19599.57 20799.42 162
TAMVS98.24 17298.05 18198.80 16199.07 20997.18 21097.88 18998.81 27696.66 26499.17 12799.21 11194.81 25499.77 21696.96 18599.88 7599.44 155
MM98.22 17397.99 18698.91 14898.66 29296.97 21997.89 18894.44 37999.54 2798.95 15799.14 13093.50 28399.92 5199.80 1299.96 2599.85 19
diffmvspermissive98.22 17398.24 16098.17 23799.00 22295.44 26896.38 30499.58 5497.79 17598.53 22498.50 26096.76 17999.74 23497.95 12799.64 18199.34 198
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2023120698.21 17598.21 16298.20 23599.51 10695.43 26998.13 15399.32 15496.16 28398.93 16598.82 20896.00 21299.83 15697.32 15899.73 14299.36 192
VDDNet98.21 17597.95 18999.01 13499.58 7897.74 17699.01 6797.29 34099.67 1298.97 15499.50 5990.45 31699.80 18697.88 13199.20 27399.48 138
IS-MVSNet98.19 17797.90 19599.08 11999.57 8297.97 15399.31 2798.32 30999.01 9098.98 15099.03 15291.59 30899.79 19995.49 27999.80 11099.48 138
MVS_Test98.18 17898.36 14597.67 27498.48 31494.73 29098.18 14899.02 24197.69 18198.04 26299.11 13497.22 15199.56 31498.57 9098.90 30998.71 308
TSAR-MVS + GP.98.18 17897.98 18798.77 17098.71 27597.88 16196.32 30898.66 29296.33 27699.23 11998.51 25697.48 13799.40 35197.16 16699.46 23499.02 260
CNVR-MVS98.17 18097.87 19899.07 12198.67 28798.24 12097.01 27098.93 25197.25 22797.62 28698.34 27697.27 14799.57 31196.42 23499.33 25299.39 177
PVSNet_Blended_VisFu98.17 18098.15 17198.22 23499.73 3995.15 27897.36 24899.68 4194.45 33198.99 14999.27 9996.87 16999.94 3697.13 17199.91 6399.57 92
MVS_030498.10 18297.88 19798.76 17198.82 25896.50 23597.90 18691.35 39799.56 2698.32 24099.13 13196.06 20899.93 4199.84 799.97 2099.85 19
HPM-MVS++copyleft98.10 18297.64 21599.48 5199.09 20599.13 5597.52 23698.75 28697.46 20796.90 32797.83 31396.01 21199.84 13995.82 26799.35 24999.46 147
APD-MVScopyleft98.10 18297.67 21099.42 5899.11 20098.93 7197.76 20799.28 17894.97 31898.72 19898.77 21697.04 15999.85 12293.79 32499.54 21599.49 128
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_fmvs1_n98.09 18598.28 15597.52 28999.68 5993.47 33198.63 9899.93 495.41 31099.68 3999.64 3291.88 30799.48 33899.82 899.87 7899.62 68
MVP-Stereo98.08 18697.92 19398.57 19698.96 22996.79 22797.90 18699.18 20696.41 27498.46 22998.95 17995.93 22099.60 29996.51 22998.98 30299.31 209
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PMMVS298.07 18798.08 17998.04 24999.41 13894.59 29694.59 37599.40 12397.50 19998.82 18698.83 20596.83 17299.84 13997.50 15199.81 10099.71 47
ETV-MVS98.03 18897.86 19998.56 20098.69 28498.07 14297.51 23899.50 8698.10 15497.50 29895.51 37498.41 6099.88 8496.27 24399.24 26797.71 370
Effi-MVS+98.02 18997.82 20198.62 18798.53 31097.19 20997.33 25099.68 4197.30 22296.68 33697.46 33498.56 5299.80 18696.63 21598.20 33998.86 287
MSLP-MVS++98.02 18998.14 17397.64 27898.58 30395.19 27797.48 24099.23 19497.47 20297.90 26898.62 24497.04 15998.81 39197.55 14699.41 24198.94 276
EIA-MVS98.00 19197.74 20598.80 16198.72 27298.09 13698.05 16599.60 5197.39 21396.63 33895.55 37397.68 11299.80 18696.73 20899.27 26298.52 324
MCST-MVS98.00 19197.63 21699.10 11599.24 16798.17 12896.89 27998.73 28995.66 29897.92 26697.70 32097.17 15399.66 27896.18 24999.23 26999.47 145
K. test v398.00 19197.66 21399.03 13199.79 2597.56 18699.19 4992.47 39199.62 2099.52 6299.66 2789.61 32199.96 1299.25 4699.81 10099.56 98
HQP_MVS97.99 19497.67 21098.93 14599.19 18197.65 18297.77 20499.27 18198.20 14697.79 27797.98 30394.90 24899.70 25194.42 30499.51 22499.45 151
MDA-MVSNet-bldmvs97.94 19597.91 19498.06 24699.44 13094.96 28496.63 29299.15 21898.35 12898.83 18399.11 13494.31 26899.85 12296.60 21698.72 31799.37 186
Anonymous20240521197.90 19697.50 22399.08 11998.90 24198.25 11998.53 11096.16 36298.87 10199.11 12998.86 19990.40 31799.78 21097.36 15699.31 25599.19 236
LF4IMVS97.90 19697.69 20998.52 20699.17 18997.66 18197.19 26499.47 10296.31 27897.85 27398.20 28796.71 18399.52 32894.62 29699.72 14998.38 336
UnsupCasMVSNet_eth97.89 19897.60 21898.75 17499.31 15597.17 21197.62 22499.35 14198.72 10998.76 19498.68 23092.57 29999.74 23497.76 14195.60 39199.34 198
TinyColmap97.89 19897.98 18797.60 28098.86 24994.35 30296.21 31499.44 11197.45 20999.06 13698.88 19697.99 9599.28 37094.38 30899.58 20399.18 238
OMC-MVS97.88 20097.49 22499.04 13098.89 24698.63 8996.94 27499.25 18795.02 31698.53 22498.51 25697.27 14799.47 34193.50 33299.51 22499.01 261
CANet97.87 20197.76 20398.19 23697.75 35595.51 26596.76 28599.05 23397.74 17796.93 32198.21 28695.59 23099.89 7597.86 13399.93 4499.19 236
xiu_mvs_v1_base_debu97.86 20298.17 16796.92 31998.98 22693.91 31896.45 29999.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 382
xiu_mvs_v1_base97.86 20298.17 16796.92 31998.98 22693.91 31896.45 29999.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 382
xiu_mvs_v1_base_debi97.86 20298.17 16796.92 31998.98 22693.91 31896.45 29999.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 382
NCCC97.86 20297.47 22799.05 12898.61 29698.07 14296.98 27298.90 25797.63 18597.04 31797.93 30895.99 21699.66 27895.31 28298.82 31399.43 159
PMVScopyleft91.26 2097.86 20297.94 19197.65 27699.71 4897.94 15898.52 11198.68 29198.99 9197.52 29699.35 8497.41 13998.18 39791.59 36299.67 17396.82 385
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
IterMVS-SCA-FT97.85 20798.18 16696.87 32299.27 16291.16 37095.53 34599.25 18799.10 7999.41 8099.35 8493.10 28899.96 1298.65 8599.94 4099.49 128
D2MVS97.84 20897.84 20097.83 25999.14 19694.74 28996.94 27498.88 26095.84 29598.89 17098.96 17594.40 26599.69 25597.55 14699.95 3299.05 253
CPTT-MVS97.84 20897.36 23299.27 8999.31 15598.46 10598.29 13899.27 18194.90 32097.83 27498.37 27294.90 24899.84 13993.85 32399.54 21599.51 121
mvs_anonymous97.83 21098.16 17096.87 32298.18 33691.89 35697.31 25298.90 25797.37 21598.83 18399.46 6696.28 20199.79 19998.90 6798.16 34398.95 272
h-mvs3397.77 21197.33 23599.10 11599.21 17497.84 16598.35 13598.57 29899.11 7298.58 21699.02 15388.65 33099.96 1298.11 11496.34 38399.49 128
test_vis1_rt97.75 21297.72 20897.83 25998.81 26196.35 23997.30 25399.69 3694.61 32597.87 27098.05 29996.26 20298.32 39698.74 7798.18 34098.82 290
IterMVS97.73 21398.11 17596.57 33199.24 16790.28 37895.52 34799.21 19698.86 10299.33 9799.33 9093.11 28799.94 3698.49 9699.94 4099.48 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvs197.72 21497.94 19197.07 31398.66 29292.39 34997.68 21599.81 2395.20 31499.54 5699.44 7191.56 30999.41 35099.78 1599.77 12499.40 174
MSDG97.71 21597.52 22298.28 23098.91 24096.82 22694.42 37899.37 13297.65 18498.37 23998.29 28197.40 14099.33 36294.09 31599.22 27098.68 315
CDS-MVSNet97.69 21697.35 23398.69 17998.73 27097.02 21896.92 27898.75 28695.89 29498.59 21498.67 23292.08 30599.74 23496.72 20999.81 10099.32 205
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch97.68 21797.75 20497.45 29598.23 33493.78 32497.29 25498.84 27196.10 28598.64 20598.65 23796.04 20999.36 35696.84 19899.14 28299.20 231
Fast-Effi-MVS+97.67 21897.38 23098.57 19698.71 27597.43 19497.23 25899.45 10794.82 32296.13 35296.51 35498.52 5499.91 6096.19 24798.83 31198.37 338
EU-MVSNet97.66 21998.50 12195.13 36499.63 7585.84 39498.35 13598.21 31398.23 14099.54 5699.46 6695.02 24699.68 26498.24 10799.87 7899.87 16
pmmvs597.64 22097.49 22498.08 24499.14 19695.12 28096.70 28999.05 23393.77 34498.62 20898.83 20593.23 28499.75 22998.33 10599.76 13599.36 192
N_pmnet97.63 22197.17 24198.99 13699.27 16297.86 16395.98 32593.41 38895.25 31299.47 7098.90 18995.63 22899.85 12296.91 18799.73 14299.27 217
mvsany_test197.60 22297.54 22097.77 26497.72 35695.35 27195.36 35397.13 34394.13 33899.71 3399.33 9097.93 9899.30 36697.60 14598.94 30698.67 316
YYNet197.60 22297.67 21097.39 29999.04 21793.04 33895.27 35498.38 30897.25 22798.92 16698.95 17995.48 23599.73 23996.99 18198.74 31599.41 165
MDA-MVSNet_test_wron97.60 22297.66 21397.41 29899.04 21793.09 33495.27 35498.42 30597.26 22698.88 17498.95 17995.43 23699.73 23997.02 17898.72 31799.41 165
pmmvs497.58 22597.28 23698.51 20798.84 25396.93 22495.40 35298.52 30193.60 34698.61 21098.65 23795.10 24499.60 29996.97 18499.79 11598.99 265
PVSNet_BlendedMVS97.55 22697.53 22197.60 28098.92 23793.77 32596.64 29199.43 11794.49 32797.62 28699.18 11796.82 17399.67 26794.73 29399.93 4499.36 192
ppachtmachnet_test97.50 22797.74 20596.78 32898.70 27991.23 36994.55 37699.05 23396.36 27599.21 12098.79 21396.39 19599.78 21096.74 20699.82 9699.34 198
FMVSNet397.50 22797.24 23898.29 22998.08 34295.83 25697.86 19498.91 25697.89 16898.95 15798.95 17987.06 33699.81 17997.77 13799.69 16299.23 226
CHOSEN 1792x268897.49 22997.14 24598.54 20499.68 5996.09 24796.50 29799.62 4791.58 36998.84 18298.97 17292.36 30099.88 8496.76 20499.95 3299.67 58
CLD-MVS97.49 22997.16 24298.48 21099.07 20997.03 21794.71 36899.21 19694.46 32998.06 25997.16 34497.57 12499.48 33894.46 30199.78 12098.95 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
hse-mvs297.46 23197.07 24698.64 18298.73 27097.33 19897.45 24397.64 33399.11 7298.58 21697.98 30388.65 33099.79 19998.11 11497.39 36698.81 294
Vis-MVSNet (Re-imp)97.46 23197.16 24298.34 22499.55 9496.10 24498.94 7498.44 30498.32 13298.16 24998.62 24488.76 32699.73 23993.88 32199.79 11599.18 238
jason97.45 23397.35 23397.76 26799.24 16793.93 31795.86 33498.42 30594.24 33598.50 22698.13 29094.82 25299.91 6097.22 16399.73 14299.43 159
jason: jason.
CL-MVSNet_self_test97.44 23497.22 23998.08 24498.57 30595.78 25894.30 38198.79 27996.58 26798.60 21298.19 28894.74 25999.64 28696.41 23598.84 31098.82 290
DSMNet-mixed97.42 23597.60 21896.87 32299.15 19591.46 36098.54 10999.12 22192.87 35797.58 29099.63 3396.21 20399.90 6595.74 26999.54 21599.27 217
USDC97.41 23697.40 22897.44 29698.94 23193.67 32795.17 35799.53 8094.03 34198.97 15499.10 13795.29 23899.34 36095.84 26699.73 14299.30 212
our_test_397.39 23797.73 20796.34 33698.70 27989.78 38094.61 37498.97 24896.50 26999.04 14398.85 20295.98 21799.84 13997.26 16199.67 17399.41 165
c3_l97.36 23897.37 23197.31 30098.09 34193.25 33395.01 36299.16 21397.05 24398.77 19298.72 22392.88 29399.64 28696.93 18699.76 13599.05 253
alignmvs97.35 23996.88 25698.78 16798.54 30898.09 13697.71 21297.69 33099.20 6597.59 28995.90 36788.12 33599.55 31798.18 11198.96 30498.70 311
Patchmtry97.35 23996.97 25098.50 20997.31 37996.47 23698.18 14898.92 25498.95 9698.78 18999.37 8085.44 35199.85 12295.96 25899.83 9399.17 242
DP-MVS Recon97.33 24196.92 25398.57 19699.09 20597.99 14996.79 28299.35 14193.18 35197.71 28198.07 29895.00 24799.31 36493.97 31799.13 28498.42 333
QAPM97.31 24296.81 26398.82 15798.80 26497.49 18999.06 6399.19 20290.22 38197.69 28399.16 12396.91 16799.90 6590.89 37599.41 24199.07 251
UnsupCasMVSNet_bld97.30 24396.92 25398.45 21399.28 16096.78 23096.20 31599.27 18195.42 30798.28 24398.30 28093.16 28699.71 24794.99 28797.37 36798.87 286
F-COLMAP97.30 24396.68 27099.14 10999.19 18198.39 10897.27 25799.30 16792.93 35596.62 33998.00 30195.73 22699.68 26492.62 35098.46 33199.35 196
1112_ss97.29 24596.86 25798.58 19499.34 15496.32 24096.75 28699.58 5493.14 35296.89 32897.48 33292.11 30499.86 11096.91 18799.54 21599.57 92
CANet_DTU97.26 24697.06 24797.84 25897.57 36494.65 29496.19 31698.79 27997.23 23395.14 37398.24 28393.22 28599.84 13997.34 15799.84 8699.04 257
Patchmatch-RL test97.26 24697.02 24997.99 25299.52 10495.53 26496.13 32099.71 3397.47 20299.27 10899.16 12384.30 36099.62 29297.89 12899.77 12498.81 294
CDPH-MVS97.26 24696.66 27399.07 12199.00 22298.15 12996.03 32499.01 24491.21 37597.79 27797.85 31296.89 16899.69 25592.75 34799.38 24699.39 177
PatchMatch-RL97.24 24996.78 26498.61 19099.03 22097.83 16696.36 30599.06 23093.49 34997.36 30897.78 31495.75 22599.49 33593.44 33398.77 31498.52 324
eth_miper_zixun_eth97.23 25097.25 23797.17 30898.00 34592.77 34294.71 36899.18 20697.27 22598.56 21998.74 22091.89 30699.69 25597.06 17799.81 10099.05 253
sss97.21 25196.93 25198.06 24698.83 25595.22 27696.75 28698.48 30394.49 32797.27 30997.90 30992.77 29699.80 18696.57 21999.32 25399.16 245
LFMVS97.20 25296.72 26798.64 18298.72 27296.95 22298.93 7594.14 38599.74 698.78 18999.01 16284.45 35799.73 23997.44 15299.27 26299.25 221
HyFIR lowres test97.19 25396.60 27898.96 14099.62 7797.28 20195.17 35799.50 8694.21 33699.01 14798.32 27986.61 33999.99 297.10 17399.84 8699.60 75
miper_lstm_enhance97.18 25497.16 24297.25 30598.16 33792.85 34095.15 35999.31 15997.25 22798.74 19798.78 21490.07 31899.78 21097.19 16499.80 11099.11 248
CNLPA97.17 25596.71 26898.55 20198.56 30698.05 14696.33 30798.93 25196.91 25197.06 31697.39 33794.38 26699.45 34491.66 35999.18 27898.14 347
xiu_mvs_v2_base97.16 25697.49 22496.17 34598.54 30892.46 34795.45 34998.84 27197.25 22797.48 30096.49 35598.31 6899.90 6596.34 23998.68 32296.15 393
AdaColmapbinary97.14 25796.71 26898.46 21298.34 32697.80 17296.95 27398.93 25195.58 30296.92 32297.66 32195.87 22299.53 32490.97 37299.14 28298.04 352
iter_conf_final97.10 25896.65 27598.45 21398.53 31096.08 24998.30 13799.11 22398.10 15498.85 17998.95 17979.38 38199.87 10198.68 8399.91 6399.40 174
train_agg97.10 25896.45 28399.07 12198.71 27598.08 14095.96 32899.03 23891.64 36795.85 35897.53 32896.47 19299.76 22293.67 32699.16 27999.36 192
OpenMVScopyleft96.65 797.09 26096.68 27098.32 22598.32 32797.16 21298.86 8199.37 13289.48 38596.29 35099.15 12796.56 18899.90 6592.90 34199.20 27397.89 358
PS-MVSNAJ97.08 26197.39 22996.16 34798.56 30692.46 34795.24 35698.85 27097.25 22797.49 29995.99 36498.07 8699.90 6596.37 23698.67 32396.12 394
miper_ehance_all_eth97.06 26297.03 24897.16 31097.83 35293.06 33594.66 37199.09 22795.99 29098.69 19998.45 26592.73 29799.61 29896.79 20099.03 29498.82 290
lupinMVS97.06 26296.86 25797.65 27698.88 24793.89 32195.48 34897.97 32393.53 34798.16 24997.58 32693.81 27999.91 6096.77 20399.57 20799.17 242
API-MVS97.04 26496.91 25597.42 29797.88 35198.23 12498.18 14898.50 30297.57 19297.39 30696.75 35196.77 17799.15 37990.16 37899.02 29794.88 399
cl____97.02 26596.83 26097.58 28297.82 35394.04 31194.66 37199.16 21397.04 24498.63 20698.71 22488.68 32999.69 25597.00 17999.81 10099.00 264
DIV-MVS_self_test97.02 26596.84 25997.58 28297.82 35394.03 31294.66 37199.16 21397.04 24498.63 20698.71 22488.69 32799.69 25597.00 17999.81 10099.01 261
RPMNet97.02 26596.93 25197.30 30197.71 35894.22 30398.11 15699.30 16799.37 4596.91 32499.34 8886.72 33899.87 10197.53 14997.36 36997.81 363
HQP-MVS97.00 26896.49 28298.55 20198.67 28796.79 22796.29 31099.04 23696.05 28695.55 36496.84 34993.84 27799.54 32292.82 34499.26 26599.32 205
FA-MVS(test-final)96.99 26996.82 26197.50 29198.70 27994.78 28799.34 2096.99 34695.07 31598.48 22899.33 9088.41 33399.65 28396.13 25398.92 30898.07 351
new_pmnet96.99 26996.76 26597.67 27498.72 27294.89 28595.95 33098.20 31492.62 36098.55 22198.54 25294.88 25199.52 32893.96 31899.44 23998.59 322
Test_1112_low_res96.99 26996.55 28098.31 22799.35 15295.47 26795.84 33799.53 8091.51 37196.80 33398.48 26391.36 31099.83 15696.58 21799.53 21999.62 68
PVSNet_Blended96.88 27296.68 27097.47 29498.92 23793.77 32594.71 36899.43 11790.98 37797.62 28697.36 34096.82 17399.67 26794.73 29399.56 21098.98 266
MVSTER96.86 27396.55 28097.79 26297.91 34994.21 30597.56 23298.87 26297.49 20199.06 13699.05 14880.72 37399.80 18698.44 9899.82 9699.37 186
BH-untuned96.83 27496.75 26697.08 31198.74 26993.33 33296.71 28898.26 31196.72 26198.44 23197.37 33995.20 24199.47 34191.89 35697.43 36498.44 330
BH-RMVSNet96.83 27496.58 27997.58 28298.47 31594.05 30996.67 29097.36 33696.70 26397.87 27097.98 30395.14 24399.44 34690.47 37798.58 32999.25 221
PAPM_NR96.82 27696.32 28698.30 22899.07 20996.69 23297.48 24098.76 28395.81 29696.61 34096.47 35794.12 27499.17 37790.82 37697.78 35599.06 252
MG-MVS96.77 27796.61 27697.26 30498.31 32893.06 33595.93 33198.12 32096.45 27397.92 26698.73 22193.77 28199.39 35391.19 37099.04 29399.33 203
test_yl96.69 27896.29 28797.90 25498.28 32995.24 27497.29 25497.36 33698.21 14298.17 24797.86 31086.27 34199.55 31794.87 29098.32 33398.89 282
DCV-MVSNet96.69 27896.29 28797.90 25498.28 32995.24 27497.29 25497.36 33698.21 14298.17 24797.86 31086.27 34199.55 31794.87 29098.32 33398.89 282
WTY-MVS96.67 28096.27 28997.87 25798.81 26194.61 29596.77 28497.92 32594.94 31997.12 31297.74 31791.11 31299.82 16693.89 32098.15 34499.18 238
PatchT96.65 28196.35 28497.54 28797.40 37695.32 27297.98 17796.64 35699.33 5096.89 32899.42 7484.32 35999.81 17997.69 14497.49 36097.48 376
TAPA-MVS96.21 1196.63 28295.95 29398.65 18198.93 23398.09 13696.93 27699.28 17883.58 39898.13 25397.78 31496.13 20599.40 35193.52 33099.29 26098.45 328
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MIMVSNet96.62 28396.25 29097.71 27399.04 21794.66 29399.16 5196.92 35197.23 23397.87 27099.10 13786.11 34599.65 28391.65 36099.21 27298.82 290
Patchmatch-test96.55 28496.34 28597.17 30898.35 32593.06 33598.40 13097.79 32697.33 21898.41 23498.67 23283.68 36499.69 25595.16 28599.31 25598.77 302
iter_conf0596.54 28596.07 29197.92 25397.90 35094.50 29797.87 19299.14 21997.73 17898.89 17098.95 17975.75 39199.87 10198.50 9599.92 5599.40 174
PMMVS96.51 28695.98 29298.09 24197.53 36995.84 25594.92 36498.84 27191.58 36996.05 35695.58 37295.68 22799.66 27895.59 27698.09 34798.76 304
PLCcopyleft94.65 1696.51 28695.73 29798.85 15498.75 26897.91 15996.42 30299.06 23090.94 37895.59 36197.38 33894.41 26499.59 30390.93 37398.04 35399.05 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
114514_t96.50 28895.77 29598.69 17999.48 12397.43 19497.84 19699.55 7281.42 40096.51 34498.58 24995.53 23199.67 26793.41 33499.58 20398.98 266
test111196.49 28996.82 26195.52 35899.42 13687.08 39199.22 4287.14 40499.11 7299.46 7199.58 4188.69 32799.86 11098.80 7299.95 3299.62 68
MAR-MVS96.47 29095.70 29898.79 16497.92 34899.12 5798.28 13998.60 29792.16 36595.54 36796.17 36294.77 25899.52 32889.62 38098.23 33797.72 369
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ECVR-MVScopyleft96.42 29196.61 27695.85 35099.38 14188.18 38799.22 4286.00 40699.08 8499.36 9299.57 4288.47 33299.82 16698.52 9499.95 3299.54 109
SCA96.41 29296.66 27395.67 35498.24 33288.35 38595.85 33696.88 35296.11 28497.67 28498.67 23293.10 28899.85 12294.16 31099.22 27098.81 294
DPM-MVS96.32 29395.59 30398.51 20798.76 26697.21 20794.54 37798.26 31191.94 36696.37 34897.25 34293.06 29099.43 34791.42 36598.74 31598.89 282
CMPMVSbinary75.91 2396.29 29495.44 30998.84 15596.25 39998.69 8897.02 26999.12 22188.90 38897.83 27498.86 19989.51 32298.90 38991.92 35599.51 22498.92 278
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CR-MVSNet96.28 29595.95 29397.28 30297.71 35894.22 30398.11 15698.92 25492.31 36396.91 32499.37 8085.44 35199.81 17997.39 15597.36 36997.81 363
CVMVSNet96.25 29697.21 24093.38 38299.10 20280.56 40997.20 26298.19 31696.94 24999.00 14899.02 15389.50 32399.80 18696.36 23899.59 19899.78 33
AUN-MVS96.24 29795.45 30898.60 19298.70 27997.22 20697.38 24697.65 33195.95 29295.53 36897.96 30782.11 37299.79 19996.31 24097.44 36398.80 299
EPNet96.14 29895.44 30998.25 23190.76 40995.50 26697.92 18394.65 37798.97 9392.98 39398.85 20289.12 32599.87 10195.99 25699.68 16799.39 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d96.06 29997.62 21791.38 38598.65 29598.57 9698.85 8296.95 34996.86 25499.90 1299.16 12399.18 1798.40 39589.23 38299.77 12477.18 403
Syy-MVS96.04 30095.56 30597.49 29297.10 38494.48 29896.18 31796.58 35795.65 29994.77 37692.29 40191.27 31199.36 35698.17 11298.05 35198.63 318
miper_enhance_ethall96.01 30195.74 29696.81 32696.41 39792.27 35393.69 39098.89 25991.14 37698.30 24197.35 34190.58 31599.58 30996.31 24099.03 29498.60 320
FMVSNet596.01 30195.20 31898.41 21897.53 36996.10 24498.74 8699.50 8697.22 23698.03 26399.04 15069.80 39599.88 8497.27 16099.71 15499.25 221
dmvs_re95.98 30395.39 31297.74 27098.86 24997.45 19298.37 13395.69 37297.95 16296.56 34195.95 36590.70 31497.68 39988.32 38496.13 38798.11 348
baseline195.96 30495.44 30997.52 28998.51 31393.99 31598.39 13196.09 36498.21 14298.40 23897.76 31686.88 33799.63 28995.42 28089.27 40398.95 272
HY-MVS95.94 1395.90 30595.35 31497.55 28697.95 34694.79 28698.81 8596.94 35092.28 36495.17 37298.57 25089.90 32099.75 22991.20 36997.33 37198.10 349
GA-MVS95.86 30695.32 31597.49 29298.60 29894.15 30893.83 38897.93 32495.49 30596.68 33697.42 33683.21 36599.30 36696.22 24598.55 33099.01 261
OpenMVS_ROBcopyleft95.38 1495.84 30795.18 31997.81 26198.41 32397.15 21397.37 24798.62 29683.86 39798.65 20498.37 27294.29 26999.68 26488.41 38398.62 32796.60 388
cl2295.79 30895.39 31296.98 31696.77 39192.79 34194.40 37998.53 30094.59 32697.89 26998.17 28982.82 36999.24 37296.37 23699.03 29498.92 278
131495.74 30995.60 30296.17 34597.53 36992.75 34398.07 16298.31 31091.22 37494.25 38296.68 35295.53 23199.03 38191.64 36197.18 37396.74 386
WB-MVSnew95.73 31095.57 30496.23 34296.70 39290.70 37696.07 32393.86 38695.60 30197.04 31795.45 37996.00 21299.55 31791.04 37198.31 33598.43 331
PVSNet93.40 1795.67 31195.70 29895.57 35798.83 25588.57 38392.50 39597.72 32892.69 35996.49 34796.44 35893.72 28299.43 34793.61 32799.28 26198.71 308
FE-MVS95.66 31294.95 32497.77 26498.53 31095.28 27399.40 1696.09 36493.11 35397.96 26599.26 10179.10 38399.77 21692.40 35398.71 31998.27 342
tttt051795.64 31394.98 32297.64 27899.36 14893.81 32398.72 9090.47 39998.08 15698.67 20198.34 27673.88 39399.92 5197.77 13799.51 22499.20 231
PatchmatchNetpermissive95.58 31495.67 30095.30 36397.34 37887.32 39097.65 22196.65 35595.30 31197.07 31598.69 22884.77 35499.75 22994.97 28898.64 32498.83 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TR-MVS95.55 31595.12 32096.86 32597.54 36793.94 31696.49 29896.53 35994.36 33497.03 31996.61 35394.26 27099.16 37886.91 39096.31 38497.47 377
JIA-IIPM95.52 31695.03 32197.00 31496.85 38994.03 31296.93 27695.82 36899.20 6594.63 38099.71 1783.09 36699.60 29994.42 30494.64 39597.36 379
CHOSEN 280x42095.51 31795.47 30695.65 35698.25 33188.27 38693.25 39298.88 26093.53 34794.65 37997.15 34586.17 34399.93 4197.41 15499.93 4498.73 307
ADS-MVSNet295.43 31894.98 32296.76 32998.14 33891.74 35797.92 18397.76 32790.23 37996.51 34498.91 18685.61 34899.85 12292.88 34296.90 37698.69 312
PAPR95.29 31994.47 32897.75 26897.50 37495.14 27994.89 36598.71 29091.39 37395.35 37195.48 37694.57 26199.14 38084.95 39397.37 36798.97 269
thisisatest053095.27 32094.45 32997.74 27099.19 18194.37 30197.86 19490.20 40097.17 23898.22 24597.65 32273.53 39499.90 6596.90 19299.35 24998.95 272
ADS-MVSNet95.24 32194.93 32596.18 34498.14 33890.10 37997.92 18397.32 33990.23 37996.51 34498.91 18685.61 34899.74 23492.88 34296.90 37698.69 312
BH-w/o95.13 32294.89 32695.86 34998.20 33591.31 36495.65 34197.37 33593.64 34596.52 34395.70 37193.04 29199.02 38288.10 38595.82 39097.24 380
tpmrst95.07 32395.46 30793.91 37597.11 38384.36 40297.62 22496.96 34894.98 31796.35 34998.80 21185.46 35099.59 30395.60 27596.23 38597.79 366
pmmvs395.03 32494.40 33096.93 31897.70 36092.53 34695.08 36097.71 32988.57 38997.71 28198.08 29779.39 38099.82 16696.19 24799.11 28898.43 331
tpmvs95.02 32595.25 31694.33 37096.39 39885.87 39398.08 16096.83 35395.46 30695.51 36998.69 22885.91 34699.53 32494.16 31096.23 38597.58 374
EPNet_dtu94.93 32694.78 32795.38 36293.58 40687.68 38996.78 28395.69 37297.35 21789.14 40298.09 29688.15 33499.49 33594.95 28999.30 25898.98 266
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas94.79 32794.33 33396.15 34896.02 40292.36 35192.34 39799.26 18685.34 39695.08 37494.96 38592.96 29298.53 39494.41 30798.59 32897.56 375
tpm94.67 32894.34 33295.66 35597.68 36388.42 38497.88 18994.90 37594.46 32996.03 35798.56 25178.66 38499.79 19995.88 26095.01 39498.78 301
test0.0.03 194.51 32993.69 33896.99 31596.05 40093.61 33094.97 36393.49 38796.17 28197.57 29294.88 38682.30 37099.01 38493.60 32894.17 39898.37 338
thres600view794.45 33093.83 33696.29 33899.06 21391.53 35997.99 17694.24 38398.34 12997.44 30395.01 38279.84 37699.67 26784.33 39498.23 33797.66 371
PCF-MVS92.86 1894.36 33193.00 34898.42 21798.70 27997.56 18693.16 39399.11 22379.59 40197.55 29397.43 33592.19 30299.73 23979.85 40299.45 23697.97 357
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata94.32 33292.59 35099.53 3499.46 12699.21 2898.65 9699.34 14798.62 11597.54 29445.85 40497.50 13399.83 15696.79 20099.53 21999.56 98
MVS-HIRNet94.32 33295.62 30190.42 38698.46 31675.36 41096.29 31089.13 40295.25 31295.38 37099.75 1192.88 29399.19 37694.07 31699.39 24396.72 387
ET-MVSNet_ETH3D94.30 33493.21 34497.58 28298.14 33894.47 29994.78 36793.24 39094.72 32389.56 40195.87 36878.57 38699.81 17996.91 18797.11 37598.46 326
thres100view90094.19 33593.67 33995.75 35399.06 21391.35 36398.03 16894.24 38398.33 13097.40 30594.98 38479.84 37699.62 29283.05 39698.08 34896.29 389
E-PMN94.17 33694.37 33193.58 37996.86 38885.71 39690.11 39997.07 34498.17 14997.82 27697.19 34384.62 35698.94 38689.77 37997.68 35796.09 395
thres40094.14 33793.44 34196.24 34198.93 23391.44 36197.60 22794.29 38197.94 16397.10 31394.31 39079.67 37899.62 29283.05 39698.08 34897.66 371
thisisatest051594.12 33893.16 34596.97 31798.60 29892.90 33993.77 38990.61 39894.10 33996.91 32495.87 36874.99 39299.80 18694.52 29999.12 28798.20 344
tfpn200view994.03 33993.44 34195.78 35298.93 23391.44 36197.60 22794.29 38197.94 16397.10 31394.31 39079.67 37899.62 29283.05 39698.08 34896.29 389
CostFormer93.97 34093.78 33794.51 36997.53 36985.83 39597.98 17795.96 36689.29 38794.99 37598.63 24278.63 38599.62 29294.54 29896.50 38198.09 350
test-LLR93.90 34193.85 33594.04 37396.53 39484.62 40094.05 38592.39 39296.17 28194.12 38495.07 38082.30 37099.67 26795.87 26398.18 34097.82 361
EMVS93.83 34294.02 33493.23 38396.83 39084.96 39789.77 40096.32 36197.92 16597.43 30496.36 36186.17 34398.93 38787.68 38697.73 35695.81 396
baseline293.73 34392.83 34996.42 33597.70 36091.28 36696.84 28189.77 40193.96 34392.44 39695.93 36679.14 38299.77 21692.94 34096.76 38098.21 343
thres20093.72 34493.14 34695.46 36198.66 29291.29 36596.61 29394.63 37897.39 21396.83 33193.71 39379.88 37599.56 31482.40 39998.13 34595.54 398
EPMVS93.72 34493.27 34395.09 36696.04 40187.76 38898.13 15385.01 40794.69 32496.92 32298.64 24078.47 38899.31 36495.04 28696.46 38298.20 344
testing393.51 34692.09 35597.75 26898.60 29894.40 30097.32 25195.26 37497.56 19496.79 33495.50 37553.57 41199.77 21695.26 28398.97 30399.08 249
dp93.47 34793.59 34093.13 38496.64 39381.62 40897.66 21996.42 36092.80 35896.11 35398.64 24078.55 38799.59 30393.31 33592.18 40298.16 346
FPMVS93.44 34892.23 35397.08 31199.25 16697.86 16395.61 34297.16 34292.90 35693.76 39098.65 23775.94 39095.66 40379.30 40397.49 36097.73 368
testing9193.32 34992.27 35296.47 33497.54 36791.25 36796.17 31996.76 35497.18 23793.65 39193.50 39565.11 40599.63 28993.04 33997.45 36298.53 323
tpm cat193.29 35093.13 34793.75 37797.39 37784.74 39897.39 24597.65 33183.39 39994.16 38398.41 26782.86 36899.39 35391.56 36395.35 39397.14 381
MVS93.19 35192.09 35596.50 33396.91 38794.03 31298.07 16298.06 32268.01 40294.56 38196.48 35695.96 21999.30 36683.84 39596.89 37896.17 391
tpm293.09 35292.58 35194.62 36897.56 36586.53 39297.66 21995.79 36986.15 39494.07 38698.23 28575.95 38999.53 32490.91 37496.86 37997.81 363
testing1193.08 35392.02 35796.26 34097.56 36590.83 37496.32 30895.70 37096.47 27292.66 39593.73 39264.36 40699.59 30393.77 32597.57 35898.37 338
testing9993.04 35491.98 36096.23 34297.53 36990.70 37696.35 30695.94 36796.87 25393.41 39293.43 39663.84 40799.59 30393.24 33797.19 37298.40 334
dmvs_testset92.94 35592.21 35495.13 36498.59 30190.99 37197.65 22192.09 39496.95 24894.00 38793.55 39492.34 30196.97 40272.20 40592.52 40097.43 378
KD-MVS_2432*160092.87 35691.99 35895.51 35991.37 40789.27 38194.07 38398.14 31895.42 30797.25 31096.44 35867.86 39799.24 37291.28 36796.08 38898.02 353
miper_refine_blended92.87 35691.99 35895.51 35991.37 40789.27 38194.07 38398.14 31895.42 30797.25 31096.44 35867.86 39799.24 37291.28 36796.08 38898.02 353
ETVMVS92.60 35891.08 36797.18 30697.70 36093.65 32996.54 29495.70 37096.51 26894.68 37892.39 40061.80 40899.50 33386.97 38897.41 36598.40 334
MVEpermissive83.40 2292.50 35991.92 36194.25 37198.83 25591.64 35892.71 39483.52 40895.92 29386.46 40595.46 37795.20 24195.40 40480.51 40198.64 32495.73 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test250692.39 36091.89 36293.89 37699.38 14182.28 40699.32 2366.03 41299.08 8498.77 19299.57 4266.26 40299.84 13998.71 8099.95 3299.54 109
UWE-MVS92.38 36191.76 36494.21 37297.16 38284.65 39995.42 35188.45 40395.96 29196.17 35195.84 37066.36 40199.71 24791.87 35798.64 32498.28 341
gg-mvs-nofinetune92.37 36291.20 36695.85 35095.80 40392.38 35099.31 2781.84 40999.75 591.83 39899.74 1368.29 39699.02 38287.15 38797.12 37496.16 392
test-mter92.33 36391.76 36494.04 37396.53 39484.62 40094.05 38592.39 39294.00 34294.12 38495.07 38065.63 40499.67 26795.87 26398.18 34097.82 361
IB-MVS91.63 1992.24 36490.90 36896.27 33997.22 38191.24 36894.36 38093.33 38992.37 36292.24 39794.58 38966.20 40399.89 7593.16 33894.63 39697.66 371
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,192.19 36591.77 36393.46 38096.48 39682.80 40594.05 38591.52 39694.45 33194.00 38794.88 38666.65 40099.56 31495.78 26898.11 34698.02 353
testing22291.96 36690.37 37096.72 33097.47 37592.59 34496.11 32194.76 37696.83 25592.90 39492.87 39857.92 40999.55 31786.93 38997.52 35998.00 356
myMVS_eth3d91.92 36790.45 36996.30 33797.10 38490.90 37296.18 31796.58 35795.65 29994.77 37692.29 40153.88 41099.36 35689.59 38198.05 35198.63 318
PAPM91.88 36890.34 37196.51 33298.06 34392.56 34592.44 39697.17 34186.35 39390.38 40096.01 36386.61 33999.21 37570.65 40695.43 39297.75 367
PVSNet_089.98 2191.15 36990.30 37293.70 37897.72 35684.34 40390.24 39897.42 33490.20 38293.79 38993.09 39790.90 31398.89 39086.57 39172.76 40597.87 360
EGC-MVSNET85.24 37080.54 37399.34 7399.77 2999.20 3499.08 5999.29 17512.08 40620.84 40799.42 7497.55 12699.85 12297.08 17499.72 14998.96 271
test_method79.78 37179.50 37480.62 38780.21 41045.76 41370.82 40198.41 30731.08 40580.89 40697.71 31884.85 35397.37 40091.51 36480.03 40498.75 305
tmp_tt78.77 37278.73 37578.90 38858.45 41174.76 41294.20 38278.26 41139.16 40486.71 40492.82 39980.50 37475.19 40786.16 39292.29 40186.74 402
cdsmvs_eth3d_5k24.66 37332.88 3760.00 3910.00 4140.00 4160.00 40299.10 2250.00 4090.00 41097.58 32699.21 160.00 4100.00 4090.00 4080.00 406
testmvs17.12 37420.53 3776.87 39012.05 4124.20 41593.62 3916.73 4134.62 40810.41 40824.33 4058.28 4133.56 4099.69 40815.07 40612.86 405
test12317.04 37520.11 3787.82 38910.25 4134.91 41494.80 3664.47 4144.93 40710.00 40924.28 4069.69 4123.64 40810.14 40712.43 40714.92 404
pcd_1.5k_mvsjas8.17 37610.90 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40998.07 860.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.12 37710.83 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41097.48 3320.00 4140.00 4100.00 4090.00 4080.00 406
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS90.90 37291.37 366
FOURS199.73 3999.67 299.43 1199.54 7799.43 4099.26 112
MSC_two_6792asdad99.32 8098.43 31998.37 11198.86 26799.89 7597.14 16999.60 19499.71 47
PC_three_145293.27 35099.40 8398.54 25298.22 7497.00 40195.17 28499.45 23699.49 128
No_MVS99.32 8098.43 31998.37 11198.86 26799.89 7597.14 16999.60 19499.71 47
test_one_060199.39 14099.20 3499.31 15998.49 12498.66 20399.02 15397.64 118
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.01 22198.84 7599.07 22994.10 33998.05 26198.12 29296.36 19999.86 11092.70 34999.19 276
RE-MVS-def98.58 11299.20 17899.38 898.48 12299.30 16798.64 11198.95 15798.96 17597.75 10996.56 22399.39 24399.45 151
IU-MVS99.49 11699.15 4798.87 26292.97 35499.41 8096.76 20499.62 18799.66 59
OPU-MVS98.82 15798.59 30198.30 11698.10 15898.52 25598.18 7898.75 39294.62 29699.48 23399.41 165
test_241102_TWO99.30 16798.03 15799.26 11299.02 15397.51 13299.88 8496.91 18799.60 19499.66 59
test_241102_ONE99.49 11699.17 3999.31 15997.98 15999.66 4298.90 18998.36 6399.48 338
9.1497.78 20299.07 20997.53 23599.32 15495.53 30498.54 22398.70 22797.58 12399.76 22294.32 30999.46 234
save fliter99.11 20097.97 15396.53 29699.02 24198.24 139
test_0728_THIRD98.17 14999.08 13499.02 15397.89 9999.88 8497.07 17599.71 15499.70 52
test_0728_SECOND99.60 1199.50 10999.23 2698.02 17099.32 15499.88 8496.99 18199.63 18499.68 55
test072699.50 10999.21 2898.17 15199.35 14197.97 16099.26 11299.06 14197.61 121
GSMVS98.81 294
test_part299.36 14899.10 6099.05 141
sam_mvs184.74 35598.81 294
sam_mvs84.29 361
ambc98.24 23398.82 25895.97 25298.62 10099.00 24699.27 10899.21 11196.99 16499.50 33396.55 22699.50 23199.26 220
MTGPAbinary99.20 198
test_post197.59 22920.48 40883.07 36799.66 27894.16 310
test_post21.25 40783.86 36399.70 251
patchmatchnet-post98.77 21684.37 35899.85 122
GG-mvs-BLEND94.76 36794.54 40592.13 35599.31 2780.47 41088.73 40391.01 40367.59 39998.16 39882.30 40094.53 39793.98 400
MTMP97.93 18191.91 395
gm-plane-assit94.83 40481.97 40788.07 39194.99 38399.60 29991.76 358
test9_res93.28 33699.15 28199.38 184
TEST998.71 27598.08 14095.96 32899.03 23891.40 37295.85 35897.53 32896.52 19099.76 222
test_898.67 28798.01 14895.91 33399.02 24191.64 36795.79 36097.50 33196.47 19299.76 222
agg_prior292.50 35299.16 27999.37 186
agg_prior98.68 28697.99 14999.01 24495.59 36199.77 216
TestCases99.16 10699.50 10998.55 9799.58 5496.80 25698.88 17499.06 14197.65 11599.57 31194.45 30299.61 19299.37 186
test_prior497.97 15395.86 334
test_prior295.74 33996.48 27196.11 35397.63 32495.92 22194.16 31099.20 273
test_prior98.95 14298.69 28497.95 15799.03 23899.59 30399.30 212
旧先验295.76 33888.56 39097.52 29699.66 27894.48 300
新几何295.93 331
新几何198.91 14898.94 23197.76 17498.76 28387.58 39296.75 33598.10 29494.80 25599.78 21092.73 34899.00 29999.20 231
旧先验198.82 25897.45 19298.76 28398.34 27695.50 23499.01 29899.23 226
无先验95.74 33998.74 28889.38 38699.73 23992.38 35499.22 230
原ACMM295.53 345
原ACMM198.35 22398.90 24196.25 24298.83 27592.48 36196.07 35598.10 29495.39 23799.71 24792.61 35198.99 30099.08 249
test22298.92 23796.93 22495.54 34498.78 28185.72 39596.86 33098.11 29394.43 26399.10 28999.23 226
testdata299.79 19992.80 346
segment_acmp97.02 162
testdata98.09 24198.93 23395.40 27098.80 27890.08 38397.45 30298.37 27295.26 23999.70 25193.58 32998.95 30599.17 242
testdata195.44 35096.32 277
test1298.93 14598.58 30397.83 16698.66 29296.53 34295.51 23399.69 25599.13 28499.27 217
plane_prior799.19 18197.87 162
plane_prior698.99 22597.70 18094.90 248
plane_prior599.27 18199.70 25194.42 30499.51 22499.45 151
plane_prior497.98 303
plane_prior397.78 17397.41 21197.79 277
plane_prior297.77 20498.20 146
plane_prior199.05 216
plane_prior97.65 18297.07 26896.72 26199.36 247
n20.00 415
nn0.00 415
door-mid99.57 61
lessismore_v098.97 13999.73 3997.53 18886.71 40599.37 9099.52 5789.93 31999.92 5198.99 6399.72 14999.44 155
LGP-MVS_train99.47 5499.57 8298.97 6699.48 9596.60 26599.10 13299.06 14198.71 3999.83 15695.58 27799.78 12099.62 68
test1198.87 262
door99.41 121
HQP5-MVS96.79 227
HQP-NCC98.67 28796.29 31096.05 28695.55 364
ACMP_Plane98.67 28796.29 31096.05 28695.55 364
BP-MVS92.82 344
HQP4-MVS95.56 36399.54 32299.32 205
HQP3-MVS99.04 23699.26 265
HQP2-MVS93.84 277
NP-MVS98.84 25397.39 19696.84 349
MDTV_nov1_ep13_2view74.92 41197.69 21490.06 38497.75 28085.78 34793.52 33098.69 312
MDTV_nov1_ep1395.22 31797.06 38683.20 40497.74 20996.16 36294.37 33396.99 32098.83 20583.95 36299.53 32493.90 31997.95 354
ACMMP++_ref99.77 124
ACMMP++99.68 167
Test By Simon96.52 190
ITE_SJBPF98.87 15299.22 17298.48 10499.35 14197.50 19998.28 24398.60 24797.64 11899.35 35993.86 32299.27 26298.79 300
DeepMVS_CXcopyleft93.44 38198.24 33294.21 30594.34 38064.28 40391.34 39994.87 38889.45 32492.77 40677.54 40493.14 39993.35 401