LCM-MVSNet | | | 99.93 1 | 99.92 1 | 99.94 1 | 99.99 1 | 99.97 1 | 99.90 1 | 99.89 2 | 99.98 1 | 99.99 1 | 99.96 1 | 99.77 1 | 100.00 1 | 99.81 1 | 100.00 1 | 99.85 7 |
|
UniMVSNet_ETH3D | | | 99.69 2 | 99.69 4 | 99.69 3 | 99.84 14 | 99.34 14 | 99.69 4 | 99.58 26 | 99.90 2 | 99.86 7 | 99.78 5 | 99.58 3 | 99.95 15 | 99.00 33 | 99.95 16 | 99.78 14 |
|
pmmvs6 | | | 99.67 3 | 99.70 3 | 99.60 13 | 99.90 4 | 99.27 20 | 99.53 7 | 99.76 7 | 99.64 12 | 99.84 8 | 99.83 2 | 99.50 5 | 99.87 83 | 99.36 14 | 99.92 34 | 99.64 39 |
|
LTVRE_ROB | | 98.40 1 | 99.67 3 | 99.71 2 | 99.56 24 | 99.85 13 | 99.11 55 | 99.90 1 | 99.78 4 | 99.63 14 | 99.78 10 | 99.67 16 | 99.48 6 | 99.81 159 | 99.30 17 | 99.97 11 | 99.77 16 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
mvs_tets | | | 99.63 5 | 99.67 5 | 99.49 48 | 99.88 7 | 98.61 87 | 99.34 13 | 99.71 10 | 99.27 43 | 99.90 4 | 99.74 8 | 99.68 2 | 99.97 3 | 99.55 8 | 99.99 5 | 99.88 3 |
|
jajsoiax | | | 99.58 6 | 99.61 7 | 99.48 50 | 99.87 10 | 98.61 87 | 99.28 27 | 99.66 17 | 99.09 65 | 99.89 6 | 99.68 14 | 99.53 4 | 99.97 3 | 99.50 10 | 99.99 5 | 99.87 4 |
|
ANet_high | | | 99.57 7 | 99.67 5 | 99.28 79 | 99.89 6 | 98.09 127 | 99.14 40 | 99.93 1 | 99.82 3 | 99.93 2 | 99.81 3 | 99.17 12 | 99.94 23 | 99.31 16 | 100.00 1 | 99.82 9 |
|
v7n | | | 99.53 8 | 99.57 8 | 99.41 60 | 99.88 7 | 98.54 95 | 99.45 9 | 99.61 22 | 99.66 11 | 99.68 19 | 99.66 17 | 98.44 39 | 99.95 15 | 99.73 2 | 99.96 14 | 99.75 22 |
|
test_djsdf | | | 99.52 9 | 99.51 9 | 99.53 36 | 99.86 11 | 98.74 76 | 99.39 11 | 99.56 40 | 99.11 56 | 99.70 15 | 99.73 10 | 99.00 15 | 99.97 3 | 99.26 18 | 99.98 9 | 99.89 2 |
|
anonymousdsp | | | 99.51 10 | 99.47 12 | 99.62 6 | 99.88 7 | 99.08 59 | 99.34 13 | 99.69 13 | 98.93 79 | 99.65 22 | 99.72 11 | 98.93 19 | 99.95 15 | 99.11 27 | 100.00 1 | 99.82 9 |
|
UA-Net | | | 99.47 11 | 99.40 14 | 99.70 2 | 99.49 84 | 99.29 17 | 99.80 3 | 99.72 9 | 99.82 3 | 99.04 111 | 99.81 3 | 98.05 67 | 99.96 8 | 98.85 41 | 99.99 5 | 99.86 6 |
|
PS-MVSNAJss | | | 99.46 12 | 99.49 10 | 99.35 69 | 99.90 4 | 98.15 123 | 99.20 32 | 99.65 18 | 99.48 24 | 99.92 3 | 99.71 12 | 98.07 64 | 99.96 8 | 99.53 9 | 100.00 1 | 99.93 1 |
|
pm-mvs1 | | | 99.44 13 | 99.48 11 | 99.33 74 | 99.80 17 | 98.63 84 | 99.29 23 | 99.63 19 | 99.30 41 | 99.65 22 | 99.60 25 | 99.16 14 | 99.82 146 | 99.07 29 | 99.83 62 | 99.56 71 |
|
TransMVSNet (Re) | | | 99.44 13 | 99.47 12 | 99.36 64 | 99.80 17 | 98.58 90 | 99.27 29 | 99.57 33 | 99.39 32 | 99.75 12 | 99.62 21 | 99.17 12 | 99.83 136 | 99.06 30 | 99.62 153 | 99.66 34 |
|
DTE-MVSNet | | | 99.43 15 | 99.35 17 | 99.66 4 | 99.71 30 | 99.30 16 | 99.31 18 | 99.51 55 | 99.64 12 | 99.56 28 | 99.46 43 | 98.23 52 | 99.97 3 | 98.78 44 | 99.93 25 | 99.72 25 |
|
TDRefinement | | | 99.42 16 | 99.38 15 | 99.55 26 | 99.76 22 | 99.33 15 | 99.68 5 | 99.71 10 | 99.38 33 | 99.53 33 | 99.61 23 | 98.64 28 | 99.80 168 | 98.24 74 | 99.84 56 | 99.52 93 |
|
PEN-MVS | | | 99.41 17 | 99.34 19 | 99.62 6 | 99.73 24 | 99.14 48 | 99.29 23 | 99.54 48 | 99.62 17 | 99.56 28 | 99.42 49 | 98.16 60 | 99.96 8 | 98.78 44 | 99.93 25 | 99.77 16 |
|
nrg030 | | | 99.40 18 | 99.35 17 | 99.54 29 | 99.58 51 | 99.13 51 | 98.98 55 | 99.48 67 | 99.68 9 | 99.46 43 | 99.26 69 | 98.62 29 | 99.73 221 | 99.17 26 | 99.92 34 | 99.76 20 |
|
PS-CasMVS | | | 99.40 18 | 99.33 20 | 99.62 6 | 99.71 30 | 99.10 56 | 99.29 23 | 99.53 51 | 99.53 23 | 99.46 43 | 99.41 51 | 98.23 52 | 99.95 15 | 98.89 39 | 99.95 16 | 99.81 11 |
|
MIMVSNet1 | | | 99.38 20 | 99.32 21 | 99.55 26 | 99.86 11 | 99.19 34 | 99.41 10 | 99.59 24 | 99.59 20 | 99.71 14 | 99.57 27 | 97.12 134 | 99.90 49 | 99.21 23 | 99.87 52 | 99.54 83 |
|
OurMVSNet-221017-0 | | | 99.37 21 | 99.31 22 | 99.53 36 | 99.91 3 | 98.98 61 | 99.63 6 | 99.58 26 | 99.44 29 | 99.78 10 | 99.76 6 | 96.39 176 | 99.92 35 | 99.44 13 | 99.92 34 | 99.68 31 |
|
Vis-MVSNet |  | | 99.34 22 | 99.36 16 | 99.27 82 | 99.73 24 | 98.26 110 | 99.17 37 | 99.78 4 | 99.11 56 | 99.27 73 | 99.48 41 | 98.82 21 | 99.95 15 | 98.94 35 | 99.93 25 | 99.59 55 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
WR-MVS_H | | | 99.33 23 | 99.22 27 | 99.65 5 | 99.71 30 | 99.24 23 | 99.32 15 | 99.55 44 | 99.46 27 | 99.50 39 | 99.34 60 | 97.30 123 | 99.93 28 | 98.90 37 | 99.93 25 | 99.77 16 |
|
VPA-MVSNet | | | 99.30 24 | 99.30 23 | 99.28 79 | 99.49 84 | 98.36 106 | 99.00 52 | 99.45 78 | 99.63 14 | 99.52 35 | 99.44 48 | 98.25 50 | 99.88 67 | 99.09 28 | 99.84 56 | 99.62 44 |
|
Anonymous20231211 | | | 99.27 25 | 99.27 24 | 99.26 85 | 99.29 122 | 98.18 120 | 99.49 8 | 99.51 55 | 99.70 8 | 99.80 9 | 99.68 14 | 96.84 149 | 99.83 136 | 99.21 23 | 99.91 40 | 99.77 16 |
|
FC-MVSNet-test | | | 99.27 25 | 99.25 25 | 99.34 72 | 99.77 20 | 98.37 105 | 99.30 22 | 99.57 33 | 99.61 19 | 99.40 52 | 99.50 36 | 97.12 134 | 99.85 105 | 99.02 32 | 99.94 21 | 99.80 12 |
|
DIV-MVS_2432*1600 | | | 99.25 27 | 99.18 28 | 99.44 56 | 99.63 48 | 99.06 60 | 98.69 73 | 99.54 48 | 99.31 39 | 99.62 27 | 99.53 33 | 97.36 121 | 99.86 91 | 99.24 22 | 99.71 117 | 99.39 150 |
|
ACMH | | 96.65 7 | 99.25 27 | 99.24 26 | 99.26 85 | 99.72 29 | 98.38 104 | 99.07 46 | 99.55 44 | 98.30 111 | 99.65 22 | 99.45 47 | 99.22 9 | 99.76 206 | 98.44 65 | 99.77 90 | 99.64 39 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CP-MVSNet | | | 99.21 29 | 99.09 34 | 99.56 24 | 99.65 43 | 98.96 65 | 99.13 41 | 99.34 118 | 99.42 30 | 99.33 62 | 99.26 69 | 97.01 141 | 99.94 23 | 98.74 49 | 99.93 25 | 99.79 13 |
|
TranMVSNet+NR-MVSNet | | | 99.17 30 | 99.07 36 | 99.46 55 | 99.37 110 | 98.87 67 | 98.39 105 | 99.42 90 | 99.42 30 | 99.36 58 | 99.06 101 | 98.38 42 | 99.95 15 | 98.34 71 | 99.90 44 | 99.57 66 |
|
FMVSNet1 | | | 99.17 30 | 99.17 29 | 99.17 94 | 99.55 65 | 98.24 112 | 99.20 32 | 99.44 81 | 99.21 45 | 99.43 47 | 99.55 29 | 97.82 83 | 99.86 91 | 98.42 67 | 99.89 48 | 99.41 141 |
|
FIs | | | 99.14 32 | 99.09 34 | 99.29 77 | 99.70 36 | 98.28 109 | 99.13 41 | 99.52 54 | 99.48 24 | 99.24 80 | 99.41 51 | 96.79 155 | 99.82 146 | 98.69 52 | 99.88 49 | 99.76 20 |
|
XXY-MVS | | | 99.14 32 | 99.15 32 | 99.10 106 | 99.76 22 | 97.74 170 | 98.85 64 | 99.62 20 | 98.48 102 | 99.37 56 | 99.49 39 | 98.75 24 | 99.86 91 | 98.20 77 | 99.80 77 | 99.71 26 |
|
ACMH+ | | 96.62 9 | 99.08 34 | 99.00 39 | 99.33 74 | 99.71 30 | 98.83 70 | 98.60 79 | 99.58 26 | 99.11 56 | 99.53 33 | 99.18 80 | 98.81 22 | 99.67 248 | 96.71 171 | 99.77 90 | 99.50 100 |
|
GeoE | | | 99.05 35 | 98.99 41 | 99.25 87 | 99.44 100 | 98.35 107 | 98.73 70 | 99.56 40 | 98.42 104 | 98.91 136 | 98.81 173 | 98.94 18 | 99.91 45 | 98.35 70 | 99.73 106 | 99.49 104 |
|
Gipuma |  | | 99.03 36 | 99.16 30 | 98.64 171 | 99.94 2 | 98.51 97 | 99.32 15 | 99.75 8 | 99.58 22 | 98.60 179 | 99.62 21 | 98.22 55 | 99.51 304 | 97.70 107 | 99.73 106 | 97.89 314 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
v8 | | | 99.01 37 | 99.16 30 | 98.57 184 | 99.47 94 | 96.31 228 | 98.90 59 | 99.47 73 | 99.03 68 | 99.52 35 | 99.57 27 | 96.93 145 | 99.81 159 | 99.60 4 | 99.98 9 | 99.60 49 |
|
HPM-MVS_fast | | | 99.01 37 | 98.82 49 | 99.57 18 | 99.71 30 | 99.35 11 | 99.00 52 | 99.50 57 | 97.33 189 | 98.94 133 | 98.86 159 | 98.75 24 | 99.82 146 | 97.53 113 | 99.71 117 | 99.56 71 |
|
APDe-MVS | | | 98.99 39 | 98.79 52 | 99.60 13 | 99.21 136 | 99.15 45 | 98.87 61 | 99.48 67 | 97.57 163 | 99.35 59 | 99.24 72 | 97.83 80 | 99.89 58 | 97.88 96 | 99.70 122 | 99.75 22 |
|
abl_6 | | | 98.99 39 | 98.78 53 | 99.61 9 | 99.45 98 | 99.46 3 | 98.60 79 | 99.50 57 | 98.59 96 | 99.24 80 | 99.04 111 | 98.54 34 | 99.89 58 | 96.45 193 | 99.62 153 | 99.50 100 |
|
EG-PatchMatch MVS | | | 98.99 39 | 99.01 38 | 98.94 134 | 99.50 77 | 97.47 183 | 98.04 139 | 99.59 24 | 98.15 128 | 99.40 52 | 99.36 57 | 98.58 32 | 99.76 206 | 98.78 44 | 99.68 133 | 99.59 55 |
|
COLMAP_ROB |  | 96.50 10 | 98.99 39 | 98.85 47 | 99.41 60 | 99.58 51 | 99.10 56 | 98.74 68 | 99.56 40 | 99.09 65 | 99.33 62 | 99.19 78 | 98.40 41 | 99.72 229 | 95.98 218 | 99.76 99 | 99.42 138 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Baseline_NR-MVSNet | | | 98.98 43 | 98.86 46 | 99.36 64 | 99.82 16 | 98.55 92 | 97.47 201 | 99.57 33 | 99.37 34 | 99.21 84 | 99.61 23 | 96.76 158 | 99.83 136 | 98.06 85 | 99.83 62 | 99.71 26 |
|
v10 | | | 98.97 44 | 99.11 33 | 98.55 189 | 99.44 100 | 96.21 230 | 98.90 59 | 99.55 44 | 98.73 88 | 99.48 40 | 99.60 25 | 96.63 165 | 99.83 136 | 99.70 3 | 99.99 5 | 99.61 48 |
|
DeepC-MVS | | 97.60 4 | 98.97 44 | 98.93 42 | 99.10 106 | 99.35 115 | 97.98 143 | 98.01 145 | 99.46 75 | 97.56 165 | 99.54 30 | 99.50 36 | 98.97 16 | 99.84 122 | 98.06 85 | 99.92 34 | 99.49 104 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
baseline | | | 98.96 46 | 99.02 37 | 98.76 161 | 99.38 108 | 97.26 194 | 98.49 94 | 99.50 57 | 98.86 82 | 99.19 86 | 99.06 101 | 98.23 52 | 99.69 236 | 98.71 51 | 99.76 99 | 99.33 178 |
|
casdiffmvs | | | 98.95 47 | 99.00 39 | 98.81 151 | 99.38 108 | 97.33 189 | 97.82 163 | 99.57 33 | 99.17 53 | 99.35 59 | 99.17 84 | 98.35 46 | 99.69 236 | 98.46 64 | 99.73 106 | 99.41 141 |
|
NR-MVSNet | | | 98.95 47 | 98.82 49 | 99.36 64 | 99.16 154 | 98.72 81 | 99.22 31 | 99.20 168 | 99.10 62 | 99.72 13 | 98.76 181 | 96.38 178 | 99.86 91 | 98.00 90 | 99.82 65 | 99.50 100 |
|
Anonymous20240529 | | | 98.93 49 | 98.87 44 | 99.12 102 | 99.19 143 | 98.22 117 | 99.01 50 | 98.99 223 | 99.25 44 | 99.54 30 | 99.37 54 | 97.04 137 | 99.80 168 | 97.89 93 | 99.52 189 | 99.35 170 |
|
DP-MVS | | | 98.93 49 | 98.81 51 | 99.28 79 | 99.21 136 | 98.45 101 | 98.46 99 | 99.33 123 | 99.63 14 | 99.48 40 | 99.15 90 | 97.23 131 | 99.75 213 | 97.17 128 | 99.66 144 | 99.63 43 |
|
SED-MVS | | | 98.91 51 | 98.72 59 | 99.49 48 | 99.49 84 | 99.17 36 | 98.10 130 | 99.31 130 | 98.03 132 | 99.66 20 | 99.02 115 | 98.36 43 | 99.88 67 | 96.91 147 | 99.62 153 | 99.41 141 |
|
ACMM | | 96.08 12 | 98.91 51 | 98.73 57 | 99.48 50 | 99.55 65 | 99.14 48 | 98.07 133 | 99.37 102 | 97.62 158 | 99.04 111 | 98.96 134 | 98.84 20 | 99.79 181 | 97.43 117 | 99.65 145 | 99.49 104 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
tfpnnormal | | | 98.90 53 | 98.90 43 | 98.91 138 | 99.67 40 | 97.82 162 | 99.00 52 | 99.44 81 | 99.45 28 | 99.51 38 | 99.24 72 | 98.20 57 | 99.86 91 | 95.92 220 | 99.69 128 | 99.04 233 |
|
MTAPA | | | 98.88 54 | 98.64 71 | 99.61 9 | 99.67 40 | 99.36 9 | 98.43 102 | 99.20 168 | 98.83 85 | 98.89 140 | 98.90 146 | 96.98 143 | 99.92 35 | 97.16 129 | 99.70 122 | 99.56 71 |
|
VPNet | | | 98.87 55 | 98.83 48 | 99.01 127 | 99.70 36 | 97.62 178 | 98.43 102 | 99.35 112 | 99.47 26 | 99.28 71 | 99.05 108 | 96.72 161 | 99.82 146 | 98.09 83 | 99.36 217 | 99.59 55 |
|
UniMVSNet (Re) | | | 98.87 55 | 98.71 61 | 99.35 69 | 99.24 129 | 98.73 79 | 97.73 173 | 99.38 98 | 98.93 79 | 99.12 93 | 98.73 184 | 96.77 156 | 99.86 91 | 98.63 54 | 99.80 77 | 99.46 122 |
|
UniMVSNet_NR-MVSNet | | | 98.86 57 | 98.68 66 | 99.40 62 | 99.17 152 | 98.74 76 | 97.68 177 | 99.40 94 | 99.14 54 | 99.06 104 | 98.59 214 | 96.71 162 | 99.93 28 | 98.57 57 | 99.77 90 | 99.53 89 |
|
APD-MVS_3200maxsize | | | 98.84 58 | 98.61 76 | 99.53 36 | 99.19 143 | 99.27 20 | 98.49 94 | 99.33 123 | 98.64 90 | 99.03 114 | 98.98 129 | 97.89 77 | 99.85 105 | 96.54 187 | 99.42 208 | 99.46 122 |
|
PM-MVS | | | 98.82 59 | 98.72 59 | 99.12 102 | 99.64 46 | 98.54 95 | 97.98 148 | 99.68 14 | 97.62 158 | 99.34 61 | 99.18 80 | 97.54 103 | 99.77 199 | 97.79 99 | 99.74 103 | 99.04 233 |
|
DU-MVS | | | 98.82 59 | 98.63 72 | 99.39 63 | 99.16 154 | 98.74 76 | 97.54 193 | 99.25 157 | 98.84 84 | 99.06 104 | 98.76 181 | 96.76 158 | 99.93 28 | 98.57 57 | 99.77 90 | 99.50 100 |
|
SR-MVS-dyc-post | | | 98.81 61 | 98.55 83 | 99.57 18 | 99.20 140 | 99.38 5 | 98.48 97 | 99.30 139 | 98.64 90 | 98.95 127 | 98.96 134 | 97.49 112 | 99.86 91 | 96.56 183 | 99.39 212 | 99.45 126 |
|
3Dnovator | | 98.27 2 | 98.81 61 | 98.73 57 | 99.05 120 | 98.76 236 | 97.81 164 | 99.25 30 | 99.30 139 | 98.57 100 | 98.55 189 | 99.33 62 | 97.95 76 | 99.90 49 | 97.16 129 | 99.67 139 | 99.44 131 |
|
zzz-MVS | | | 98.79 63 | 98.52 86 | 99.61 9 | 99.67 40 | 99.36 9 | 97.33 210 | 99.20 168 | 98.83 85 | 98.89 140 | 98.90 146 | 96.98 143 | 99.92 35 | 97.16 129 | 99.70 122 | 99.56 71 |
|
HPM-MVS |  | | 98.79 63 | 98.53 85 | 99.59 17 | 99.65 43 | 99.29 17 | 99.16 38 | 99.43 87 | 96.74 226 | 98.61 177 | 98.38 237 | 98.62 29 | 99.87 83 | 96.47 191 | 99.67 139 | 99.59 55 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
SteuartSystems-ACMMP | | | 98.79 63 | 98.54 84 | 99.54 29 | 99.73 24 | 99.16 40 | 98.23 116 | 99.31 130 | 97.92 139 | 98.90 137 | 98.90 146 | 98.00 70 | 99.88 67 | 96.15 212 | 99.72 113 | 99.58 61 |
Skip Steuart: Steuart Systems R&D Blog. |
V42 | | | 98.78 66 | 98.78 53 | 98.76 161 | 99.44 100 | 97.04 207 | 98.27 113 | 99.19 173 | 97.87 143 | 99.25 79 | 99.16 86 | 96.84 149 | 99.78 193 | 99.21 23 | 99.84 56 | 99.46 122 |
|
test20.03 | | | 98.78 66 | 98.77 55 | 98.78 158 | 99.46 95 | 97.20 200 | 97.78 165 | 99.24 162 | 99.04 67 | 99.41 49 | 98.90 146 | 97.65 93 | 99.76 206 | 97.70 107 | 99.79 82 | 99.39 150 |
|
DVP-MVS | | | 98.77 68 | 98.52 86 | 99.52 41 | 99.50 77 | 99.21 26 | 98.02 142 | 98.84 246 | 97.97 135 | 99.08 101 | 99.02 115 | 97.61 98 | 99.88 67 | 96.99 141 | 99.63 150 | 99.48 112 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test1172 | | | 98.76 69 | 98.49 93 | 99.57 18 | 99.18 150 | 99.37 8 | 98.39 105 | 99.31 130 | 98.43 103 | 98.90 137 | 98.88 155 | 97.49 112 | 99.86 91 | 96.43 195 | 99.37 216 | 99.48 112 |
|
test_0402 | | | 98.76 69 | 98.71 61 | 98.93 135 | 99.56 62 | 98.14 125 | 98.45 101 | 99.34 118 | 99.28 42 | 98.95 127 | 98.91 143 | 98.34 47 | 99.79 181 | 95.63 237 | 99.91 40 | 98.86 261 |
|
ACMMP_NAP | | | 98.75 71 | 98.48 95 | 99.57 18 | 99.58 51 | 99.29 17 | 97.82 163 | 99.25 157 | 96.94 218 | 98.78 158 | 99.12 94 | 98.02 68 | 99.84 122 | 97.13 133 | 99.67 139 | 99.59 55 |
|
SixPastTwentyTwo | | | 98.75 71 | 98.62 73 | 99.16 97 | 99.83 15 | 97.96 148 | 99.28 27 | 98.20 290 | 99.37 34 | 99.70 15 | 99.65 19 | 92.65 272 | 99.93 28 | 99.04 31 | 99.84 56 | 99.60 49 |
|
ACMMP |  | | 98.75 71 | 98.50 90 | 99.52 41 | 99.56 62 | 99.16 40 | 98.87 61 | 99.37 102 | 97.16 209 | 98.82 155 | 99.01 122 | 97.71 89 | 99.87 83 | 96.29 204 | 99.69 128 | 99.54 83 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
Regformer-4 | | | 98.73 74 | 98.68 66 | 98.89 141 | 99.02 185 | 97.22 197 | 97.17 225 | 99.06 203 | 99.21 45 | 99.17 91 | 98.85 162 | 97.45 115 | 99.86 91 | 98.48 63 | 99.70 122 | 99.60 49 |
|
XVS | | | 98.72 75 | 98.45 101 | 99.53 36 | 99.46 95 | 99.21 26 | 98.65 74 | 99.34 118 | 98.62 94 | 97.54 258 | 98.63 207 | 97.50 109 | 99.83 136 | 96.79 160 | 99.53 186 | 99.56 71 |
|
SR-MVS | | | 98.71 76 | 98.43 105 | 99.57 18 | 99.18 150 | 99.35 11 | 98.36 108 | 99.29 146 | 98.29 114 | 98.88 144 | 98.85 162 | 97.53 105 | 99.87 83 | 96.14 213 | 99.31 225 | 99.48 112 |
|
HFP-MVS | | | 98.71 76 | 98.44 103 | 99.51 45 | 99.49 84 | 99.16 40 | 98.52 88 | 99.31 130 | 97.47 172 | 98.58 183 | 98.50 224 | 97.97 74 | 99.85 105 | 96.57 180 | 99.59 164 | 99.53 89 |
|
LPG-MVS_test | | | 98.71 76 | 98.46 99 | 99.47 53 | 99.57 55 | 98.97 62 | 98.23 116 | 99.48 67 | 96.60 231 | 99.10 98 | 99.06 101 | 98.71 26 | 99.83 136 | 95.58 240 | 99.78 86 | 99.62 44 |
|
ACMMPR | | | 98.70 79 | 98.42 107 | 99.54 29 | 99.52 72 | 99.14 48 | 98.52 88 | 99.31 130 | 97.47 172 | 98.56 187 | 98.54 218 | 97.75 87 | 99.88 67 | 96.57 180 | 99.59 164 | 99.58 61 |
|
CP-MVS | | | 98.70 79 | 98.42 107 | 99.52 41 | 99.36 111 | 99.12 53 | 98.72 71 | 99.36 106 | 97.54 167 | 98.30 207 | 98.40 233 | 97.86 79 | 99.89 58 | 96.53 188 | 99.72 113 | 99.56 71 |
|
Anonymous20240521 | | | 98.69 81 | 98.87 44 | 98.16 224 | 99.77 20 | 95.11 261 | 99.08 44 | 99.44 81 | 99.34 37 | 99.33 62 | 99.55 29 | 94.10 250 | 99.94 23 | 99.25 20 | 99.96 14 | 99.42 138 |
|
region2R | | | 98.69 81 | 98.40 109 | 99.54 29 | 99.53 70 | 99.17 36 | 98.52 88 | 99.31 130 | 97.46 177 | 98.44 197 | 98.51 221 | 97.83 80 | 99.88 67 | 96.46 192 | 99.58 170 | 99.58 61 |
|
EI-MVSNet-UG-set | | | 98.69 81 | 98.71 61 | 98.62 176 | 99.10 166 | 96.37 225 | 97.23 217 | 98.87 239 | 99.20 48 | 99.19 86 | 98.99 125 | 97.30 123 | 99.85 105 | 98.77 47 | 99.79 82 | 99.65 38 |
|
3Dnovator+ | | 97.89 3 | 98.69 81 | 98.51 88 | 99.24 89 | 98.81 231 | 98.40 102 | 99.02 49 | 99.19 173 | 98.99 71 | 98.07 222 | 99.28 65 | 97.11 136 | 99.84 122 | 96.84 158 | 99.32 223 | 99.47 120 |
|
ZNCC-MVS | | | 98.68 85 | 98.40 109 | 99.54 29 | 99.57 55 | 99.21 26 | 98.46 99 | 99.29 146 | 97.28 195 | 98.11 219 | 98.39 235 | 98.00 70 | 99.87 83 | 96.86 157 | 99.64 147 | 99.55 79 |
|
EI-MVSNet-Vis-set | | | 98.68 85 | 98.70 64 | 98.63 174 | 99.09 169 | 96.40 224 | 97.23 217 | 98.86 244 | 99.20 48 | 99.18 90 | 98.97 131 | 97.29 125 | 99.85 105 | 98.72 50 | 99.78 86 | 99.64 39 |
|
CSCG | | | 98.68 85 | 98.50 90 | 99.20 92 | 99.45 98 | 98.63 84 | 98.56 84 | 99.57 33 | 97.87 143 | 98.85 148 | 98.04 266 | 97.66 92 | 99.84 122 | 96.72 169 | 99.81 69 | 99.13 222 |
|
PGM-MVS | | | 98.66 88 | 98.37 115 | 99.55 26 | 99.53 70 | 99.18 35 | 98.23 116 | 99.49 65 | 97.01 216 | 98.69 167 | 98.88 155 | 98.00 70 | 99.89 58 | 95.87 224 | 99.59 164 | 99.58 61 |
|
GBi-Net | | | 98.65 89 | 98.47 97 | 99.17 94 | 98.90 209 | 98.24 112 | 99.20 32 | 99.44 81 | 98.59 96 | 98.95 127 | 99.55 29 | 94.14 246 | 99.86 91 | 97.77 101 | 99.69 128 | 99.41 141 |
|
test1 | | | 98.65 89 | 98.47 97 | 99.17 94 | 98.90 209 | 98.24 112 | 99.20 32 | 99.44 81 | 98.59 96 | 98.95 127 | 99.55 29 | 94.14 246 | 99.86 91 | 97.77 101 | 99.69 128 | 99.41 141 |
|
LCM-MVSNet-Re | | | 98.64 91 | 98.48 95 | 99.11 104 | 98.85 220 | 98.51 97 | 98.49 94 | 99.83 3 | 98.37 105 | 99.69 17 | 99.46 43 | 98.21 56 | 99.92 35 | 94.13 277 | 99.30 228 | 98.91 256 |
|
mPP-MVS | | | 98.64 91 | 98.34 119 | 99.54 29 | 99.54 68 | 99.17 36 | 98.63 76 | 99.24 162 | 97.47 172 | 98.09 221 | 98.68 193 | 97.62 97 | 99.89 58 | 96.22 207 | 99.62 153 | 99.57 66 |
|
TSAR-MVS + MP. | | | 98.63 93 | 98.49 93 | 99.06 118 | 99.64 46 | 97.90 153 | 98.51 92 | 98.94 226 | 96.96 217 | 99.24 80 | 98.89 154 | 97.83 80 | 99.81 159 | 96.88 154 | 99.49 200 | 99.48 112 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
LS3D | | | 98.63 93 | 98.38 114 | 99.36 64 | 97.25 339 | 99.38 5 | 99.12 43 | 99.32 125 | 99.21 45 | 98.44 197 | 98.88 155 | 97.31 122 | 99.80 168 | 96.58 178 | 99.34 221 | 98.92 253 |
|
RPSCF | | | 98.62 95 | 98.36 116 | 99.42 57 | 99.65 43 | 99.42 4 | 98.55 85 | 99.57 33 | 97.72 152 | 98.90 137 | 99.26 69 | 96.12 185 | 99.52 300 | 95.72 231 | 99.71 117 | 99.32 180 |
|
CS-MVS | | | 98.61 96 | 98.60 78 | 98.65 169 | 98.82 228 | 98.21 118 | 98.79 67 | 99.77 6 | 98.34 107 | 97.55 256 | 97.69 288 | 98.27 49 | 99.87 83 | 98.52 61 | 99.62 153 | 97.88 316 |
|
GST-MVS | | | 98.61 96 | 98.30 124 | 99.52 41 | 99.51 74 | 99.20 32 | 98.26 114 | 99.25 157 | 97.44 180 | 98.67 169 | 98.39 235 | 97.68 90 | 99.85 105 | 96.00 216 | 99.51 192 | 99.52 93 |
|
Regformer-3 | | | 98.61 96 | 98.61 76 | 98.63 174 | 99.02 185 | 96.53 222 | 97.17 225 | 98.84 246 | 99.13 55 | 99.10 98 | 98.85 162 | 97.24 130 | 99.79 181 | 98.41 68 | 99.70 122 | 99.57 66 |
|
v1192 | | | 98.60 99 | 98.66 69 | 98.41 204 | 99.27 124 | 95.88 237 | 97.52 195 | 99.36 106 | 97.41 182 | 99.33 62 | 99.20 77 | 96.37 179 | 99.82 146 | 99.57 6 | 99.92 34 | 99.55 79 |
|
v1144 | | | 98.60 99 | 98.66 69 | 98.41 204 | 99.36 111 | 95.90 236 | 97.58 189 | 99.34 118 | 97.51 168 | 99.27 73 | 99.15 90 | 96.34 181 | 99.80 168 | 99.47 12 | 99.93 25 | 99.51 96 |
|
Regformer-2 | | | 98.60 99 | 98.46 99 | 99.02 126 | 98.85 220 | 97.71 172 | 96.91 241 | 99.09 199 | 98.98 73 | 99.01 115 | 98.64 203 | 97.37 120 | 99.84 122 | 97.75 106 | 99.57 174 | 99.52 93 |
|
DPE-MVS |  | | 98.59 102 | 98.26 128 | 99.57 18 | 99.27 124 | 99.15 45 | 97.01 232 | 99.39 96 | 97.67 154 | 99.44 46 | 98.99 125 | 97.53 105 | 99.89 58 | 95.40 244 | 99.68 133 | 99.66 34 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MP-MVS-pluss | | | 98.57 103 | 98.23 132 | 99.60 13 | 99.69 38 | 99.35 11 | 97.16 227 | 99.38 98 | 94.87 279 | 98.97 124 | 98.99 125 | 98.01 69 | 99.88 67 | 97.29 123 | 99.70 122 | 99.58 61 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
OPM-MVS | | | 98.56 104 | 98.32 123 | 99.25 87 | 99.41 106 | 98.73 79 | 97.13 229 | 99.18 177 | 97.10 212 | 98.75 163 | 98.92 142 | 98.18 58 | 99.65 261 | 96.68 173 | 99.56 179 | 99.37 160 |
|
VDD-MVS | | | 98.56 104 | 98.39 112 | 99.07 113 | 99.13 161 | 98.07 133 | 98.59 81 | 97.01 320 | 99.59 20 | 99.11 95 | 99.27 67 | 94.82 229 | 99.79 181 | 98.34 71 | 99.63 150 | 99.34 172 |
|
v2v482 | | | 98.56 104 | 98.62 73 | 98.37 208 | 99.42 105 | 95.81 240 | 97.58 189 | 99.16 186 | 97.90 141 | 99.28 71 | 99.01 122 | 95.98 194 | 99.79 181 | 99.33 15 | 99.90 44 | 99.51 96 |
|
XVG-ACMP-BASELINE | | | 98.56 104 | 98.34 119 | 99.22 91 | 99.54 68 | 98.59 89 | 97.71 174 | 99.46 75 | 97.25 198 | 98.98 121 | 98.99 125 | 97.54 103 | 99.84 122 | 95.88 221 | 99.74 103 | 99.23 202 |
|
Regformer-1 | | | 98.55 108 | 98.44 103 | 98.87 143 | 98.85 220 | 97.29 191 | 96.91 241 | 98.99 223 | 98.97 74 | 98.99 119 | 98.64 203 | 97.26 129 | 99.81 159 | 97.79 99 | 99.57 174 | 99.51 96 |
|
v1240 | | | 98.55 108 | 98.62 73 | 98.32 211 | 99.22 134 | 95.58 243 | 97.51 197 | 99.45 78 | 97.16 209 | 99.45 45 | 99.24 72 | 96.12 185 | 99.85 105 | 99.60 4 | 99.88 49 | 99.55 79 |
|
IterMVS-LS | | | 98.55 108 | 98.70 64 | 98.09 226 | 99.48 92 | 94.73 267 | 97.22 220 | 99.39 96 | 98.97 74 | 99.38 54 | 99.31 64 | 96.00 190 | 99.93 28 | 98.58 55 | 99.97 11 | 99.60 49 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v144192 | | | 98.54 111 | 98.57 82 | 98.45 201 | 99.21 136 | 95.98 234 | 97.63 182 | 99.36 106 | 97.15 211 | 99.32 68 | 99.18 80 | 95.84 201 | 99.84 122 | 99.50 10 | 99.91 40 | 99.54 83 |
|
v1921920 | | | 98.54 111 | 98.60 78 | 98.38 207 | 99.20 140 | 95.76 242 | 97.56 191 | 99.36 106 | 97.23 204 | 99.38 54 | 99.17 84 | 96.02 188 | 99.84 122 | 99.57 6 | 99.90 44 | 99.54 83 |
|
SF-MVS | | | 98.53 113 | 98.27 127 | 99.32 76 | 99.31 118 | 98.75 75 | 98.19 120 | 99.41 91 | 96.77 225 | 98.83 151 | 98.90 146 | 97.80 84 | 99.82 146 | 95.68 234 | 99.52 189 | 99.38 157 |
|
XVG-OURS | | | 98.53 113 | 98.34 119 | 99.11 104 | 99.50 77 | 98.82 72 | 95.97 285 | 99.50 57 | 97.30 193 | 99.05 109 | 98.98 129 | 99.35 7 | 99.32 329 | 95.72 231 | 99.68 133 | 99.18 214 |
|
UGNet | | | 98.53 113 | 98.45 101 | 98.79 155 | 97.94 311 | 96.96 210 | 99.08 44 | 98.54 275 | 99.10 62 | 96.82 296 | 99.47 42 | 96.55 168 | 99.84 122 | 98.56 60 | 99.94 21 | 99.55 79 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
#test# | | | 98.50 116 | 98.16 141 | 99.51 45 | 99.49 84 | 99.16 40 | 98.03 140 | 99.31 130 | 96.30 243 | 98.58 183 | 98.50 224 | 97.97 74 | 99.85 105 | 95.68 234 | 99.59 164 | 99.53 89 |
|
XVG-OURS-SEG-HR | | | 98.49 117 | 98.28 126 | 99.14 100 | 99.49 84 | 98.83 70 | 96.54 259 | 99.48 67 | 97.32 191 | 99.11 95 | 98.61 212 | 99.33 8 | 99.30 332 | 96.23 206 | 98.38 300 | 99.28 192 |
|
FMVSNet2 | | | 98.49 117 | 98.40 109 | 98.75 163 | 98.90 209 | 97.14 206 | 98.61 78 | 99.13 193 | 98.59 96 | 99.19 86 | 99.28 65 | 94.14 246 | 99.82 146 | 97.97 91 | 99.80 77 | 99.29 191 |
|
pmmvs-eth3d | | | 98.47 119 | 98.34 119 | 98.86 145 | 99.30 121 | 97.76 167 | 97.16 227 | 99.28 148 | 95.54 263 | 99.42 48 | 99.19 78 | 97.27 126 | 99.63 266 | 97.89 93 | 99.97 11 | 99.20 207 |
|
MP-MVS |  | | 98.46 120 | 98.09 148 | 99.54 29 | 99.57 55 | 99.22 25 | 98.50 93 | 99.19 173 | 97.61 160 | 97.58 253 | 98.66 198 | 97.40 118 | 99.88 67 | 94.72 257 | 99.60 162 | 99.54 83 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
v148 | | | 98.45 121 | 98.60 78 | 98.00 235 | 99.44 100 | 94.98 262 | 97.44 204 | 99.06 203 | 98.30 111 | 99.32 68 | 98.97 131 | 96.65 164 | 99.62 268 | 98.37 69 | 99.85 54 | 99.39 150 |
|
xxxxxxxxxxxxxcwj | | | 98.44 122 | 98.24 130 | 99.06 118 | 99.11 162 | 97.97 144 | 96.53 260 | 99.54 48 | 98.24 117 | 98.83 151 | 98.90 146 | 97.80 84 | 99.82 146 | 95.68 234 | 99.52 189 | 99.38 157 |
|
AllTest | | | 98.44 122 | 98.20 134 | 99.16 97 | 99.50 77 | 98.55 92 | 98.25 115 | 99.58 26 | 96.80 223 | 98.88 144 | 99.06 101 | 97.65 93 | 99.57 285 | 94.45 264 | 99.61 160 | 99.37 160 |
|
VNet | | | 98.42 124 | 98.30 124 | 98.79 155 | 98.79 235 | 97.29 191 | 98.23 116 | 98.66 269 | 99.31 39 | 98.85 148 | 98.80 174 | 94.80 232 | 99.78 193 | 98.13 79 | 99.13 256 | 99.31 184 |
|
ab-mvs | | | 98.41 125 | 98.36 116 | 98.59 180 | 99.19 143 | 97.23 195 | 99.32 15 | 98.81 252 | 97.66 155 | 98.62 175 | 99.40 53 | 96.82 152 | 99.80 168 | 95.88 221 | 99.51 192 | 98.75 277 |
|
ACMP | | 95.32 15 | 98.41 125 | 98.09 148 | 99.36 64 | 99.51 74 | 98.79 74 | 97.68 177 | 99.38 98 | 95.76 260 | 98.81 157 | 98.82 171 | 98.36 43 | 99.82 146 | 94.75 254 | 99.77 90 | 99.48 112 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
SMA-MVS |  | | 98.40 127 | 98.03 155 | 99.51 45 | 99.16 154 | 99.21 26 | 98.05 137 | 99.22 165 | 94.16 295 | 98.98 121 | 99.10 98 | 97.52 107 | 99.79 181 | 96.45 193 | 99.64 147 | 99.53 89 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MSP-MVS | | | 98.40 127 | 98.00 157 | 99.61 9 | 99.57 55 | 99.25 22 | 98.57 83 | 99.35 112 | 97.55 166 | 99.31 70 | 97.71 285 | 94.61 236 | 99.88 67 | 96.14 213 | 99.19 246 | 99.70 29 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SD-MVS | | | 98.40 127 | 98.68 66 | 97.54 262 | 98.96 196 | 97.99 139 | 97.88 156 | 99.36 106 | 98.20 123 | 99.63 25 | 99.04 111 | 98.76 23 | 95.33 363 | 96.56 183 | 99.74 103 | 99.31 184 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
EI-MVSNet | | | 98.40 127 | 98.51 88 | 98.04 233 | 99.10 166 | 94.73 267 | 97.20 221 | 98.87 239 | 98.97 74 | 99.06 104 | 99.02 115 | 96.00 190 | 99.80 168 | 98.58 55 | 99.82 65 | 99.60 49 |
|
WR-MVS | | | 98.40 127 | 98.19 136 | 99.03 123 | 99.00 188 | 97.65 175 | 96.85 244 | 98.94 226 | 98.57 100 | 98.89 140 | 98.50 224 | 95.60 207 | 99.85 105 | 97.54 112 | 99.85 54 | 99.59 55 |
|
new-patchmatchnet | | | 98.35 132 | 98.74 56 | 97.18 277 | 99.24 129 | 92.23 320 | 96.42 268 | 99.48 67 | 98.30 111 | 99.69 17 | 99.53 33 | 97.44 116 | 99.82 146 | 98.84 42 | 99.77 90 | 99.49 104 |
|
canonicalmvs | | | 98.34 133 | 98.26 128 | 98.58 181 | 98.46 282 | 97.82 162 | 98.96 56 | 99.46 75 | 99.19 52 | 97.46 265 | 95.46 344 | 98.59 31 | 99.46 313 | 98.08 84 | 98.71 289 | 98.46 292 |
|
testgi | | | 98.32 134 | 98.39 112 | 98.13 225 | 99.57 55 | 95.54 244 | 97.78 165 | 99.49 65 | 97.37 186 | 99.19 86 | 97.65 290 | 98.96 17 | 99.49 306 | 96.50 190 | 98.99 274 | 99.34 172 |
|
DeepPCF-MVS | | 96.93 5 | 98.32 134 | 98.01 156 | 99.23 90 | 98.39 287 | 98.97 62 | 95.03 320 | 99.18 177 | 96.88 221 | 99.33 62 | 98.78 177 | 98.16 60 | 99.28 335 | 96.74 166 | 99.62 153 | 99.44 131 |
|
MVS_111021_LR | | | 98.30 136 | 98.12 146 | 98.83 148 | 99.16 154 | 98.03 137 | 96.09 282 | 99.30 139 | 97.58 162 | 98.10 220 | 98.24 249 | 98.25 50 | 99.34 326 | 96.69 172 | 99.65 145 | 99.12 223 |
|
EPP-MVSNet | | | 98.30 136 | 98.04 154 | 99.07 113 | 99.56 62 | 97.83 159 | 99.29 23 | 98.07 296 | 99.03 68 | 98.59 181 | 99.13 93 | 92.16 276 | 99.90 49 | 96.87 155 | 99.68 133 | 99.49 104 |
|
DeepC-MVS_fast | | 96.85 6 | 98.30 136 | 98.15 143 | 98.75 163 | 98.61 265 | 97.23 195 | 97.76 170 | 99.09 199 | 97.31 192 | 98.75 163 | 98.66 198 | 97.56 102 | 99.64 263 | 96.10 215 | 99.55 181 | 99.39 150 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PHI-MVS | | | 98.29 139 | 97.95 160 | 99.34 72 | 98.44 284 | 99.16 40 | 98.12 127 | 99.38 98 | 96.01 252 | 98.06 223 | 98.43 231 | 97.80 84 | 99.67 248 | 95.69 233 | 99.58 170 | 99.20 207 |
|
Fast-Effi-MVS+-dtu | | | 98.27 140 | 98.09 148 | 98.81 151 | 98.43 285 | 98.11 126 | 97.61 185 | 99.50 57 | 98.64 90 | 97.39 270 | 97.52 298 | 98.12 63 | 99.95 15 | 96.90 152 | 98.71 289 | 98.38 298 |
|
DELS-MVS | | | 98.27 140 | 98.20 134 | 98.48 198 | 98.86 218 | 96.70 219 | 95.60 304 | 99.20 168 | 97.73 151 | 98.45 196 | 98.71 187 | 97.50 109 | 99.82 146 | 98.21 76 | 99.59 164 | 98.93 252 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Effi-MVS+-dtu | | | 98.26 142 | 97.90 165 | 99.35 69 | 98.02 307 | 99.49 2 | 98.02 142 | 99.16 186 | 98.29 114 | 97.64 248 | 97.99 268 | 96.44 174 | 99.95 15 | 96.66 174 | 98.93 279 | 98.60 287 |
|
MVSFormer | | | 98.26 142 | 98.43 105 | 97.77 244 | 98.88 215 | 93.89 293 | 99.39 11 | 99.56 40 | 99.11 56 | 98.16 214 | 98.13 256 | 93.81 253 | 99.97 3 | 99.26 18 | 99.57 174 | 99.43 135 |
|
MVS_111021_HR | | | 98.25 144 | 98.08 151 | 98.75 163 | 99.09 169 | 97.46 184 | 95.97 285 | 99.27 151 | 97.60 161 | 97.99 228 | 98.25 248 | 98.15 62 | 99.38 323 | 96.87 155 | 99.57 174 | 99.42 138 |
|
TAMVS | | | 98.24 145 | 98.05 153 | 98.80 153 | 99.07 173 | 97.18 202 | 97.88 156 | 98.81 252 | 96.66 230 | 99.17 91 | 99.21 75 | 94.81 231 | 99.77 199 | 96.96 145 | 99.88 49 | 99.44 131 |
|
diffmvs | | | 98.22 146 | 98.24 130 | 98.17 223 | 99.00 188 | 95.44 249 | 96.38 270 | 99.58 26 | 97.79 149 | 98.53 192 | 98.50 224 | 96.76 158 | 99.74 217 | 97.95 92 | 99.64 147 | 99.34 172 |
|
Anonymous20231206 | | | 98.21 147 | 98.21 133 | 98.20 221 | 99.51 74 | 95.43 250 | 98.13 125 | 99.32 125 | 96.16 246 | 98.93 134 | 98.82 171 | 96.00 190 | 99.83 136 | 97.32 122 | 99.73 106 | 99.36 166 |
|
VDDNet | | | 98.21 147 | 97.95 160 | 99.01 127 | 99.58 51 | 97.74 170 | 99.01 50 | 97.29 316 | 99.67 10 | 98.97 124 | 99.50 36 | 90.45 285 | 99.80 168 | 97.88 96 | 99.20 242 | 99.48 112 |
|
IS-MVSNet | | | 98.19 149 | 97.90 165 | 99.08 110 | 99.57 55 | 97.97 144 | 99.31 18 | 98.32 285 | 99.01 70 | 98.98 121 | 99.03 114 | 91.59 280 | 99.79 181 | 95.49 242 | 99.80 77 | 99.48 112 |
|
MVS_Test | | | 98.18 150 | 98.36 116 | 97.67 249 | 98.48 280 | 94.73 267 | 98.18 121 | 99.02 216 | 97.69 153 | 98.04 226 | 99.11 96 | 97.22 132 | 99.56 288 | 98.57 57 | 98.90 280 | 98.71 280 |
|
TSAR-MVS + GP. | | | 98.18 150 | 97.98 158 | 98.77 160 | 98.71 245 | 97.88 154 | 96.32 273 | 98.66 269 | 96.33 240 | 99.23 83 | 98.51 221 | 97.48 114 | 99.40 319 | 97.16 129 | 99.46 204 | 99.02 236 |
|
CNVR-MVS | | | 98.17 152 | 97.87 167 | 99.07 113 | 98.67 258 | 98.24 112 | 97.01 232 | 98.93 228 | 97.25 198 | 97.62 249 | 98.34 242 | 97.27 126 | 99.57 285 | 96.42 196 | 99.33 222 | 99.39 150 |
|
PVSNet_Blended_VisFu | | | 98.17 152 | 98.15 143 | 98.22 220 | 99.73 24 | 95.15 258 | 97.36 208 | 99.68 14 | 94.45 288 | 98.99 119 | 99.27 67 | 96.87 148 | 99.94 23 | 97.13 133 | 99.91 40 | 99.57 66 |
|
HPM-MVS++ |  | | 98.10 154 | 97.64 183 | 99.48 50 | 99.09 169 | 99.13 51 | 97.52 195 | 98.75 262 | 97.46 177 | 96.90 291 | 97.83 279 | 96.01 189 | 99.84 122 | 95.82 228 | 99.35 219 | 99.46 122 |
|
APD-MVS |  | | 98.10 154 | 97.67 178 | 99.42 57 | 99.11 162 | 98.93 66 | 97.76 170 | 99.28 148 | 94.97 276 | 98.72 166 | 98.77 179 | 97.04 137 | 99.85 105 | 93.79 288 | 99.54 182 | 99.49 104 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MVP-Stereo | | | 98.08 156 | 97.92 163 | 98.57 184 | 98.96 196 | 96.79 215 | 97.90 155 | 99.18 177 | 96.41 238 | 98.46 195 | 98.95 138 | 95.93 197 | 99.60 275 | 96.51 189 | 98.98 276 | 99.31 184 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
PMMVS2 | | | 98.07 157 | 98.08 151 | 98.04 233 | 99.41 106 | 94.59 273 | 94.59 334 | 99.40 94 | 97.50 169 | 98.82 155 | 98.83 168 | 96.83 151 | 99.84 122 | 97.50 115 | 99.81 69 | 99.71 26 |
|
ETH3D-3000-0.1 | | | 98.03 158 | 97.62 185 | 99.29 77 | 99.11 162 | 98.80 73 | 97.47 201 | 99.32 125 | 95.54 263 | 98.43 200 | 98.62 209 | 96.61 166 | 99.77 199 | 93.95 282 | 99.49 200 | 99.30 187 |
|
ETV-MVS | | | 98.03 158 | 97.86 168 | 98.56 188 | 98.69 253 | 98.07 133 | 97.51 197 | 99.50 57 | 98.10 129 | 97.50 262 | 95.51 342 | 98.41 40 | 99.88 67 | 96.27 205 | 99.24 237 | 97.71 328 |
|
Effi-MVS+ | | | 98.02 160 | 97.82 170 | 98.62 176 | 98.53 277 | 97.19 201 | 97.33 210 | 99.68 14 | 97.30 193 | 96.68 299 | 97.46 303 | 98.56 33 | 99.80 168 | 96.63 176 | 98.20 305 | 98.86 261 |
|
MSLP-MVS++ | | | 98.02 160 | 98.14 145 | 97.64 253 | 98.58 270 | 95.19 257 | 97.48 199 | 99.23 164 | 97.47 172 | 97.90 231 | 98.62 209 | 97.04 137 | 98.81 354 | 97.55 110 | 99.41 209 | 98.94 251 |
|
EIA-MVS | | | 98.00 162 | 97.74 174 | 98.80 153 | 98.72 242 | 98.09 127 | 98.05 137 | 99.60 23 | 97.39 184 | 96.63 301 | 95.55 341 | 97.68 90 | 99.80 168 | 96.73 168 | 99.27 232 | 98.52 290 |
|
MCST-MVS | | | 98.00 162 | 97.63 184 | 99.10 106 | 99.24 129 | 98.17 122 | 96.89 243 | 98.73 265 | 95.66 261 | 97.92 229 | 97.70 287 | 97.17 133 | 99.66 256 | 96.18 211 | 99.23 238 | 99.47 120 |
|
K. test v3 | | | 98.00 162 | 97.66 181 | 99.03 123 | 99.79 19 | 97.56 179 | 99.19 36 | 92.47 354 | 99.62 17 | 99.52 35 | 99.66 17 | 89.61 290 | 99.96 8 | 99.25 20 | 99.81 69 | 99.56 71 |
|
HQP_MVS | | | 97.99 165 | 97.67 178 | 98.93 135 | 99.19 143 | 97.65 175 | 97.77 168 | 99.27 151 | 98.20 123 | 97.79 239 | 97.98 269 | 94.90 225 | 99.70 232 | 94.42 266 | 99.51 192 | 99.45 126 |
|
MDA-MVSNet-bldmvs | | | 97.94 166 | 97.91 164 | 98.06 231 | 99.44 100 | 94.96 263 | 96.63 257 | 99.15 192 | 98.35 106 | 98.83 151 | 99.11 96 | 94.31 243 | 99.85 105 | 96.60 177 | 98.72 287 | 99.37 160 |
|
test_part1 | | | 97.91 167 | 97.46 197 | 99.27 82 | 98.80 233 | 98.18 120 | 99.07 46 | 99.36 106 | 99.75 5 | 99.63 25 | 99.49 39 | 82.20 340 | 99.89 58 | 98.87 40 | 99.95 16 | 99.74 24 |
|
Anonymous202405211 | | | 97.90 168 | 97.50 191 | 99.08 110 | 98.90 209 | 98.25 111 | 98.53 87 | 96.16 332 | 98.87 81 | 99.11 95 | 98.86 159 | 90.40 286 | 99.78 193 | 97.36 120 | 99.31 225 | 99.19 212 |
|
LF4IMVS | | | 97.90 168 | 97.69 177 | 98.52 193 | 99.17 152 | 97.66 174 | 97.19 224 | 99.47 73 | 96.31 242 | 97.85 235 | 98.20 253 | 96.71 162 | 99.52 300 | 94.62 258 | 99.72 113 | 98.38 298 |
|
UnsupCasMVSNet_eth | | | 97.89 170 | 97.60 187 | 98.75 163 | 99.31 118 | 97.17 203 | 97.62 183 | 99.35 112 | 98.72 89 | 98.76 162 | 98.68 193 | 92.57 273 | 99.74 217 | 97.76 105 | 95.60 349 | 99.34 172 |
|
TinyColmap | | | 97.89 170 | 97.98 158 | 97.60 255 | 98.86 218 | 94.35 276 | 96.21 278 | 99.44 81 | 97.45 179 | 99.06 104 | 98.88 155 | 97.99 73 | 99.28 335 | 94.38 270 | 99.58 170 | 99.18 214 |
|
OMC-MVS | | | 97.88 172 | 97.49 192 | 99.04 122 | 98.89 214 | 98.63 84 | 96.94 236 | 99.25 157 | 95.02 274 | 98.53 192 | 98.51 221 | 97.27 126 | 99.47 311 | 93.50 296 | 99.51 192 | 99.01 237 |
|
CANet | | | 97.87 173 | 97.76 172 | 98.19 222 | 97.75 319 | 95.51 246 | 96.76 250 | 99.05 207 | 97.74 150 | 96.93 285 | 98.21 252 | 95.59 208 | 99.89 58 | 97.86 98 | 99.93 25 | 99.19 212 |
|
xiu_mvs_v1_base_debu | | | 97.86 174 | 98.17 138 | 96.92 288 | 98.98 193 | 93.91 290 | 96.45 265 | 99.17 183 | 97.85 145 | 98.41 201 | 97.14 316 | 98.47 36 | 99.92 35 | 98.02 87 | 99.05 263 | 96.92 340 |
|
xiu_mvs_v1_base | | | 97.86 174 | 98.17 138 | 96.92 288 | 98.98 193 | 93.91 290 | 96.45 265 | 99.17 183 | 97.85 145 | 98.41 201 | 97.14 316 | 98.47 36 | 99.92 35 | 98.02 87 | 99.05 263 | 96.92 340 |
|
xiu_mvs_v1_base_debi | | | 97.86 174 | 98.17 138 | 96.92 288 | 98.98 193 | 93.91 290 | 96.45 265 | 99.17 183 | 97.85 145 | 98.41 201 | 97.14 316 | 98.47 36 | 99.92 35 | 98.02 87 | 99.05 263 | 96.92 340 |
|
NCCC | | | 97.86 174 | 97.47 196 | 99.05 120 | 98.61 265 | 98.07 133 | 96.98 234 | 98.90 234 | 97.63 157 | 97.04 282 | 97.93 274 | 95.99 193 | 99.66 256 | 95.31 245 | 98.82 283 | 99.43 135 |
|
PMVS |  | 91.26 20 | 97.86 174 | 97.94 162 | 97.65 251 | 99.71 30 | 97.94 151 | 98.52 88 | 98.68 268 | 98.99 71 | 97.52 260 | 99.35 58 | 97.41 117 | 98.18 358 | 91.59 325 | 99.67 139 | 96.82 343 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
IterMVS-SCA-FT | | | 97.85 179 | 98.18 137 | 96.87 291 | 99.27 124 | 91.16 335 | 95.53 306 | 99.25 157 | 99.10 62 | 99.41 49 | 99.35 58 | 93.10 263 | 99.96 8 | 98.65 53 | 99.94 21 | 99.49 104 |
|
D2MVS | | | 97.84 180 | 97.84 169 | 97.83 241 | 99.14 159 | 94.74 266 | 96.94 236 | 98.88 237 | 95.84 257 | 98.89 140 | 98.96 134 | 94.40 241 | 99.69 236 | 97.55 110 | 99.95 16 | 99.05 229 |
|
CPTT-MVS | | | 97.84 180 | 97.36 202 | 99.27 82 | 99.31 118 | 98.46 100 | 98.29 111 | 99.27 151 | 94.90 278 | 97.83 236 | 98.37 239 | 94.90 225 | 99.84 122 | 93.85 287 | 99.54 182 | 99.51 96 |
|
mvs-test1 | | | 97.83 182 | 97.48 195 | 98.89 141 | 98.02 307 | 99.20 32 | 97.20 221 | 99.16 186 | 98.29 114 | 96.46 311 | 97.17 313 | 96.44 174 | 99.92 35 | 96.66 174 | 97.90 318 | 97.54 334 |
|
mvs_anonymous | | | 97.83 182 | 98.16 141 | 96.87 291 | 98.18 299 | 91.89 322 | 97.31 212 | 98.90 234 | 97.37 186 | 98.83 151 | 99.46 43 | 96.28 182 | 99.79 181 | 98.90 37 | 98.16 308 | 98.95 247 |
|
testtj | | | 97.79 184 | 97.25 208 | 99.42 57 | 99.03 183 | 98.85 68 | 97.78 165 | 99.18 177 | 95.83 258 | 98.12 218 | 98.50 224 | 95.50 212 | 99.86 91 | 92.23 318 | 99.07 262 | 99.54 83 |
|
hse-mvs3 | | | 97.77 185 | 97.33 206 | 99.10 106 | 99.21 136 | 97.84 158 | 98.35 109 | 98.57 274 | 99.11 56 | 98.58 183 | 99.02 115 | 88.65 299 | 99.96 8 | 98.11 80 | 96.34 342 | 99.49 104 |
|
IterMVS | | | 97.73 186 | 98.11 147 | 96.57 298 | 99.24 129 | 90.28 336 | 95.52 308 | 99.21 166 | 98.86 82 | 99.33 62 | 99.33 62 | 93.11 262 | 99.94 23 | 98.49 62 | 99.94 21 | 99.48 112 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MSDG | | | 97.71 187 | 97.52 190 | 98.28 216 | 98.91 208 | 96.82 214 | 94.42 337 | 99.37 102 | 97.65 156 | 98.37 206 | 98.29 247 | 97.40 118 | 99.33 328 | 94.09 278 | 99.22 239 | 98.68 286 |
|
CDS-MVSNet | | | 97.69 188 | 97.35 203 | 98.69 167 | 98.73 240 | 97.02 209 | 96.92 240 | 98.75 262 | 95.89 256 | 98.59 181 | 98.67 195 | 92.08 278 | 99.74 217 | 96.72 169 | 99.81 69 | 99.32 180 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MS-PatchMatch | | | 97.68 189 | 97.75 173 | 97.45 267 | 98.23 297 | 93.78 296 | 97.29 213 | 98.84 246 | 96.10 248 | 98.64 172 | 98.65 200 | 96.04 187 | 99.36 324 | 96.84 158 | 99.14 253 | 99.20 207 |
|
Fast-Effi-MVS+ | | | 97.67 190 | 97.38 200 | 98.57 184 | 98.71 245 | 97.43 186 | 97.23 217 | 99.45 78 | 94.82 280 | 96.13 315 | 96.51 324 | 98.52 35 | 99.91 45 | 96.19 209 | 98.83 282 | 98.37 300 |
|
EU-MVSNet | | | 97.66 191 | 98.50 90 | 95.13 325 | 99.63 48 | 85.84 352 | 98.35 109 | 98.21 289 | 98.23 119 | 99.54 30 | 99.46 43 | 95.02 223 | 99.68 245 | 98.24 74 | 99.87 52 | 99.87 4 |
|
MVS_0304 | | | 97.64 192 | 97.35 203 | 98.52 193 | 97.87 315 | 96.69 220 | 98.59 81 | 98.05 298 | 97.44 180 | 93.74 352 | 98.85 162 | 93.69 257 | 99.88 67 | 98.11 80 | 99.81 69 | 98.98 242 |
|
pmmvs5 | | | 97.64 192 | 97.49 192 | 98.08 229 | 99.14 159 | 95.12 260 | 96.70 254 | 99.05 207 | 93.77 301 | 98.62 175 | 98.83 168 | 93.23 259 | 99.75 213 | 98.33 73 | 99.76 99 | 99.36 166 |
|
N_pmnet | | | 97.63 194 | 97.17 213 | 98.99 129 | 99.27 124 | 97.86 156 | 95.98 284 | 93.41 351 | 95.25 272 | 99.47 42 | 98.90 146 | 95.63 206 | 99.85 105 | 96.91 147 | 99.73 106 | 99.27 194 |
|
YYNet1 | | | 97.60 195 | 97.67 178 | 97.39 271 | 99.04 180 | 93.04 307 | 95.27 313 | 98.38 284 | 97.25 198 | 98.92 135 | 98.95 138 | 95.48 214 | 99.73 221 | 96.99 141 | 98.74 285 | 99.41 141 |
|
MDA-MVSNet_test_wron | | | 97.60 195 | 97.66 181 | 97.41 270 | 99.04 180 | 93.09 303 | 95.27 313 | 98.42 281 | 97.26 197 | 98.88 144 | 98.95 138 | 95.43 215 | 99.73 221 | 97.02 138 | 98.72 287 | 99.41 141 |
|
pmmvs4 | | | 97.58 197 | 97.28 207 | 98.51 195 | 98.84 223 | 96.93 212 | 95.40 312 | 98.52 277 | 93.60 303 | 98.61 177 | 98.65 200 | 95.10 222 | 99.60 275 | 96.97 144 | 99.79 82 | 98.99 241 |
|
ETH3D cwj APD-0.16 | | | 97.55 198 | 97.00 222 | 99.19 93 | 98.51 278 | 98.64 83 | 96.85 244 | 99.13 193 | 94.19 294 | 97.65 247 | 98.40 233 | 95.78 202 | 99.81 159 | 93.37 299 | 99.16 249 | 99.12 223 |
|
PVSNet_BlendedMVS | | | 97.55 198 | 97.53 189 | 97.60 255 | 98.92 205 | 93.77 297 | 96.64 256 | 99.43 87 | 94.49 284 | 97.62 249 | 99.18 80 | 96.82 152 | 99.67 248 | 94.73 255 | 99.93 25 | 99.36 166 |
|
ppachtmachnet_test | | | 97.50 200 | 97.74 174 | 96.78 296 | 98.70 249 | 91.23 334 | 94.55 335 | 99.05 207 | 96.36 239 | 99.21 84 | 98.79 176 | 96.39 176 | 99.78 193 | 96.74 166 | 99.82 65 | 99.34 172 |
|
FMVSNet3 | | | 97.50 200 | 97.24 210 | 98.29 215 | 98.08 305 | 95.83 239 | 97.86 159 | 98.91 233 | 97.89 142 | 98.95 127 | 98.95 138 | 87.06 303 | 99.81 159 | 97.77 101 | 99.69 128 | 99.23 202 |
|
CHOSEN 1792x2688 | | | 97.49 202 | 97.14 217 | 98.54 192 | 99.68 39 | 96.09 233 | 96.50 263 | 99.62 20 | 91.58 326 | 98.84 150 | 98.97 131 | 92.36 274 | 99.88 67 | 96.76 164 | 99.95 16 | 99.67 33 |
|
CLD-MVS | | | 97.49 202 | 97.16 214 | 98.48 198 | 99.07 173 | 97.03 208 | 94.71 327 | 99.21 166 | 94.46 286 | 98.06 223 | 97.16 314 | 97.57 101 | 99.48 309 | 94.46 263 | 99.78 86 | 98.95 247 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
test_prior3 | | | 97.48 204 | 97.00 222 | 98.95 132 | 98.69 253 | 97.95 149 | 95.74 299 | 99.03 212 | 96.48 235 | 96.11 316 | 97.63 292 | 95.92 198 | 99.59 279 | 94.16 272 | 99.20 242 | 99.30 187 |
|
hse-mvs2 | | | 97.46 205 | 97.07 218 | 98.64 171 | 98.73 240 | 97.33 189 | 97.45 203 | 97.64 309 | 99.11 56 | 98.58 183 | 97.98 269 | 88.65 299 | 99.79 181 | 98.11 80 | 97.39 326 | 98.81 267 |
|
Vis-MVSNet (Re-imp) | | | 97.46 205 | 97.16 214 | 98.34 210 | 99.55 65 | 96.10 231 | 98.94 57 | 98.44 280 | 98.32 110 | 98.16 214 | 98.62 209 | 88.76 296 | 99.73 221 | 93.88 285 | 99.79 82 | 99.18 214 |
|
jason | | | 97.45 207 | 97.35 203 | 97.76 245 | 99.24 129 | 93.93 289 | 95.86 293 | 98.42 281 | 94.24 292 | 98.50 194 | 98.13 256 | 94.82 229 | 99.91 45 | 97.22 126 | 99.73 106 | 99.43 135 |
jason: jason. |
CL-MVSNet_2432*1600 | | | 97.44 208 | 97.22 211 | 98.08 229 | 98.57 272 | 95.78 241 | 94.30 340 | 98.79 255 | 96.58 233 | 98.60 179 | 98.19 254 | 94.74 235 | 99.64 263 | 96.41 197 | 98.84 281 | 98.82 264 |
|
DSMNet-mixed | | | 97.42 209 | 97.60 187 | 96.87 291 | 99.15 158 | 91.46 326 | 98.54 86 | 99.12 195 | 92.87 312 | 97.58 253 | 99.63 20 | 96.21 183 | 99.90 49 | 95.74 230 | 99.54 182 | 99.27 194 |
|
USDC | | | 97.41 210 | 97.40 198 | 97.44 268 | 98.94 199 | 93.67 299 | 95.17 316 | 99.53 51 | 94.03 298 | 98.97 124 | 99.10 98 | 95.29 217 | 99.34 326 | 95.84 227 | 99.73 106 | 99.30 187 |
|
our_test_3 | | | 97.39 211 | 97.73 176 | 96.34 302 | 98.70 249 | 89.78 338 | 94.61 333 | 98.97 225 | 96.50 234 | 99.04 111 | 98.85 162 | 95.98 194 | 99.84 122 | 97.26 125 | 99.67 139 | 99.41 141 |
|
cl_fuxian | | | 97.36 212 | 97.37 201 | 97.31 272 | 98.09 304 | 93.25 302 | 95.01 321 | 99.16 186 | 97.05 213 | 98.77 161 | 98.72 186 | 92.88 268 | 99.64 263 | 96.93 146 | 99.76 99 | 99.05 229 |
|
alignmvs | | | 97.35 213 | 96.88 230 | 98.78 158 | 98.54 275 | 98.09 127 | 97.71 174 | 97.69 306 | 99.20 48 | 97.59 252 | 95.90 336 | 88.12 302 | 99.55 291 | 98.18 78 | 98.96 277 | 98.70 282 |
|
Patchmtry | | | 97.35 213 | 96.97 224 | 98.50 197 | 97.31 338 | 96.47 223 | 98.18 121 | 98.92 231 | 98.95 78 | 98.78 158 | 99.37 54 | 85.44 318 | 99.85 105 | 95.96 219 | 99.83 62 | 99.17 218 |
|
DP-MVS Recon | | | 97.33 215 | 96.92 227 | 98.57 184 | 99.09 169 | 97.99 139 | 96.79 247 | 99.35 112 | 93.18 307 | 97.71 243 | 98.07 265 | 95.00 224 | 99.31 330 | 93.97 280 | 99.13 256 | 98.42 297 |
|
QAPM | | | 97.31 216 | 96.81 235 | 98.82 149 | 98.80 233 | 97.49 182 | 99.06 48 | 99.19 173 | 90.22 338 | 97.69 245 | 99.16 86 | 96.91 146 | 99.90 49 | 90.89 336 | 99.41 209 | 99.07 227 |
|
UnsupCasMVSNet_bld | | | 97.30 217 | 96.92 227 | 98.45 201 | 99.28 123 | 96.78 218 | 96.20 279 | 99.27 151 | 95.42 268 | 98.28 209 | 98.30 246 | 93.16 261 | 99.71 230 | 94.99 249 | 97.37 327 | 98.87 260 |
|
F-COLMAP | | | 97.30 217 | 96.68 242 | 99.14 100 | 99.19 143 | 98.39 103 | 97.27 216 | 99.30 139 | 92.93 310 | 96.62 302 | 98.00 267 | 95.73 204 | 99.68 245 | 92.62 313 | 98.46 299 | 99.35 170 |
|
1112_ss | | | 97.29 219 | 96.86 231 | 98.58 181 | 99.34 117 | 96.32 227 | 96.75 251 | 99.58 26 | 93.14 308 | 96.89 292 | 97.48 301 | 92.11 277 | 99.86 91 | 96.91 147 | 99.54 182 | 99.57 66 |
|
CANet_DTU | | | 97.26 220 | 97.06 219 | 97.84 240 | 97.57 326 | 94.65 271 | 96.19 280 | 98.79 255 | 97.23 204 | 95.14 338 | 98.24 249 | 93.22 260 | 99.84 122 | 97.34 121 | 99.84 56 | 99.04 233 |
|
Patchmatch-RL test | | | 97.26 220 | 97.02 221 | 97.99 236 | 99.52 72 | 95.53 245 | 96.13 281 | 99.71 10 | 97.47 172 | 99.27 73 | 99.16 86 | 84.30 327 | 99.62 268 | 97.89 93 | 99.77 90 | 98.81 267 |
|
CDPH-MVS | | | 97.26 220 | 96.66 245 | 99.07 113 | 99.00 188 | 98.15 123 | 96.03 283 | 99.01 219 | 91.21 332 | 97.79 239 | 97.85 278 | 96.89 147 | 99.69 236 | 92.75 310 | 99.38 215 | 99.39 150 |
|
PatchMatch-RL | | | 97.24 223 | 96.78 236 | 98.61 178 | 99.03 183 | 97.83 159 | 96.36 271 | 99.06 203 | 93.49 306 | 97.36 272 | 97.78 281 | 95.75 203 | 99.49 306 | 93.44 297 | 98.77 284 | 98.52 290 |
|
eth_miper_zixun_eth | | | 97.23 224 | 97.25 208 | 97.17 278 | 98.00 309 | 92.77 311 | 94.71 327 | 99.18 177 | 97.27 196 | 98.56 187 | 98.74 183 | 91.89 279 | 99.69 236 | 97.06 137 | 99.81 69 | 99.05 229 |
|
sss | | | 97.21 225 | 96.93 225 | 98.06 231 | 98.83 225 | 95.22 256 | 96.75 251 | 98.48 279 | 94.49 284 | 97.27 273 | 97.90 275 | 92.77 270 | 99.80 168 | 96.57 180 | 99.32 223 | 99.16 221 |
|
LFMVS | | | 97.20 226 | 96.72 239 | 98.64 171 | 98.72 242 | 96.95 211 | 98.93 58 | 94.14 348 | 99.74 7 | 98.78 158 | 99.01 122 | 84.45 324 | 99.73 221 | 97.44 116 | 99.27 232 | 99.25 198 |
|
HyFIR lowres test | | | 97.19 227 | 96.60 248 | 98.96 131 | 99.62 50 | 97.28 193 | 95.17 316 | 99.50 57 | 94.21 293 | 99.01 115 | 98.32 245 | 86.61 306 | 99.99 2 | 97.10 135 | 99.84 56 | 99.60 49 |
|
miper_lstm_enhance | | | 97.18 228 | 97.16 214 | 97.25 276 | 98.16 300 | 92.85 309 | 95.15 318 | 99.31 130 | 97.25 198 | 98.74 165 | 98.78 177 | 90.07 287 | 99.78 193 | 97.19 127 | 99.80 77 | 99.11 225 |
|
CNLPA | | | 97.17 229 | 96.71 240 | 98.55 189 | 98.56 273 | 98.05 136 | 96.33 272 | 98.93 228 | 96.91 220 | 97.06 281 | 97.39 306 | 94.38 242 | 99.45 315 | 91.66 322 | 99.18 248 | 98.14 306 |
|
xiu_mvs_v2_base | | | 97.16 230 | 97.49 192 | 96.17 307 | 98.54 275 | 92.46 315 | 95.45 310 | 98.84 246 | 97.25 198 | 97.48 264 | 96.49 325 | 98.31 48 | 99.90 49 | 96.34 201 | 98.68 291 | 96.15 351 |
|
AdaColmap |  | | 97.14 231 | 96.71 240 | 98.46 200 | 98.34 289 | 97.80 165 | 96.95 235 | 98.93 228 | 95.58 262 | 96.92 286 | 97.66 289 | 95.87 200 | 99.53 296 | 90.97 333 | 99.14 253 | 98.04 309 |
|
train_agg | | | 97.10 232 | 96.45 255 | 99.07 113 | 98.71 245 | 98.08 131 | 95.96 287 | 99.03 212 | 91.64 324 | 95.85 322 | 97.53 296 | 96.47 172 | 99.76 206 | 93.67 290 | 99.16 249 | 99.36 166 |
|
OpenMVS |  | 96.65 7 | 97.09 233 | 96.68 242 | 98.32 211 | 98.32 290 | 97.16 204 | 98.86 63 | 99.37 102 | 89.48 342 | 96.29 314 | 99.15 90 | 96.56 167 | 99.90 49 | 92.90 304 | 99.20 242 | 97.89 314 |
|
PS-MVSNAJ | | | 97.08 234 | 97.39 199 | 96.16 309 | 98.56 273 | 92.46 315 | 95.24 315 | 98.85 245 | 97.25 198 | 97.49 263 | 95.99 334 | 98.07 64 | 99.90 49 | 96.37 198 | 98.67 292 | 96.12 352 |
|
RRT_MVS | | | 97.07 235 | 96.57 250 | 98.58 181 | 95.89 359 | 96.33 226 | 97.36 208 | 98.77 258 | 97.85 145 | 99.08 101 | 99.12 94 | 82.30 337 | 99.96 8 | 98.82 43 | 99.90 44 | 99.45 126 |
|
miper_ehance_all_eth | | | 97.06 236 | 97.03 220 | 97.16 280 | 97.83 316 | 93.06 304 | 94.66 330 | 99.09 199 | 95.99 253 | 98.69 167 | 98.45 230 | 92.73 271 | 99.61 274 | 96.79 160 | 99.03 267 | 98.82 264 |
|
agg_prior1 | | | 97.06 236 | 96.40 256 | 99.03 123 | 98.68 256 | 97.99 139 | 95.76 297 | 99.01 219 | 91.73 323 | 95.59 325 | 97.50 299 | 96.49 171 | 99.77 199 | 93.71 289 | 99.14 253 | 99.34 172 |
|
lupinMVS | | | 97.06 236 | 96.86 231 | 97.65 251 | 98.88 215 | 93.89 293 | 95.48 309 | 97.97 299 | 93.53 304 | 98.16 214 | 97.58 294 | 93.81 253 | 99.91 45 | 96.77 163 | 99.57 174 | 99.17 218 |
|
API-MVS | | | 97.04 239 | 96.91 229 | 97.42 269 | 97.88 314 | 98.23 116 | 98.18 121 | 98.50 278 | 97.57 163 | 97.39 270 | 96.75 321 | 96.77 156 | 99.15 344 | 90.16 339 | 99.02 270 | 94.88 357 |
|
cl-mvsnet____ | | | 97.02 240 | 96.83 234 | 97.58 257 | 97.82 317 | 94.04 283 | 94.66 330 | 99.16 186 | 97.04 214 | 98.63 173 | 98.71 187 | 88.68 298 | 99.69 236 | 97.00 139 | 99.81 69 | 99.00 240 |
|
cl-mvsnet1 | | | 97.02 240 | 96.84 233 | 97.58 257 | 97.82 317 | 94.03 284 | 94.66 330 | 99.16 186 | 97.04 214 | 98.63 173 | 98.71 187 | 88.69 297 | 99.69 236 | 97.00 139 | 99.81 69 | 99.01 237 |
|
RPMNet | | | 97.02 240 | 96.93 225 | 97.30 273 | 97.71 321 | 94.22 277 | 98.11 128 | 99.30 139 | 99.37 34 | 96.91 288 | 99.34 60 | 86.72 305 | 99.87 83 | 97.53 113 | 97.36 329 | 97.81 321 |
|
HQP-MVS | | | 97.00 243 | 96.49 254 | 98.55 189 | 98.67 258 | 96.79 215 | 96.29 274 | 99.04 210 | 96.05 249 | 95.55 329 | 96.84 319 | 93.84 251 | 99.54 294 | 92.82 307 | 99.26 235 | 99.32 180 |
|
bset_n11_16_dypcd | | | 96.99 244 | 96.56 251 | 98.27 217 | 99.00 188 | 95.25 253 | 92.18 357 | 94.05 349 | 98.75 87 | 99.01 115 | 98.38 237 | 88.98 295 | 99.93 28 | 98.77 47 | 99.92 34 | 99.64 39 |
|
new_pmnet | | | 96.99 244 | 96.76 237 | 97.67 249 | 98.72 242 | 94.89 264 | 95.95 289 | 98.20 290 | 92.62 315 | 98.55 189 | 98.54 218 | 94.88 228 | 99.52 300 | 93.96 281 | 99.44 207 | 98.59 289 |
|
Test_1112_low_res | | | 96.99 244 | 96.55 252 | 98.31 213 | 99.35 115 | 95.47 248 | 95.84 296 | 99.53 51 | 91.51 328 | 96.80 297 | 98.48 229 | 91.36 281 | 99.83 136 | 96.58 178 | 99.53 186 | 99.62 44 |
|
PVSNet_Blended | | | 96.88 247 | 96.68 242 | 97.47 266 | 98.92 205 | 93.77 297 | 94.71 327 | 99.43 87 | 90.98 334 | 97.62 249 | 97.36 309 | 96.82 152 | 99.67 248 | 94.73 255 | 99.56 179 | 98.98 242 |
|
MVSTER | | | 96.86 248 | 96.55 252 | 97.79 243 | 97.91 313 | 94.21 279 | 97.56 191 | 98.87 239 | 97.49 171 | 99.06 104 | 99.05 108 | 80.72 342 | 99.80 168 | 98.44 65 | 99.82 65 | 99.37 160 |
|
BH-untuned | | | 96.83 249 | 96.75 238 | 97.08 281 | 98.74 239 | 93.33 301 | 96.71 253 | 98.26 287 | 96.72 227 | 98.44 197 | 97.37 308 | 95.20 219 | 99.47 311 | 91.89 320 | 97.43 325 | 98.44 295 |
|
BH-RMVSNet | | | 96.83 249 | 96.58 249 | 97.58 257 | 98.47 281 | 94.05 282 | 96.67 255 | 97.36 312 | 96.70 229 | 97.87 233 | 97.98 269 | 95.14 221 | 99.44 316 | 90.47 338 | 98.58 297 | 99.25 198 |
|
PAPM_NR | | | 96.82 251 | 96.32 259 | 98.30 214 | 99.07 173 | 96.69 220 | 97.48 199 | 98.76 259 | 95.81 259 | 96.61 303 | 96.47 327 | 94.12 249 | 99.17 342 | 90.82 337 | 97.78 319 | 99.06 228 |
|
MG-MVS | | | 96.77 252 | 96.61 247 | 97.26 275 | 98.31 291 | 93.06 304 | 95.93 290 | 98.12 295 | 96.45 237 | 97.92 229 | 98.73 184 | 93.77 255 | 99.39 321 | 91.19 332 | 99.04 266 | 99.33 178 |
|
1121 | | | 96.73 253 | 96.00 264 | 98.91 138 | 98.95 198 | 97.76 167 | 98.07 133 | 98.73 265 | 87.65 350 | 96.54 304 | 98.13 256 | 94.52 238 | 99.73 221 | 92.38 316 | 99.02 270 | 99.24 201 |
|
test_yl | | | 96.69 254 | 96.29 260 | 97.90 237 | 98.28 292 | 95.24 254 | 97.29 213 | 97.36 312 | 98.21 120 | 98.17 212 | 97.86 276 | 86.27 308 | 99.55 291 | 94.87 252 | 98.32 301 | 98.89 257 |
|
DCV-MVSNet | | | 96.69 254 | 96.29 260 | 97.90 237 | 98.28 292 | 95.24 254 | 97.29 213 | 97.36 312 | 98.21 120 | 98.17 212 | 97.86 276 | 86.27 308 | 99.55 291 | 94.87 252 | 98.32 301 | 98.89 257 |
|
WTY-MVS | | | 96.67 256 | 96.27 262 | 97.87 239 | 98.81 231 | 94.61 272 | 96.77 249 | 97.92 301 | 94.94 277 | 97.12 276 | 97.74 284 | 91.11 282 | 99.82 146 | 93.89 284 | 98.15 309 | 99.18 214 |
|
PatchT | | | 96.65 257 | 96.35 257 | 97.54 262 | 97.40 334 | 95.32 252 | 97.98 148 | 96.64 328 | 99.33 38 | 96.89 292 | 99.42 49 | 84.32 326 | 99.81 159 | 97.69 109 | 97.49 322 | 97.48 335 |
|
TAPA-MVS | | 96.21 11 | 96.63 258 | 95.95 266 | 98.65 169 | 98.93 201 | 98.09 127 | 96.93 238 | 99.28 148 | 83.58 357 | 98.13 217 | 97.78 281 | 96.13 184 | 99.40 319 | 93.52 294 | 99.29 230 | 98.45 294 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
MIMVSNet | | | 96.62 259 | 96.25 263 | 97.71 248 | 99.04 180 | 94.66 270 | 99.16 38 | 96.92 324 | 97.23 204 | 97.87 233 | 99.10 98 | 86.11 312 | 99.65 261 | 91.65 323 | 99.21 241 | 98.82 264 |
|
Patchmatch-test | | | 96.55 260 | 96.34 258 | 97.17 278 | 98.35 288 | 93.06 304 | 98.40 104 | 97.79 302 | 97.33 189 | 98.41 201 | 98.67 195 | 83.68 331 | 99.69 236 | 95.16 246 | 99.31 225 | 98.77 275 |
|
PMMVS | | | 96.51 261 | 95.98 265 | 98.09 226 | 97.53 329 | 95.84 238 | 94.92 323 | 98.84 246 | 91.58 326 | 96.05 320 | 95.58 340 | 95.68 205 | 99.66 256 | 95.59 239 | 98.09 312 | 98.76 276 |
|
PLC |  | 94.65 16 | 96.51 261 | 95.73 270 | 98.85 146 | 98.75 238 | 97.91 152 | 96.42 268 | 99.06 203 | 90.94 335 | 95.59 325 | 97.38 307 | 94.41 240 | 99.59 279 | 90.93 334 | 98.04 316 | 99.05 229 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
114514_t | | | 96.50 263 | 95.77 268 | 98.69 167 | 99.48 92 | 97.43 186 | 97.84 161 | 99.55 44 | 81.42 359 | 96.51 307 | 98.58 215 | 95.53 209 | 99.67 248 | 93.41 298 | 99.58 170 | 98.98 242 |
|
MAR-MVS | | | 96.47 264 | 95.70 271 | 98.79 155 | 97.92 312 | 99.12 53 | 98.28 112 | 98.60 273 | 92.16 321 | 95.54 332 | 96.17 332 | 94.77 234 | 99.52 300 | 89.62 341 | 98.23 303 | 97.72 327 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
ETH3 D test6400 | | | 96.46 265 | 95.59 276 | 99.08 110 | 98.88 215 | 98.21 118 | 96.53 260 | 99.18 177 | 88.87 346 | 97.08 279 | 97.79 280 | 93.64 258 | 99.77 199 | 88.92 343 | 99.40 211 | 99.28 192 |
|
SCA | | | 96.41 266 | 96.66 245 | 95.67 315 | 98.24 295 | 88.35 343 | 95.85 295 | 96.88 325 | 96.11 247 | 97.67 246 | 98.67 195 | 93.10 263 | 99.85 105 | 94.16 272 | 99.22 239 | 98.81 267 |
|
DPM-MVS | | | 96.32 267 | 95.59 276 | 98.51 195 | 98.76 236 | 97.21 199 | 94.54 336 | 98.26 287 | 91.94 322 | 96.37 312 | 97.25 311 | 93.06 265 | 99.43 317 | 91.42 328 | 98.74 285 | 98.89 257 |
|
CMPMVS |  | 75.91 23 | 96.29 268 | 95.44 281 | 98.84 147 | 96.25 355 | 98.69 82 | 97.02 231 | 99.12 195 | 88.90 345 | 97.83 236 | 98.86 159 | 89.51 291 | 98.90 352 | 91.92 319 | 99.51 192 | 98.92 253 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
CR-MVSNet | | | 96.28 269 | 95.95 266 | 97.28 274 | 97.71 321 | 94.22 277 | 98.11 128 | 98.92 231 | 92.31 318 | 96.91 288 | 99.37 54 | 85.44 318 | 99.81 159 | 97.39 119 | 97.36 329 | 97.81 321 |
|
CVMVSNet | | | 96.25 270 | 97.21 212 | 93.38 341 | 99.10 166 | 80.56 365 | 97.20 221 | 98.19 292 | 96.94 218 | 99.00 118 | 99.02 115 | 89.50 292 | 99.80 168 | 96.36 200 | 99.59 164 | 99.78 14 |
|
AUN-MVS | | | 96.24 271 | 95.45 280 | 98.60 179 | 98.70 249 | 97.22 197 | 97.38 206 | 97.65 307 | 95.95 254 | 95.53 333 | 97.96 273 | 82.11 341 | 99.79 181 | 96.31 202 | 97.44 324 | 98.80 272 |
|
EPNet | | | 96.14 272 | 95.44 281 | 98.25 218 | 90.76 366 | 95.50 247 | 97.92 152 | 94.65 341 | 98.97 74 | 92.98 353 | 98.85 162 | 89.12 294 | 99.87 83 | 95.99 217 | 99.68 133 | 99.39 150 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
wuyk23d | | | 96.06 273 | 97.62 185 | 91.38 344 | 98.65 264 | 98.57 91 | 98.85 64 | 96.95 322 | 96.86 222 | 99.90 4 | 99.16 86 | 99.18 11 | 98.40 357 | 89.23 342 | 99.77 90 | 77.18 361 |
|
miper_enhance_ethall | | | 96.01 274 | 95.74 269 | 96.81 295 | 96.41 353 | 92.27 319 | 93.69 349 | 98.89 236 | 91.14 333 | 98.30 207 | 97.35 310 | 90.58 284 | 99.58 284 | 96.31 202 | 99.03 267 | 98.60 287 |
|
FMVSNet5 | | | 96.01 274 | 95.20 289 | 98.41 204 | 97.53 329 | 96.10 231 | 98.74 68 | 99.50 57 | 97.22 207 | 98.03 227 | 99.04 111 | 69.80 362 | 99.88 67 | 97.27 124 | 99.71 117 | 99.25 198 |
|
baseline1 | | | 95.96 276 | 95.44 281 | 97.52 264 | 98.51 278 | 93.99 287 | 98.39 105 | 96.09 334 | 98.21 120 | 98.40 205 | 97.76 283 | 86.88 304 | 99.63 266 | 95.42 243 | 89.27 361 | 98.95 247 |
|
HY-MVS | | 95.94 13 | 95.90 277 | 95.35 285 | 97.55 261 | 97.95 310 | 94.79 265 | 98.81 66 | 96.94 323 | 92.28 319 | 95.17 337 | 98.57 216 | 89.90 289 | 99.75 213 | 91.20 331 | 97.33 331 | 98.10 307 |
|
GA-MVS | | | 95.86 278 | 95.32 286 | 97.49 265 | 98.60 267 | 94.15 281 | 93.83 347 | 97.93 300 | 95.49 266 | 96.68 299 | 97.42 305 | 83.21 332 | 99.30 332 | 96.22 207 | 98.55 298 | 99.01 237 |
|
OpenMVS_ROB |  | 95.38 14 | 95.84 279 | 95.18 290 | 97.81 242 | 98.41 286 | 97.15 205 | 97.37 207 | 98.62 272 | 83.86 356 | 98.65 171 | 98.37 239 | 94.29 244 | 99.68 245 | 88.41 344 | 98.62 295 | 96.60 346 |
|
cl-mvsnet2 | | | 95.79 280 | 95.39 284 | 96.98 285 | 96.77 347 | 92.79 310 | 94.40 338 | 98.53 276 | 94.59 283 | 97.89 232 | 98.17 255 | 82.82 336 | 99.24 337 | 96.37 198 | 99.03 267 | 98.92 253 |
|
1314 | | | 95.74 281 | 95.60 275 | 96.17 307 | 97.53 329 | 92.75 312 | 98.07 133 | 98.31 286 | 91.22 331 | 94.25 344 | 96.68 322 | 95.53 209 | 99.03 346 | 91.64 324 | 97.18 332 | 96.74 344 |
|
PVSNet | | 93.40 17 | 95.67 282 | 95.70 271 | 95.57 318 | 98.83 225 | 88.57 341 | 92.50 354 | 97.72 304 | 92.69 314 | 96.49 310 | 96.44 328 | 93.72 256 | 99.43 317 | 93.61 291 | 99.28 231 | 98.71 280 |
|
tttt0517 | | | 95.64 283 | 94.98 294 | 97.64 253 | 99.36 111 | 93.81 295 | 98.72 71 | 90.47 360 | 98.08 130 | 98.67 169 | 98.34 242 | 73.88 359 | 99.92 35 | 97.77 101 | 99.51 192 | 99.20 207 |
|
PatchmatchNet |  | | 95.58 284 | 95.67 273 | 95.30 324 | 97.34 336 | 87.32 347 | 97.65 181 | 96.65 327 | 95.30 271 | 97.07 280 | 98.69 191 | 84.77 321 | 99.75 213 | 94.97 250 | 98.64 293 | 98.83 263 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
TR-MVS | | | 95.55 285 | 95.12 292 | 96.86 294 | 97.54 328 | 93.94 288 | 96.49 264 | 96.53 329 | 94.36 291 | 97.03 283 | 96.61 323 | 94.26 245 | 99.16 343 | 86.91 348 | 96.31 343 | 97.47 336 |
|
JIA-IIPM | | | 95.52 286 | 95.03 293 | 97.00 283 | 96.85 345 | 94.03 284 | 96.93 238 | 95.82 336 | 99.20 48 | 94.63 342 | 99.71 12 | 83.09 333 | 99.60 275 | 94.42 266 | 94.64 353 | 97.36 337 |
|
CHOSEN 280x420 | | | 95.51 287 | 95.47 278 | 95.65 317 | 98.25 294 | 88.27 344 | 93.25 351 | 98.88 237 | 93.53 304 | 94.65 341 | 97.15 315 | 86.17 310 | 99.93 28 | 97.41 118 | 99.93 25 | 98.73 279 |
|
ADS-MVSNet2 | | | 95.43 288 | 94.98 294 | 96.76 297 | 98.14 301 | 91.74 323 | 97.92 152 | 97.76 303 | 90.23 336 | 96.51 307 | 98.91 143 | 85.61 315 | 99.85 105 | 92.88 305 | 96.90 335 | 98.69 283 |
|
PAPR | | | 95.29 289 | 94.47 299 | 97.75 246 | 97.50 333 | 95.14 259 | 94.89 324 | 98.71 267 | 91.39 330 | 95.35 336 | 95.48 343 | 94.57 237 | 99.14 345 | 84.95 351 | 97.37 327 | 98.97 246 |
|
thisisatest0530 | | | 95.27 290 | 94.45 300 | 97.74 247 | 99.19 143 | 94.37 275 | 97.86 159 | 90.20 361 | 97.17 208 | 98.22 211 | 97.65 290 | 73.53 360 | 99.90 49 | 96.90 152 | 99.35 219 | 98.95 247 |
|
ADS-MVSNet | | | 95.24 291 | 94.93 296 | 96.18 306 | 98.14 301 | 90.10 337 | 97.92 152 | 97.32 315 | 90.23 336 | 96.51 307 | 98.91 143 | 85.61 315 | 99.74 217 | 92.88 305 | 96.90 335 | 98.69 283 |
|
RRT_test8_iter05 | | | 95.24 291 | 95.13 291 | 95.57 318 | 97.32 337 | 87.02 349 | 97.99 146 | 99.41 91 | 98.06 131 | 99.12 93 | 99.05 108 | 66.85 367 | 99.85 105 | 98.93 36 | 99.47 203 | 99.84 8 |
|
BH-w/o | | | 95.13 293 | 94.89 297 | 95.86 311 | 98.20 298 | 91.31 330 | 95.65 302 | 97.37 311 | 93.64 302 | 96.52 306 | 95.70 339 | 93.04 266 | 99.02 347 | 88.10 345 | 95.82 348 | 97.24 338 |
|
tpmrst | | | 95.07 294 | 95.46 279 | 93.91 335 | 97.11 341 | 84.36 359 | 97.62 183 | 96.96 321 | 94.98 275 | 96.35 313 | 98.80 174 | 85.46 317 | 99.59 279 | 95.60 238 | 96.23 344 | 97.79 324 |
|
pmmvs3 | | | 95.03 295 | 94.40 301 | 96.93 287 | 97.70 323 | 92.53 314 | 95.08 319 | 97.71 305 | 88.57 347 | 97.71 243 | 98.08 264 | 79.39 349 | 99.82 146 | 96.19 209 | 99.11 260 | 98.43 296 |
|
tpmvs | | | 95.02 296 | 95.25 287 | 94.33 331 | 96.39 354 | 85.87 351 | 98.08 132 | 96.83 326 | 95.46 267 | 95.51 334 | 98.69 191 | 85.91 313 | 99.53 296 | 94.16 272 | 96.23 344 | 97.58 332 |
|
EPNet_dtu | | | 94.93 297 | 94.78 298 | 95.38 323 | 93.58 363 | 87.68 346 | 96.78 248 | 95.69 338 | 97.35 188 | 89.14 361 | 98.09 263 | 88.15 301 | 99.49 306 | 94.95 251 | 99.30 228 | 98.98 242 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
cascas | | | 94.79 298 | 94.33 304 | 96.15 310 | 96.02 358 | 92.36 318 | 92.34 356 | 99.26 156 | 85.34 355 | 95.08 339 | 94.96 351 | 92.96 267 | 98.53 356 | 94.41 269 | 98.59 296 | 97.56 333 |
|
tpm | | | 94.67 299 | 94.34 303 | 95.66 316 | 97.68 325 | 88.42 342 | 97.88 156 | 94.90 340 | 94.46 286 | 96.03 321 | 98.56 217 | 78.66 351 | 99.79 181 | 95.88 221 | 95.01 352 | 98.78 274 |
|
test0.0.03 1 | | | 94.51 300 | 93.69 309 | 96.99 284 | 96.05 356 | 93.61 300 | 94.97 322 | 93.49 350 | 96.17 244 | 97.57 255 | 94.88 352 | 82.30 337 | 99.01 349 | 93.60 292 | 94.17 357 | 98.37 300 |
|
thres600view7 | | | 94.45 301 | 93.83 307 | 96.29 303 | 99.06 177 | 91.53 325 | 97.99 146 | 94.24 346 | 98.34 107 | 97.44 267 | 95.01 348 | 79.84 345 | 99.67 248 | 84.33 352 | 98.23 303 | 97.66 329 |
|
PCF-MVS | | 92.86 18 | 94.36 302 | 93.00 319 | 98.42 203 | 98.70 249 | 97.56 179 | 93.16 352 | 99.11 197 | 79.59 360 | 97.55 256 | 97.43 304 | 92.19 275 | 99.73 221 | 79.85 360 | 99.45 206 | 97.97 313 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
X-MVStestdata | | | 94.32 303 | 92.59 321 | 99.53 36 | 99.46 95 | 99.21 26 | 98.65 74 | 99.34 118 | 98.62 94 | 97.54 258 | 45.85 363 | 97.50 109 | 99.83 136 | 96.79 160 | 99.53 186 | 99.56 71 |
|
MVS-HIRNet | | | 94.32 303 | 95.62 274 | 90.42 345 | 98.46 282 | 75.36 366 | 96.29 274 | 89.13 363 | 95.25 272 | 95.38 335 | 99.75 7 | 92.88 268 | 99.19 341 | 94.07 279 | 99.39 212 | 96.72 345 |
|
ET-MVSNet_ETH3D | | | 94.30 305 | 93.21 315 | 97.58 257 | 98.14 301 | 94.47 274 | 94.78 326 | 93.24 353 | 94.72 281 | 89.56 360 | 95.87 337 | 78.57 353 | 99.81 159 | 96.91 147 | 97.11 334 | 98.46 292 |
|
thres100view900 | | | 94.19 306 | 93.67 310 | 95.75 314 | 99.06 177 | 91.35 329 | 98.03 140 | 94.24 346 | 98.33 109 | 97.40 269 | 94.98 350 | 79.84 345 | 99.62 268 | 83.05 354 | 98.08 313 | 96.29 347 |
|
E-PMN | | | 94.17 307 | 94.37 302 | 93.58 338 | 96.86 344 | 85.71 354 | 90.11 359 | 97.07 319 | 98.17 126 | 97.82 238 | 97.19 312 | 84.62 323 | 98.94 350 | 89.77 340 | 97.68 321 | 96.09 353 |
|
thres400 | | | 94.14 308 | 93.44 312 | 96.24 305 | 98.93 201 | 91.44 327 | 97.60 186 | 94.29 344 | 97.94 137 | 97.10 277 | 94.31 356 | 79.67 347 | 99.62 268 | 83.05 354 | 98.08 313 | 97.66 329 |
|
thisisatest0515 | | | 94.12 309 | 93.16 316 | 96.97 286 | 98.60 267 | 92.90 308 | 93.77 348 | 90.61 359 | 94.10 296 | 96.91 288 | 95.87 337 | 74.99 358 | 99.80 168 | 94.52 261 | 99.12 259 | 98.20 303 |
|
tfpn200view9 | | | 94.03 310 | 93.44 312 | 95.78 313 | 98.93 201 | 91.44 327 | 97.60 186 | 94.29 344 | 97.94 137 | 97.10 277 | 94.31 356 | 79.67 347 | 99.62 268 | 83.05 354 | 98.08 313 | 96.29 347 |
|
CostFormer | | | 93.97 311 | 93.78 308 | 94.51 330 | 97.53 329 | 85.83 353 | 97.98 148 | 95.96 335 | 89.29 344 | 94.99 340 | 98.63 207 | 78.63 352 | 99.62 268 | 94.54 260 | 96.50 340 | 98.09 308 |
|
test-LLR | | | 93.90 312 | 93.85 306 | 94.04 333 | 96.53 349 | 84.62 357 | 94.05 344 | 92.39 355 | 96.17 244 | 94.12 346 | 95.07 346 | 82.30 337 | 99.67 248 | 95.87 224 | 98.18 306 | 97.82 319 |
|
EMVS | | | 93.83 313 | 94.02 305 | 93.23 342 | 96.83 346 | 84.96 355 | 89.77 360 | 96.32 331 | 97.92 139 | 97.43 268 | 96.36 331 | 86.17 310 | 98.93 351 | 87.68 346 | 97.73 320 | 95.81 354 |
|
baseline2 | | | 93.73 314 | 92.83 320 | 96.42 301 | 97.70 323 | 91.28 332 | 96.84 246 | 89.77 362 | 93.96 300 | 92.44 355 | 95.93 335 | 79.14 350 | 99.77 199 | 92.94 303 | 96.76 339 | 98.21 302 |
|
thres200 | | | 93.72 315 | 93.14 317 | 95.46 322 | 98.66 263 | 91.29 331 | 96.61 258 | 94.63 342 | 97.39 184 | 96.83 295 | 93.71 359 | 79.88 344 | 99.56 288 | 82.40 357 | 98.13 310 | 95.54 356 |
|
EPMVS | | | 93.72 315 | 93.27 314 | 95.09 326 | 96.04 357 | 87.76 345 | 98.13 125 | 85.01 365 | 94.69 282 | 96.92 286 | 98.64 203 | 78.47 355 | 99.31 330 | 95.04 247 | 96.46 341 | 98.20 303 |
|
dp | | | 93.47 317 | 93.59 311 | 93.13 343 | 96.64 348 | 81.62 364 | 97.66 179 | 96.42 330 | 92.80 313 | 96.11 316 | 98.64 203 | 78.55 354 | 99.59 279 | 93.31 300 | 92.18 360 | 98.16 305 |
|
FPMVS | | | 93.44 318 | 92.23 323 | 97.08 281 | 99.25 128 | 97.86 156 | 95.61 303 | 97.16 318 | 92.90 311 | 93.76 351 | 98.65 200 | 75.94 357 | 95.66 361 | 79.30 361 | 97.49 322 | 97.73 326 |
|
tpm cat1 | | | 93.29 319 | 93.13 318 | 93.75 336 | 97.39 335 | 84.74 356 | 97.39 205 | 97.65 307 | 83.39 358 | 94.16 345 | 98.41 232 | 82.86 335 | 99.39 321 | 91.56 326 | 95.35 351 | 97.14 339 |
|
MVS | | | 93.19 320 | 92.09 324 | 96.50 300 | 96.91 343 | 94.03 284 | 98.07 133 | 98.06 297 | 68.01 361 | 94.56 343 | 96.48 326 | 95.96 196 | 99.30 332 | 83.84 353 | 96.89 337 | 96.17 349 |
|
tpm2 | | | 93.09 321 | 92.58 322 | 94.62 329 | 97.56 327 | 86.53 350 | 97.66 179 | 95.79 337 | 86.15 353 | 94.07 348 | 98.23 251 | 75.95 356 | 99.53 296 | 90.91 335 | 96.86 338 | 97.81 321 |
|
KD-MVS_2432*1600 | | | 92.87 322 | 91.99 326 | 95.51 320 | 91.37 364 | 89.27 339 | 94.07 342 | 98.14 293 | 95.42 268 | 97.25 274 | 96.44 328 | 67.86 364 | 99.24 337 | 91.28 329 | 96.08 346 | 98.02 310 |
|
miper_refine_blended | | | 92.87 322 | 91.99 326 | 95.51 320 | 91.37 364 | 89.27 339 | 94.07 342 | 98.14 293 | 95.42 268 | 97.25 274 | 96.44 328 | 67.86 364 | 99.24 337 | 91.28 329 | 96.08 346 | 98.02 310 |
|
DWT-MVSNet_test | | | 92.75 324 | 92.05 325 | 94.85 327 | 96.48 351 | 87.21 348 | 97.83 162 | 94.99 339 | 92.22 320 | 92.72 354 | 94.11 358 | 70.75 361 | 99.46 313 | 95.01 248 | 94.33 356 | 97.87 317 |
|
MVE |  | 83.40 22 | 92.50 325 | 91.92 328 | 94.25 332 | 98.83 225 | 91.64 324 | 92.71 353 | 83.52 366 | 95.92 255 | 86.46 364 | 95.46 344 | 95.20 219 | 95.40 362 | 80.51 359 | 98.64 293 | 95.73 355 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
gg-mvs-nofinetune | | | 92.37 326 | 91.20 331 | 95.85 312 | 95.80 360 | 92.38 317 | 99.31 18 | 81.84 367 | 99.75 5 | 91.83 357 | 99.74 8 | 68.29 363 | 99.02 347 | 87.15 347 | 97.12 333 | 96.16 350 |
|
test-mter | | | 92.33 327 | 91.76 330 | 94.04 333 | 96.53 349 | 84.62 357 | 94.05 344 | 92.39 355 | 94.00 299 | 94.12 346 | 95.07 346 | 65.63 370 | 99.67 248 | 95.87 224 | 98.18 306 | 97.82 319 |
|
IB-MVS | | 91.63 19 | 92.24 328 | 90.90 332 | 96.27 304 | 97.22 340 | 91.24 333 | 94.36 339 | 93.33 352 | 92.37 317 | 92.24 356 | 94.58 355 | 66.20 369 | 99.89 58 | 93.16 302 | 94.63 354 | 97.66 329 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
TESTMET0.1,1 | | | 92.19 329 | 91.77 329 | 93.46 339 | 96.48 351 | 82.80 362 | 94.05 344 | 91.52 358 | 94.45 288 | 94.00 349 | 94.88 352 | 66.65 368 | 99.56 288 | 95.78 229 | 98.11 311 | 98.02 310 |
|
PAPM | | | 91.88 330 | 90.34 333 | 96.51 299 | 98.06 306 | 92.56 313 | 92.44 355 | 97.17 317 | 86.35 352 | 90.38 359 | 96.01 333 | 86.61 306 | 99.21 340 | 70.65 363 | 95.43 350 | 97.75 325 |
|
PVSNet_0 | | 89.98 21 | 91.15 331 | 90.30 334 | 93.70 337 | 97.72 320 | 84.34 360 | 90.24 358 | 97.42 310 | 90.20 339 | 93.79 350 | 93.09 360 | 90.90 283 | 98.89 353 | 86.57 349 | 72.76 363 | 97.87 317 |
|
test_method | | | 79.78 332 | 79.50 335 | 80.62 346 | 80.21 367 | 45.76 369 | 70.82 361 | 98.41 283 | 31.08 364 | 80.89 365 | 97.71 285 | 84.85 320 | 97.37 360 | 91.51 327 | 80.03 362 | 98.75 277 |
|
tmp_tt | | | 78.77 333 | 78.73 336 | 78.90 347 | 58.45 368 | 74.76 368 | 94.20 341 | 78.26 369 | 39.16 363 | 86.71 363 | 92.82 361 | 80.50 343 | 75.19 365 | 86.16 350 | 92.29 359 | 86.74 360 |
|
cdsmvs_eth3d_5k | | | 24.66 334 | 32.88 337 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 99.10 198 | 0.00 367 | 0.00 368 | 97.58 294 | 99.21 10 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
testmvs | | | 17.12 335 | 20.53 338 | 6.87 349 | 12.05 369 | 4.20 371 | 93.62 350 | 6.73 370 | 4.62 366 | 10.41 366 | 24.33 364 | 8.28 372 | 3.56 367 | 9.69 365 | 15.07 364 | 12.86 363 |
|
test123 | | | 17.04 336 | 20.11 339 | 7.82 348 | 10.25 370 | 4.91 370 | 94.80 325 | 4.47 371 | 4.93 365 | 10.00 367 | 24.28 365 | 9.69 371 | 3.64 366 | 10.14 364 | 12.43 365 | 14.92 362 |
|
pcd_1.5k_mvsjas | | | 8.17 337 | 10.90 340 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 98.07 64 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
ab-mvs-re | | | 8.12 338 | 10.83 341 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 97.48 301 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uanet_test | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
sosnet-low-res | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
sosnet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uncertanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
Regformer | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
ZD-MVS | | | | | | 99.01 187 | 98.84 69 | | 99.07 202 | 94.10 296 | 98.05 225 | 98.12 259 | 96.36 180 | 99.86 91 | 92.70 312 | 99.19 246 | |
|
RE-MVS-def | | | | 98.58 81 | | 99.20 140 | 99.38 5 | 98.48 97 | 99.30 139 | 98.64 90 | 98.95 127 | 98.96 134 | 97.75 87 | | 96.56 183 | 99.39 212 | 99.45 126 |
|
IU-MVS | | | | | | 99.49 84 | 99.15 45 | | 98.87 239 | 92.97 309 | 99.41 49 | | | | 96.76 164 | 99.62 153 | 99.66 34 |
|
OPU-MVS | | | | | 98.82 149 | 98.59 269 | 98.30 108 | 98.10 130 | | | | 98.52 220 | 98.18 58 | 98.75 355 | 94.62 258 | 99.48 202 | 99.41 141 |
|
test_241102_TWO | | | | | | | | | 99.30 139 | 98.03 132 | 99.26 77 | 99.02 115 | 97.51 108 | 99.88 67 | 96.91 147 | 99.60 162 | 99.66 34 |
|
test_241102_ONE | | | | | | 99.49 84 | 99.17 36 | | 99.31 130 | 97.98 134 | 99.66 20 | 98.90 146 | 98.36 43 | 99.48 309 | | | |
|
9.14 | | | | 97.78 171 | | 99.07 173 | | 97.53 194 | 99.32 125 | 95.53 265 | 98.54 191 | 98.70 190 | 97.58 100 | 99.76 206 | 94.32 271 | 99.46 204 | |
|
save fliter | | | | | | 99.11 162 | 97.97 144 | 96.53 260 | 99.02 216 | 98.24 117 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 98.17 126 | 99.08 101 | 99.02 115 | 97.89 77 | 99.88 67 | 97.07 136 | 99.71 117 | 99.70 29 |
|
test_0728_SECOND | | | | | 99.60 13 | 99.50 77 | 99.23 24 | 98.02 142 | 99.32 125 | | | | | 99.88 67 | 96.99 141 | 99.63 150 | 99.68 31 |
|
test0726 | | | | | | 99.50 77 | 99.21 26 | 98.17 124 | 99.35 112 | 97.97 135 | 99.26 77 | 99.06 101 | 97.61 98 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 98.81 267 |
|
test_part2 | | | | | | 99.36 111 | 99.10 56 | | | | 99.05 109 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 84.74 322 | | | | 98.81 267 |
|
sam_mvs | | | | | | | | | | | | | 84.29 328 | | | | |
|
ambc | | | | | 98.24 219 | 98.82 228 | 95.97 235 | 98.62 77 | 99.00 222 | | 99.27 73 | 99.21 75 | 96.99 142 | 99.50 305 | 96.55 186 | 99.50 199 | 99.26 197 |
|
MTGPA |  | | | | | | | | 99.20 168 | | | | | | | | |
|
test_post1 | | | | | | | | 97.59 188 | | | | 20.48 367 | 83.07 334 | 99.66 256 | 94.16 272 | | |
|
test_post | | | | | | | | | | | | 21.25 366 | 83.86 330 | 99.70 232 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 98.77 179 | 84.37 325 | 99.85 105 | | | |
|
GG-mvs-BLEND | | | | | 94.76 328 | 94.54 362 | 92.13 321 | 99.31 18 | 80.47 368 | | 88.73 362 | 91.01 362 | 67.59 366 | 98.16 359 | 82.30 358 | 94.53 355 | 93.98 358 |
|
MTMP | | | | | | | | 97.93 151 | 91.91 357 | | | | | | | | |
|
gm-plane-assit | | | | | | 94.83 361 | 81.97 363 | | | 88.07 349 | | 94.99 349 | | 99.60 275 | 91.76 321 | | |
|
test9_res | | | | | | | | | | | | | | | 93.28 301 | 99.15 252 | 99.38 157 |
|
TEST9 | | | | | | 98.71 245 | 98.08 131 | 95.96 287 | 99.03 212 | 91.40 329 | 95.85 322 | 97.53 296 | 96.52 169 | 99.76 206 | | | |
|
test_8 | | | | | | 98.67 258 | 98.01 138 | 95.91 292 | 99.02 216 | 91.64 324 | 95.79 324 | 97.50 299 | 96.47 172 | 99.76 206 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 92.50 315 | 99.16 249 | 99.37 160 |
|
agg_prior | | | | | | 98.68 256 | 97.99 139 | | 99.01 219 | | 95.59 325 | | | 99.77 199 | | | |
|
TestCases | | | | | 99.16 97 | 99.50 77 | 98.55 92 | | 99.58 26 | 96.80 223 | 98.88 144 | 99.06 101 | 97.65 93 | 99.57 285 | 94.45 264 | 99.61 160 | 99.37 160 |
|
test_prior4 | | | | | | | 97.97 144 | 95.86 293 | | | | | | | | | |
|
test_prior2 | | | | | | | | 95.74 299 | | 96.48 235 | 96.11 316 | 97.63 292 | 95.92 198 | | 94.16 272 | 99.20 242 | |
|
test_prior | | | | | 98.95 132 | 98.69 253 | 97.95 149 | | 99.03 212 | | | | | 99.59 279 | | | 99.30 187 |
|
旧先验2 | | | | | | | | 95.76 297 | | 88.56 348 | 97.52 260 | | | 99.66 256 | 94.48 262 | | |
|
新几何2 | | | | | | | | 95.93 290 | | | | | | | | | |
|
新几何1 | | | | | 98.91 138 | 98.94 199 | 97.76 167 | | 98.76 259 | 87.58 351 | 96.75 298 | 98.10 261 | 94.80 232 | 99.78 193 | 92.73 311 | 99.00 273 | 99.20 207 |
|
旧先验1 | | | | | | 98.82 228 | 97.45 185 | | 98.76 259 | | | 98.34 242 | 95.50 212 | | | 99.01 272 | 99.23 202 |
|
无先验 | | | | | | | | 95.74 299 | 98.74 264 | 89.38 343 | | | | 99.73 221 | 92.38 316 | | 99.22 206 |
|
原ACMM2 | | | | | | | | 95.53 306 | | | | | | | | | |
|
原ACMM1 | | | | | 98.35 209 | 98.90 209 | 96.25 229 | | 98.83 251 | 92.48 316 | 96.07 319 | 98.10 261 | 95.39 216 | 99.71 230 | 92.61 314 | 98.99 274 | 99.08 226 |
|
test222 | | | | | | 98.92 205 | 96.93 212 | 95.54 305 | 98.78 257 | 85.72 354 | 96.86 294 | 98.11 260 | 94.43 239 | | | 99.10 261 | 99.23 202 |
|
testdata2 | | | | | | | | | | | | | | 99.79 181 | 92.80 309 | | |
|
segment_acmp | | | | | | | | | | | | | 97.02 140 | | | | |
|
testdata | | | | | 98.09 226 | 98.93 201 | 95.40 251 | | 98.80 254 | 90.08 340 | 97.45 266 | 98.37 239 | 95.26 218 | 99.70 232 | 93.58 293 | 98.95 278 | 99.17 218 |
|
testdata1 | | | | | | | | 95.44 311 | | 96.32 241 | | | | | | | |
|
test12 | | | | | 98.93 135 | 98.58 270 | 97.83 159 | | 98.66 269 | | 96.53 305 | | 95.51 211 | 99.69 236 | | 99.13 256 | 99.27 194 |
|
plane_prior7 | | | | | | 99.19 143 | 97.87 155 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.99 192 | 97.70 173 | | | | | | 94.90 225 | | | | |
|
plane_prior5 | | | | | | | | | 99.27 151 | | | | | 99.70 232 | 94.42 266 | 99.51 192 | 99.45 126 |
|
plane_prior4 | | | | | | | | | | | | 97.98 269 | | | | | |
|
plane_prior3 | | | | | | | 97.78 166 | | | 97.41 182 | 97.79 239 | | | | | | |
|
plane_prior2 | | | | | | | | 97.77 168 | | 98.20 123 | | | | | | | |
|
plane_prior1 | | | | | | 99.05 179 | | | | | | | | | | | |
|
plane_prior | | | | | | | 97.65 175 | 97.07 230 | | 96.72 227 | | | | | | 99.36 217 | |
|
n2 | | | | | | | | | 0.00 372 | | | | | | | | |
|
nn | | | | | | | | | 0.00 372 | | | | | | | | |
|
door-mid | | | | | | | | | 99.57 33 | | | | | | | | |
|
lessismore_v0 | | | | | 98.97 130 | 99.73 24 | 97.53 181 | | 86.71 364 | | 99.37 56 | 99.52 35 | 89.93 288 | 99.92 35 | 98.99 34 | 99.72 113 | 99.44 131 |
|
LGP-MVS_train | | | | | 99.47 53 | 99.57 55 | 98.97 62 | | 99.48 67 | 96.60 231 | 99.10 98 | 99.06 101 | 98.71 26 | 99.83 136 | 95.58 240 | 99.78 86 | 99.62 44 |
|
test11 | | | | | | | | | 98.87 239 | | | | | | | | |
|
door | | | | | | | | | 99.41 91 | | | | | | | | |
|
HQP5-MVS | | | | | | | 96.79 215 | | | | | | | | | | |
|
HQP-NCC | | | | | | 98.67 258 | | 96.29 274 | | 96.05 249 | 95.55 329 | | | | | | |
|
ACMP_Plane | | | | | | 98.67 258 | | 96.29 274 | | 96.05 249 | 95.55 329 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.82 307 | | |
|
HQP4-MVS | | | | | | | | | | | 95.56 328 | | | 99.54 294 | | | 99.32 180 |
|
HQP3-MVS | | | | | | | | | 99.04 210 | | | | | | | 99.26 235 | |
|
HQP2-MVS | | | | | | | | | | | | | 93.84 251 | | | | |
|
NP-MVS | | | | | | 98.84 223 | 97.39 188 | | | | | 96.84 319 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 74.92 367 | 97.69 176 | | 90.06 341 | 97.75 242 | | 85.78 314 | | 93.52 294 | | 98.69 283 |
|
MDTV_nov1_ep13 | | | | 95.22 288 | | 97.06 342 | 83.20 361 | 97.74 172 | 96.16 332 | 94.37 290 | 96.99 284 | 98.83 168 | 83.95 329 | 99.53 296 | 93.90 283 | 97.95 317 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.77 90 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.68 133 | |
|
Test By Simon | | | | | | | | | | | | | 96.52 169 | | | | |
|
ITE_SJBPF | | | | | 98.87 143 | 99.22 134 | 98.48 99 | | 99.35 112 | 97.50 169 | 98.28 209 | 98.60 213 | 97.64 96 | 99.35 325 | 93.86 286 | 99.27 232 | 98.79 273 |
|
DeepMVS_CX |  | | | | 93.44 340 | 98.24 295 | 94.21 279 | | 94.34 343 | 64.28 362 | 91.34 358 | 94.87 354 | 89.45 293 | 92.77 364 | 77.54 362 | 93.14 358 | 93.35 359 |
|