LCM-MVSNet | | | 99.93 1 | 99.92 1 | 99.94 1 | 99.99 1 | 99.97 1 | 99.90 1 | 99.89 8 | 99.98 1 | 99.99 1 | 99.96 1 | 99.77 1 | 100.00 1 | 99.81 8 | 100.00 1 | 99.85 12 |
|
UniMVSNet_ETH3D | | | 99.69 2 | 99.69 4 | 99.69 3 | 99.84 18 | 99.34 15 | 99.69 4 | 99.58 45 | 99.90 2 | 99.86 13 | 99.78 8 | 99.58 3 | 99.95 20 | 99.00 51 | 99.95 22 | 99.78 22 |
|
pmmvs6 | | | 99.67 3 | 99.70 3 | 99.60 11 | 99.90 4 | 99.27 22 | 99.53 7 | 99.76 21 | 99.64 13 | 99.84 14 | 99.83 3 | 99.50 5 | 99.87 93 | 99.36 28 | 99.92 45 | 99.64 52 |
|
LTVRE_ROB | | 98.40 1 | 99.67 3 | 99.71 2 | 99.56 21 | 99.85 16 | 99.11 59 | 99.90 1 | 99.78 19 | 99.63 15 | 99.78 18 | 99.67 22 | 99.48 6 | 99.81 167 | 99.30 33 | 99.97 14 | 99.77 24 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
mvs_tets | | | 99.63 5 | 99.67 5 | 99.49 48 | 99.88 9 | 98.61 92 | 99.34 20 | 99.71 24 | 99.27 52 | 99.90 9 | 99.74 12 | 99.68 2 | 99.97 4 | 99.55 19 | 99.99 5 | 99.88 7 |
|
jajsoiax | | | 99.58 6 | 99.61 7 | 99.48 51 | 99.87 12 | 98.61 92 | 99.28 37 | 99.66 35 | 99.09 76 | 99.89 11 | 99.68 18 | 99.53 4 | 99.97 4 | 99.50 22 | 99.99 5 | 99.87 9 |
|
ANet_high | | | 99.57 7 | 99.67 5 | 99.28 83 | 99.89 6 | 98.09 133 | 99.14 54 | 99.93 3 | 99.82 3 | 99.93 4 | 99.81 5 | 99.17 15 | 99.94 30 | 99.31 31 | 100.00 1 | 99.82 15 |
|
v7n | | | 99.53 8 | 99.57 8 | 99.41 60 | 99.88 9 | 98.54 100 | 99.45 10 | 99.61 41 | 99.66 12 | 99.68 30 | 99.66 24 | 98.44 50 | 99.95 20 | 99.73 13 | 99.96 18 | 99.75 31 |
|
test_djsdf | | | 99.52 9 | 99.51 9 | 99.53 34 | 99.86 14 | 98.74 82 | 99.39 17 | 99.56 59 | 99.11 66 | 99.70 26 | 99.73 14 | 99.00 19 | 99.97 4 | 99.26 34 | 99.98 10 | 99.89 6 |
|
anonymousdsp | | | 99.51 10 | 99.47 13 | 99.62 6 | 99.88 9 | 99.08 63 | 99.34 20 | 99.69 27 | 98.93 91 | 99.65 35 | 99.72 15 | 98.93 23 | 99.95 20 | 99.11 43 | 100.00 1 | 99.82 15 |
|
UA-Net | | | 99.47 11 | 99.40 17 | 99.70 2 | 99.49 105 | 99.29 19 | 99.80 3 | 99.72 23 | 99.82 3 | 99.04 132 | 99.81 5 | 98.05 80 | 99.96 11 | 98.85 59 | 99.99 5 | 99.86 11 |
|
PS-MVSNAJss | | | 99.46 12 | 99.49 10 | 99.35 69 | 99.90 4 | 98.15 129 | 99.20 45 | 99.65 36 | 99.48 29 | 99.92 6 | 99.71 16 | 98.07 77 | 99.96 11 | 99.53 20 | 100.00 1 | 99.93 4 |
|
pm-mvs1 | | | 99.44 13 | 99.48 12 | 99.33 76 | 99.80 22 | 98.63 89 | 99.29 33 | 99.63 37 | 99.30 50 | 99.65 35 | 99.60 35 | 99.16 17 | 99.82 154 | 99.07 45 | 99.83 83 | 99.56 86 |
|
TransMVSNet (Re) | | | 99.44 13 | 99.47 13 | 99.36 64 | 99.80 22 | 98.58 95 | 99.27 39 | 99.57 52 | 99.39 39 | 99.75 21 | 99.62 30 | 99.17 15 | 99.83 144 | 99.06 46 | 99.62 177 | 99.66 47 |
|
DTE-MVSNet | | | 99.43 15 | 99.35 20 | 99.66 4 | 99.71 44 | 99.30 17 | 99.31 27 | 99.51 75 | 99.64 13 | 99.56 43 | 99.46 59 | 98.23 62 | 99.97 4 | 98.78 62 | 99.93 34 | 99.72 34 |
|
TDRefinement | | | 99.42 16 | 99.38 18 | 99.55 23 | 99.76 30 | 99.33 16 | 99.68 5 | 99.71 24 | 99.38 40 | 99.53 50 | 99.61 33 | 98.64 37 | 99.80 174 | 98.24 95 | 99.84 76 | 99.52 107 |
|
PEN-MVS | | | 99.41 17 | 99.34 22 | 99.62 6 | 99.73 36 | 99.14 52 | 99.29 33 | 99.54 68 | 99.62 18 | 99.56 43 | 99.42 67 | 98.16 73 | 99.96 11 | 98.78 62 | 99.93 34 | 99.77 24 |
|
nrg030 | | | 99.40 18 | 99.35 20 | 99.54 27 | 99.58 69 | 99.13 55 | 98.98 72 | 99.48 86 | 99.68 10 | 99.46 60 | 99.26 94 | 98.62 40 | 99.73 226 | 99.17 42 | 99.92 45 | 99.76 28 |
|
PS-CasMVS | | | 99.40 18 | 99.33 23 | 99.62 6 | 99.71 44 | 99.10 60 | 99.29 33 | 99.53 71 | 99.53 26 | 99.46 60 | 99.41 70 | 98.23 62 | 99.95 20 | 98.89 58 | 99.95 22 | 99.81 17 |
|
MIMVSNet1 | | | 99.38 20 | 99.32 24 | 99.55 23 | 99.86 14 | 99.19 37 | 99.41 13 | 99.59 43 | 99.59 21 | 99.71 24 | 99.57 38 | 97.12 146 | 99.90 57 | 99.21 39 | 99.87 68 | 99.54 97 |
|
OurMVSNet-221017-0 | | | 99.37 21 | 99.31 26 | 99.53 34 | 99.91 3 | 98.98 65 | 99.63 6 | 99.58 45 | 99.44 34 | 99.78 18 | 99.76 10 | 96.39 186 | 99.92 44 | 99.44 26 | 99.92 45 | 99.68 43 |
|
Vis-MVSNet |  | | 99.34 22 | 99.36 19 | 99.27 86 | 99.73 36 | 98.26 118 | 99.17 50 | 99.78 19 | 99.11 66 | 99.27 97 | 99.48 57 | 98.82 28 | 99.95 20 | 98.94 54 | 99.93 34 | 99.59 69 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
test_fmvsm_n_1920 | | | 99.33 23 | 99.45 15 | 98.99 132 | 99.57 73 | 97.73 175 | 97.93 177 | 99.83 15 | 99.22 55 | 99.93 4 | 99.30 88 | 99.42 7 | 99.96 11 | 99.85 4 | 99.99 5 | 99.29 202 |
|
WR-MVS_H | | | 99.33 23 | 99.22 32 | 99.65 5 | 99.71 44 | 99.24 25 | 99.32 23 | 99.55 63 | 99.46 32 | 99.50 56 | 99.34 81 | 97.30 135 | 99.93 35 | 98.90 56 | 99.93 34 | 99.77 24 |
|
VPA-MVSNet | | | 99.30 25 | 99.30 28 | 99.28 83 | 99.49 105 | 98.36 114 | 99.00 69 | 99.45 98 | 99.63 15 | 99.52 52 | 99.44 64 | 98.25 60 | 99.88 76 | 99.09 44 | 99.84 76 | 99.62 56 |
|
sd_testset | | | 99.28 26 | 99.31 26 | 99.19 99 | 99.68 54 | 98.06 142 | 99.41 13 | 99.30 158 | 99.69 8 | 99.63 38 | 99.68 18 | 99.25 11 | 99.96 11 | 97.25 149 | 99.92 45 | 99.57 80 |
|
Anonymous20231211 | | | 99.27 27 | 99.27 29 | 99.26 88 | 99.29 148 | 98.18 126 | 99.49 8 | 99.51 75 | 99.70 7 | 99.80 16 | 99.68 18 | 96.84 161 | 99.83 144 | 99.21 39 | 99.91 53 | 99.77 24 |
|
FC-MVSNet-test | | | 99.27 27 | 99.25 30 | 99.34 72 | 99.77 27 | 98.37 111 | 99.30 32 | 99.57 52 | 99.61 20 | 99.40 72 | 99.50 52 | 97.12 146 | 99.85 114 | 99.02 50 | 99.94 30 | 99.80 18 |
|
test_fmvsmvis_n_1920 | | | 99.26 29 | 99.49 10 | 98.54 193 | 99.66 60 | 96.97 214 | 98.00 171 | 99.85 12 | 99.24 54 | 99.92 6 | 99.50 52 | 99.39 8 | 99.95 20 | 99.89 3 | 99.98 10 | 98.71 295 |
|
testf1 | | | 99.25 30 | 99.16 36 | 99.51 43 | 99.89 6 | 99.63 3 | 98.71 91 | 99.69 27 | 98.90 93 | 99.43 65 | 99.35 77 | 98.86 25 | 99.67 253 | 97.81 121 | 99.81 90 | 99.24 212 |
|
APD_test2 | | | 99.25 30 | 99.16 36 | 99.51 43 | 99.89 6 | 99.63 3 | 98.71 91 | 99.69 27 | 98.90 93 | 99.43 65 | 99.35 77 | 98.86 25 | 99.67 253 | 97.81 121 | 99.81 90 | 99.24 212 |
|
KD-MVS_self_test | | | 99.25 30 | 99.18 33 | 99.44 57 | 99.63 66 | 99.06 64 | 98.69 93 | 99.54 68 | 99.31 48 | 99.62 41 | 99.53 48 | 97.36 133 | 99.86 102 | 99.24 38 | 99.71 144 | 99.39 165 |
|
ACMH | | 96.65 7 | 99.25 30 | 99.24 31 | 99.26 88 | 99.72 42 | 98.38 109 | 99.07 62 | 99.55 63 | 98.30 123 | 99.65 35 | 99.45 63 | 99.22 12 | 99.76 209 | 98.44 86 | 99.77 114 | 99.64 52 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
mvsmamba | | | 99.24 34 | 99.15 41 | 99.49 48 | 99.83 19 | 98.85 74 | 99.41 13 | 99.55 63 | 99.54 25 | 99.40 72 | 99.52 50 | 95.86 213 | 99.91 52 | 99.32 30 | 99.95 22 | 99.70 40 |
|
SDMVSNet | | | 99.23 35 | 99.32 24 | 98.96 136 | 99.68 54 | 97.35 194 | 98.84 84 | 99.48 86 | 99.69 8 | 99.63 38 | 99.68 18 | 99.03 18 | 99.96 11 | 97.97 112 | 99.92 45 | 99.57 80 |
|
CP-MVSNet | | | 99.21 36 | 99.09 46 | 99.56 21 | 99.65 61 | 98.96 70 | 99.13 55 | 99.34 138 | 99.42 37 | 99.33 86 | 99.26 94 | 97.01 154 | 99.94 30 | 98.74 66 | 99.93 34 | 99.79 19 |
|
TranMVSNet+NR-MVSNet | | | 99.17 37 | 99.07 49 | 99.46 56 | 99.37 136 | 98.87 73 | 98.39 129 | 99.42 111 | 99.42 37 | 99.36 81 | 99.06 130 | 98.38 53 | 99.95 20 | 98.34 91 | 99.90 60 | 99.57 80 |
|
FMVSNet1 | | | 99.17 37 | 99.17 34 | 99.17 100 | 99.55 85 | 98.24 120 | 99.20 45 | 99.44 102 | 99.21 57 | 99.43 65 | 99.55 43 | 97.82 96 | 99.86 102 | 98.42 88 | 99.89 64 | 99.41 153 |
|
test_vis3_rt | | | 99.14 39 | 99.17 34 | 99.07 118 | 99.78 25 | 98.38 109 | 98.92 76 | 99.94 1 | 97.80 162 | 99.91 8 | 99.67 22 | 97.15 145 | 98.91 366 | 99.76 11 | 99.56 200 | 99.92 5 |
|
FIs | | | 99.14 39 | 99.09 46 | 99.29 81 | 99.70 50 | 98.28 117 | 99.13 55 | 99.52 74 | 99.48 29 | 99.24 106 | 99.41 70 | 96.79 167 | 99.82 154 | 98.69 71 | 99.88 65 | 99.76 28 |
|
XXY-MVS | | | 99.14 39 | 99.15 41 | 99.10 112 | 99.76 30 | 97.74 173 | 98.85 82 | 99.62 38 | 98.48 115 | 99.37 79 | 99.49 56 | 98.75 31 | 99.86 102 | 98.20 98 | 99.80 100 | 99.71 35 |
|
CS-MVS | | | 99.13 42 | 99.10 45 | 99.24 93 | 99.06 202 | 99.15 47 | 99.36 19 | 99.88 9 | 99.36 44 | 98.21 234 | 98.46 252 | 98.68 36 | 99.93 35 | 99.03 49 | 99.85 72 | 98.64 304 |
|
CS-MVS-test | | | 99.13 42 | 99.09 46 | 99.26 88 | 99.13 187 | 98.97 66 | 99.31 27 | 99.88 9 | 99.44 34 | 98.16 237 | 98.51 244 | 98.64 37 | 99.93 35 | 98.91 55 | 99.85 72 | 98.88 272 |
|
test_fmvs3 | | | 99.12 44 | 99.41 16 | 98.25 219 | 99.76 30 | 95.07 270 | 99.05 65 | 99.94 1 | 97.78 164 | 99.82 15 | 99.84 2 | 98.56 44 | 99.71 234 | 99.96 1 | 99.96 18 | 99.97 1 |
|
casdiffmvs_mvg |  | | 99.12 44 | 99.16 36 | 98.99 132 | 99.43 124 | 97.73 175 | 98.00 171 | 99.62 38 | 99.22 55 | 99.55 45 | 99.22 102 | 98.93 23 | 99.75 216 | 98.66 73 | 99.81 90 | 99.50 112 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
RRT_MVS | | | 99.09 46 | 98.94 58 | 99.55 23 | 99.87 12 | 98.82 78 | 99.48 9 | 98.16 306 | 99.49 28 | 99.59 42 | 99.65 26 | 94.79 247 | 99.95 20 | 99.45 25 | 99.96 18 | 99.88 7 |
|
EC-MVSNet | | | 99.09 46 | 99.05 50 | 99.20 97 | 99.28 149 | 98.93 71 | 99.24 41 | 99.84 14 | 99.08 78 | 98.12 242 | 98.37 260 | 98.72 33 | 99.90 57 | 99.05 47 | 99.77 114 | 98.77 289 |
|
ACMH+ | | 96.62 9 | 99.08 48 | 99.00 53 | 99.33 76 | 99.71 44 | 98.83 76 | 98.60 101 | 99.58 45 | 99.11 66 | 99.53 50 | 99.18 109 | 98.81 29 | 99.67 253 | 96.71 198 | 99.77 114 | 99.50 112 |
|
bld_raw_dy_0_64 | | | 99.07 49 | 99.00 53 | 99.29 81 | 99.85 16 | 98.18 126 | 99.11 58 | 99.40 114 | 99.33 46 | 99.38 76 | 99.44 64 | 95.21 230 | 99.97 4 | 99.31 31 | 99.98 10 | 99.73 33 |
|
GeoE | | | 99.05 50 | 98.99 56 | 99.25 91 | 99.44 119 | 98.35 115 | 98.73 88 | 99.56 59 | 98.42 116 | 98.91 155 | 98.81 198 | 98.94 22 | 99.91 52 | 98.35 90 | 99.73 132 | 99.49 116 |
|
Gipuma |  | | 99.03 51 | 99.16 36 | 98.64 174 | 99.94 2 | 98.51 102 | 99.32 23 | 99.75 22 | 99.58 23 | 98.60 200 | 99.62 30 | 98.22 65 | 99.51 313 | 97.70 129 | 99.73 132 | 97.89 336 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
v8 | | | 99.01 52 | 99.16 36 | 98.57 185 | 99.47 114 | 96.31 233 | 98.90 77 | 99.47 93 | 99.03 82 | 99.52 52 | 99.57 38 | 96.93 157 | 99.81 167 | 99.60 15 | 99.98 10 | 99.60 63 |
|
HPM-MVS_fast | | | 99.01 52 | 98.82 69 | 99.57 16 | 99.71 44 | 99.35 12 | 99.00 69 | 99.50 77 | 97.33 205 | 98.94 152 | 98.86 187 | 98.75 31 | 99.82 154 | 97.53 136 | 99.71 144 | 99.56 86 |
|
APDe-MVS | | | 98.99 54 | 98.79 72 | 99.60 11 | 99.21 163 | 99.15 47 | 98.87 79 | 99.48 86 | 97.57 180 | 99.35 83 | 99.24 99 | 97.83 93 | 99.89 67 | 97.88 118 | 99.70 149 | 99.75 31 |
|
EG-PatchMatch MVS | | | 98.99 54 | 99.01 52 | 98.94 139 | 99.50 98 | 97.47 187 | 98.04 164 | 99.59 43 | 98.15 141 | 99.40 72 | 99.36 76 | 98.58 43 | 99.76 209 | 98.78 62 | 99.68 157 | 99.59 69 |
|
COLMAP_ROB |  | 96.50 10 | 98.99 54 | 98.85 67 | 99.41 60 | 99.58 69 | 99.10 60 | 98.74 86 | 99.56 59 | 99.09 76 | 99.33 86 | 99.19 106 | 98.40 52 | 99.72 233 | 95.98 244 | 99.76 125 | 99.42 150 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Baseline_NR-MVSNet | | | 98.98 57 | 98.86 66 | 99.36 64 | 99.82 21 | 98.55 97 | 97.47 230 | 99.57 52 | 99.37 41 | 99.21 109 | 99.61 33 | 96.76 170 | 99.83 144 | 98.06 105 | 99.83 83 | 99.71 35 |
|
v10 | | | 98.97 58 | 99.11 43 | 98.55 190 | 99.44 119 | 96.21 235 | 98.90 77 | 99.55 63 | 98.73 101 | 99.48 57 | 99.60 35 | 96.63 177 | 99.83 144 | 99.70 14 | 99.99 5 | 99.61 62 |
|
DeepC-MVS | | 97.60 4 | 98.97 58 | 98.93 59 | 99.10 112 | 99.35 141 | 97.98 149 | 98.01 170 | 99.46 95 | 97.56 182 | 99.54 46 | 99.50 52 | 98.97 20 | 99.84 130 | 98.06 105 | 99.92 45 | 99.49 116 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
baseline | | | 98.96 60 | 99.02 51 | 98.76 163 | 99.38 130 | 97.26 199 | 98.49 117 | 99.50 77 | 98.86 96 | 99.19 111 | 99.06 130 | 98.23 62 | 99.69 241 | 98.71 69 | 99.76 125 | 99.33 191 |
|
casdiffmvs |  | | 98.95 61 | 99.00 53 | 98.81 153 | 99.38 130 | 97.33 195 | 97.82 191 | 99.57 52 | 99.17 64 | 99.35 83 | 99.17 113 | 98.35 57 | 99.69 241 | 98.46 85 | 99.73 132 | 99.41 153 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
NR-MVSNet | | | 98.95 61 | 98.82 69 | 99.36 64 | 99.16 180 | 98.72 87 | 99.22 42 | 99.20 189 | 99.10 73 | 99.72 22 | 98.76 206 | 96.38 188 | 99.86 102 | 98.00 110 | 99.82 86 | 99.50 112 |
|
Anonymous20240529 | | | 98.93 63 | 98.87 63 | 99.12 108 | 99.19 170 | 98.22 125 | 99.01 67 | 98.99 238 | 99.25 53 | 99.54 46 | 99.37 73 | 97.04 150 | 99.80 174 | 97.89 115 | 99.52 212 | 99.35 184 |
|
DP-MVS | | | 98.93 63 | 98.81 71 | 99.28 83 | 99.21 163 | 98.45 106 | 98.46 122 | 99.33 143 | 99.63 15 | 99.48 57 | 99.15 119 | 97.23 141 | 99.75 216 | 97.17 152 | 99.66 168 | 99.63 55 |
|
SED-MVS | | | 98.91 65 | 98.72 78 | 99.49 48 | 99.49 105 | 99.17 39 | 98.10 156 | 99.31 150 | 98.03 145 | 99.66 32 | 99.02 142 | 98.36 54 | 99.88 76 | 96.91 174 | 99.62 177 | 99.41 153 |
|
ACMM | | 96.08 12 | 98.91 65 | 98.73 76 | 99.48 51 | 99.55 85 | 99.14 52 | 98.07 159 | 99.37 123 | 97.62 174 | 99.04 132 | 98.96 163 | 98.84 27 | 99.79 187 | 97.43 140 | 99.65 169 | 99.49 116 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DVP-MVS++ | | | 98.90 67 | 98.70 83 | 99.51 43 | 98.43 306 | 99.15 47 | 99.43 11 | 99.32 145 | 98.17 137 | 99.26 101 | 99.02 142 | 98.18 69 | 99.88 76 | 97.07 162 | 99.45 226 | 99.49 116 |
|
tfpnnormal | | | 98.90 67 | 98.90 62 | 98.91 143 | 99.67 58 | 97.82 166 | 99.00 69 | 99.44 102 | 99.45 33 | 99.51 55 | 99.24 99 | 98.20 68 | 99.86 102 | 95.92 246 | 99.69 152 | 99.04 244 |
|
MTAPA | | | 98.88 69 | 98.64 92 | 99.61 9 | 99.67 58 | 99.36 11 | 98.43 125 | 99.20 189 | 98.83 100 | 98.89 158 | 98.90 177 | 96.98 156 | 99.92 44 | 97.16 153 | 99.70 149 | 99.56 86 |
|
mvsany_test3 | | | 98.87 70 | 98.92 60 | 98.74 170 | 99.38 130 | 96.94 217 | 98.58 103 | 99.10 216 | 96.49 253 | 99.96 2 | 99.81 5 | 98.18 69 | 99.45 324 | 98.97 53 | 99.79 105 | 99.83 14 |
|
VPNet | | | 98.87 70 | 98.83 68 | 99.01 130 | 99.70 50 | 97.62 182 | 98.43 125 | 99.35 132 | 99.47 31 | 99.28 95 | 99.05 137 | 96.72 173 | 99.82 154 | 98.09 103 | 99.36 237 | 99.59 69 |
|
UniMVSNet (Re) | | | 98.87 70 | 98.71 80 | 99.35 69 | 99.24 156 | 98.73 85 | 97.73 200 | 99.38 119 | 98.93 91 | 99.12 117 | 98.73 209 | 96.77 168 | 99.86 102 | 98.63 75 | 99.80 100 | 99.46 135 |
|
UniMVSNet_NR-MVSNet | | | 98.86 73 | 98.68 86 | 99.40 62 | 99.17 178 | 98.74 82 | 97.68 204 | 99.40 114 | 99.14 65 | 99.06 125 | 98.59 236 | 96.71 174 | 99.93 35 | 98.57 78 | 99.77 114 | 99.53 104 |
|
APD-MVS_3200maxsize | | | 98.84 74 | 98.61 99 | 99.53 34 | 99.19 170 | 99.27 22 | 98.49 117 | 99.33 143 | 98.64 103 | 99.03 135 | 98.98 158 | 97.89 90 | 99.85 114 | 96.54 214 | 99.42 230 | 99.46 135 |
|
APD_test1 | | | 98.83 75 | 98.66 89 | 99.34 72 | 99.78 25 | 99.47 6 | 98.42 127 | 99.45 98 | 98.28 128 | 98.98 139 | 99.19 106 | 97.76 99 | 99.58 292 | 96.57 206 | 99.55 203 | 98.97 256 |
|
PM-MVS | | | 98.82 76 | 98.72 78 | 99.12 108 | 99.64 64 | 98.54 100 | 97.98 174 | 99.68 32 | 97.62 174 | 99.34 85 | 99.18 109 | 97.54 118 | 99.77 204 | 97.79 123 | 99.74 129 | 99.04 244 |
|
DU-MVS | | | 98.82 76 | 98.63 93 | 99.39 63 | 99.16 180 | 98.74 82 | 97.54 222 | 99.25 178 | 98.84 99 | 99.06 125 | 98.76 206 | 96.76 170 | 99.93 35 | 98.57 78 | 99.77 114 | 99.50 112 |
|
SR-MVS-dyc-post | | | 98.81 78 | 98.55 104 | 99.57 16 | 99.20 167 | 99.38 8 | 98.48 120 | 99.30 158 | 98.64 103 | 98.95 146 | 98.96 163 | 97.49 127 | 99.86 102 | 96.56 210 | 99.39 233 | 99.45 139 |
|
3Dnovator | | 98.27 2 | 98.81 78 | 98.73 76 | 99.05 125 | 98.76 255 | 97.81 168 | 99.25 40 | 99.30 158 | 98.57 112 | 98.55 209 | 99.33 83 | 97.95 88 | 99.90 57 | 97.16 153 | 99.67 163 | 99.44 143 |
|
HPM-MVS |  | | 98.79 80 | 98.53 106 | 99.59 15 | 99.65 61 | 99.29 19 | 99.16 51 | 99.43 108 | 96.74 244 | 98.61 198 | 98.38 259 | 98.62 40 | 99.87 93 | 96.47 218 | 99.67 163 | 99.59 69 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
SteuartSystems-ACMMP | | | 98.79 80 | 98.54 105 | 99.54 27 | 99.73 36 | 99.16 43 | 98.23 141 | 99.31 150 | 97.92 153 | 98.90 156 | 98.90 177 | 98.00 83 | 99.88 76 | 96.15 237 | 99.72 139 | 99.58 75 |
Skip Steuart: Steuart Systems R&D Blog. |
dcpmvs_2 | | | 98.78 82 | 99.11 43 | 97.78 251 | 99.56 81 | 93.67 313 | 99.06 63 | 99.86 11 | 99.50 27 | 99.66 32 | 99.26 94 | 97.21 143 | 99.99 2 | 98.00 110 | 99.91 53 | 99.68 43 |
|
V42 | | | 98.78 82 | 98.78 73 | 98.76 163 | 99.44 119 | 97.04 211 | 98.27 138 | 99.19 193 | 97.87 157 | 99.25 105 | 99.16 115 | 96.84 161 | 99.78 198 | 99.21 39 | 99.84 76 | 99.46 135 |
|
test20.03 | | | 98.78 82 | 98.77 74 | 98.78 160 | 99.46 115 | 97.20 204 | 97.78 193 | 99.24 183 | 99.04 81 | 99.41 69 | 98.90 177 | 97.65 106 | 99.76 209 | 97.70 129 | 99.79 105 | 99.39 165 |
|
DVP-MVS |  | | 98.77 85 | 98.52 107 | 99.52 39 | 99.50 98 | 99.21 28 | 98.02 167 | 98.84 262 | 97.97 148 | 99.08 123 | 99.02 142 | 97.61 112 | 99.88 76 | 96.99 168 | 99.63 174 | 99.48 126 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0402 | | | 98.76 86 | 98.71 80 | 98.93 140 | 99.56 81 | 98.14 131 | 98.45 124 | 99.34 138 | 99.28 51 | 98.95 146 | 98.91 174 | 98.34 58 | 99.79 187 | 95.63 261 | 99.91 53 | 98.86 274 |
|
ACMMP_NAP | | | 98.75 87 | 98.48 115 | 99.57 16 | 99.58 69 | 99.29 19 | 97.82 191 | 99.25 178 | 96.94 235 | 98.78 177 | 99.12 124 | 98.02 81 | 99.84 130 | 97.13 158 | 99.67 163 | 99.59 69 |
|
SixPastTwentyTwo | | | 98.75 87 | 98.62 95 | 99.16 103 | 99.83 19 | 97.96 153 | 99.28 37 | 98.20 303 | 99.37 41 | 99.70 26 | 99.65 26 | 92.65 285 | 99.93 35 | 99.04 48 | 99.84 76 | 99.60 63 |
|
ACMMP |  | | 98.75 87 | 98.50 110 | 99.52 39 | 99.56 81 | 99.16 43 | 98.87 79 | 99.37 123 | 97.16 225 | 98.82 174 | 99.01 151 | 97.71 102 | 99.87 93 | 96.29 229 | 99.69 152 | 99.54 97 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
XVS | | | 98.72 90 | 98.45 120 | 99.53 34 | 99.46 115 | 99.21 28 | 98.65 95 | 99.34 138 | 98.62 107 | 97.54 282 | 98.63 230 | 97.50 124 | 99.83 144 | 96.79 187 | 99.53 209 | 99.56 86 |
|
SR-MVS | | | 98.71 91 | 98.43 123 | 99.57 16 | 99.18 177 | 99.35 12 | 98.36 132 | 99.29 166 | 98.29 126 | 98.88 162 | 98.85 190 | 97.53 120 | 99.87 93 | 96.14 238 | 99.31 245 | 99.48 126 |
|
HFP-MVS | | | 98.71 91 | 98.44 122 | 99.51 43 | 99.49 105 | 99.16 43 | 98.52 110 | 99.31 150 | 97.47 189 | 98.58 204 | 98.50 248 | 97.97 87 | 99.85 114 | 96.57 206 | 99.59 188 | 99.53 104 |
|
LPG-MVS_test | | | 98.71 91 | 98.46 119 | 99.47 54 | 99.57 73 | 98.97 66 | 98.23 141 | 99.48 86 | 96.60 249 | 99.10 121 | 99.06 130 | 98.71 34 | 99.83 144 | 95.58 264 | 99.78 110 | 99.62 56 |
|
test_fmvs2 | | | 98.70 94 | 98.97 57 | 97.89 244 | 99.54 88 | 94.05 295 | 98.55 106 | 99.92 5 | 96.78 242 | 99.72 22 | 99.78 8 | 96.60 178 | 99.67 253 | 99.91 2 | 99.90 60 | 99.94 3 |
|
ACMMPR | | | 98.70 94 | 98.42 125 | 99.54 27 | 99.52 93 | 99.14 52 | 98.52 110 | 99.31 150 | 97.47 189 | 98.56 207 | 98.54 240 | 97.75 100 | 99.88 76 | 96.57 206 | 99.59 188 | 99.58 75 |
|
CP-MVS | | | 98.70 94 | 98.42 125 | 99.52 39 | 99.36 137 | 99.12 57 | 98.72 89 | 99.36 127 | 97.54 184 | 98.30 229 | 98.40 256 | 97.86 92 | 99.89 67 | 96.53 215 | 99.72 139 | 99.56 86 |
|
tt0805 | | | 98.69 97 | 98.62 95 | 98.90 145 | 99.75 34 | 99.30 17 | 99.15 53 | 96.97 336 | 98.86 96 | 98.87 166 | 97.62 313 | 98.63 39 | 98.96 363 | 99.41 27 | 98.29 321 | 98.45 312 |
|
Anonymous20240521 | | | 98.69 97 | 98.87 63 | 98.16 227 | 99.77 27 | 95.11 269 | 99.08 59 | 99.44 102 | 99.34 45 | 99.33 86 | 99.55 43 | 94.10 263 | 99.94 30 | 99.25 36 | 99.96 18 | 99.42 150 |
|
region2R | | | 98.69 97 | 98.40 127 | 99.54 27 | 99.53 91 | 99.17 39 | 98.52 110 | 99.31 150 | 97.46 194 | 98.44 219 | 98.51 244 | 97.83 93 | 99.88 76 | 96.46 219 | 99.58 193 | 99.58 75 |
|
EI-MVSNet-UG-set | | | 98.69 97 | 98.71 80 | 98.62 178 | 99.10 191 | 96.37 230 | 97.23 245 | 98.87 253 | 99.20 59 | 99.19 111 | 98.99 154 | 97.30 135 | 99.85 114 | 98.77 65 | 99.79 105 | 99.65 51 |
|
3Dnovator+ | | 97.89 3 | 98.69 97 | 98.51 108 | 99.24 93 | 98.81 250 | 98.40 107 | 99.02 66 | 99.19 193 | 98.99 85 | 98.07 246 | 99.28 90 | 97.11 148 | 99.84 130 | 96.84 185 | 99.32 243 | 99.47 133 |
|
ZNCC-MVS | | | 98.68 102 | 98.40 127 | 99.54 27 | 99.57 73 | 99.21 28 | 98.46 122 | 99.29 166 | 97.28 211 | 98.11 243 | 98.39 257 | 98.00 83 | 99.87 93 | 96.86 184 | 99.64 171 | 99.55 93 |
|
EI-MVSNet-Vis-set | | | 98.68 102 | 98.70 83 | 98.63 177 | 99.09 194 | 96.40 229 | 97.23 245 | 98.86 258 | 99.20 59 | 99.18 115 | 98.97 160 | 97.29 137 | 99.85 114 | 98.72 68 | 99.78 110 | 99.64 52 |
|
CSCG | | | 98.68 102 | 98.50 110 | 99.20 97 | 99.45 118 | 98.63 89 | 98.56 105 | 99.57 52 | 97.87 157 | 98.85 167 | 98.04 288 | 97.66 105 | 99.84 130 | 96.72 196 | 99.81 90 | 99.13 234 |
|
test_f | | | 98.67 105 | 98.87 63 | 98.05 236 | 99.72 42 | 95.59 249 | 98.51 114 | 99.81 17 | 96.30 262 | 99.78 18 | 99.82 4 | 96.14 195 | 98.63 371 | 99.82 6 | 99.93 34 | 99.95 2 |
|
PGM-MVS | | | 98.66 106 | 98.37 133 | 99.55 23 | 99.53 91 | 99.18 38 | 98.23 141 | 99.49 84 | 97.01 232 | 98.69 187 | 98.88 184 | 98.00 83 | 99.89 67 | 95.87 250 | 99.59 188 | 99.58 75 |
|
GBi-Net | | | 98.65 107 | 98.47 117 | 99.17 100 | 98.90 230 | 98.24 120 | 99.20 45 | 99.44 102 | 98.59 109 | 98.95 146 | 99.55 43 | 94.14 259 | 99.86 102 | 97.77 124 | 99.69 152 | 99.41 153 |
|
test1 | | | 98.65 107 | 98.47 117 | 99.17 100 | 98.90 230 | 98.24 120 | 99.20 45 | 99.44 102 | 98.59 109 | 98.95 146 | 99.55 43 | 94.14 259 | 99.86 102 | 97.77 124 | 99.69 152 | 99.41 153 |
|
LCM-MVSNet-Re | | | 98.64 109 | 98.48 115 | 99.11 110 | 98.85 241 | 98.51 102 | 98.49 117 | 99.83 15 | 98.37 117 | 99.69 28 | 99.46 59 | 98.21 67 | 99.92 44 | 94.13 300 | 99.30 248 | 98.91 268 |
|
mPP-MVS | | | 98.64 109 | 98.34 137 | 99.54 27 | 99.54 88 | 99.17 39 | 98.63 97 | 99.24 183 | 97.47 189 | 98.09 245 | 98.68 218 | 97.62 111 | 99.89 67 | 96.22 232 | 99.62 177 | 99.57 80 |
|
TSAR-MVS + MP. | | | 98.63 111 | 98.49 114 | 99.06 124 | 99.64 64 | 97.90 157 | 98.51 114 | 98.94 240 | 96.96 233 | 99.24 106 | 98.89 183 | 97.83 93 | 99.81 167 | 96.88 181 | 99.49 222 | 99.48 126 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
LS3D | | | 98.63 111 | 98.38 132 | 99.36 64 | 97.25 362 | 99.38 8 | 99.12 57 | 99.32 145 | 99.21 57 | 98.44 219 | 98.88 184 | 97.31 134 | 99.80 174 | 96.58 204 | 99.34 241 | 98.92 265 |
|
RPSCF | | | 98.62 113 | 98.36 134 | 99.42 58 | 99.65 61 | 99.42 7 | 98.55 106 | 99.57 52 | 97.72 168 | 98.90 156 | 99.26 94 | 96.12 197 | 99.52 309 | 95.72 257 | 99.71 144 | 99.32 193 |
|
GST-MVS | | | 98.61 114 | 98.30 142 | 99.52 39 | 99.51 95 | 99.20 34 | 98.26 139 | 99.25 178 | 97.44 197 | 98.67 189 | 98.39 257 | 97.68 103 | 99.85 114 | 96.00 242 | 99.51 214 | 99.52 107 |
|
v1192 | | | 98.60 115 | 98.66 89 | 98.41 206 | 99.27 151 | 95.88 243 | 97.52 224 | 99.36 127 | 97.41 198 | 99.33 86 | 99.20 105 | 96.37 189 | 99.82 154 | 99.57 17 | 99.92 45 | 99.55 93 |
|
v1144 | | | 98.60 115 | 98.66 89 | 98.41 206 | 99.36 137 | 95.90 242 | 97.58 218 | 99.34 138 | 97.51 185 | 99.27 97 | 99.15 119 | 96.34 191 | 99.80 174 | 99.47 24 | 99.93 34 | 99.51 109 |
|
DPE-MVS |  | | 98.59 117 | 98.26 147 | 99.57 16 | 99.27 151 | 99.15 47 | 97.01 257 | 99.39 117 | 97.67 170 | 99.44 64 | 98.99 154 | 97.53 120 | 99.89 67 | 95.40 268 | 99.68 157 | 99.66 47 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MP-MVS-pluss | | | 98.57 118 | 98.23 150 | 99.60 11 | 99.69 52 | 99.35 12 | 97.16 252 | 99.38 119 | 94.87 299 | 98.97 143 | 98.99 154 | 98.01 82 | 99.88 76 | 97.29 146 | 99.70 149 | 99.58 75 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
OPM-MVS | | | 98.56 119 | 98.32 141 | 99.25 91 | 99.41 127 | 98.73 85 | 97.13 254 | 99.18 197 | 97.10 228 | 98.75 183 | 98.92 173 | 98.18 69 | 99.65 269 | 96.68 200 | 99.56 200 | 99.37 174 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
VDD-MVS | | | 98.56 119 | 98.39 130 | 99.07 118 | 99.13 187 | 98.07 139 | 98.59 102 | 97.01 334 | 99.59 21 | 99.11 118 | 99.27 92 | 94.82 242 | 99.79 187 | 98.34 91 | 99.63 174 | 99.34 186 |
|
v2v482 | | | 98.56 119 | 98.62 95 | 98.37 210 | 99.42 125 | 95.81 246 | 97.58 218 | 99.16 204 | 97.90 155 | 99.28 95 | 99.01 151 | 95.98 207 | 99.79 187 | 99.33 29 | 99.90 60 | 99.51 109 |
|
XVG-ACMP-BASELINE | | | 98.56 119 | 98.34 137 | 99.22 96 | 99.54 88 | 98.59 94 | 97.71 201 | 99.46 95 | 97.25 214 | 98.98 139 | 98.99 154 | 97.54 118 | 99.84 130 | 95.88 247 | 99.74 129 | 99.23 214 |
|
v1240 | | | 98.55 123 | 98.62 95 | 98.32 213 | 99.22 161 | 95.58 250 | 97.51 226 | 99.45 98 | 97.16 225 | 99.45 63 | 99.24 99 | 96.12 197 | 99.85 114 | 99.60 15 | 99.88 65 | 99.55 93 |
|
IterMVS-LS | | | 98.55 123 | 98.70 83 | 98.09 229 | 99.48 112 | 94.73 278 | 97.22 248 | 99.39 117 | 98.97 87 | 99.38 76 | 99.31 87 | 96.00 203 | 99.93 35 | 98.58 76 | 99.97 14 | 99.60 63 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v144192 | | | 98.54 125 | 98.57 103 | 98.45 202 | 99.21 163 | 95.98 240 | 97.63 211 | 99.36 127 | 97.15 227 | 99.32 92 | 99.18 109 | 95.84 214 | 99.84 130 | 99.50 22 | 99.91 53 | 99.54 97 |
|
v1921920 | | | 98.54 125 | 98.60 100 | 98.38 209 | 99.20 167 | 95.76 248 | 97.56 220 | 99.36 127 | 97.23 220 | 99.38 76 | 99.17 113 | 96.02 201 | 99.84 130 | 99.57 17 | 99.90 60 | 99.54 97 |
|
SF-MVS | | | 98.53 127 | 98.27 146 | 99.32 78 | 99.31 144 | 98.75 81 | 98.19 145 | 99.41 112 | 96.77 243 | 98.83 171 | 98.90 177 | 97.80 97 | 99.82 154 | 95.68 260 | 99.52 212 | 99.38 172 |
|
XVG-OURS | | | 98.53 127 | 98.34 137 | 99.11 110 | 99.50 98 | 98.82 78 | 95.97 305 | 99.50 77 | 97.30 209 | 99.05 130 | 98.98 158 | 99.35 9 | 99.32 341 | 95.72 257 | 99.68 157 | 99.18 226 |
|
UGNet | | | 98.53 127 | 98.45 120 | 98.79 157 | 97.94 334 | 96.96 215 | 99.08 59 | 98.54 288 | 99.10 73 | 96.82 319 | 99.47 58 | 96.55 180 | 99.84 130 | 98.56 81 | 99.94 30 | 99.55 93 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
patch_mono-2 | | | 98.51 130 | 98.63 93 | 98.17 225 | 99.38 130 | 94.78 275 | 97.36 236 | 99.69 27 | 98.16 140 | 98.49 215 | 99.29 89 | 97.06 149 | 99.97 4 | 98.29 94 | 99.91 53 | 99.76 28 |
|
XVG-OURS-SEG-HR | | | 98.49 131 | 98.28 144 | 99.14 106 | 99.49 105 | 98.83 76 | 96.54 281 | 99.48 86 | 97.32 207 | 99.11 118 | 98.61 234 | 99.33 10 | 99.30 344 | 96.23 231 | 98.38 318 | 99.28 204 |
|
FMVSNet2 | | | 98.49 131 | 98.40 127 | 98.75 166 | 98.90 230 | 97.14 210 | 98.61 100 | 99.13 211 | 98.59 109 | 99.19 111 | 99.28 90 | 94.14 259 | 99.82 154 | 97.97 112 | 99.80 100 | 99.29 202 |
|
pmmvs-eth3d | | | 98.47 133 | 98.34 137 | 98.86 147 | 99.30 147 | 97.76 171 | 97.16 252 | 99.28 169 | 95.54 281 | 99.42 68 | 99.19 106 | 97.27 138 | 99.63 275 | 97.89 115 | 99.97 14 | 99.20 219 |
|
MP-MVS |  | | 98.46 134 | 98.09 165 | 99.54 27 | 99.57 73 | 99.22 27 | 98.50 116 | 99.19 193 | 97.61 177 | 97.58 278 | 98.66 223 | 97.40 131 | 99.88 76 | 94.72 281 | 99.60 184 | 99.54 97 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
v148 | | | 98.45 135 | 98.60 100 | 98.00 239 | 99.44 119 | 94.98 271 | 97.44 232 | 99.06 221 | 98.30 123 | 99.32 92 | 98.97 160 | 96.65 176 | 99.62 277 | 98.37 89 | 99.85 72 | 99.39 165 |
|
AllTest | | | 98.44 136 | 98.20 152 | 99.16 103 | 99.50 98 | 98.55 97 | 98.25 140 | 99.58 45 | 96.80 240 | 98.88 162 | 99.06 130 | 97.65 106 | 99.57 294 | 94.45 288 | 99.61 182 | 99.37 174 |
|
VNet | | | 98.42 137 | 98.30 142 | 98.79 157 | 98.79 254 | 97.29 197 | 98.23 141 | 98.66 282 | 99.31 48 | 98.85 167 | 98.80 199 | 94.80 245 | 99.78 198 | 98.13 100 | 99.13 273 | 99.31 197 |
|
ab-mvs | | | 98.41 138 | 98.36 134 | 98.59 182 | 99.19 170 | 97.23 200 | 99.32 23 | 98.81 267 | 97.66 171 | 98.62 196 | 99.40 72 | 96.82 164 | 99.80 174 | 95.88 247 | 99.51 214 | 98.75 292 |
|
ACMP | | 95.32 15 | 98.41 138 | 98.09 165 | 99.36 64 | 99.51 95 | 98.79 80 | 97.68 204 | 99.38 119 | 95.76 278 | 98.81 176 | 98.82 196 | 98.36 54 | 99.82 154 | 94.75 278 | 99.77 114 | 99.48 126 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
test_vis1_n_1920 | | | 98.40 140 | 98.92 60 | 96.81 311 | 99.74 35 | 90.76 355 | 98.15 150 | 99.91 6 | 98.33 120 | 99.89 11 | 99.55 43 | 95.07 235 | 99.88 76 | 99.76 11 | 99.93 34 | 99.79 19 |
|
SMA-MVS |  | | 98.40 140 | 98.03 172 | 99.51 43 | 99.16 180 | 99.21 28 | 98.05 162 | 99.22 186 | 94.16 315 | 98.98 139 | 99.10 127 | 97.52 122 | 99.79 187 | 96.45 220 | 99.64 171 | 99.53 104 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MSP-MVS | | | 98.40 140 | 98.00 174 | 99.61 9 | 99.57 73 | 99.25 24 | 98.57 104 | 99.35 132 | 97.55 183 | 99.31 94 | 97.71 306 | 94.61 250 | 99.88 76 | 96.14 238 | 99.19 265 | 99.70 40 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SD-MVS | | | 98.40 140 | 98.68 86 | 97.54 274 | 98.96 218 | 97.99 146 | 97.88 184 | 99.36 127 | 98.20 134 | 99.63 38 | 99.04 139 | 98.76 30 | 95.33 383 | 96.56 210 | 99.74 129 | 99.31 197 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
EI-MVSNet | | | 98.40 140 | 98.51 108 | 98.04 237 | 99.10 191 | 94.73 278 | 97.20 249 | 98.87 253 | 98.97 87 | 99.06 125 | 99.02 142 | 96.00 203 | 99.80 174 | 98.58 76 | 99.82 86 | 99.60 63 |
|
WR-MVS | | | 98.40 140 | 98.19 154 | 99.03 128 | 99.00 211 | 97.65 179 | 96.85 267 | 98.94 240 | 98.57 112 | 98.89 158 | 98.50 248 | 95.60 219 | 99.85 114 | 97.54 135 | 99.85 72 | 99.59 69 |
|
new-patchmatchnet | | | 98.35 146 | 98.74 75 | 97.18 292 | 99.24 156 | 92.23 338 | 96.42 288 | 99.48 86 | 98.30 123 | 99.69 28 | 99.53 48 | 97.44 129 | 99.82 154 | 98.84 60 | 99.77 114 | 99.49 116 |
|
canonicalmvs | | | 98.34 147 | 98.26 147 | 98.58 183 | 98.46 303 | 97.82 166 | 98.96 73 | 99.46 95 | 99.19 63 | 97.46 289 | 95.46 363 | 98.59 42 | 99.46 323 | 98.08 104 | 98.71 306 | 98.46 310 |
|
test_cas_vis1_n_1920 | | | 98.33 148 | 98.68 86 | 97.27 289 | 99.69 52 | 92.29 336 | 98.03 165 | 99.85 12 | 97.62 174 | 99.96 2 | 99.62 30 | 93.98 264 | 99.74 221 | 99.52 21 | 99.86 71 | 99.79 19 |
|
testgi | | | 98.32 149 | 98.39 130 | 98.13 228 | 99.57 73 | 95.54 251 | 97.78 193 | 99.49 84 | 97.37 202 | 99.19 111 | 97.65 310 | 98.96 21 | 99.49 315 | 96.50 217 | 98.99 289 | 99.34 186 |
|
DeepPCF-MVS | | 96.93 5 | 98.32 149 | 98.01 173 | 99.23 95 | 98.39 311 | 98.97 66 | 95.03 339 | 99.18 197 | 96.88 238 | 99.33 86 | 98.78 202 | 98.16 73 | 99.28 348 | 96.74 193 | 99.62 177 | 99.44 143 |
|
test_vis1_n | | | 98.31 151 | 98.50 110 | 97.73 259 | 99.76 30 | 94.17 293 | 98.68 94 | 99.91 6 | 96.31 260 | 99.79 17 | 99.57 38 | 92.85 282 | 99.42 329 | 99.79 9 | 99.84 76 | 99.60 63 |
|
MVS_111021_LR | | | 98.30 152 | 98.12 163 | 98.83 150 | 99.16 180 | 98.03 144 | 96.09 302 | 99.30 158 | 97.58 179 | 98.10 244 | 98.24 271 | 98.25 60 | 99.34 338 | 96.69 199 | 99.65 169 | 99.12 235 |
|
EPP-MVSNet | | | 98.30 152 | 98.04 171 | 99.07 118 | 99.56 81 | 97.83 163 | 99.29 33 | 98.07 310 | 99.03 82 | 98.59 202 | 99.13 122 | 92.16 290 | 99.90 57 | 96.87 182 | 99.68 157 | 99.49 116 |
|
DeepC-MVS_fast | | 96.85 6 | 98.30 152 | 98.15 160 | 98.75 166 | 98.61 284 | 97.23 200 | 97.76 197 | 99.09 218 | 97.31 208 | 98.75 183 | 98.66 223 | 97.56 116 | 99.64 272 | 96.10 241 | 99.55 203 | 99.39 165 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PHI-MVS | | | 98.29 155 | 97.95 177 | 99.34 72 | 98.44 305 | 99.16 43 | 98.12 153 | 99.38 119 | 96.01 271 | 98.06 247 | 98.43 254 | 97.80 97 | 99.67 253 | 95.69 259 | 99.58 193 | 99.20 219 |
|
Fast-Effi-MVS+-dtu | | | 98.27 156 | 98.09 165 | 98.81 153 | 98.43 306 | 98.11 132 | 97.61 214 | 99.50 77 | 98.64 103 | 97.39 294 | 97.52 318 | 98.12 76 | 99.95 20 | 96.90 179 | 98.71 306 | 98.38 317 |
|
DELS-MVS | | | 98.27 156 | 98.20 152 | 98.48 199 | 98.86 238 | 96.70 225 | 95.60 322 | 99.20 189 | 97.73 166 | 98.45 218 | 98.71 212 | 97.50 124 | 99.82 154 | 98.21 97 | 99.59 188 | 98.93 264 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Effi-MVS+-dtu | | | 98.26 158 | 97.90 183 | 99.35 69 | 98.02 331 | 99.49 5 | 98.02 167 | 99.16 204 | 98.29 126 | 97.64 273 | 97.99 290 | 96.44 185 | 99.95 20 | 96.66 201 | 98.93 295 | 98.60 305 |
|
MVSFormer | | | 98.26 158 | 98.43 123 | 97.77 252 | 98.88 236 | 93.89 307 | 99.39 17 | 99.56 59 | 99.11 66 | 98.16 237 | 98.13 278 | 93.81 267 | 99.97 4 | 99.26 34 | 99.57 197 | 99.43 147 |
|
MVS_111021_HR | | | 98.25 160 | 98.08 168 | 98.75 166 | 99.09 194 | 97.46 188 | 95.97 305 | 99.27 172 | 97.60 178 | 97.99 252 | 98.25 270 | 98.15 75 | 99.38 335 | 96.87 182 | 99.57 197 | 99.42 150 |
|
TAMVS | | | 98.24 161 | 98.05 170 | 98.80 155 | 99.07 198 | 97.18 206 | 97.88 184 | 98.81 267 | 96.66 248 | 99.17 116 | 99.21 103 | 94.81 244 | 99.77 204 | 96.96 172 | 99.88 65 | 99.44 143 |
|
diffmvs |  | | 98.22 162 | 98.24 149 | 98.17 225 | 99.00 211 | 95.44 256 | 96.38 290 | 99.58 45 | 97.79 163 | 98.53 212 | 98.50 248 | 96.76 170 | 99.74 221 | 97.95 114 | 99.64 171 | 99.34 186 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
Anonymous20231206 | | | 98.21 163 | 98.21 151 | 98.20 223 | 99.51 95 | 95.43 257 | 98.13 151 | 99.32 145 | 96.16 265 | 98.93 153 | 98.82 196 | 96.00 203 | 99.83 144 | 97.32 145 | 99.73 132 | 99.36 180 |
|
VDDNet | | | 98.21 163 | 97.95 177 | 99.01 130 | 99.58 69 | 97.74 173 | 99.01 67 | 97.29 329 | 99.67 11 | 98.97 143 | 99.50 52 | 90.45 302 | 99.80 174 | 97.88 118 | 99.20 262 | 99.48 126 |
|
IS-MVSNet | | | 98.19 165 | 97.90 183 | 99.08 116 | 99.57 73 | 97.97 150 | 99.31 27 | 98.32 298 | 99.01 84 | 98.98 139 | 99.03 141 | 91.59 295 | 99.79 187 | 95.49 266 | 99.80 100 | 99.48 126 |
|
MVS_Test | | | 98.18 166 | 98.36 134 | 97.67 261 | 98.48 301 | 94.73 278 | 98.18 146 | 99.02 232 | 97.69 169 | 98.04 250 | 99.11 125 | 97.22 142 | 99.56 297 | 98.57 78 | 98.90 297 | 98.71 295 |
|
TSAR-MVS + GP. | | | 98.18 166 | 97.98 175 | 98.77 162 | 98.71 264 | 97.88 158 | 96.32 293 | 98.66 282 | 96.33 258 | 99.23 108 | 98.51 244 | 97.48 128 | 99.40 331 | 97.16 153 | 99.46 224 | 99.02 247 |
|
CNVR-MVS | | | 98.17 168 | 97.87 186 | 99.07 118 | 98.67 276 | 98.24 120 | 97.01 257 | 98.93 242 | 97.25 214 | 97.62 274 | 98.34 264 | 97.27 138 | 99.57 294 | 96.42 221 | 99.33 242 | 99.39 165 |
|
PVSNet_Blended_VisFu | | | 98.17 168 | 98.15 160 | 98.22 222 | 99.73 36 | 95.15 266 | 97.36 236 | 99.68 32 | 94.45 309 | 98.99 138 | 99.27 92 | 96.87 160 | 99.94 30 | 97.13 158 | 99.91 53 | 99.57 80 |
|
MVS_0304 | | | 98.10 170 | 97.88 185 | 98.76 163 | 98.82 247 | 96.50 227 | 97.90 182 | 91.35 376 | 99.56 24 | 98.32 228 | 99.13 122 | 96.06 199 | 99.93 35 | 99.84 5 | 99.97 14 | 99.85 12 |
|
HPM-MVS++ |  | | 98.10 170 | 97.64 203 | 99.48 51 | 99.09 194 | 99.13 55 | 97.52 224 | 98.75 276 | 97.46 194 | 96.90 314 | 97.83 301 | 96.01 202 | 99.84 130 | 95.82 254 | 99.35 239 | 99.46 135 |
|
APD-MVS |  | | 98.10 170 | 97.67 198 | 99.42 58 | 99.11 189 | 98.93 71 | 97.76 197 | 99.28 169 | 94.97 296 | 98.72 186 | 98.77 204 | 97.04 150 | 99.85 114 | 93.79 310 | 99.54 205 | 99.49 116 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
test_fmvs1_n | | | 98.09 173 | 98.28 144 | 97.52 276 | 99.68 54 | 93.47 316 | 98.63 97 | 99.93 3 | 95.41 288 | 99.68 30 | 99.64 28 | 91.88 294 | 99.48 318 | 99.82 6 | 99.87 68 | 99.62 56 |
|
MVP-Stereo | | | 98.08 174 | 97.92 181 | 98.57 185 | 98.96 218 | 96.79 221 | 97.90 182 | 99.18 197 | 96.41 256 | 98.46 217 | 98.95 167 | 95.93 210 | 99.60 284 | 96.51 216 | 98.98 291 | 99.31 197 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
PMMVS2 | | | 98.07 175 | 98.08 168 | 98.04 237 | 99.41 127 | 94.59 284 | 94.59 353 | 99.40 114 | 97.50 186 | 98.82 174 | 98.83 193 | 96.83 163 | 99.84 130 | 97.50 138 | 99.81 90 | 99.71 35 |
|
ETV-MVS | | | 98.03 176 | 97.86 187 | 98.56 189 | 98.69 273 | 98.07 139 | 97.51 226 | 99.50 77 | 98.10 142 | 97.50 286 | 95.51 361 | 98.41 51 | 99.88 76 | 96.27 230 | 99.24 257 | 97.71 348 |
|
Effi-MVS+ | | | 98.02 177 | 97.82 189 | 98.62 178 | 98.53 297 | 97.19 205 | 97.33 238 | 99.68 32 | 97.30 209 | 96.68 322 | 97.46 322 | 98.56 44 | 99.80 174 | 96.63 202 | 98.20 324 | 98.86 274 |
|
MSLP-MVS++ | | | 98.02 177 | 98.14 162 | 97.64 265 | 98.58 290 | 95.19 265 | 97.48 228 | 99.23 185 | 97.47 189 | 97.90 256 | 98.62 232 | 97.04 150 | 98.81 369 | 97.55 133 | 99.41 231 | 98.94 263 |
|
EIA-MVS | | | 98.00 179 | 97.74 193 | 98.80 155 | 98.72 261 | 98.09 133 | 98.05 162 | 99.60 42 | 97.39 200 | 96.63 324 | 95.55 360 | 97.68 103 | 99.80 174 | 96.73 195 | 99.27 252 | 98.52 308 |
|
MCST-MVS | | | 98.00 179 | 97.63 204 | 99.10 112 | 99.24 156 | 98.17 128 | 96.89 266 | 98.73 279 | 95.66 279 | 97.92 254 | 97.70 308 | 97.17 144 | 99.66 264 | 96.18 236 | 99.23 258 | 99.47 133 |
|
K. test v3 | | | 98.00 179 | 97.66 201 | 99.03 128 | 99.79 24 | 97.56 183 | 99.19 49 | 92.47 370 | 99.62 18 | 99.52 52 | 99.66 24 | 89.61 307 | 99.96 11 | 99.25 36 | 99.81 90 | 99.56 86 |
|
HQP_MVS | | | 97.99 182 | 97.67 198 | 98.93 140 | 99.19 170 | 97.65 179 | 97.77 195 | 99.27 172 | 98.20 134 | 97.79 265 | 97.98 291 | 94.90 238 | 99.70 237 | 94.42 290 | 99.51 214 | 99.45 139 |
|
MDA-MVSNet-bldmvs | | | 97.94 183 | 97.91 182 | 98.06 234 | 99.44 119 | 94.96 272 | 96.63 279 | 99.15 209 | 98.35 118 | 98.83 171 | 99.11 125 | 94.31 256 | 99.85 114 | 96.60 203 | 98.72 304 | 99.37 174 |
|
Anonymous202405211 | | | 97.90 184 | 97.50 211 | 99.08 116 | 98.90 230 | 98.25 119 | 98.53 109 | 96.16 348 | 98.87 95 | 99.11 118 | 98.86 187 | 90.40 303 | 99.78 198 | 97.36 143 | 99.31 245 | 99.19 224 |
|
LF4IMVS | | | 97.90 184 | 97.69 197 | 98.52 195 | 99.17 178 | 97.66 178 | 97.19 251 | 99.47 93 | 96.31 260 | 97.85 261 | 98.20 275 | 96.71 174 | 99.52 309 | 94.62 282 | 99.72 139 | 98.38 317 |
|
UnsupCasMVSNet_eth | | | 97.89 186 | 97.60 206 | 98.75 166 | 99.31 144 | 97.17 207 | 97.62 212 | 99.35 132 | 98.72 102 | 98.76 182 | 98.68 218 | 92.57 286 | 99.74 221 | 97.76 128 | 95.60 369 | 99.34 186 |
|
TinyColmap | | | 97.89 186 | 97.98 175 | 97.60 267 | 98.86 238 | 94.35 288 | 96.21 298 | 99.44 102 | 97.45 196 | 99.06 125 | 98.88 184 | 97.99 86 | 99.28 348 | 94.38 294 | 99.58 193 | 99.18 226 |
|
OMC-MVS | | | 97.88 188 | 97.49 212 | 99.04 127 | 98.89 235 | 98.63 89 | 96.94 261 | 99.25 178 | 95.02 294 | 98.53 212 | 98.51 244 | 97.27 138 | 99.47 321 | 93.50 317 | 99.51 214 | 99.01 248 |
|
CANet | | | 97.87 189 | 97.76 191 | 98.19 224 | 97.75 342 | 95.51 253 | 96.76 272 | 99.05 224 | 97.74 165 | 96.93 308 | 98.21 274 | 95.59 220 | 99.89 67 | 97.86 120 | 99.93 34 | 99.19 224 |
|
xiu_mvs_v1_base_debu | | | 97.86 190 | 98.17 156 | 96.92 304 | 98.98 215 | 93.91 304 | 96.45 285 | 99.17 201 | 97.85 159 | 98.41 222 | 97.14 334 | 98.47 47 | 99.92 44 | 98.02 107 | 99.05 279 | 96.92 360 |
|
xiu_mvs_v1_base | | | 97.86 190 | 98.17 156 | 96.92 304 | 98.98 215 | 93.91 304 | 96.45 285 | 99.17 201 | 97.85 159 | 98.41 222 | 97.14 334 | 98.47 47 | 99.92 44 | 98.02 107 | 99.05 279 | 96.92 360 |
|
xiu_mvs_v1_base_debi | | | 97.86 190 | 98.17 156 | 96.92 304 | 98.98 215 | 93.91 304 | 96.45 285 | 99.17 201 | 97.85 159 | 98.41 222 | 97.14 334 | 98.47 47 | 99.92 44 | 98.02 107 | 99.05 279 | 96.92 360 |
|
NCCC | | | 97.86 190 | 97.47 215 | 99.05 125 | 98.61 284 | 98.07 139 | 96.98 259 | 98.90 248 | 97.63 173 | 97.04 305 | 97.93 296 | 95.99 206 | 99.66 264 | 95.31 269 | 98.82 300 | 99.43 147 |
|
PMVS |  | 91.26 20 | 97.86 190 | 97.94 179 | 97.65 263 | 99.71 44 | 97.94 155 | 98.52 110 | 98.68 281 | 98.99 85 | 97.52 284 | 99.35 77 | 97.41 130 | 98.18 375 | 91.59 344 | 99.67 163 | 96.82 363 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
IterMVS-SCA-FT | | | 97.85 195 | 98.18 155 | 96.87 307 | 99.27 151 | 91.16 353 | 95.53 324 | 99.25 178 | 99.10 73 | 99.41 69 | 99.35 77 | 93.10 275 | 99.96 11 | 98.65 74 | 99.94 30 | 99.49 116 |
|
D2MVS | | | 97.84 196 | 97.84 188 | 97.83 247 | 99.14 185 | 94.74 277 | 96.94 261 | 98.88 251 | 95.84 276 | 98.89 158 | 98.96 163 | 94.40 254 | 99.69 241 | 97.55 133 | 99.95 22 | 99.05 240 |
|
CPTT-MVS | | | 97.84 196 | 97.36 220 | 99.27 86 | 99.31 144 | 98.46 105 | 98.29 136 | 99.27 172 | 94.90 298 | 97.83 262 | 98.37 260 | 94.90 238 | 99.84 130 | 93.85 309 | 99.54 205 | 99.51 109 |
|
mvs_anonymous | | | 97.83 198 | 98.16 159 | 96.87 307 | 98.18 323 | 91.89 340 | 97.31 239 | 98.90 248 | 97.37 202 | 98.83 171 | 99.46 59 | 96.28 192 | 99.79 187 | 98.90 56 | 98.16 328 | 98.95 259 |
|
h-mvs33 | | | 97.77 199 | 97.33 223 | 99.10 112 | 99.21 163 | 97.84 162 | 98.35 133 | 98.57 287 | 99.11 66 | 98.58 204 | 99.02 142 | 88.65 316 | 99.96 11 | 98.11 101 | 96.34 361 | 99.49 116 |
|
test_vis1_rt | | | 97.75 200 | 97.72 196 | 97.83 247 | 98.81 250 | 96.35 231 | 97.30 240 | 99.69 27 | 94.61 303 | 97.87 258 | 98.05 287 | 96.26 193 | 98.32 374 | 98.74 66 | 98.18 325 | 98.82 277 |
|
IterMVS | | | 97.73 201 | 98.11 164 | 96.57 315 | 99.24 156 | 90.28 356 | 95.52 326 | 99.21 187 | 98.86 96 | 99.33 86 | 99.33 83 | 93.11 274 | 99.94 30 | 98.49 84 | 99.94 30 | 99.48 126 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
test_fmvs1 | | | 97.72 202 | 97.94 179 | 97.07 298 | 98.66 281 | 92.39 333 | 97.68 204 | 99.81 17 | 95.20 292 | 99.54 46 | 99.44 64 | 91.56 296 | 99.41 330 | 99.78 10 | 99.77 114 | 99.40 162 |
|
MSDG | | | 97.71 203 | 97.52 210 | 98.28 218 | 98.91 229 | 96.82 220 | 94.42 356 | 99.37 123 | 97.65 172 | 98.37 227 | 98.29 269 | 97.40 131 | 99.33 340 | 94.09 301 | 99.22 259 | 98.68 302 |
|
CDS-MVSNet | | | 97.69 204 | 97.35 221 | 98.69 171 | 98.73 259 | 97.02 213 | 96.92 265 | 98.75 276 | 95.89 275 | 98.59 202 | 98.67 220 | 92.08 292 | 99.74 221 | 96.72 196 | 99.81 90 | 99.32 193 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MS-PatchMatch | | | 97.68 205 | 97.75 192 | 97.45 281 | 98.23 321 | 93.78 310 | 97.29 241 | 98.84 262 | 96.10 267 | 98.64 193 | 98.65 225 | 96.04 200 | 99.36 336 | 96.84 185 | 99.14 271 | 99.20 219 |
|
Fast-Effi-MVS+ | | | 97.67 206 | 97.38 218 | 98.57 185 | 98.71 264 | 97.43 191 | 97.23 245 | 99.45 98 | 94.82 300 | 96.13 337 | 96.51 342 | 98.52 46 | 99.91 52 | 96.19 234 | 98.83 299 | 98.37 319 |
|
EU-MVSNet | | | 97.66 207 | 98.50 110 | 95.13 343 | 99.63 66 | 85.84 372 | 98.35 133 | 98.21 302 | 98.23 130 | 99.54 46 | 99.46 59 | 95.02 236 | 99.68 250 | 98.24 95 | 99.87 68 | 99.87 9 |
|
pmmvs5 | | | 97.64 208 | 97.49 212 | 98.08 232 | 99.14 185 | 95.12 268 | 96.70 276 | 99.05 224 | 93.77 322 | 98.62 196 | 98.83 193 | 93.23 271 | 99.75 216 | 98.33 93 | 99.76 125 | 99.36 180 |
|
N_pmnet | | | 97.63 209 | 97.17 229 | 98.99 132 | 99.27 151 | 97.86 160 | 95.98 304 | 93.41 367 | 95.25 290 | 99.47 59 | 98.90 177 | 95.63 218 | 99.85 114 | 96.91 174 | 99.73 132 | 99.27 205 |
|
mvsany_test1 | | | 97.60 210 | 97.54 208 | 97.77 252 | 97.72 343 | 95.35 259 | 95.36 331 | 97.13 332 | 94.13 316 | 99.71 24 | 99.33 83 | 97.93 89 | 99.30 344 | 97.60 132 | 98.94 294 | 98.67 303 |
|
YYNet1 | | | 97.60 210 | 97.67 198 | 97.39 285 | 99.04 206 | 93.04 323 | 95.27 332 | 98.38 297 | 97.25 214 | 98.92 154 | 98.95 167 | 95.48 225 | 99.73 226 | 96.99 168 | 98.74 302 | 99.41 153 |
|
MDA-MVSNet_test_wron | | | 97.60 210 | 97.66 201 | 97.41 284 | 99.04 206 | 93.09 319 | 95.27 332 | 98.42 294 | 97.26 213 | 98.88 162 | 98.95 167 | 95.43 226 | 99.73 226 | 97.02 165 | 98.72 304 | 99.41 153 |
|
pmmvs4 | | | 97.58 213 | 97.28 224 | 98.51 196 | 98.84 242 | 96.93 218 | 95.40 330 | 98.52 290 | 93.60 324 | 98.61 198 | 98.65 225 | 95.10 234 | 99.60 284 | 96.97 171 | 99.79 105 | 98.99 252 |
|
PVSNet_BlendedMVS | | | 97.55 214 | 97.53 209 | 97.60 267 | 98.92 226 | 93.77 311 | 96.64 278 | 99.43 108 | 94.49 305 | 97.62 274 | 99.18 109 | 96.82 164 | 99.67 253 | 94.73 279 | 99.93 34 | 99.36 180 |
|
ppachtmachnet_test | | | 97.50 215 | 97.74 193 | 96.78 313 | 98.70 268 | 91.23 352 | 94.55 354 | 99.05 224 | 96.36 257 | 99.21 109 | 98.79 201 | 96.39 186 | 99.78 198 | 96.74 193 | 99.82 86 | 99.34 186 |
|
FMVSNet3 | | | 97.50 215 | 97.24 226 | 98.29 217 | 98.08 329 | 95.83 245 | 97.86 188 | 98.91 247 | 97.89 156 | 98.95 146 | 98.95 167 | 87.06 322 | 99.81 167 | 97.77 124 | 99.69 152 | 99.23 214 |
|
CHOSEN 1792x2688 | | | 97.49 217 | 97.14 233 | 98.54 193 | 99.68 54 | 96.09 238 | 96.50 283 | 99.62 38 | 91.58 347 | 98.84 170 | 98.97 160 | 92.36 287 | 99.88 76 | 96.76 191 | 99.95 22 | 99.67 46 |
|
CLD-MVS | | | 97.49 217 | 97.16 230 | 98.48 199 | 99.07 198 | 97.03 212 | 94.71 346 | 99.21 187 | 94.46 307 | 98.06 247 | 97.16 332 | 97.57 115 | 99.48 318 | 94.46 287 | 99.78 110 | 98.95 259 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
hse-mvs2 | | | 97.46 219 | 97.07 234 | 98.64 174 | 98.73 259 | 97.33 195 | 97.45 231 | 97.64 322 | 99.11 66 | 98.58 204 | 97.98 291 | 88.65 316 | 99.79 187 | 98.11 101 | 97.39 345 | 98.81 281 |
|
Vis-MVSNet (Re-imp) | | | 97.46 219 | 97.16 230 | 98.34 212 | 99.55 85 | 96.10 236 | 98.94 74 | 98.44 293 | 98.32 122 | 98.16 237 | 98.62 232 | 88.76 312 | 99.73 226 | 93.88 307 | 99.79 105 | 99.18 226 |
|
jason | | | 97.45 221 | 97.35 221 | 97.76 255 | 99.24 156 | 93.93 303 | 95.86 313 | 98.42 294 | 94.24 313 | 98.50 214 | 98.13 278 | 94.82 242 | 99.91 52 | 97.22 150 | 99.73 132 | 99.43 147 |
jason: jason. |
CL-MVSNet_self_test | | | 97.44 222 | 97.22 227 | 98.08 232 | 98.57 292 | 95.78 247 | 94.30 359 | 98.79 270 | 96.58 251 | 98.60 200 | 98.19 276 | 94.74 249 | 99.64 272 | 96.41 222 | 98.84 298 | 98.82 277 |
|
DSMNet-mixed | | | 97.42 223 | 97.60 206 | 96.87 307 | 99.15 184 | 91.46 344 | 98.54 108 | 99.12 212 | 92.87 335 | 97.58 278 | 99.63 29 | 96.21 194 | 99.90 57 | 95.74 256 | 99.54 205 | 99.27 205 |
|
USDC | | | 97.41 224 | 97.40 216 | 97.44 282 | 98.94 220 | 93.67 313 | 95.17 335 | 99.53 71 | 94.03 319 | 98.97 143 | 99.10 127 | 95.29 228 | 99.34 338 | 95.84 253 | 99.73 132 | 99.30 200 |
|
our_test_3 | | | 97.39 225 | 97.73 195 | 96.34 319 | 98.70 268 | 89.78 358 | 94.61 352 | 98.97 239 | 96.50 252 | 99.04 132 | 98.85 190 | 95.98 207 | 99.84 130 | 97.26 148 | 99.67 163 | 99.41 153 |
|
c3_l | | | 97.36 226 | 97.37 219 | 97.31 286 | 98.09 328 | 93.25 318 | 95.01 340 | 99.16 204 | 97.05 229 | 98.77 180 | 98.72 211 | 92.88 280 | 99.64 272 | 96.93 173 | 99.76 125 | 99.05 240 |
|
alignmvs | | | 97.35 227 | 96.88 244 | 98.78 160 | 98.54 295 | 98.09 133 | 97.71 201 | 97.69 319 | 99.20 59 | 97.59 277 | 95.90 355 | 88.12 321 | 99.55 300 | 98.18 99 | 98.96 292 | 98.70 298 |
|
Patchmtry | | | 97.35 227 | 96.97 238 | 98.50 198 | 97.31 361 | 96.47 228 | 98.18 146 | 98.92 245 | 98.95 90 | 98.78 177 | 99.37 73 | 85.44 337 | 99.85 114 | 95.96 245 | 99.83 83 | 99.17 230 |
|
DP-MVS Recon | | | 97.33 229 | 96.92 241 | 98.57 185 | 99.09 194 | 97.99 146 | 96.79 269 | 99.35 132 | 93.18 329 | 97.71 269 | 98.07 286 | 95.00 237 | 99.31 342 | 93.97 303 | 99.13 273 | 98.42 316 |
|
QAPM | | | 97.31 230 | 96.81 251 | 98.82 151 | 98.80 253 | 97.49 186 | 99.06 63 | 99.19 193 | 90.22 359 | 97.69 271 | 99.16 115 | 96.91 158 | 99.90 57 | 90.89 355 | 99.41 231 | 99.07 238 |
|
UnsupCasMVSNet_bld | | | 97.30 231 | 96.92 241 | 98.45 202 | 99.28 149 | 96.78 224 | 96.20 299 | 99.27 172 | 95.42 285 | 98.28 231 | 98.30 268 | 93.16 273 | 99.71 234 | 94.99 273 | 97.37 346 | 98.87 273 |
|
F-COLMAP | | | 97.30 231 | 96.68 258 | 99.14 106 | 99.19 170 | 98.39 108 | 97.27 244 | 99.30 158 | 92.93 333 | 96.62 325 | 98.00 289 | 95.73 216 | 99.68 250 | 92.62 333 | 98.46 317 | 99.35 184 |
|
1112_ss | | | 97.29 233 | 96.86 245 | 98.58 183 | 99.34 143 | 96.32 232 | 96.75 273 | 99.58 45 | 93.14 330 | 96.89 315 | 97.48 320 | 92.11 291 | 99.86 102 | 96.91 174 | 99.54 205 | 99.57 80 |
|
CANet_DTU | | | 97.26 234 | 97.06 235 | 97.84 246 | 97.57 350 | 94.65 282 | 96.19 300 | 98.79 270 | 97.23 220 | 95.14 358 | 98.24 271 | 93.22 272 | 99.84 130 | 97.34 144 | 99.84 76 | 99.04 244 |
|
Patchmatch-RL test | | | 97.26 234 | 97.02 237 | 97.99 240 | 99.52 93 | 95.53 252 | 96.13 301 | 99.71 24 | 97.47 189 | 99.27 97 | 99.16 115 | 84.30 346 | 99.62 277 | 97.89 115 | 99.77 114 | 98.81 281 |
|
CDPH-MVS | | | 97.26 234 | 96.66 261 | 99.07 118 | 99.00 211 | 98.15 129 | 96.03 303 | 99.01 235 | 91.21 353 | 97.79 265 | 97.85 300 | 96.89 159 | 99.69 241 | 92.75 330 | 99.38 236 | 99.39 165 |
|
PatchMatch-RL | | | 97.24 237 | 96.78 252 | 98.61 180 | 99.03 209 | 97.83 163 | 96.36 291 | 99.06 221 | 93.49 327 | 97.36 296 | 97.78 302 | 95.75 215 | 99.49 315 | 93.44 318 | 98.77 301 | 98.52 308 |
|
eth_miper_zixun_eth | | | 97.23 238 | 97.25 225 | 97.17 293 | 98.00 332 | 92.77 327 | 94.71 346 | 99.18 197 | 97.27 212 | 98.56 207 | 98.74 208 | 91.89 293 | 99.69 241 | 97.06 164 | 99.81 90 | 99.05 240 |
|
sss | | | 97.21 239 | 96.93 239 | 98.06 234 | 98.83 244 | 95.22 264 | 96.75 273 | 98.48 292 | 94.49 305 | 97.27 297 | 97.90 297 | 92.77 283 | 99.80 174 | 96.57 206 | 99.32 243 | 99.16 233 |
|
LFMVS | | | 97.20 240 | 96.72 255 | 98.64 174 | 98.72 261 | 96.95 216 | 98.93 75 | 94.14 365 | 99.74 6 | 98.78 177 | 99.01 151 | 84.45 343 | 99.73 226 | 97.44 139 | 99.27 252 | 99.25 209 |
|
HyFIR lowres test | | | 97.19 241 | 96.60 266 | 98.96 136 | 99.62 68 | 97.28 198 | 95.17 335 | 99.50 77 | 94.21 314 | 99.01 136 | 98.32 267 | 86.61 325 | 99.99 2 | 97.10 160 | 99.84 76 | 99.60 63 |
|
miper_lstm_enhance | | | 97.18 242 | 97.16 230 | 97.25 291 | 98.16 324 | 92.85 325 | 95.15 337 | 99.31 150 | 97.25 214 | 98.74 185 | 98.78 202 | 90.07 304 | 99.78 198 | 97.19 151 | 99.80 100 | 99.11 236 |
|
CNLPA | | | 97.17 243 | 96.71 256 | 98.55 190 | 98.56 293 | 98.05 143 | 96.33 292 | 98.93 242 | 96.91 237 | 97.06 304 | 97.39 325 | 94.38 255 | 99.45 324 | 91.66 341 | 99.18 267 | 98.14 326 |
|
xiu_mvs_v2_base | | | 97.16 244 | 97.49 212 | 96.17 324 | 98.54 295 | 92.46 331 | 95.45 328 | 98.84 262 | 97.25 214 | 97.48 288 | 96.49 343 | 98.31 59 | 99.90 57 | 96.34 226 | 98.68 309 | 96.15 371 |
|
AdaColmap |  | | 97.14 245 | 96.71 256 | 98.46 201 | 98.34 313 | 97.80 169 | 96.95 260 | 98.93 242 | 95.58 280 | 96.92 309 | 97.66 309 | 95.87 212 | 99.53 305 | 90.97 352 | 99.14 271 | 98.04 331 |
|
iter_conf_final | | | 97.10 246 | 96.65 263 | 98.45 202 | 98.53 297 | 96.08 239 | 98.30 135 | 99.11 214 | 98.10 142 | 98.85 167 | 98.95 167 | 79.38 367 | 99.87 93 | 98.68 72 | 99.91 53 | 99.40 162 |
|
train_agg | | | 97.10 246 | 96.45 271 | 99.07 118 | 98.71 264 | 98.08 137 | 95.96 307 | 99.03 229 | 91.64 345 | 95.85 343 | 97.53 316 | 96.47 183 | 99.76 209 | 93.67 311 | 99.16 268 | 99.36 180 |
|
OpenMVS |  | 96.65 7 | 97.09 248 | 96.68 258 | 98.32 213 | 98.32 314 | 97.16 208 | 98.86 81 | 99.37 123 | 89.48 363 | 96.29 336 | 99.15 119 | 96.56 179 | 99.90 57 | 92.90 324 | 99.20 262 | 97.89 336 |
|
PS-MVSNAJ | | | 97.08 249 | 97.39 217 | 96.16 326 | 98.56 293 | 92.46 331 | 95.24 334 | 98.85 261 | 97.25 214 | 97.49 287 | 95.99 352 | 98.07 77 | 99.90 57 | 96.37 223 | 98.67 310 | 96.12 372 |
|
miper_ehance_all_eth | | | 97.06 250 | 97.03 236 | 97.16 295 | 97.83 339 | 93.06 320 | 94.66 349 | 99.09 218 | 95.99 272 | 98.69 187 | 98.45 253 | 92.73 284 | 99.61 283 | 96.79 187 | 99.03 283 | 98.82 277 |
|
lupinMVS | | | 97.06 250 | 96.86 245 | 97.65 263 | 98.88 236 | 93.89 307 | 95.48 327 | 97.97 312 | 93.53 325 | 98.16 237 | 97.58 314 | 93.81 267 | 99.91 52 | 96.77 190 | 99.57 197 | 99.17 230 |
|
API-MVS | | | 97.04 252 | 96.91 243 | 97.42 283 | 97.88 338 | 98.23 124 | 98.18 146 | 98.50 291 | 97.57 180 | 97.39 294 | 96.75 339 | 96.77 168 | 99.15 357 | 90.16 358 | 99.02 286 | 94.88 377 |
|
cl____ | | | 97.02 253 | 96.83 248 | 97.58 269 | 97.82 340 | 94.04 297 | 94.66 349 | 99.16 204 | 97.04 230 | 98.63 194 | 98.71 212 | 88.68 315 | 99.69 241 | 97.00 166 | 99.81 90 | 99.00 251 |
|
DIV-MVS_self_test | | | 97.02 253 | 96.84 247 | 97.58 269 | 97.82 340 | 94.03 298 | 94.66 349 | 99.16 204 | 97.04 230 | 98.63 194 | 98.71 212 | 88.69 313 | 99.69 241 | 97.00 166 | 99.81 90 | 99.01 248 |
|
RPMNet | | | 97.02 253 | 96.93 239 | 97.30 287 | 97.71 345 | 94.22 289 | 98.11 154 | 99.30 158 | 99.37 41 | 96.91 311 | 99.34 81 | 86.72 324 | 99.87 93 | 97.53 136 | 97.36 348 | 97.81 341 |
|
HQP-MVS | | | 97.00 256 | 96.49 270 | 98.55 190 | 98.67 276 | 96.79 221 | 96.29 294 | 99.04 227 | 96.05 268 | 95.55 349 | 96.84 337 | 93.84 265 | 99.54 303 | 92.82 327 | 99.26 255 | 99.32 193 |
|
FA-MVS(test-final) | | | 96.99 257 | 96.82 249 | 97.50 278 | 98.70 268 | 94.78 275 | 99.34 20 | 96.99 335 | 95.07 293 | 98.48 216 | 99.33 83 | 88.41 319 | 99.65 269 | 96.13 240 | 98.92 296 | 98.07 330 |
|
new_pmnet | | | 96.99 257 | 96.76 253 | 97.67 261 | 98.72 261 | 94.89 273 | 95.95 309 | 98.20 303 | 92.62 338 | 98.55 209 | 98.54 240 | 94.88 241 | 99.52 309 | 93.96 304 | 99.44 229 | 98.59 307 |
|
Test_1112_low_res | | | 96.99 257 | 96.55 268 | 98.31 215 | 99.35 141 | 95.47 255 | 95.84 316 | 99.53 71 | 91.51 349 | 96.80 320 | 98.48 251 | 91.36 297 | 99.83 144 | 96.58 204 | 99.53 209 | 99.62 56 |
|
PVSNet_Blended | | | 96.88 260 | 96.68 258 | 97.47 280 | 98.92 226 | 93.77 311 | 94.71 346 | 99.43 108 | 90.98 355 | 97.62 274 | 97.36 328 | 96.82 164 | 99.67 253 | 94.73 279 | 99.56 200 | 98.98 253 |
|
MVSTER | | | 96.86 261 | 96.55 268 | 97.79 250 | 97.91 336 | 94.21 291 | 97.56 220 | 98.87 253 | 97.49 188 | 99.06 125 | 99.05 137 | 80.72 359 | 99.80 174 | 98.44 86 | 99.82 86 | 99.37 174 |
|
BH-untuned | | | 96.83 262 | 96.75 254 | 97.08 296 | 98.74 258 | 93.33 317 | 96.71 275 | 98.26 300 | 96.72 245 | 98.44 219 | 97.37 327 | 95.20 231 | 99.47 321 | 91.89 339 | 97.43 344 | 98.44 314 |
|
BH-RMVSNet | | | 96.83 262 | 96.58 267 | 97.58 269 | 98.47 302 | 94.05 295 | 96.67 277 | 97.36 325 | 96.70 247 | 97.87 258 | 97.98 291 | 95.14 233 | 99.44 326 | 90.47 357 | 98.58 315 | 99.25 209 |
|
PAPM_NR | | | 96.82 264 | 96.32 274 | 98.30 216 | 99.07 198 | 96.69 226 | 97.48 228 | 98.76 273 | 95.81 277 | 96.61 326 | 96.47 345 | 94.12 262 | 99.17 355 | 90.82 356 | 97.78 338 | 99.06 239 |
|
MG-MVS | | | 96.77 265 | 96.61 264 | 97.26 290 | 98.31 315 | 93.06 320 | 95.93 310 | 98.12 309 | 96.45 255 | 97.92 254 | 98.73 209 | 93.77 269 | 99.39 333 | 91.19 351 | 99.04 282 | 99.33 191 |
|
test_yl | | | 96.69 266 | 96.29 275 | 97.90 242 | 98.28 316 | 95.24 262 | 97.29 241 | 97.36 325 | 98.21 131 | 98.17 235 | 97.86 298 | 86.27 327 | 99.55 300 | 94.87 276 | 98.32 319 | 98.89 269 |
|
DCV-MVSNet | | | 96.69 266 | 96.29 275 | 97.90 242 | 98.28 316 | 95.24 262 | 97.29 241 | 97.36 325 | 98.21 131 | 98.17 235 | 97.86 298 | 86.27 327 | 99.55 300 | 94.87 276 | 98.32 319 | 98.89 269 |
|
WTY-MVS | | | 96.67 268 | 96.27 277 | 97.87 245 | 98.81 250 | 94.61 283 | 96.77 271 | 97.92 314 | 94.94 297 | 97.12 300 | 97.74 305 | 91.11 298 | 99.82 154 | 93.89 306 | 98.15 329 | 99.18 226 |
|
PatchT | | | 96.65 269 | 96.35 272 | 97.54 274 | 97.40 358 | 95.32 260 | 97.98 174 | 96.64 344 | 99.33 46 | 96.89 315 | 99.42 67 | 84.32 345 | 99.81 167 | 97.69 131 | 97.49 341 | 97.48 354 |
|
TAPA-MVS | | 96.21 11 | 96.63 270 | 95.95 281 | 98.65 173 | 98.93 222 | 98.09 133 | 96.93 263 | 99.28 169 | 83.58 376 | 98.13 241 | 97.78 302 | 96.13 196 | 99.40 331 | 93.52 315 | 99.29 250 | 98.45 312 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
MIMVSNet | | | 96.62 271 | 96.25 278 | 97.71 260 | 99.04 206 | 94.66 281 | 99.16 51 | 96.92 340 | 97.23 220 | 97.87 258 | 99.10 127 | 86.11 331 | 99.65 269 | 91.65 342 | 99.21 261 | 98.82 277 |
|
Patchmatch-test | | | 96.55 272 | 96.34 273 | 97.17 293 | 98.35 312 | 93.06 320 | 98.40 128 | 97.79 315 | 97.33 205 | 98.41 222 | 98.67 220 | 83.68 350 | 99.69 241 | 95.16 271 | 99.31 245 | 98.77 289 |
|
iter_conf05 | | | 96.54 273 | 96.07 279 | 97.92 241 | 97.90 337 | 94.50 285 | 97.87 187 | 99.14 210 | 97.73 166 | 98.89 158 | 98.95 167 | 75.75 377 | 99.87 93 | 98.50 83 | 99.92 45 | 99.40 162 |
|
PMMVS | | | 96.51 274 | 95.98 280 | 98.09 229 | 97.53 353 | 95.84 244 | 94.92 342 | 98.84 262 | 91.58 347 | 96.05 341 | 95.58 359 | 95.68 217 | 99.66 264 | 95.59 263 | 98.09 332 | 98.76 291 |
|
PLC |  | 94.65 16 | 96.51 274 | 95.73 285 | 98.85 148 | 98.75 257 | 97.91 156 | 96.42 288 | 99.06 221 | 90.94 356 | 95.59 346 | 97.38 326 | 94.41 253 | 99.59 288 | 90.93 353 | 98.04 336 | 99.05 240 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
114514_t | | | 96.50 276 | 95.77 283 | 98.69 171 | 99.48 112 | 97.43 191 | 97.84 190 | 99.55 63 | 81.42 378 | 96.51 330 | 98.58 237 | 95.53 221 | 99.67 253 | 93.41 319 | 99.58 193 | 98.98 253 |
|
test1111 | | | 96.49 277 | 96.82 249 | 95.52 337 | 99.42 125 | 87.08 369 | 99.22 42 | 87.14 382 | 99.11 66 | 99.46 60 | 99.58 37 | 88.69 313 | 99.86 102 | 98.80 61 | 99.95 22 | 99.62 56 |
|
MAR-MVS | | | 96.47 278 | 95.70 286 | 98.79 157 | 97.92 335 | 99.12 57 | 98.28 137 | 98.60 286 | 92.16 343 | 95.54 352 | 96.17 350 | 94.77 248 | 99.52 309 | 89.62 360 | 98.23 322 | 97.72 347 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
ECVR-MVS |  | | 96.42 279 | 96.61 264 | 95.85 329 | 99.38 130 | 88.18 365 | 99.22 42 | 86.00 384 | 99.08 78 | 99.36 81 | 99.57 38 | 88.47 318 | 99.82 154 | 98.52 82 | 99.95 22 | 99.54 97 |
|
SCA | | | 96.41 280 | 96.66 261 | 95.67 333 | 98.24 319 | 88.35 363 | 95.85 315 | 96.88 341 | 96.11 266 | 97.67 272 | 98.67 220 | 93.10 275 | 99.85 114 | 94.16 296 | 99.22 259 | 98.81 281 |
|
DPM-MVS | | | 96.32 281 | 95.59 291 | 98.51 196 | 98.76 255 | 97.21 203 | 94.54 355 | 98.26 300 | 91.94 344 | 96.37 334 | 97.25 330 | 93.06 277 | 99.43 327 | 91.42 347 | 98.74 302 | 98.89 269 |
|
CMPMVS |  | 75.91 23 | 96.29 282 | 95.44 295 | 98.84 149 | 96.25 377 | 98.69 88 | 97.02 256 | 99.12 212 | 88.90 366 | 97.83 262 | 98.86 187 | 89.51 308 | 98.90 367 | 91.92 338 | 99.51 214 | 98.92 265 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
CR-MVSNet | | | 96.28 283 | 95.95 281 | 97.28 288 | 97.71 345 | 94.22 289 | 98.11 154 | 98.92 245 | 92.31 341 | 96.91 311 | 99.37 73 | 85.44 337 | 99.81 167 | 97.39 142 | 97.36 348 | 97.81 341 |
|
CVMVSNet | | | 96.25 284 | 97.21 228 | 93.38 360 | 99.10 191 | 80.56 386 | 97.20 249 | 98.19 305 | 96.94 235 | 99.00 137 | 99.02 142 | 89.50 309 | 99.80 174 | 96.36 225 | 99.59 188 | 99.78 22 |
|
AUN-MVS | | | 96.24 285 | 95.45 294 | 98.60 181 | 98.70 268 | 97.22 202 | 97.38 234 | 97.65 320 | 95.95 273 | 95.53 353 | 97.96 295 | 82.11 358 | 99.79 187 | 96.31 227 | 97.44 343 | 98.80 286 |
|
EPNet | | | 96.14 286 | 95.44 295 | 98.25 219 | 90.76 387 | 95.50 254 | 97.92 179 | 94.65 358 | 98.97 87 | 92.98 373 | 98.85 190 | 89.12 311 | 99.87 93 | 95.99 243 | 99.68 157 | 99.39 165 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
wuyk23d | | | 96.06 287 | 97.62 205 | 91.38 363 | 98.65 283 | 98.57 96 | 98.85 82 | 96.95 338 | 96.86 239 | 99.90 9 | 99.16 115 | 99.18 14 | 98.40 373 | 89.23 361 | 99.77 114 | 77.18 381 |
|
miper_enhance_ethall | | | 96.01 288 | 95.74 284 | 96.81 311 | 96.41 375 | 92.27 337 | 93.69 368 | 98.89 250 | 91.14 354 | 98.30 229 | 97.35 329 | 90.58 301 | 99.58 292 | 96.31 227 | 99.03 283 | 98.60 305 |
|
FMVSNet5 | | | 96.01 288 | 95.20 304 | 98.41 206 | 97.53 353 | 96.10 236 | 98.74 86 | 99.50 77 | 97.22 223 | 98.03 251 | 99.04 139 | 69.80 381 | 99.88 76 | 97.27 147 | 99.71 144 | 99.25 209 |
|
dmvs_re | | | 95.98 290 | 95.39 298 | 97.74 257 | 98.86 238 | 97.45 189 | 98.37 131 | 95.69 355 | 97.95 150 | 96.56 327 | 95.95 353 | 90.70 300 | 97.68 377 | 88.32 363 | 96.13 365 | 98.11 327 |
|
baseline1 | | | 95.96 291 | 95.44 295 | 97.52 276 | 98.51 300 | 93.99 301 | 98.39 129 | 96.09 350 | 98.21 131 | 98.40 226 | 97.76 304 | 86.88 323 | 99.63 275 | 95.42 267 | 89.27 381 | 98.95 259 |
|
HY-MVS | | 95.94 13 | 95.90 292 | 95.35 300 | 97.55 273 | 97.95 333 | 94.79 274 | 98.81 85 | 96.94 339 | 92.28 342 | 95.17 357 | 98.57 238 | 89.90 306 | 99.75 216 | 91.20 350 | 97.33 350 | 98.10 328 |
|
GA-MVS | | | 95.86 293 | 95.32 301 | 97.49 279 | 98.60 286 | 94.15 294 | 93.83 366 | 97.93 313 | 95.49 283 | 96.68 322 | 97.42 324 | 83.21 351 | 99.30 344 | 96.22 232 | 98.55 316 | 99.01 248 |
|
OpenMVS_ROB |  | 95.38 14 | 95.84 294 | 95.18 305 | 97.81 249 | 98.41 310 | 97.15 209 | 97.37 235 | 98.62 285 | 83.86 375 | 98.65 192 | 98.37 260 | 94.29 257 | 99.68 250 | 88.41 362 | 98.62 313 | 96.60 366 |
|
cl22 | | | 95.79 295 | 95.39 298 | 96.98 301 | 96.77 370 | 92.79 326 | 94.40 357 | 98.53 289 | 94.59 304 | 97.89 257 | 98.17 277 | 82.82 355 | 99.24 350 | 96.37 223 | 99.03 283 | 98.92 265 |
|
1314 | | | 95.74 296 | 95.60 290 | 96.17 324 | 97.53 353 | 92.75 328 | 98.07 159 | 98.31 299 | 91.22 352 | 94.25 364 | 96.68 340 | 95.53 221 | 99.03 359 | 91.64 343 | 97.18 351 | 96.74 364 |
|
PVSNet | | 93.40 17 | 95.67 297 | 95.70 286 | 95.57 336 | 98.83 244 | 88.57 361 | 92.50 373 | 97.72 317 | 92.69 337 | 96.49 333 | 96.44 346 | 93.72 270 | 99.43 327 | 93.61 312 | 99.28 251 | 98.71 295 |
|
FE-MVS | | | 95.66 298 | 94.95 310 | 97.77 252 | 98.53 297 | 95.28 261 | 99.40 16 | 96.09 350 | 93.11 331 | 97.96 253 | 99.26 94 | 79.10 369 | 99.77 204 | 92.40 336 | 98.71 306 | 98.27 321 |
|
tttt0517 | | | 95.64 299 | 94.98 308 | 97.64 265 | 99.36 137 | 93.81 309 | 98.72 89 | 90.47 378 | 98.08 144 | 98.67 189 | 98.34 264 | 73.88 379 | 99.92 44 | 97.77 124 | 99.51 214 | 99.20 219 |
|
PatchmatchNet |  | | 95.58 300 | 95.67 288 | 95.30 342 | 97.34 360 | 87.32 368 | 97.65 209 | 96.65 343 | 95.30 289 | 97.07 303 | 98.69 216 | 84.77 340 | 99.75 216 | 94.97 274 | 98.64 311 | 98.83 276 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
TR-MVS | | | 95.55 301 | 95.12 306 | 96.86 310 | 97.54 352 | 93.94 302 | 96.49 284 | 96.53 345 | 94.36 312 | 97.03 306 | 96.61 341 | 94.26 258 | 99.16 356 | 86.91 367 | 96.31 362 | 97.47 355 |
|
JIA-IIPM | | | 95.52 302 | 95.03 307 | 97.00 299 | 96.85 368 | 94.03 298 | 96.93 263 | 95.82 353 | 99.20 59 | 94.63 362 | 99.71 16 | 83.09 352 | 99.60 284 | 94.42 290 | 94.64 373 | 97.36 357 |
|
CHOSEN 280x420 | | | 95.51 303 | 95.47 292 | 95.65 335 | 98.25 318 | 88.27 364 | 93.25 370 | 98.88 251 | 93.53 325 | 94.65 361 | 97.15 333 | 86.17 329 | 99.93 35 | 97.41 141 | 99.93 34 | 98.73 294 |
|
ADS-MVSNet2 | | | 95.43 304 | 94.98 308 | 96.76 314 | 98.14 325 | 91.74 341 | 97.92 179 | 97.76 316 | 90.23 357 | 96.51 330 | 98.91 174 | 85.61 334 | 99.85 114 | 92.88 325 | 96.90 354 | 98.69 299 |
|
PAPR | | | 95.29 305 | 94.47 314 | 97.75 256 | 97.50 357 | 95.14 267 | 94.89 343 | 98.71 280 | 91.39 351 | 95.35 356 | 95.48 362 | 94.57 251 | 99.14 358 | 84.95 370 | 97.37 346 | 98.97 256 |
|
thisisatest0530 | | | 95.27 306 | 94.45 315 | 97.74 257 | 99.19 170 | 94.37 287 | 97.86 188 | 90.20 379 | 97.17 224 | 98.22 233 | 97.65 310 | 73.53 380 | 99.90 57 | 96.90 179 | 99.35 239 | 98.95 259 |
|
ADS-MVSNet | | | 95.24 307 | 94.93 311 | 96.18 323 | 98.14 325 | 90.10 357 | 97.92 179 | 97.32 328 | 90.23 357 | 96.51 330 | 98.91 174 | 85.61 334 | 99.74 221 | 92.88 325 | 96.90 354 | 98.69 299 |
|
BH-w/o | | | 95.13 308 | 94.89 312 | 95.86 328 | 98.20 322 | 91.31 348 | 95.65 320 | 97.37 324 | 93.64 323 | 96.52 329 | 95.70 358 | 93.04 278 | 99.02 360 | 88.10 364 | 95.82 368 | 97.24 358 |
|
tpmrst | | | 95.07 309 | 95.46 293 | 93.91 353 | 97.11 364 | 84.36 379 | 97.62 212 | 96.96 337 | 94.98 295 | 96.35 335 | 98.80 199 | 85.46 336 | 99.59 288 | 95.60 262 | 96.23 363 | 97.79 344 |
|
pmmvs3 | | | 95.03 310 | 94.40 316 | 96.93 303 | 97.70 347 | 92.53 330 | 95.08 338 | 97.71 318 | 88.57 367 | 97.71 269 | 98.08 285 | 79.39 366 | 99.82 154 | 96.19 234 | 99.11 277 | 98.43 315 |
|
tpmvs | | | 95.02 311 | 95.25 302 | 94.33 349 | 96.39 376 | 85.87 371 | 98.08 158 | 96.83 342 | 95.46 284 | 95.51 354 | 98.69 216 | 85.91 332 | 99.53 305 | 94.16 296 | 96.23 363 | 97.58 352 |
|
EPNet_dtu | | | 94.93 312 | 94.78 313 | 95.38 341 | 93.58 384 | 87.68 367 | 96.78 270 | 95.69 355 | 97.35 204 | 89.14 380 | 98.09 284 | 88.15 320 | 99.49 315 | 94.95 275 | 99.30 248 | 98.98 253 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
cascas | | | 94.79 313 | 94.33 319 | 96.15 327 | 96.02 380 | 92.36 335 | 92.34 375 | 99.26 177 | 85.34 374 | 95.08 359 | 94.96 370 | 92.96 279 | 98.53 372 | 94.41 293 | 98.59 314 | 97.56 353 |
|
tpm | | | 94.67 314 | 94.34 318 | 95.66 334 | 97.68 349 | 88.42 362 | 97.88 184 | 94.90 357 | 94.46 307 | 96.03 342 | 98.56 239 | 78.66 370 | 99.79 187 | 95.88 247 | 95.01 372 | 98.78 288 |
|
test0.0.03 1 | | | 94.51 315 | 93.69 324 | 96.99 300 | 96.05 378 | 93.61 315 | 94.97 341 | 93.49 366 | 96.17 263 | 97.57 280 | 94.88 371 | 82.30 356 | 99.01 362 | 93.60 313 | 94.17 376 | 98.37 319 |
|
thres600view7 | | | 94.45 316 | 93.83 322 | 96.29 320 | 99.06 202 | 91.53 343 | 97.99 173 | 94.24 363 | 98.34 119 | 97.44 291 | 95.01 367 | 79.84 362 | 99.67 253 | 84.33 371 | 98.23 322 | 97.66 349 |
|
PCF-MVS | | 92.86 18 | 94.36 317 | 93.00 334 | 98.42 205 | 98.70 268 | 97.56 183 | 93.16 371 | 99.11 214 | 79.59 379 | 97.55 281 | 97.43 323 | 92.19 289 | 99.73 226 | 79.85 379 | 99.45 226 | 97.97 335 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
X-MVStestdata | | | 94.32 318 | 92.59 336 | 99.53 34 | 99.46 115 | 99.21 28 | 98.65 95 | 99.34 138 | 98.62 107 | 97.54 282 | 45.85 382 | 97.50 124 | 99.83 144 | 96.79 187 | 99.53 209 | 99.56 86 |
|
MVS-HIRNet | | | 94.32 318 | 95.62 289 | 90.42 364 | 98.46 303 | 75.36 387 | 96.29 294 | 89.13 381 | 95.25 290 | 95.38 355 | 99.75 11 | 92.88 280 | 99.19 354 | 94.07 302 | 99.39 233 | 96.72 365 |
|
ET-MVSNet_ETH3D | | | 94.30 320 | 93.21 330 | 97.58 269 | 98.14 325 | 94.47 286 | 94.78 345 | 93.24 369 | 94.72 301 | 89.56 379 | 95.87 356 | 78.57 372 | 99.81 167 | 96.91 174 | 97.11 353 | 98.46 310 |
|
thres100view900 | | | 94.19 321 | 93.67 325 | 95.75 332 | 99.06 202 | 91.35 347 | 98.03 165 | 94.24 363 | 98.33 120 | 97.40 293 | 94.98 369 | 79.84 362 | 99.62 277 | 83.05 373 | 98.08 333 | 96.29 367 |
|
E-PMN | | | 94.17 322 | 94.37 317 | 93.58 357 | 96.86 367 | 85.71 374 | 90.11 377 | 97.07 333 | 98.17 137 | 97.82 264 | 97.19 331 | 84.62 342 | 98.94 364 | 89.77 359 | 97.68 340 | 96.09 373 |
|
thres400 | | | 94.14 323 | 93.44 327 | 96.24 322 | 98.93 222 | 91.44 345 | 97.60 215 | 94.29 361 | 97.94 151 | 97.10 301 | 94.31 375 | 79.67 364 | 99.62 277 | 83.05 373 | 98.08 333 | 97.66 349 |
|
thisisatest0515 | | | 94.12 324 | 93.16 331 | 96.97 302 | 98.60 286 | 92.90 324 | 93.77 367 | 90.61 377 | 94.10 317 | 96.91 311 | 95.87 356 | 74.99 378 | 99.80 174 | 94.52 285 | 99.12 276 | 98.20 323 |
|
tfpn200view9 | | | 94.03 325 | 93.44 327 | 95.78 331 | 98.93 222 | 91.44 345 | 97.60 215 | 94.29 361 | 97.94 151 | 97.10 301 | 94.31 375 | 79.67 364 | 99.62 277 | 83.05 373 | 98.08 333 | 96.29 367 |
|
CostFormer | | | 93.97 326 | 93.78 323 | 94.51 348 | 97.53 353 | 85.83 373 | 97.98 174 | 95.96 352 | 89.29 365 | 94.99 360 | 98.63 230 | 78.63 371 | 99.62 277 | 94.54 284 | 96.50 359 | 98.09 329 |
|
test-LLR | | | 93.90 327 | 93.85 321 | 94.04 351 | 96.53 372 | 84.62 377 | 94.05 363 | 92.39 371 | 96.17 263 | 94.12 366 | 95.07 365 | 82.30 356 | 99.67 253 | 95.87 250 | 98.18 325 | 97.82 339 |
|
EMVS | | | 93.83 328 | 94.02 320 | 93.23 361 | 96.83 369 | 84.96 375 | 89.77 378 | 96.32 347 | 97.92 153 | 97.43 292 | 96.36 349 | 86.17 329 | 98.93 365 | 87.68 365 | 97.73 339 | 95.81 374 |
|
baseline2 | | | 93.73 329 | 92.83 335 | 96.42 318 | 97.70 347 | 91.28 350 | 96.84 268 | 89.77 380 | 93.96 321 | 92.44 374 | 95.93 354 | 79.14 368 | 99.77 204 | 92.94 323 | 96.76 358 | 98.21 322 |
|
thres200 | | | 93.72 330 | 93.14 332 | 95.46 340 | 98.66 281 | 91.29 349 | 96.61 280 | 94.63 359 | 97.39 200 | 96.83 318 | 93.71 377 | 79.88 361 | 99.56 297 | 82.40 376 | 98.13 330 | 95.54 376 |
|
EPMVS | | | 93.72 330 | 93.27 329 | 95.09 345 | 96.04 379 | 87.76 366 | 98.13 151 | 85.01 385 | 94.69 302 | 96.92 309 | 98.64 228 | 78.47 374 | 99.31 342 | 95.04 272 | 96.46 360 | 98.20 323 |
|
dp | | | 93.47 332 | 93.59 326 | 93.13 362 | 96.64 371 | 81.62 385 | 97.66 207 | 96.42 346 | 92.80 336 | 96.11 338 | 98.64 228 | 78.55 373 | 99.59 288 | 93.31 320 | 92.18 380 | 98.16 325 |
|
FPMVS | | | 93.44 333 | 92.23 338 | 97.08 296 | 99.25 155 | 97.86 160 | 95.61 321 | 97.16 331 | 92.90 334 | 93.76 372 | 98.65 225 | 75.94 376 | 95.66 381 | 79.30 380 | 97.49 341 | 97.73 346 |
|
tpm cat1 | | | 93.29 334 | 93.13 333 | 93.75 355 | 97.39 359 | 84.74 376 | 97.39 233 | 97.65 320 | 83.39 377 | 94.16 365 | 98.41 255 | 82.86 354 | 99.39 333 | 91.56 345 | 95.35 371 | 97.14 359 |
|
MVS | | | 93.19 335 | 92.09 340 | 96.50 317 | 96.91 366 | 94.03 298 | 98.07 159 | 98.06 311 | 68.01 380 | 94.56 363 | 96.48 344 | 95.96 209 | 99.30 344 | 83.84 372 | 96.89 356 | 96.17 369 |
|
tpm2 | | | 93.09 336 | 92.58 337 | 94.62 347 | 97.56 351 | 86.53 370 | 97.66 207 | 95.79 354 | 86.15 372 | 94.07 368 | 98.23 273 | 75.95 375 | 99.53 305 | 90.91 354 | 96.86 357 | 97.81 341 |
|
dmvs_testset | | | 92.94 337 | 92.21 339 | 95.13 343 | 98.59 288 | 90.99 354 | 97.65 209 | 92.09 373 | 96.95 234 | 94.00 369 | 93.55 378 | 92.34 288 | 96.97 380 | 72.20 382 | 92.52 378 | 97.43 356 |
|
KD-MVS_2432*1600 | | | 92.87 338 | 91.99 341 | 95.51 338 | 91.37 385 | 89.27 359 | 94.07 361 | 98.14 307 | 95.42 285 | 97.25 298 | 96.44 346 | 67.86 383 | 99.24 350 | 91.28 348 | 96.08 366 | 98.02 332 |
|
miper_refine_blended | | | 92.87 338 | 91.99 341 | 95.51 338 | 91.37 385 | 89.27 359 | 94.07 361 | 98.14 307 | 95.42 285 | 97.25 298 | 96.44 346 | 67.86 383 | 99.24 350 | 91.28 348 | 96.08 366 | 98.02 332 |
|
MVE |  | 83.40 22 | 92.50 340 | 91.92 343 | 94.25 350 | 98.83 244 | 91.64 342 | 92.71 372 | 83.52 386 | 95.92 274 | 86.46 383 | 95.46 363 | 95.20 231 | 95.40 382 | 80.51 378 | 98.64 311 | 95.73 375 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test2506 | | | 92.39 341 | 91.89 344 | 93.89 354 | 99.38 130 | 82.28 383 | 99.32 23 | 66.03 390 | 99.08 78 | 98.77 180 | 99.57 38 | 66.26 387 | 99.84 130 | 98.71 69 | 99.95 22 | 99.54 97 |
|
gg-mvs-nofinetune | | | 92.37 342 | 91.20 347 | 95.85 329 | 95.80 381 | 92.38 334 | 99.31 27 | 81.84 387 | 99.75 5 | 91.83 376 | 99.74 12 | 68.29 382 | 99.02 360 | 87.15 366 | 97.12 352 | 96.16 370 |
|
test-mter | | | 92.33 343 | 91.76 346 | 94.04 351 | 96.53 372 | 84.62 377 | 94.05 363 | 92.39 371 | 94.00 320 | 94.12 366 | 95.07 365 | 65.63 389 | 99.67 253 | 95.87 250 | 98.18 325 | 97.82 339 |
|
IB-MVS | | 91.63 19 | 92.24 344 | 90.90 348 | 96.27 321 | 97.22 363 | 91.24 351 | 94.36 358 | 93.33 368 | 92.37 340 | 92.24 375 | 94.58 374 | 66.20 388 | 99.89 67 | 93.16 322 | 94.63 374 | 97.66 349 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
TESTMET0.1,1 | | | 92.19 345 | 91.77 345 | 93.46 358 | 96.48 374 | 82.80 382 | 94.05 363 | 91.52 375 | 94.45 309 | 94.00 369 | 94.88 371 | 66.65 386 | 99.56 297 | 95.78 255 | 98.11 331 | 98.02 332 |
|
PAPM | | | 91.88 346 | 90.34 349 | 96.51 316 | 98.06 330 | 92.56 329 | 92.44 374 | 97.17 330 | 86.35 371 | 90.38 378 | 96.01 351 | 86.61 325 | 99.21 353 | 70.65 383 | 95.43 370 | 97.75 345 |
|
PVSNet_0 | | 89.98 21 | 91.15 347 | 90.30 350 | 93.70 356 | 97.72 343 | 84.34 380 | 90.24 376 | 97.42 323 | 90.20 360 | 93.79 371 | 93.09 379 | 90.90 299 | 98.89 368 | 86.57 368 | 72.76 383 | 97.87 338 |
|
EGC-MVSNET | | | 85.24 348 | 80.54 351 | 99.34 72 | 99.77 27 | 99.20 34 | 99.08 59 | 99.29 166 | 12.08 384 | 20.84 385 | 99.42 67 | 97.55 117 | 99.85 114 | 97.08 161 | 99.72 139 | 98.96 258 |
|
test_method | | | 79.78 349 | 79.50 352 | 80.62 365 | 80.21 388 | 45.76 390 | 70.82 379 | 98.41 296 | 31.08 383 | 80.89 384 | 97.71 306 | 84.85 339 | 97.37 378 | 91.51 346 | 80.03 382 | 98.75 292 |
|
tmp_tt | | | 78.77 350 | 78.73 353 | 78.90 366 | 58.45 389 | 74.76 389 | 94.20 360 | 78.26 389 | 39.16 382 | 86.71 382 | 92.82 380 | 80.50 360 | 75.19 385 | 86.16 369 | 92.29 379 | 86.74 380 |
|
cdsmvs_eth3d_5k | | | 24.66 351 | 32.88 354 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 99.10 216 | 0.00 387 | 0.00 388 | 97.58 314 | 99.21 13 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
testmvs | | | 17.12 352 | 20.53 355 | 6.87 368 | 12.05 390 | 4.20 392 | 93.62 369 | 6.73 391 | 4.62 386 | 10.41 386 | 24.33 383 | 8.28 391 | 3.56 387 | 9.69 385 | 15.07 384 | 12.86 383 |
|
test123 | | | 17.04 353 | 20.11 356 | 7.82 367 | 10.25 391 | 4.91 391 | 94.80 344 | 4.47 392 | 4.93 385 | 10.00 387 | 24.28 384 | 9.69 390 | 3.64 386 | 10.14 384 | 12.43 385 | 14.92 382 |
|
pcd_1.5k_mvsjas | | | 8.17 354 | 10.90 357 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 98.07 77 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
ab-mvs-re | | | 8.12 355 | 10.83 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 97.48 320 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
test_blank | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet_test | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
DCPMVS | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet-low-res | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uncertanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
Regformer | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
FOURS1 | | | | | | 99.73 36 | 99.67 2 | 99.43 11 | 99.54 68 | 99.43 36 | 99.26 101 | | | | | | |
|
MSC_two_6792asdad | | | | | 99.32 78 | 98.43 306 | 98.37 111 | | 98.86 258 | | | | | 99.89 67 | 97.14 156 | 99.60 184 | 99.71 35 |
|
PC_three_1452 | | | | | | | | | | 93.27 328 | 99.40 72 | 98.54 240 | 98.22 65 | 97.00 379 | 95.17 270 | 99.45 226 | 99.49 116 |
|
No_MVS | | | | | 99.32 78 | 98.43 306 | 98.37 111 | | 98.86 258 | | | | | 99.89 67 | 97.14 156 | 99.60 184 | 99.71 35 |
|
test_one_0601 | | | | | | 99.39 129 | 99.20 34 | | 99.31 150 | 98.49 114 | 98.66 191 | 99.02 142 | 97.64 109 | | | | |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.01 210 | 98.84 75 | | 99.07 220 | 94.10 317 | 98.05 249 | 98.12 280 | 96.36 190 | 99.86 102 | 92.70 332 | 99.19 265 | |
|
RE-MVS-def | | | | 98.58 102 | | 99.20 167 | 99.38 8 | 98.48 120 | 99.30 158 | 98.64 103 | 98.95 146 | 98.96 163 | 97.75 100 | | 96.56 210 | 99.39 233 | 99.45 139 |
|
IU-MVS | | | | | | 99.49 105 | 99.15 47 | | 98.87 253 | 92.97 332 | 99.41 69 | | | | 96.76 191 | 99.62 177 | 99.66 47 |
|
OPU-MVS | | | | | 98.82 151 | 98.59 288 | 98.30 116 | 98.10 156 | | | | 98.52 243 | 98.18 69 | 98.75 370 | 94.62 282 | 99.48 223 | 99.41 153 |
|
test_241102_TWO | | | | | | | | | 99.30 158 | 98.03 145 | 99.26 101 | 99.02 142 | 97.51 123 | 99.88 76 | 96.91 174 | 99.60 184 | 99.66 47 |
|
test_241102_ONE | | | | | | 99.49 105 | 99.17 39 | | 99.31 150 | 97.98 147 | 99.66 32 | 98.90 177 | 98.36 54 | 99.48 318 | | | |
|
9.14 | | | | 97.78 190 | | 99.07 198 | | 97.53 223 | 99.32 145 | 95.53 282 | 98.54 211 | 98.70 215 | 97.58 114 | 99.76 209 | 94.32 295 | 99.46 224 | |
|
save fliter | | | | | | 99.11 189 | 97.97 150 | 96.53 282 | 99.02 232 | 98.24 129 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 98.17 137 | 99.08 123 | 99.02 142 | 97.89 90 | 99.88 76 | 97.07 162 | 99.71 144 | 99.70 40 |
|
test_0728_SECOND | | | | | 99.60 11 | 99.50 98 | 99.23 26 | 98.02 167 | 99.32 145 | | | | | 99.88 76 | 96.99 168 | 99.63 174 | 99.68 43 |
|
test0726 | | | | | | 99.50 98 | 99.21 28 | 98.17 149 | 99.35 132 | 97.97 148 | 99.26 101 | 99.06 130 | 97.61 112 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 98.81 281 |
|
test_part2 | | | | | | 99.36 137 | 99.10 60 | | | | 99.05 130 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 84.74 341 | | | | 98.81 281 |
|
sam_mvs | | | | | | | | | | | | | 84.29 347 | | | | |
|
ambc | | | | | 98.24 221 | 98.82 247 | 95.97 241 | 98.62 99 | 99.00 237 | | 99.27 97 | 99.21 103 | 96.99 155 | 99.50 314 | 96.55 213 | 99.50 221 | 99.26 208 |
|
MTGPA |  | | | | | | | | 99.20 189 | | | | | | | | |
|
test_post1 | | | | | | | | 97.59 217 | | | | 20.48 386 | 83.07 353 | 99.66 264 | 94.16 296 | | |
|
test_post | | | | | | | | | | | | 21.25 385 | 83.86 349 | 99.70 237 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 98.77 204 | 84.37 344 | 99.85 114 | | | |
|
GG-mvs-BLEND | | | | | 94.76 346 | 94.54 383 | 92.13 339 | 99.31 27 | 80.47 388 | | 88.73 381 | 91.01 381 | 67.59 385 | 98.16 376 | 82.30 377 | 94.53 375 | 93.98 378 |
|
MTMP | | | | | | | | 97.93 177 | 91.91 374 | | | | | | | | |
|
gm-plane-assit | | | | | | 94.83 382 | 81.97 384 | | | 88.07 369 | | 94.99 368 | | 99.60 284 | 91.76 340 | | |
|
test9_res | | | | | | | | | | | | | | | 93.28 321 | 99.15 270 | 99.38 172 |
|
TEST9 | | | | | | 98.71 264 | 98.08 137 | 95.96 307 | 99.03 229 | 91.40 350 | 95.85 343 | 97.53 316 | 96.52 181 | 99.76 209 | | | |
|
test_8 | | | | | | 98.67 276 | 98.01 145 | 95.91 312 | 99.02 232 | 91.64 345 | 95.79 345 | 97.50 319 | 96.47 183 | 99.76 209 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 92.50 335 | 99.16 268 | 99.37 174 |
|
agg_prior | | | | | | 98.68 275 | 97.99 146 | | 99.01 235 | | 95.59 346 | | | 99.77 204 | | | |
|
TestCases | | | | | 99.16 103 | 99.50 98 | 98.55 97 | | 99.58 45 | 96.80 240 | 98.88 162 | 99.06 130 | 97.65 106 | 99.57 294 | 94.45 288 | 99.61 182 | 99.37 174 |
|
test_prior4 | | | | | | | 97.97 150 | 95.86 313 | | | | | | | | | |
|
test_prior2 | | | | | | | | 95.74 318 | | 96.48 254 | 96.11 338 | 97.63 312 | 95.92 211 | | 94.16 296 | 99.20 262 | |
|
test_prior | | | | | 98.95 138 | 98.69 273 | 97.95 154 | | 99.03 229 | | | | | 99.59 288 | | | 99.30 200 |
|
旧先验2 | | | | | | | | 95.76 317 | | 88.56 368 | 97.52 284 | | | 99.66 264 | 94.48 286 | | |
|
新几何2 | | | | | | | | 95.93 310 | | | | | | | | | |
|
新几何1 | | | | | 98.91 143 | 98.94 220 | 97.76 171 | | 98.76 273 | 87.58 370 | 96.75 321 | 98.10 282 | 94.80 245 | 99.78 198 | 92.73 331 | 99.00 288 | 99.20 219 |
|
旧先验1 | | | | | | 98.82 247 | 97.45 189 | | 98.76 273 | | | 98.34 264 | 95.50 224 | | | 99.01 287 | 99.23 214 |
|
无先验 | | | | | | | | 95.74 318 | 98.74 278 | 89.38 364 | | | | 99.73 226 | 92.38 337 | | 99.22 218 |
|
原ACMM2 | | | | | | | | 95.53 324 | | | | | | | | | |
|
原ACMM1 | | | | | 98.35 211 | 98.90 230 | 96.25 234 | | 98.83 266 | 92.48 339 | 96.07 340 | 98.10 282 | 95.39 227 | 99.71 234 | 92.61 334 | 98.99 289 | 99.08 237 |
|
test222 | | | | | | 98.92 226 | 96.93 218 | 95.54 323 | 98.78 272 | 85.72 373 | 96.86 317 | 98.11 281 | 94.43 252 | | | 99.10 278 | 99.23 214 |
|
testdata2 | | | | | | | | | | | | | | 99.79 187 | 92.80 329 | | |
|
segment_acmp | | | | | | | | | | | | | 97.02 153 | | | | |
|
testdata | | | | | 98.09 229 | 98.93 222 | 95.40 258 | | 98.80 269 | 90.08 361 | 97.45 290 | 98.37 260 | 95.26 229 | 99.70 237 | 93.58 314 | 98.95 293 | 99.17 230 |
|
testdata1 | | | | | | | | 95.44 329 | | 96.32 259 | | | | | | | |
|
test12 | | | | | 98.93 140 | 98.58 290 | 97.83 163 | | 98.66 282 | | 96.53 328 | | 95.51 223 | 99.69 241 | | 99.13 273 | 99.27 205 |
|
plane_prior7 | | | | | | 99.19 170 | 97.87 159 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.99 214 | 97.70 177 | | | | | | 94.90 238 | | | | |
|
plane_prior5 | | | | | | | | | 99.27 172 | | | | | 99.70 237 | 94.42 290 | 99.51 214 | 99.45 139 |
|
plane_prior4 | | | | | | | | | | | | 97.98 291 | | | | | |
|
plane_prior3 | | | | | | | 97.78 170 | | | 97.41 198 | 97.79 265 | | | | | | |
|
plane_prior2 | | | | | | | | 97.77 195 | | 98.20 134 | | | | | | | |
|
plane_prior1 | | | | | | 99.05 205 | | | | | | | | | | | |
|
plane_prior | | | | | | | 97.65 179 | 97.07 255 | | 96.72 245 | | | | | | 99.36 237 | |
|
n2 | | | | | | | | | 0.00 393 | | | | | | | | |
|
nn | | | | | | | | | 0.00 393 | | | | | | | | |
|
door-mid | | | | | | | | | 99.57 52 | | | | | | | | |
|
lessismore_v0 | | | | | 98.97 135 | 99.73 36 | 97.53 185 | | 86.71 383 | | 99.37 79 | 99.52 50 | 89.93 305 | 99.92 44 | 98.99 52 | 99.72 139 | 99.44 143 |
|
LGP-MVS_train | | | | | 99.47 54 | 99.57 73 | 98.97 66 | | 99.48 86 | 96.60 249 | 99.10 121 | 99.06 130 | 98.71 34 | 99.83 144 | 95.58 264 | 99.78 110 | 99.62 56 |
|
test11 | | | | | | | | | 98.87 253 | | | | | | | | |
|
door | | | | | | | | | 99.41 112 | | | | | | | | |
|
HQP5-MVS | | | | | | | 96.79 221 | | | | | | | | | | |
|
HQP-NCC | | | | | | 98.67 276 | | 96.29 294 | | 96.05 268 | 95.55 349 | | | | | | |
|
ACMP_Plane | | | | | | 98.67 276 | | 96.29 294 | | 96.05 268 | 95.55 349 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.82 327 | | |
|
HQP4-MVS | | | | | | | | | | | 95.56 348 | | | 99.54 303 | | | 99.32 193 |
|
HQP3-MVS | | | | | | | | | 99.04 227 | | | | | | | 99.26 255 | |
|
HQP2-MVS | | | | | | | | | | | | | 93.84 265 | | | | |
|
NP-MVS | | | | | | 98.84 242 | 97.39 193 | | | | | 96.84 337 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 74.92 388 | 97.69 203 | | 90.06 362 | 97.75 268 | | 85.78 333 | | 93.52 315 | | 98.69 299 |
|
MDTV_nov1_ep13 | | | | 95.22 303 | | 97.06 365 | 83.20 381 | 97.74 199 | 96.16 348 | 94.37 311 | 96.99 307 | 98.83 193 | 83.95 348 | 99.53 305 | 93.90 305 | 97.95 337 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.77 114 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.68 157 | |
|
Test By Simon | | | | | | | | | | | | | 96.52 181 | | | | |
|
ITE_SJBPF | | | | | 98.87 146 | 99.22 161 | 98.48 104 | | 99.35 132 | 97.50 186 | 98.28 231 | 98.60 235 | 97.64 109 | 99.35 337 | 93.86 308 | 99.27 252 | 98.79 287 |
|
DeepMVS_CX |  | | | | 93.44 359 | 98.24 319 | 94.21 291 | | 94.34 360 | 64.28 381 | 91.34 377 | 94.87 373 | 89.45 310 | 92.77 384 | 77.54 381 | 93.14 377 | 93.35 379 |
|