This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 899.98 199.99 199.96 199.77 1100.00 199.81 8100.00 199.85 12
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 4599.90 299.86 1399.78 899.58 399.95 2099.00 5199.95 2299.78 22
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2199.64 1399.84 1499.83 399.50 599.87 9399.36 2899.92 4599.64 52
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1699.11 5999.90 199.78 1999.63 1599.78 1899.67 2299.48 699.81 16799.30 3399.97 1499.77 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 2499.27 5299.90 999.74 1299.68 299.97 499.55 1999.99 599.88 7
jajsoiax99.58 699.61 799.48 5199.87 1298.61 9299.28 3799.66 3599.09 7699.89 1199.68 1899.53 499.97 499.50 2299.99 599.87 9
ANet_high99.57 799.67 599.28 8399.89 698.09 13399.14 5499.93 399.82 399.93 499.81 599.17 1599.94 3099.31 31100.00 199.82 15
v7n99.53 899.57 899.41 6099.88 998.54 10099.45 1099.61 4199.66 1299.68 3099.66 2498.44 5099.95 2099.73 1399.96 1899.75 31
test_djsdf99.52 999.51 999.53 3499.86 1498.74 8299.39 1799.56 5999.11 6699.70 2699.73 1499.00 1999.97 499.26 3499.98 1099.89 6
anonymousdsp99.51 1099.47 1399.62 699.88 999.08 6399.34 2099.69 2798.93 9199.65 3599.72 1598.93 2399.95 2099.11 43100.00 199.82 15
UA-Net99.47 1199.40 1799.70 299.49 10599.29 1999.80 399.72 2399.82 399.04 13299.81 598.05 8099.96 1198.85 5999.99 599.86 11
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12999.20 4599.65 3699.48 2999.92 699.71 1698.07 7799.96 1199.53 20100.00 199.93 4
pm-mvs199.44 1399.48 1299.33 7699.80 2298.63 8999.29 3399.63 3799.30 5099.65 3599.60 3599.16 1799.82 15499.07 4599.83 8399.56 86
TransMVSNet (Re)99.44 1399.47 1399.36 6499.80 2298.58 9599.27 3999.57 5299.39 3999.75 2199.62 3099.17 1599.83 14499.06 4699.62 17799.66 47
DTE-MVSNet99.43 1599.35 2099.66 499.71 4499.30 1799.31 2799.51 7599.64 1399.56 4399.46 5998.23 6299.97 498.78 6299.93 3499.72 34
TDRefinement99.42 1699.38 1899.55 2399.76 3099.33 1699.68 599.71 2499.38 4099.53 5099.61 3398.64 3799.80 17498.24 9599.84 7699.52 107
PEN-MVS99.41 1799.34 2299.62 699.73 3699.14 5299.29 3399.54 6899.62 1899.56 4399.42 6798.16 7399.96 1198.78 6299.93 3499.77 24
nrg03099.40 1899.35 2099.54 2799.58 6999.13 5598.98 7299.48 8699.68 1099.46 6099.26 9498.62 4099.73 22699.17 4299.92 4599.76 28
PS-CasMVS99.40 1899.33 2399.62 699.71 4499.10 6099.29 3399.53 7199.53 2699.46 6099.41 7098.23 6299.95 2098.89 5899.95 2299.81 17
MIMVSNet199.38 2099.32 2499.55 2399.86 1499.19 3799.41 1399.59 4399.59 2199.71 2499.57 3897.12 14699.90 5799.21 3999.87 6899.54 97
OurMVSNet-221017-099.37 2199.31 2699.53 3499.91 398.98 6599.63 699.58 4599.44 3499.78 1899.76 1096.39 18699.92 4499.44 2699.92 4599.68 43
Vis-MVSNetpermissive99.34 2299.36 1999.27 8699.73 3698.26 11899.17 5099.78 1999.11 6699.27 9799.48 5798.82 2899.95 2098.94 5499.93 3499.59 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsm_n_192099.33 2399.45 1598.99 13299.57 7397.73 17597.93 17799.83 1599.22 5599.93 499.30 8899.42 799.96 1199.85 499.99 599.29 202
WR-MVS_H99.33 2399.22 3299.65 599.71 4499.24 2599.32 2399.55 6399.46 3299.50 5699.34 8197.30 13599.93 3598.90 5699.93 3499.77 24
VPA-MVSNet99.30 2599.30 2899.28 8399.49 10598.36 11499.00 6999.45 9899.63 1599.52 5299.44 6498.25 6099.88 7699.09 4499.84 7699.62 56
sd_testset99.28 2699.31 2699.19 9999.68 5498.06 14299.41 1399.30 15899.69 899.63 3899.68 1899.25 1199.96 1197.25 14999.92 4599.57 80
Anonymous2023121199.27 2799.27 2999.26 8899.29 14898.18 12699.49 899.51 7599.70 799.80 1699.68 1896.84 16199.83 14499.21 3999.91 5399.77 24
FC-MVSNet-test99.27 2799.25 3099.34 7299.77 2798.37 11199.30 3299.57 5299.61 2099.40 7299.50 5297.12 14699.85 11499.02 5099.94 3099.80 18
test_fmvsmvis_n_192099.26 2999.49 1098.54 19399.66 6096.97 21498.00 17199.85 1299.24 5499.92 699.50 5299.39 899.95 2099.89 399.98 1098.71 295
testf199.25 3099.16 3699.51 4399.89 699.63 398.71 9199.69 2798.90 9399.43 6599.35 7798.86 2599.67 25397.81 12199.81 9099.24 212
APD_test299.25 3099.16 3699.51 4399.89 699.63 398.71 9199.69 2798.90 9399.43 6599.35 7798.86 2599.67 25397.81 12199.81 9099.24 212
KD-MVS_self_test99.25 3099.18 3399.44 5799.63 6699.06 6498.69 9399.54 6899.31 4899.62 4199.53 4897.36 13399.86 10299.24 3899.71 14499.39 165
ACMH96.65 799.25 3099.24 3199.26 8899.72 4298.38 10999.07 6299.55 6398.30 12399.65 3599.45 6399.22 1299.76 20998.44 8699.77 11499.64 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvsmamba99.24 3499.15 4199.49 4899.83 1998.85 7499.41 1399.55 6399.54 2599.40 7299.52 5095.86 21399.91 5299.32 3099.95 2299.70 40
SDMVSNet99.23 3599.32 2498.96 13699.68 5497.35 19498.84 8499.48 8699.69 899.63 3899.68 1899.03 1899.96 1197.97 11299.92 4599.57 80
CP-MVSNet99.21 3699.09 4699.56 2199.65 6198.96 7099.13 5599.34 13899.42 3799.33 8699.26 9497.01 15499.94 3098.74 6699.93 3499.79 19
TranMVSNet+NR-MVSNet99.17 3799.07 4999.46 5699.37 13698.87 7398.39 12999.42 11199.42 3799.36 8199.06 13098.38 5399.95 2098.34 9199.90 6099.57 80
FMVSNet199.17 3799.17 3499.17 10099.55 8598.24 12099.20 4599.44 10299.21 5799.43 6599.55 4397.82 9699.86 10298.42 8899.89 6499.41 153
test_vis3_rt99.14 3999.17 3499.07 11899.78 2598.38 10998.92 7699.94 197.80 16299.91 899.67 2297.15 14598.91 36699.76 1199.56 20099.92 5
FIs99.14 3999.09 4699.29 8199.70 5098.28 11799.13 5599.52 7499.48 2999.24 10699.41 7096.79 16799.82 15498.69 7199.88 6599.76 28
XXY-MVS99.14 3999.15 4199.10 11299.76 3097.74 17398.85 8299.62 3898.48 11599.37 7999.49 5698.75 3199.86 10298.20 9899.80 10099.71 35
CS-MVS99.13 4299.10 4599.24 9399.06 20299.15 4799.36 1999.88 999.36 4498.21 23498.46 25298.68 3699.93 3599.03 4999.85 7298.64 304
CS-MVS-test99.13 4299.09 4699.26 8899.13 18798.97 6699.31 2799.88 999.44 3498.16 23798.51 24498.64 3799.93 3598.91 5599.85 7298.88 272
test_fmvs399.12 4499.41 1698.25 21999.76 3095.07 27099.05 6599.94 197.78 16499.82 1599.84 298.56 4499.71 23499.96 199.96 1899.97 1
casdiffmvs_mvgpermissive99.12 4499.16 3698.99 13299.43 12497.73 17598.00 17199.62 3899.22 5599.55 4599.22 10298.93 2399.75 21698.66 7399.81 9099.50 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RRT_MVS99.09 4698.94 5899.55 2399.87 1298.82 7899.48 998.16 30699.49 2899.59 4299.65 2694.79 24799.95 2099.45 2599.96 1899.88 7
EC-MVSNet99.09 4699.05 5099.20 9799.28 14998.93 7199.24 4199.84 1499.08 7898.12 24298.37 26098.72 3399.90 5799.05 4799.77 11498.77 289
ACMH+96.62 999.08 4899.00 5399.33 7699.71 4498.83 7698.60 10199.58 4599.11 6699.53 5099.18 10998.81 2999.67 25396.71 19899.77 11499.50 112
bld_raw_dy_0_6499.07 4999.00 5399.29 8199.85 1698.18 12699.11 5899.40 11499.33 4699.38 7699.44 6495.21 23099.97 499.31 3199.98 1099.73 33
GeoE99.05 5098.99 5699.25 9199.44 11998.35 11598.73 8899.56 5998.42 11698.91 15598.81 19898.94 2299.91 5298.35 9099.73 13299.49 116
Gipumacopyleft99.03 5199.16 3698.64 17499.94 298.51 10299.32 2399.75 2299.58 2398.60 20099.62 3098.22 6599.51 31397.70 12999.73 13297.89 336
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v899.01 5299.16 3698.57 18599.47 11496.31 23398.90 7799.47 9399.03 8299.52 5299.57 3896.93 15799.81 16799.60 1599.98 1099.60 63
HPM-MVS_fast99.01 5298.82 6999.57 1699.71 4499.35 1299.00 6999.50 7797.33 20598.94 15298.86 18798.75 3199.82 15497.53 13699.71 14499.56 86
APDe-MVS98.99 5498.79 7299.60 1199.21 16399.15 4798.87 7999.48 8697.57 18099.35 8399.24 9997.83 9399.89 6797.88 11899.70 14999.75 31
EG-PatchMatch MVS98.99 5499.01 5298.94 13999.50 9897.47 18798.04 16499.59 4398.15 14199.40 7299.36 7698.58 4399.76 20998.78 6299.68 15799.59 69
COLMAP_ROBcopyleft96.50 1098.99 5498.85 6799.41 6099.58 6999.10 6098.74 8699.56 5999.09 7699.33 8699.19 10698.40 5299.72 23395.98 24499.76 12599.42 150
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Baseline_NR-MVSNet98.98 5798.86 6699.36 6499.82 2198.55 9797.47 23099.57 5299.37 4199.21 10999.61 3396.76 17099.83 14498.06 10599.83 8399.71 35
v1098.97 5899.11 4398.55 19099.44 11996.21 23598.90 7799.55 6398.73 10199.48 5799.60 3596.63 17799.83 14499.70 1499.99 599.61 62
DeepC-MVS97.60 498.97 5898.93 5999.10 11299.35 14197.98 14998.01 17099.46 9597.56 18299.54 4699.50 5298.97 2099.84 13098.06 10599.92 4599.49 116
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline98.96 6099.02 5198.76 16399.38 13097.26 19998.49 11799.50 7798.86 9699.19 11199.06 13098.23 6299.69 24198.71 6999.76 12599.33 191
casdiffmvspermissive98.95 6199.00 5398.81 15399.38 13097.33 19597.82 19199.57 5299.17 6499.35 8399.17 11398.35 5799.69 24198.46 8599.73 13299.41 153
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet98.95 6198.82 6999.36 6499.16 18098.72 8799.22 4299.20 18999.10 7399.72 2298.76 20696.38 18899.86 10298.00 11099.82 8699.50 112
Anonymous2024052998.93 6398.87 6399.12 10899.19 17098.22 12599.01 6798.99 23899.25 5399.54 4699.37 7397.04 15099.80 17497.89 11599.52 21299.35 184
DP-MVS98.93 6398.81 7199.28 8399.21 16398.45 10698.46 12299.33 14399.63 1599.48 5799.15 11997.23 14199.75 21697.17 15299.66 16899.63 55
SED-MVS98.91 6598.72 7899.49 4899.49 10599.17 3998.10 15699.31 15098.03 14599.66 3299.02 14298.36 5499.88 7696.91 17499.62 17799.41 153
ACMM96.08 1298.91 6598.73 7699.48 5199.55 8599.14 5298.07 15999.37 12397.62 17499.04 13298.96 16398.84 2799.79 18797.43 14099.65 16999.49 116
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVS++98.90 6798.70 8399.51 4398.43 30699.15 4799.43 1199.32 14598.17 13799.26 10199.02 14298.18 6999.88 7697.07 16299.45 22699.49 116
tfpnnormal98.90 6798.90 6298.91 14399.67 5897.82 16699.00 6999.44 10299.45 3399.51 5599.24 9998.20 6899.86 10295.92 24699.69 15299.04 244
MTAPA98.88 6998.64 9299.61 999.67 5899.36 1198.43 12599.20 18998.83 10098.89 15898.90 17796.98 15699.92 4497.16 15399.70 14999.56 86
mvsany_test398.87 7098.92 6098.74 17099.38 13096.94 21798.58 10399.10 21696.49 25399.96 299.81 598.18 6999.45 32498.97 5399.79 10599.83 14
VPNet98.87 7098.83 6899.01 13099.70 5097.62 18298.43 12599.35 13299.47 3199.28 9599.05 13796.72 17399.82 15498.09 10399.36 23799.59 69
UniMVSNet (Re)98.87 7098.71 8099.35 6999.24 15698.73 8597.73 20099.38 11998.93 9199.12 11798.73 20996.77 16899.86 10298.63 7599.80 10099.46 135
UniMVSNet_NR-MVSNet98.86 7398.68 8699.40 6299.17 17898.74 8297.68 20499.40 11499.14 6599.06 12598.59 23696.71 17499.93 3598.57 7899.77 11499.53 104
APD-MVS_3200maxsize98.84 7498.61 9999.53 3499.19 17099.27 2298.49 11799.33 14398.64 10399.03 13598.98 15897.89 9099.85 11496.54 21499.42 23099.46 135
APD_test198.83 7598.66 8999.34 7299.78 2599.47 698.42 12799.45 9898.28 12898.98 13999.19 10697.76 9999.58 29296.57 20699.55 20398.97 256
PM-MVS98.82 7698.72 7899.12 10899.64 6498.54 10097.98 17499.68 3297.62 17499.34 8599.18 10997.54 11899.77 20497.79 12399.74 12999.04 244
DU-MVS98.82 7698.63 9399.39 6399.16 18098.74 8297.54 22299.25 17898.84 9999.06 12598.76 20696.76 17099.93 3598.57 7899.77 11499.50 112
SR-MVS-dyc-post98.81 7898.55 10499.57 1699.20 16799.38 898.48 12099.30 15898.64 10398.95 14698.96 16397.49 12799.86 10296.56 21099.39 23399.45 139
3Dnovator98.27 298.81 7898.73 7699.05 12598.76 25597.81 16899.25 4099.30 15898.57 11298.55 20999.33 8397.95 8899.90 5797.16 15399.67 16399.44 143
HPM-MVScopyleft98.79 8098.53 10699.59 1599.65 6199.29 1999.16 5199.43 10896.74 24498.61 19898.38 25998.62 4099.87 9396.47 21899.67 16399.59 69
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP98.79 8098.54 10599.54 2799.73 3699.16 4398.23 14199.31 15097.92 15398.90 15698.90 17798.00 8399.88 7696.15 23799.72 13999.58 75
Skip Steuart: Steuart Systems R&D Blog.
dcpmvs_298.78 8299.11 4397.78 25199.56 8193.67 31399.06 6399.86 1199.50 2799.66 3299.26 9497.21 14399.99 298.00 11099.91 5399.68 43
V4298.78 8298.78 7398.76 16399.44 11997.04 21198.27 13899.19 19397.87 15799.25 10599.16 11596.84 16199.78 19899.21 3999.84 7699.46 135
test20.0398.78 8298.77 7498.78 16099.46 11597.20 20497.78 19399.24 18399.04 8199.41 6998.90 17797.65 10699.76 20997.70 12999.79 10599.39 165
DVP-MVScopyleft98.77 8598.52 10799.52 3999.50 9899.21 2898.02 16798.84 26297.97 14899.08 12399.02 14297.61 11299.88 7696.99 16899.63 17499.48 126
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_040298.76 8698.71 8098.93 14099.56 8198.14 13198.45 12499.34 13899.28 5198.95 14698.91 17498.34 5899.79 18795.63 26199.91 5398.86 274
ACMMP_NAP98.75 8798.48 11599.57 1699.58 6999.29 1997.82 19199.25 17896.94 23598.78 17799.12 12498.02 8199.84 13097.13 15899.67 16399.59 69
SixPastTwentyTwo98.75 8798.62 9599.16 10399.83 1997.96 15399.28 3798.20 30399.37 4199.70 2699.65 2692.65 28599.93 3599.04 4899.84 7699.60 63
ACMMPcopyleft98.75 8798.50 11099.52 3999.56 8199.16 4398.87 7999.37 12397.16 22598.82 17499.01 15197.71 10299.87 9396.29 22999.69 15299.54 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVS98.72 9098.45 12099.53 3499.46 11599.21 2898.65 9599.34 13898.62 10797.54 28298.63 23097.50 12499.83 14496.79 18799.53 20999.56 86
SR-MVS98.71 9198.43 12399.57 1699.18 17799.35 1298.36 13299.29 16698.29 12698.88 16298.85 19097.53 12099.87 9396.14 23899.31 24599.48 126
HFP-MVS98.71 9198.44 12299.51 4399.49 10599.16 4398.52 11099.31 15097.47 18998.58 20498.50 24897.97 8799.85 11496.57 20699.59 18899.53 104
LPG-MVS_test98.71 9198.46 11999.47 5499.57 7398.97 6698.23 14199.48 8696.60 24999.10 12199.06 13098.71 3499.83 14495.58 26499.78 11099.62 56
test_fmvs298.70 9498.97 5797.89 24499.54 8894.05 29598.55 10699.92 596.78 24299.72 2299.78 896.60 17899.67 25399.91 299.90 6099.94 3
ACMMPR98.70 9498.42 12599.54 2799.52 9399.14 5298.52 11099.31 15097.47 18998.56 20798.54 24097.75 10099.88 7696.57 20699.59 18899.58 75
CP-MVS98.70 9498.42 12599.52 3999.36 13799.12 5798.72 8999.36 12797.54 18498.30 22998.40 25697.86 9299.89 6796.53 21599.72 13999.56 86
tt080598.69 9798.62 9598.90 14599.75 3499.30 1799.15 5396.97 33698.86 9698.87 16697.62 31398.63 3998.96 36399.41 2798.29 32198.45 312
Anonymous2024052198.69 9798.87 6398.16 22799.77 2795.11 26999.08 5999.44 10299.34 4599.33 8699.55 4394.10 26399.94 3099.25 3699.96 1899.42 150
region2R98.69 9798.40 12799.54 2799.53 9199.17 3998.52 11099.31 15097.46 19498.44 21998.51 24497.83 9399.88 7696.46 21999.58 19399.58 75
EI-MVSNet-UG-set98.69 9798.71 8098.62 17899.10 19196.37 23097.23 24598.87 25399.20 5999.19 11198.99 15497.30 13599.85 11498.77 6599.79 10599.65 51
3Dnovator+97.89 398.69 9798.51 10899.24 9398.81 25098.40 10799.02 6699.19 19398.99 8598.07 24699.28 9097.11 14899.84 13096.84 18599.32 24399.47 133
ZNCC-MVS98.68 10298.40 12799.54 2799.57 7399.21 2898.46 12299.29 16697.28 21198.11 24398.39 25798.00 8399.87 9396.86 18499.64 17199.55 93
EI-MVSNet-Vis-set98.68 10298.70 8398.63 17799.09 19496.40 22997.23 24598.86 25899.20 5999.18 11598.97 16097.29 13799.85 11498.72 6899.78 11099.64 52
CSCG98.68 10298.50 11099.20 9799.45 11898.63 8998.56 10599.57 5297.87 15798.85 16798.04 28897.66 10599.84 13096.72 19699.81 9099.13 234
test_f98.67 10598.87 6398.05 23699.72 4295.59 24998.51 11499.81 1796.30 26299.78 1899.82 496.14 19598.63 37199.82 699.93 3499.95 2
PGM-MVS98.66 10698.37 13399.55 2399.53 9199.18 3898.23 14199.49 8497.01 23298.69 18798.88 18498.00 8399.89 6795.87 25099.59 18899.58 75
GBi-Net98.65 10798.47 11799.17 10098.90 23098.24 12099.20 4599.44 10298.59 10998.95 14699.55 4394.14 25999.86 10297.77 12499.69 15299.41 153
test198.65 10798.47 11799.17 10098.90 23098.24 12099.20 4599.44 10298.59 10998.95 14699.55 4394.14 25999.86 10297.77 12499.69 15299.41 153
LCM-MVSNet-Re98.64 10998.48 11599.11 11098.85 24198.51 10298.49 11799.83 1598.37 11799.69 2899.46 5998.21 6799.92 4494.13 30099.30 24898.91 268
mPP-MVS98.64 10998.34 13799.54 2799.54 8899.17 3998.63 9799.24 18397.47 18998.09 24598.68 21897.62 11199.89 6796.22 23299.62 17799.57 80
TSAR-MVS + MP.98.63 11198.49 11499.06 12499.64 6497.90 15798.51 11498.94 24096.96 23399.24 10698.89 18397.83 9399.81 16796.88 18199.49 22299.48 126
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LS3D98.63 11198.38 13299.36 6497.25 36299.38 899.12 5799.32 14599.21 5798.44 21998.88 18497.31 13499.80 17496.58 20499.34 24198.92 265
RPSCF98.62 11398.36 13499.42 5899.65 6199.42 798.55 10699.57 5297.72 16898.90 15699.26 9496.12 19799.52 30995.72 25799.71 14499.32 193
GST-MVS98.61 11498.30 14299.52 3999.51 9599.20 3498.26 13999.25 17897.44 19798.67 18998.39 25797.68 10399.85 11496.00 24299.51 21499.52 107
v119298.60 11598.66 8998.41 20699.27 15195.88 24397.52 22499.36 12797.41 19899.33 8699.20 10596.37 18999.82 15499.57 1799.92 4599.55 93
v114498.60 11598.66 8998.41 20699.36 13795.90 24297.58 21899.34 13897.51 18599.27 9799.15 11996.34 19199.80 17499.47 2499.93 3499.51 109
DPE-MVScopyleft98.59 11798.26 14799.57 1699.27 15199.15 4797.01 25799.39 11797.67 17099.44 6498.99 15497.53 12099.89 6795.40 26899.68 15799.66 47
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.57 11898.23 15099.60 1199.69 5299.35 1297.16 25299.38 11994.87 29998.97 14398.99 15498.01 8299.88 7697.29 14699.70 14999.58 75
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS98.56 11998.32 14199.25 9199.41 12798.73 8597.13 25499.18 19797.10 22898.75 18398.92 17398.18 6999.65 26996.68 20099.56 20099.37 174
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VDD-MVS98.56 11998.39 13099.07 11899.13 18798.07 13998.59 10297.01 33499.59 2199.11 11899.27 9294.82 24299.79 18798.34 9199.63 17499.34 186
v2v48298.56 11998.62 9598.37 21099.42 12595.81 24697.58 21899.16 20497.90 15599.28 9599.01 15195.98 20799.79 18799.33 2999.90 6099.51 109
XVG-ACMP-BASELINE98.56 11998.34 13799.22 9699.54 8898.59 9497.71 20199.46 9597.25 21498.98 13998.99 15497.54 11899.84 13095.88 24799.74 12999.23 214
v124098.55 12398.62 9598.32 21399.22 16195.58 25097.51 22699.45 9897.16 22599.45 6399.24 9996.12 19799.85 11499.60 1599.88 6599.55 93
IterMVS-LS98.55 12398.70 8398.09 22999.48 11294.73 27897.22 24899.39 11798.97 8799.38 7699.31 8796.00 20399.93 3598.58 7699.97 1499.60 63
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419298.54 12598.57 10398.45 20299.21 16395.98 24097.63 21199.36 12797.15 22799.32 9299.18 10995.84 21499.84 13099.50 2299.91 5399.54 97
v192192098.54 12598.60 10098.38 20999.20 16795.76 24897.56 22099.36 12797.23 22099.38 7699.17 11396.02 20199.84 13099.57 1799.90 6099.54 97
SF-MVS98.53 12798.27 14699.32 7899.31 14498.75 8198.19 14599.41 11296.77 24398.83 17198.90 17797.80 9799.82 15495.68 26099.52 21299.38 172
XVG-OURS98.53 12798.34 13799.11 11099.50 9898.82 7895.97 30599.50 7797.30 20999.05 13098.98 15899.35 999.32 34195.72 25799.68 15799.18 226
UGNet98.53 12798.45 12098.79 15797.94 33496.96 21599.08 5998.54 28899.10 7396.82 31999.47 5896.55 18099.84 13098.56 8199.94 3099.55 93
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
patch_mono-298.51 13098.63 9398.17 22599.38 13094.78 27597.36 23699.69 2798.16 14098.49 21599.29 8997.06 14999.97 498.29 9499.91 5399.76 28
XVG-OURS-SEG-HR98.49 13198.28 14499.14 10699.49 10598.83 7696.54 28199.48 8697.32 20799.11 11898.61 23499.33 1099.30 34496.23 23198.38 31899.28 204
FMVSNet298.49 13198.40 12798.75 16698.90 23097.14 21098.61 10099.13 21198.59 10999.19 11199.28 9094.14 25999.82 15497.97 11299.80 10099.29 202
pmmvs-eth3d98.47 13398.34 13798.86 14799.30 14797.76 17197.16 25299.28 16995.54 28199.42 6899.19 10697.27 13899.63 27597.89 11599.97 1499.20 219
MP-MVScopyleft98.46 13498.09 16599.54 2799.57 7399.22 2798.50 11699.19 19397.61 17797.58 27898.66 22397.40 13199.88 7694.72 28199.60 18499.54 97
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v14898.45 13598.60 10098.00 23999.44 11994.98 27197.44 23299.06 22198.30 12399.32 9298.97 16096.65 17699.62 27798.37 8999.85 7299.39 165
AllTest98.44 13698.20 15299.16 10399.50 9898.55 9798.25 14099.58 4596.80 24098.88 16299.06 13097.65 10699.57 29494.45 28899.61 18299.37 174
VNet98.42 13798.30 14298.79 15798.79 25497.29 19798.23 14198.66 28299.31 4898.85 16798.80 19994.80 24599.78 19898.13 10099.13 27399.31 197
ab-mvs98.41 13898.36 13498.59 18299.19 17097.23 20099.32 2398.81 26797.66 17198.62 19699.40 7296.82 16499.80 17495.88 24799.51 21498.75 292
ACMP95.32 1598.41 13898.09 16599.36 6499.51 9598.79 8097.68 20499.38 11995.76 27898.81 17698.82 19698.36 5499.82 15494.75 27899.77 11499.48 126
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis1_n_192098.40 14098.92 6096.81 31199.74 3590.76 35598.15 15099.91 698.33 12099.89 1199.55 4395.07 23599.88 7699.76 1199.93 3499.79 19
SMA-MVScopyleft98.40 14098.03 17299.51 4399.16 18099.21 2898.05 16299.22 18694.16 31598.98 13999.10 12797.52 12299.79 18796.45 22099.64 17199.53 104
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS98.40 14098.00 17499.61 999.57 7399.25 2498.57 10499.35 13297.55 18399.31 9497.71 30694.61 25099.88 7696.14 23899.19 26599.70 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS98.40 14098.68 8697.54 27498.96 21897.99 14697.88 18499.36 12798.20 13499.63 3899.04 13998.76 3095.33 38396.56 21099.74 12999.31 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EI-MVSNet98.40 14098.51 10898.04 23799.10 19194.73 27897.20 24998.87 25398.97 8799.06 12599.02 14296.00 20399.80 17498.58 7699.82 8699.60 63
WR-MVS98.40 14098.19 15499.03 12899.00 21197.65 17996.85 26798.94 24098.57 11298.89 15898.50 24895.60 21999.85 11497.54 13599.85 7299.59 69
new-patchmatchnet98.35 14698.74 7597.18 29299.24 15692.23 33896.42 28899.48 8698.30 12399.69 2899.53 4897.44 12999.82 15498.84 6099.77 11499.49 116
canonicalmvs98.34 14798.26 14798.58 18398.46 30397.82 16698.96 7399.46 9599.19 6397.46 28995.46 36398.59 4299.46 32398.08 10498.71 30698.46 310
test_cas_vis1_n_192098.33 14898.68 8697.27 28999.69 5292.29 33698.03 16599.85 1297.62 17499.96 299.62 3093.98 26499.74 22199.52 2199.86 7199.79 19
testgi98.32 14998.39 13098.13 22899.57 7395.54 25197.78 19399.49 8497.37 20299.19 11197.65 31098.96 2199.49 31596.50 21798.99 28999.34 186
DeepPCF-MVS96.93 598.32 14998.01 17399.23 9598.39 31198.97 6695.03 33999.18 19796.88 23899.33 8698.78 20298.16 7399.28 34896.74 19399.62 17799.44 143
test_vis1_n98.31 15198.50 11097.73 25999.76 3094.17 29398.68 9499.91 696.31 26099.79 1799.57 3892.85 28299.42 32999.79 999.84 7699.60 63
MVS_111021_LR98.30 15298.12 16398.83 15099.16 18098.03 14496.09 30299.30 15897.58 17998.10 24498.24 27198.25 6099.34 33896.69 19999.65 16999.12 235
EPP-MVSNet98.30 15298.04 17199.07 11899.56 8197.83 16399.29 3398.07 31099.03 8298.59 20299.13 12292.16 29099.90 5796.87 18299.68 15799.49 116
DeepC-MVS_fast96.85 698.30 15298.15 16098.75 16698.61 28497.23 20097.76 19799.09 21897.31 20898.75 18398.66 22397.56 11699.64 27296.10 24199.55 20399.39 165
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS98.29 15597.95 17799.34 7298.44 30599.16 4398.12 15399.38 11996.01 27198.06 24798.43 25497.80 9799.67 25395.69 25999.58 19399.20 219
Fast-Effi-MVS+-dtu98.27 15698.09 16598.81 15398.43 30698.11 13297.61 21499.50 7798.64 10397.39 29497.52 31898.12 7699.95 2096.90 17998.71 30698.38 317
DELS-MVS98.27 15698.20 15298.48 19998.86 23896.70 22595.60 32299.20 18997.73 16698.45 21898.71 21297.50 12499.82 15498.21 9799.59 18898.93 264
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu98.26 15897.90 18399.35 6998.02 33199.49 598.02 16799.16 20498.29 12697.64 27397.99 29096.44 18599.95 2096.66 20198.93 29598.60 305
MVSFormer98.26 15898.43 12397.77 25298.88 23693.89 30799.39 1799.56 5999.11 6698.16 23798.13 27893.81 26799.97 499.26 3499.57 19799.43 147
MVS_111021_HR98.25 16098.08 16898.75 16699.09 19497.46 18895.97 30599.27 17297.60 17897.99 25298.25 27098.15 7599.38 33596.87 18299.57 19799.42 150
TAMVS98.24 16198.05 17098.80 15599.07 19897.18 20697.88 18498.81 26796.66 24899.17 11699.21 10394.81 24499.77 20496.96 17299.88 6599.44 143
diffmvspermissive98.22 16298.24 14998.17 22599.00 21195.44 25696.38 29099.58 4597.79 16398.53 21298.50 24896.76 17099.74 22197.95 11499.64 17199.34 186
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2023120698.21 16398.21 15198.20 22399.51 9595.43 25798.13 15199.32 14596.16 26598.93 15398.82 19696.00 20399.83 14497.32 14599.73 13299.36 180
VDDNet98.21 16397.95 17799.01 13099.58 6997.74 17399.01 6797.29 32999.67 1198.97 14399.50 5290.45 30299.80 17497.88 11899.20 26299.48 126
IS-MVSNet98.19 16597.90 18399.08 11699.57 7397.97 15099.31 2798.32 29899.01 8498.98 13999.03 14191.59 29599.79 18795.49 26699.80 10099.48 126
MVS_Test98.18 16698.36 13497.67 26198.48 30194.73 27898.18 14699.02 23297.69 16998.04 25099.11 12597.22 14299.56 29798.57 7898.90 29798.71 295
TSAR-MVS + GP.98.18 16697.98 17598.77 16298.71 26497.88 15896.32 29398.66 28296.33 25899.23 10898.51 24497.48 12899.40 33197.16 15399.46 22499.02 247
CNVR-MVS98.17 16897.87 18699.07 11898.67 27698.24 12097.01 25798.93 24297.25 21497.62 27498.34 26497.27 13899.57 29496.42 22199.33 24299.39 165
PVSNet_Blended_VisFu98.17 16898.15 16098.22 22299.73 3695.15 26697.36 23699.68 3294.45 30998.99 13899.27 9296.87 16099.94 3097.13 15899.91 5399.57 80
MVS_030498.10 17097.88 18598.76 16398.82 24796.50 22797.90 18291.35 37699.56 2498.32 22899.13 12296.06 19999.93 3599.84 599.97 1499.85 12
HPM-MVS++copyleft98.10 17097.64 20399.48 5199.09 19499.13 5597.52 22498.75 27697.46 19496.90 31497.83 30196.01 20299.84 13095.82 25499.35 23999.46 135
APD-MVScopyleft98.10 17097.67 19899.42 5899.11 18998.93 7197.76 19799.28 16994.97 29698.72 18698.77 20497.04 15099.85 11493.79 31099.54 20599.49 116
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_fmvs1_n98.09 17398.28 14497.52 27699.68 5493.47 31698.63 9799.93 395.41 28899.68 3099.64 2891.88 29499.48 31899.82 699.87 6899.62 56
MVP-Stereo98.08 17497.92 18198.57 18598.96 21896.79 22197.90 18299.18 19796.41 25698.46 21798.95 16795.93 21099.60 28496.51 21698.98 29199.31 197
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PMMVS298.07 17598.08 16898.04 23799.41 12794.59 28494.59 35399.40 11497.50 18698.82 17498.83 19396.83 16399.84 13097.50 13899.81 9099.71 35
ETV-MVS98.03 17697.86 18798.56 18998.69 27398.07 13997.51 22699.50 7798.10 14297.50 28695.51 36198.41 5199.88 7696.27 23099.24 25797.71 348
Effi-MVS+98.02 17797.82 18998.62 17898.53 29797.19 20597.33 23899.68 3297.30 20996.68 32297.46 32298.56 4499.80 17496.63 20298.20 32498.86 274
MSLP-MVS++98.02 17798.14 16297.64 26598.58 29095.19 26597.48 22899.23 18597.47 18997.90 25698.62 23297.04 15098.81 36997.55 13399.41 23198.94 263
EIA-MVS98.00 17997.74 19398.80 15598.72 26198.09 13398.05 16299.60 4297.39 20096.63 32495.55 36097.68 10399.80 17496.73 19599.27 25298.52 308
MCST-MVS98.00 17997.63 20499.10 11299.24 15698.17 12896.89 26698.73 27995.66 27997.92 25497.70 30897.17 14499.66 26496.18 23699.23 25899.47 133
K. test v398.00 17997.66 20199.03 12899.79 2497.56 18399.19 4992.47 37099.62 1899.52 5299.66 2489.61 30799.96 1199.25 3699.81 9099.56 86
HQP_MVS97.99 18297.67 19898.93 14099.19 17097.65 17997.77 19599.27 17298.20 13497.79 26597.98 29194.90 23899.70 23794.42 29099.51 21499.45 139
MDA-MVSNet-bldmvs97.94 18397.91 18298.06 23499.44 11994.96 27296.63 27999.15 20998.35 11898.83 17199.11 12594.31 25699.85 11496.60 20398.72 30499.37 174
Anonymous20240521197.90 18497.50 21199.08 11698.90 23098.25 11998.53 10996.16 34898.87 9599.11 11898.86 18790.40 30399.78 19897.36 14399.31 24599.19 224
LF4IMVS97.90 18497.69 19798.52 19599.17 17897.66 17897.19 25199.47 9396.31 26097.85 26198.20 27596.71 17499.52 30994.62 28299.72 13998.38 317
UnsupCasMVSNet_eth97.89 18697.60 20698.75 16699.31 14497.17 20797.62 21299.35 13298.72 10298.76 18298.68 21892.57 28699.74 22197.76 12895.60 36999.34 186
TinyColmap97.89 18697.98 17597.60 26798.86 23894.35 28896.21 29899.44 10297.45 19699.06 12598.88 18497.99 8699.28 34894.38 29499.58 19399.18 226
OMC-MVS97.88 18897.49 21299.04 12798.89 23598.63 8996.94 26199.25 17895.02 29498.53 21298.51 24497.27 13899.47 32193.50 31799.51 21499.01 248
CANet97.87 18997.76 19198.19 22497.75 34295.51 25396.76 27299.05 22497.74 16596.93 30898.21 27495.59 22099.89 6797.86 12099.93 3499.19 224
xiu_mvs_v1_base_debu97.86 19098.17 15696.92 30498.98 21593.91 30496.45 28599.17 20197.85 15998.41 22297.14 33498.47 4799.92 4498.02 10799.05 27996.92 360
xiu_mvs_v1_base97.86 19098.17 15696.92 30498.98 21593.91 30496.45 28599.17 20197.85 15998.41 22297.14 33498.47 4799.92 4498.02 10799.05 27996.92 360
xiu_mvs_v1_base_debi97.86 19098.17 15696.92 30498.98 21593.91 30496.45 28599.17 20197.85 15998.41 22297.14 33498.47 4799.92 4498.02 10799.05 27996.92 360
NCCC97.86 19097.47 21599.05 12598.61 28498.07 13996.98 25998.90 24897.63 17397.04 30597.93 29695.99 20699.66 26495.31 26998.82 30099.43 147
PMVScopyleft91.26 2097.86 19097.94 17997.65 26399.71 4497.94 15598.52 11098.68 28198.99 8597.52 28499.35 7797.41 13098.18 37591.59 34499.67 16396.82 363
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
IterMVS-SCA-FT97.85 19598.18 15596.87 30799.27 15191.16 35395.53 32499.25 17899.10 7399.41 6999.35 7793.10 27599.96 1198.65 7499.94 3099.49 116
D2MVS97.84 19697.84 18897.83 24799.14 18594.74 27796.94 26198.88 25195.84 27698.89 15898.96 16394.40 25499.69 24197.55 13399.95 2299.05 240
CPTT-MVS97.84 19697.36 22099.27 8699.31 14498.46 10598.29 13699.27 17294.90 29897.83 26298.37 26094.90 23899.84 13093.85 30999.54 20599.51 109
mvs_anonymous97.83 19898.16 15996.87 30798.18 32391.89 34097.31 23998.90 24897.37 20298.83 17199.46 5996.28 19299.79 18798.90 5698.16 32898.95 259
h-mvs3397.77 19997.33 22399.10 11299.21 16397.84 16298.35 13398.57 28799.11 6698.58 20499.02 14288.65 31699.96 1198.11 10196.34 36199.49 116
test_vis1_rt97.75 20097.72 19697.83 24798.81 25096.35 23197.30 24099.69 2794.61 30397.87 25898.05 28796.26 19398.32 37498.74 6698.18 32598.82 277
IterMVS97.73 20198.11 16496.57 31599.24 15690.28 35695.52 32699.21 18798.86 9699.33 8699.33 8393.11 27499.94 3098.49 8499.94 3099.48 126
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvs197.72 20297.94 17997.07 29898.66 28192.39 33397.68 20499.81 1795.20 29299.54 4699.44 6491.56 29699.41 33099.78 1099.77 11499.40 162
MSDG97.71 20397.52 21098.28 21898.91 22996.82 22094.42 35699.37 12397.65 17298.37 22798.29 26997.40 13199.33 34094.09 30199.22 25998.68 302
CDS-MVSNet97.69 20497.35 22198.69 17198.73 25997.02 21396.92 26598.75 27695.89 27598.59 20298.67 22092.08 29299.74 22196.72 19699.81 9099.32 193
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch97.68 20597.75 19297.45 28198.23 32193.78 31097.29 24198.84 26296.10 26798.64 19398.65 22596.04 20099.36 33696.84 18599.14 27199.20 219
Fast-Effi-MVS+97.67 20697.38 21898.57 18598.71 26497.43 19197.23 24599.45 9894.82 30096.13 33796.51 34298.52 4699.91 5296.19 23498.83 29998.37 319
EU-MVSNet97.66 20798.50 11095.13 34399.63 6685.84 37298.35 13398.21 30298.23 13099.54 4699.46 5995.02 23699.68 25098.24 9599.87 6899.87 9
pmmvs597.64 20897.49 21298.08 23299.14 18595.12 26896.70 27699.05 22493.77 32298.62 19698.83 19393.23 27199.75 21698.33 9399.76 12599.36 180
N_pmnet97.63 20997.17 22998.99 13299.27 15197.86 16095.98 30493.41 36795.25 29099.47 5998.90 17795.63 21899.85 11496.91 17499.73 13299.27 205
mvsany_test197.60 21097.54 20897.77 25297.72 34395.35 25995.36 33197.13 33294.13 31699.71 2499.33 8397.93 8999.30 34497.60 13298.94 29498.67 303
YYNet197.60 21097.67 19897.39 28599.04 20693.04 32395.27 33298.38 29797.25 21498.92 15498.95 16795.48 22599.73 22696.99 16898.74 30299.41 153
MDA-MVSNet_test_wron97.60 21097.66 20197.41 28499.04 20693.09 31995.27 33298.42 29497.26 21398.88 16298.95 16795.43 22699.73 22697.02 16598.72 30499.41 153
pmmvs497.58 21397.28 22498.51 19698.84 24296.93 21895.40 33098.52 29093.60 32498.61 19898.65 22595.10 23499.60 28496.97 17199.79 10598.99 252
PVSNet_BlendedMVS97.55 21497.53 20997.60 26798.92 22693.77 31196.64 27899.43 10894.49 30597.62 27499.18 10996.82 16499.67 25394.73 27999.93 3499.36 180
ppachtmachnet_test97.50 21597.74 19396.78 31398.70 26891.23 35294.55 35499.05 22496.36 25799.21 10998.79 20196.39 18699.78 19896.74 19399.82 8699.34 186
FMVSNet397.50 21597.24 22698.29 21798.08 32995.83 24597.86 18898.91 24797.89 15698.95 14698.95 16787.06 32299.81 16797.77 12499.69 15299.23 214
CHOSEN 1792x268897.49 21797.14 23398.54 19399.68 5496.09 23896.50 28399.62 3891.58 34798.84 17098.97 16092.36 28799.88 7696.76 19199.95 2299.67 46
CLD-MVS97.49 21797.16 23098.48 19999.07 19897.03 21294.71 34699.21 18794.46 30798.06 24797.16 33297.57 11599.48 31894.46 28799.78 11098.95 259
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
hse-mvs297.46 21997.07 23498.64 17498.73 25997.33 19597.45 23197.64 32299.11 6698.58 20497.98 29188.65 31699.79 18798.11 10197.39 34598.81 281
Vis-MVSNet (Re-imp)97.46 21997.16 23098.34 21299.55 8596.10 23698.94 7498.44 29398.32 12298.16 23798.62 23288.76 31299.73 22693.88 30799.79 10599.18 226
jason97.45 22197.35 22197.76 25599.24 15693.93 30395.86 31398.42 29494.24 31398.50 21498.13 27894.82 24299.91 5297.22 15099.73 13299.43 147
jason: jason.
CL-MVSNet_self_test97.44 22297.22 22798.08 23298.57 29295.78 24794.30 35998.79 27096.58 25198.60 20098.19 27694.74 24999.64 27296.41 22298.84 29898.82 277
DSMNet-mixed97.42 22397.60 20696.87 30799.15 18491.46 34498.54 10899.12 21292.87 33597.58 27899.63 2996.21 19499.90 5795.74 25699.54 20599.27 205
USDC97.41 22497.40 21697.44 28298.94 22093.67 31395.17 33599.53 7194.03 31998.97 14399.10 12795.29 22899.34 33895.84 25399.73 13299.30 200
our_test_397.39 22597.73 19596.34 31998.70 26889.78 35894.61 35298.97 23996.50 25299.04 13298.85 19095.98 20799.84 13097.26 14899.67 16399.41 153
c3_l97.36 22697.37 21997.31 28698.09 32893.25 31895.01 34099.16 20497.05 22998.77 18098.72 21192.88 28099.64 27296.93 17399.76 12599.05 240
alignmvs97.35 22796.88 24498.78 16098.54 29598.09 13397.71 20197.69 31999.20 5997.59 27795.90 35588.12 32199.55 30098.18 9998.96 29298.70 298
Patchmtry97.35 22796.97 23898.50 19897.31 36196.47 22898.18 14698.92 24598.95 9098.78 17799.37 7385.44 33799.85 11495.96 24599.83 8399.17 230
DP-MVS Recon97.33 22996.92 24198.57 18599.09 19497.99 14696.79 26999.35 13293.18 32997.71 26998.07 28695.00 23799.31 34293.97 30399.13 27398.42 316
QAPM97.31 23096.81 25198.82 15198.80 25397.49 18699.06 6399.19 19390.22 35997.69 27199.16 11596.91 15899.90 5790.89 35599.41 23199.07 238
UnsupCasMVSNet_bld97.30 23196.92 24198.45 20299.28 14996.78 22496.20 29999.27 17295.42 28598.28 23198.30 26893.16 27399.71 23494.99 27397.37 34698.87 273
F-COLMAP97.30 23196.68 25899.14 10699.19 17098.39 10897.27 24499.30 15892.93 33396.62 32598.00 28995.73 21699.68 25092.62 33398.46 31799.35 184
1112_ss97.29 23396.86 24598.58 18399.34 14396.32 23296.75 27399.58 4593.14 33096.89 31597.48 32092.11 29199.86 10296.91 17499.54 20599.57 80
CANet_DTU97.26 23497.06 23597.84 24697.57 35094.65 28296.19 30098.79 27097.23 22095.14 35898.24 27193.22 27299.84 13097.34 14499.84 7699.04 244
Patchmatch-RL test97.26 23497.02 23797.99 24099.52 9395.53 25296.13 30199.71 2497.47 18999.27 9799.16 11584.30 34699.62 27797.89 11599.77 11498.81 281
CDPH-MVS97.26 23496.66 26199.07 11899.00 21198.15 12996.03 30399.01 23591.21 35397.79 26597.85 30096.89 15999.69 24192.75 33099.38 23699.39 165
PatchMatch-RL97.24 23796.78 25298.61 18099.03 20997.83 16396.36 29199.06 22193.49 32797.36 29697.78 30295.75 21599.49 31593.44 31898.77 30198.52 308
eth_miper_zixun_eth97.23 23897.25 22597.17 29398.00 33292.77 32794.71 34699.18 19797.27 21298.56 20798.74 20891.89 29399.69 24197.06 16499.81 9099.05 240
sss97.21 23996.93 23998.06 23498.83 24495.22 26496.75 27398.48 29294.49 30597.27 29797.90 29792.77 28399.80 17496.57 20699.32 24399.16 233
LFMVS97.20 24096.72 25598.64 17498.72 26196.95 21698.93 7594.14 36599.74 698.78 17799.01 15184.45 34399.73 22697.44 13999.27 25299.25 209
HyFIR lowres test97.19 24196.60 26698.96 13699.62 6897.28 19895.17 33599.50 7794.21 31499.01 13698.32 26786.61 32599.99 297.10 16099.84 7699.60 63
miper_lstm_enhance97.18 24297.16 23097.25 29198.16 32492.85 32595.15 33799.31 15097.25 21498.74 18598.78 20290.07 30499.78 19897.19 15199.80 10099.11 236
CNLPA97.17 24396.71 25698.55 19098.56 29398.05 14396.33 29298.93 24296.91 23797.06 30497.39 32594.38 25599.45 32491.66 34199.18 26798.14 326
xiu_mvs_v2_base97.16 24497.49 21296.17 32498.54 29592.46 33195.45 32898.84 26297.25 21497.48 28896.49 34398.31 5999.90 5796.34 22698.68 30996.15 371
AdaColmapbinary97.14 24596.71 25698.46 20198.34 31397.80 16996.95 26098.93 24295.58 28096.92 30997.66 30995.87 21299.53 30590.97 35299.14 27198.04 331
iter_conf_final97.10 24696.65 26398.45 20298.53 29796.08 23998.30 13599.11 21498.10 14298.85 16798.95 16779.38 36799.87 9398.68 7299.91 5399.40 162
train_agg97.10 24696.45 27199.07 11898.71 26498.08 13795.96 30799.03 22991.64 34595.85 34397.53 31696.47 18399.76 20993.67 31199.16 26899.36 180
OpenMVScopyleft96.65 797.09 24896.68 25898.32 21398.32 31497.16 20898.86 8199.37 12389.48 36396.29 33699.15 11996.56 17999.90 5792.90 32499.20 26297.89 336
PS-MVSNAJ97.08 24997.39 21796.16 32698.56 29392.46 33195.24 33498.85 26197.25 21497.49 28795.99 35298.07 7799.90 5796.37 22398.67 31096.12 372
miper_ehance_all_eth97.06 25097.03 23697.16 29597.83 33993.06 32094.66 34999.09 21895.99 27298.69 18798.45 25392.73 28499.61 28396.79 18799.03 28398.82 277
lupinMVS97.06 25096.86 24597.65 26398.88 23693.89 30795.48 32797.97 31293.53 32598.16 23797.58 31493.81 26799.91 5296.77 19099.57 19799.17 230
API-MVS97.04 25296.91 24397.42 28397.88 33898.23 12498.18 14698.50 29197.57 18097.39 29496.75 33996.77 16899.15 35790.16 35899.02 28694.88 377
cl____97.02 25396.83 24897.58 26997.82 34094.04 29794.66 34999.16 20497.04 23098.63 19498.71 21288.68 31599.69 24197.00 16699.81 9099.00 251
DIV-MVS_self_test97.02 25396.84 24797.58 26997.82 34094.03 29894.66 34999.16 20497.04 23098.63 19498.71 21288.69 31399.69 24197.00 16699.81 9099.01 248
RPMNet97.02 25396.93 23997.30 28797.71 34594.22 28998.11 15499.30 15899.37 4196.91 31199.34 8186.72 32499.87 9397.53 13697.36 34897.81 341
HQP-MVS97.00 25696.49 27098.55 19098.67 27696.79 22196.29 29499.04 22796.05 26895.55 34996.84 33793.84 26599.54 30392.82 32799.26 25599.32 193
FA-MVS(test-final)96.99 25796.82 24997.50 27898.70 26894.78 27599.34 2096.99 33595.07 29398.48 21699.33 8388.41 31999.65 26996.13 24098.92 29698.07 330
new_pmnet96.99 25796.76 25397.67 26198.72 26194.89 27395.95 30998.20 30392.62 33898.55 20998.54 24094.88 24199.52 30993.96 30499.44 22998.59 307
Test_1112_low_res96.99 25796.55 26898.31 21599.35 14195.47 25595.84 31699.53 7191.51 34996.80 32098.48 25191.36 29799.83 14496.58 20499.53 20999.62 56
PVSNet_Blended96.88 26096.68 25897.47 28098.92 22693.77 31194.71 34699.43 10890.98 35597.62 27497.36 32896.82 16499.67 25394.73 27999.56 20098.98 253
MVSTER96.86 26196.55 26897.79 25097.91 33694.21 29197.56 22098.87 25397.49 18899.06 12599.05 13780.72 35999.80 17498.44 8699.82 8699.37 174
BH-untuned96.83 26296.75 25497.08 29698.74 25893.33 31796.71 27598.26 30096.72 24598.44 21997.37 32795.20 23199.47 32191.89 33997.43 34498.44 314
BH-RMVSNet96.83 26296.58 26797.58 26998.47 30294.05 29596.67 27797.36 32596.70 24797.87 25897.98 29195.14 23399.44 32690.47 35798.58 31599.25 209
PAPM_NR96.82 26496.32 27498.30 21699.07 19896.69 22697.48 22898.76 27395.81 27796.61 32696.47 34594.12 26299.17 35590.82 35697.78 33899.06 239
MG-MVS96.77 26596.61 26497.26 29098.31 31593.06 32095.93 31098.12 30996.45 25597.92 25498.73 20993.77 26999.39 33391.19 35199.04 28299.33 191
test_yl96.69 26696.29 27597.90 24298.28 31695.24 26297.29 24197.36 32598.21 13198.17 23597.86 29886.27 32799.55 30094.87 27698.32 31998.89 269
DCV-MVSNet96.69 26696.29 27597.90 24298.28 31695.24 26297.29 24197.36 32598.21 13198.17 23597.86 29886.27 32799.55 30094.87 27698.32 31998.89 269
WTY-MVS96.67 26896.27 27797.87 24598.81 25094.61 28396.77 27197.92 31494.94 29797.12 30097.74 30591.11 29899.82 15493.89 30698.15 32999.18 226
PatchT96.65 26996.35 27297.54 27497.40 35895.32 26097.98 17496.64 34499.33 4696.89 31599.42 6784.32 34599.81 16797.69 13197.49 34197.48 354
TAPA-MVS96.21 1196.63 27095.95 28198.65 17398.93 22298.09 13396.93 26399.28 16983.58 37698.13 24197.78 30296.13 19699.40 33193.52 31599.29 25098.45 312
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MIMVSNet96.62 27196.25 27897.71 26099.04 20694.66 28199.16 5196.92 34097.23 22097.87 25899.10 12786.11 33199.65 26991.65 34299.21 26198.82 277
Patchmatch-test96.55 27296.34 27397.17 29398.35 31293.06 32098.40 12897.79 31597.33 20598.41 22298.67 22083.68 35099.69 24195.16 27199.31 24598.77 289
iter_conf0596.54 27396.07 27997.92 24197.90 33794.50 28597.87 18799.14 21097.73 16698.89 15898.95 16775.75 37799.87 9398.50 8399.92 4599.40 162
PMMVS96.51 27495.98 28098.09 22997.53 35395.84 24494.92 34298.84 26291.58 34796.05 34195.58 35995.68 21799.66 26495.59 26398.09 33298.76 291
PLCcopyleft94.65 1696.51 27495.73 28598.85 14898.75 25797.91 15696.42 28899.06 22190.94 35695.59 34697.38 32694.41 25399.59 28890.93 35398.04 33699.05 240
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
114514_t96.50 27695.77 28398.69 17199.48 11297.43 19197.84 19099.55 6381.42 37896.51 33098.58 23795.53 22199.67 25393.41 31999.58 19398.98 253
test111196.49 27796.82 24995.52 33799.42 12587.08 36999.22 4287.14 38299.11 6699.46 6099.58 3788.69 31399.86 10298.80 6199.95 2299.62 56
MAR-MVS96.47 27895.70 28698.79 15797.92 33599.12 5798.28 13798.60 28692.16 34395.54 35296.17 35094.77 24899.52 30989.62 36098.23 32297.72 347
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ECVR-MVScopyleft96.42 27996.61 26495.85 32999.38 13088.18 36599.22 4286.00 38499.08 7899.36 8199.57 3888.47 31899.82 15498.52 8299.95 2299.54 97
SCA96.41 28096.66 26195.67 33398.24 31988.35 36395.85 31596.88 34196.11 26697.67 27298.67 22093.10 27599.85 11494.16 29699.22 25998.81 281
DPM-MVS96.32 28195.59 29198.51 19698.76 25597.21 20394.54 35598.26 30091.94 34496.37 33497.25 33093.06 27799.43 32791.42 34798.74 30298.89 269
CMPMVSbinary75.91 2396.29 28295.44 29598.84 14996.25 37798.69 8897.02 25699.12 21288.90 36697.83 26298.86 18789.51 30898.90 36791.92 33899.51 21498.92 265
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CR-MVSNet96.28 28395.95 28197.28 28897.71 34594.22 28998.11 15498.92 24592.31 34196.91 31199.37 7385.44 33799.81 16797.39 14297.36 34897.81 341
CVMVSNet96.25 28497.21 22893.38 36099.10 19180.56 38697.20 24998.19 30596.94 23599.00 13799.02 14289.50 30999.80 17496.36 22599.59 18899.78 22
AUN-MVS96.24 28595.45 29498.60 18198.70 26897.22 20297.38 23497.65 32095.95 27395.53 35397.96 29582.11 35899.79 18796.31 22797.44 34398.80 286
EPNet96.14 28695.44 29598.25 21990.76 38795.50 25497.92 17994.65 35898.97 8792.98 37398.85 19089.12 31199.87 9395.99 24399.68 15799.39 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d96.06 28797.62 20591.38 36398.65 28398.57 9698.85 8296.95 33896.86 23999.90 999.16 11599.18 1498.40 37389.23 36199.77 11477.18 381
miper_enhance_ethall96.01 28895.74 28496.81 31196.41 37592.27 33793.69 36898.89 25091.14 35498.30 22997.35 32990.58 30199.58 29296.31 22799.03 28398.60 305
FMVSNet596.01 28895.20 30498.41 20697.53 35396.10 23698.74 8699.50 7797.22 22398.03 25199.04 13969.80 38199.88 7697.27 14799.71 14499.25 209
dmvs_re95.98 29095.39 29897.74 25798.86 23897.45 18998.37 13195.69 35597.95 15096.56 32795.95 35390.70 30097.68 37788.32 36396.13 36598.11 327
baseline195.96 29195.44 29597.52 27698.51 30093.99 30198.39 12996.09 35098.21 13198.40 22697.76 30486.88 32399.63 27595.42 26789.27 38198.95 259
HY-MVS95.94 1395.90 29295.35 30097.55 27397.95 33394.79 27498.81 8596.94 33992.28 34295.17 35798.57 23889.90 30699.75 21691.20 35097.33 35098.10 328
GA-MVS95.86 29395.32 30197.49 27998.60 28694.15 29493.83 36697.93 31395.49 28396.68 32297.42 32483.21 35199.30 34496.22 23298.55 31699.01 248
OpenMVS_ROBcopyleft95.38 1495.84 29495.18 30597.81 24998.41 31097.15 20997.37 23598.62 28583.86 37598.65 19298.37 26094.29 25799.68 25088.41 36298.62 31396.60 366
cl2295.79 29595.39 29896.98 30196.77 37092.79 32694.40 35798.53 28994.59 30497.89 25798.17 27782.82 35599.24 35096.37 22399.03 28398.92 265
131495.74 29695.60 29096.17 32497.53 35392.75 32898.07 15998.31 29991.22 35294.25 36496.68 34095.53 22199.03 35991.64 34397.18 35196.74 364
PVSNet93.40 1795.67 29795.70 28695.57 33698.83 24488.57 36192.50 37397.72 31792.69 33796.49 33396.44 34693.72 27099.43 32793.61 31299.28 25198.71 295
FE-MVS95.66 29894.95 31097.77 25298.53 29795.28 26199.40 1696.09 35093.11 33197.96 25399.26 9479.10 36999.77 20492.40 33698.71 30698.27 321
tttt051795.64 29994.98 30897.64 26599.36 13793.81 30998.72 8990.47 37898.08 14498.67 18998.34 26473.88 37999.92 4497.77 12499.51 21499.20 219
PatchmatchNetpermissive95.58 30095.67 28895.30 34297.34 36087.32 36897.65 20996.65 34395.30 28997.07 30398.69 21684.77 34099.75 21694.97 27498.64 31198.83 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TR-MVS95.55 30195.12 30696.86 31097.54 35293.94 30296.49 28496.53 34594.36 31297.03 30696.61 34194.26 25899.16 35686.91 36796.31 36297.47 355
JIA-IIPM95.52 30295.03 30797.00 29996.85 36894.03 29896.93 26395.82 35399.20 5994.63 36299.71 1683.09 35299.60 28494.42 29094.64 37397.36 357
CHOSEN 280x42095.51 30395.47 29295.65 33598.25 31888.27 36493.25 37098.88 25193.53 32594.65 36197.15 33386.17 32999.93 3597.41 14199.93 3498.73 294
ADS-MVSNet295.43 30494.98 30896.76 31498.14 32591.74 34197.92 17997.76 31690.23 35796.51 33098.91 17485.61 33499.85 11492.88 32596.90 35498.69 299
PAPR95.29 30594.47 31497.75 25697.50 35795.14 26794.89 34398.71 28091.39 35195.35 35695.48 36294.57 25199.14 35884.95 37097.37 34698.97 256
thisisatest053095.27 30694.45 31597.74 25799.19 17094.37 28797.86 18890.20 37997.17 22498.22 23397.65 31073.53 38099.90 5796.90 17999.35 23998.95 259
ADS-MVSNet95.24 30794.93 31196.18 32398.14 32590.10 35797.92 17997.32 32890.23 35796.51 33098.91 17485.61 33499.74 22192.88 32596.90 35498.69 299
BH-w/o95.13 30894.89 31295.86 32898.20 32291.31 34895.65 32097.37 32493.64 32396.52 32995.70 35893.04 27899.02 36088.10 36495.82 36897.24 358
tpmrst95.07 30995.46 29393.91 35397.11 36484.36 37997.62 21296.96 33794.98 29596.35 33598.80 19985.46 33699.59 28895.60 26296.23 36397.79 344
pmmvs395.03 31094.40 31696.93 30397.70 34792.53 33095.08 33897.71 31888.57 36797.71 26998.08 28579.39 36699.82 15496.19 23499.11 27798.43 315
tpmvs95.02 31195.25 30294.33 34996.39 37685.87 37198.08 15896.83 34295.46 28495.51 35498.69 21685.91 33299.53 30594.16 29696.23 36397.58 352
EPNet_dtu94.93 31294.78 31395.38 34193.58 38487.68 36796.78 27095.69 35597.35 20489.14 38098.09 28488.15 32099.49 31594.95 27599.30 24898.98 253
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas94.79 31394.33 31996.15 32796.02 38092.36 33592.34 37599.26 17785.34 37495.08 35994.96 37092.96 27998.53 37294.41 29398.59 31497.56 353
tpm94.67 31494.34 31895.66 33497.68 34988.42 36297.88 18494.90 35794.46 30796.03 34298.56 23978.66 37099.79 18795.88 24795.01 37298.78 288
test0.0.03 194.51 31593.69 32496.99 30096.05 37893.61 31594.97 34193.49 36696.17 26397.57 28094.88 37182.30 35699.01 36293.60 31394.17 37698.37 319
thres600view794.45 31693.83 32296.29 32099.06 20291.53 34397.99 17394.24 36398.34 11997.44 29195.01 36779.84 36299.67 25384.33 37198.23 32297.66 349
PCF-MVS92.86 1894.36 31793.00 33498.42 20598.70 26897.56 18393.16 37199.11 21479.59 37997.55 28197.43 32392.19 28999.73 22679.85 37999.45 22697.97 335
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata94.32 31892.59 33699.53 3499.46 11599.21 2898.65 9599.34 13898.62 10797.54 28245.85 38297.50 12499.83 14496.79 18799.53 20999.56 86
MVS-HIRNet94.32 31895.62 28990.42 36498.46 30375.36 38796.29 29489.13 38195.25 29095.38 35599.75 1192.88 28099.19 35494.07 30299.39 23396.72 365
ET-MVSNet_ETH3D94.30 32093.21 33097.58 26998.14 32594.47 28694.78 34593.24 36994.72 30189.56 37995.87 35678.57 37299.81 16796.91 17497.11 35398.46 310
thres100view90094.19 32193.67 32595.75 33299.06 20291.35 34798.03 16594.24 36398.33 12097.40 29394.98 36979.84 36299.62 27783.05 37398.08 33396.29 367
E-PMN94.17 32294.37 31793.58 35796.86 36785.71 37490.11 37797.07 33398.17 13797.82 26497.19 33184.62 34298.94 36489.77 35997.68 34096.09 373
thres40094.14 32393.44 32796.24 32298.93 22291.44 34597.60 21594.29 36197.94 15197.10 30194.31 37579.67 36499.62 27783.05 37398.08 33397.66 349
thisisatest051594.12 32493.16 33196.97 30298.60 28692.90 32493.77 36790.61 37794.10 31796.91 31195.87 35674.99 37899.80 17494.52 28599.12 27698.20 323
tfpn200view994.03 32593.44 32795.78 33198.93 22291.44 34597.60 21594.29 36197.94 15197.10 30194.31 37579.67 36499.62 27783.05 37398.08 33396.29 367
CostFormer93.97 32693.78 32394.51 34897.53 35385.83 37397.98 17495.96 35289.29 36594.99 36098.63 23078.63 37199.62 27794.54 28496.50 35998.09 329
test-LLR93.90 32793.85 32194.04 35196.53 37284.62 37794.05 36392.39 37196.17 26394.12 36695.07 36582.30 35699.67 25395.87 25098.18 32597.82 339
EMVS93.83 32894.02 32093.23 36196.83 36984.96 37589.77 37896.32 34797.92 15397.43 29296.36 34986.17 32998.93 36587.68 36597.73 33995.81 374
baseline293.73 32992.83 33596.42 31897.70 34791.28 35096.84 26889.77 38093.96 32192.44 37495.93 35479.14 36899.77 20492.94 32396.76 35898.21 322
thres20093.72 33093.14 33295.46 34098.66 28191.29 34996.61 28094.63 35997.39 20096.83 31893.71 37779.88 36199.56 29782.40 37698.13 33095.54 376
EPMVS93.72 33093.27 32995.09 34596.04 37987.76 36698.13 15185.01 38594.69 30296.92 30998.64 22878.47 37499.31 34295.04 27296.46 36098.20 323
dp93.47 33293.59 32693.13 36296.64 37181.62 38597.66 20796.42 34692.80 33696.11 33898.64 22878.55 37399.59 28893.31 32092.18 38098.16 325
FPMVS93.44 33392.23 33897.08 29699.25 15597.86 16095.61 32197.16 33192.90 33493.76 37298.65 22575.94 37695.66 38179.30 38097.49 34197.73 346
tpm cat193.29 33493.13 33393.75 35597.39 35984.74 37697.39 23397.65 32083.39 37794.16 36598.41 25582.86 35499.39 33391.56 34595.35 37197.14 359
MVS93.19 33592.09 34096.50 31796.91 36694.03 29898.07 15998.06 31168.01 38094.56 36396.48 34495.96 20999.30 34483.84 37296.89 35696.17 369
tpm293.09 33692.58 33794.62 34797.56 35186.53 37097.66 20795.79 35486.15 37294.07 36898.23 27375.95 37599.53 30590.91 35496.86 35797.81 341
dmvs_testset92.94 33792.21 33995.13 34398.59 28890.99 35497.65 20992.09 37396.95 23494.00 36993.55 37892.34 28896.97 38072.20 38292.52 37897.43 356
KD-MVS_2432*160092.87 33891.99 34195.51 33891.37 38589.27 35994.07 36198.14 30795.42 28597.25 29896.44 34667.86 38399.24 35091.28 34896.08 36698.02 332
miper_refine_blended92.87 33891.99 34195.51 33891.37 38589.27 35994.07 36198.14 30795.42 28597.25 29896.44 34667.86 38399.24 35091.28 34896.08 36698.02 332
MVEpermissive83.40 2292.50 34091.92 34394.25 35098.83 24491.64 34292.71 37283.52 38695.92 27486.46 38395.46 36395.20 23195.40 38280.51 37898.64 31195.73 375
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test250692.39 34191.89 34493.89 35499.38 13082.28 38399.32 2366.03 39099.08 7898.77 18099.57 3866.26 38799.84 13098.71 6999.95 2299.54 97
gg-mvs-nofinetune92.37 34291.20 34795.85 32995.80 38192.38 33499.31 2781.84 38799.75 591.83 37699.74 1268.29 38299.02 36087.15 36697.12 35296.16 370
test-mter92.33 34391.76 34694.04 35196.53 37284.62 37794.05 36392.39 37194.00 32094.12 36695.07 36565.63 38999.67 25395.87 25098.18 32597.82 339
IB-MVS91.63 1992.24 34490.90 34896.27 32197.22 36391.24 35194.36 35893.33 36892.37 34092.24 37594.58 37466.20 38899.89 6793.16 32294.63 37497.66 349
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,192.19 34591.77 34593.46 35896.48 37482.80 38294.05 36391.52 37594.45 30994.00 36994.88 37166.65 38699.56 29795.78 25598.11 33198.02 332
PAPM91.88 34690.34 34996.51 31698.06 33092.56 32992.44 37497.17 33086.35 37190.38 37896.01 35186.61 32599.21 35370.65 38395.43 37097.75 345
PVSNet_089.98 2191.15 34790.30 35093.70 35697.72 34384.34 38090.24 37697.42 32390.20 36093.79 37193.09 37990.90 29998.89 36886.57 36872.76 38397.87 338
EGC-MVSNET85.24 34880.54 35199.34 7299.77 2799.20 3499.08 5999.29 16612.08 38420.84 38599.42 6797.55 11799.85 11497.08 16199.72 13998.96 258
test_method79.78 34979.50 35280.62 36580.21 38845.76 39070.82 37998.41 29631.08 38380.89 38497.71 30684.85 33997.37 37891.51 34680.03 38298.75 292
tmp_tt78.77 35078.73 35378.90 36658.45 38974.76 38994.20 36078.26 38939.16 38286.71 38292.82 38080.50 36075.19 38586.16 36992.29 37986.74 380
cdsmvs_eth3d_5k24.66 35132.88 3540.00 3690.00 3920.00 3930.00 38099.10 2160.00 3870.00 38897.58 31499.21 130.00 3880.00 3860.00 3860.00 384
testmvs17.12 35220.53 3556.87 36812.05 3904.20 39293.62 3696.73 3914.62 38610.41 38624.33 3838.28 3913.56 3879.69 38515.07 38412.86 383
test12317.04 35320.11 3567.82 36710.25 3914.91 39194.80 3444.47 3924.93 38510.00 38724.28 3849.69 3903.64 38610.14 38412.43 38514.92 382
pcd_1.5k_mvsjas8.17 35410.90 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38798.07 770.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.12 35510.83 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38897.48 3200.00 3920.00 3880.00 3860.00 3860.00 384
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.73 3699.67 299.43 1199.54 6899.43 3699.26 101
MSC_two_6792asdad99.32 7898.43 30698.37 11198.86 25899.89 6797.14 15699.60 18499.71 35
PC_three_145293.27 32899.40 7298.54 24098.22 6597.00 37995.17 27099.45 22699.49 116
No_MVS99.32 7898.43 30698.37 11198.86 25899.89 6797.14 15699.60 18499.71 35
test_one_060199.39 12999.20 3499.31 15098.49 11498.66 19199.02 14297.64 109
eth-test20.00 392
eth-test0.00 392
ZD-MVS99.01 21098.84 7599.07 22094.10 31798.05 24998.12 28096.36 19099.86 10292.70 33299.19 265
RE-MVS-def98.58 10299.20 16799.38 898.48 12099.30 15898.64 10398.95 14698.96 16397.75 10096.56 21099.39 23399.45 139
IU-MVS99.49 10599.15 4798.87 25392.97 33299.41 6996.76 19199.62 17799.66 47
OPU-MVS98.82 15198.59 28898.30 11698.10 15698.52 24398.18 6998.75 37094.62 28299.48 22399.41 153
test_241102_TWO99.30 15898.03 14599.26 10199.02 14297.51 12399.88 7696.91 17499.60 18499.66 47
test_241102_ONE99.49 10599.17 3999.31 15097.98 14799.66 3298.90 17798.36 5499.48 318
9.1497.78 19099.07 19897.53 22399.32 14595.53 28298.54 21198.70 21597.58 11499.76 20994.32 29599.46 224
save fliter99.11 18997.97 15096.53 28299.02 23298.24 129
test_0728_THIRD98.17 13799.08 12399.02 14297.89 9099.88 7697.07 16299.71 14499.70 40
test_0728_SECOND99.60 1199.50 9899.23 2698.02 16799.32 14599.88 7696.99 16899.63 17499.68 43
test072699.50 9899.21 2898.17 14999.35 13297.97 14899.26 10199.06 13097.61 112
GSMVS98.81 281
test_part299.36 13799.10 6099.05 130
sam_mvs184.74 34198.81 281
sam_mvs84.29 347
ambc98.24 22198.82 24795.97 24198.62 9999.00 23799.27 9799.21 10396.99 15599.50 31496.55 21399.50 22199.26 208
MTGPAbinary99.20 189
test_post197.59 21720.48 38683.07 35399.66 26494.16 296
test_post21.25 38583.86 34999.70 237
patchmatchnet-post98.77 20484.37 34499.85 114
GG-mvs-BLEND94.76 34694.54 38392.13 33999.31 2780.47 38888.73 38191.01 38167.59 38598.16 37682.30 37794.53 37593.98 378
MTMP97.93 17791.91 374
gm-plane-assit94.83 38281.97 38488.07 36994.99 36899.60 28491.76 340
test9_res93.28 32199.15 27099.38 172
TEST998.71 26498.08 13795.96 30799.03 22991.40 35095.85 34397.53 31696.52 18199.76 209
test_898.67 27698.01 14595.91 31299.02 23291.64 34595.79 34597.50 31996.47 18399.76 209
agg_prior292.50 33599.16 26899.37 174
agg_prior98.68 27597.99 14699.01 23595.59 34699.77 204
TestCases99.16 10399.50 9898.55 9799.58 4596.80 24098.88 16299.06 13097.65 10699.57 29494.45 28899.61 18299.37 174
test_prior497.97 15095.86 313
test_prior295.74 31896.48 25496.11 33897.63 31295.92 21194.16 29699.20 262
test_prior98.95 13898.69 27397.95 15499.03 22999.59 28899.30 200
旧先验295.76 31788.56 36897.52 28499.66 26494.48 286
新几何295.93 310
新几何198.91 14398.94 22097.76 17198.76 27387.58 37096.75 32198.10 28294.80 24599.78 19892.73 33199.00 28899.20 219
旧先验198.82 24797.45 18998.76 27398.34 26495.50 22499.01 28799.23 214
无先验95.74 31898.74 27889.38 36499.73 22692.38 33799.22 218
原ACMM295.53 324
原ACMM198.35 21198.90 23096.25 23498.83 26692.48 33996.07 34098.10 28295.39 22799.71 23492.61 33498.99 28999.08 237
test22298.92 22696.93 21895.54 32398.78 27285.72 37396.86 31798.11 28194.43 25299.10 27899.23 214
testdata299.79 18792.80 329
segment_acmp97.02 153
testdata98.09 22998.93 22295.40 25898.80 26990.08 36197.45 29098.37 26095.26 22999.70 23793.58 31498.95 29399.17 230
testdata195.44 32996.32 259
test1298.93 14098.58 29097.83 16398.66 28296.53 32895.51 22399.69 24199.13 27399.27 205
plane_prior799.19 17097.87 159
plane_prior698.99 21497.70 17794.90 238
plane_prior599.27 17299.70 23794.42 29099.51 21499.45 139
plane_prior497.98 291
plane_prior397.78 17097.41 19897.79 265
plane_prior297.77 19598.20 134
plane_prior199.05 205
plane_prior97.65 17997.07 25596.72 24599.36 237
n20.00 393
nn0.00 393
door-mid99.57 52
lessismore_v098.97 13599.73 3697.53 18586.71 38399.37 7999.52 5089.93 30599.92 4498.99 5299.72 13999.44 143
LGP-MVS_train99.47 5499.57 7398.97 6699.48 8696.60 24999.10 12199.06 13098.71 3499.83 14495.58 26499.78 11099.62 56
test1198.87 253
door99.41 112
HQP5-MVS96.79 221
HQP-NCC98.67 27696.29 29496.05 26895.55 349
ACMP_Plane98.67 27696.29 29496.05 26895.55 349
BP-MVS92.82 327
HQP4-MVS95.56 34899.54 30399.32 193
HQP3-MVS99.04 22799.26 255
HQP2-MVS93.84 265
NP-MVS98.84 24297.39 19396.84 337
MDTV_nov1_ep13_2view74.92 38897.69 20390.06 36297.75 26885.78 33393.52 31598.69 299
MDTV_nov1_ep1395.22 30397.06 36583.20 38197.74 19996.16 34894.37 31196.99 30798.83 19383.95 34899.53 30593.90 30597.95 337
ACMMP++_ref99.77 114
ACMMP++99.68 157
Test By Simon96.52 181
ITE_SJBPF98.87 14699.22 16198.48 10499.35 13297.50 18698.28 23198.60 23597.64 10999.35 33793.86 30899.27 25298.79 287
DeepMVS_CXcopyleft93.44 35998.24 31994.21 29194.34 36064.28 38191.34 37794.87 37389.45 31092.77 38477.54 38193.14 37793.35 379