This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 3199.86 2099.61 7099.56 13099.63 3999.48 399.98 699.83 7298.75 5899.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 3199.84 3299.63 6799.56 13099.63 3999.47 499.98 699.82 8198.75 5899.99 499.97 199.97 799.94 11
test_fmvsm_n_192099.69 499.66 399.78 5599.84 3299.44 9999.58 11799.69 1899.43 799.98 699.91 2098.62 73100.00 199.97 199.95 1799.90 16
test_fmvsmconf_n99.70 399.64 499.87 1499.80 5299.66 5699.48 18899.64 3699.45 599.92 1699.92 1498.62 7399.99 499.96 699.99 199.96 7
patch_mono-299.26 7499.62 598.16 30699.81 4694.59 37499.52 15799.64 3699.33 1399.73 7099.90 2799.00 2299.99 499.69 2199.98 499.89 19
test_fmvsmvis_n_192099.65 699.61 699.77 5899.38 22499.37 10599.58 11799.62 4199.41 999.87 2999.92 1498.81 47100.00 199.97 199.93 2599.94 11
dcpmvs_299.23 8099.58 798.16 30699.83 3994.68 37299.76 3799.52 10599.07 3999.98 699.88 3998.56 7799.93 9099.67 2399.98 499.87 30
EI-MVSNet-UG-set99.58 1299.57 899.64 8399.78 5699.14 13999.60 10299.45 20299.01 4499.90 1999.83 7298.98 2499.93 9099.59 2999.95 1799.86 32
APDe-MVScopyleft99.66 599.57 899.92 199.77 6399.89 499.75 4299.56 7099.02 4299.88 2499.85 5799.18 1099.96 3299.22 7399.92 2799.90 16
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EI-MVSNet-Vis-set99.58 1299.56 1099.64 8399.78 5699.15 13899.61 10199.45 20299.01 4499.89 2199.82 8199.01 1899.92 10299.56 3399.95 1799.85 36
reproduce_model99.63 799.54 1199.90 499.78 5699.88 899.56 13099.55 7899.15 2199.90 1999.90 2799.00 2299.97 2199.11 8399.91 3499.86 32
reproduce-ours99.61 899.52 1299.90 499.76 6699.88 899.52 15799.54 8799.13 2499.89 2199.89 3298.96 2599.96 3299.04 9199.90 4399.85 36
our_new_method99.61 899.52 1299.90 499.76 6699.88 899.52 15799.54 8799.13 2499.89 2199.89 3298.96 2599.96 3299.04 9199.90 4399.85 36
SED-MVS99.61 899.52 1299.88 899.84 3299.90 299.60 10299.48 16199.08 3799.91 1799.81 9599.20 799.96 3298.91 10999.85 7599.79 77
SD-MVS99.41 5199.52 1299.05 19199.74 8399.68 5199.46 19799.52 10599.11 3099.88 2499.91 2099.43 197.70 40098.72 14099.93 2599.77 85
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVS++99.59 1199.50 1699.88 899.51 17699.88 899.87 899.51 11998.99 4999.88 2499.81 9599.27 599.96 3298.85 12299.80 10399.81 64
TSAR-MVS + MP.99.58 1299.50 1699.81 4799.91 199.66 5699.63 9099.39 23098.91 6299.78 5499.85 5799.36 299.94 7298.84 12599.88 5799.82 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS99.50 2399.48 1899.54 10499.76 6699.42 10199.90 199.55 7898.56 9499.78 5499.70 16298.65 7199.79 19999.65 2599.78 11199.41 209
SPE-MVS-test99.49 2599.48 1899.54 10499.78 5699.30 11799.89 299.58 6298.56 9499.73 7099.69 17298.55 7899.82 18499.69 2199.85 7599.48 188
fmvsm_s_conf0.5_n_a99.56 1699.47 2099.85 3199.83 3999.64 6699.52 15799.65 3399.10 3199.98 699.92 1497.35 12599.96 3299.94 999.92 2799.95 9
DVP-MVScopyleft99.57 1599.47 2099.88 899.85 2699.89 499.57 12499.37 24699.10 3199.81 4399.80 10898.94 3299.96 3298.93 10699.86 6899.81 64
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSLP-MVS++99.46 3499.47 2099.44 13699.60 15099.16 13499.41 21899.71 1398.98 5299.45 14599.78 12799.19 999.54 27199.28 6799.84 8399.63 145
mvsany_test199.50 2399.46 2399.62 9099.61 14599.09 14498.94 35299.48 16199.10 3199.96 1499.91 2098.85 4299.96 3299.72 1999.58 14599.82 57
test_fmvsmconf0.1_n99.55 1799.45 2499.86 2499.44 20699.65 6099.50 17399.61 4899.45 599.87 2999.92 1497.31 12699.97 2199.95 799.99 199.97 4
mamv499.33 6299.42 2599.07 18799.67 11497.73 26299.42 21599.60 5498.15 14299.94 1599.91 2098.42 8899.94 7299.72 1999.96 1299.54 168
XVS99.53 1999.42 2599.87 1499.85 2699.83 1999.69 6099.68 2098.98 5299.37 17099.74 14798.81 4799.94 7298.79 13399.86 6899.84 42
SteuartSystems-ACMMP99.54 1899.42 2599.87 1499.82 4299.81 2899.59 10999.51 11998.62 8999.79 4999.83 7299.28 499.97 2198.48 17699.90 4399.84 42
Skip Steuart: Steuart Systems R&D Blog.
DELS-MVS99.48 2999.42 2599.65 7799.72 9499.40 10499.05 32499.66 2899.14 2399.57 12499.80 10898.46 8499.94 7299.57 3299.84 8399.60 152
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVSMamba_PlusPlus99.46 3499.41 2999.64 8399.68 11299.50 9199.75 4299.50 13998.27 12599.87 2999.92 1498.09 10499.94 7299.65 2599.95 1799.47 194
fmvsm_s_conf0.5_n99.51 2199.40 3099.85 3199.84 3299.65 6099.51 16699.67 2399.13 2499.98 699.92 1496.60 15299.96 3299.95 799.96 1299.95 9
HPM-MVS_fast99.51 2199.40 3099.85 3199.91 199.79 3399.76 3799.56 7097.72 19999.76 6499.75 14299.13 1299.92 10299.07 8999.92 2799.85 36
balanced_conf0399.46 3499.39 3299.67 7299.55 16499.58 7899.74 4699.51 11998.42 10899.87 2999.84 6798.05 10799.91 11499.58 3199.94 2399.52 175
MTAPA99.52 2099.39 3299.89 799.90 499.86 1699.66 7599.47 18298.79 7499.68 8399.81 9598.43 8699.97 2198.88 11299.90 4399.83 52
EC-MVSNet99.44 4299.39 3299.58 9799.56 16099.49 9299.88 499.58 6298.38 11199.73 7099.69 17298.20 9999.70 23799.64 2799.82 9699.54 168
DeepC-MVS_fast98.69 199.49 2599.39 3299.77 5899.63 13599.59 7399.36 24299.46 19199.07 3999.79 4999.82 8198.85 4299.92 10298.68 14799.87 6099.82 57
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.49 2599.37 3699.86 2499.87 1599.80 3099.66 7599.67 2398.15 14299.68 8399.69 17299.06 1699.96 3298.69 14599.87 6099.84 42
DeepPCF-MVS98.18 398.81 15099.37 3697.12 35899.60 15091.75 39898.61 38399.44 21099.35 1299.83 4199.85 5798.70 6699.81 18999.02 9599.91 3499.81 64
ACMMPR99.49 2599.36 3899.86 2499.87 1599.79 3399.66 7599.67 2398.15 14299.67 8799.69 17298.95 3099.96 3298.69 14599.87 6099.84 42
TSAR-MVS + GP.99.36 5999.36 3899.36 14599.67 11498.61 20699.07 31999.33 26699.00 4799.82 4299.81 9599.06 1699.84 16499.09 8799.42 15699.65 133
region2R99.48 2999.35 4099.87 1499.88 1199.80 3099.65 8199.66 2898.13 14799.66 9299.68 17998.96 2599.96 3298.62 15499.87 6099.84 42
APD-MVS_3200maxsize99.48 2999.35 4099.85 3199.76 6699.83 1999.63 9099.54 8798.36 11599.79 4999.82 8198.86 4199.95 6298.62 15499.81 9999.78 83
RE-MVS-def99.34 4299.76 6699.82 2599.63 9099.52 10598.38 11199.76 6499.82 8198.75 5898.61 15799.81 9999.77 85
ACMMP_NAP99.47 3299.34 4299.88 899.87 1599.86 1699.47 19499.48 16198.05 16499.76 6499.86 5298.82 4699.93 9098.82 13299.91 3499.84 42
ZNCC-MVS99.47 3299.33 4499.87 1499.87 1599.81 2899.64 8499.67 2398.08 15799.55 12999.64 19898.91 3799.96 3298.72 14099.90 4399.82 57
MVS_111021_LR99.41 5199.33 4499.65 7799.77 6399.51 9098.94 35299.85 698.82 6999.65 9999.74 14798.51 8199.80 19698.83 12899.89 5499.64 140
DPE-MVScopyleft99.46 3499.32 4699.91 299.78 5699.88 899.36 24299.51 11998.73 8199.88 2499.84 6798.72 6499.96 3298.16 20699.87 6099.88 25
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PS-MVSNAJ99.32 6499.32 4699.30 15999.57 15698.94 17198.97 34699.46 19198.92 6199.71 7799.24 32399.01 1899.98 1399.35 5599.66 13598.97 258
CP-MVS99.45 3899.32 4699.85 3199.83 3999.75 4299.69 6099.52 10598.07 15899.53 13299.63 20498.93 3699.97 2198.74 13799.91 3499.83 52
MVS_111021_HR99.41 5199.32 4699.66 7399.72 9499.47 9698.95 35099.85 698.82 6999.54 13099.73 15398.51 8199.74 21598.91 10999.88 5799.77 85
CSCG99.32 6499.32 4699.32 15399.85 2698.29 23199.71 5599.66 2898.11 15099.41 15999.80 10898.37 9299.96 3298.99 9799.96 1299.72 106
ACMMPcopyleft99.45 3899.32 4699.82 4499.89 899.67 5499.62 9599.69 1898.12 14899.63 10799.84 6798.73 6399.96 3298.55 17299.83 9299.81 64
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post99.45 3899.31 5299.85 3199.76 6699.82 2599.63 9099.52 10598.38 11199.76 6499.82 8198.53 7999.95 6298.61 15799.81 9999.77 85
PGM-MVS99.45 3899.31 5299.86 2499.87 1599.78 3999.58 11799.65 3397.84 18599.71 7799.80 10899.12 1399.97 2198.33 19299.87 6099.83 52
SMA-MVScopyleft99.44 4299.30 5499.85 3199.73 9099.83 1999.56 13099.47 18297.45 23299.78 5499.82 8199.18 1099.91 11498.79 13399.89 5499.81 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MCST-MVS99.43 4599.30 5499.82 4499.79 5499.74 4499.29 26399.40 22798.79 7499.52 13499.62 20998.91 3799.90 12698.64 15199.75 11999.82 57
mPP-MVS99.44 4299.30 5499.86 2499.88 1199.79 3399.69 6099.48 16198.12 14899.50 13799.75 14298.78 5199.97 2198.57 16699.89 5499.83 52
CNVR-MVS99.42 4799.30 5499.78 5599.62 14199.71 4799.26 28299.52 10598.82 6999.39 16699.71 15898.96 2599.85 15798.59 16299.80 10399.77 85
SR-MVS99.43 4599.29 5899.86 2499.75 7699.83 1999.59 10999.62 4198.21 13599.73 7099.79 12098.68 6799.96 3298.44 18299.77 11499.79 77
UA-Net99.42 4799.29 5899.80 4999.62 14199.55 8199.50 17399.70 1598.79 7499.77 5899.96 197.45 12099.96 3298.92 10899.90 4399.89 19
MM99.40 5499.28 6099.74 6499.67 11499.31 11599.52 15798.87 35499.55 199.74 6899.80 10896.47 15899.98 1399.97 199.97 799.94 11
HPM-MVScopyleft99.42 4799.28 6099.83 4399.90 499.72 4599.81 2099.54 8797.59 21399.68 8399.63 20498.91 3799.94 7298.58 16399.91 3499.84 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended_VisFu99.36 5999.28 6099.61 9199.86 2099.07 14999.47 19499.93 297.66 20899.71 7799.86 5297.73 11599.96 3299.47 4899.82 9699.79 77
MSP-MVS99.42 4799.27 6399.88 899.89 899.80 3099.67 6999.50 13998.70 8399.77 5899.49 25598.21 9899.95 6298.46 18099.77 11499.88 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
xiu_mvs_v1_base_debu99.29 6899.27 6399.34 14799.63 13598.97 16199.12 30999.51 11998.86 6499.84 3599.47 26498.18 10099.99 499.50 4199.31 16699.08 243
xiu_mvs_v1_base99.29 6899.27 6399.34 14799.63 13598.97 16199.12 30999.51 11998.86 6499.84 3599.47 26498.18 10099.99 499.50 4199.31 16699.08 243
xiu_mvs_v1_base_debi99.29 6899.27 6399.34 14799.63 13598.97 16199.12 30999.51 11998.86 6499.84 3599.47 26498.18 10099.99 499.50 4199.31 16699.08 243
xiu_mvs_v2_base99.26 7499.25 6799.29 16299.53 16898.91 17599.02 33299.45 20298.80 7399.71 7799.26 32198.94 3299.98 1399.34 6099.23 17198.98 257
SF-MVS99.38 5799.24 6899.79 5299.79 5499.68 5199.57 12499.54 8797.82 19099.71 7799.80 10898.95 3099.93 9098.19 20299.84 8399.74 95
GST-MVS99.40 5499.24 6899.85 3199.86 2099.79 3399.60 10299.67 2397.97 17099.63 10799.68 17998.52 8099.95 6298.38 18599.86 6899.81 64
HPM-MVS++copyleft99.39 5699.23 7099.87 1499.75 7699.84 1899.43 20899.51 11998.68 8699.27 19499.53 24298.64 7299.96 3298.44 18299.80 10399.79 77
ETV-MVS99.26 7499.21 7199.40 13999.46 19999.30 11799.56 13099.52 10598.52 9899.44 15099.27 31998.41 9099.86 15199.10 8699.59 14499.04 250
MP-MVS-pluss99.37 5899.20 7299.88 899.90 499.87 1599.30 25899.52 10597.18 25899.60 11799.79 12098.79 5099.95 6298.83 12899.91 3499.83 52
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 6199.19 7399.79 5299.61 14599.65 6099.30 25899.48 16198.86 6499.21 20899.63 20498.72 6499.90 12698.25 19899.63 14099.80 73
DeepC-MVS98.35 299.30 6699.19 7399.64 8399.82 4299.23 12799.62 9599.55 7898.94 5899.63 10799.95 395.82 18499.94 7299.37 5499.97 799.73 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS99.30 6699.17 7599.70 7099.56 16099.52 8999.58 11799.80 897.12 26499.62 11199.73 15398.58 7599.90 12698.61 15799.91 3499.68 123
MP-MVScopyleft99.33 6299.15 7699.87 1499.88 1199.82 2599.66 7599.46 19198.09 15399.48 14199.74 14798.29 9599.96 3297.93 22499.87 6099.82 57
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CANet99.25 7899.14 7799.59 9499.41 21499.16 13499.35 24799.57 6598.82 6999.51 13699.61 21396.46 15999.95 6299.59 2999.98 499.65 133
CHOSEN 280x42099.12 10199.13 7899.08 18699.66 12497.89 25598.43 39399.71 1398.88 6399.62 11199.76 13996.63 15199.70 23799.46 4999.99 199.66 129
MVSFormer99.17 8699.12 7999.29 16299.51 17698.94 17199.88 499.46 19197.55 21999.80 4799.65 19297.39 12199.28 31199.03 9399.85 7599.65 133
LS3D99.27 7299.12 7999.74 6499.18 27799.75 4299.56 13099.57 6598.45 10499.49 14099.85 5797.77 11499.94 7298.33 19299.84 8399.52 175
fmvsm_s_conf0.1_n99.29 6899.10 8199.86 2499.70 10499.65 6099.53 15699.62 4198.74 8099.99 299.95 394.53 24399.94 7299.89 1299.96 1299.97 4
9.1499.10 8199.72 9499.40 22699.51 11997.53 22399.64 10499.78 12798.84 4499.91 11497.63 25499.82 96
CHOSEN 1792x268899.19 8299.10 8199.45 13299.89 898.52 21699.39 23099.94 198.73 8199.11 22799.89 3295.50 19499.94 7299.50 4199.97 799.89 19
EIA-MVS99.18 8499.09 8499.45 13299.49 18999.18 13199.67 6999.53 10097.66 20899.40 16499.44 27198.10 10399.81 18998.94 10399.62 14199.35 218
APD-MVScopyleft99.27 7299.08 8599.84 4299.75 7699.79 3399.50 17399.50 13997.16 26099.77 5899.82 8198.78 5199.94 7297.56 26399.86 6899.80 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAMVS99.12 10199.08 8599.24 17199.46 19998.55 21099.51 16699.46 19198.09 15399.45 14599.82 8198.34 9399.51 27298.70 14298.93 19699.67 126
fmvsm_s_conf0.1_n_a99.26 7499.06 8799.85 3199.52 17399.62 6899.54 14899.62 4198.69 8499.99 299.96 194.47 24599.94 7299.88 1399.92 2799.98 2
sss99.17 8699.05 8899.53 11299.62 14198.97 16199.36 24299.62 4197.83 18699.67 8799.65 19297.37 12499.95 6299.19 7599.19 17499.68 123
3Dnovator97.25 999.24 7999.05 8899.81 4799.12 29399.66 5699.84 1299.74 1099.09 3698.92 26199.90 2795.94 17899.98 1398.95 10299.92 2799.79 77
F-COLMAP99.19 8299.04 9099.64 8399.78 5699.27 12299.42 21599.54 8797.29 24999.41 15999.59 21898.42 8899.93 9098.19 20299.69 13099.73 100
OMC-MVS99.08 11299.04 9099.20 17599.67 11498.22 23599.28 26899.52 10598.07 15899.66 9299.81 9597.79 11399.78 20497.79 23799.81 9999.60 152
test_fmvsmconf0.01_n99.22 8199.03 9299.79 5298.42 37999.48 9499.55 14499.51 11999.39 1099.78 5499.93 994.80 22199.95 6299.93 1099.95 1799.94 11
jason99.13 9599.03 9299.45 13299.46 19998.87 17899.12 30999.26 29498.03 16799.79 4999.65 19297.02 13899.85 15799.02 9599.90 4399.65 133
jason: jason.
CDS-MVSNet99.09 11199.03 9299.25 16999.42 20998.73 19499.45 19899.46 19198.11 15099.46 14499.77 13598.01 10899.37 29498.70 14298.92 19899.66 129
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
API-MVS99.04 11899.03 9299.06 18999.40 21999.31 11599.55 14499.56 7098.54 9699.33 18099.39 28798.76 5599.78 20496.98 30299.78 11198.07 377
diffmvspermissive99.14 9399.02 9699.51 12099.61 14598.96 16599.28 26899.49 14998.46 10399.72 7599.71 15896.50 15799.88 14399.31 6399.11 18199.67 126
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive99.15 9099.02 9699.55 10399.66 12499.09 14499.64 8499.56 7098.26 12799.45 14599.87 4896.03 17399.81 18999.54 3599.15 17899.73 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 9099.02 9699.53 11299.66 12499.14 13999.72 5299.48 16198.35 11699.42 15599.84 6796.07 17199.79 19999.51 4099.14 17999.67 126
MG-MVS99.13 9599.02 9699.45 13299.57 15698.63 20399.07 31999.34 25998.99 4999.61 11499.82 8197.98 10999.87 14897.00 30099.80 10399.85 36
test_cas_vis1_n_192099.16 8899.01 10099.61 9199.81 4698.86 18199.65 8199.64 3699.39 1099.97 1399.94 693.20 28199.98 1399.55 3499.91 3499.99 1
lupinMVS99.13 9599.01 10099.46 13199.51 17698.94 17199.05 32499.16 31197.86 18099.80 4799.56 23097.39 12199.86 15198.94 10399.85 7599.58 160
mvs_anonymous99.03 12098.99 10299.16 17999.38 22498.52 21699.51 16699.38 23897.79 19199.38 16899.81 9597.30 12799.45 27799.35 5598.99 19399.51 182
EPP-MVSNet99.13 9598.99 10299.53 11299.65 13099.06 15099.81 2099.33 26697.43 23699.60 11799.88 3997.14 13199.84 16499.13 8198.94 19599.69 119
CNLPA99.14 9398.99 10299.59 9499.58 15499.41 10399.16 30099.44 21098.45 10499.19 21499.49 25598.08 10599.89 13897.73 24699.75 11999.48 188
casdiffmvspermissive99.13 9598.98 10599.56 10199.65 13099.16 13499.56 13099.50 13998.33 11999.41 15999.86 5295.92 17999.83 17799.45 5099.16 17599.70 117
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test99.10 11098.97 10699.48 12699.49 18999.14 13999.67 6999.34 25997.31 24799.58 12199.76 13997.65 11799.82 18498.87 11599.07 18799.46 199
PVSNet_Blended99.08 11298.97 10699.42 13799.76 6698.79 19098.78 36899.91 396.74 29399.67 8799.49 25597.53 11899.88 14398.98 9899.85 7599.60 152
Vis-MVSNetpermissive99.12 10198.97 10699.56 10199.78 5699.10 14399.68 6699.66 2898.49 10099.86 3399.87 4894.77 22699.84 16499.19 7599.41 15799.74 95
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+97.12 1399.18 8498.97 10699.82 4499.17 28599.68 5199.81 2099.51 11999.20 1898.72 28899.89 3295.68 18999.97 2198.86 12099.86 6899.81 64
MVS_030499.15 9098.96 11099.73 6798.92 32899.37 10599.37 23796.92 40599.51 299.66 9299.78 12796.69 14999.97 2199.84 1599.97 799.84 42
mvsmamba99.06 11598.96 11099.36 14599.47 19798.64 20299.70 5699.05 32697.61 21299.65 9999.83 7296.54 15599.92 10299.19 7599.62 14199.51 182
DP-MVS Recon99.12 10198.95 11299.65 7799.74 8399.70 4999.27 27399.57 6596.40 32499.42 15599.68 17998.75 5899.80 19697.98 22199.72 12599.44 204
DP-MVS99.16 8898.95 11299.78 5599.77 6399.53 8699.41 21899.50 13997.03 27699.04 24399.88 3997.39 12199.92 10298.66 14999.90 4399.87 30
BP-MVS199.12 10198.94 11499.65 7799.51 17699.30 11799.67 6998.92 34298.48 10199.84 3599.69 17294.96 21199.92 10299.62 2899.79 11099.71 115
PS-MVSNAJss98.92 13298.92 11598.90 21698.78 34698.53 21299.78 3299.54 8798.07 15899.00 25099.76 13999.01 1899.37 29499.13 8197.23 29798.81 267
HyFIR lowres test99.11 10698.92 11599.65 7799.90 499.37 10599.02 33299.91 397.67 20799.59 12099.75 14295.90 18199.73 22199.53 3799.02 19299.86 32
CDPH-MVS99.13 9598.91 11799.80 4999.75 7699.71 4799.15 30399.41 22196.60 30899.60 11799.55 23398.83 4599.90 12697.48 27099.83 9299.78 83
SDMVSNet99.11 10698.90 11899.75 6199.81 4699.59 7399.81 2099.65 3398.78 7799.64 10499.88 3994.56 23999.93 9099.67 2398.26 23799.72 106
VNet99.11 10698.90 11899.73 6799.52 17399.56 7999.41 21899.39 23099.01 4499.74 6899.78 12795.56 19299.92 10299.52 3998.18 24499.72 106
CPTT-MVS99.11 10698.90 11899.74 6499.80 5299.46 9799.59 10999.49 14997.03 27699.63 10799.69 17297.27 12999.96 3297.82 23599.84 8399.81 64
GDP-MVS99.08 11298.89 12199.64 8399.53 16899.34 10999.64 8499.48 16198.32 12099.77 5899.66 19095.14 20899.93 9098.97 10199.50 15199.64 140
Effi-MVS+-dtu98.78 15498.89 12198.47 27599.33 23696.91 30999.57 12499.30 28498.47 10299.41 15998.99 35096.78 14599.74 21598.73 13999.38 15898.74 280
WTY-MVS99.06 11598.88 12399.61 9199.62 14199.16 13499.37 23799.56 7098.04 16599.53 13299.62 20996.84 14399.94 7298.85 12298.49 22599.72 106
CANet_DTU98.97 12998.87 12499.25 16999.33 23698.42 22899.08 31899.30 28499.16 2099.43 15299.75 14295.27 20299.97 2198.56 16999.95 1799.36 217
IS-MVSNet99.05 11798.87 12499.57 9999.73 9099.32 11199.75 4299.20 30698.02 16899.56 12599.86 5296.54 15599.67 24598.09 20999.13 18099.73 100
sasdasda99.02 12198.86 12699.51 12099.42 20999.32 11199.80 2599.48 16198.63 8799.31 18298.81 36597.09 13399.75 21399.27 6997.90 25599.47 194
canonicalmvs99.02 12198.86 12699.51 12099.42 20999.32 11199.80 2599.48 16198.63 8799.31 18298.81 36597.09 13399.75 21399.27 6997.90 25599.47 194
MGCFI-Net99.01 12598.85 12899.50 12599.42 20999.26 12399.82 1699.48 16198.60 9199.28 18998.81 36597.04 13799.76 21099.29 6697.87 25899.47 194
PLCcopyleft97.94 499.02 12198.85 12899.53 11299.66 12499.01 15699.24 28699.52 10596.85 28899.27 19499.48 26198.25 9799.91 11497.76 24299.62 14199.65 133
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PAPM_NR99.04 11898.84 13099.66 7399.74 8399.44 9999.39 23099.38 23897.70 20399.28 18999.28 31698.34 9399.85 15796.96 30499.45 15499.69 119
PVSNet96.02 1798.85 14698.84 13098.89 21999.73 9097.28 28098.32 39999.60 5497.86 18099.50 13799.57 22796.75 14799.86 15198.56 16999.70 12999.54 168
Fast-Effi-MVS+-dtu98.77 15698.83 13298.60 25499.41 21496.99 30399.52 15799.49 14998.11 15099.24 20099.34 30296.96 14199.79 19997.95 22399.45 15499.02 253
PVSNet_BlendedMVS98.86 13998.80 13399.03 19399.76 6698.79 19099.28 26899.91 397.42 23899.67 8799.37 29297.53 11899.88 14398.98 9897.29 29598.42 355
AdaColmapbinary99.01 12598.80 13399.66 7399.56 16099.54 8399.18 29899.70 1598.18 14099.35 17699.63 20496.32 16499.90 12697.48 27099.77 11499.55 166
MSDG98.98 12798.80 13399.53 11299.76 6699.19 12998.75 37199.55 7897.25 25299.47 14299.77 13597.82 11299.87 14896.93 30799.90 4399.54 168
test_fmvs198.88 13598.79 13699.16 17999.69 10897.61 27199.55 14499.49 14999.32 1499.98 699.91 2091.41 32999.96 3299.82 1699.92 2799.90 16
train_agg99.02 12198.77 13799.77 5899.67 11499.65 6099.05 32499.41 22196.28 32898.95 25799.49 25598.76 5599.91 11497.63 25499.72 12599.75 91
1112_ss98.98 12798.77 13799.59 9499.68 11299.02 15499.25 28499.48 16197.23 25599.13 22399.58 22296.93 14299.90 12698.87 11598.78 20999.84 42
RRT-MVS98.91 13398.75 13999.39 14399.46 19998.61 20699.76 3799.50 13998.06 16299.81 4399.88 3993.91 26699.94 7299.11 8399.27 16999.61 149
COLMAP_ROBcopyleft97.56 698.86 13998.75 13999.17 17899.88 1198.53 21299.34 25099.59 5897.55 21998.70 29599.89 3295.83 18399.90 12698.10 20899.90 4399.08 243
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest98.87 13698.72 14199.31 15499.86 2098.48 22299.56 13099.61 4897.85 18399.36 17399.85 5795.95 17699.85 15796.66 32099.83 9299.59 156
Vis-MVSNet (Re-imp)98.87 13698.72 14199.31 15499.71 9998.88 17799.80 2599.44 21097.91 17599.36 17399.78 12795.49 19599.43 28697.91 22599.11 18199.62 147
DPM-MVS98.95 13098.71 14399.66 7399.63 13599.55 8198.64 38299.10 31797.93 17399.42 15599.55 23398.67 6999.80 19695.80 33999.68 13399.61 149
EPNet98.86 13998.71 14399.30 15997.20 39998.18 23699.62 9598.91 34799.28 1698.63 30799.81 9595.96 17599.99 499.24 7299.72 12599.73 100
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UGNet98.87 13698.69 14599.40 13999.22 26898.72 19599.44 20499.68 2099.24 1799.18 21899.42 27592.74 29199.96 3299.34 6099.94 2399.53 174
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS98.73 16098.68 14698.88 22199.70 10497.73 26298.92 35499.55 7898.52 9899.45 14599.84 6795.27 20299.91 11498.08 21398.84 20499.00 254
EI-MVSNet98.67 16498.67 14798.68 25099.35 23197.97 24899.50 17399.38 23896.93 28599.20 21199.83 7297.87 11099.36 29898.38 18597.56 27498.71 284
CVMVSNet98.57 17098.67 14798.30 29599.35 23195.59 35099.50 17399.55 7898.60 9199.39 16699.83 7294.48 24499.45 27798.75 13698.56 22099.85 36
114514_t98.93 13198.67 14799.72 6999.85 2699.53 8699.62 9599.59 5892.65 39399.71 7799.78 12798.06 10699.90 12698.84 12599.91 3499.74 95
Test_1112_low_res98.89 13498.66 15099.57 9999.69 10898.95 16899.03 32999.47 18296.98 27899.15 22199.23 32496.77 14699.89 13898.83 12898.78 20999.86 32
HY-MVS97.30 798.85 14698.64 15199.47 12999.42 20999.08 14799.62 9599.36 24797.39 24199.28 18999.68 17996.44 16199.92 10298.37 18798.22 23999.40 211
test_yl98.86 13998.63 15299.54 10499.49 18999.18 13199.50 17399.07 32398.22 13399.61 11499.51 24995.37 19899.84 16498.60 16098.33 23199.59 156
DCV-MVSNet98.86 13998.63 15299.54 10499.49 18999.18 13199.50 17399.07 32398.22 13399.61 11499.51 24995.37 19899.84 16498.60 16098.33 23199.59 156
FIs98.78 15498.63 15299.23 17399.18 27799.54 8399.83 1599.59 5898.28 12398.79 28299.81 9596.75 14799.37 29499.08 8896.38 31398.78 269
ab-mvs98.86 13998.63 15299.54 10499.64 13299.19 12999.44 20499.54 8797.77 19499.30 18599.81 9594.20 25399.93 9099.17 7998.82 20699.49 187
MAR-MVS98.86 13998.63 15299.54 10499.37 22799.66 5699.45 19899.54 8796.61 30599.01 24699.40 28397.09 13399.86 15197.68 25399.53 14999.10 238
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GeoE98.85 14698.62 15799.53 11299.61 14599.08 14799.80 2599.51 11997.10 26899.31 18299.78 12795.23 20699.77 20698.21 20099.03 19099.75 91
FC-MVSNet-test98.75 15798.62 15799.15 18399.08 30499.45 9899.86 1199.60 5498.23 13298.70 29599.82 8196.80 14499.22 32399.07 8996.38 31398.79 268
XVG-OURS-SEG-HR98.69 16298.62 15798.89 21999.71 9997.74 26199.12 30999.54 8798.44 10799.42 15599.71 15894.20 25399.92 10298.54 17398.90 20099.00 254
RPSCF98.22 19498.62 15796.99 36099.82 4291.58 39999.72 5299.44 21096.61 30599.66 9299.89 3295.92 17999.82 18497.46 27399.10 18499.57 163
PatchMatch-RL98.84 14998.62 15799.52 11899.71 9999.28 12099.06 32299.77 997.74 19899.50 13799.53 24295.41 19699.84 16497.17 29499.64 13899.44 204
PMMVS98.80 15398.62 15799.34 14799.27 25498.70 19698.76 37099.31 28097.34 24499.21 20899.07 34097.20 13099.82 18498.56 16998.87 20199.52 175
Effi-MVS+98.81 15098.59 16399.48 12699.46 19999.12 14298.08 40699.50 13997.50 22799.38 16899.41 27996.37 16399.81 18999.11 8398.54 22299.51 182
sd_testset98.75 15798.57 16499.29 16299.81 4698.26 23399.56 13099.62 4198.78 7799.64 10499.88 3992.02 31399.88 14399.54 3598.26 23799.72 106
test_djsdf98.67 16498.57 16498.98 19998.70 36098.91 17599.88 499.46 19197.55 21999.22 20599.88 3995.73 18799.28 31199.03 9397.62 26998.75 277
alignmvs98.81 15098.56 16699.58 9799.43 20799.42 10199.51 16698.96 33798.61 9099.35 17698.92 36094.78 22399.77 20699.35 5598.11 24999.54 168
131498.68 16398.54 16799.11 18598.89 33198.65 20099.27 27399.49 14996.89 28697.99 34699.56 23097.72 11699.83 17797.74 24599.27 16998.84 266
FA-MVS(test-final)98.75 15798.53 16899.41 13899.55 16499.05 15299.80 2599.01 33196.59 31099.58 12199.59 21895.39 19799.90 12697.78 23899.49 15299.28 226
D2MVS98.41 17998.50 16998.15 30999.26 25696.62 32399.40 22699.61 4897.71 20098.98 25299.36 29596.04 17299.67 24598.70 14297.41 29198.15 373
tpmrst98.33 18798.48 17097.90 32799.16 28794.78 37099.31 25699.11 31697.27 25099.45 14599.59 21895.33 20099.84 16498.48 17698.61 21499.09 242
MonoMVSNet98.38 18398.47 17198.12 31198.59 37296.19 34099.72 5298.79 36497.89 17799.44 15099.52 24596.13 16998.90 37298.64 15197.54 27699.28 226
Fast-Effi-MVS+98.70 16198.43 17299.51 12099.51 17699.28 12099.52 15799.47 18296.11 34499.01 24699.34 30296.20 16899.84 16497.88 22798.82 20699.39 212
nrg03098.64 16798.42 17399.28 16699.05 31099.69 5099.81 2099.46 19198.04 16599.01 24699.82 8196.69 14999.38 29199.34 6094.59 35798.78 269
IterMVS-LS98.46 17498.42 17398.58 25899.59 15298.00 24699.37 23799.43 21696.94 28499.07 23599.59 21897.87 11099.03 35198.32 19495.62 33598.71 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis1_n_192098.63 16898.40 17599.31 15499.86 2097.94 25499.67 6999.62 4199.43 799.99 299.91 2087.29 378100.00 199.92 1199.92 2799.98 2
BH-untuned98.42 17798.36 17698.59 25599.49 18996.70 31799.27 27399.13 31597.24 25498.80 28099.38 28995.75 18699.74 21597.07 29899.16 17599.33 222
PatchmatchNetpermissive98.31 18898.36 17698.19 30499.16 28795.32 36099.27 27398.92 34297.37 24299.37 17099.58 22294.90 21699.70 23797.43 27699.21 17299.54 168
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PAPR98.63 16898.34 17899.51 12099.40 21999.03 15398.80 36699.36 24796.33 32599.00 25099.12 33898.46 8499.84 16495.23 35499.37 16599.66 129
ACMM97.58 598.37 18598.34 17898.48 27099.41 21497.10 29099.56 13099.45 20298.53 9799.04 24399.85 5793.00 28399.71 23198.74 13797.45 28698.64 317
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVSTER98.49 17198.32 18099.00 19799.35 23199.02 15499.54 14899.38 23897.41 23999.20 21199.73 15393.86 26899.36 29898.87 11597.56 27498.62 326
MDTV_nov1_ep1398.32 18099.11 29594.44 37699.27 27398.74 36997.51 22699.40 16499.62 20994.78 22399.76 21097.59 25798.81 208
QAPM98.67 16498.30 18299.80 4999.20 27199.67 5499.77 3499.72 1194.74 37198.73 28799.90 2795.78 18599.98 1396.96 30499.88 5799.76 90
anonymousdsp98.44 17598.28 18398.94 20698.50 37698.96 16599.77 3499.50 13997.07 27098.87 27099.77 13594.76 22799.28 31198.66 14997.60 27098.57 341
jajsoiax98.43 17698.28 18398.88 22198.60 37098.43 22699.82 1699.53 10098.19 13798.63 30799.80 10893.22 28099.44 28299.22 7397.50 28198.77 273
mvs_tets98.40 18298.23 18598.91 21498.67 36398.51 21899.66 7599.53 10098.19 13798.65 30499.81 9592.75 28999.44 28299.31 6397.48 28598.77 273
HQP_MVS98.27 19398.22 18698.44 28199.29 24996.97 30599.39 23099.47 18298.97 5599.11 22799.61 21392.71 29499.69 24297.78 23897.63 26798.67 305
FE-MVS98.48 17298.17 18799.40 13999.54 16798.96 16599.68 6698.81 36195.54 35599.62 11199.70 16293.82 26999.93 9097.35 28199.46 15399.32 223
dmvs_re98.08 21198.16 18897.85 33099.55 16494.67 37399.70 5698.92 34298.15 14299.06 24099.35 29893.67 27499.25 31697.77 24197.25 29699.64 140
SCA98.19 19898.16 18898.27 30199.30 24595.55 35199.07 31998.97 33597.57 21699.43 15299.57 22792.72 29299.74 21597.58 25899.20 17399.52 175
LCM-MVSNet-Re97.83 25598.15 19096.87 36699.30 24592.25 39699.59 10998.26 38897.43 23696.20 38299.13 33596.27 16698.73 37998.17 20598.99 19399.64 140
test_fmvs1_n98.41 17998.14 19199.21 17499.82 4297.71 26799.74 4699.49 14999.32 1499.99 299.95 385.32 38999.97 2199.82 1699.84 8399.96 7
tttt051798.42 17798.14 19199.28 16699.66 12498.38 22999.74 4696.85 40697.68 20599.79 4999.74 14791.39 33099.89 13898.83 12899.56 14699.57 163
LPG-MVS_test98.22 19498.13 19398.49 26899.33 23697.05 29699.58 11799.55 7897.46 22999.24 20099.83 7292.58 29999.72 22598.09 20997.51 27998.68 298
OpenMVScopyleft96.50 1698.47 17398.12 19499.52 11899.04 31199.53 8699.82 1699.72 1194.56 37498.08 34199.88 3994.73 22999.98 1397.47 27299.76 11799.06 249
test111198.04 21998.11 19597.83 33399.74 8393.82 38299.58 11795.40 41599.12 2999.65 9999.93 990.73 33899.84 16499.43 5199.38 15899.82 57
miper_ehance_all_eth98.18 20098.10 19698.41 28499.23 26497.72 26498.72 37499.31 28096.60 30898.88 26799.29 31497.29 12899.13 33797.60 25695.99 32498.38 360
OPM-MVS98.19 19898.10 19698.45 27898.88 33297.07 29499.28 26899.38 23898.57 9399.22 20599.81 9592.12 31199.66 24898.08 21397.54 27698.61 335
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CLD-MVS98.16 20298.10 19698.33 29199.29 24996.82 31498.75 37199.44 21097.83 18699.13 22399.55 23392.92 28599.67 24598.32 19497.69 26598.48 347
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS98.38 18398.09 19999.24 17199.26 25699.32 11199.56 13099.55 7897.45 23298.71 28999.83 7293.23 27899.63 26298.88 11296.32 31598.76 275
miper_enhance_ethall98.16 20298.08 20098.41 28498.96 32497.72 26498.45 39299.32 27696.95 28298.97 25499.17 33097.06 13699.22 32397.86 23095.99 32498.29 364
ADS-MVSNet98.20 19798.08 20098.56 26299.33 23696.48 32899.23 28899.15 31296.24 33299.10 23099.67 18594.11 25799.71 23196.81 31299.05 18899.48 188
BH-RMVSNet98.41 17998.08 20099.40 13999.41 21498.83 18699.30 25898.77 36597.70 20398.94 25999.65 19292.91 28799.74 21596.52 32499.55 14899.64 140
ADS-MVSNet298.02 22398.07 20397.87 32999.33 23695.19 36399.23 28899.08 32096.24 33299.10 23099.67 18594.11 25798.93 36996.81 31299.05 18899.48 188
ECVR-MVScopyleft98.04 21998.05 20498.00 31999.74 8394.37 37799.59 10994.98 41699.13 2499.66 9299.93 990.67 33999.84 16499.40 5299.38 15899.80 73
c3_l98.12 20798.04 20598.38 28899.30 24597.69 26898.81 36599.33 26696.67 29898.83 27699.34 30297.11 13298.99 35797.58 25895.34 34298.48 347
thisisatest053098.35 18698.03 20699.31 15499.63 13598.56 20999.54 14896.75 40897.53 22399.73 7099.65 19291.25 33399.89 13898.62 15499.56 14699.48 188
EU-MVSNet97.98 23098.03 20697.81 33698.72 35796.65 32299.66 7599.66 2898.09 15398.35 32699.82 8195.25 20598.01 39397.41 27795.30 34398.78 269
tpmvs97.98 23098.02 20897.84 33299.04 31194.73 37199.31 25699.20 30696.10 34898.76 28599.42 27594.94 21299.81 18996.97 30398.45 22698.97 258
UniMVSNet (Re)98.29 19198.00 20999.13 18499.00 31599.36 10899.49 18499.51 11997.95 17198.97 25499.13 33596.30 16599.38 29198.36 18993.34 37598.66 313
ACMH97.28 898.10 20897.99 21098.44 28199.41 21496.96 30799.60 10299.56 7098.09 15398.15 33999.91 2090.87 33799.70 23798.88 11297.45 28698.67 305
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous20240521198.30 19097.98 21199.26 16899.57 15698.16 23799.41 21898.55 38396.03 34999.19 21499.74 14791.87 31699.92 10299.16 8098.29 23699.70 117
UniMVSNet_NR-MVSNet98.22 19497.97 21298.96 20298.92 32898.98 15899.48 18899.53 10097.76 19598.71 28999.46 26896.43 16299.22 32398.57 16692.87 38298.69 293
eth_miper_zixun_eth98.05 21897.96 21398.33 29199.26 25697.38 27798.56 38899.31 28096.65 30098.88 26799.52 24596.58 15399.12 34197.39 27895.53 33998.47 349
EPNet_dtu98.03 22197.96 21398.23 30298.27 38195.54 35399.23 28898.75 36699.02 4297.82 35399.71 15896.11 17099.48 27393.04 38199.65 13799.69 119
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VPA-MVSNet98.29 19197.95 21599.30 15999.16 28799.54 8399.50 17399.58 6298.27 12599.35 17699.37 29292.53 30199.65 25399.35 5594.46 35898.72 282
baseline198.31 18897.95 21599.38 14499.50 18798.74 19399.59 10998.93 33998.41 10999.14 22299.60 21694.59 23799.79 19998.48 17693.29 37699.61 149
ACMP97.20 1198.06 21397.94 21798.45 27899.37 22797.01 30199.44 20499.49 14997.54 22298.45 32199.79 12091.95 31599.72 22597.91 22597.49 28498.62 326
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CR-MVSNet98.17 20197.93 21898.87 22599.18 27798.49 22099.22 29299.33 26696.96 28099.56 12599.38 28994.33 24999.00 35694.83 36198.58 21799.14 235
miper_lstm_enhance98.00 22897.91 21998.28 30099.34 23597.43 27598.88 35899.36 24796.48 31798.80 28099.55 23395.98 17498.91 37097.27 28495.50 34098.51 345
pmmvs498.13 20597.90 22098.81 23798.61 36998.87 17898.99 34099.21 30596.44 32099.06 24099.58 22295.90 18199.11 34297.18 29396.11 32098.46 352
test-LLR98.06 21397.90 22098.55 26498.79 34397.10 29098.67 37797.75 39897.34 24498.61 31098.85 36294.45 24699.45 27797.25 28599.38 15899.10 238
HQP-MVS98.02 22397.90 22098.37 28999.19 27496.83 31298.98 34399.39 23098.24 12998.66 29899.40 28392.47 30399.64 25697.19 29197.58 27298.64 317
LTVRE_ROB97.16 1298.02 22397.90 22098.40 28699.23 26496.80 31599.70 5699.60 5497.12 26498.18 33899.70 16291.73 32199.72 22598.39 18497.45 28698.68 298
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
BH-w/o98.00 22897.89 22498.32 29399.35 23196.20 33999.01 33798.90 34996.42 32298.38 32499.00 34995.26 20499.72 22596.06 33298.61 21499.03 251
reproduce_monomvs97.89 24397.87 22597.96 32399.51 17695.45 35699.60 10299.25 29699.17 1998.85 27599.49 25589.29 35599.64 25699.35 5596.31 31698.78 269
WR-MVS_H98.13 20597.87 22598.90 21699.02 31398.84 18399.70 5699.59 5897.27 25098.40 32399.19 32995.53 19399.23 31998.34 19193.78 37298.61 335
DIV-MVS_self_test98.01 22697.85 22798.48 27099.24 26297.95 25298.71 37599.35 25496.50 31398.60 31299.54 23895.72 18899.03 35197.21 28795.77 33098.46 352
cl____98.01 22697.84 22898.55 26499.25 26097.97 24898.71 37599.34 25996.47 31998.59 31399.54 23895.65 19099.21 32897.21 28795.77 33098.46 352
dp97.75 27097.80 22997.59 34699.10 29893.71 38599.32 25398.88 35296.48 31799.08 23499.55 23392.67 29799.82 18496.52 32498.58 21799.24 231
thisisatest051598.14 20497.79 23099.19 17699.50 18798.50 21998.61 38396.82 40796.95 28299.54 13099.43 27391.66 32599.86 15198.08 21399.51 15099.22 232
V4298.06 21397.79 23098.86 22898.98 32198.84 18399.69 6099.34 25996.53 31299.30 18599.37 29294.67 23499.32 30697.57 26294.66 35598.42 355
DU-MVS98.08 21197.79 23098.96 20298.87 33598.98 15899.41 21899.45 20297.87 17998.71 28999.50 25294.82 21999.22 32398.57 16692.87 38298.68 298
CP-MVSNet98.09 20997.78 23399.01 19598.97 32399.24 12699.67 6999.46 19197.25 25298.48 32099.64 19893.79 27099.06 34798.63 15394.10 36698.74 280
ACMH+97.24 1097.92 23997.78 23398.32 29399.46 19996.68 32199.56 13099.54 8798.41 10997.79 35599.87 4890.18 34699.66 24898.05 21797.18 30098.62 326
tt080597.97 23397.77 23598.57 25999.59 15296.61 32499.45 19899.08 32098.21 13598.88 26799.80 10888.66 36399.70 23798.58 16397.72 26499.39 212
v2v48298.06 21397.77 23598.92 21098.90 33098.82 18799.57 12499.36 24796.65 30099.19 21499.35 29894.20 25399.25 31697.72 24894.97 35098.69 293
OurMVSNet-221017-097.88 24497.77 23598.19 30498.71 35996.53 32699.88 499.00 33297.79 19198.78 28399.94 691.68 32299.35 30197.21 28796.99 30498.69 293
IterMVS97.83 25597.77 23598.02 31699.58 15496.27 33699.02 33299.48 16197.22 25698.71 28999.70 16292.75 28999.13 33797.46 27396.00 32398.67 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet398.03 22197.76 23998.84 23299.39 22298.98 15899.40 22699.38 23896.67 29899.07 23599.28 31692.93 28498.98 35897.10 29596.65 30698.56 342
IterMVS-SCA-FT97.82 25897.75 24098.06 31399.57 15696.36 33299.02 33299.49 14997.18 25898.71 28999.72 15792.72 29299.14 33497.44 27595.86 32998.67 305
MVP-Stereo97.81 26097.75 24097.99 32097.53 39296.60 32598.96 34798.85 35697.22 25697.23 36699.36 29595.28 20199.46 27695.51 34699.78 11197.92 390
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WR-MVS98.06 21397.73 24299.06 18998.86 33899.25 12599.19 29699.35 25497.30 24898.66 29899.43 27393.94 26399.21 32898.58 16394.28 36298.71 284
CostFormer97.72 27697.73 24297.71 34099.15 29194.02 38199.54 14899.02 33094.67 37299.04 24399.35 29892.35 30999.77 20698.50 17597.94 25499.34 221
XVG-ACMP-BASELINE97.83 25597.71 24498.20 30399.11 29596.33 33399.41 21899.52 10598.06 16299.05 24299.50 25289.64 35299.73 22197.73 24697.38 29398.53 343
v114497.98 23097.69 24598.85 23198.87 33598.66 19999.54 14899.35 25496.27 33099.23 20499.35 29894.67 23499.23 31996.73 31595.16 34698.68 298
Anonymous2024052998.09 20997.68 24699.34 14799.66 12498.44 22599.40 22699.43 21693.67 38199.22 20599.89 3290.23 34599.93 9099.26 7198.33 23199.66 129
our_test_397.65 28897.68 24697.55 34798.62 36794.97 36798.84 36299.30 28496.83 29198.19 33799.34 30297.01 13999.02 35395.00 35896.01 32298.64 317
TranMVSNet+NR-MVSNet97.93 23697.66 24898.76 24398.78 34698.62 20499.65 8199.49 14997.76 19598.49 31999.60 21694.23 25298.97 36598.00 22092.90 38098.70 289
WB-MVSnew97.65 28897.65 24997.63 34398.78 34697.62 27099.13 30698.33 38797.36 24399.07 23598.94 35695.64 19199.15 33392.95 38298.68 21396.12 409
Patchmatch-test97.93 23697.65 24998.77 24299.18 27797.07 29499.03 32999.14 31496.16 33998.74 28699.57 22794.56 23999.72 22593.36 37799.11 18199.52 175
EPMVS97.82 25897.65 24998.35 29098.88 33295.98 34399.49 18494.71 41897.57 21699.26 19899.48 26192.46 30699.71 23197.87 22999.08 18699.35 218
cl2297.85 24997.64 25298.48 27099.09 30197.87 25698.60 38599.33 26697.11 26798.87 27099.22 32592.38 30899.17 33298.21 20095.99 32498.42 355
ttmdpeth97.80 26297.63 25398.29 29698.77 35197.38 27799.64 8499.36 24798.78 7796.30 38199.58 22292.34 31099.39 28998.36 18995.58 33698.10 375
v897.95 23597.63 25398.93 20898.95 32598.81 18999.80 2599.41 22196.03 34999.10 23099.42 27594.92 21599.30 30996.94 30694.08 36798.66 313
NR-MVSNet97.97 23397.61 25599.02 19498.87 33599.26 12399.47 19499.42 21897.63 21097.08 37199.50 25295.07 21099.13 33797.86 23093.59 37398.68 298
v14419297.92 23997.60 25698.87 22598.83 34198.65 20099.55 14499.34 25996.20 33599.32 18199.40 28394.36 24899.26 31596.37 32995.03 34998.70 289
PS-CasMVS97.93 23697.59 25798.95 20498.99 31899.06 15099.68 6699.52 10597.13 26298.31 32899.68 17992.44 30799.05 34898.51 17494.08 36798.75 277
v14897.79 26497.55 25898.50 26798.74 35497.72 26499.54 14899.33 26696.26 33198.90 26499.51 24994.68 23399.14 33497.83 23493.15 37998.63 324
baseline297.87 24697.55 25898.82 23499.18 27798.02 24599.41 21896.58 41296.97 27996.51 37899.17 33093.43 27599.57 26797.71 24999.03 19098.86 264
tpm97.67 28697.55 25898.03 31499.02 31395.01 36699.43 20898.54 38496.44 32099.12 22599.34 30291.83 31899.60 26597.75 24496.46 31199.48 188
Anonymous2023121197.88 24497.54 26198.90 21699.71 9998.53 21299.48 18899.57 6594.16 37798.81 27899.68 17993.23 27899.42 28798.84 12594.42 36098.76 275
v7n97.87 24697.52 26298.92 21098.76 35398.58 20899.84 1299.46 19196.20 33598.91 26299.70 16294.89 21799.44 28296.03 33393.89 37098.75 277
v1097.85 24997.52 26298.86 22898.99 31898.67 19899.75 4299.41 22195.70 35398.98 25299.41 27994.75 22899.23 31996.01 33594.63 35698.67 305
thres600view797.86 24897.51 26498.92 21099.72 9497.95 25299.59 10998.74 36997.94 17299.27 19498.62 37391.75 31999.86 15193.73 37398.19 24398.96 260
WBMVS97.74 27297.50 26598.46 27699.24 26297.43 27599.21 29499.42 21897.45 23298.96 25699.41 27988.83 35999.23 31998.94 10396.02 32198.71 284
testgi97.65 28897.50 26598.13 31099.36 23096.45 32999.42 21599.48 16197.76 19597.87 35199.45 27091.09 33498.81 37594.53 36398.52 22399.13 237
UBG97.85 24997.48 26798.95 20499.25 26097.64 26999.24 28698.74 36997.90 17698.64 30598.20 38988.65 36499.81 18998.27 19798.40 22799.42 206
GBi-Net97.68 28397.48 26798.29 29699.51 17697.26 28399.43 20899.48 16196.49 31499.07 23599.32 30990.26 34298.98 35897.10 29596.65 30698.62 326
test197.68 28397.48 26798.29 29699.51 17697.26 28399.43 20899.48 16196.49 31499.07 23599.32 30990.26 34298.98 35897.10 29596.65 30698.62 326
tfpnnormal97.84 25397.47 27098.98 19999.20 27199.22 12899.64 8499.61 4896.32 32698.27 33299.70 16293.35 27799.44 28295.69 34295.40 34198.27 365
GA-MVS97.85 24997.47 27099.00 19799.38 22497.99 24798.57 38699.15 31297.04 27598.90 26499.30 31289.83 34999.38 29196.70 31798.33 23199.62 147
LF4IMVS97.52 29697.46 27297.70 34198.98 32195.55 35199.29 26398.82 35998.07 15898.66 29899.64 19889.97 34799.61 26497.01 29996.68 30597.94 388
ppachtmachnet_test97.49 30497.45 27397.61 34598.62 36795.24 36198.80 36699.46 19196.11 34498.22 33599.62 20996.45 16098.97 36593.77 37295.97 32798.61 335
thres100view90097.76 26697.45 27398.69 24999.72 9497.86 25899.59 10998.74 36997.93 17399.26 19898.62 37391.75 31999.83 17793.22 37898.18 24498.37 361
v192192097.80 26297.45 27398.84 23298.80 34298.53 21299.52 15799.34 25996.15 34199.24 20099.47 26493.98 26299.29 31095.40 35095.13 34798.69 293
Baseline_NR-MVSNet97.76 26697.45 27398.68 25099.09 30198.29 23199.41 21898.85 35695.65 35498.63 30799.67 18594.82 21999.10 34498.07 21692.89 38198.64 317
MIMVSNet97.73 27497.45 27398.57 25999.45 20597.50 27399.02 33298.98 33496.11 34499.41 15999.14 33490.28 34198.74 37895.74 34098.93 19699.47 194
test_vis1_n97.92 23997.44 27899.34 14799.53 16898.08 24299.74 4699.49 14999.15 21100.00 199.94 679.51 40899.98 1399.88 1399.76 11799.97 4
v119297.81 26097.44 27898.91 21498.88 33298.68 19799.51 16699.34 25996.18 33799.20 21199.34 30294.03 26099.36 29895.32 35295.18 34598.69 293
VPNet97.84 25397.44 27899.01 19599.21 26998.94 17199.48 18899.57 6598.38 11199.28 18999.73 15388.89 35899.39 28999.19 7593.27 37798.71 284
PEN-MVS97.76 26697.44 27898.72 24598.77 35198.54 21199.78 3299.51 11997.06 27298.29 33199.64 19892.63 29898.89 37398.09 20993.16 37898.72 282
cascas97.69 28197.43 28298.48 27098.60 37097.30 27998.18 40499.39 23092.96 38998.41 32298.78 36993.77 27199.27 31498.16 20698.61 21498.86 264
test0.0.03 197.71 27997.42 28398.56 26298.41 38097.82 25998.78 36898.63 38097.34 24498.05 34598.98 35294.45 24698.98 35895.04 35797.15 30198.89 263
TR-MVS97.76 26697.41 28498.82 23499.06 30797.87 25698.87 36098.56 38296.63 30498.68 29799.22 32592.49 30299.65 25395.40 35097.79 26298.95 262
Patchmtry97.75 27097.40 28598.81 23799.10 29898.87 17899.11 31599.33 26694.83 36998.81 27899.38 28994.33 24999.02 35396.10 33195.57 33798.53 343
tfpn200view997.72 27697.38 28698.72 24599.69 10897.96 25099.50 17398.73 37597.83 18699.17 21998.45 37991.67 32399.83 17793.22 37898.18 24498.37 361
thres40097.77 26597.38 28698.92 21099.69 10897.96 25099.50 17398.73 37597.83 18699.17 21998.45 37991.67 32399.83 17793.22 37898.18 24498.96 260
tpm cat197.39 30897.36 28897.50 34999.17 28593.73 38499.43 20899.31 28091.27 39798.71 28999.08 33994.31 25199.77 20696.41 32898.50 22499.00 254
FMVSNet297.72 27697.36 28898.80 23999.51 17698.84 18399.45 19899.42 21896.49 31498.86 27499.29 31490.26 34298.98 35896.44 32696.56 30998.58 340
LFMVS97.90 24297.35 29099.54 10499.52 17399.01 15699.39 23098.24 39097.10 26899.65 9999.79 12084.79 39299.91 11499.28 6798.38 22899.69 119
VDD-MVS97.73 27497.35 29098.88 22199.47 19797.12 28999.34 25098.85 35698.19 13799.67 8799.85 5782.98 39999.92 10299.49 4598.32 23599.60 152
DSMNet-mixed97.25 31497.35 29096.95 36397.84 38793.61 38899.57 12496.63 41096.13 34398.87 27098.61 37594.59 23797.70 40095.08 35698.86 20299.55 166
tpm297.44 30697.34 29397.74 33999.15 29194.36 37899.45 19898.94 33893.45 38698.90 26499.44 27191.35 33199.59 26697.31 28298.07 25099.29 225
TAPA-MVS97.07 1597.74 27297.34 29398.94 20699.70 10497.53 27299.25 28499.51 11991.90 39599.30 18599.63 20498.78 5199.64 25688.09 40499.87 6099.65 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SixPastTwentyTwo97.50 29997.33 29598.03 31498.65 36496.23 33899.77 3498.68 37897.14 26197.90 34999.93 990.45 34099.18 33197.00 30096.43 31298.67 305
MS-PatchMatch97.24 31697.32 29696.99 36098.45 37893.51 38998.82 36499.32 27697.41 23998.13 34099.30 31288.99 35799.56 26895.68 34399.80 10397.90 391
v124097.69 28197.32 29698.79 24098.85 33998.43 22699.48 18899.36 24796.11 34499.27 19499.36 29593.76 27299.24 31894.46 36495.23 34498.70 289
test_fmvs297.25 31497.30 29897.09 35999.43 20793.31 39099.73 5098.87 35498.83 6899.28 18999.80 10884.45 39499.66 24897.88 22797.45 28698.30 363
pmmvs597.52 29697.30 29898.16 30698.57 37396.73 31699.27 27398.90 34996.14 34298.37 32599.53 24291.54 32899.14 33497.51 26795.87 32898.63 324
UWE-MVS97.58 29397.29 30098.48 27099.09 30196.25 33799.01 33796.61 41197.86 18099.19 21499.01 34888.72 36099.90 12697.38 27998.69 21299.28 226
h-mvs3397.70 28097.28 30198.97 20199.70 10497.27 28199.36 24299.45 20298.94 5899.66 9299.64 19894.93 21399.99 499.48 4684.36 40799.65 133
pm-mvs197.68 28397.28 30198.88 22199.06 30798.62 20499.50 17399.45 20296.32 32697.87 35199.79 12092.47 30399.35 30197.54 26593.54 37498.67 305
thres20097.61 29197.28 30198.62 25399.64 13298.03 24499.26 28298.74 36997.68 20599.09 23398.32 38591.66 32599.81 18992.88 38398.22 23998.03 380
TESTMET0.1,197.55 29497.27 30498.40 28698.93 32696.53 32698.67 37797.61 40196.96 28098.64 30599.28 31688.63 36699.45 27797.30 28399.38 15899.21 233
USDC97.34 31097.20 30597.75 33899.07 30595.20 36298.51 39099.04 32797.99 16998.31 32899.86 5289.02 35699.55 27095.67 34497.36 29498.49 346
DTE-MVSNet97.51 29897.19 30698.46 27698.63 36698.13 24099.84 1299.48 16196.68 29797.97 34899.67 18592.92 28598.56 38296.88 31192.60 38698.70 289
Syy-MVS97.09 32197.14 30796.95 36399.00 31592.73 39499.29 26399.39 23097.06 27297.41 36098.15 39093.92 26598.68 38091.71 39098.34 22999.45 202
hse-mvs297.50 29997.14 30798.59 25599.49 18997.05 29699.28 26899.22 30298.94 5899.66 9299.42 27594.93 21399.65 25399.48 4683.80 40999.08 243
test-mter97.49 30497.13 30998.55 26498.79 34397.10 29098.67 37797.75 39896.65 30098.61 31098.85 36288.23 37099.45 27797.25 28599.38 15899.10 238
testing1197.50 29997.10 31098.71 24799.20 27196.91 30999.29 26398.82 35997.89 17798.21 33698.40 38185.63 38699.83 17798.45 18198.04 25199.37 216
PAPM97.59 29297.09 31199.07 18799.06 30798.26 23398.30 40099.10 31794.88 36798.08 34199.34 30296.27 16699.64 25689.87 39798.92 19899.31 224
PCF-MVS97.08 1497.66 28797.06 31299.47 12999.61 14599.09 14498.04 40799.25 29691.24 39898.51 31799.70 16294.55 24199.91 11492.76 38699.85 7599.42 206
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testing9197.44 30697.02 31398.71 24799.18 27796.89 31199.19 29699.04 32797.78 19398.31 32898.29 38685.41 38899.85 15798.01 21997.95 25399.39 212
VDDNet97.55 29497.02 31399.16 17999.49 18998.12 24199.38 23599.30 28495.35 35799.68 8399.90 2782.62 40199.93 9099.31 6398.13 24899.42 206
JIA-IIPM97.50 29997.02 31398.93 20898.73 35597.80 26099.30 25898.97 33591.73 39698.91 26294.86 41195.10 20999.71 23197.58 25897.98 25299.28 226
testing9997.36 30996.94 31698.63 25299.18 27796.70 31799.30 25898.93 33997.71 20098.23 33398.26 38784.92 39199.84 16498.04 21897.85 26099.35 218
ETVMVS97.50 29996.90 31799.29 16299.23 26498.78 19299.32 25398.90 34997.52 22598.56 31498.09 39584.72 39399.69 24297.86 23097.88 25799.39 212
TinyColmap97.12 31996.89 31897.83 33399.07 30595.52 35498.57 38698.74 36997.58 21597.81 35499.79 12088.16 37199.56 26895.10 35597.21 29898.39 359
UniMVSNet_ETH3D97.32 31196.81 31998.87 22599.40 21997.46 27499.51 16699.53 10095.86 35298.54 31699.77 13582.44 40299.66 24898.68 14797.52 27899.50 186
K. test v397.10 32096.79 32098.01 31798.72 35796.33 33399.87 897.05 40497.59 21396.16 38399.80 10888.71 36199.04 34996.69 31896.55 31098.65 315
testing397.28 31296.76 32198.82 23499.37 22798.07 24399.45 19899.36 24797.56 21897.89 35098.95 35583.70 39798.82 37496.03 33398.56 22099.58 160
mmtdpeth96.95 32396.71 32297.67 34299.33 23694.90 36999.89 299.28 29098.15 14299.72 7598.57 37686.56 38199.90 12699.82 1689.02 40098.20 370
test250696.81 32796.65 32397.29 35499.74 8392.21 39799.60 10285.06 42899.13 2499.77 5899.93 987.82 37699.85 15799.38 5399.38 15899.80 73
TransMVSNet (Re)97.15 31896.58 32498.86 22899.12 29398.85 18299.49 18498.91 34795.48 35697.16 36999.80 10893.38 27699.11 34294.16 37091.73 38898.62 326
MVS97.28 31296.55 32599.48 12698.78 34698.95 16899.27 27399.39 23083.53 41198.08 34199.54 23896.97 14099.87 14894.23 36899.16 17599.63 145
testing22297.16 31796.50 32699.16 17999.16 28798.47 22499.27 27398.66 37997.71 20098.23 33398.15 39082.28 40499.84 16497.36 28097.66 26699.18 234
APD_test195.87 34596.49 32794.00 38099.53 16884.01 40999.54 14899.32 27695.91 35197.99 34699.85 5785.49 38799.88 14391.96 38998.84 20498.12 374
PatchT97.03 32296.44 32898.79 24098.99 31898.34 23099.16 30099.07 32392.13 39499.52 13497.31 40494.54 24298.98 35888.54 40298.73 21199.03 251
myMVS_eth3d96.89 32496.37 32998.43 28399.00 31597.16 28799.29 26399.39 23097.06 27297.41 36098.15 39083.46 39898.68 38095.27 35398.34 22999.45 202
FMVSNet196.84 32696.36 33098.29 29699.32 24397.26 28399.43 20899.48 16195.11 36198.55 31599.32 30983.95 39698.98 35895.81 33896.26 31798.62 326
AUN-MVS96.88 32596.31 33198.59 25599.48 19697.04 29999.27 27399.22 30297.44 23598.51 31799.41 27991.97 31499.66 24897.71 24983.83 40899.07 248
test_040296.64 33096.24 33297.85 33098.85 33996.43 33099.44 20499.26 29493.52 38396.98 37399.52 24588.52 36799.20 33092.58 38897.50 28197.93 389
mvs5depth96.66 32996.22 33397.97 32197.00 40396.28 33598.66 38099.03 32996.61 30596.93 37599.79 12087.20 37999.47 27496.65 32294.13 36598.16 372
FMVSNet596.43 33596.19 33497.15 35599.11 29595.89 34599.32 25399.52 10594.47 37698.34 32799.07 34087.54 37797.07 40592.61 38795.72 33398.47 349
dmvs_testset95.02 35496.12 33591.72 38999.10 29880.43 41799.58 11797.87 39797.47 22895.22 38998.82 36493.99 26195.18 41488.09 40494.91 35399.56 165
UnsupCasMVSNet_eth96.44 33496.12 33597.40 35198.65 36495.65 34899.36 24299.51 11997.13 26296.04 38598.99 35088.40 36898.17 38996.71 31690.27 39698.40 358
pmmvs696.53 33296.09 33797.82 33598.69 36195.47 35599.37 23799.47 18293.46 38597.41 36099.78 12787.06 38099.33 30496.92 30992.70 38498.65 315
Anonymous2023120696.22 33796.03 33896.79 36897.31 39794.14 38099.63 9099.08 32096.17 33897.04 37299.06 34293.94 26397.76 39986.96 40895.06 34898.47 349
new_pmnet96.38 33696.03 33897.41 35098.13 38495.16 36599.05 32499.20 30693.94 37897.39 36398.79 36891.61 32799.04 34990.43 39595.77 33098.05 379
test20.0396.12 34195.96 34096.63 36997.44 39395.45 35699.51 16699.38 23896.55 31196.16 38399.25 32293.76 27296.17 41087.35 40794.22 36398.27 365
RPMNet96.72 32895.90 34199.19 17699.18 27798.49 22099.22 29299.52 10588.72 40799.56 12597.38 40194.08 25999.95 6286.87 40998.58 21799.14 235
Anonymous2024052196.20 33995.89 34297.13 35797.72 39194.96 36899.79 3199.29 28893.01 38897.20 36899.03 34589.69 35198.36 38691.16 39396.13 31998.07 377
N_pmnet94.95 35795.83 34392.31 38798.47 37779.33 41999.12 30992.81 42593.87 37997.68 35699.13 33593.87 26799.01 35591.38 39296.19 31898.59 339
Patchmatch-RL test95.84 34695.81 34495.95 37595.61 40890.57 40198.24 40198.39 38695.10 36395.20 39098.67 37294.78 22397.77 39896.28 33090.02 39799.51 182
EG-PatchMatch MVS95.97 34495.69 34596.81 36797.78 38892.79 39399.16 30098.93 33996.16 33994.08 39699.22 32582.72 40099.47 27495.67 34497.50 28198.17 371
test_vis1_rt95.81 34795.65 34696.32 37399.67 11491.35 40099.49 18496.74 40998.25 12895.24 38898.10 39474.96 40999.90 12699.53 3798.85 20397.70 394
ET-MVSNet_ETH3D96.49 33395.64 34799.05 19199.53 16898.82 18798.84 36297.51 40297.63 21084.77 41199.21 32892.09 31298.91 37098.98 9892.21 38799.41 209
MVStest196.08 34395.48 34897.89 32898.93 32696.70 31799.56 13099.35 25492.69 39291.81 40699.46 26889.90 34898.96 36795.00 35892.61 38598.00 384
PVSNet_094.43 1996.09 34295.47 34997.94 32499.31 24494.34 37997.81 40899.70 1597.12 26497.46 35998.75 37089.71 35099.79 19997.69 25281.69 41199.68 123
X-MVStestdata96.55 33195.45 35099.87 1499.85 2699.83 1999.69 6099.68 2098.98 5299.37 17064.01 42498.81 4799.94 7298.79 13399.86 6899.84 42
IB-MVS95.67 1896.22 33795.44 35198.57 25999.21 26996.70 31798.65 38197.74 40096.71 29597.27 36598.54 37786.03 38399.92 10298.47 17986.30 40599.10 238
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune96.17 34095.32 35298.73 24498.79 34398.14 23999.38 23594.09 41991.07 40098.07 34491.04 41789.62 35399.35 30196.75 31499.09 18598.68 298
MVS-HIRNet95.75 34895.16 35397.51 34899.30 24593.69 38698.88 35895.78 41385.09 41098.78 28392.65 41391.29 33299.37 29494.85 36099.85 7599.46 199
MIMVSNet195.51 34995.04 35496.92 36597.38 39495.60 34999.52 15799.50 13993.65 38296.97 37499.17 33085.28 39096.56 40988.36 40395.55 33898.60 338
CMPMVSbinary69.68 2394.13 36394.90 35591.84 38897.24 39880.01 41898.52 38999.48 16189.01 40591.99 40599.67 18585.67 38599.13 33795.44 34897.03 30396.39 406
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs-eth3d95.34 35394.73 35697.15 35595.53 41095.94 34499.35 24799.10 31795.13 35993.55 39897.54 39988.15 37297.91 39594.58 36289.69 39997.61 395
MDA-MVSNet_test_wron95.45 35094.60 35798.01 31798.16 38397.21 28699.11 31599.24 29993.49 38480.73 41798.98 35293.02 28298.18 38894.22 36994.45 35998.64 317
TDRefinement95.42 35194.57 35897.97 32189.83 42196.11 34299.48 18898.75 36696.74 29396.68 37799.88 3988.65 36499.71 23198.37 18782.74 41098.09 376
YYNet195.36 35294.51 35997.92 32597.89 38697.10 29099.10 31799.23 30093.26 38780.77 41699.04 34492.81 28898.02 39294.30 36594.18 36498.64 317
KD-MVS_self_test95.00 35594.34 36096.96 36297.07 40295.39 35999.56 13099.44 21095.11 36197.13 37097.32 40391.86 31797.27 40490.35 39681.23 41298.23 369
WB-MVS93.10 36894.10 36190.12 39495.51 41281.88 41499.73 5099.27 29395.05 36493.09 40198.91 36194.70 23291.89 41876.62 41694.02 36996.58 404
new-patchmatchnet94.48 36194.08 36295.67 37695.08 41392.41 39599.18 29899.28 29094.55 37593.49 39997.37 40287.86 37597.01 40691.57 39188.36 40197.61 395
MDA-MVSNet-bldmvs94.96 35693.98 36397.92 32598.24 38297.27 28199.15 30399.33 26693.80 38080.09 41899.03 34588.31 36997.86 39793.49 37694.36 36198.62 326
CL-MVSNet_self_test94.49 36093.97 36496.08 37496.16 40593.67 38798.33 39899.38 23895.13 35997.33 36498.15 39092.69 29696.57 40888.67 40179.87 41397.99 385
SSC-MVS92.73 37093.73 36589.72 39595.02 41481.38 41599.76 3799.23 30094.87 36892.80 40298.93 35794.71 23191.37 41974.49 41893.80 37196.42 405
KD-MVS_2432*160094.62 35893.72 36697.31 35297.19 40095.82 34698.34 39699.20 30695.00 36597.57 35798.35 38387.95 37398.10 39092.87 38477.00 41598.01 381
miper_refine_blended94.62 35893.72 36697.31 35297.19 40095.82 34698.34 39699.20 30695.00 36597.57 35798.35 38387.95 37398.10 39092.87 38477.00 41598.01 381
OpenMVS_ROBcopyleft92.34 2094.38 36293.70 36896.41 37297.38 39493.17 39199.06 32298.75 36686.58 40894.84 39498.26 38781.53 40599.32 30689.01 40097.87 25896.76 402
mvsany_test393.77 36593.45 36994.74 37895.78 40788.01 40499.64 8498.25 38998.28 12394.31 39597.97 39768.89 41298.51 38497.50 26890.37 39597.71 392
pmmvs394.09 36493.25 37096.60 37094.76 41594.49 37598.92 35498.18 39389.66 40196.48 37998.06 39686.28 38297.33 40389.68 39887.20 40497.97 387
dongtai93.26 36792.93 37194.25 37999.39 22285.68 40797.68 41093.27 42192.87 39096.85 37699.39 28782.33 40397.48 40276.78 41597.80 26199.58 160
UnsupCasMVSNet_bld93.53 36692.51 37296.58 37197.38 39493.82 38298.24 40199.48 16191.10 39993.10 40096.66 40674.89 41098.37 38594.03 37187.71 40397.56 397
PM-MVS92.96 36992.23 37395.14 37795.61 40889.98 40399.37 23798.21 39194.80 37095.04 39397.69 39865.06 41397.90 39694.30 36589.98 39897.54 398
test_fmvs392.10 37191.77 37493.08 38596.19 40486.25 40599.82 1698.62 38196.65 30095.19 39196.90 40555.05 42095.93 41296.63 32390.92 39497.06 401
test_method91.10 37391.36 37590.31 39395.85 40673.72 42694.89 41499.25 29668.39 41795.82 38699.02 34780.50 40798.95 36893.64 37494.89 35498.25 367
test_f91.90 37291.26 37693.84 38195.52 41185.92 40699.69 6098.53 38595.31 35893.87 39796.37 40855.33 41998.27 38795.70 34190.98 39397.32 400
testf190.42 37690.68 37789.65 39697.78 38873.97 42499.13 30698.81 36189.62 40291.80 40798.93 35762.23 41698.80 37686.61 41091.17 39096.19 407
APD_test290.42 37690.68 37789.65 39697.78 38873.97 42499.13 30698.81 36189.62 40291.80 40798.93 35762.23 41698.80 37686.61 41091.17 39096.19 407
Gipumacopyleft90.99 37490.15 37993.51 38298.73 35590.12 40293.98 41599.45 20279.32 41392.28 40394.91 41069.61 41197.98 39487.42 40695.67 33492.45 413
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
kuosan90.92 37590.11 38093.34 38398.78 34685.59 40898.15 40593.16 42389.37 40492.07 40498.38 38281.48 40695.19 41362.54 42297.04 30299.25 230
test_vis3_rt87.04 37885.81 38190.73 39293.99 41681.96 41399.76 3790.23 42792.81 39181.35 41591.56 41540.06 42499.07 34694.27 36788.23 40291.15 415
FPMVS84.93 38185.65 38282.75 40286.77 42363.39 42898.35 39598.92 34274.11 41483.39 41398.98 35250.85 42192.40 41784.54 41394.97 35092.46 412
PMMVS286.87 37985.37 38391.35 39190.21 42083.80 41098.89 35797.45 40383.13 41291.67 40995.03 40948.49 42294.70 41585.86 41277.62 41495.54 410
LCM-MVSNet86.80 38085.22 38491.53 39087.81 42280.96 41698.23 40398.99 33371.05 41590.13 41096.51 40748.45 42396.88 40790.51 39485.30 40696.76 402
tmp_tt82.80 38281.52 38586.66 39866.61 42868.44 42792.79 41797.92 39568.96 41680.04 41999.85 5785.77 38496.15 41197.86 23043.89 42195.39 411
E-PMN80.61 38479.88 38682.81 40190.75 41976.38 42297.69 40995.76 41466.44 41983.52 41292.25 41462.54 41587.16 42168.53 42061.40 41884.89 419
EMVS80.02 38579.22 38782.43 40391.19 41876.40 42197.55 41292.49 42666.36 42083.01 41491.27 41664.63 41485.79 42265.82 42160.65 41985.08 418
EGC-MVSNET82.80 38277.86 38897.62 34497.91 38596.12 34199.33 25299.28 2908.40 42525.05 42699.27 31984.11 39599.33 30489.20 39998.22 23997.42 399
PMVScopyleft70.75 2275.98 38874.97 38979.01 40470.98 42755.18 42993.37 41698.21 39165.08 42161.78 42293.83 41221.74 42992.53 41678.59 41491.12 39289.34 417
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ANet_high77.30 38674.86 39084.62 40075.88 42677.61 42097.63 41193.15 42488.81 40664.27 42189.29 41836.51 42583.93 42375.89 41752.31 42092.33 414
MVEpermissive76.82 2176.91 38774.31 39184.70 39985.38 42576.05 42396.88 41393.17 42267.39 41871.28 42089.01 41921.66 43087.69 42071.74 41972.29 41790.35 416
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs39.17 39043.78 39225.37 40736.04 43016.84 43298.36 39426.56 42920.06 42338.51 42467.32 42029.64 42715.30 42637.59 42439.90 42243.98 421
test12339.01 39142.50 39328.53 40639.17 42920.91 43198.75 37119.17 43119.83 42438.57 42366.67 42133.16 42615.42 42537.50 42529.66 42349.26 420
wuyk23d40.18 38941.29 39436.84 40586.18 42449.12 43079.73 41822.81 43027.64 42225.46 42528.45 42521.98 42848.89 42455.80 42323.56 42412.51 422
cdsmvs_eth3d_5k24.64 39232.85 3950.00 4080.00 4310.00 4330.00 41999.51 1190.00 4260.00 42799.56 23096.58 1530.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.30 39311.06 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42799.58 2220.00 4310.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas8.27 39411.03 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 42799.01 180.00 4270.00 4260.00 4250.00 423
test_blank0.13 3950.17 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4271.57 4260.00 4310.00 4270.00 4260.00 4250.00 423
mmdepth0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.02 3960.03 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.27 4270.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS97.16 28795.47 347
FOURS199.91 199.93 199.87 899.56 7099.10 3199.81 43
MSC_two_6792asdad99.87 1499.51 17699.76 4099.33 26699.96 3298.87 11599.84 8399.89 19
PC_three_145298.18 14099.84 3599.70 16299.31 398.52 38398.30 19699.80 10399.81 64
No_MVS99.87 1499.51 17699.76 4099.33 26699.96 3298.87 11599.84 8399.89 19
test_one_060199.81 4699.88 899.49 14998.97 5599.65 9999.81 9599.09 14
eth-test20.00 431
eth-test0.00 431
ZD-MVS99.71 9999.79 3399.61 4896.84 28999.56 12599.54 23898.58 7599.96 3296.93 30799.75 119
IU-MVS99.84 3299.88 899.32 27698.30 12299.84 3598.86 12099.85 7599.89 19
OPU-MVS99.64 8399.56 16099.72 4599.60 10299.70 16299.27 599.42 28798.24 19999.80 10399.79 77
test_241102_TWO99.48 16199.08 3799.88 2499.81 9598.94 3299.96 3298.91 10999.84 8399.88 25
test_241102_ONE99.84 3299.90 299.48 16199.07 3999.91 1799.74 14799.20 799.76 210
save fliter99.76 6699.59 7399.14 30599.40 22799.00 47
test_0728_THIRD98.99 4999.81 4399.80 10899.09 1499.96 3298.85 12299.90 4399.88 25
test_0728_SECOND99.91 299.84 3299.89 499.57 12499.51 11999.96 3298.93 10699.86 6899.88 25
test072699.85 2699.89 499.62 9599.50 13999.10 3199.86 3399.82 8198.94 32
GSMVS99.52 175
test_part299.81 4699.83 1999.77 58
sam_mvs194.86 21899.52 175
sam_mvs94.72 230
ambc93.06 38692.68 41782.36 41198.47 39198.73 37595.09 39297.41 40055.55 41899.10 34496.42 32791.32 38997.71 392
MTGPAbinary99.47 182
test_post199.23 28865.14 42394.18 25699.71 23197.58 258
test_post65.99 42294.65 23699.73 221
patchmatchnet-post98.70 37194.79 22299.74 215
GG-mvs-BLEND98.45 27898.55 37498.16 23799.43 20893.68 42097.23 36698.46 37889.30 35499.22 32395.43 34998.22 23997.98 386
MTMP99.54 14898.88 352
gm-plane-assit98.54 37592.96 39294.65 37399.15 33399.64 25697.56 263
test9_res97.49 26999.72 12599.75 91
TEST999.67 11499.65 6099.05 32499.41 22196.22 33498.95 25799.49 25598.77 5499.91 114
test_899.67 11499.61 7099.03 32999.41 22196.28 32898.93 26099.48 26198.76 5599.91 114
agg_prior297.21 28799.73 12499.75 91
agg_prior99.67 11499.62 6899.40 22798.87 27099.91 114
TestCases99.31 15499.86 2098.48 22299.61 4897.85 18399.36 17399.85 5795.95 17699.85 15796.66 32099.83 9299.59 156
test_prior499.56 7998.99 340
test_prior298.96 34798.34 11799.01 24699.52 24598.68 6797.96 22299.74 122
test_prior99.68 7199.67 11499.48 9499.56 7099.83 17799.74 95
旧先验298.96 34796.70 29699.47 14299.94 7298.19 202
新几何299.01 337
新几何199.75 6199.75 7699.59 7399.54 8796.76 29299.29 18899.64 19898.43 8699.94 7296.92 30999.66 13599.72 106
旧先验199.74 8399.59 7399.54 8799.69 17298.47 8399.68 13399.73 100
无先验98.99 34099.51 11996.89 28699.93 9097.53 26699.72 106
原ACMM298.95 350
原ACMM199.65 7799.73 9099.33 11099.47 18297.46 22999.12 22599.66 19098.67 6999.91 11497.70 25199.69 13099.71 115
test22299.75 7699.49 9298.91 35699.49 14996.42 32299.34 17999.65 19298.28 9699.69 13099.72 106
testdata299.95 6296.67 319
segment_acmp98.96 25
testdata99.54 10499.75 7698.95 16899.51 11997.07 27099.43 15299.70 16298.87 4099.94 7297.76 24299.64 13899.72 106
testdata198.85 36198.32 120
test1299.75 6199.64 13299.61 7099.29 28899.21 20898.38 9199.89 13899.74 12299.74 95
plane_prior799.29 24997.03 300
plane_prior699.27 25496.98 30492.71 294
plane_prior599.47 18299.69 24297.78 23897.63 26798.67 305
plane_prior499.61 213
plane_prior397.00 30298.69 8499.11 227
plane_prior299.39 23098.97 55
plane_prior199.26 256
plane_prior96.97 30599.21 29498.45 10497.60 270
n20.00 432
nn0.00 432
door-mid98.05 394
lessismore_v097.79 33798.69 36195.44 35894.75 41795.71 38799.87 4888.69 36299.32 30695.89 33694.93 35298.62 326
LGP-MVS_train98.49 26899.33 23697.05 29699.55 7897.46 22999.24 20099.83 7292.58 29999.72 22598.09 20997.51 27998.68 298
test1199.35 254
door97.92 395
HQP5-MVS96.83 312
HQP-NCC99.19 27498.98 34398.24 12998.66 298
ACMP_Plane99.19 27498.98 34398.24 12998.66 298
BP-MVS97.19 291
HQP4-MVS98.66 29899.64 25698.64 317
HQP3-MVS99.39 23097.58 272
HQP2-MVS92.47 303
NP-MVS99.23 26496.92 30899.40 283
MDTV_nov1_ep13_2view95.18 36499.35 24796.84 28999.58 12195.19 20797.82 23599.46 199
ACMMP++_ref97.19 299
ACMMP++97.43 290
Test By Simon98.75 58
ITE_SJBPF98.08 31299.29 24996.37 33198.92 34298.34 11798.83 27699.75 14291.09 33499.62 26395.82 33797.40 29298.25 367
DeepMVS_CXcopyleft93.34 38399.29 24982.27 41299.22 30285.15 40996.33 38099.05 34390.97 33699.73 22193.57 37597.77 26398.01 381