This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n_a99.71 199.67 199.85 2899.86 2099.61 6799.56 12399.63 3999.48 399.98 699.83 6798.75 5599.99 499.97 199.96 1299.94 11
fmvsm_l_conf0.5_n99.71 199.67 199.85 2899.84 3299.63 6499.56 12399.63 3999.47 499.98 699.82 7598.75 5599.99 499.97 199.97 799.94 11
test_fmvsm_n_192099.69 499.66 399.78 5299.84 3299.44 9499.58 11099.69 1899.43 799.98 699.91 2098.62 70100.00 199.97 199.95 1699.90 17
test_fmvsmconf_n99.70 399.64 499.87 1199.80 5299.66 5399.48 17999.64 3699.45 599.92 1599.92 1498.62 7099.99 499.96 799.99 199.96 7
patch_mono-299.26 6999.62 598.16 29899.81 4694.59 36199.52 14999.64 3699.33 1399.73 6299.90 2699.00 2299.99 499.69 1999.98 499.89 20
test_fmvsmvis_n_192099.65 699.61 699.77 5599.38 21399.37 10099.58 11099.62 4199.41 999.87 2599.92 1498.81 44100.00 199.97 199.93 2399.94 11
dcpmvs_299.23 7599.58 798.16 29899.83 3994.68 35999.76 3899.52 10199.07 3599.98 699.88 3698.56 7499.93 8499.67 2199.98 499.87 31
EI-MVSNet-UG-set99.58 999.57 899.64 7899.78 5699.14 13399.60 9699.45 19599.01 4099.90 1899.83 6798.98 2399.93 8499.59 2599.95 1699.86 33
APDe-MVScopyleft99.66 599.57 899.92 199.77 6299.89 499.75 4299.56 6999.02 3899.88 2099.85 5399.18 1099.96 3099.22 7099.92 2599.90 17
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EI-MVSNet-Vis-set99.58 999.56 1099.64 7899.78 5699.15 13299.61 9599.45 19599.01 4099.89 1999.82 7599.01 1899.92 9599.56 2899.95 1699.85 36
SED-MVS99.61 799.52 1199.88 599.84 3299.90 299.60 9699.48 15599.08 3399.91 1699.81 8999.20 799.96 3098.91 10199.85 7099.79 74
SD-MVS99.41 4799.52 1199.05 18499.74 8099.68 4899.46 18899.52 10199.11 2699.88 2099.91 2099.43 197.70 38798.72 13299.93 2399.77 82
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DVP-MVS++99.59 899.50 1399.88 599.51 17099.88 899.87 999.51 11598.99 4599.88 2099.81 8999.27 599.96 3098.85 11499.80 9899.81 61
TSAR-MVS + MP.99.58 999.50 1399.81 4499.91 199.66 5399.63 8399.39 22398.91 5899.78 4799.85 5399.36 299.94 6998.84 11799.88 5299.82 54
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CS-MVS99.50 2099.48 1599.54 9799.76 6599.42 9699.90 199.55 7798.56 8999.78 4799.70 15698.65 6899.79 18999.65 2399.78 10599.41 197
CS-MVS-test99.49 2299.48 1599.54 9799.78 5699.30 11099.89 299.58 6198.56 8999.73 6299.69 16698.55 7599.82 17599.69 1999.85 7099.48 178
fmvsm_s_conf0.5_n_a99.56 1399.47 1799.85 2899.83 3999.64 6399.52 14999.65 3399.10 2799.98 699.92 1497.35 12099.96 3099.94 1099.92 2599.95 9
DVP-MVScopyleft99.57 1299.47 1799.88 599.85 2699.89 499.57 11799.37 23999.10 2799.81 3799.80 10298.94 2999.96 3098.93 9899.86 6399.81 61
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSLP-MVS++99.46 3199.47 1799.44 12999.60 14699.16 12799.41 20899.71 1398.98 4899.45 13599.78 12099.19 999.54 26099.28 6399.84 7899.63 140
mvsany_test199.50 2099.46 2099.62 8399.61 14199.09 13998.94 34099.48 15599.10 2799.96 1499.91 2098.85 3999.96 3099.72 1899.58 13899.82 54
test_fmvsmconf0.1_n99.55 1499.45 2199.86 2199.44 19699.65 5799.50 16499.61 4899.45 599.87 2599.92 1497.31 12199.97 2199.95 899.99 199.97 4
XVS99.53 1699.42 2299.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16199.74 14198.81 4499.94 6998.79 12599.86 6399.84 40
SteuartSystems-ACMMP99.54 1599.42 2299.87 1199.82 4299.81 2599.59 10299.51 11598.62 8499.79 4299.83 6799.28 499.97 2198.48 16799.90 4099.84 40
Skip Steuart: Steuart Systems R&D Blog.
DELS-MVS99.48 2699.42 2299.65 7399.72 9199.40 9999.05 31199.66 2899.14 2199.57 11499.80 10298.46 8199.94 6999.57 2799.84 7899.60 146
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
fmvsm_s_conf0.5_n99.51 1899.40 2599.85 2899.84 3299.65 5799.51 15799.67 2399.13 2299.98 699.92 1496.60 14899.96 3099.95 899.96 1299.95 9
HPM-MVS_fast99.51 1899.40 2599.85 2899.91 199.79 3099.76 3899.56 6997.72 19099.76 5699.75 13699.13 1299.92 9599.07 8399.92 2599.85 36
MTAPA99.52 1799.39 2799.89 499.90 499.86 1399.66 7099.47 17598.79 7099.68 7499.81 8998.43 8399.97 2198.88 10499.90 4099.83 49
EC-MVSNet99.44 3799.39 2799.58 9099.56 15699.49 8799.88 499.58 6198.38 10699.73 6299.69 16698.20 9599.70 22799.64 2499.82 9199.54 161
DeepC-MVS_fast98.69 199.49 2299.39 2799.77 5599.63 13199.59 7099.36 23199.46 18499.07 3599.79 4299.82 7598.85 3999.92 9598.68 13999.87 5599.82 54
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS99.49 2299.37 3099.86 2199.87 1599.80 2799.66 7099.67 2398.15 13699.68 7499.69 16699.06 1699.96 3098.69 13799.87 5599.84 40
DeepPCF-MVS98.18 398.81 14199.37 3097.12 34599.60 14691.75 38598.61 37099.44 20399.35 1299.83 3499.85 5398.70 6399.81 18099.02 8799.91 3299.81 61
ACMMPR99.49 2299.36 3299.86 2199.87 1599.79 3099.66 7099.67 2398.15 13699.67 7899.69 16698.95 2799.96 3098.69 13799.87 5599.84 40
TSAR-MVS + GP.99.36 5599.36 3299.36 13999.67 11198.61 20199.07 30699.33 25799.00 4399.82 3599.81 8999.06 1699.84 15599.09 8199.42 14899.65 129
region2R99.48 2699.35 3499.87 1199.88 1199.80 2799.65 7699.66 2898.13 14099.66 8399.68 17298.96 2499.96 3098.62 14599.87 5599.84 40
APD-MVS_3200maxsize99.48 2699.35 3499.85 2899.76 6599.83 1699.63 8399.54 8598.36 11099.79 4299.82 7598.86 3899.95 5998.62 14599.81 9499.78 80
RE-MVS-def99.34 3699.76 6599.82 2299.63 8399.52 10198.38 10699.76 5699.82 7598.75 5598.61 14899.81 9499.77 82
ACMMP_NAP99.47 2999.34 3699.88 599.87 1599.86 1399.47 18599.48 15598.05 15699.76 5699.86 4898.82 4399.93 8498.82 12499.91 3299.84 40
ZNCC-MVS99.47 2999.33 3899.87 1199.87 1599.81 2599.64 7999.67 2398.08 15099.55 11999.64 19098.91 3499.96 3098.72 13299.90 4099.82 54
MVS_111021_LR99.41 4799.33 3899.65 7399.77 6299.51 8698.94 34099.85 698.82 6599.65 8999.74 14198.51 7899.80 18698.83 12099.89 4999.64 136
DPE-MVScopyleft99.46 3199.32 4099.91 299.78 5699.88 899.36 23199.51 11598.73 7699.88 2099.84 6398.72 6199.96 3098.16 19599.87 5599.88 26
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_030499.42 4299.32 4099.72 6599.70 10199.27 11499.52 14997.57 38999.51 299.82 3599.78 12098.09 10099.96 3099.97 199.97 799.94 11
PS-MVSNAJ99.32 5999.32 4099.30 15299.57 15298.94 16798.97 33399.46 18498.92 5799.71 6899.24 31199.01 1899.98 1399.35 5199.66 12998.97 246
CP-MVS99.45 3399.32 4099.85 2899.83 3999.75 3999.69 5699.52 10198.07 15199.53 12299.63 19698.93 3399.97 2198.74 12999.91 3299.83 49
MVS_111021_HR99.41 4799.32 4099.66 6999.72 9199.47 9198.95 33899.85 698.82 6599.54 12099.73 14798.51 7899.74 20598.91 10199.88 5299.77 82
CSCG99.32 5999.32 4099.32 14699.85 2698.29 22799.71 5299.66 2898.11 14399.41 14899.80 10298.37 8899.96 3098.99 9199.96 1299.72 103
ACMMPcopyleft99.45 3399.32 4099.82 4199.89 899.67 5199.62 8899.69 1898.12 14199.63 9699.84 6398.73 6099.96 3098.55 16399.83 8799.81 61
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post99.45 3399.31 4799.85 2899.76 6599.82 2299.63 8399.52 10198.38 10699.76 5699.82 7598.53 7699.95 5998.61 14899.81 9499.77 82
PGM-MVS99.45 3399.31 4799.86 2199.87 1599.78 3699.58 11099.65 3397.84 17599.71 6899.80 10299.12 1399.97 2198.33 18299.87 5599.83 49
SMA-MVScopyleft99.44 3799.30 4999.85 2899.73 8799.83 1699.56 12399.47 17597.45 22299.78 4799.82 7599.18 1099.91 10598.79 12599.89 4999.81 61
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MCST-MVS99.43 4099.30 4999.82 4199.79 5499.74 4199.29 25299.40 22098.79 7099.52 12499.62 20198.91 3499.90 11698.64 14399.75 11399.82 54
mPP-MVS99.44 3799.30 4999.86 2199.88 1199.79 3099.69 5699.48 15598.12 14199.50 12799.75 13698.78 4899.97 2198.57 15799.89 4999.83 49
CNVR-MVS99.42 4299.30 4999.78 5299.62 13799.71 4499.26 27199.52 10198.82 6599.39 15799.71 15298.96 2499.85 14898.59 15399.80 9899.77 82
SR-MVS99.43 4099.29 5399.86 2199.75 7399.83 1699.59 10299.62 4198.21 12899.73 6299.79 11498.68 6499.96 3098.44 17399.77 10899.79 74
UA-Net99.42 4299.29 5399.80 4699.62 13799.55 7799.50 16499.70 1598.79 7099.77 5199.96 197.45 11599.96 3098.92 10099.90 4099.89 20
MM99.40 5099.28 5599.74 6199.67 11199.31 10899.52 14998.87 34299.55 199.74 6099.80 10296.47 15399.98 1399.97 199.97 799.94 11
HPM-MVScopyleft99.42 4299.28 5599.83 4099.90 499.72 4299.81 2199.54 8597.59 20399.68 7499.63 19698.91 3499.94 6998.58 15499.91 3299.84 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_Blended_VisFu99.36 5599.28 5599.61 8499.86 2099.07 14599.47 18599.93 297.66 19999.71 6899.86 4897.73 11099.96 3099.47 4399.82 9199.79 74
MSP-MVS99.42 4299.27 5899.88 599.89 899.80 2799.67 6599.50 13598.70 7899.77 5199.49 24698.21 9499.95 5998.46 17199.77 10899.88 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
xiu_mvs_v1_base_debu99.29 6399.27 5899.34 14099.63 13198.97 15799.12 29699.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 231
xiu_mvs_v1_base99.29 6399.27 5899.34 14099.63 13198.97 15799.12 29699.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 231
xiu_mvs_v1_base_debi99.29 6399.27 5899.34 14099.63 13198.97 15799.12 29699.51 11598.86 6099.84 2999.47 25498.18 9699.99 499.50 3699.31 15899.08 231
xiu_mvs_v2_base99.26 6999.25 6299.29 15599.53 16398.91 17199.02 31999.45 19598.80 6999.71 6899.26 30998.94 2999.98 1399.34 5599.23 16298.98 245
SF-MVS99.38 5399.24 6399.79 4999.79 5499.68 4899.57 11799.54 8597.82 18099.71 6899.80 10298.95 2799.93 8498.19 19199.84 7899.74 92
GST-MVS99.40 5099.24 6399.85 2899.86 2099.79 3099.60 9699.67 2397.97 16299.63 9699.68 17298.52 7799.95 5998.38 17699.86 6399.81 61
HPM-MVS++copyleft99.39 5299.23 6599.87 1199.75 7399.84 1599.43 19999.51 11598.68 8199.27 18699.53 23398.64 6999.96 3098.44 17399.80 9899.79 74
ETV-MVS99.26 6999.21 6699.40 13399.46 19099.30 11099.56 12399.52 10198.52 9499.44 14099.27 30798.41 8699.86 14299.10 8099.59 13799.04 238
MP-MVS-pluss99.37 5499.20 6799.88 599.90 499.87 1299.30 24799.52 10197.18 24799.60 10799.79 11498.79 4799.95 5998.83 12099.91 3299.83 49
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
NCCC99.34 5799.19 6899.79 4999.61 14199.65 5799.30 24799.48 15598.86 6099.21 20099.63 19698.72 6199.90 11698.25 18799.63 13499.80 70
DeepC-MVS98.35 299.30 6199.19 6899.64 7899.82 4299.23 12099.62 8899.55 7798.94 5499.63 9699.95 395.82 17899.94 6999.37 5099.97 799.73 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS99.30 6199.17 7099.70 6799.56 15699.52 8599.58 11099.80 897.12 25399.62 10199.73 14798.58 7299.90 11698.61 14899.91 3299.68 119
MP-MVScopyleft99.33 5899.15 7199.87 1199.88 1199.82 2299.66 7099.46 18498.09 14699.48 13199.74 14198.29 9199.96 3097.93 21399.87 5599.82 54
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CANet99.25 7399.14 7299.59 8799.41 20499.16 12799.35 23699.57 6498.82 6599.51 12699.61 20596.46 15499.95 5999.59 2599.98 499.65 129
CHOSEN 280x42099.12 9599.13 7399.08 17999.66 12097.89 25198.43 38099.71 1398.88 5999.62 10199.76 13396.63 14799.70 22799.46 4499.99 199.66 125
MVSFormer99.17 8199.12 7499.29 15599.51 17098.94 16799.88 499.46 18497.55 20999.80 4099.65 18497.39 11699.28 30099.03 8599.85 7099.65 129
LS3D99.27 6799.12 7499.74 6199.18 26699.75 3999.56 12399.57 6498.45 10099.49 13099.85 5397.77 10999.94 6998.33 18299.84 7899.52 167
fmvsm_s_conf0.1_n99.29 6399.10 7699.86 2199.70 10199.65 5799.53 14899.62 4198.74 7599.99 299.95 394.53 23599.94 6999.89 1399.96 1299.97 4
9.1499.10 7699.72 9199.40 21699.51 11597.53 21399.64 9399.78 12098.84 4199.91 10597.63 24399.82 91
CHOSEN 1792x268899.19 7799.10 7699.45 12599.89 898.52 21199.39 22099.94 198.73 7699.11 21999.89 3095.50 18899.94 6999.50 3699.97 799.89 20
EIA-MVS99.18 7999.09 7999.45 12599.49 18199.18 12499.67 6599.53 9697.66 19999.40 15399.44 26198.10 9999.81 18098.94 9699.62 13599.35 206
APD-MVScopyleft99.27 6799.08 8099.84 3999.75 7399.79 3099.50 16499.50 13597.16 24999.77 5199.82 7598.78 4899.94 6997.56 25299.86 6399.80 70
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAMVS99.12 9599.08 8099.24 16499.46 19098.55 20599.51 15799.46 18498.09 14699.45 13599.82 7598.34 8999.51 26198.70 13498.93 18799.67 122
fmvsm_s_conf0.1_n_a99.26 6999.06 8299.85 2899.52 16799.62 6599.54 14099.62 4198.69 7999.99 299.96 194.47 23799.94 6999.88 1499.92 2599.98 2
sss99.17 8199.05 8399.53 10599.62 13798.97 15799.36 23199.62 4197.83 17699.67 7899.65 18497.37 11999.95 5999.19 7299.19 16599.68 119
3Dnovator97.25 999.24 7499.05 8399.81 4499.12 28299.66 5399.84 1399.74 1099.09 3298.92 25399.90 2695.94 17299.98 1398.95 9599.92 2599.79 74
F-COLMAP99.19 7799.04 8599.64 7899.78 5699.27 11499.42 20699.54 8597.29 23899.41 14899.59 21098.42 8599.93 8498.19 19199.69 12499.73 97
OMC-MVS99.08 10599.04 8599.20 16899.67 11198.22 23199.28 25799.52 10198.07 15199.66 8399.81 8997.79 10899.78 19497.79 22699.81 9499.60 146
test_fmvsmconf0.01_n99.22 7699.03 8799.79 4998.42 36599.48 8999.55 13599.51 11599.39 1099.78 4799.93 994.80 21399.95 5999.93 1199.95 1699.94 11
jason99.13 8999.03 8799.45 12599.46 19098.87 17499.12 29699.26 28598.03 15999.79 4299.65 18497.02 13499.85 14899.02 8799.90 4099.65 129
jason: jason.
CDS-MVSNet99.09 10499.03 8799.25 16299.42 19998.73 19099.45 18999.46 18498.11 14399.46 13499.77 12898.01 10399.37 28298.70 13498.92 18999.66 125
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
API-MVS99.04 10999.03 8799.06 18299.40 20999.31 10899.55 13599.56 6998.54 9199.33 17299.39 27698.76 5299.78 19496.98 29199.78 10598.07 363
diffmvspermissive99.14 8799.02 9199.51 11399.61 14198.96 16199.28 25799.49 14398.46 9999.72 6799.71 15296.50 15299.88 13399.31 5899.11 17299.67 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive99.15 8599.02 9199.55 9699.66 12099.09 13999.64 7999.56 6998.26 12099.45 13599.87 4496.03 16799.81 18099.54 3099.15 16999.73 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.15 8599.02 9199.53 10599.66 12099.14 13399.72 5099.48 15598.35 11199.42 14499.84 6396.07 16599.79 18999.51 3599.14 17099.67 122
MG-MVS99.13 8999.02 9199.45 12599.57 15298.63 19899.07 30699.34 25098.99 4599.61 10499.82 7597.98 10499.87 13897.00 28999.80 9899.85 36
test_cas_vis1_n_192099.16 8399.01 9599.61 8499.81 4698.86 17799.65 7699.64 3699.39 1099.97 1399.94 693.20 27399.98 1399.55 2999.91 3299.99 1
lupinMVS99.13 8999.01 9599.46 12499.51 17098.94 16799.05 31199.16 30197.86 17099.80 4099.56 22197.39 11699.86 14298.94 9699.85 7099.58 154
mvs_anonymous99.03 11198.99 9799.16 17299.38 21398.52 21199.51 15799.38 23197.79 18199.38 15999.81 8997.30 12299.45 26599.35 5198.99 18499.51 173
EPP-MVSNet99.13 8998.99 9799.53 10599.65 12699.06 14699.81 2199.33 25797.43 22599.60 10799.88 3697.14 12699.84 15599.13 7798.94 18699.69 115
CNLPA99.14 8798.99 9799.59 8799.58 15099.41 9899.16 28799.44 20398.45 10099.19 20699.49 24698.08 10199.89 12797.73 23599.75 11399.48 178
casdiffmvspermissive99.13 8998.98 10099.56 9499.65 12699.16 12799.56 12399.50 13598.33 11499.41 14899.86 4895.92 17399.83 16899.45 4599.16 16699.70 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test99.10 10398.97 10199.48 11999.49 18199.14 13399.67 6599.34 25097.31 23699.58 11199.76 13397.65 11299.82 17598.87 10799.07 17899.46 188
PVSNet_Blended99.08 10598.97 10199.42 13099.76 6598.79 18698.78 35699.91 396.74 28299.67 7899.49 24697.53 11399.88 13398.98 9299.85 7099.60 146
Vis-MVSNetpermissive99.12 9598.97 10199.56 9499.78 5699.10 13899.68 6299.66 2898.49 9799.86 2799.87 4494.77 21899.84 15599.19 7299.41 14999.74 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+97.12 1399.18 7998.97 10199.82 4199.17 27499.68 4899.81 2199.51 11599.20 1898.72 27999.89 3095.68 18399.97 2198.86 11299.86 6399.81 61
DP-MVS Recon99.12 9598.95 10599.65 7399.74 8099.70 4699.27 26299.57 6496.40 31299.42 14499.68 17298.75 5599.80 18697.98 21099.72 11999.44 193
DP-MVS99.16 8398.95 10599.78 5299.77 6299.53 8299.41 20899.50 13597.03 26599.04 23599.88 3697.39 11699.92 9598.66 14199.90 4099.87 31
PS-MVSNAJss98.92 12398.92 10798.90 20898.78 33598.53 20799.78 3399.54 8598.07 15199.00 24299.76 13399.01 1899.37 28299.13 7797.23 28898.81 255
HyFIR lowres test99.11 9998.92 10799.65 7399.90 499.37 10099.02 31999.91 397.67 19899.59 11099.75 13695.90 17599.73 21199.53 3299.02 18399.86 33
CDPH-MVS99.13 8998.91 10999.80 4699.75 7399.71 4499.15 29099.41 21496.60 29699.60 10799.55 22498.83 4299.90 11697.48 25999.83 8799.78 80
SDMVSNet99.11 9998.90 11099.75 5899.81 4699.59 7099.81 2199.65 3398.78 7399.64 9399.88 3694.56 23199.93 8499.67 2198.26 22799.72 103
VNet99.11 9998.90 11099.73 6499.52 16799.56 7599.41 20899.39 22399.01 4099.74 6099.78 12095.56 18699.92 9599.52 3498.18 23499.72 103
CPTT-MVS99.11 9998.90 11099.74 6199.80 5299.46 9299.59 10299.49 14397.03 26599.63 9699.69 16697.27 12499.96 3097.82 22499.84 7899.81 61
Effi-MVS+-dtu98.78 14598.89 11398.47 26999.33 22896.91 30199.57 11799.30 27598.47 9899.41 14898.99 33896.78 14299.74 20598.73 13199.38 15098.74 268
WTY-MVS99.06 10798.88 11499.61 8499.62 13799.16 12799.37 22799.56 6998.04 15799.53 12299.62 20196.84 14099.94 6998.85 11498.49 21699.72 103
CANet_DTU98.97 12098.87 11599.25 16299.33 22898.42 22499.08 30599.30 27599.16 1999.43 14199.75 13695.27 19699.97 2198.56 16099.95 1699.36 205
mvsmamba98.92 12398.87 11599.08 17999.07 29499.16 12799.88 499.51 11598.15 13699.40 15399.89 3097.12 12799.33 29299.38 4897.40 28298.73 270
IS-MVSNet99.05 10898.87 11599.57 9299.73 8799.32 10499.75 4299.20 29698.02 16099.56 11599.86 4896.54 15199.67 23598.09 19899.13 17199.73 97
sasdasda99.02 11298.86 11899.51 11399.42 19999.32 10499.80 2699.48 15598.63 8299.31 17498.81 35397.09 12999.75 20399.27 6697.90 24599.47 184
canonicalmvs99.02 11298.86 11899.51 11399.42 19999.32 10499.80 2699.48 15598.63 8299.31 17498.81 35397.09 12999.75 20399.27 6697.90 24599.47 184
MGCFI-Net99.01 11698.85 12099.50 11899.42 19999.26 11699.82 1799.48 15598.60 8699.28 18198.81 35397.04 13399.76 20099.29 6297.87 24899.47 184
PLCcopyleft97.94 499.02 11298.85 12099.53 10599.66 12099.01 15299.24 27599.52 10196.85 27799.27 18699.48 25198.25 9399.91 10597.76 23199.62 13599.65 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PAPM_NR99.04 10998.84 12299.66 6999.74 8099.44 9499.39 22099.38 23197.70 19499.28 18199.28 30498.34 8999.85 14896.96 29399.45 14699.69 115
PVSNet96.02 1798.85 13798.84 12298.89 21199.73 8797.28 27298.32 38699.60 5497.86 17099.50 12799.57 21896.75 14499.86 14298.56 16099.70 12399.54 161
Fast-Effi-MVS+-dtu98.77 14798.83 12498.60 24899.41 20496.99 29599.52 14999.49 14398.11 14399.24 19299.34 29096.96 13899.79 18997.95 21299.45 14699.02 241
PVSNet_BlendedMVS98.86 13098.80 12599.03 18699.76 6598.79 18699.28 25799.91 397.42 22799.67 7899.37 28097.53 11399.88 13398.98 9297.29 28698.42 344
AdaColmapbinary99.01 11698.80 12599.66 6999.56 15699.54 7999.18 28599.70 1598.18 13499.35 16899.63 19696.32 15999.90 11697.48 25999.77 10899.55 159
MSDG98.98 11898.80 12599.53 10599.76 6599.19 12298.75 35999.55 7797.25 24199.47 13299.77 12897.82 10799.87 13896.93 29699.90 4099.54 161
test_fmvs198.88 12698.79 12899.16 17299.69 10697.61 26599.55 13599.49 14399.32 1499.98 699.91 2091.41 32099.96 3099.82 1699.92 2599.90 17
train_agg99.02 11298.77 12999.77 5599.67 11199.65 5799.05 31199.41 21496.28 31698.95 24899.49 24698.76 5299.91 10597.63 24399.72 11999.75 88
1112_ss98.98 11898.77 12999.59 8799.68 11099.02 15099.25 27399.48 15597.23 24499.13 21599.58 21496.93 13999.90 11698.87 10798.78 20099.84 40
COLMAP_ROBcopyleft97.56 698.86 13098.75 13199.17 17199.88 1198.53 20799.34 23999.59 5797.55 20998.70 28699.89 3095.83 17799.90 11698.10 19799.90 4099.08 231
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest98.87 12798.72 13299.31 14799.86 2098.48 21799.56 12399.61 4897.85 17399.36 16599.85 5395.95 17099.85 14896.66 30999.83 8799.59 150
Vis-MVSNet (Re-imp)98.87 12798.72 13299.31 14799.71 9698.88 17399.80 2699.44 20397.91 16799.36 16599.78 12095.49 18999.43 27497.91 21499.11 17299.62 142
DPM-MVS98.95 12198.71 13499.66 6999.63 13199.55 7798.64 36999.10 30797.93 16599.42 14499.55 22498.67 6699.80 18695.80 32799.68 12799.61 144
EPNet98.86 13098.71 13499.30 15297.20 38598.18 23299.62 8898.91 33599.28 1698.63 29799.81 8995.96 16999.99 499.24 6999.72 11999.73 97
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UGNet98.87 12798.69 13699.40 13399.22 25798.72 19199.44 19599.68 2099.24 1799.18 21099.42 26592.74 28399.96 3099.34 5599.94 2299.53 166
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS98.73 15198.68 13798.88 21399.70 10197.73 25898.92 34299.55 7798.52 9499.45 13599.84 6395.27 19699.91 10598.08 20298.84 19599.00 242
EI-MVSNet98.67 15698.67 13898.68 24499.35 22297.97 24499.50 16499.38 23196.93 27499.20 20399.83 6797.87 10599.36 28698.38 17697.56 26498.71 273
CVMVSNet98.57 16298.67 13898.30 28899.35 22295.59 33999.50 16499.55 7798.60 8699.39 15799.83 6794.48 23699.45 26598.75 12898.56 21199.85 36
114514_t98.93 12298.67 13899.72 6599.85 2699.53 8299.62 8899.59 5792.65 37999.71 6899.78 12098.06 10299.90 11698.84 11799.91 3299.74 92
RRT_MVS98.70 15298.66 14198.83 22798.90 31898.45 22099.89 299.28 28197.76 18598.94 25099.92 1496.98 13699.25 30599.28 6397.00 29498.80 256
Test_1112_low_res98.89 12598.66 14199.57 9299.69 10698.95 16499.03 31699.47 17596.98 26799.15 21399.23 31296.77 14399.89 12798.83 12098.78 20099.86 33
HY-MVS97.30 798.85 13798.64 14399.47 12299.42 19999.08 14399.62 8899.36 24097.39 23099.28 18199.68 17296.44 15699.92 9598.37 17898.22 22999.40 199
test_yl98.86 13098.63 14499.54 9799.49 18199.18 12499.50 16499.07 31398.22 12699.61 10499.51 23995.37 19299.84 15598.60 15198.33 22199.59 150
DCV-MVSNet98.86 13098.63 14499.54 9799.49 18199.18 12499.50 16499.07 31398.22 12699.61 10499.51 23995.37 19299.84 15598.60 15198.33 22199.59 150
FIs98.78 14598.63 14499.23 16699.18 26699.54 7999.83 1699.59 5798.28 11798.79 27399.81 8996.75 14499.37 28299.08 8296.38 30498.78 258
ab-mvs98.86 13098.63 14499.54 9799.64 12899.19 12299.44 19599.54 8597.77 18499.30 17799.81 8994.20 24599.93 8499.17 7598.82 19799.49 177
MAR-MVS98.86 13098.63 14499.54 9799.37 21699.66 5399.45 18999.54 8596.61 29499.01 23899.40 27297.09 12999.86 14297.68 24299.53 14299.10 226
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GeoE98.85 13798.62 14999.53 10599.61 14199.08 14399.80 2699.51 11597.10 25799.31 17499.78 12095.23 20099.77 19698.21 18999.03 18199.75 88
FC-MVSNet-test98.75 14898.62 14999.15 17699.08 29399.45 9399.86 1299.60 5498.23 12598.70 28699.82 7596.80 14199.22 31299.07 8396.38 30498.79 257
XVG-OURS-SEG-HR98.69 15498.62 14998.89 21199.71 9697.74 25799.12 29699.54 8598.44 10399.42 14499.71 15294.20 24599.92 9598.54 16498.90 19199.00 242
RPSCF98.22 18898.62 14996.99 34799.82 4291.58 38699.72 5099.44 20396.61 29499.66 8399.89 3095.92 17399.82 17597.46 26299.10 17599.57 156
PatchMatch-RL98.84 14098.62 14999.52 11199.71 9699.28 11299.06 30999.77 997.74 18999.50 12799.53 23395.41 19099.84 15597.17 28399.64 13299.44 193
PMMVS98.80 14498.62 14999.34 14099.27 24598.70 19298.76 35899.31 27197.34 23399.21 20099.07 32897.20 12599.82 17598.56 16098.87 19299.52 167
Effi-MVS+98.81 14198.59 15599.48 11999.46 19099.12 13798.08 39299.50 13597.50 21799.38 15999.41 26996.37 15899.81 18099.11 7998.54 21399.51 173
sd_testset98.75 14898.57 15699.29 15599.81 4698.26 22999.56 12399.62 4198.78 7399.64 9399.88 3692.02 30499.88 13399.54 3098.26 22799.72 103
test_djsdf98.67 15698.57 15698.98 19298.70 34798.91 17199.88 499.46 18497.55 20999.22 19799.88 3695.73 18199.28 30099.03 8597.62 25998.75 265
alignmvs98.81 14198.56 15899.58 9099.43 19799.42 9699.51 15798.96 32598.61 8599.35 16898.92 34894.78 21599.77 19699.35 5198.11 23999.54 161
131498.68 15598.54 15999.11 17898.89 32098.65 19699.27 26299.49 14396.89 27597.99 33699.56 22197.72 11199.83 16897.74 23499.27 16198.84 254
FA-MVS(test-final)98.75 14898.53 16099.41 13199.55 16099.05 14899.80 2699.01 31996.59 29899.58 11199.59 21095.39 19199.90 11697.78 22799.49 14499.28 214
D2MVS98.41 17298.50 16198.15 30199.26 24796.62 31499.40 21699.61 4897.71 19198.98 24499.36 28396.04 16699.67 23598.70 13497.41 28198.15 360
tpmrst98.33 18098.48 16297.90 31699.16 27694.78 35799.31 24599.11 30697.27 23999.45 13599.59 21095.33 19499.84 15598.48 16798.61 20599.09 230
iter_conf0598.55 16398.44 16398.87 21799.34 22698.60 20299.55 13599.42 21198.21 12899.37 16199.77 12893.55 26699.38 27899.30 6197.48 27498.63 312
Fast-Effi-MVS+98.70 15298.43 16499.51 11399.51 17099.28 11299.52 14999.47 17596.11 33299.01 23899.34 29096.20 16399.84 15597.88 21698.82 19799.39 200
nrg03098.64 15998.42 16599.28 15999.05 30099.69 4799.81 2199.46 18498.04 15799.01 23899.82 7596.69 14699.38 27899.34 5594.59 34598.78 258
IterMVS-LS98.46 16798.42 16598.58 25299.59 14898.00 24299.37 22799.43 20996.94 27399.07 22799.59 21097.87 10599.03 34098.32 18495.62 32498.71 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis1_n_192098.63 16098.40 16799.31 14799.86 2097.94 25099.67 6599.62 4199.43 799.99 299.91 2087.29 367100.00 199.92 1299.92 2599.98 2
BH-untuned98.42 17098.36 16898.59 24999.49 18196.70 30999.27 26299.13 30597.24 24398.80 27199.38 27795.75 18099.74 20597.07 28799.16 16699.33 210
PatchmatchNetpermissive98.31 18198.36 16898.19 29699.16 27695.32 34899.27 26298.92 33197.37 23199.37 16199.58 21494.90 20899.70 22797.43 26599.21 16399.54 161
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PAPR98.63 16098.34 17099.51 11399.40 20999.03 14998.80 35499.36 24096.33 31399.00 24299.12 32698.46 8199.84 15595.23 34299.37 15799.66 125
ACMM97.58 598.37 17798.34 17098.48 26499.41 20497.10 28299.56 12399.45 19598.53 9299.04 23599.85 5393.00 27599.71 22198.74 12997.45 27698.64 305
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVSTER98.49 16498.32 17299.00 19099.35 22299.02 15099.54 14099.38 23197.41 22899.20 20399.73 14793.86 25999.36 28698.87 10797.56 26498.62 315
MDTV_nov1_ep1398.32 17299.11 28494.44 36399.27 26298.74 35697.51 21699.40 15399.62 20194.78 21599.76 20097.59 24698.81 199
QAPM98.67 15698.30 17499.80 4699.20 26099.67 5199.77 3599.72 1194.74 35998.73 27899.90 2695.78 17999.98 1396.96 29399.88 5299.76 87
anonymousdsp98.44 16898.28 17598.94 19898.50 36298.96 16199.77 3599.50 13597.07 25998.87 26299.77 12894.76 21999.28 30098.66 14197.60 26098.57 330
jajsoiax98.43 16998.28 17598.88 21398.60 35798.43 22299.82 1799.53 9698.19 13198.63 29799.80 10293.22 27299.44 27099.22 7097.50 27098.77 261
mvs_tets98.40 17598.23 17798.91 20698.67 35098.51 21399.66 7099.53 9698.19 13198.65 29599.81 8992.75 28199.44 27099.31 5897.48 27498.77 261
HQP_MVS98.27 18698.22 17898.44 27499.29 24096.97 29799.39 22099.47 17598.97 5199.11 21999.61 20592.71 28699.69 23297.78 22797.63 25798.67 293
FE-MVS98.48 16598.17 17999.40 13399.54 16298.96 16199.68 6298.81 34995.54 34399.62 10199.70 15693.82 26099.93 8497.35 27099.46 14599.32 211
dmvs_re98.08 20598.16 18097.85 31899.55 16094.67 36099.70 5398.92 33198.15 13699.06 23299.35 28693.67 26599.25 30597.77 23097.25 28799.64 136
SCA98.19 19298.16 18098.27 29399.30 23695.55 34099.07 30698.97 32397.57 20699.43 14199.57 21892.72 28499.74 20597.58 24799.20 16499.52 167
LCM-MVSNet-Re97.83 24798.15 18296.87 35399.30 23692.25 38399.59 10298.26 37497.43 22596.20 36999.13 32396.27 16198.73 36698.17 19498.99 18499.64 136
test_fmvs1_n98.41 17298.14 18399.21 16799.82 4297.71 26299.74 4599.49 14399.32 1499.99 299.95 385.32 37699.97 2199.82 1699.84 7899.96 7
tttt051798.42 17098.14 18399.28 15999.66 12098.38 22599.74 4596.85 39397.68 19699.79 4299.74 14191.39 32199.89 12798.83 12099.56 13999.57 156
LPG-MVS_test98.22 18898.13 18598.49 26299.33 22897.05 28899.58 11099.55 7797.46 21999.24 19299.83 6792.58 29199.72 21598.09 19897.51 26898.68 286
OpenMVScopyleft96.50 1698.47 16698.12 18699.52 11199.04 30199.53 8299.82 1799.72 1194.56 36298.08 33199.88 3694.73 22199.98 1397.47 26199.76 11199.06 237
test111198.04 21398.11 18797.83 32199.74 8093.82 36999.58 11095.40 40299.12 2599.65 8999.93 990.73 32999.84 15599.43 4699.38 15099.82 54
miper_ehance_all_eth98.18 19498.10 18898.41 27799.23 25397.72 25998.72 36299.31 27196.60 29698.88 25999.29 30297.29 12399.13 32697.60 24595.99 31398.38 349
OPM-MVS98.19 19298.10 18898.45 27198.88 32197.07 28699.28 25799.38 23198.57 8899.22 19799.81 8992.12 30299.66 23898.08 20297.54 26698.61 324
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CLD-MVS98.16 19698.10 18898.33 28499.29 24096.82 30698.75 35999.44 20397.83 17699.13 21599.55 22492.92 27799.67 23598.32 18497.69 25498.48 336
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XXY-MVS98.38 17698.09 19199.24 16499.26 24799.32 10499.56 12399.55 7797.45 22298.71 28099.83 6793.23 27099.63 25198.88 10496.32 30698.76 263
miper_enhance_ethall98.16 19698.08 19298.41 27798.96 31497.72 25998.45 37999.32 26796.95 27198.97 24699.17 31897.06 13299.22 31297.86 21995.99 31398.29 353
ADS-MVSNet98.20 19198.08 19298.56 25699.33 22896.48 31999.23 27699.15 30296.24 32099.10 22299.67 17894.11 24999.71 22196.81 30199.05 17999.48 178
BH-RMVSNet98.41 17298.08 19299.40 13399.41 20498.83 18299.30 24798.77 35297.70 19498.94 25099.65 18492.91 27999.74 20596.52 31299.55 14199.64 136
ADS-MVSNet298.02 21798.07 19597.87 31799.33 22895.19 35199.23 27699.08 31096.24 32099.10 22299.67 17894.11 24998.93 35796.81 30199.05 17999.48 178
ECVR-MVScopyleft98.04 21398.05 19698.00 31099.74 8094.37 36499.59 10294.98 40399.13 2299.66 8399.93 990.67 33099.84 15599.40 4799.38 15099.80 70
c3_l98.12 20198.04 19798.38 28199.30 23697.69 26398.81 35399.33 25796.67 28798.83 26799.34 29097.11 12898.99 34697.58 24795.34 33098.48 336
thisisatest053098.35 17898.03 19899.31 14799.63 13198.56 20499.54 14096.75 39597.53 21399.73 6299.65 18491.25 32499.89 12798.62 14599.56 13999.48 178
EU-MVSNet97.98 22498.03 19897.81 32498.72 34496.65 31399.66 7099.66 2898.09 14698.35 31699.82 7595.25 19998.01 38097.41 26695.30 33198.78 258
tpmvs97.98 22498.02 20097.84 32099.04 30194.73 35899.31 24599.20 29696.10 33698.76 27699.42 26594.94 20499.81 18096.97 29298.45 21798.97 246
UniMVSNet (Re)98.29 18498.00 20199.13 17799.00 30599.36 10299.49 17599.51 11597.95 16398.97 24699.13 32396.30 16099.38 27898.36 18093.34 36298.66 301
iter_conf05_1198.35 17897.99 20299.41 13199.37 21699.13 13698.96 33498.23 37798.50 9699.63 9699.46 25888.83 34999.87 13899.00 8999.95 1699.23 218
ACMH97.28 898.10 20297.99 20298.44 27499.41 20496.96 29999.60 9699.56 6998.09 14698.15 32999.91 2090.87 32899.70 22798.88 10497.45 27698.67 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous20240521198.30 18397.98 20499.26 16199.57 15298.16 23399.41 20898.55 36996.03 33799.19 20699.74 14191.87 30799.92 9599.16 7698.29 22699.70 113
UniMVSNet_NR-MVSNet98.22 18897.97 20598.96 19598.92 31798.98 15499.48 17999.53 9697.76 18598.71 28099.46 25896.43 15799.22 31298.57 15792.87 36998.69 281
eth_miper_zixun_eth98.05 21297.96 20698.33 28499.26 24797.38 27098.56 37599.31 27196.65 28998.88 25999.52 23696.58 14999.12 33097.39 26795.53 32798.47 338
EPNet_dtu98.03 21597.96 20698.23 29498.27 36795.54 34299.23 27698.75 35399.02 3897.82 34399.71 15296.11 16499.48 26293.04 36899.65 13199.69 115
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VPA-MVSNet98.29 18497.95 20899.30 15299.16 27699.54 7999.50 16499.58 6198.27 11999.35 16899.37 28092.53 29399.65 24399.35 5194.46 34698.72 271
baseline198.31 18197.95 20899.38 13899.50 17998.74 18999.59 10298.93 32898.41 10499.14 21499.60 20894.59 22999.79 18998.48 16793.29 36399.61 144
ACMP97.20 1198.06 20797.94 21098.45 27199.37 21697.01 29399.44 19599.49 14397.54 21298.45 31199.79 11491.95 30699.72 21597.91 21497.49 27398.62 315
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CR-MVSNet98.17 19597.93 21198.87 21799.18 26698.49 21599.22 28099.33 25796.96 26999.56 11599.38 27794.33 24199.00 34594.83 34898.58 20899.14 223
miper_lstm_enhance98.00 22297.91 21298.28 29299.34 22697.43 26998.88 34699.36 24096.48 30598.80 27199.55 22495.98 16898.91 35897.27 27395.50 32898.51 334
pmmvs498.13 19997.90 21398.81 23198.61 35698.87 17498.99 32799.21 29596.44 30899.06 23299.58 21495.90 17599.11 33197.18 28296.11 31098.46 341
test-LLR98.06 20797.90 21398.55 25898.79 33297.10 28298.67 36597.75 38597.34 23398.61 30098.85 35094.45 23899.45 26597.25 27499.38 15099.10 226
HQP-MVS98.02 21797.90 21398.37 28299.19 26396.83 30498.98 33099.39 22398.24 12298.66 28999.40 27292.47 29599.64 24697.19 28097.58 26298.64 305
LTVRE_ROB97.16 1298.02 21797.90 21398.40 27999.23 25396.80 30799.70 5399.60 5497.12 25398.18 32899.70 15691.73 31299.72 21598.39 17597.45 27698.68 286
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
BH-w/o98.00 22297.89 21798.32 28699.35 22296.20 32999.01 32498.90 33796.42 31098.38 31499.00 33795.26 19899.72 21596.06 32098.61 20599.03 239
bld_raw_dy_0_6498.26 18797.88 21899.40 13399.37 21699.09 13999.62 8898.94 32698.53 9299.40 15399.51 23988.93 34799.89 12799.00 8997.64 25699.23 218
WR-MVS_H98.13 19997.87 21998.90 20899.02 30398.84 17999.70 5399.59 5797.27 23998.40 31399.19 31795.53 18799.23 30998.34 18193.78 35998.61 324
DIV-MVS_self_test98.01 22097.85 22098.48 26499.24 25297.95 24898.71 36399.35 24696.50 30198.60 30299.54 22995.72 18299.03 34097.21 27695.77 31998.46 341
cl____98.01 22097.84 22198.55 25899.25 25197.97 24498.71 36399.34 25096.47 30798.59 30399.54 22995.65 18499.21 31797.21 27695.77 31998.46 341
dp97.75 26197.80 22297.59 33399.10 28793.71 37299.32 24298.88 34096.48 30599.08 22699.55 22492.67 28999.82 17596.52 31298.58 20899.24 217
thisisatest051598.14 19897.79 22399.19 16999.50 17998.50 21498.61 37096.82 39496.95 27199.54 12099.43 26391.66 31699.86 14298.08 20299.51 14399.22 220
V4298.06 20797.79 22398.86 22198.98 31198.84 17999.69 5699.34 25096.53 30099.30 17799.37 28094.67 22699.32 29597.57 25194.66 34398.42 344
DU-MVS98.08 20597.79 22398.96 19598.87 32498.98 15499.41 20899.45 19597.87 16998.71 28099.50 24394.82 21199.22 31298.57 15792.87 36998.68 286
CP-MVSNet98.09 20397.78 22699.01 18898.97 31399.24 11999.67 6599.46 18497.25 24198.48 31099.64 19093.79 26199.06 33698.63 14494.10 35398.74 268
ACMH+97.24 1097.92 23397.78 22698.32 28699.46 19096.68 31299.56 12399.54 8598.41 10497.79 34599.87 4490.18 33799.66 23898.05 20697.18 29198.62 315
tt080597.97 22797.77 22898.57 25399.59 14896.61 31599.45 18999.08 31098.21 12898.88 25999.80 10288.66 35399.70 22798.58 15497.72 25399.39 200
v2v48298.06 20797.77 22898.92 20298.90 31898.82 18399.57 11799.36 24096.65 28999.19 20699.35 28694.20 24599.25 30597.72 23794.97 33898.69 281
OurMVSNet-221017-097.88 23797.77 22898.19 29698.71 34696.53 31799.88 499.00 32097.79 18198.78 27499.94 691.68 31399.35 28997.21 27696.99 29598.69 281
IterMVS97.83 24797.77 22898.02 30799.58 15096.27 32699.02 31999.48 15597.22 24598.71 28099.70 15692.75 28199.13 32697.46 26296.00 31298.67 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet398.03 21597.76 23298.84 22599.39 21298.98 15499.40 21699.38 23196.67 28799.07 22799.28 30492.93 27698.98 34797.10 28496.65 29798.56 331
IterMVS-SCA-FT97.82 25097.75 23398.06 30499.57 15296.36 32399.02 31999.49 14397.18 24798.71 28099.72 15192.72 28499.14 32397.44 26495.86 31898.67 293
MVP-Stereo97.81 25297.75 23397.99 31197.53 37896.60 31698.96 33498.85 34497.22 24597.23 35699.36 28395.28 19599.46 26495.51 33499.78 10597.92 375
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WR-MVS98.06 20797.73 23599.06 18298.86 32799.25 11899.19 28399.35 24697.30 23798.66 28999.43 26393.94 25599.21 31798.58 15494.28 35098.71 273
CostFormer97.72 26697.73 23597.71 32899.15 28094.02 36899.54 14099.02 31894.67 36099.04 23599.35 28692.35 30199.77 19698.50 16697.94 24499.34 209
XVG-ACMP-BASELINE97.83 24797.71 23798.20 29599.11 28496.33 32499.41 20899.52 10198.06 15599.05 23499.50 24389.64 34299.73 21197.73 23597.38 28498.53 332
v114497.98 22497.69 23898.85 22498.87 32498.66 19599.54 14099.35 24696.27 31899.23 19699.35 28694.67 22699.23 30996.73 30495.16 33498.68 286
Anonymous2024052998.09 20397.68 23999.34 14099.66 12098.44 22199.40 21699.43 20993.67 36999.22 19799.89 3090.23 33699.93 8499.26 6898.33 22199.66 125
our_test_397.65 27897.68 23997.55 33498.62 35494.97 35598.84 35099.30 27596.83 28098.19 32799.34 29097.01 13599.02 34295.00 34696.01 31198.64 305
TranMVSNet+NR-MVSNet97.93 23097.66 24198.76 23798.78 33598.62 19999.65 7699.49 14397.76 18598.49 30999.60 20894.23 24498.97 35498.00 20992.90 36798.70 277
WB-MVSnew97.65 27897.65 24297.63 33098.78 33597.62 26499.13 29398.33 37397.36 23299.07 22798.94 34495.64 18599.15 32292.95 36998.68 20496.12 394
Patchmatch-test97.93 23097.65 24298.77 23699.18 26697.07 28699.03 31699.14 30496.16 32798.74 27799.57 21894.56 23199.72 21593.36 36499.11 17299.52 167
EPMVS97.82 25097.65 24298.35 28398.88 32195.98 33299.49 17594.71 40597.57 20699.26 19099.48 25192.46 29899.71 22197.87 21899.08 17799.35 206
cl2297.85 24297.64 24598.48 26499.09 29097.87 25298.60 37299.33 25797.11 25698.87 26299.22 31392.38 30099.17 32198.21 18995.99 31398.42 344
v897.95 22997.63 24698.93 20098.95 31598.81 18599.80 2699.41 21496.03 33799.10 22299.42 26594.92 20799.30 29896.94 29594.08 35498.66 301
NR-MVSNet97.97 22797.61 24799.02 18798.87 32499.26 11699.47 18599.42 21197.63 20197.08 36199.50 24395.07 20399.13 32697.86 21993.59 36098.68 286
v14419297.92 23397.60 24898.87 21798.83 33098.65 19699.55 13599.34 25096.20 32399.32 17399.40 27294.36 24099.26 30496.37 31795.03 33798.70 277
PS-CasMVS97.93 23097.59 24998.95 19798.99 30899.06 14699.68 6299.52 10197.13 25198.31 31899.68 17292.44 29999.05 33798.51 16594.08 35498.75 265
v14897.79 25597.55 25098.50 26198.74 34197.72 25999.54 14099.33 25796.26 31998.90 25699.51 23994.68 22599.14 32397.83 22393.15 36698.63 312
baseline297.87 23997.55 25098.82 22899.18 26698.02 24199.41 20896.58 39996.97 26896.51 36699.17 31893.43 26799.57 25697.71 23899.03 18198.86 252
tpm97.67 27697.55 25098.03 30599.02 30395.01 35499.43 19998.54 37096.44 30899.12 21799.34 29091.83 30999.60 25497.75 23396.46 30299.48 178
Anonymous2023121197.88 23797.54 25398.90 20899.71 9698.53 20799.48 17999.57 6494.16 36598.81 26999.68 17293.23 27099.42 27598.84 11794.42 34898.76 263
v7n97.87 23997.52 25498.92 20298.76 34098.58 20399.84 1399.46 18496.20 32398.91 25499.70 15694.89 20999.44 27096.03 32193.89 35798.75 265
v1097.85 24297.52 25498.86 22198.99 30898.67 19499.75 4299.41 21495.70 34198.98 24499.41 26994.75 22099.23 30996.01 32394.63 34498.67 293
thres600view797.86 24197.51 25698.92 20299.72 9197.95 24899.59 10298.74 35697.94 16499.27 18698.62 36191.75 31099.86 14293.73 36098.19 23398.96 248
testgi97.65 27897.50 25798.13 30299.36 22196.45 32099.42 20699.48 15597.76 18597.87 34199.45 26091.09 32598.81 36294.53 35098.52 21499.13 225
GBi-Net97.68 27397.48 25898.29 28999.51 17097.26 27599.43 19999.48 15596.49 30299.07 22799.32 29790.26 33398.98 34797.10 28496.65 29798.62 315
test197.68 27397.48 25898.29 28999.51 17097.26 27599.43 19999.48 15596.49 30299.07 22799.32 29790.26 33398.98 34797.10 28496.65 29798.62 315
tfpnnormal97.84 24597.47 26098.98 19299.20 26099.22 12199.64 7999.61 4896.32 31498.27 32299.70 15693.35 26999.44 27095.69 33095.40 32998.27 354
GA-MVS97.85 24297.47 26099.00 19099.38 21397.99 24398.57 37399.15 30297.04 26498.90 25699.30 30089.83 33999.38 27896.70 30698.33 22199.62 142
LF4IMVS97.52 28697.46 26297.70 32998.98 31195.55 34099.29 25298.82 34798.07 15198.66 28999.64 19089.97 33899.61 25397.01 28896.68 29697.94 373
ppachtmachnet_test97.49 29497.45 26397.61 33298.62 35495.24 34998.80 35499.46 18496.11 33298.22 32599.62 20196.45 15598.97 35493.77 35995.97 31698.61 324
thres100view90097.76 25797.45 26398.69 24399.72 9197.86 25499.59 10298.74 35697.93 16599.26 19098.62 36191.75 31099.83 16893.22 36598.18 23498.37 350
v192192097.80 25497.45 26398.84 22598.80 33198.53 20799.52 14999.34 25096.15 32999.24 19299.47 25493.98 25499.29 29995.40 33895.13 33598.69 281
Baseline_NR-MVSNet97.76 25797.45 26398.68 24499.09 29098.29 22799.41 20898.85 34495.65 34298.63 29799.67 17894.82 21199.10 33398.07 20592.89 36898.64 305
MIMVSNet97.73 26497.45 26398.57 25399.45 19597.50 26799.02 31998.98 32296.11 33299.41 14899.14 32290.28 33298.74 36595.74 32898.93 18799.47 184
test_vis1_n97.92 23397.44 26899.34 14099.53 16398.08 23899.74 4599.49 14399.15 20100.00 199.94 679.51 39399.98 1399.88 1499.76 11199.97 4
v119297.81 25297.44 26898.91 20698.88 32198.68 19399.51 15799.34 25096.18 32599.20 20399.34 29094.03 25299.36 28695.32 34095.18 33398.69 281
VPNet97.84 24597.44 26899.01 18899.21 25898.94 16799.48 17999.57 6498.38 10699.28 18199.73 14788.89 34899.39 27799.19 7293.27 36498.71 273
PEN-MVS97.76 25797.44 26898.72 23998.77 33998.54 20699.78 3399.51 11597.06 26198.29 32199.64 19092.63 29098.89 36098.09 19893.16 36598.72 271
cascas97.69 27197.43 27298.48 26498.60 35797.30 27198.18 39199.39 22392.96 37798.41 31298.78 35793.77 26299.27 30398.16 19598.61 20598.86 252
test0.0.03 197.71 26997.42 27398.56 25698.41 36697.82 25598.78 35698.63 36697.34 23398.05 33598.98 34094.45 23898.98 34795.04 34597.15 29298.89 251
TR-MVS97.76 25797.41 27498.82 22899.06 29797.87 25298.87 34898.56 36896.63 29398.68 28899.22 31392.49 29499.65 24395.40 33897.79 25198.95 250
Patchmtry97.75 26197.40 27598.81 23199.10 28798.87 17499.11 30299.33 25794.83 35798.81 26999.38 27794.33 24199.02 34296.10 31995.57 32598.53 332
tfpn200view997.72 26697.38 27698.72 23999.69 10697.96 24699.50 16498.73 36197.83 17699.17 21198.45 36691.67 31499.83 16893.22 36598.18 23498.37 350
thres40097.77 25697.38 27698.92 20299.69 10697.96 24699.50 16498.73 36197.83 17699.17 21198.45 36691.67 31499.83 16893.22 36598.18 23498.96 248
tpm cat197.39 29897.36 27897.50 33699.17 27493.73 37199.43 19999.31 27191.27 38398.71 28099.08 32794.31 24399.77 19696.41 31698.50 21599.00 242
FMVSNet297.72 26697.36 27898.80 23399.51 17098.84 17999.45 18999.42 21196.49 30298.86 26699.29 30290.26 33398.98 34796.44 31496.56 30098.58 329
LFMVS97.90 23697.35 28099.54 9799.52 16799.01 15299.39 22098.24 37697.10 25799.65 8999.79 11484.79 37999.91 10599.28 6398.38 21899.69 115
VDD-MVS97.73 26497.35 28098.88 21399.47 18997.12 28199.34 23998.85 34498.19 13199.67 7899.85 5382.98 38699.92 9599.49 4098.32 22599.60 146
DSMNet-mixed97.25 30497.35 28096.95 35097.84 37393.61 37599.57 11796.63 39796.13 33198.87 26298.61 36394.59 22997.70 38795.08 34498.86 19399.55 159
tpm297.44 29697.34 28397.74 32799.15 28094.36 36599.45 18998.94 32693.45 37498.90 25699.44 26191.35 32299.59 25597.31 27198.07 24099.29 213
TAPA-MVS97.07 1597.74 26397.34 28398.94 19899.70 10197.53 26699.25 27399.51 11591.90 38199.30 17799.63 19698.78 4899.64 24688.09 39199.87 5599.65 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SixPastTwentyTwo97.50 28997.33 28598.03 30598.65 35196.23 32899.77 3598.68 36497.14 25097.90 33999.93 990.45 33199.18 32097.00 28996.43 30398.67 293
MS-PatchMatch97.24 30697.32 28696.99 34798.45 36493.51 37698.82 35299.32 26797.41 22898.13 33099.30 30088.99 34699.56 25795.68 33199.80 9897.90 376
v124097.69 27197.32 28698.79 23498.85 32898.43 22299.48 17999.36 24096.11 33299.27 18699.36 28393.76 26399.24 30894.46 35195.23 33298.70 277
test_fmvs297.25 30497.30 28897.09 34699.43 19793.31 37799.73 4898.87 34298.83 6499.28 18199.80 10284.45 38199.66 23897.88 21697.45 27698.30 352
pmmvs597.52 28697.30 28898.16 29898.57 35996.73 30899.27 26298.90 33796.14 33098.37 31599.53 23391.54 31999.14 32397.51 25695.87 31798.63 312
UWE-MVS97.58 28397.29 29098.48 26499.09 29096.25 32799.01 32496.61 39897.86 17099.19 20699.01 33688.72 35099.90 11697.38 26898.69 20399.28 214
h-mvs3397.70 27097.28 29198.97 19499.70 10197.27 27399.36 23199.45 19598.94 5499.66 8399.64 19094.93 20599.99 499.48 4184.36 39299.65 129
pm-mvs197.68 27397.28 29198.88 21399.06 29798.62 19999.50 16499.45 19596.32 31497.87 34199.79 11492.47 29599.35 28997.54 25493.54 36198.67 293
thres20097.61 28197.28 29198.62 24799.64 12898.03 24099.26 27198.74 35697.68 19699.09 22598.32 37191.66 31699.81 18092.88 37098.22 22998.03 366
TESTMET0.1,197.55 28497.27 29498.40 27998.93 31696.53 31798.67 36597.61 38896.96 26998.64 29699.28 30488.63 35599.45 26597.30 27299.38 15099.21 221
USDC97.34 30097.20 29597.75 32699.07 29495.20 35098.51 37799.04 31697.99 16198.31 31899.86 4889.02 34599.55 25995.67 33297.36 28598.49 335
DTE-MVSNet97.51 28897.19 29698.46 27098.63 35398.13 23699.84 1399.48 15596.68 28697.97 33899.67 17892.92 27798.56 36996.88 30092.60 37298.70 277
Syy-MVS97.09 31197.14 29796.95 35099.00 30592.73 38199.29 25299.39 22397.06 26197.41 35098.15 37593.92 25798.68 36791.71 37798.34 21999.45 191
hse-mvs297.50 28997.14 29798.59 24999.49 18197.05 28899.28 25799.22 29298.94 5499.66 8399.42 26594.93 20599.65 24399.48 4183.80 39499.08 231
test-mter97.49 29497.13 29998.55 25898.79 33297.10 28298.67 36597.75 38596.65 28998.61 30098.85 35088.23 35999.45 26597.25 27499.38 15099.10 226
testing1197.50 28997.10 30098.71 24199.20 26096.91 30199.29 25298.82 34797.89 16898.21 32698.40 36885.63 37399.83 16898.45 17298.04 24199.37 204
PAPM97.59 28297.09 30199.07 18199.06 29798.26 22998.30 38799.10 30794.88 35598.08 33199.34 29096.27 16199.64 24689.87 38498.92 18999.31 212
PCF-MVS97.08 1497.66 27797.06 30299.47 12299.61 14199.09 13998.04 39399.25 28791.24 38498.51 30799.70 15694.55 23399.91 10592.76 37399.85 7099.42 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testing9197.44 29697.02 30398.71 24199.18 26696.89 30399.19 28399.04 31697.78 18398.31 31898.29 37285.41 37599.85 14898.01 20897.95 24399.39 200
VDDNet97.55 28497.02 30399.16 17299.49 18198.12 23799.38 22599.30 27595.35 34599.68 7499.90 2682.62 38899.93 8499.31 5898.13 23899.42 195
JIA-IIPM97.50 28997.02 30398.93 20098.73 34297.80 25699.30 24798.97 32391.73 38298.91 25494.86 39695.10 20299.71 22197.58 24797.98 24299.28 214
testing9997.36 29996.94 30698.63 24699.18 26696.70 30999.30 24798.93 32897.71 19198.23 32398.26 37384.92 37899.84 15598.04 20797.85 25099.35 206
ETVMVS97.50 28996.90 30799.29 15599.23 25398.78 18899.32 24298.90 33797.52 21598.56 30498.09 38084.72 38099.69 23297.86 21997.88 24799.39 200
TinyColmap97.12 30996.89 30897.83 32199.07 29495.52 34398.57 37398.74 35697.58 20597.81 34499.79 11488.16 36099.56 25795.10 34397.21 28998.39 348
UniMVSNet_ETH3D97.32 30196.81 30998.87 21799.40 20997.46 26899.51 15799.53 9695.86 34098.54 30699.77 12882.44 38999.66 23898.68 13997.52 26799.50 176
K. test v397.10 31096.79 31098.01 30898.72 34496.33 32499.87 997.05 39297.59 20396.16 37099.80 10288.71 35199.04 33896.69 30796.55 30198.65 303
testing397.28 30296.76 31198.82 22899.37 21698.07 23999.45 18999.36 24097.56 20897.89 34098.95 34383.70 38498.82 36196.03 32198.56 21199.58 154
test250696.81 31696.65 31297.29 34199.74 8092.21 38499.60 9685.06 41399.13 2299.77 5199.93 987.82 36599.85 14899.38 4899.38 15099.80 70
TransMVSNet (Re)97.15 30896.58 31398.86 22199.12 28298.85 17899.49 17598.91 33595.48 34497.16 35999.80 10293.38 26899.11 33194.16 35791.73 37498.62 315
MVS97.28 30296.55 31499.48 11998.78 33598.95 16499.27 26299.39 22383.53 39698.08 33199.54 22996.97 13799.87 13894.23 35599.16 16699.63 140
testing22297.16 30796.50 31599.16 17299.16 27698.47 21999.27 26298.66 36597.71 19198.23 32398.15 37582.28 39099.84 15597.36 26997.66 25599.18 222
APD_test195.87 33296.49 31694.00 36699.53 16384.01 39499.54 14099.32 26795.91 33997.99 33699.85 5385.49 37499.88 13391.96 37698.84 19598.12 361
PatchT97.03 31296.44 31798.79 23498.99 30898.34 22699.16 28799.07 31392.13 38099.52 12497.31 38994.54 23498.98 34788.54 38998.73 20299.03 239
myMVS_eth3d96.89 31396.37 31898.43 27699.00 30597.16 27999.29 25299.39 22397.06 26197.41 35098.15 37583.46 38598.68 36795.27 34198.34 21999.45 191
FMVSNet196.84 31596.36 31998.29 28999.32 23497.26 27599.43 19999.48 15595.11 34998.55 30599.32 29783.95 38398.98 34795.81 32696.26 30798.62 315
AUN-MVS96.88 31496.31 32098.59 24999.48 18897.04 29199.27 26299.22 29297.44 22498.51 30799.41 26991.97 30599.66 23897.71 23883.83 39399.07 236
test_040296.64 31896.24 32197.85 31898.85 32896.43 32199.44 19599.26 28593.52 37196.98 36399.52 23688.52 35699.20 31992.58 37597.50 27097.93 374
FMVSNet596.43 32396.19 32297.15 34299.11 28495.89 33499.32 24299.52 10194.47 36498.34 31799.07 32887.54 36697.07 39192.61 37495.72 32298.47 338
dmvs_testset95.02 34196.12 32391.72 37499.10 28780.43 40299.58 11097.87 38497.47 21895.22 37698.82 35293.99 25395.18 39988.09 39194.91 34199.56 158
UnsupCasMVSNet_eth96.44 32296.12 32397.40 33898.65 35195.65 33799.36 23199.51 11597.13 25196.04 37298.99 33888.40 35798.17 37696.71 30590.27 38298.40 347
pmmvs696.53 32096.09 32597.82 32398.69 34895.47 34499.37 22799.47 17593.46 37397.41 35099.78 12087.06 36899.33 29296.92 29892.70 37198.65 303
Anonymous2023120696.22 32596.03 32696.79 35597.31 38394.14 36799.63 8399.08 31096.17 32697.04 36299.06 33093.94 25597.76 38686.96 39595.06 33698.47 338
new_pmnet96.38 32496.03 32697.41 33798.13 37095.16 35399.05 31199.20 29693.94 36697.39 35398.79 35691.61 31899.04 33890.43 38295.77 31998.05 365
test20.0396.12 32995.96 32896.63 35697.44 37995.45 34599.51 15799.38 23196.55 29996.16 37099.25 31093.76 26396.17 39687.35 39494.22 35198.27 354
RPMNet96.72 31795.90 32999.19 16999.18 26698.49 21599.22 28099.52 10188.72 39299.56 11597.38 38694.08 25199.95 5986.87 39698.58 20899.14 223
Anonymous2024052196.20 32795.89 33097.13 34497.72 37794.96 35699.79 3299.29 27993.01 37697.20 35899.03 33389.69 34198.36 37391.16 38096.13 30998.07 363
N_pmnet94.95 34495.83 33192.31 37298.47 36379.33 40499.12 29692.81 41093.87 36797.68 34699.13 32393.87 25899.01 34491.38 37996.19 30898.59 328
Patchmatch-RL test95.84 33395.81 33295.95 36295.61 39390.57 38898.24 38898.39 37295.10 35195.20 37798.67 36094.78 21597.77 38596.28 31890.02 38399.51 173
EG-PatchMatch MVS95.97 33195.69 33396.81 35497.78 37492.79 38099.16 28798.93 32896.16 32794.08 38399.22 31382.72 38799.47 26395.67 33297.50 27098.17 359
test_vis1_rt95.81 33495.65 33496.32 36099.67 11191.35 38799.49 17596.74 39698.25 12195.24 37598.10 37974.96 39499.90 11699.53 3298.85 19497.70 379
ET-MVSNet_ETH3D96.49 32195.64 33599.05 18499.53 16398.82 18398.84 35097.51 39097.63 20184.77 39699.21 31692.09 30398.91 35898.98 9292.21 37399.41 197
PVSNet_094.43 1996.09 33095.47 33697.94 31399.31 23594.34 36697.81 39499.70 1597.12 25397.46 34998.75 35889.71 34099.79 18997.69 24181.69 39699.68 119
X-MVStestdata96.55 31995.45 33799.87 1199.85 2699.83 1699.69 5699.68 2098.98 4899.37 16164.01 40998.81 4499.94 6998.79 12599.86 6399.84 40
IB-MVS95.67 1896.22 32595.44 33898.57 25399.21 25896.70 30998.65 36897.74 38796.71 28497.27 35598.54 36486.03 37099.92 9598.47 17086.30 39099.10 226
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune96.17 32895.32 33998.73 23898.79 33298.14 23599.38 22594.09 40691.07 38698.07 33491.04 40289.62 34399.35 28996.75 30399.09 17698.68 286
MVS-HIRNet95.75 33595.16 34097.51 33599.30 23693.69 37398.88 34695.78 40085.09 39598.78 27492.65 39891.29 32399.37 28294.85 34799.85 7099.46 188
MIMVSNet195.51 33695.04 34196.92 35297.38 38095.60 33899.52 14999.50 13593.65 37096.97 36499.17 31885.28 37796.56 39588.36 39095.55 32698.60 327
CMPMVSbinary69.68 2394.13 35094.90 34291.84 37397.24 38480.01 40398.52 37699.48 15589.01 39091.99 39199.67 17885.67 37299.13 32695.44 33697.03 29396.39 391
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs-eth3d95.34 34094.73 34397.15 34295.53 39595.94 33399.35 23699.10 30795.13 34793.55 38597.54 38488.15 36197.91 38294.58 34989.69 38597.61 380
MDA-MVSNet_test_wron95.45 33794.60 34498.01 30898.16 36997.21 27899.11 30299.24 28993.49 37280.73 40298.98 34093.02 27498.18 37594.22 35694.45 34798.64 305
TDRefinement95.42 33894.57 34597.97 31289.83 40696.11 33199.48 17998.75 35396.74 28296.68 36599.88 3688.65 35499.71 22198.37 17882.74 39598.09 362
YYNet195.36 33994.51 34697.92 31497.89 37297.10 28299.10 30499.23 29093.26 37580.77 40199.04 33292.81 28098.02 37994.30 35294.18 35298.64 305
KD-MVS_self_test95.00 34294.34 34796.96 34997.07 38895.39 34799.56 12399.44 20395.11 34997.13 36097.32 38891.86 30897.27 39090.35 38381.23 39798.23 358
WB-MVS93.10 35494.10 34890.12 37995.51 39781.88 39999.73 4899.27 28495.05 35293.09 38898.91 34994.70 22491.89 40376.62 40294.02 35696.58 389
new-patchmatchnet94.48 34894.08 34995.67 36395.08 39892.41 38299.18 28599.28 28194.55 36393.49 38697.37 38787.86 36497.01 39291.57 37888.36 38697.61 380
MDA-MVSNet-bldmvs94.96 34393.98 35097.92 31498.24 36897.27 27399.15 29099.33 25793.80 36880.09 40399.03 33388.31 35897.86 38493.49 36394.36 34998.62 315
CL-MVSNet_self_test94.49 34793.97 35196.08 36196.16 39093.67 37498.33 38599.38 23195.13 34797.33 35498.15 37592.69 28896.57 39488.67 38879.87 39897.99 370
SSC-MVS92.73 35693.73 35289.72 38095.02 39981.38 40099.76 3899.23 29094.87 35692.80 38998.93 34594.71 22391.37 40474.49 40493.80 35896.42 390
KD-MVS_2432*160094.62 34593.72 35397.31 33997.19 38695.82 33598.34 38399.20 29695.00 35397.57 34798.35 36987.95 36298.10 37792.87 37177.00 40098.01 367
miper_refine_blended94.62 34593.72 35397.31 33997.19 38695.82 33598.34 38399.20 29695.00 35397.57 34798.35 36987.95 36298.10 37792.87 37177.00 40098.01 367
OpenMVS_ROBcopyleft92.34 2094.38 34993.70 35596.41 35997.38 38093.17 37899.06 30998.75 35386.58 39394.84 38198.26 37381.53 39199.32 29589.01 38797.87 24896.76 387
mvsany_test393.77 35293.45 35694.74 36595.78 39288.01 39199.64 7998.25 37598.28 11794.31 38297.97 38268.89 39798.51 37197.50 25790.37 38197.71 377
pmmvs394.09 35193.25 35796.60 35794.76 40094.49 36298.92 34298.18 38089.66 38796.48 36798.06 38186.28 36997.33 38989.68 38587.20 38997.97 372
UnsupCasMVSNet_bld93.53 35392.51 35896.58 35897.38 38093.82 36998.24 38899.48 15591.10 38593.10 38796.66 39174.89 39598.37 37294.03 35887.71 38897.56 382
PM-MVS92.96 35592.23 35995.14 36495.61 39389.98 39099.37 22798.21 37894.80 35895.04 38097.69 38365.06 39897.90 38394.30 35289.98 38497.54 383
test_fmvs392.10 35791.77 36093.08 37096.19 38986.25 39299.82 1798.62 36796.65 28995.19 37896.90 39055.05 40595.93 39896.63 31190.92 38097.06 386
test_method91.10 35991.36 36190.31 37895.85 39173.72 41194.89 39999.25 28768.39 40295.82 37399.02 33580.50 39298.95 35693.64 36194.89 34298.25 356
test_f91.90 35891.26 36293.84 36795.52 39685.92 39399.69 5698.53 37195.31 34693.87 38496.37 39355.33 40498.27 37495.70 32990.98 37997.32 385
testf190.42 36190.68 36389.65 38197.78 37473.97 40999.13 29398.81 34989.62 38891.80 39298.93 34562.23 40198.80 36386.61 39791.17 37696.19 392
APD_test290.42 36190.68 36389.65 38197.78 37473.97 40999.13 29398.81 34989.62 38891.80 39298.93 34562.23 40198.80 36386.61 39791.17 37696.19 392
Gipumacopyleft90.99 36090.15 36593.51 36898.73 34290.12 38993.98 40099.45 19579.32 39892.28 39094.91 39569.61 39697.98 38187.42 39395.67 32392.45 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_vis3_rt87.04 36385.81 36690.73 37793.99 40181.96 39899.76 3890.23 41292.81 37881.35 40091.56 40040.06 40999.07 33594.27 35488.23 38791.15 400
FPMVS84.93 36685.65 36782.75 38786.77 40863.39 41398.35 38298.92 33174.11 39983.39 39898.98 34050.85 40692.40 40284.54 40094.97 33892.46 397
PMMVS286.87 36485.37 36891.35 37690.21 40583.80 39598.89 34597.45 39183.13 39791.67 39495.03 39448.49 40794.70 40085.86 39977.62 39995.54 395
LCM-MVSNet86.80 36585.22 36991.53 37587.81 40780.96 40198.23 39098.99 32171.05 40090.13 39596.51 39248.45 40896.88 39390.51 38185.30 39196.76 387
tmp_tt82.80 36781.52 37086.66 38366.61 41368.44 41292.79 40297.92 38268.96 40180.04 40499.85 5385.77 37196.15 39797.86 21943.89 40695.39 396
E-PMN80.61 36979.88 37182.81 38690.75 40476.38 40797.69 39595.76 40166.44 40483.52 39792.25 39962.54 40087.16 40668.53 40661.40 40384.89 404
EMVS80.02 37079.22 37282.43 38891.19 40376.40 40697.55 39792.49 41166.36 40583.01 39991.27 40164.63 39985.79 40765.82 40760.65 40485.08 403
EGC-MVSNET82.80 36777.86 37397.62 33197.91 37196.12 33099.33 24199.28 2818.40 41025.05 41199.27 30784.11 38299.33 29289.20 38698.22 22997.42 384
PMVScopyleft70.75 2275.98 37374.97 37479.01 38970.98 41255.18 41493.37 40198.21 37865.08 40661.78 40793.83 39721.74 41492.53 40178.59 40191.12 37889.34 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ANet_high77.30 37174.86 37584.62 38575.88 41177.61 40597.63 39693.15 40988.81 39164.27 40689.29 40336.51 41083.93 40875.89 40352.31 40592.33 399
MVEpermissive76.82 2176.91 37274.31 37684.70 38485.38 41076.05 40896.88 39893.17 40867.39 40371.28 40589.01 40421.66 41587.69 40571.74 40572.29 40290.35 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs39.17 37543.78 37725.37 39236.04 41516.84 41798.36 38126.56 41420.06 40838.51 40967.32 40529.64 41215.30 41137.59 40939.90 40743.98 406
test12339.01 37642.50 37828.53 39139.17 41420.91 41698.75 35919.17 41619.83 40938.57 40866.67 40633.16 41115.42 41037.50 41029.66 40849.26 405
wuyk23d40.18 37441.29 37936.84 39086.18 40949.12 41579.73 40322.81 41527.64 40725.46 41028.45 41021.98 41348.89 40955.80 40823.56 40912.51 407
cdsmvs_eth3d_5k24.64 37732.85 3800.00 3930.00 4160.00 4180.00 40499.51 1150.00 4110.00 41299.56 22196.58 1490.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.30 37811.06 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41299.58 2140.00 4160.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas8.27 37911.03 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 41299.01 180.00 4120.00 4110.00 4100.00 408
test_blank0.13 3800.17 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4121.57 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.02 3810.03 3840.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.27 4120.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS97.16 27995.47 335
FOURS199.91 199.93 199.87 999.56 6999.10 2799.81 37
MSC_two_6792asdad99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10799.84 7899.89 20
PC_three_145298.18 13499.84 2999.70 15699.31 398.52 37098.30 18699.80 9899.81 61
No_MVS99.87 1199.51 17099.76 3799.33 25799.96 3098.87 10799.84 7899.89 20
test_one_060199.81 4699.88 899.49 14398.97 5199.65 8999.81 8999.09 14
eth-test20.00 416
eth-test0.00 416
ZD-MVS99.71 9699.79 3099.61 4896.84 27899.56 11599.54 22998.58 7299.96 3096.93 29699.75 113
IU-MVS99.84 3299.88 899.32 26798.30 11699.84 2998.86 11299.85 7099.89 20
OPU-MVS99.64 7899.56 15699.72 4299.60 9699.70 15699.27 599.42 27598.24 18899.80 9899.79 74
test_241102_TWO99.48 15599.08 3399.88 2099.81 8998.94 2999.96 3098.91 10199.84 7899.88 26
test_241102_ONE99.84 3299.90 299.48 15599.07 3599.91 1699.74 14199.20 799.76 200
save fliter99.76 6599.59 7099.14 29299.40 22099.00 43
test_0728_THIRD98.99 4599.81 3799.80 10299.09 1499.96 3098.85 11499.90 4099.88 26
test_0728_SECOND99.91 299.84 3299.89 499.57 11799.51 11599.96 3098.93 9899.86 6399.88 26
test072699.85 2699.89 499.62 8899.50 13599.10 2799.86 2799.82 7598.94 29
GSMVS99.52 167
test_part299.81 4699.83 1699.77 51
sam_mvs194.86 21099.52 167
sam_mvs94.72 222
ambc93.06 37192.68 40282.36 39698.47 37898.73 36195.09 37997.41 38555.55 40399.10 33396.42 31591.32 37597.71 377
MTGPAbinary99.47 175
test_post199.23 27665.14 40894.18 24899.71 22197.58 247
test_post65.99 40794.65 22899.73 211
patchmatchnet-post98.70 35994.79 21499.74 205
GG-mvs-BLEND98.45 27198.55 36098.16 23399.43 19993.68 40797.23 35698.46 36589.30 34499.22 31295.43 33798.22 22997.98 371
MTMP99.54 14098.88 340
gm-plane-assit98.54 36192.96 37994.65 36199.15 32199.64 24697.56 252
test9_res97.49 25899.72 11999.75 88
TEST999.67 11199.65 5799.05 31199.41 21496.22 32298.95 24899.49 24698.77 5199.91 105
test_899.67 11199.61 6799.03 31699.41 21496.28 31698.93 25299.48 25198.76 5299.91 105
agg_prior297.21 27699.73 11899.75 88
agg_prior99.67 11199.62 6599.40 22098.87 26299.91 105
TestCases99.31 14799.86 2098.48 21799.61 4897.85 17399.36 16599.85 5395.95 17099.85 14896.66 30999.83 8799.59 150
test_prior499.56 7598.99 327
test_prior298.96 33498.34 11299.01 23899.52 23698.68 6497.96 21199.74 116
test_prior99.68 6899.67 11199.48 8999.56 6999.83 16899.74 92
旧先验298.96 33496.70 28599.47 13299.94 6998.19 191
新几何299.01 324
新几何199.75 5899.75 7399.59 7099.54 8596.76 28199.29 18099.64 19098.43 8399.94 6996.92 29899.66 12999.72 103
旧先验199.74 8099.59 7099.54 8599.69 16698.47 8099.68 12799.73 97
无先验98.99 32799.51 11596.89 27599.93 8497.53 25599.72 103
原ACMM298.95 338
原ACMM199.65 7399.73 8799.33 10399.47 17597.46 21999.12 21799.66 18398.67 6699.91 10597.70 24099.69 12499.71 112
test22299.75 7399.49 8798.91 34499.49 14396.42 31099.34 17199.65 18498.28 9299.69 12499.72 103
testdata299.95 5996.67 308
segment_acmp98.96 24
testdata99.54 9799.75 7398.95 16499.51 11597.07 25999.43 14199.70 15698.87 3799.94 6997.76 23199.64 13299.72 103
testdata198.85 34998.32 115
test1299.75 5899.64 12899.61 6799.29 27999.21 20098.38 8799.89 12799.74 11699.74 92
plane_prior799.29 24097.03 292
plane_prior699.27 24596.98 29692.71 286
plane_prior599.47 17599.69 23297.78 22797.63 25798.67 293
plane_prior499.61 205
plane_prior397.00 29498.69 7999.11 219
plane_prior299.39 22098.97 51
plane_prior199.26 247
plane_prior96.97 29799.21 28298.45 10097.60 260
n20.00 417
nn0.00 417
door-mid98.05 381
lessismore_v097.79 32598.69 34895.44 34694.75 40495.71 37499.87 4488.69 35299.32 29595.89 32494.93 34098.62 315
LGP-MVS_train98.49 26299.33 22897.05 28899.55 7797.46 21999.24 19299.83 6792.58 29199.72 21598.09 19897.51 26898.68 286
test1199.35 246
door97.92 382
HQP5-MVS96.83 304
HQP-NCC99.19 26398.98 33098.24 12298.66 289
ACMP_Plane99.19 26398.98 33098.24 12298.66 289
BP-MVS97.19 280
HQP4-MVS98.66 28999.64 24698.64 305
HQP3-MVS99.39 22397.58 262
HQP2-MVS92.47 295
NP-MVS99.23 25396.92 30099.40 272
MDTV_nov1_ep13_2view95.18 35299.35 23696.84 27899.58 11195.19 20197.82 22499.46 188
ACMMP++_ref97.19 290
ACMMP++97.43 280
Test By Simon98.75 55
ITE_SJBPF98.08 30399.29 24096.37 32298.92 33198.34 11298.83 26799.75 13691.09 32599.62 25295.82 32597.40 28298.25 356
DeepMVS_CXcopyleft93.34 36999.29 24082.27 39799.22 29285.15 39496.33 36899.05 33190.97 32799.73 21193.57 36297.77 25298.01 367