This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7898.88 10999.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 2099.89 5
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7698.89 10499.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 4699.90 3
test_fmvsm_n_192098.87 1099.01 398.45 9599.42 5596.43 12798.96 9099.36 998.63 599.86 299.51 1395.91 3999.97 199.72 599.75 4298.94 176
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7598.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4299.81 1399.70 53
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 3899.72 5299.74 37
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12697.25 9098.82 12799.34 1098.75 399.80 599.61 495.16 6899.95 799.70 699.80 2099.93 1
patch_mono-298.36 5098.87 696.82 21999.53 3690.68 32598.64 17099.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1699.86 199.82 16
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1298.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2199.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8598.58 14997.62 2499.45 2599.46 2497.42 999.94 898.47 3899.81 1399.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5998.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 7899.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS98.64 1698.68 1198.53 8799.33 5998.36 4198.90 10098.85 7897.28 4599.72 1299.39 3296.63 2097.60 35298.17 5499.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20498.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 8899.84 1099.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4699.14 5198.66 13196.84 7199.56 2099.31 5196.34 2599.70 11998.32 4899.73 4999.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
dcpmvs_298.08 6098.59 1496.56 24399.57 3390.34 33299.15 4998.38 19496.82 7399.29 3499.49 1795.78 4399.57 14298.94 1999.86 199.77 27
MSLP-MVS++98.56 2998.57 1598.55 8399.26 8096.80 10798.71 15699.05 3697.28 4598.84 6299.28 5496.47 2399.40 17398.52 3699.70 5599.47 100
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19698.81 8697.72 1798.76 6899.16 7797.05 1399.78 10198.06 5999.66 6299.69 56
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4799.26 2998.88 6297.52 2999.41 2898.78 13096.00 3599.79 9897.79 7799.59 7799.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
fmvsm_s_conf0.5_n98.42 4498.51 1898.13 12499.30 6895.25 19098.85 11999.39 797.94 1499.74 999.62 392.59 11099.91 3999.65 799.52 9399.25 133
test_fmvsmvis_n_192098.44 4198.51 1898.23 11598.33 17996.15 14298.97 8599.15 2898.55 798.45 8999.55 694.26 9199.97 199.65 799.66 6298.57 212
CS-MVS-test98.49 3598.50 2098.46 9499.20 9297.05 9799.64 498.50 16997.45 3598.88 6099.14 8195.25 6499.15 19998.83 2299.56 8799.20 139
CS-MVS98.44 4198.49 2198.31 10799.08 10796.73 11199.67 398.47 17597.17 5598.94 5399.10 8695.73 4499.13 20298.71 2499.49 9799.09 157
XVS98.70 1498.49 2199.34 2399.70 2298.35 4299.29 2498.88 6297.40 3698.46 8699.20 6795.90 4199.89 4797.85 7399.74 4699.78 21
DeepPCF-MVS96.37 297.93 6798.48 2396.30 26999.00 11489.54 34497.43 30598.87 6998.16 1199.26 3699.38 3796.12 3199.64 13198.30 4999.77 3299.72 45
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 23597.15 9598.84 12398.97 4298.75 399.43 2799.54 893.29 10299.93 2599.64 999.79 2699.89 5
fmvsm_s_conf0.5_n_a98.38 4798.42 2598.27 10999.09 10695.41 18098.86 11799.37 897.69 2199.78 699.61 492.38 11399.91 3999.58 1099.43 10599.49 96
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4599.23 3398.96 4596.10 10898.94 5399.17 7496.06 3299.92 3197.62 8999.78 3099.75 35
EI-MVSNet-Vis-set98.47 3898.39 2798.69 7499.46 4996.49 12498.30 21698.69 12097.21 5298.84 6299.36 4295.41 5399.78 10198.62 2699.65 6599.80 18
region2R98.61 1898.38 2899.29 2999.74 798.16 5399.23 3398.93 5096.15 10598.94 5399.17 7495.91 3999.94 897.55 9899.79 2699.78 21
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20598.68 12397.04 6398.52 8598.80 12896.78 1699.83 6997.93 6699.61 7399.74 37
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5499.23 3398.95 4696.10 10898.93 5799.19 7295.70 4599.94 897.62 8999.79 2699.78 21
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6499.34 1898.87 6995.96 11198.60 8199.13 8296.05 3399.94 897.77 7899.86 199.77 27
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6499.11 5698.80 9396.49 9099.17 4199.35 4495.34 5899.82 7697.72 8199.65 6599.71 49
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 5199.09 6098.82 8196.58 8599.10 4699.32 4995.39 5499.82 7697.70 8599.63 7099.72 45
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19798.76 10497.82 1698.45 8998.93 11496.65 1999.83 6997.38 10799.41 10799.71 49
RE-MVS-def98.34 3599.49 4597.86 6499.11 5698.80 9396.49 9099.17 4199.35 4495.29 6197.72 8199.65 6599.71 49
EI-MVSNet-UG-set98.41 4598.34 3598.61 7999.45 5296.32 13598.28 21998.68 12397.17 5598.74 6999.37 3895.25 6499.79 9898.57 2799.54 9099.73 42
MVS_111021_HR98.47 3898.34 3598.88 6899.22 8997.32 8397.91 26499.58 397.20 5398.33 9799.00 10395.99 3699.64 13198.05 6199.76 3899.69 56
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5998.50 19398.78 10097.72 1798.92 5999.28 5495.27 6299.82 7697.55 9899.77 3299.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6399.15 4998.81 8696.24 10199.20 3899.37 3895.30 6099.80 8897.73 8099.67 6099.72 45
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15599.32 3399.39 3296.22 2699.84 6797.72 8199.73 4999.67 65
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12798.81 8695.80 12099.16 4499.47 2095.37 5699.92 3197.89 7099.75 4299.79 19
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 10098.74 10897.27 4998.02 11299.39 3294.81 7799.96 497.91 6899.79 2699.77 27
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5999.28 2698.81 8696.24 10198.35 9699.23 6295.46 5199.94 897.42 10599.81 1399.77 27
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9198.80 9393.67 23299.37 3199.52 1196.52 2299.89 4798.06 5999.81 1399.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15598.66 13197.51 3098.15 10198.83 12595.70 4599.92 3197.53 10099.67 6099.66 68
MM98.51 3398.24 4699.33 2699.12 10298.14 5698.93 9697.02 33798.96 199.17 4199.47 2091.97 13199.94 899.85 499.69 5799.91 2
TSAR-MVS + GP.98.38 4798.24 4698.81 7099.22 8997.25 9098.11 24298.29 21397.19 5498.99 5299.02 9896.22 2699.67 12698.52 3698.56 15099.51 89
PGM-MVS98.49 3598.23 4899.27 3499.72 1298.08 5898.99 8299.49 595.43 13799.03 4799.32 4995.56 4899.94 896.80 13699.77 3299.78 21
MVS_111021_LR98.34 5398.23 4898.67 7699.27 7896.90 10397.95 25999.58 397.14 5898.44 9199.01 10295.03 7399.62 13797.91 6899.75 4299.50 91
MVS_030498.47 3898.22 5099.21 3999.00 11497.80 6998.88 10995.32 37698.86 298.53 8499.44 2794.38 8799.94 899.86 199.70 5599.90 3
fmvsm_s_conf0.1_n98.18 5998.21 5198.11 12898.54 16095.24 19198.87 11499.24 1797.50 3199.70 1399.67 191.33 14799.89 4799.47 1299.54 9099.21 138
ZNCC-MVS98.49 3598.20 5299.35 2299.73 1198.39 3499.19 4498.86 7595.77 12198.31 9999.10 8695.46 5199.93 2597.57 9799.81 1399.74 37
DELS-MVS98.40 4698.20 5298.99 5799.00 11497.66 7097.75 28398.89 5997.71 1998.33 9798.97 10594.97 7499.88 5698.42 4499.76 3899.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast98.38 4798.13 5499.12 5099.75 397.86 6499.44 1198.82 8194.46 19098.94 5399.20 6795.16 6899.74 11197.58 9299.85 599.77 27
GST-MVS98.43 4398.12 5599.34 2399.72 1298.38 3599.09 6098.82 8195.71 12598.73 7199.06 9695.27 6299.93 2597.07 11699.63 7099.72 45
EC-MVSNet98.21 5898.11 5698.49 9198.34 17797.26 8999.61 598.43 18496.78 7498.87 6198.84 12393.72 9899.01 22398.91 2099.50 9599.19 143
HPM-MVScopyleft98.36 5098.10 5799.13 4899.74 797.82 6899.53 898.80 9394.63 18198.61 8098.97 10595.13 7099.77 10697.65 8799.83 1299.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
9.1498.06 5899.47 4798.71 15698.82 8194.36 19399.16 4499.29 5396.05 3399.81 8197.00 11799.71 54
PHI-MVS98.34 5398.06 5899.18 4299.15 10098.12 5799.04 6899.09 3193.32 24798.83 6499.10 8696.54 2199.83 6997.70 8599.76 3899.59 79
fmvsm_s_conf0.1_n_a98.08 6098.04 6098.21 11697.66 24195.39 18198.89 10499.17 2697.24 5099.76 899.67 191.13 15299.88 5699.39 1399.41 10799.35 115
MP-MVScopyleft98.33 5598.01 6199.28 3299.75 398.18 5199.22 3798.79 9896.13 10697.92 12399.23 6294.54 8099.94 896.74 13999.78 3099.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft98.35 5298.00 6299.42 1699.51 3998.72 2198.80 13698.82 8194.52 18799.23 3799.25 6195.54 5099.80 8896.52 14399.77 3299.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMPcopyleft98.23 5797.95 6399.09 5299.74 797.62 7399.03 7299.41 695.98 11097.60 14599.36 4294.45 8599.93 2597.14 11398.85 13699.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MP-MVS-pluss98.31 5697.92 6499.49 1299.72 1298.88 1898.43 20298.78 10094.10 19997.69 13699.42 2995.25 6499.92 3198.09 5899.80 2099.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ETV-MVS97.96 6497.81 6598.40 10298.42 16697.27 8598.73 15198.55 15596.84 7198.38 9397.44 26195.39 5499.35 17897.62 8998.89 13298.58 211
PS-MVSNAJ97.73 7597.77 6697.62 16898.68 14795.58 17297.34 31598.51 16497.29 4498.66 7797.88 22294.51 8199.90 4597.87 7299.17 12197.39 252
CANet98.05 6297.76 6798.90 6798.73 13897.27 8598.35 20798.78 10097.37 4197.72 13498.96 11091.53 14399.92 3198.79 2399.65 6599.51 89
CSCG97.85 7197.74 6898.20 11899.67 2595.16 19499.22 3799.32 1193.04 26197.02 16398.92 11695.36 5799.91 3997.43 10499.64 6999.52 86
mvsany_test197.69 7997.70 6997.66 16698.24 18794.18 24497.53 29997.53 29995.52 13399.66 1599.51 1394.30 8999.56 14598.38 4598.62 14699.23 135
xiu_mvs_v2_base97.66 8297.70 6997.56 17298.61 15595.46 17897.44 30398.46 17697.15 5798.65 7898.15 19994.33 8899.80 8897.84 7598.66 14597.41 250
UA-Net97.96 6497.62 7198.98 5998.86 12997.47 8098.89 10499.08 3296.67 8298.72 7299.54 893.15 10499.81 8194.87 19598.83 13799.65 69
MG-MVS97.81 7297.60 7298.44 9799.12 10295.97 15297.75 28398.78 10096.89 7098.46 8699.22 6493.90 9799.68 12594.81 19999.52 9399.67 65
EIA-MVS97.75 7497.58 7398.27 10998.38 16996.44 12699.01 7798.60 14195.88 11797.26 15297.53 25594.97 7499.33 18097.38 10799.20 11999.05 165
DeepC-MVS95.98 397.88 6897.58 7398.77 7199.25 8196.93 10198.83 12598.75 10696.96 6796.89 17099.50 1590.46 16699.87 5897.84 7599.76 3899.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v1_base_debu97.60 8697.56 7597.72 15698.35 17295.98 14797.86 27398.51 16497.13 5999.01 4998.40 17191.56 13999.80 8898.53 3098.68 14197.37 254
xiu_mvs_v1_base97.60 8697.56 7597.72 15698.35 17295.98 14797.86 27398.51 16497.13 5999.01 4998.40 17191.56 13999.80 8898.53 3098.68 14197.37 254
xiu_mvs_v1_base_debi97.60 8697.56 7597.72 15698.35 17295.98 14797.86 27398.51 16497.13 5999.01 4998.40 17191.56 13999.80 8898.53 3098.68 14197.37 254
test_fmvsmconf0.01_n97.86 6997.54 7898.83 6995.48 35896.83 10698.95 9198.60 14198.58 698.93 5799.55 688.57 20899.91 3999.54 1199.61 7399.77 27
train_agg97.97 6397.52 7999.33 2699.31 6498.50 2997.92 26298.73 11192.98 26397.74 13198.68 14296.20 2899.80 8896.59 14099.57 8199.68 61
CDPH-MVS97.94 6697.49 8099.28 3299.47 4798.44 3197.91 26498.67 12892.57 27898.77 6798.85 12295.93 3899.72 11395.56 17699.69 5799.68 61
MVSFormer97.57 9097.49 8097.84 14498.07 20695.76 16799.47 998.40 18894.98 16498.79 6598.83 12592.34 11498.41 29796.91 12299.59 7799.34 116
casdiffmvs_mvgpermissive97.72 7697.48 8298.44 9798.42 16696.59 11998.92 9898.44 18096.20 10397.76 12899.20 6791.66 13799.23 18998.27 5398.41 15999.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu97.70 7897.46 8398.44 9799.27 7895.91 16098.63 17399.16 2794.48 18997.67 13798.88 11992.80 10799.91 3997.11 11499.12 12299.50 91
DP-MVS Recon97.86 6997.46 8399.06 5499.53 3698.35 4298.33 20998.89 5992.62 27598.05 10798.94 11395.34 5899.65 12996.04 15899.42 10699.19 143
baseline97.64 8397.44 8598.25 11398.35 17296.20 13999.00 7998.32 20396.33 10098.03 11099.17 7491.35 14699.16 19698.10 5798.29 16699.39 112
casdiffmvspermissive97.63 8497.41 8698.28 10898.33 17996.14 14398.82 12798.32 20396.38 9897.95 11899.21 6591.23 15199.23 18998.12 5698.37 16099.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
VNet97.79 7397.40 8798.96 6298.88 12697.55 7598.63 17398.93 5096.74 7899.02 4898.84 12390.33 16999.83 6998.53 3096.66 20999.50 91
diffmvspermissive97.58 8997.40 8798.13 12498.32 18295.81 16698.06 24898.37 19696.20 10398.74 6998.89 11891.31 14999.25 18698.16 5598.52 15199.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_cas_vis1_n_192097.38 10397.36 8997.45 17598.95 12193.25 27999.00 7998.53 15997.70 2099.77 799.35 4484.71 28999.85 6398.57 2799.66 6299.26 131
OMC-MVS97.55 9297.34 9098.20 11899.33 5995.92 15998.28 21998.59 14495.52 13397.97 11799.10 8693.28 10399.49 15995.09 19098.88 13399.19 143
CPTT-MVS97.72 7697.32 9198.92 6499.64 2897.10 9699.12 5598.81 8692.34 28698.09 10599.08 9493.01 10599.92 3196.06 15799.77 3299.75 35
EPP-MVSNet97.46 9497.28 9297.99 13698.64 15295.38 18299.33 2298.31 20593.61 23697.19 15499.07 9594.05 9499.23 18996.89 12698.43 15899.37 114
API-MVS97.41 10197.25 9397.91 14198.70 14396.80 10798.82 12798.69 12094.53 18598.11 10398.28 18794.50 8499.57 14294.12 22399.49 9797.37 254
sasdasda97.67 8097.23 9498.98 5998.70 14398.38 3599.34 1898.39 19096.76 7697.67 13797.40 26592.26 11799.49 15998.28 5096.28 22799.08 161
canonicalmvs97.67 8097.23 9498.98 5998.70 14398.38 3599.34 1898.39 19096.76 7697.67 13797.40 26592.26 11799.49 15998.28 5096.28 22799.08 161
lupinMVS97.44 9897.22 9698.12 12798.07 20695.76 16797.68 28897.76 27994.50 18898.79 6598.61 14892.34 11499.30 18297.58 9299.59 7799.31 122
MGCFI-Net97.62 8597.19 9798.92 6498.66 14998.20 4999.32 2398.38 19496.69 8197.58 14697.42 26492.10 12599.50 15898.28 5096.25 23099.08 161
CHOSEN 280x42097.18 11397.18 9897.20 18998.81 13493.27 27795.78 37599.15 2895.25 14996.79 17698.11 20292.29 11699.07 21398.56 2999.85 599.25 133
PVSNet_Blended97.38 10397.12 9998.14 12199.25 8195.35 18597.28 32099.26 1593.13 25797.94 12098.21 19592.74 10899.81 8196.88 12899.40 11099.27 129
Vis-MVSNetpermissive97.42 10097.11 10098.34 10598.66 14996.23 13899.22 3799.00 3996.63 8498.04 10999.21 6588.05 22499.35 17896.01 16099.21 11899.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPM_NR97.46 9497.11 10098.50 8999.50 4196.41 13098.63 17398.60 14195.18 15297.06 16198.06 20594.26 9199.57 14293.80 23498.87 13599.52 86
jason97.32 10697.08 10298.06 13297.45 26095.59 17197.87 27297.91 27394.79 17498.55 8398.83 12591.12 15399.23 18997.58 9299.60 7599.34 116
jason: jason.
alignmvs97.56 9197.07 10399.01 5698.66 14998.37 4098.83 12598.06 25996.74 7898.00 11697.65 24490.80 16099.48 16498.37 4696.56 21399.19 143
CNLPA97.45 9797.03 10498.73 7299.05 10897.44 8298.07 24798.53 15995.32 14596.80 17598.53 15793.32 10199.72 11394.31 21799.31 11699.02 167
MVS_Test97.28 10797.00 10598.13 12498.33 17995.97 15298.74 14798.07 25494.27 19598.44 9198.07 20492.48 11199.26 18596.43 14698.19 16799.16 149
DPM-MVS97.55 9296.99 10699.23 3899.04 10998.55 2797.17 33098.35 19994.85 17397.93 12298.58 15395.07 7299.71 11892.60 26699.34 11499.43 109
sss97.39 10296.98 10798.61 7998.60 15696.61 11698.22 22498.93 5093.97 20798.01 11598.48 16291.98 12999.85 6396.45 14598.15 16899.39 112
3Dnovator94.51 597.46 9496.93 10899.07 5397.78 22997.64 7199.35 1799.06 3497.02 6493.75 28199.16 7789.25 18999.92 3197.22 11299.75 4299.64 71
WTY-MVS97.37 10596.92 10998.72 7398.86 12996.89 10598.31 21498.71 11695.26 14897.67 13798.56 15692.21 12199.78 10195.89 16296.85 20499.48 98
IS-MVSNet97.22 10996.88 11098.25 11398.85 13196.36 13399.19 4497.97 26695.39 13997.23 15398.99 10491.11 15498.93 23594.60 20698.59 14899.47 100
EPNet97.28 10796.87 11198.51 8894.98 36696.14 14398.90 10097.02 33798.28 1095.99 20599.11 8491.36 14599.89 4796.98 11899.19 12099.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_vis1_n_192096.71 13196.84 11296.31 26899.11 10489.74 33999.05 6598.58 14998.08 1299.87 199.37 3878.48 34599.93 2599.29 1499.69 5799.27 129
CHOSEN 1792x268897.12 11696.80 11398.08 13099.30 6894.56 22898.05 24999.71 193.57 23797.09 15798.91 11788.17 21899.89 4796.87 13199.56 8799.81 17
F-COLMAP97.09 11896.80 11397.97 13799.45 5294.95 20798.55 18698.62 14093.02 26296.17 20098.58 15394.01 9599.81 8193.95 22898.90 13199.14 152
TAMVS97.02 11996.79 11597.70 15998.06 20995.31 18898.52 18898.31 20593.95 20897.05 16298.61 14893.49 10098.52 27895.33 18297.81 17999.29 127
test_yl97.22 10996.78 11698.54 8598.73 13896.60 11798.45 19798.31 20594.70 17598.02 11298.42 16990.80 16099.70 11996.81 13496.79 20699.34 116
DCV-MVSNet97.22 10996.78 11698.54 8598.73 13896.60 11798.45 19798.31 20594.70 17598.02 11298.42 16990.80 16099.70 11996.81 13496.79 20699.34 116
PLCcopyleft95.07 497.20 11296.78 11698.44 9799.29 7396.31 13798.14 23798.76 10492.41 28496.39 19598.31 18494.92 7699.78 10194.06 22698.77 14099.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
3Dnovator+94.38 697.43 9996.78 11699.38 1897.83 22698.52 2899.37 1498.71 11697.09 6292.99 30899.13 8289.36 18599.89 4796.97 11999.57 8199.71 49
AdaColmapbinary97.15 11596.70 12098.48 9299.16 9896.69 11398.01 25398.89 5994.44 19196.83 17198.68 14290.69 16399.76 10794.36 21399.29 11798.98 171
Effi-MVS+97.12 11696.69 12198.39 10398.19 19596.72 11297.37 31198.43 18493.71 22597.65 14198.02 20892.20 12299.25 18696.87 13197.79 18099.19 143
CDS-MVSNet96.99 12096.69 12197.90 14298.05 21095.98 14798.20 22798.33 20293.67 23296.95 16498.49 16193.54 9998.42 28995.24 18897.74 18399.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_fmvs196.42 14396.67 12395.66 29498.82 13388.53 36298.80 13698.20 22496.39 9799.64 1799.20 6780.35 33299.67 12699.04 1799.57 8198.78 189
LS3D97.16 11496.66 12498.68 7598.53 16197.19 9398.93 9698.90 5792.83 27095.99 20599.37 3892.12 12499.87 5893.67 23899.57 8198.97 172
PVSNet_BlendedMVS96.73 13096.60 12597.12 19899.25 8195.35 18598.26 22299.26 1594.28 19497.94 12097.46 25892.74 10899.81 8196.88 12893.32 28196.20 345
Effi-MVS+-dtu96.29 14996.56 12695.51 29997.89 22490.22 33398.80 13698.10 24796.57 8796.45 19396.66 32390.81 15998.91 23895.72 17097.99 17297.40 251
CANet_DTU96.96 12196.55 12798.21 11698.17 20096.07 14597.98 25798.21 22297.24 5097.13 15698.93 11486.88 24799.91 3995.00 19399.37 11398.66 203
Vis-MVSNet (Re-imp)96.87 12596.55 12797.83 14598.73 13895.46 17899.20 4298.30 21194.96 16696.60 18398.87 12090.05 17298.59 27193.67 23898.60 14799.46 104
mvs_anonymous96.70 13296.53 12997.18 19298.19 19593.78 25398.31 21498.19 22694.01 20494.47 24098.27 19092.08 12798.46 28497.39 10697.91 17599.31 122
HyFIR lowres test96.90 12496.49 13098.14 12199.33 5995.56 17397.38 30999.65 292.34 28697.61 14498.20 19689.29 18799.10 21096.97 11997.60 18899.77 27
SDMVSNet96.85 12696.42 13198.14 12199.30 6896.38 13199.21 4099.23 2095.92 11295.96 20798.76 13685.88 26499.44 16997.93 6695.59 24298.60 207
XVG-OURS96.55 13996.41 13296.99 20598.75 13793.76 25497.50 30298.52 16295.67 12796.83 17199.30 5288.95 20299.53 15395.88 16396.26 22997.69 243
MAR-MVS96.91 12396.40 13398.45 9598.69 14696.90 10398.66 16898.68 12392.40 28597.07 16097.96 21591.54 14299.75 10993.68 23698.92 13098.69 198
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
XVG-OURS-SEG-HR96.51 14096.34 13497.02 20498.77 13693.76 25497.79 28198.50 16995.45 13696.94 16599.09 9287.87 22999.55 15296.76 13895.83 24197.74 240
PMMVS96.60 13496.33 13597.41 17997.90 22393.93 24997.35 31498.41 18692.84 26997.76 12897.45 26091.10 15599.20 19396.26 15097.91 17599.11 155
mvsmamba96.57 13896.32 13697.32 18596.60 31496.43 12799.54 797.98 26496.49 9095.20 22298.64 14690.82 15898.55 27497.97 6393.65 27296.98 265
UGNet96.78 12996.30 13798.19 12098.24 18795.89 16298.88 10998.93 5097.39 3896.81 17497.84 22682.60 31699.90 4596.53 14299.49 9798.79 186
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
114514_t96.93 12296.27 13898.92 6499.50 4197.63 7298.85 11998.90 5784.80 38297.77 12799.11 8492.84 10699.66 12894.85 19699.77 3299.47 100
PS-MVSNAJss96.43 14296.26 13996.92 21495.84 34895.08 19999.16 4898.50 16995.87 11893.84 27798.34 18194.51 8198.61 26896.88 12893.45 27897.06 260
PAPR96.84 12796.24 14098.65 7798.72 14296.92 10297.36 31398.57 15193.33 24696.67 17897.57 25294.30 8999.56 14591.05 30698.59 14899.47 100
HY-MVS93.96 896.82 12896.23 14198.57 8198.46 16597.00 9898.14 23798.21 22293.95 20896.72 17797.99 21291.58 13899.76 10794.51 21096.54 21498.95 175
PVSNet91.96 1896.35 14796.15 14296.96 20999.17 9492.05 29996.08 36898.68 12393.69 22897.75 13097.80 23288.86 20399.69 12494.26 21999.01 12799.15 150
FIs96.51 14096.12 14397.67 16397.13 28497.54 7699.36 1599.22 2395.89 11594.03 26798.35 17791.98 12998.44 28796.40 14792.76 29097.01 263
GeoE96.58 13796.07 14498.10 12998.35 17295.89 16299.34 1898.12 24193.12 25896.09 20198.87 12089.71 17898.97 22592.95 25898.08 17199.43 109
FC-MVSNet-test96.42 14396.05 14597.53 17396.95 29397.27 8599.36 1599.23 2095.83 11993.93 27198.37 17592.00 12898.32 30696.02 15992.72 29197.00 264
CVMVSNet95.43 19596.04 14693.57 34597.93 22183.62 38398.12 24098.59 14495.68 12696.56 18499.02 9887.51 23597.51 35793.56 24297.44 19199.60 77
PatchMatch-RL96.59 13596.03 14798.27 10999.31 6496.51 12397.91 26499.06 3493.72 22496.92 16898.06 20588.50 21399.65 12991.77 29199.00 12898.66 203
1112_ss96.63 13396.00 14898.50 8998.56 15796.37 13298.18 23598.10 24792.92 26694.84 22998.43 16792.14 12399.58 14194.35 21496.51 21599.56 85
test_fmvs1_n95.90 17095.99 14995.63 29598.67 14888.32 36699.26 2998.22 22196.40 9699.67 1499.26 5773.91 37699.70 11999.02 1899.50 9598.87 180
FA-MVS(test-final)96.41 14695.94 15097.82 14798.21 19195.20 19397.80 27997.58 28993.21 25297.36 15097.70 23889.47 18299.56 14594.12 22397.99 17298.71 197
DP-MVS96.59 13595.93 15198.57 8199.34 5796.19 14198.70 16098.39 19089.45 35494.52 23899.35 4491.85 13299.85 6392.89 26298.88 13399.68 61
HQP_MVS96.14 15795.90 15296.85 21797.42 26294.60 22698.80 13698.56 15397.28 4595.34 21798.28 18787.09 24299.03 21896.07 15494.27 25096.92 270
Fast-Effi-MVS+-dtu95.87 17195.85 15395.91 28497.74 23491.74 30598.69 16298.15 23795.56 13194.92 22797.68 24388.98 20098.79 25593.19 25097.78 18197.20 258
EI-MVSNet95.96 16495.83 15496.36 26497.93 22193.70 26098.12 24098.27 21493.70 22795.07 22499.02 9892.23 12098.54 27694.68 20193.46 27696.84 285
iter_conf0596.13 15895.79 15597.15 19598.16 20195.99 14698.88 10997.98 26495.91 11495.58 21498.46 16585.53 27098.59 27197.88 7193.75 26896.86 283
test111195.94 16795.78 15696.41 26198.99 11890.12 33499.04 6892.45 39896.99 6698.03 11099.27 5681.40 32199.48 16496.87 13199.04 12499.63 73
RRT_MVS95.98 16395.78 15696.56 24396.48 32294.22 24399.57 697.92 27195.89 11593.95 27098.70 14089.27 18898.42 28997.23 11193.02 28597.04 261
sd_testset96.17 15595.76 15897.42 17899.30 6894.34 23798.82 12799.08 3295.92 11295.96 20798.76 13682.83 31599.32 18195.56 17695.59 24298.60 207
131496.25 15495.73 15997.79 14997.13 28495.55 17598.19 23098.59 14493.47 24192.03 33397.82 23091.33 14799.49 15994.62 20598.44 15698.32 224
nrg03096.28 15195.72 16097.96 14096.90 29898.15 5499.39 1298.31 20595.47 13594.42 24698.35 17792.09 12698.69 26197.50 10289.05 33697.04 261
BH-untuned95.95 16595.72 16096.65 22998.55 15992.26 29498.23 22397.79 27893.73 22294.62 23598.01 21088.97 20199.00 22493.04 25598.51 15298.68 199
MVSTER96.06 16095.72 16097.08 20198.23 18995.93 15898.73 15198.27 21494.86 17195.07 22498.09 20388.21 21798.54 27696.59 14093.46 27696.79 288
ECVR-MVScopyleft95.95 16595.71 16396.65 22999.02 11190.86 32099.03 7291.80 39996.96 6798.10 10499.26 5781.31 32299.51 15796.90 12599.04 12499.59 79
ab-mvs96.42 14395.71 16398.55 8398.63 15396.75 11097.88 27198.74 10893.84 21496.54 18898.18 19885.34 27599.75 10995.93 16196.35 21999.15 150
Fast-Effi-MVS+96.28 15195.70 16598.03 13398.29 18495.97 15298.58 17998.25 21991.74 30395.29 22197.23 27691.03 15799.15 19992.90 26097.96 17498.97 172
iter_conf05_1196.28 15195.69 16698.03 13398.29 18495.88 16497.43 30596.24 36596.50 8998.26 10098.30 18678.78 34099.44 16997.58 9299.84 1098.78 189
test_djsdf96.00 16295.69 16696.93 21195.72 35095.49 17799.47 998.40 18894.98 16494.58 23697.86 22389.16 19298.41 29796.91 12294.12 25896.88 279
tpmrst95.63 18595.69 16695.44 30397.54 25188.54 36196.97 34097.56 29293.50 23997.52 14896.93 31089.49 18099.16 19695.25 18796.42 21898.64 205
Test_1112_low_res96.34 14895.66 16998.36 10498.56 15795.94 15597.71 28698.07 25492.10 29594.79 23397.29 27191.75 13499.56 14594.17 22196.50 21699.58 83
h-mvs3396.17 15595.62 17097.81 14899.03 11094.45 23098.64 17098.75 10697.48 3298.67 7398.72 13989.76 17699.86 6297.95 6481.59 37999.11 155
PatchmatchNetpermissive95.71 18095.52 17196.29 27097.58 24690.72 32496.84 35497.52 30094.06 20097.08 15896.96 30689.24 19098.90 24192.03 28498.37 16099.26 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051796.07 15995.51 17297.78 15098.41 16894.84 21199.28 2694.33 38794.26 19697.64 14298.64 14684.05 30499.47 16695.34 18197.60 18899.03 166
MDTV_nov1_ep1395.40 17397.48 25588.34 36596.85 35397.29 31893.74 22197.48 14997.26 27289.18 19199.05 21491.92 28897.43 192
HQP-MVS95.72 17895.40 17396.69 22797.20 27794.25 24198.05 24998.46 17696.43 9394.45 24197.73 23586.75 24898.96 22995.30 18394.18 25496.86 283
QAPM96.29 14995.40 17398.96 6297.85 22597.60 7499.23 3398.93 5089.76 34893.11 30599.02 9889.11 19499.93 2591.99 28599.62 7299.34 116
RPSCF94.87 23395.40 17393.26 35198.89 12582.06 38998.33 20998.06 25990.30 34096.56 18499.26 5787.09 24299.49 15993.82 23396.32 22198.24 225
ACMM93.85 995.69 18395.38 17796.61 23697.61 24493.84 25298.91 9998.44 18095.25 14994.28 25398.47 16386.04 26399.12 20495.50 17993.95 26496.87 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thisisatest053096.01 16195.36 17897.97 13798.38 16995.52 17698.88 10994.19 38994.04 20197.64 14298.31 18483.82 31199.46 16795.29 18597.70 18598.93 177
LPG-MVS_test95.62 18695.34 17996.47 25597.46 25793.54 26398.99 8298.54 15794.67 17994.36 24998.77 13285.39 27299.11 20695.71 17194.15 25696.76 291
CLD-MVS95.62 18695.34 17996.46 25897.52 25493.75 25697.27 32198.46 17695.53 13294.42 24698.00 21186.21 25898.97 22596.25 15294.37 24896.66 306
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS95.69 18395.33 18196.76 22296.16 33694.63 22198.43 20298.39 19096.64 8395.02 22698.78 13085.15 27999.05 21495.21 18994.20 25396.60 311
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LCM-MVSNet-Re95.22 21095.32 18294.91 31898.18 19787.85 37298.75 14495.66 37395.11 15688.96 35996.85 31590.26 17197.65 35095.65 17498.44 15699.22 137
BH-RMVSNet95.92 16995.32 18297.69 16098.32 18294.64 22098.19 23097.45 30994.56 18396.03 20398.61 14885.02 28099.12 20490.68 31199.06 12399.30 125
hse-mvs295.71 18095.30 18496.93 21198.50 16293.53 26598.36 20698.10 24797.48 3298.67 7397.99 21289.76 17699.02 22197.95 6480.91 38398.22 227
MSDG95.93 16895.30 18497.83 14598.90 12495.36 18396.83 35598.37 19691.32 31894.43 24598.73 13890.27 17099.60 13990.05 32098.82 13898.52 213
VDD-MVS95.82 17595.23 18697.61 16998.84 13293.98 24898.68 16397.40 31395.02 16297.95 11899.34 4874.37 37599.78 10198.64 2596.80 20599.08 161
IterMVS-LS95.46 19295.21 18796.22 27298.12 20393.72 25998.32 21398.13 24093.71 22594.26 25497.31 27092.24 11998.10 32494.63 20390.12 31996.84 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet (Re)95.78 17695.19 18897.58 17096.99 29197.47 8098.79 14199.18 2595.60 12993.92 27297.04 29691.68 13598.48 28095.80 16787.66 35196.79 288
UniMVSNet_NR-MVSNet95.71 18095.15 18997.40 18196.84 30196.97 9998.74 14799.24 1795.16 15393.88 27497.72 23791.68 13598.31 30895.81 16587.25 35796.92 270
test_vis1_n95.47 19195.13 19096.49 25297.77 23090.41 33099.27 2898.11 24496.58 8599.66 1599.18 7367.00 38999.62 13799.21 1599.40 11099.44 107
SCA95.46 19295.13 19096.46 25897.67 23991.29 31397.33 31697.60 28894.68 17896.92 16897.10 28283.97 30698.89 24292.59 26898.32 16599.20 139
baseline195.84 17395.12 19298.01 13598.49 16495.98 14798.73 15197.03 33595.37 14296.22 19898.19 19789.96 17499.16 19694.60 20687.48 35298.90 179
VPA-MVSNet95.75 17795.11 19397.69 16097.24 27397.27 8598.94 9499.23 2095.13 15495.51 21597.32 26985.73 26698.91 23897.33 10989.55 32896.89 278
D2MVS95.18 21395.08 19495.48 30097.10 28692.07 29898.30 21699.13 3094.02 20392.90 30996.73 32089.48 18198.73 25994.48 21193.60 27595.65 358
BH-w/o95.38 19995.08 19496.26 27198.34 17791.79 30297.70 28797.43 31192.87 26894.24 25697.22 27788.66 20698.84 24891.55 29597.70 18598.16 230
jajsoiax95.45 19495.03 19696.73 22395.42 36294.63 22199.14 5198.52 16295.74 12293.22 29998.36 17683.87 30998.65 26696.95 12194.04 25996.91 275
mvs_tets95.41 19895.00 19796.65 22995.58 35494.42 23299.00 7998.55 15595.73 12493.21 30098.38 17483.45 31398.63 26797.09 11594.00 26196.91 275
OpenMVScopyleft93.04 1395.83 17495.00 19798.32 10697.18 28197.32 8399.21 4098.97 4289.96 34491.14 34199.05 9786.64 25099.92 3193.38 24499.47 10097.73 241
bld_raw_dy_0_6495.72 17894.98 19997.97 13798.29 18495.68 16999.04 6896.34 36296.51 8895.86 21098.44 16678.73 34199.44 16997.58 9293.99 26398.78 189
LFMVS95.86 17294.98 19998.47 9398.87 12896.32 13598.84 12396.02 36693.40 24498.62 7999.20 6774.99 37099.63 13497.72 8197.20 19599.46 104
ACMP93.49 1095.34 20494.98 19996.43 26097.67 23993.48 26798.73 15198.44 18094.94 16992.53 32198.53 15784.50 29599.14 20195.48 18094.00 26196.66 306
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EPNet_dtu95.21 21194.95 20295.99 27996.17 33490.45 32998.16 23697.27 32096.77 7593.14 30498.33 18290.34 16898.42 28985.57 36298.81 13999.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
anonymousdsp95.42 19694.91 20396.94 21095.10 36595.90 16199.14 5198.41 18693.75 21993.16 30197.46 25887.50 23798.41 29795.63 17594.03 26096.50 330
FE-MVS95.62 18694.90 20497.78 15098.37 17194.92 20897.17 33097.38 31590.95 32997.73 13397.70 23885.32 27799.63 13491.18 29998.33 16398.79 186
thisisatest051595.61 18994.89 20597.76 15398.15 20295.15 19696.77 35694.41 38592.95 26597.18 15597.43 26284.78 28699.45 16894.63 20397.73 18498.68 199
test-LLR95.10 21794.87 20695.80 28996.77 30489.70 34096.91 34595.21 37795.11 15694.83 23195.72 35687.71 23198.97 22593.06 25398.50 15398.72 194
COLMAP_ROBcopyleft93.27 1295.33 20594.87 20696.71 22499.29 7393.24 28098.58 17998.11 24489.92 34593.57 28599.10 8686.37 25699.79 9890.78 30998.10 17097.09 259
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
thres600view795.49 19094.77 20897.67 16398.98 11995.02 20098.85 11996.90 34495.38 14096.63 18096.90 31184.29 29699.59 14088.65 34296.33 22098.40 218
DU-MVS95.42 19694.76 20997.40 18196.53 31896.97 9998.66 16898.99 4195.43 13793.88 27497.69 24088.57 20898.31 30895.81 16587.25 35796.92 270
miper_enhance_ethall95.10 21794.75 21096.12 27697.53 25393.73 25896.61 36298.08 25292.20 29493.89 27396.65 32592.44 11298.30 31094.21 22091.16 30896.34 339
CostFormer94.95 22994.73 21195.60 29797.28 27189.06 35197.53 29996.89 34689.66 35096.82 17396.72 32186.05 26198.95 23495.53 17896.13 23598.79 186
thres100view90095.38 19994.70 21297.41 17998.98 11994.92 20898.87 11496.90 34495.38 14096.61 18296.88 31284.29 29699.56 14588.11 34596.29 22497.76 238
miper_ehance_all_eth95.01 22194.69 21395.97 28197.70 23793.31 27697.02 33898.07 25492.23 29193.51 28996.96 30691.85 13298.15 32093.68 23691.16 30896.44 336
AllTest95.24 20994.65 21496.99 20599.25 8193.21 28198.59 17798.18 22991.36 31493.52 28798.77 13284.67 29099.72 11389.70 32797.87 17798.02 233
tfpn200view995.32 20694.62 21597.43 17798.94 12294.98 20498.68 16396.93 34295.33 14396.55 18696.53 32984.23 30099.56 14588.11 34596.29 22497.76 238
thres40095.38 19994.62 21597.65 16798.94 12294.98 20498.68 16396.93 34295.33 14396.55 18696.53 32984.23 30099.56 14588.11 34596.29 22498.40 218
thres20095.25 20894.57 21797.28 18698.81 13494.92 20898.20 22797.11 32795.24 15196.54 18896.22 34084.58 29399.53 15387.93 34996.50 21697.39 252
TAPA-MVS93.98 795.35 20394.56 21897.74 15599.13 10194.83 21398.33 20998.64 13686.62 37096.29 19798.61 14894.00 9699.29 18380.00 38499.41 10799.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VDDNet95.36 20294.53 21997.86 14398.10 20595.13 19798.85 11997.75 28090.46 33598.36 9499.39 3273.27 37899.64 13197.98 6296.58 21298.81 185
baseline295.11 21694.52 22096.87 21696.65 31393.56 26298.27 22194.10 39193.45 24292.02 33497.43 26287.45 23999.19 19493.88 23197.41 19397.87 236
Anonymous20240521195.28 20794.49 22197.67 16399.00 11493.75 25698.70 16097.04 33490.66 33196.49 19098.80 12878.13 34999.83 6996.21 15395.36 24699.44 107
TranMVSNet+NR-MVSNet95.14 21594.48 22297.11 19996.45 32496.36 13399.03 7299.03 3795.04 16193.58 28497.93 21788.27 21698.03 33094.13 22286.90 36296.95 269
EPMVS94.99 22494.48 22296.52 25097.22 27591.75 30497.23 32291.66 40094.11 19897.28 15196.81 31785.70 26798.84 24893.04 25597.28 19498.97 172
WR-MVS_H95.05 22094.46 22496.81 22096.86 30095.82 16599.24 3299.24 1793.87 21392.53 32196.84 31690.37 16798.24 31693.24 24887.93 34896.38 338
WR-MVS95.15 21494.46 22497.22 18896.67 31296.45 12598.21 22598.81 8694.15 19793.16 30197.69 24087.51 23598.30 31095.29 18588.62 34296.90 277
ADS-MVSNet95.00 22294.45 22696.63 23398.00 21291.91 30196.04 36997.74 28190.15 34196.47 19196.64 32687.89 22798.96 22990.08 31897.06 19799.02 167
XXY-MVS95.20 21294.45 22697.46 17496.75 30796.56 12198.86 11798.65 13593.30 24993.27 29898.27 19084.85 28498.87 24594.82 19891.26 30796.96 267
c3_l94.79 23694.43 22895.89 28697.75 23193.12 28597.16 33298.03 26192.23 29193.46 29297.05 29591.39 14498.01 33193.58 24189.21 33496.53 322
eth_miper_zixun_eth94.68 24194.41 22995.47 30197.64 24291.71 30696.73 35998.07 25492.71 27393.64 28297.21 27890.54 16598.17 31993.38 24489.76 32396.54 320
ADS-MVSNet294.58 25094.40 23095.11 31398.00 21288.74 35896.04 36997.30 31790.15 34196.47 19196.64 32687.89 22797.56 35590.08 31897.06 19799.02 167
tpmvs94.60 24794.36 23195.33 30797.46 25788.60 36096.88 35197.68 28291.29 32093.80 27996.42 33388.58 20799.24 18891.06 30496.04 23698.17 229
CP-MVSNet94.94 23194.30 23296.83 21896.72 30995.56 17399.11 5698.95 4693.89 21192.42 32697.90 21987.19 24198.12 32394.32 21688.21 34596.82 287
testing1195.00 22294.28 23397.16 19497.96 21893.36 27598.09 24597.06 33394.94 16995.33 22096.15 34276.89 36199.40 17395.77 16996.30 22398.72 194
FMVSNet394.97 22894.26 23497.11 19998.18 19796.62 11498.56 18598.26 21893.67 23294.09 26397.10 28284.25 29898.01 33192.08 28092.14 29496.70 300
testing9194.98 22694.25 23597.20 18997.94 21993.41 27098.00 25597.58 28994.99 16395.45 21696.04 34577.20 35899.42 17294.97 19496.02 23798.78 189
Anonymous2024052995.10 21794.22 23697.75 15499.01 11394.26 24098.87 11498.83 8085.79 37896.64 17998.97 10578.73 34199.85 6396.27 14994.89 24799.12 154
TR-MVS94.94 23194.20 23797.17 19397.75 23194.14 24597.59 29697.02 33792.28 29095.75 21297.64 24683.88 30898.96 22989.77 32496.15 23498.40 218
cl2294.68 24194.19 23896.13 27598.11 20493.60 26196.94 34298.31 20592.43 28393.32 29796.87 31486.51 25198.28 31494.10 22591.16 30896.51 328
VPNet94.99 22494.19 23897.40 18197.16 28296.57 12098.71 15698.97 4295.67 12794.84 22998.24 19480.36 33198.67 26596.46 14487.32 35696.96 267
dmvs_re94.48 26094.18 24095.37 30597.68 23890.11 33598.54 18797.08 32994.56 18394.42 24697.24 27584.25 29897.76 34891.02 30792.83 28998.24 225
NR-MVSNet94.98 22694.16 24197.44 17696.53 31897.22 9298.74 14798.95 4694.96 16689.25 35897.69 24089.32 18698.18 31894.59 20887.40 35496.92 270
CR-MVSNet94.76 23894.15 24296.59 23997.00 28993.43 26894.96 38197.56 29292.46 27996.93 16696.24 33688.15 21997.88 34487.38 35196.65 21098.46 216
V4294.78 23794.14 24396.70 22696.33 32995.22 19298.97 8598.09 25192.32 28894.31 25297.06 29388.39 21498.55 27492.90 26088.87 34096.34 339
EU-MVSNet93.66 29694.14 24392.25 36195.96 34483.38 38598.52 18898.12 24194.69 17792.61 31898.13 20187.36 24096.39 37791.82 28990.00 32196.98 265
XVG-ACMP-BASELINE94.54 25294.14 24395.75 29296.55 31791.65 30798.11 24298.44 18094.96 16694.22 25797.90 21979.18 33999.11 20694.05 22793.85 26696.48 333
testing9994.83 23494.08 24697.07 20297.94 21993.13 28398.10 24497.17 32594.86 17195.34 21796.00 34876.31 36499.40 17395.08 19195.90 23898.68 199
miper_lstm_enhance94.33 26894.07 24795.11 31397.75 23190.97 31797.22 32398.03 26191.67 30792.76 31396.97 30490.03 17397.78 34792.51 27389.64 32596.56 317
WB-MVSnew94.19 27894.04 24894.66 32996.82 30392.14 29597.86 27395.96 36993.50 23995.64 21396.77 31988.06 22397.99 33484.87 36796.86 20393.85 384
DIV-MVS_self_test94.52 25594.03 24995.99 27997.57 25093.38 27397.05 33697.94 26991.74 30392.81 31197.10 28289.12 19398.07 32892.60 26690.30 31696.53 322
v2v48294.69 23994.03 24996.65 22996.17 33494.79 21698.67 16698.08 25292.72 27294.00 26897.16 28087.69 23498.45 28592.91 25988.87 34096.72 296
GA-MVS94.81 23594.03 24997.14 19697.15 28393.86 25196.76 35797.58 28994.00 20594.76 23497.04 29680.91 32698.48 28091.79 29096.25 23099.09 157
cl____94.51 25694.01 25296.02 27897.58 24693.40 27297.05 33697.96 26891.73 30592.76 31397.08 28889.06 19698.13 32292.61 26590.29 31796.52 325
OurMVSNet-221017-094.21 27694.00 25394.85 32295.60 35389.22 34998.89 10497.43 31195.29 14692.18 33098.52 16082.86 31498.59 27193.46 24391.76 29996.74 293
PAPM94.95 22994.00 25397.78 15097.04 28895.65 17096.03 37198.25 21991.23 32394.19 25997.80 23291.27 15098.86 24782.61 37897.61 18798.84 183
pmmvs494.69 23993.99 25596.81 22095.74 34995.94 15597.40 30797.67 28390.42 33793.37 29597.59 25089.08 19598.20 31792.97 25791.67 30196.30 342
PS-CasMVS94.67 24493.99 25596.71 22496.68 31195.26 18999.13 5499.03 3793.68 23092.33 32797.95 21685.35 27498.10 32493.59 24088.16 34796.79 288
ACMH92.88 1694.55 25193.95 25796.34 26697.63 24393.26 27898.81 13598.49 17493.43 24389.74 35398.53 15781.91 31899.08 21293.69 23593.30 28296.70 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo94.28 27493.92 25895.35 30694.95 36792.60 29197.97 25897.65 28491.61 30890.68 34697.09 28686.32 25798.42 28989.70 32799.34 11495.02 369
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v114494.59 24993.92 25896.60 23896.21 33194.78 21798.59 17798.14 23991.86 30294.21 25897.02 29987.97 22598.41 29791.72 29289.57 32696.61 310
test250694.44 26393.91 26096.04 27799.02 11188.99 35499.06 6379.47 41296.96 6798.36 9499.26 5777.21 35799.52 15696.78 13799.04 12499.59 79
dp94.15 28293.90 26194.90 31997.31 27086.82 37796.97 34097.19 32491.22 32496.02 20496.61 32885.51 27199.02 22190.00 32294.30 24998.85 181
LTVRE_ROB92.95 1594.60 24793.90 26196.68 22897.41 26594.42 23298.52 18898.59 14491.69 30691.21 34098.35 17784.87 28399.04 21791.06 30493.44 27996.60 311
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UWE-MVS94.30 27093.89 26395.53 29897.83 22688.95 35597.52 30193.25 39394.44 19196.63 18097.07 28978.70 34399.28 18491.99 28597.56 19098.36 221
IterMVS-SCA-FT94.11 28693.87 26494.85 32297.98 21690.56 32897.18 32898.11 24493.75 21992.58 31997.48 25783.97 30697.41 35992.48 27591.30 30596.58 313
cascas94.63 24693.86 26596.93 21196.91 29794.27 23996.00 37298.51 16485.55 37994.54 23796.23 33884.20 30298.87 24595.80 16796.98 20297.66 244
tt080594.54 25293.85 26696.63 23397.98 21693.06 28798.77 14397.84 27693.67 23293.80 27998.04 20776.88 36298.96 22994.79 20092.86 28897.86 237
IterMVS94.09 28893.85 26694.80 32597.99 21490.35 33197.18 32898.12 24193.68 23092.46 32597.34 26784.05 30497.41 35992.51 27391.33 30496.62 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Baseline_NR-MVSNet94.35 26793.81 26895.96 28296.20 33294.05 24798.61 17696.67 35591.44 31293.85 27697.60 24988.57 20898.14 32194.39 21286.93 36095.68 357
tpm94.13 28393.80 26995.12 31296.50 32087.91 37197.44 30395.89 37292.62 27596.37 19696.30 33584.13 30398.30 31093.24 24891.66 30299.14 152
GBi-Net94.49 25893.80 26996.56 24398.21 19195.00 20198.82 12798.18 22992.46 27994.09 26397.07 28981.16 32397.95 33692.08 28092.14 29496.72 296
test194.49 25893.80 26996.56 24398.21 19195.00 20198.82 12798.18 22992.46 27994.09 26397.07 28981.16 32397.95 33692.08 28092.14 29496.72 296
v894.47 26193.77 27296.57 24296.36 32794.83 21399.05 6598.19 22691.92 29993.16 30196.97 30488.82 20598.48 28091.69 29387.79 34996.39 337
ACMH+92.99 1494.30 27093.77 27295.88 28797.81 22892.04 30098.71 15698.37 19693.99 20690.60 34798.47 16380.86 32899.05 21492.75 26492.40 29396.55 319
v14894.29 27293.76 27495.91 28496.10 33792.93 28898.58 17997.97 26692.59 27793.47 29196.95 30888.53 21298.32 30692.56 27087.06 35996.49 331
tpm294.19 27893.76 27495.46 30297.23 27489.04 35297.31 31896.85 35087.08 36996.21 19996.79 31883.75 31298.74 25892.43 27696.23 23298.59 209
AUN-MVS94.53 25493.73 27696.92 21498.50 16293.52 26698.34 20898.10 24793.83 21695.94 20997.98 21485.59 26999.03 21894.35 21480.94 38298.22 227
PEN-MVS94.42 26493.73 27696.49 25296.28 33094.84 21199.17 4799.00 3993.51 23892.23 32997.83 22986.10 26097.90 34092.55 27186.92 36196.74 293
v14419294.39 26693.70 27896.48 25496.06 33994.35 23698.58 17998.16 23691.45 31194.33 25197.02 29987.50 23798.45 28591.08 30389.11 33596.63 308
TESTMET0.1,194.18 28193.69 27995.63 29596.92 29589.12 35096.91 34594.78 38293.17 25494.88 22896.45 33278.52 34498.92 23693.09 25298.50 15398.85 181
Patchmatch-test94.42 26493.68 28096.63 23397.60 24591.76 30394.83 38597.49 30489.45 35494.14 26197.10 28288.99 19798.83 25185.37 36598.13 16999.29 127
MS-PatchMatch93.84 29593.63 28194.46 33796.18 33389.45 34597.76 28298.27 21492.23 29192.13 33197.49 25679.50 33698.69 26189.75 32599.38 11295.25 362
FMVSNet294.47 26193.61 28297.04 20398.21 19196.43 12798.79 14198.27 21492.46 27993.50 29097.09 28681.16 32398.00 33391.09 30291.93 29796.70 300
test_fmvs293.43 30093.58 28392.95 35596.97 29283.91 38299.19 4497.24 32295.74 12295.20 22298.27 19069.65 38298.72 26096.26 15093.73 26996.24 343
v119294.32 26993.58 28396.53 24996.10 33794.45 23098.50 19398.17 23491.54 30994.19 25997.06 29386.95 24698.43 28890.14 31689.57 32696.70 300
v1094.29 27293.55 28596.51 25196.39 32694.80 21598.99 8298.19 22691.35 31693.02 30796.99 30288.09 22198.41 29790.50 31388.41 34496.33 341
MVS94.67 24493.54 28698.08 13096.88 29996.56 12198.19 23098.50 16978.05 39292.69 31698.02 20891.07 15699.63 13490.09 31798.36 16298.04 232
test-mter94.08 28993.51 28795.80 28996.77 30489.70 34096.91 34595.21 37792.89 26794.83 23195.72 35677.69 35298.97 22593.06 25398.50 15398.72 194
test0.0.03 194.08 28993.51 28795.80 28995.53 35692.89 28997.38 30995.97 36895.11 15692.51 32396.66 32387.71 23196.94 36687.03 35393.67 27097.57 248
v192192094.20 27793.47 28996.40 26395.98 34294.08 24698.52 18898.15 23791.33 31794.25 25597.20 27986.41 25598.42 28990.04 32189.39 33296.69 305
ETVMVS94.50 25793.44 29097.68 16298.18 19795.35 18598.19 23097.11 32793.73 22296.40 19495.39 36174.53 37298.84 24891.10 30196.31 22298.84 183
v7n94.19 27893.43 29196.47 25595.90 34594.38 23599.26 2998.34 20191.99 29792.76 31397.13 28188.31 21598.52 27889.48 33287.70 35096.52 325
PCF-MVS93.45 1194.68 24193.43 29198.42 10198.62 15496.77 10995.48 37998.20 22484.63 38393.34 29698.32 18388.55 21199.81 8184.80 37098.96 12998.68 199
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet_ETH3D94.24 27593.33 29396.97 20897.19 28093.38 27398.74 14798.57 15191.21 32593.81 27898.58 15372.85 37998.77 25795.05 19293.93 26598.77 193
our_test_393.65 29893.30 29494.69 32795.45 36089.68 34296.91 34597.65 28491.97 29891.66 33796.88 31289.67 17997.93 33988.02 34891.49 30396.48 333
v124094.06 29193.29 29596.34 26696.03 34193.90 25098.44 20098.17 23491.18 32694.13 26297.01 30186.05 26198.42 28989.13 33789.50 33096.70 300
Anonymous2023121194.10 28793.26 29696.61 23699.11 10494.28 23899.01 7798.88 6286.43 37292.81 31197.57 25281.66 32098.68 26494.83 19789.02 33896.88 279
DTE-MVSNet93.98 29393.26 29696.14 27496.06 33994.39 23499.20 4298.86 7593.06 26091.78 33597.81 23185.87 26597.58 35490.53 31286.17 36696.46 335
pm-mvs193.94 29493.06 29896.59 23996.49 32195.16 19498.95 9198.03 26192.32 28891.08 34297.84 22684.54 29498.41 29792.16 27886.13 36896.19 346
testing22294.12 28593.03 29997.37 18498.02 21194.66 21897.94 26196.65 35794.63 18195.78 21195.76 35171.49 38098.92 23691.17 30095.88 23998.52 213
ET-MVSNet_ETH3D94.13 28392.98 30097.58 17098.22 19096.20 13997.31 31895.37 37594.53 18579.56 39197.63 24886.51 25197.53 35696.91 12290.74 31299.02 167
pmmvs593.65 29892.97 30195.68 29395.49 35792.37 29298.20 22797.28 31989.66 35092.58 31997.26 27282.14 31798.09 32693.18 25190.95 31196.58 313
SixPastTwentyTwo93.34 30392.86 30294.75 32695.67 35189.41 34798.75 14496.67 35593.89 21190.15 35198.25 19380.87 32798.27 31590.90 30890.64 31396.57 315
tpm cat193.36 30192.80 30395.07 31597.58 24687.97 37096.76 35797.86 27582.17 38893.53 28696.04 34586.13 25999.13 20289.24 33595.87 24098.10 231
LF4IMVS93.14 31192.79 30494.20 34095.88 34688.67 35997.66 29097.07 33193.81 21791.71 33697.65 24477.96 35198.81 25391.47 29691.92 29895.12 365
USDC93.33 30492.71 30595.21 30996.83 30290.83 32296.91 34597.50 30293.84 21490.72 34598.14 20077.69 35298.82 25289.51 33193.21 28495.97 351
tfpnnormal93.66 29692.70 30696.55 24896.94 29495.94 15598.97 8599.19 2491.04 32791.38 33997.34 26784.94 28298.61 26885.45 36489.02 33895.11 366
ppachtmachnet_test93.22 30792.63 30794.97 31795.45 36090.84 32196.88 35197.88 27490.60 33292.08 33297.26 27288.08 22297.86 34585.12 36690.33 31596.22 344
Syy-MVS92.55 31792.61 30892.38 35897.39 26683.41 38497.91 26497.46 30593.16 25593.42 29395.37 36284.75 28796.12 37977.00 39296.99 19997.60 246
DSMNet-mixed92.52 31992.58 30992.33 35994.15 37582.65 38798.30 21694.26 38889.08 35992.65 31795.73 35485.01 28195.76 38386.24 35797.76 18298.59 209
JIA-IIPM93.35 30292.49 31095.92 28396.48 32290.65 32695.01 38096.96 34085.93 37696.08 20287.33 39587.70 23398.78 25691.35 29795.58 24498.34 222
testing393.19 30992.48 31195.30 30898.07 20692.27 29398.64 17097.17 32593.94 21093.98 26997.04 29667.97 38696.01 38188.40 34397.14 19697.63 245
testgi93.06 31292.45 31294.88 32196.43 32589.90 33698.75 14497.54 29895.60 12991.63 33897.91 21874.46 37497.02 36486.10 35893.67 27097.72 242
Patchmtry93.22 30792.35 31395.84 28896.77 30493.09 28694.66 38897.56 29287.37 36892.90 30996.24 33688.15 21997.90 34087.37 35290.10 32096.53 322
X-MVStestdata94.06 29192.30 31499.34 2399.70 2298.35 4299.29 2498.88 6297.40 3698.46 8643.50 40595.90 4199.89 4797.85 7399.74 4699.78 21
MIMVSNet93.26 30692.21 31596.41 26197.73 23593.13 28395.65 37697.03 33591.27 32294.04 26696.06 34475.33 36897.19 36286.56 35596.23 23298.92 178
FMVSNet193.19 30992.07 31696.56 24397.54 25195.00 20198.82 12798.18 22990.38 33892.27 32897.07 28973.68 37797.95 33689.36 33491.30 30596.72 296
myMVS_eth3d92.73 31592.01 31794.89 32097.39 26690.94 31897.91 26497.46 30593.16 25593.42 29395.37 36268.09 38596.12 37988.34 34496.99 19997.60 246
PatchT93.06 31291.97 31896.35 26596.69 31092.67 29094.48 38997.08 32986.62 37097.08 15892.23 38987.94 22697.90 34078.89 38896.69 20898.49 215
IB-MVS91.98 1793.27 30591.97 31897.19 19197.47 25693.41 27097.09 33595.99 36793.32 24792.47 32495.73 35478.06 35099.53 15394.59 20882.98 37498.62 206
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
K. test v392.55 31791.91 32094.48 33595.64 35289.24 34899.07 6294.88 38194.04 20186.78 37297.59 25077.64 35597.64 35192.08 28089.43 33196.57 315
TinyColmap92.31 32091.53 32194.65 33096.92 29589.75 33896.92 34396.68 35490.45 33689.62 35497.85 22576.06 36698.81 25386.74 35492.51 29295.41 360
TransMVSNet (Re)92.67 31691.51 32296.15 27396.58 31694.65 21998.90 10096.73 35190.86 33089.46 35797.86 22385.62 26898.09 32686.45 35681.12 38095.71 356
RPMNet92.81 31491.34 32397.24 18797.00 28993.43 26894.96 38198.80 9382.27 38796.93 16692.12 39086.98 24599.82 7676.32 39396.65 21098.46 216
Anonymous2023120691.66 32491.10 32493.33 34994.02 37987.35 37498.58 17997.26 32190.48 33490.16 35096.31 33483.83 31096.53 37579.36 38689.90 32296.12 347
FMVSNet591.81 32290.92 32594.49 33497.21 27692.09 29798.00 25597.55 29789.31 35790.86 34495.61 35974.48 37395.32 38785.57 36289.70 32496.07 349
Patchmatch-RL test91.49 32590.85 32693.41 34791.37 38884.40 38092.81 39395.93 37191.87 30187.25 36994.87 36888.99 19796.53 37592.54 27282.00 37699.30 125
test_vis1_rt91.29 32790.65 32793.19 35397.45 26086.25 37898.57 18490.90 40393.30 24986.94 37193.59 38062.07 39399.11 20697.48 10395.58 24494.22 376
pmmvs691.77 32390.63 32895.17 31194.69 37391.24 31498.67 16697.92 27186.14 37489.62 35497.56 25475.79 36798.34 30490.75 31084.56 37095.94 352
gg-mvs-nofinetune92.21 32190.58 32997.13 19796.75 30795.09 19895.85 37389.40 40585.43 38094.50 23981.98 39880.80 32998.40 30392.16 27898.33 16397.88 235
Anonymous2024052191.18 32990.44 33093.42 34693.70 38088.47 36398.94 9497.56 29288.46 36389.56 35695.08 36777.15 36096.97 36583.92 37389.55 32894.82 371
test20.0390.89 33390.38 33192.43 35793.48 38188.14 36998.33 20997.56 29293.40 24487.96 36696.71 32280.69 33094.13 39279.15 38786.17 36695.01 370
test_040291.32 32690.27 33294.48 33596.60 31491.12 31598.50 19397.22 32386.10 37588.30 36596.98 30377.65 35497.99 33478.13 39092.94 28794.34 373
EG-PatchMatch MVS91.13 33090.12 33394.17 34294.73 37289.00 35398.13 23997.81 27789.22 35885.32 38296.46 33167.71 38798.42 28987.89 35093.82 26795.08 367
PVSNet_088.72 1991.28 32890.03 33495.00 31697.99 21487.29 37594.84 38498.50 16992.06 29689.86 35295.19 36479.81 33599.39 17692.27 27769.79 39898.33 223
UnsupCasMVSNet_eth90.99 33289.92 33594.19 34194.08 37689.83 33797.13 33498.67 12893.69 22885.83 37896.19 34175.15 36996.74 36989.14 33679.41 38796.00 350
TDRefinement91.06 33189.68 33695.21 30985.35 40391.49 31098.51 19297.07 33191.47 31088.83 36397.84 22677.31 35699.09 21192.79 26377.98 39195.04 368
CMPMVSbinary66.06 2189.70 34189.67 33789.78 36693.19 38276.56 39297.00 33998.35 19980.97 38981.57 38897.75 23474.75 37198.61 26889.85 32393.63 27394.17 377
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
YYNet190.70 33589.39 33894.62 33194.79 37190.65 32697.20 32597.46 30587.54 36772.54 39795.74 35286.51 25196.66 37386.00 35986.76 36496.54 320
KD-MVS_self_test90.38 33689.38 33993.40 34892.85 38488.94 35697.95 25997.94 26990.35 33990.25 34993.96 37779.82 33495.94 38284.62 37276.69 39395.33 361
MDA-MVSNet_test_wron90.71 33489.38 33994.68 32894.83 36990.78 32397.19 32797.46 30587.60 36672.41 39895.72 35686.51 25196.71 37285.92 36086.80 36396.56 317
CL-MVSNet_self_test90.11 33889.14 34193.02 35491.86 38788.23 36896.51 36598.07 25490.49 33390.49 34894.41 37284.75 28795.34 38680.79 38274.95 39595.50 359
pmmvs-eth3d90.36 33789.05 34294.32 33991.10 39092.12 29697.63 29596.95 34188.86 36184.91 38393.13 38478.32 34696.74 36988.70 34081.81 37894.09 379
new_pmnet90.06 33989.00 34393.22 35294.18 37488.32 36696.42 36796.89 34686.19 37385.67 37993.62 37977.18 35997.10 36381.61 38089.29 33394.23 375
dmvs_testset87.64 35188.93 34483.79 37695.25 36363.36 40797.20 32591.17 40193.07 25985.64 38095.98 34985.30 27891.52 39969.42 39887.33 35596.49 331
MVS-HIRNet89.46 34588.40 34592.64 35697.58 24682.15 38894.16 39293.05 39775.73 39490.90 34382.52 39779.42 33798.33 30583.53 37598.68 14197.43 249
MDA-MVSNet-bldmvs89.97 34088.35 34694.83 32495.21 36491.34 31197.64 29297.51 30188.36 36471.17 39996.13 34379.22 33896.63 37483.65 37486.27 36596.52 325
MIMVSNet189.67 34288.28 34793.82 34392.81 38591.08 31698.01 25397.45 30987.95 36587.90 36795.87 35067.63 38894.56 39178.73 38988.18 34695.83 354
mvsany_test388.80 34788.04 34891.09 36589.78 39381.57 39097.83 27895.49 37493.81 21787.53 36893.95 37856.14 39697.43 35894.68 20183.13 37394.26 374
APD_test188.22 34988.01 34988.86 36895.98 34274.66 39897.21 32496.44 36083.96 38586.66 37497.90 21960.95 39497.84 34682.73 37690.23 31894.09 379
KD-MVS_2432*160089.61 34387.96 35094.54 33294.06 37791.59 30895.59 37797.63 28689.87 34688.95 36094.38 37478.28 34796.82 36784.83 36868.05 39995.21 363
miper_refine_blended89.61 34387.96 35094.54 33294.06 37791.59 30895.59 37797.63 28689.87 34688.95 36094.38 37478.28 34796.82 36784.83 36868.05 39995.21 363
N_pmnet87.12 35487.77 35285.17 37495.46 35961.92 40897.37 31170.66 41385.83 37788.73 36496.04 34585.33 27697.76 34880.02 38390.48 31495.84 353
new-patchmatchnet88.50 34887.45 35391.67 36390.31 39285.89 37997.16 33297.33 31689.47 35383.63 38592.77 38676.38 36395.06 38982.70 37777.29 39294.06 381
OpenMVS_ROBcopyleft86.42 2089.00 34687.43 35493.69 34493.08 38389.42 34697.91 26496.89 34678.58 39185.86 37794.69 36969.48 38398.29 31377.13 39193.29 28393.36 386
test_fmvs387.17 35287.06 35587.50 37091.21 38975.66 39499.05 6596.61 35892.79 27188.85 36292.78 38543.72 40093.49 39393.95 22884.56 37093.34 387
PM-MVS87.77 35086.55 35691.40 36491.03 39183.36 38696.92 34395.18 37991.28 32186.48 37693.42 38153.27 39796.74 36989.43 33381.97 37794.11 378
test_f86.07 35685.39 35788.10 36989.28 39575.57 39597.73 28596.33 36389.41 35685.35 38191.56 39143.31 40295.53 38491.32 29884.23 37293.21 388
WB-MVS84.86 35785.33 35883.46 37789.48 39469.56 40298.19 23096.42 36189.55 35281.79 38794.67 37084.80 28590.12 40052.44 40380.64 38490.69 391
UnsupCasMVSNet_bld87.17 35285.12 35993.31 35091.94 38688.77 35794.92 38398.30 21184.30 38482.30 38690.04 39263.96 39297.25 36185.85 36174.47 39793.93 383
pmmvs386.67 35584.86 36092.11 36288.16 39787.19 37696.63 36194.75 38379.88 39087.22 37092.75 38766.56 39095.20 38881.24 38176.56 39493.96 382
SSC-MVS84.27 35884.71 36182.96 38189.19 39668.83 40398.08 24696.30 36489.04 36081.37 38994.47 37184.60 29289.89 40149.80 40579.52 38690.15 392
test_method79.03 36078.17 36281.63 38286.06 40254.40 41382.75 40196.89 34639.54 40580.98 39095.57 36058.37 39594.73 39084.74 37178.61 38895.75 355
testf179.02 36177.70 36382.99 37988.10 39866.90 40494.67 38693.11 39471.08 39674.02 39493.41 38234.15 40693.25 39472.25 39678.50 38988.82 394
APD_test279.02 36177.70 36382.99 37988.10 39866.90 40494.67 38693.11 39471.08 39674.02 39493.41 38234.15 40693.25 39472.25 39678.50 38988.82 394
test_vis3_rt79.22 35977.40 36584.67 37586.44 40174.85 39797.66 29081.43 41084.98 38167.12 40181.91 39928.09 41097.60 35288.96 33880.04 38581.55 399
FPMVS77.62 36677.14 36679.05 38479.25 40760.97 40995.79 37495.94 37065.96 39867.93 40094.40 37337.73 40488.88 40368.83 39988.46 34387.29 396
Gipumacopyleft78.40 36476.75 36783.38 37895.54 35580.43 39179.42 40297.40 31364.67 39973.46 39680.82 40045.65 39993.14 39666.32 40087.43 35376.56 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet78.70 36376.24 36886.08 37277.26 40971.99 40094.34 39096.72 35261.62 40076.53 39289.33 39333.91 40892.78 39781.85 37974.60 39693.46 385
PMMVS277.95 36575.44 36985.46 37382.54 40474.95 39694.23 39193.08 39672.80 39574.68 39387.38 39436.36 40591.56 39873.95 39463.94 40189.87 393
EGC-MVSNET75.22 36769.54 37092.28 36094.81 37089.58 34397.64 29296.50 3591.82 4105.57 41195.74 35268.21 38496.26 37873.80 39591.71 30090.99 390
tmp_tt68.90 36966.97 37174.68 38650.78 41359.95 41087.13 39883.47 40938.80 40662.21 40296.23 33864.70 39176.91 40888.91 33930.49 40687.19 397
ANet_high69.08 36865.37 37280.22 38365.99 41171.96 40190.91 39790.09 40482.62 38649.93 40678.39 40129.36 40981.75 40462.49 40138.52 40586.95 398
E-PMN64.94 37164.25 37367.02 38882.28 40559.36 41191.83 39685.63 40752.69 40260.22 40377.28 40241.06 40380.12 40646.15 40641.14 40361.57 404
PMVScopyleft61.03 2365.95 37063.57 37473.09 38757.90 41251.22 41485.05 40093.93 39254.45 40144.32 40783.57 39613.22 41189.15 40258.68 40281.00 38178.91 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS64.07 37263.26 37566.53 38981.73 40658.81 41291.85 39584.75 40851.93 40459.09 40475.13 40343.32 40179.09 40742.03 40739.47 40461.69 403
MVEpermissive62.14 2263.28 37359.38 37674.99 38574.33 41065.47 40685.55 39980.50 41152.02 40351.10 40575.00 40410.91 41480.50 40551.60 40453.40 40278.99 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k23.98 37531.98 3770.00 3930.00 4160.00 4180.00 40498.59 1440.00 4110.00 41298.61 14890.60 1640.00 4120.00 4110.00 4100.00 408
wuyk23d30.17 37430.18 37830.16 39078.61 40843.29 41566.79 40314.21 41417.31 40714.82 41011.93 41011.55 41341.43 40937.08 40819.30 4075.76 407
testmvs21.48 37624.95 37911.09 39214.89 4146.47 41796.56 3639.87 4157.55 40817.93 40839.02 4069.43 4155.90 41116.56 41012.72 40820.91 406
test12320.95 37723.72 38012.64 39113.54 4158.19 41696.55 3646.13 4167.48 40916.74 40937.98 40712.97 4126.05 41016.69 4095.43 40923.68 405
ab-mvs-re8.20 37810.94 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41298.43 1670.00 4160.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.88 37910.50 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41194.51 810.00 4120.00 4110.00 4100.00 408
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS90.94 31888.66 341
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 2099.86 8
PC_three_145295.08 16099.60 1999.16 7797.86 298.47 28397.52 10199.72 5299.74 37
No_MVS99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 2099.86 8
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
eth-test20.00 416
eth-test0.00 416
ZD-MVS99.46 4998.70 2398.79 9893.21 25298.67 7398.97 10595.70 4599.83 6996.07 15499.58 80
IU-MVS99.71 1999.23 798.64 13695.28 14799.63 1898.35 4799.81 1399.83 13
OPU-MVS99.37 2099.24 8799.05 1499.02 7599.16 7797.81 399.37 17797.24 11099.73 4999.70 53
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4299.80 2099.83 13
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
save fliter99.46 4998.38 3598.21 22598.71 11697.95 13
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 3899.86 199.85 10
test_0728_SECOND99.71 199.72 1299.35 198.97 8598.88 6299.94 898.47 3899.81 1399.84 12
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
GSMVS99.20 139
test_part299.63 2999.18 1099.27 35
sam_mvs189.45 18399.20 139
sam_mvs88.99 197
ambc89.49 36786.66 40075.78 39392.66 39496.72 35286.55 37592.50 38846.01 39897.90 34090.32 31482.09 37594.80 372
MTGPAbinary98.74 108
test_post196.68 36030.43 40987.85 23098.69 26192.59 268
test_post31.83 40888.83 20498.91 238
patchmatchnet-post95.10 36689.42 18498.89 242
GG-mvs-BLEND96.59 23996.34 32894.98 20496.51 36588.58 40693.10 30694.34 37680.34 33398.05 32989.53 33096.99 19996.74 293
MTMP98.89 10494.14 390
gm-plane-assit95.88 34687.47 37389.74 34996.94 30999.19 19493.32 247
test9_res96.39 14899.57 8199.69 56
TEST999.31 6498.50 2997.92 26298.73 11192.63 27497.74 13198.68 14296.20 2899.80 88
test_899.29 7398.44 3197.89 27098.72 11392.98 26397.70 13598.66 14596.20 2899.80 88
agg_prior295.87 16499.57 8199.68 61
agg_prior99.30 6898.38 3598.72 11397.57 14799.81 81
TestCases96.99 20599.25 8193.21 28198.18 22991.36 31493.52 28798.77 13284.67 29099.72 11389.70 32797.87 17798.02 233
test_prior498.01 6197.86 273
test_prior297.80 27996.12 10797.89 12598.69 14195.96 3796.89 12699.60 75
test_prior99.19 4099.31 6498.22 4898.84 7999.70 11999.65 69
旧先验297.57 29891.30 31998.67 7399.80 8895.70 173
新几何297.64 292
新几何199.16 4599.34 5798.01 6198.69 12090.06 34398.13 10298.95 11294.60 7999.89 4791.97 28799.47 10099.59 79
旧先验199.29 7397.48 7898.70 11999.09 9295.56 4899.47 10099.61 75
无先验97.58 29798.72 11391.38 31399.87 5893.36 24699.60 77
原ACMM297.67 289
原ACMM198.65 7799.32 6296.62 11498.67 12893.27 25197.81 12698.97 10595.18 6799.83 6993.84 23299.46 10399.50 91
test22299.23 8897.17 9497.40 30798.66 13188.68 36298.05 10798.96 11094.14 9399.53 9299.61 75
testdata299.89 4791.65 294
segment_acmp96.85 14
testdata98.26 11299.20 9295.36 18398.68 12391.89 30098.60 8199.10 8694.44 8699.82 7694.27 21899.44 10499.58 83
testdata197.32 31796.34 99
test1299.18 4299.16 9898.19 5098.53 15998.07 10695.13 7099.72 11399.56 8799.63 73
plane_prior797.42 26294.63 221
plane_prior697.35 26994.61 22487.09 242
plane_prior598.56 15399.03 21896.07 15494.27 25096.92 270
plane_prior498.28 187
plane_prior394.61 22497.02 6495.34 217
plane_prior298.80 13697.28 45
plane_prior197.37 268
plane_prior94.60 22698.44 20096.74 7894.22 252
n20.00 417
nn0.00 417
door-mid94.37 386
lessismore_v094.45 33894.93 36888.44 36491.03 40286.77 37397.64 24676.23 36598.42 28990.31 31585.64 36996.51 328
LGP-MVS_train96.47 25597.46 25793.54 26398.54 15794.67 17994.36 24998.77 13285.39 27299.11 20695.71 17194.15 25696.76 291
test1198.66 131
door94.64 384
HQP5-MVS94.25 241
HQP-NCC97.20 27798.05 24996.43 9394.45 241
ACMP_Plane97.20 27798.05 24996.43 9394.45 241
BP-MVS95.30 183
HQP4-MVS94.45 24198.96 22996.87 281
HQP3-MVS98.46 17694.18 254
HQP2-MVS86.75 248
NP-MVS97.28 27194.51 22997.73 235
MDTV_nov1_ep13_2view84.26 38196.89 35090.97 32897.90 12489.89 17593.91 23099.18 148
ACMMP++_ref92.97 286
ACMMP++93.61 274
Test By Simon94.64 78
ITE_SJBPF95.44 30397.42 26291.32 31297.50 30295.09 15993.59 28398.35 17781.70 31998.88 24489.71 32693.39 28096.12 347
DeepMVS_CXcopyleft86.78 37197.09 28772.30 39995.17 38075.92 39384.34 38495.19 36470.58 38195.35 38579.98 38589.04 33792.68 389