This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND87.71 3095.34 171.43 5493.49 994.23 397.49 389.08 796.41 1294.21 40
SED-MVS90.08 290.85 287.77 2495.30 270.98 6193.57 794.06 1077.24 4893.10 195.72 882.99 197.44 589.07 996.63 494.88 12
IU-MVS95.30 271.25 5592.95 5166.81 23392.39 688.94 1196.63 494.85 17
test_241102_ONE95.30 270.98 6194.06 1077.17 5193.10 195.39 1182.99 197.27 10
DVP-MVScopyleft89.60 390.35 387.33 3895.27 571.25 5593.49 992.73 5977.33 4692.12 995.78 480.98 997.40 789.08 796.41 1293.33 76
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5593.60 694.11 677.33 4692.81 395.79 380.98 9
test_one_060195.07 771.46 5394.14 578.27 3392.05 1195.74 680.83 11
test_part295.06 872.65 3191.80 13
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2692.85 5480.26 987.78 2794.27 3075.89 1996.81 2187.45 1996.44 993.05 86
FOURS195.00 1072.39 3895.06 193.84 1574.49 10991.30 15
DPE-MVScopyleft89.48 589.98 488.01 1494.80 1172.69 3091.59 4194.10 875.90 8392.29 795.66 1081.67 697.38 987.44 2096.34 1593.95 49
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 890.51 5993.00 4380.90 588.06 2594.06 3876.43 1696.84 1988.48 1495.99 1894.34 35
ACMMPR87.44 2187.23 2588.08 1394.64 1373.59 1193.04 1293.20 3476.78 6384.66 5494.52 1968.81 7596.65 2884.53 3694.90 3894.00 48
region2R87.42 2387.20 2688.09 1294.63 1473.55 1293.03 1493.12 3776.73 6684.45 5894.52 1969.09 7196.70 2584.37 3894.83 4294.03 47
OPU-MVS89.06 394.62 1575.42 493.57 794.02 3982.45 396.87 1883.77 4596.48 894.88 12
HFP-MVS87.58 2087.47 2287.94 1794.58 1673.54 1493.04 1293.24 3376.78 6384.91 4794.44 2670.78 5496.61 3084.53 3694.89 3993.66 59
MCST-MVS87.37 2587.25 2487.73 2694.53 1772.46 3789.82 7593.82 1673.07 14084.86 5092.89 6176.22 1796.33 3684.89 3195.13 3494.40 32
APDe-MVS89.15 689.63 687.73 2694.49 1871.69 5093.83 493.96 1375.70 8791.06 1696.03 176.84 1497.03 1589.09 695.65 2794.47 29
DP-MVS Recon83.11 7882.09 8586.15 5694.44 1970.92 6688.79 10492.20 8170.53 17979.17 12391.03 10664.12 11496.03 4468.39 19190.14 9791.50 132
XVS87.18 2786.91 3188.00 1594.42 2073.33 1892.78 1892.99 4579.14 1983.67 7294.17 3367.45 8396.60 3183.06 5094.50 4894.07 45
X-MVStestdata80.37 13177.83 16888.00 1594.42 2073.33 1892.78 1892.99 4579.14 1983.67 7212.47 37467.45 8396.60 3183.06 5094.50 4894.07 45
mPP-MVS86.67 3586.32 3787.72 2894.41 2273.55 1292.74 2092.22 8076.87 6082.81 8494.25 3166.44 9296.24 3982.88 5494.28 5493.38 73
NCCC88.06 1388.01 1788.24 1094.41 2273.62 1091.22 5092.83 5581.50 385.79 3793.47 4973.02 3997.00 1684.90 2994.94 3794.10 43
ZNCC-MVS87.94 1787.85 1888.20 1194.39 2473.33 1893.03 1493.81 1776.81 6185.24 4294.32 2971.76 4696.93 1785.53 2695.79 2294.32 36
ZD-MVS94.38 2572.22 4392.67 6170.98 17187.75 2894.07 3774.01 3296.70 2584.66 3494.84 41
MP-MVScopyleft87.71 1887.64 2087.93 1994.36 2673.88 692.71 2292.65 6477.57 3983.84 6994.40 2872.24 4296.28 3885.65 2595.30 3393.62 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DVP-MVS++90.23 191.01 187.89 2294.34 2771.25 5595.06 194.23 378.38 3192.78 495.74 682.45 397.49 389.42 496.68 294.95 8
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 189.67 196.44 994.41 30
No_MVS89.16 194.34 2775.53 292.99 4597.53 189.67 196.44 994.41 30
MSP-MVS89.51 489.91 588.30 994.28 3073.46 1692.90 1694.11 680.27 891.35 1494.16 3478.35 1396.77 2289.59 394.22 5694.67 22
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft89.08 789.23 788.61 594.25 3173.73 992.40 2393.63 2174.77 10392.29 795.97 274.28 2997.24 1188.58 1396.91 194.87 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft87.44 2187.52 2187.19 4094.24 3272.39 3891.86 3992.83 5573.01 14288.58 2194.52 1973.36 3496.49 3484.26 3995.01 3592.70 95
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS86.68 3486.27 3887.90 2094.22 3373.38 1790.22 6893.04 3875.53 8983.86 6894.42 2767.87 8096.64 2982.70 5994.57 4793.66 59
CP-MVS87.11 2886.92 3087.68 3294.20 3473.86 793.98 392.82 5876.62 6883.68 7194.46 2367.93 7895.95 5084.20 4294.39 5193.23 79
MTAPA87.23 2687.00 2787.90 2094.18 3574.25 586.58 17492.02 8579.45 1785.88 3594.80 1568.07 7796.21 4086.69 2395.34 3193.23 79
GST-MVS87.42 2387.26 2387.89 2294.12 3672.97 2392.39 2593.43 2876.89 5984.68 5193.99 4270.67 5696.82 2084.18 4395.01 3593.90 51
SR-MVS86.73 3286.67 3386.91 4494.11 3772.11 4692.37 2792.56 6774.50 10886.84 3194.65 1867.31 8595.77 5284.80 3392.85 6592.84 93
114514_t80.68 12279.51 12784.20 10594.09 3867.27 13689.64 8291.11 11858.75 31774.08 23490.72 11158.10 18495.04 8369.70 17689.42 10690.30 174
HPM-MVScopyleft87.11 2886.98 2887.50 3693.88 3972.16 4492.19 3293.33 3176.07 8083.81 7093.95 4369.77 6596.01 4685.15 2794.66 4494.32 36
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
save fliter93.80 4072.35 4190.47 6291.17 11674.31 112
ACMMP_NAP88.05 1588.08 1687.94 1793.70 4173.05 2190.86 5493.59 2376.27 7788.14 2395.09 1471.06 5296.67 2787.67 1696.37 1494.09 44
HPM-MVS_fast85.35 5484.95 5886.57 5193.69 4270.58 7392.15 3491.62 10373.89 12282.67 8694.09 3662.60 13195.54 5880.93 7092.93 6493.57 68
TSAR-MVS + MP.88.02 1688.11 1587.72 2893.68 4372.13 4591.41 4592.35 7474.62 10788.90 2093.85 4475.75 2096.00 4787.80 1594.63 4595.04 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVS-pluss87.67 1987.72 1987.54 3493.64 4472.04 4789.80 7793.50 2575.17 9686.34 3395.29 1270.86 5396.00 4788.78 1296.04 1694.58 25
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMPcopyleft85.89 4585.39 5087.38 3793.59 4572.63 3292.74 2093.18 3676.78 6380.73 10793.82 4564.33 11296.29 3782.67 6090.69 9193.23 79
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast79.65 386.91 3186.62 3487.76 2593.52 4672.37 4091.26 4693.04 3876.62 6884.22 6293.36 5171.44 5096.76 2380.82 7295.33 3294.16 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS85.76 4785.29 5487.17 4193.49 4771.08 5988.58 11392.42 7268.32 22484.61 5593.48 4772.32 4196.15 4379.00 8595.43 2994.28 38
DP-MVS76.78 21374.57 22683.42 13493.29 4869.46 9088.55 11483.70 26863.98 27270.20 26988.89 15354.01 21794.80 9446.66 33881.88 19786.01 290
CPTT-MVS83.73 6483.33 6884.92 8193.28 4970.86 6792.09 3590.38 13468.75 21779.57 11892.83 6360.60 17093.04 17380.92 7191.56 8290.86 154
TEST993.26 5072.96 2488.75 10691.89 9368.44 22285.00 4593.10 5474.36 2895.41 65
train_agg86.43 3786.20 3987.13 4293.26 5072.96 2488.75 10691.89 9368.69 21885.00 4593.10 5474.43 2695.41 6584.97 2895.71 2593.02 88
test_893.13 5272.57 3488.68 11191.84 9768.69 21884.87 4993.10 5474.43 2695.16 74
新几何183.42 13493.13 5270.71 6985.48 24557.43 32581.80 9491.98 7763.28 12092.27 19664.60 22292.99 6387.27 263
AdaColmapbinary80.58 12779.42 12984.06 11393.09 5468.91 9789.36 8688.97 18169.27 20175.70 20189.69 12857.20 19595.77 5263.06 23088.41 11887.50 258
SR-MVS-dyc-post85.77 4685.61 4886.23 5493.06 5570.63 7191.88 3792.27 7673.53 13285.69 3894.45 2465.00 11095.56 5682.75 5591.87 7792.50 103
RE-MVS-def85.48 4993.06 5570.63 7191.88 3792.27 7673.53 13285.69 3894.45 2463.87 11682.75 5591.87 7792.50 103
原ACMM184.35 10093.01 5768.79 9892.44 6963.96 27381.09 10391.57 8866.06 9895.45 6167.19 20194.82 4388.81 232
CSCG86.41 3986.19 4087.07 4392.91 5872.48 3690.81 5593.56 2473.95 11983.16 7891.07 10375.94 1895.19 7379.94 8194.38 5293.55 69
agg_prior92.85 5971.94 4991.78 10084.41 5994.93 85
9.1488.26 1492.84 6091.52 4494.75 173.93 12188.57 2294.67 1775.57 2295.79 5186.77 2295.76 23
SF-MVS88.46 1188.74 1187.64 3392.78 6171.95 4892.40 2394.74 275.71 8589.16 1995.10 1375.65 2196.19 4187.07 2196.01 1794.79 19
MG-MVS83.41 7183.45 6683.28 13992.74 6262.28 23488.17 12689.50 15975.22 9481.49 9792.74 6966.75 8895.11 7872.85 14791.58 8192.45 106
APD-MVS_3200maxsize85.97 4385.88 4586.22 5592.69 6369.53 8691.93 3692.99 4573.54 13185.94 3494.51 2265.80 10295.61 5583.04 5292.51 6993.53 71
test1286.80 4792.63 6470.70 7091.79 9982.71 8571.67 4796.16 4294.50 4893.54 70
test_prior86.33 5292.61 6569.59 8592.97 5095.48 6093.91 50
SD-MVS88.06 1388.50 1386.71 4992.60 6672.71 2891.81 4093.19 3577.87 3490.32 1794.00 4074.83 2393.78 13487.63 1794.27 5593.65 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PAPM_NR83.02 7982.41 7984.82 8492.47 6766.37 15187.93 13591.80 9873.82 12377.32 16590.66 11267.90 7994.90 8970.37 16889.48 10593.19 82
DeepPCF-MVS80.84 188.10 1288.56 1286.73 4892.24 6869.03 9389.57 8393.39 3077.53 4389.79 1894.12 3578.98 1296.58 3385.66 2495.72 2494.58 25
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 6972.96 2493.73 593.67 2080.19 1088.10 2494.80 1573.76 3397.11 1387.51 1895.82 2194.90 11
Skip Steuart: Steuart Systems R&D Blog.
UA-Net85.08 5784.96 5785.45 6692.07 7068.07 11989.78 7890.86 12582.48 184.60 5693.20 5369.35 6895.22 7271.39 15990.88 9093.07 85
旧先验191.96 7165.79 16586.37 23493.08 5869.31 7092.74 6688.74 235
MSLP-MVS++85.43 5285.76 4784.45 9691.93 7270.24 7490.71 5692.86 5377.46 4584.22 6292.81 6567.16 8792.94 17580.36 7794.35 5390.16 178
LFMVS81.82 9581.23 9683.57 13191.89 7363.43 21689.84 7481.85 29277.04 5683.21 7693.10 5452.26 22993.43 15371.98 15489.95 10193.85 52
PLCcopyleft70.83 1178.05 18776.37 20583.08 15091.88 7467.80 12388.19 12589.46 16064.33 26669.87 27888.38 16853.66 21993.58 14258.86 26982.73 18787.86 249
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dcpmvs_285.63 4986.15 4284.06 11391.71 7564.94 18486.47 17791.87 9573.63 12786.60 3293.02 5976.57 1591.87 21183.36 4792.15 7395.35 2
MVS_111021_HR85.14 5584.75 5986.32 5391.65 7672.70 2985.98 18990.33 13876.11 7982.08 8991.61 8771.36 5194.17 11881.02 6992.58 6892.08 118
test22291.50 7768.26 11584.16 23583.20 28054.63 33679.74 11591.63 8658.97 17991.42 8386.77 276
TSAR-MVS + GP.85.71 4885.33 5186.84 4591.34 7872.50 3589.07 9587.28 22076.41 7085.80 3690.22 12174.15 3195.37 7081.82 6491.88 7692.65 99
MAR-MVS81.84 9480.70 10585.27 6991.32 7971.53 5289.82 7590.92 12169.77 19278.50 13786.21 23062.36 13794.52 10465.36 21592.05 7589.77 202
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DeepC-MVS79.81 287.08 3086.88 3287.69 3191.16 8072.32 4290.31 6693.94 1477.12 5382.82 8394.23 3272.13 4497.09 1484.83 3295.37 3093.65 63
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+77.84 485.48 5084.47 6288.51 691.08 8173.49 1593.18 1193.78 1880.79 676.66 18193.37 5060.40 17496.75 2477.20 10493.73 6095.29 4
Anonymous20240521178.25 17977.01 18781.99 18191.03 8260.67 25384.77 21783.90 26670.65 17880.00 11491.20 9841.08 32291.43 22265.21 21685.26 15493.85 52
CS-MVS-test86.29 4086.48 3585.71 6391.02 8367.21 13992.36 2893.78 1878.97 2683.51 7591.20 9870.65 5795.15 7581.96 6394.89 3994.77 20
VDD-MVS83.01 8082.36 8184.96 7891.02 8366.40 15088.91 9988.11 20077.57 3984.39 6093.29 5252.19 23093.91 12977.05 10688.70 11394.57 27
API-MVS81.99 9281.23 9684.26 10490.94 8570.18 8091.10 5189.32 16371.51 16278.66 13388.28 17165.26 10595.10 8164.74 22191.23 8687.51 257
testdata79.97 22790.90 8664.21 19884.71 25259.27 31285.40 4092.91 6062.02 14489.08 26468.95 18491.37 8486.63 280
PHI-MVS86.43 3786.17 4187.24 3990.88 8770.96 6392.27 3194.07 972.45 14585.22 4391.90 7969.47 6796.42 3583.28 4995.94 1994.35 34
VNet82.21 8782.41 7981.62 18790.82 8860.93 24884.47 22589.78 15276.36 7584.07 6691.88 8064.71 11190.26 24570.68 16588.89 10993.66 59
PVSNet_Blended_VisFu82.62 8381.83 9184.96 7890.80 8969.76 8488.74 10891.70 10269.39 19878.96 12588.46 16665.47 10494.87 9274.42 13088.57 11490.24 176
CS-MVS86.69 3386.95 2985.90 6190.76 9067.57 12992.83 1793.30 3279.67 1584.57 5792.27 7371.47 4995.02 8484.24 4193.46 6195.13 5
Anonymous2024052980.19 13678.89 14484.10 10890.60 9164.75 18788.95 9890.90 12265.97 24880.59 10891.17 10049.97 25893.73 14069.16 18282.70 18993.81 55
h-mvs3383.15 7582.19 8386.02 5990.56 9270.85 6888.15 12889.16 17176.02 8184.67 5291.39 9461.54 14995.50 5982.71 5775.48 27391.72 126
Anonymous2023121178.97 16577.69 17682.81 16390.54 9364.29 19790.11 7091.51 10765.01 25876.16 19688.13 18050.56 25293.03 17469.68 17777.56 24591.11 143
LS3D76.95 21174.82 22483.37 13790.45 9467.36 13589.15 9386.94 22661.87 29369.52 28190.61 11351.71 24194.53 10346.38 34186.71 13788.21 244
VDDNet81.52 10380.67 10684.05 11590.44 9564.13 20089.73 8085.91 24071.11 16883.18 7793.48 4750.54 25393.49 14873.40 14188.25 11994.54 28
CNLPA78.08 18576.79 19481.97 18290.40 9671.07 6087.59 14484.55 25566.03 24772.38 25189.64 13057.56 19086.04 29459.61 26083.35 17988.79 233
PAPR81.66 10180.89 10383.99 12090.27 9764.00 20186.76 17091.77 10168.84 21677.13 17489.50 13467.63 8194.88 9167.55 19688.52 11693.09 84
Vis-MVSNetpermissive83.46 7082.80 7685.43 6790.25 9868.74 10290.30 6790.13 14476.33 7680.87 10692.89 6161.00 16394.20 11672.45 15390.97 8893.35 75
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DPM-MVS84.93 5884.29 6386.84 4590.20 9973.04 2287.12 15693.04 3869.80 19182.85 8291.22 9773.06 3896.02 4576.72 11294.63 4591.46 135
EPP-MVSNet83.40 7283.02 7284.57 9090.13 10064.47 19392.32 2990.73 12674.45 11179.35 12191.10 10169.05 7395.12 7672.78 14887.22 12994.13 42
CANet86.45 3686.10 4387.51 3590.09 10170.94 6589.70 8192.59 6681.78 281.32 9891.43 9370.34 5897.23 1284.26 3993.36 6294.37 33
test250677.30 20576.49 20179.74 23290.08 10252.02 33687.86 13963.10 36474.88 10080.16 11392.79 6638.29 33292.35 19368.74 18792.50 7094.86 15
ECVR-MVScopyleft79.61 14479.26 13580.67 21490.08 10254.69 32087.89 13777.44 32774.88 10080.27 11092.79 6648.96 27492.45 18768.55 18892.50 7094.86 15
HQP_MVS83.64 6783.14 6985.14 7290.08 10268.71 10491.25 4892.44 6979.12 2178.92 12791.00 10760.42 17295.38 6778.71 8986.32 14291.33 136
plane_prior790.08 10268.51 111
patch_mono-283.65 6684.54 6180.99 20790.06 10665.83 16284.21 23488.74 19171.60 16085.01 4492.44 7174.51 2583.50 31282.15 6292.15 7393.64 65
test111179.43 15179.18 13980.15 22489.99 10753.31 33387.33 15177.05 33075.04 9780.23 11292.77 6848.97 27392.33 19568.87 18592.40 7294.81 18
CHOSEN 1792x268877.63 19975.69 21083.44 13389.98 10868.58 11078.70 30287.50 21656.38 33075.80 20086.84 20758.67 18091.40 22361.58 24685.75 15390.34 173
IS-MVSNet83.15 7582.81 7584.18 10689.94 10963.30 21891.59 4188.46 19779.04 2379.49 11992.16 7565.10 10794.28 11067.71 19491.86 7994.95 8
plane_prior189.90 110
canonicalmvs85.91 4485.87 4686.04 5889.84 11169.44 9190.45 6493.00 4376.70 6788.01 2691.23 9673.28 3693.91 12981.50 6688.80 11194.77 20
plane_prior689.84 11168.70 10660.42 172
NP-MVS89.62 11368.32 11390.24 119
EIA-MVS83.31 7482.80 7684.82 8489.59 11465.59 16888.21 12492.68 6074.66 10578.96 12586.42 22669.06 7295.26 7175.54 12390.09 9893.62 66
HyFIR lowres test77.53 20075.40 21783.94 12389.59 11466.62 14780.36 28388.64 19456.29 33176.45 18485.17 25357.64 18993.28 15661.34 24983.10 18391.91 122
TAPA-MVS73.13 979.15 15977.94 16482.79 16689.59 11462.99 22788.16 12791.51 10765.77 24977.14 17391.09 10260.91 16493.21 15850.26 32187.05 13192.17 116
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thres100view90076.50 21675.55 21479.33 24089.52 11756.99 29385.83 19683.23 27873.94 12076.32 18987.12 20351.89 23891.95 20648.33 32983.75 17289.07 215
GeoE81.71 9781.01 10183.80 12689.51 11864.45 19488.97 9788.73 19271.27 16578.63 13489.76 12766.32 9493.20 16169.89 17486.02 14893.74 57
alignmvs85.48 5085.32 5285.96 6089.51 11869.47 8889.74 7992.47 6876.17 7887.73 2991.46 9270.32 5993.78 13481.51 6588.95 10894.63 24
PS-MVSNAJ81.69 9881.02 10083.70 12889.51 11868.21 11784.28 23390.09 14570.79 17381.26 10285.62 24363.15 12594.29 10975.62 12188.87 11088.59 238
ACMP74.13 681.51 10580.57 10784.36 9989.42 12168.69 10789.97 7291.50 11074.46 11075.04 22390.41 11753.82 21894.54 10277.56 10082.91 18489.86 198
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
thres600view776.50 21675.44 21579.68 23489.40 12257.16 29085.53 20483.23 27873.79 12576.26 19087.09 20451.89 23891.89 20948.05 33483.72 17590.00 190
ETV-MVS84.90 6084.67 6085.59 6589.39 12368.66 10888.74 10892.64 6579.97 1384.10 6585.71 23969.32 6995.38 6780.82 7291.37 8492.72 94
BH-RMVSNet79.61 14478.44 15383.14 14789.38 12465.93 15984.95 21487.15 22373.56 13078.19 14789.79 12656.67 19893.36 15459.53 26186.74 13690.13 180
iter_conf_final80.63 12379.35 13284.46 9589.36 12567.70 12689.85 7384.49 25673.19 13878.30 14388.94 15045.98 29194.56 10079.59 8384.48 16391.11 143
HQP-NCC89.33 12689.17 8976.41 7077.23 168
ACMP_Plane89.33 12689.17 8976.41 7077.23 168
HQP-MVS82.61 8482.02 8784.37 9889.33 12666.98 14289.17 8992.19 8276.41 7077.23 16890.23 12060.17 17595.11 7877.47 10185.99 14991.03 148
DROMVSNet86.01 4186.38 3684.91 8289.31 12966.27 15392.32 2993.63 2179.37 1884.17 6491.88 8069.04 7495.43 6383.93 4493.77 5993.01 89
ACMM73.20 880.78 12179.84 12183.58 13089.31 12968.37 11289.99 7191.60 10470.28 18377.25 16689.66 12953.37 22193.53 14774.24 13382.85 18588.85 230
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Test_1112_low_res76.40 22075.44 21579.27 24189.28 13158.09 27481.69 26887.07 22459.53 31072.48 24986.67 21661.30 15689.33 25960.81 25380.15 21890.41 171
F-COLMAP76.38 22174.33 23182.50 17389.28 13166.95 14588.41 11689.03 17664.05 27066.83 30588.61 16146.78 28492.89 17657.48 28178.55 23487.67 252
LPG-MVS_test82.08 8981.27 9584.50 9389.23 13368.76 10090.22 6891.94 9175.37 9276.64 18291.51 8954.29 21394.91 8678.44 9183.78 17089.83 199
LGP-MVS_train84.50 9389.23 13368.76 10091.94 9175.37 9276.64 18291.51 8954.29 21394.91 8678.44 9183.78 17089.83 199
BH-untuned79.47 14978.60 14982.05 17989.19 13565.91 16086.07 18888.52 19672.18 15075.42 20887.69 18561.15 16093.54 14660.38 25486.83 13586.70 278
xiu_mvs_v2_base81.69 9881.05 9983.60 12989.15 13668.03 12084.46 22790.02 14670.67 17681.30 10186.53 22463.17 12494.19 11775.60 12288.54 11588.57 239
test_yl81.17 10880.47 11083.24 14289.13 13763.62 20786.21 18489.95 14972.43 14881.78 9589.61 13157.50 19193.58 14270.75 16386.90 13392.52 101
DCV-MVSNet81.17 10880.47 11083.24 14289.13 13763.62 20786.21 18489.95 14972.43 14881.78 9589.61 13157.50 19193.58 14270.75 16386.90 13392.52 101
tfpn200view976.42 21975.37 21979.55 23989.13 13757.65 28485.17 20783.60 26973.41 13476.45 18486.39 22752.12 23191.95 20648.33 32983.75 17289.07 215
thres40076.50 21675.37 21979.86 22989.13 13757.65 28485.17 20783.60 26973.41 13476.45 18486.39 22752.12 23191.95 20648.33 32983.75 17290.00 190
1112_ss77.40 20376.43 20380.32 22189.11 14160.41 25883.65 24387.72 21262.13 29173.05 24386.72 21162.58 13389.97 24962.11 24180.80 20990.59 165
Fast-Effi-MVS+80.81 11679.92 11883.47 13288.85 14264.51 19085.53 20489.39 16170.79 17378.49 13885.06 25667.54 8293.58 14267.03 20486.58 13892.32 109
PVSNet_BlendedMVS80.60 12580.02 11682.36 17688.85 14265.40 17386.16 18692.00 8769.34 20078.11 14986.09 23466.02 9994.27 11171.52 15682.06 19487.39 259
PVSNet_Blended80.98 11180.34 11282.90 15988.85 14265.40 17384.43 22992.00 8767.62 22878.11 14985.05 25766.02 9994.27 11171.52 15689.50 10489.01 222
MVS_111021_LR82.61 8482.11 8484.11 10788.82 14571.58 5185.15 20986.16 23774.69 10480.47 10991.04 10462.29 13890.55 24380.33 7890.08 9990.20 177
BH-w/o78.21 18177.33 18380.84 21088.81 14665.13 18084.87 21587.85 20969.75 19374.52 23084.74 26161.34 15593.11 16858.24 27685.84 15184.27 311
FIs82.07 9082.42 7881.04 20688.80 14758.34 27288.26 12393.49 2676.93 5878.47 13991.04 10469.92 6392.34 19469.87 17584.97 15692.44 107
OPM-MVS83.50 6982.95 7385.14 7288.79 14870.95 6489.13 9491.52 10677.55 4280.96 10591.75 8260.71 16694.50 10579.67 8286.51 14089.97 194
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS79.49 14879.22 13780.27 22288.79 14858.35 27185.06 21188.61 19578.56 2877.65 15888.34 16963.81 11890.66 24264.98 21977.22 24791.80 125
OMC-MVS82.69 8281.97 8984.85 8388.75 15067.42 13287.98 13190.87 12474.92 9979.72 11691.65 8462.19 14193.96 12275.26 12586.42 14193.16 83
hse-mvs281.72 9680.94 10284.07 11288.72 15167.68 12785.87 19387.26 22176.02 8184.67 5288.22 17461.54 14993.48 14982.71 5773.44 30091.06 146
AUN-MVS79.21 15877.60 17884.05 11588.71 15267.61 12885.84 19587.26 22169.08 20977.23 16888.14 17953.20 22393.47 15075.50 12473.45 29991.06 146
ACMH67.68 1675.89 22673.93 23481.77 18588.71 15266.61 14888.62 11289.01 17869.81 19066.78 30686.70 21541.95 31991.51 22155.64 29578.14 24187.17 265
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNet (Re-imp)78.36 17878.45 15278.07 25888.64 15451.78 34086.70 17179.63 31474.14 11775.11 22090.83 11061.29 15789.75 25258.10 27791.60 8092.69 97
PatchMatch-RL72.38 26170.90 26176.80 27688.60 15567.38 13479.53 29276.17 33562.75 28569.36 28382.00 30045.51 29784.89 30353.62 30380.58 21278.12 346
ACMH+68.96 1476.01 22574.01 23382.03 18088.60 15565.31 17788.86 10187.55 21470.25 18467.75 29387.47 19341.27 32093.19 16358.37 27475.94 26687.60 254
LTVRE_ROB69.57 1376.25 22274.54 22881.41 19388.60 15564.38 19679.24 29589.12 17570.76 17569.79 28087.86 18249.09 27093.20 16156.21 29480.16 21786.65 279
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DELS-MVS85.41 5385.30 5385.77 6288.49 15867.93 12185.52 20693.44 2778.70 2783.63 7489.03 14974.57 2495.71 5480.26 7994.04 5793.66 59
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CLD-MVS82.31 8681.65 9284.29 10388.47 15967.73 12585.81 19792.35 7475.78 8478.33 14286.58 22164.01 11594.35 10876.05 11687.48 12690.79 155
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 9381.54 9382.92 15888.46 16063.46 21487.13 15592.37 7380.19 1078.38 14089.14 14571.66 4893.05 17170.05 17176.46 25892.25 112
ab-mvs79.51 14778.97 14381.14 20388.46 16060.91 24983.84 24089.24 16870.36 18179.03 12488.87 15463.23 12390.21 24765.12 21782.57 19092.28 111
FC-MVSNet-test81.52 10382.02 8780.03 22688.42 16255.97 30987.95 13393.42 2977.10 5477.38 16390.98 10969.96 6291.79 21268.46 19084.50 16192.33 108
Effi-MVS+83.62 6883.08 7085.24 7088.38 16367.45 13188.89 10089.15 17275.50 9082.27 8788.28 17169.61 6694.45 10777.81 9887.84 12193.84 54
UniMVSNet (Re)81.60 10281.11 9883.09 14988.38 16364.41 19587.60 14393.02 4278.42 3078.56 13688.16 17569.78 6493.26 15769.58 17876.49 25791.60 127
VPNet78.69 17178.66 14878.76 24788.31 16555.72 31184.45 22886.63 23076.79 6278.26 14490.55 11559.30 17789.70 25466.63 20577.05 24990.88 153
FA-MVS(test-final)80.96 11279.91 11984.10 10888.30 16665.01 18284.55 22490.01 14773.25 13779.61 11787.57 18858.35 18394.72 9771.29 16086.25 14492.56 100
TR-MVS77.44 20176.18 20681.20 20188.24 16763.24 21984.61 22286.40 23367.55 22977.81 15586.48 22554.10 21593.15 16557.75 28082.72 18887.20 264
EI-MVSNet-Vis-set84.19 6183.81 6485.31 6888.18 16867.85 12287.66 14289.73 15580.05 1282.95 7989.59 13370.74 5594.82 9380.66 7684.72 15993.28 78
baseline176.98 21076.75 19777.66 26388.13 16955.66 31285.12 21081.89 29073.04 14176.79 17788.90 15262.43 13687.78 28363.30 22971.18 31589.55 208
test_040272.79 25870.44 26679.84 23088.13 16965.99 15885.93 19184.29 26065.57 25267.40 29985.49 24546.92 28392.61 18235.88 35974.38 29080.94 338
tttt051779.40 15377.91 16583.90 12588.10 17163.84 20488.37 12084.05 26471.45 16376.78 17889.12 14649.93 26194.89 9070.18 17083.18 18292.96 91
FE-MVS77.78 19475.68 21184.08 11188.09 17266.00 15783.13 25487.79 21068.42 22378.01 15285.23 25145.50 29895.12 7659.11 26585.83 15291.11 143
VPA-MVSNet80.60 12580.55 10880.76 21288.07 17360.80 25186.86 16491.58 10575.67 8880.24 11189.45 14063.34 11990.25 24670.51 16779.22 23191.23 140
UGNet80.83 11579.59 12684.54 9288.04 17468.09 11889.42 8488.16 19976.95 5776.22 19189.46 13849.30 26793.94 12568.48 18990.31 9391.60 127
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WR-MVS_H78.51 17578.49 15178.56 25088.02 17556.38 30488.43 11592.67 6177.14 5273.89 23587.55 19066.25 9589.24 26158.92 26873.55 29890.06 188
QAPM80.88 11379.50 12885.03 7588.01 17668.97 9691.59 4192.00 8766.63 24075.15 21992.16 7557.70 18895.45 6163.52 22588.76 11290.66 161
3Dnovator76.31 583.38 7382.31 8286.59 5087.94 17772.94 2790.64 5792.14 8477.21 5075.47 20492.83 6358.56 18194.72 9773.24 14492.71 6792.13 117
EI-MVSNet-UG-set83.81 6383.38 6785.09 7487.87 17867.53 13087.44 14889.66 15679.74 1482.23 8889.41 14270.24 6094.74 9679.95 8083.92 16992.99 90
TranMVSNet+NR-MVSNet80.84 11480.31 11382.42 17487.85 17962.33 23287.74 14191.33 11280.55 777.99 15389.86 12465.23 10692.62 18167.05 20375.24 28292.30 110
iter_conf0580.00 14078.70 14683.91 12487.84 18065.83 16288.84 10384.92 25171.61 15978.70 13088.94 15043.88 30594.56 10079.28 8484.28 16691.33 136
CP-MVSNet78.22 18078.34 15677.84 26087.83 18154.54 32287.94 13491.17 11677.65 3673.48 23888.49 16562.24 14088.43 27562.19 23874.07 29190.55 166
DU-MVS81.12 11080.52 10982.90 15987.80 18263.46 21487.02 15991.87 9579.01 2478.38 14089.07 14765.02 10893.05 17170.05 17176.46 25892.20 114
NR-MVSNet80.23 13479.38 13082.78 16787.80 18263.34 21786.31 18191.09 11979.01 2472.17 25389.07 14767.20 8692.81 18066.08 21075.65 26992.20 114
TAMVS78.89 16777.51 18083.03 15387.80 18267.79 12484.72 21885.05 24967.63 22776.75 17987.70 18462.25 13990.82 23858.53 27387.13 13090.49 168
thres20075.55 23074.47 22978.82 24687.78 18557.85 28183.07 25783.51 27272.44 14775.84 19984.42 26352.08 23391.75 21347.41 33683.64 17686.86 274
PS-CasMVS78.01 18978.09 16177.77 26287.71 18654.39 32488.02 13091.22 11377.50 4473.26 24088.64 16060.73 16588.41 27661.88 24273.88 29590.53 167
PCF-MVS73.52 780.38 13078.84 14585.01 7687.71 18668.99 9583.65 24391.46 11163.00 27977.77 15790.28 11866.10 9695.09 8261.40 24788.22 12090.94 152
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053079.40 15377.76 17384.31 10287.69 18865.10 18187.36 14984.26 26270.04 18677.42 16288.26 17349.94 25994.79 9570.20 16984.70 16093.03 87
casdiffmvs_mvgpermissive85.99 4286.09 4485.70 6487.65 18967.22 13888.69 11093.04 3879.64 1685.33 4192.54 7073.30 3594.50 10583.49 4691.14 8795.37 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RRT_MVS80.35 13279.22 13783.74 12787.63 19065.46 17291.08 5288.92 18473.82 12376.44 18790.03 12349.05 27294.25 11576.84 10879.20 23291.51 130
GBi-Net78.40 17677.40 18181.40 19487.60 19163.01 22488.39 11789.28 16471.63 15675.34 21187.28 19554.80 20591.11 22962.72 23279.57 22490.09 184
test178.40 17677.40 18181.40 19487.60 19163.01 22488.39 11789.28 16471.63 15675.34 21187.28 19554.80 20591.11 22962.72 23279.57 22490.09 184
FMVSNet278.20 18277.21 18481.20 20187.60 19162.89 22887.47 14789.02 17771.63 15675.29 21687.28 19554.80 20591.10 23262.38 23679.38 22889.61 206
CDS-MVSNet79.07 16277.70 17583.17 14687.60 19168.23 11684.40 23186.20 23667.49 23076.36 18886.54 22361.54 14990.79 23961.86 24387.33 12790.49 168
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HY-MVS69.67 1277.95 19077.15 18580.36 21987.57 19560.21 26183.37 25087.78 21166.11 24475.37 21087.06 20663.27 12190.48 24461.38 24882.43 19190.40 172
mvsmamba81.69 9880.74 10484.56 9187.45 19666.72 14691.26 4685.89 24174.66 10578.23 14590.56 11454.33 21294.91 8680.73 7583.54 17792.04 121
xiu_mvs_v1_base_debu80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9587.56 12389.06 217
xiu_mvs_v1_base80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9587.56 12389.06 217
xiu_mvs_v1_base_debi80.80 11879.72 12384.03 11787.35 19770.19 7785.56 19988.77 18769.06 21081.83 9188.16 17550.91 24792.85 17778.29 9587.56 12389.06 217
MVSFormer82.85 8182.05 8685.24 7087.35 19770.21 7590.50 6090.38 13468.55 22081.32 9889.47 13661.68 14693.46 15178.98 8690.26 9592.05 119
lupinMVS81.39 10680.27 11584.76 8787.35 19770.21 7585.55 20286.41 23262.85 28281.32 9888.61 16161.68 14692.24 19878.41 9390.26 9591.83 123
baseline84.93 5884.98 5684.80 8687.30 20265.39 17587.30 15292.88 5277.62 3784.04 6792.26 7471.81 4593.96 12281.31 6790.30 9495.03 7
PAPM77.68 19876.40 20481.51 19087.29 20361.85 23983.78 24189.59 15764.74 26071.23 26188.70 15762.59 13293.66 14152.66 30887.03 13289.01 222
LCM-MVSNet-Re77.05 20876.94 19077.36 26887.20 20451.60 34180.06 28680.46 30575.20 9567.69 29486.72 21162.48 13488.98 26663.44 22789.25 10791.51 130
casdiffmvspermissive85.11 5685.14 5585.01 7687.20 20465.77 16687.75 14092.83 5577.84 3584.36 6192.38 7272.15 4393.93 12881.27 6890.48 9295.33 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
COLMAP_ROBcopyleft66.92 1773.01 25570.41 26780.81 21187.13 20665.63 16788.30 12284.19 26362.96 28063.80 32987.69 18538.04 33392.56 18446.66 33874.91 28584.24 312
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS77.73 19577.69 17677.84 26087.07 20753.91 32787.91 13691.18 11577.56 4173.14 24288.82 15561.23 15889.17 26259.95 25772.37 30690.43 170
MVS_Test83.15 7583.06 7183.41 13686.86 20863.21 22086.11 18792.00 8774.31 11282.87 8189.44 14170.03 6193.21 15877.39 10388.50 11793.81 55
UniMVSNet_ETH3D79.10 16178.24 15981.70 18686.85 20960.24 26087.28 15388.79 18674.25 11476.84 17590.53 11649.48 26491.56 21867.98 19282.15 19393.29 77
FMVSNet377.88 19276.85 19280.97 20886.84 21062.36 23186.52 17688.77 18771.13 16775.34 21186.66 21754.07 21691.10 23262.72 23279.57 22489.45 209
FMVSNet177.44 20176.12 20781.40 19486.81 21163.01 22488.39 11789.28 16470.49 18074.39 23187.28 19549.06 27191.11 22960.91 25178.52 23590.09 184
nrg03083.88 6283.53 6584.96 7886.77 21269.28 9290.46 6392.67 6174.79 10282.95 7991.33 9572.70 4093.09 16980.79 7479.28 23092.50 103
ET-MVSNet_ETH3D78.63 17276.63 20084.64 8986.73 21369.47 8885.01 21284.61 25469.54 19666.51 31186.59 21950.16 25691.75 21376.26 11384.24 16792.69 97
jason81.39 10680.29 11484.70 8886.63 21469.90 8285.95 19086.77 22863.24 27581.07 10489.47 13661.08 16292.15 20078.33 9490.07 10092.05 119
jason: jason.
PS-MVSNAJss82.07 9081.31 9484.34 10186.51 21567.27 13689.27 8791.51 10771.75 15479.37 12090.22 12163.15 12594.27 11177.69 9982.36 19291.49 133
WTY-MVS75.65 22975.68 21175.57 28486.40 21656.82 29577.92 31082.40 28765.10 25576.18 19387.72 18363.13 12880.90 32460.31 25581.96 19589.00 224
DTE-MVSNet76.99 20976.80 19377.54 26786.24 21753.06 33587.52 14590.66 12777.08 5572.50 24888.67 15960.48 17189.52 25657.33 28470.74 31790.05 189
PVSNet64.34 1872.08 26470.87 26375.69 28286.21 21856.44 30274.37 32980.73 30062.06 29270.17 27182.23 29642.86 31083.31 31454.77 29884.45 16487.32 262
tfpnnormal74.39 23973.16 24278.08 25786.10 21958.05 27584.65 22187.53 21570.32 18271.22 26285.63 24254.97 20489.86 25043.03 35075.02 28486.32 282
IterMVS-LS80.06 13779.38 13082.11 17885.89 22063.20 22186.79 16789.34 16274.19 11575.45 20786.72 21166.62 8992.39 19072.58 15076.86 25290.75 158
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Baseline_NR-MVSNet78.15 18478.33 15777.61 26585.79 22156.21 30786.78 16885.76 24273.60 12977.93 15487.57 18865.02 10888.99 26567.14 20275.33 27987.63 253
cascas76.72 21474.64 22582.99 15585.78 22265.88 16182.33 26289.21 16960.85 29972.74 24581.02 30547.28 28193.75 13867.48 19785.02 15589.34 211
MVS78.19 18376.99 18981.78 18485.66 22366.99 14184.66 21990.47 13255.08 33572.02 25585.27 24963.83 11794.11 12066.10 20989.80 10284.24 312
XVG-OURS80.41 12979.23 13683.97 12185.64 22469.02 9483.03 25890.39 13371.09 16977.63 15991.49 9154.62 21191.35 22475.71 11983.47 17891.54 129
CANet_DTU80.61 12479.87 12082.83 16185.60 22563.17 22387.36 14988.65 19376.37 7475.88 19888.44 16753.51 22093.07 17073.30 14289.74 10392.25 112
XVG-OURS-SEG-HR80.81 11679.76 12283.96 12285.60 22568.78 9983.54 24890.50 13170.66 17776.71 18091.66 8360.69 16791.26 22676.94 10781.58 20091.83 123
TransMVSNet (Re)75.39 23574.56 22777.86 25985.50 22757.10 29286.78 16886.09 23972.17 15171.53 25987.34 19463.01 12989.31 26056.84 28961.83 34287.17 265
MVP-Stereo76.12 22374.46 23081.13 20485.37 22869.79 8384.42 23087.95 20565.03 25767.46 29785.33 24853.28 22291.73 21558.01 27883.27 18081.85 333
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thisisatest051577.33 20475.38 21883.18 14585.27 22963.80 20582.11 26483.27 27765.06 25675.91 19783.84 27349.54 26394.27 11167.24 20086.19 14591.48 134
tt080578.73 16977.83 16881.43 19285.17 23060.30 25989.41 8590.90 12271.21 16677.17 17288.73 15646.38 28693.21 15872.57 15178.96 23390.79 155
OpenMVScopyleft72.83 1079.77 14278.33 15784.09 11085.17 23069.91 8190.57 5890.97 12066.70 23672.17 25391.91 7854.70 20993.96 12261.81 24490.95 8988.41 242
AllTest70.96 26968.09 28479.58 23785.15 23263.62 20784.58 22379.83 31162.31 28960.32 33986.73 20932.02 34688.96 26850.28 31971.57 31386.15 286
TestCases79.58 23785.15 23263.62 20779.83 31162.31 28960.32 33986.73 20932.02 34688.96 26850.28 31971.57 31386.15 286
Effi-MVS+-dtu80.03 13878.57 15084.42 9785.13 23468.74 10288.77 10588.10 20174.99 9874.97 22483.49 27957.27 19493.36 15473.53 13880.88 20791.18 141
SixPastTwentyTwo73.37 24971.26 25979.70 23385.08 23557.89 28085.57 19883.56 27171.03 17065.66 31585.88 23642.10 31792.57 18359.11 26563.34 34088.65 237
bld_raw_dy_0_6477.29 20675.98 20881.22 20085.04 23665.47 17188.14 12977.56 32469.20 20573.77 23689.40 14442.24 31688.85 27176.78 11081.64 19989.33 212
EG-PatchMatch MVS74.04 24471.82 25280.71 21384.92 23767.42 13285.86 19488.08 20266.04 24664.22 32583.85 27235.10 34192.56 18457.44 28280.83 20882.16 332
IB-MVS68.01 1575.85 22773.36 24083.31 13884.76 23866.03 15583.38 24985.06 24870.21 18569.40 28281.05 30445.76 29594.66 9965.10 21875.49 27289.25 214
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvs_tets79.13 16077.77 17283.22 14484.70 23966.37 15189.17 8990.19 14269.38 19975.40 20989.46 13844.17 30393.15 16576.78 11080.70 21190.14 179
jajsoiax79.29 15677.96 16383.27 14084.68 24066.57 14989.25 8890.16 14369.20 20575.46 20689.49 13545.75 29693.13 16776.84 10880.80 20990.11 182
MIMVSNet70.69 27369.30 27274.88 29184.52 24156.35 30575.87 32179.42 31564.59 26167.76 29282.41 29241.10 32181.54 32146.64 34081.34 20186.75 277
MSDG73.36 25170.99 26080.49 21784.51 24265.80 16480.71 27986.13 23865.70 25065.46 31683.74 27644.60 30190.91 23751.13 31476.89 25184.74 306
mvs_anonymous79.42 15279.11 14080.34 22084.45 24357.97 27882.59 26087.62 21367.40 23176.17 19588.56 16468.47 7689.59 25570.65 16686.05 14793.47 72
EI-MVSNet80.52 12879.98 11782.12 17784.28 24463.19 22286.41 17888.95 18274.18 11678.69 13187.54 19166.62 8992.43 18872.57 15180.57 21390.74 159
CVMVSNet72.99 25672.58 24674.25 29884.28 24450.85 34686.41 17883.45 27544.56 35273.23 24187.54 19149.38 26585.70 29665.90 21178.44 23786.19 285
pm-mvs177.25 20776.68 19978.93 24584.22 24658.62 27086.41 17888.36 19871.37 16473.31 23988.01 18161.22 15989.15 26364.24 22373.01 30389.03 221
EPNet83.72 6582.92 7486.14 5784.22 24669.48 8791.05 5385.27 24681.30 476.83 17691.65 8466.09 9795.56 5676.00 11793.85 5893.38 73
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v879.97 14179.02 14282.80 16484.09 24864.50 19287.96 13290.29 14174.13 11875.24 21786.81 20862.88 13093.89 13174.39 13175.40 27790.00 190
v1079.74 14378.67 14782.97 15784.06 24964.95 18387.88 13890.62 12873.11 13975.11 22086.56 22261.46 15294.05 12173.68 13675.55 27189.90 196
SCA74.22 24272.33 24979.91 22884.05 25062.17 23579.96 28979.29 31666.30 24372.38 25180.13 31451.95 23688.60 27359.25 26377.67 24488.96 226
test_djsdf80.30 13379.32 13383.27 14083.98 25165.37 17690.50 6090.38 13468.55 22076.19 19288.70 15756.44 19993.46 15178.98 8680.14 21990.97 151
131476.53 21575.30 22180.21 22383.93 25262.32 23384.66 21988.81 18560.23 30370.16 27284.07 27055.30 20390.73 24167.37 19883.21 18187.59 256
MS-PatchMatch73.83 24672.67 24577.30 27083.87 25366.02 15681.82 26584.66 25361.37 29768.61 28882.82 28847.29 28088.21 27759.27 26284.32 16577.68 347
v114480.03 13879.03 14183.01 15483.78 25464.51 19087.11 15790.57 13071.96 15378.08 15186.20 23161.41 15393.94 12574.93 12677.23 24690.60 164
OurMVSNet-221017-074.26 24172.42 24879.80 23183.76 25559.59 26585.92 19286.64 22966.39 24266.96 30287.58 18739.46 32691.60 21665.76 21369.27 32288.22 243
v2v48280.23 13479.29 13483.05 15283.62 25664.14 19987.04 15889.97 14873.61 12878.18 14887.22 19961.10 16193.82 13276.11 11476.78 25591.18 141
XXY-MVS75.41 23475.56 21374.96 29083.59 25757.82 28280.59 28183.87 26766.54 24174.93 22588.31 17063.24 12280.09 32762.16 23976.85 25386.97 272
v119279.59 14678.43 15483.07 15183.55 25864.52 18986.93 16290.58 12970.83 17277.78 15685.90 23559.15 17893.94 12573.96 13577.19 24890.76 157
EGC-MVSNET52.07 32947.05 33367.14 33383.51 25960.71 25280.50 28267.75 3560.07 3770.43 37875.85 34324.26 35781.54 32128.82 36362.25 34159.16 362
v7n78.97 16577.58 17983.14 14783.45 26065.51 16988.32 12191.21 11473.69 12672.41 25086.32 22957.93 18593.81 13369.18 18175.65 26990.11 182
v14419279.47 14978.37 15582.78 16783.35 26163.96 20286.96 16090.36 13769.99 18777.50 16085.67 24160.66 16893.77 13674.27 13276.58 25690.62 162
tpm273.26 25271.46 25478.63 24883.34 26256.71 29880.65 28080.40 30656.63 32973.55 23782.02 29951.80 24091.24 22756.35 29378.42 23887.95 246
v192192079.22 15778.03 16282.80 16483.30 26363.94 20386.80 16690.33 13869.91 18977.48 16185.53 24458.44 18293.75 13873.60 13776.85 25390.71 160
baseline275.70 22873.83 23781.30 19783.26 26461.79 24182.57 26180.65 30166.81 23366.88 30383.42 28057.86 18792.19 19963.47 22679.57 22489.91 195
v124078.99 16477.78 17182.64 17083.21 26563.54 21186.62 17390.30 14069.74 19577.33 16485.68 24057.04 19693.76 13773.13 14576.92 25090.62 162
XVG-ACMP-BASELINE76.11 22474.27 23281.62 18783.20 26664.67 18883.60 24689.75 15469.75 19371.85 25687.09 20432.78 34592.11 20169.99 17380.43 21588.09 245
MDTV_nov1_ep1369.97 27183.18 26753.48 33077.10 31580.18 31060.45 30069.33 28480.44 31148.89 27586.90 28851.60 31278.51 236
PatchmatchNetpermissive73.12 25471.33 25778.49 25383.18 26760.85 25079.63 29178.57 31964.13 26771.73 25779.81 31951.20 24585.97 29557.40 28376.36 26388.66 236
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Fast-Effi-MVS+-dtu78.02 18876.49 20182.62 17183.16 26966.96 14486.94 16187.45 21872.45 14571.49 26084.17 26854.79 20891.58 21767.61 19580.31 21689.30 213
gg-mvs-nofinetune69.95 28167.96 28575.94 28083.07 27054.51 32377.23 31470.29 34963.11 27770.32 26862.33 35743.62 30688.69 27253.88 30287.76 12284.62 309
MVSTER79.01 16377.88 16782.38 17583.07 27064.80 18684.08 23988.95 18269.01 21378.69 13187.17 20254.70 20992.43 18874.69 12780.57 21389.89 197
K. test v371.19 26768.51 27879.21 24383.04 27257.78 28384.35 23276.91 33172.90 14462.99 33282.86 28739.27 32791.09 23461.65 24552.66 35888.75 234
eth_miper_zixun_eth77.92 19176.69 19881.61 18983.00 27361.98 23783.15 25389.20 17069.52 19774.86 22684.35 26661.76 14592.56 18471.50 15872.89 30490.28 175
diffmvspermissive82.10 8881.88 9082.76 16983.00 27363.78 20683.68 24289.76 15372.94 14382.02 9089.85 12565.96 10190.79 23982.38 6187.30 12893.71 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FMVSNet569.50 28467.96 28574.15 29982.97 27555.35 31480.01 28882.12 28962.56 28763.02 33081.53 30136.92 33681.92 31948.42 32874.06 29285.17 302
c3_l78.75 16877.91 16581.26 19882.89 27661.56 24384.09 23889.13 17469.97 18875.56 20284.29 26766.36 9392.09 20273.47 14075.48 27390.12 181
sss73.60 24773.64 23873.51 30282.80 27755.01 31876.12 31781.69 29362.47 28874.68 22885.85 23857.32 19378.11 33560.86 25280.93 20687.39 259
GA-MVS76.87 21275.17 22281.97 18282.75 27862.58 22981.44 27386.35 23572.16 15274.74 22782.89 28646.20 29092.02 20468.85 18681.09 20591.30 139
v14878.72 17077.80 17081.47 19182.73 27961.96 23886.30 18288.08 20273.26 13676.18 19385.47 24662.46 13592.36 19271.92 15573.82 29690.09 184
IterMVS-SCA-FT75.43 23373.87 23680.11 22582.69 28064.85 18581.57 27083.47 27469.16 20770.49 26684.15 26951.95 23688.15 27869.23 18072.14 30987.34 261
miper_ehance_all_eth78.59 17477.76 17381.08 20582.66 28161.56 24383.65 24389.15 17268.87 21575.55 20383.79 27566.49 9192.03 20373.25 14376.39 26089.64 205
CostFormer75.24 23673.90 23579.27 24182.65 28258.27 27380.80 27682.73 28561.57 29475.33 21483.13 28455.52 20191.07 23564.98 21978.34 24088.45 240
EPNet_dtu75.46 23274.86 22377.23 27282.57 28354.60 32186.89 16383.09 28171.64 15566.25 31385.86 23755.99 20088.04 28054.92 29786.55 13989.05 220
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPSCF73.23 25371.46 25478.54 25182.50 28459.85 26282.18 26382.84 28458.96 31471.15 26389.41 14245.48 29984.77 30458.82 27071.83 31191.02 150
cl____77.72 19676.76 19580.58 21582.49 28560.48 25683.09 25587.87 20769.22 20374.38 23285.22 25262.10 14291.53 21971.09 16175.41 27689.73 204
DIV-MVS_self_test77.72 19676.76 19580.58 21582.48 28660.48 25683.09 25587.86 20869.22 20374.38 23285.24 25062.10 14291.53 21971.09 16175.40 27789.74 203
tpm cat170.57 27468.31 28077.35 26982.41 28757.95 27978.08 30780.22 30952.04 34168.54 28977.66 33452.00 23587.84 28251.77 31072.07 31086.25 283
cl2278.07 18677.01 18781.23 19982.37 28861.83 24083.55 24787.98 20468.96 21475.06 22283.87 27161.40 15491.88 21073.53 13876.39 26089.98 193
MVS_030472.48 25970.89 26277.24 27182.20 28959.68 26384.11 23783.49 27367.10 23266.87 30480.59 31035.00 34287.40 28559.07 26779.58 22384.63 308
tpm72.37 26271.71 25374.35 29782.19 29052.00 33779.22 29677.29 32864.56 26272.95 24483.68 27851.35 24383.26 31558.33 27575.80 26787.81 250
tpmvs71.09 26869.29 27376.49 27782.04 29156.04 30878.92 30081.37 29664.05 27067.18 30178.28 32949.74 26289.77 25149.67 32472.37 30683.67 319
pmmvs474.03 24571.91 25180.39 21881.96 29268.32 11381.45 27282.14 28859.32 31169.87 27885.13 25452.40 22788.13 27960.21 25674.74 28784.73 307
TinyColmap67.30 29964.81 30374.76 29381.92 29356.68 29980.29 28581.49 29560.33 30156.27 35383.22 28124.77 35687.66 28445.52 34469.47 32179.95 342
ITE_SJBPF78.22 25581.77 29460.57 25483.30 27669.25 20267.54 29587.20 20036.33 33887.28 28754.34 30074.62 28886.80 275
miper_enhance_ethall77.87 19376.86 19180.92 20981.65 29561.38 24582.68 25988.98 17965.52 25375.47 20482.30 29465.76 10392.00 20572.95 14676.39 26089.39 210
MVS-HIRNet59.14 32057.67 32363.57 33881.65 29543.50 36671.73 33465.06 36139.59 35951.43 35857.73 36338.34 33182.58 31839.53 35673.95 29364.62 359
GG-mvs-BLEND75.38 28781.59 29755.80 31079.32 29469.63 35167.19 30073.67 34743.24 30788.90 27050.41 31684.50 16181.45 335
IterMVS74.29 24072.94 24478.35 25481.53 29863.49 21381.58 26982.49 28668.06 22669.99 27583.69 27751.66 24285.54 29765.85 21271.64 31286.01 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 280x42066.51 30364.71 30471.90 31181.45 29963.52 21257.98 36468.95 35553.57 33762.59 33476.70 33746.22 28975.29 35255.25 29679.68 22276.88 349
gm-plane-assit81.40 30053.83 32862.72 28680.94 30792.39 19063.40 228
pmmvs674.69 23873.39 23978.61 24981.38 30157.48 28786.64 17287.95 20564.99 25970.18 27086.61 21850.43 25489.52 25662.12 24070.18 31988.83 231
test-LLR72.94 25772.43 24774.48 29581.35 30258.04 27678.38 30377.46 32566.66 23769.95 27679.00 32348.06 27779.24 32966.13 20784.83 15786.15 286
test-mter71.41 26670.39 26874.48 29581.35 30258.04 27678.38 30377.46 32560.32 30269.95 27679.00 32336.08 33979.24 32966.13 20784.83 15786.15 286
CR-MVSNet73.37 24971.27 25879.67 23581.32 30465.19 17875.92 31980.30 30759.92 30672.73 24681.19 30252.50 22586.69 28959.84 25877.71 24287.11 269
RPMNet73.51 24870.49 26582.58 17281.32 30465.19 17875.92 31992.27 7657.60 32472.73 24676.45 33952.30 22895.43 6348.14 33377.71 24287.11 269
V4279.38 15578.24 15982.83 16181.10 30665.50 17085.55 20289.82 15171.57 16178.21 14686.12 23360.66 16893.18 16475.64 12075.46 27589.81 201
lessismore_v078.97 24481.01 30757.15 29165.99 35961.16 33782.82 28839.12 32891.34 22559.67 25946.92 36488.43 241
Patchmtry70.74 27269.16 27575.49 28680.72 30854.07 32674.94 32880.30 30758.34 31870.01 27381.19 30252.50 22586.54 29053.37 30571.09 31685.87 294
PatchT68.46 29367.85 28770.29 32280.70 30943.93 36572.47 33274.88 33860.15 30470.55 26476.57 33849.94 25981.59 32050.58 31574.83 28685.34 298
USDC70.33 27768.37 27976.21 27980.60 31056.23 30679.19 29786.49 23160.89 29861.29 33685.47 24631.78 34889.47 25853.37 30576.21 26482.94 329
tpmrst72.39 26072.13 25073.18 30680.54 31149.91 35079.91 29079.08 31763.11 27771.69 25879.95 31655.32 20282.77 31765.66 21473.89 29486.87 273
anonymousdsp78.60 17377.15 18582.98 15680.51 31267.08 14087.24 15489.53 15865.66 25175.16 21887.19 20152.52 22492.25 19777.17 10579.34 22989.61 206
OpenMVS_ROBcopyleft64.09 1970.56 27568.19 28177.65 26480.26 31359.41 26785.01 21282.96 28358.76 31665.43 31782.33 29337.63 33591.23 22845.34 34676.03 26582.32 330
Anonymous2023120668.60 29067.80 28971.02 31980.23 31450.75 34778.30 30680.47 30456.79 32866.11 31482.63 29146.35 28878.95 33143.62 34975.70 26883.36 322
miper_lstm_enhance74.11 24373.11 24377.13 27380.11 31559.62 26472.23 33386.92 22766.76 23570.40 26782.92 28556.93 19782.92 31669.06 18372.63 30588.87 229
MIMVSNet168.58 29166.78 29973.98 30080.07 31651.82 33980.77 27784.37 25764.40 26459.75 34282.16 29736.47 33783.63 31142.73 35170.33 31886.48 281
ADS-MVSNet266.20 30863.33 31074.82 29279.92 31758.75 26967.55 35075.19 33753.37 33865.25 31975.86 34142.32 31380.53 32641.57 35368.91 32485.18 300
ADS-MVSNet64.36 31262.88 31468.78 32979.92 31747.17 35567.55 35071.18 34753.37 33865.25 31975.86 34142.32 31373.99 35641.57 35368.91 32485.18 300
test_vis1_n_192075.52 23175.78 20974.75 29479.84 31957.44 28883.26 25185.52 24462.83 28379.34 12286.17 23245.10 30079.71 32878.75 8881.21 20487.10 271
D2MVS74.82 23773.21 24179.64 23679.81 32062.56 23080.34 28487.35 21964.37 26568.86 28582.66 29046.37 28790.10 24867.91 19381.24 20386.25 283
our_test_369.14 28667.00 29775.57 28479.80 32158.80 26877.96 30877.81 32259.55 30962.90 33378.25 33047.43 27983.97 30851.71 31167.58 32883.93 317
ppachtmachnet_test70.04 28067.34 29578.14 25679.80 32161.13 24679.19 29780.59 30259.16 31365.27 31879.29 32046.75 28587.29 28649.33 32566.72 32986.00 292
dp66.80 30065.43 30270.90 32179.74 32348.82 35375.12 32674.77 33959.61 30864.08 32677.23 33542.89 30980.72 32548.86 32766.58 33183.16 324
EPMVS69.02 28768.16 28271.59 31379.61 32449.80 35277.40 31266.93 35762.82 28470.01 27379.05 32145.79 29477.86 33756.58 29175.26 28187.13 268
PVSNet_057.27 2061.67 31859.27 32168.85 32879.61 32457.44 28868.01 34973.44 34555.93 33258.54 34570.41 35344.58 30277.55 33847.01 33735.91 36771.55 355
CL-MVSNet_self_test72.37 26271.46 25475.09 28979.49 32653.53 32980.76 27885.01 25069.12 20870.51 26582.05 29857.92 18684.13 30752.27 30966.00 33487.60 254
Patchmatch-test64.82 31163.24 31169.57 32479.42 32749.82 35163.49 36169.05 35451.98 34359.95 34180.13 31450.91 24770.98 35940.66 35573.57 29787.90 248
MDA-MVSNet-bldmvs66.68 30163.66 30975.75 28179.28 32860.56 25573.92 33078.35 32064.43 26350.13 35979.87 31844.02 30483.67 31046.10 34256.86 35083.03 327
TESTMET0.1,169.89 28269.00 27672.55 30879.27 32956.85 29478.38 30374.71 34157.64 32368.09 29177.19 33637.75 33476.70 34263.92 22484.09 16884.10 315
N_pmnet52.79 32753.26 32651.40 35178.99 3307.68 38269.52 3433.89 38251.63 34457.01 35074.98 34540.83 32365.96 36637.78 35864.67 33780.56 341
EU-MVSNet68.53 29267.61 29271.31 31878.51 33147.01 35684.47 22584.27 26142.27 35566.44 31284.79 26040.44 32483.76 30958.76 27168.54 32783.17 323
pmmvs571.55 26570.20 27075.61 28377.83 33256.39 30381.74 26780.89 29757.76 32267.46 29784.49 26249.26 26885.32 30057.08 28675.29 28085.11 303
test0.0.03 168.00 29567.69 29168.90 32777.55 33347.43 35475.70 32272.95 34666.66 23766.56 30782.29 29548.06 27775.87 34844.97 34774.51 28983.41 321
Patchmatch-RL test70.24 27867.78 29077.61 26577.43 33459.57 26671.16 33670.33 34862.94 28168.65 28772.77 34850.62 25185.49 29869.58 17866.58 33187.77 251
pmmvs-eth3d70.50 27667.83 28878.52 25277.37 33566.18 15481.82 26581.51 29458.90 31563.90 32880.42 31242.69 31186.28 29358.56 27265.30 33683.11 325
JIA-IIPM66.32 30562.82 31576.82 27577.09 33661.72 24265.34 35775.38 33658.04 32164.51 32362.32 35842.05 31886.51 29151.45 31369.22 32382.21 331
Gipumacopyleft45.18 33541.86 33855.16 34977.03 33751.52 34232.50 37080.52 30332.46 36627.12 36935.02 3709.52 37375.50 34922.31 37060.21 34838.45 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MDA-MVSNet_test_wron65.03 30962.92 31271.37 31575.93 33856.73 29669.09 34874.73 34057.28 32654.03 35677.89 33145.88 29274.39 35549.89 32361.55 34382.99 328
YYNet165.03 30962.91 31371.38 31475.85 33956.60 30069.12 34774.66 34257.28 32654.12 35577.87 33245.85 29374.48 35449.95 32261.52 34483.05 326
PMMVS69.34 28568.67 27771.35 31775.67 34062.03 23675.17 32373.46 34450.00 34768.68 28679.05 32152.07 23478.13 33461.16 25082.77 18673.90 352
testgi66.67 30266.53 30067.08 33475.62 34141.69 36975.93 31876.50 33266.11 24465.20 32186.59 21935.72 34074.71 35343.71 34873.38 30184.84 305
test20.0367.45 29766.95 29868.94 32675.48 34244.84 36377.50 31177.67 32366.66 23763.01 33183.80 27447.02 28278.40 33342.53 35268.86 32683.58 320
KD-MVS_2432*160066.22 30663.89 30773.21 30375.47 34353.42 33170.76 33984.35 25864.10 26866.52 30978.52 32734.55 34384.98 30150.40 31750.33 36181.23 336
miper_refine_blended66.22 30663.89 30773.21 30375.47 34353.42 33170.76 33984.35 25864.10 26866.52 30978.52 32734.55 34384.98 30150.40 31750.33 36181.23 336
Anonymous2024052168.80 28967.22 29673.55 30174.33 34554.11 32583.18 25285.61 24358.15 31961.68 33580.94 30730.71 35081.27 32357.00 28773.34 30285.28 299
KD-MVS_self_test68.81 28867.59 29372.46 30974.29 34645.45 35877.93 30987.00 22563.12 27663.99 32778.99 32542.32 31384.77 30456.55 29264.09 33987.16 267
PM-MVS66.41 30464.14 30673.20 30573.92 34756.45 30178.97 29964.96 36263.88 27464.72 32280.24 31319.84 36283.44 31366.24 20664.52 33879.71 343
test_fmvs170.93 27070.52 26472.16 31073.71 34855.05 31780.82 27578.77 31851.21 34678.58 13584.41 26431.20 34976.94 34175.88 11880.12 22084.47 310
UnsupCasMVSNet_bld63.70 31461.53 31970.21 32373.69 34951.39 34472.82 33181.89 29055.63 33357.81 34871.80 35038.67 32978.61 33249.26 32652.21 35980.63 339
UnsupCasMVSNet_eth67.33 29865.99 30171.37 31573.48 35051.47 34375.16 32485.19 24765.20 25460.78 33880.93 30942.35 31277.20 33957.12 28553.69 35785.44 297
TDRefinement67.49 29664.34 30576.92 27473.47 35161.07 24784.86 21682.98 28259.77 30758.30 34685.13 25426.06 35487.89 28147.92 33560.59 34781.81 334
ambc75.24 28873.16 35250.51 34863.05 36287.47 21764.28 32477.81 33317.80 36489.73 25357.88 27960.64 34685.49 296
CMPMVSbinary51.72 2170.19 27968.16 28276.28 27873.15 35357.55 28679.47 29383.92 26548.02 34956.48 35284.81 25943.13 30886.42 29262.67 23581.81 19884.89 304
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new-patchmatchnet61.73 31761.73 31861.70 34072.74 35424.50 37969.16 34678.03 32161.40 29556.72 35175.53 34438.42 33076.48 34445.95 34357.67 34984.13 314
test_vis1_n69.85 28369.21 27471.77 31272.66 35555.27 31681.48 27176.21 33452.03 34275.30 21583.20 28328.97 35176.22 34674.60 12878.41 23983.81 318
test_fmvs1_n70.86 27170.24 26972.73 30772.51 35655.28 31581.27 27479.71 31351.49 34578.73 12984.87 25827.54 35377.02 34076.06 11579.97 22185.88 293
LF4IMVS64.02 31362.19 31669.50 32570.90 35753.29 33476.13 31677.18 32952.65 34058.59 34480.98 30623.55 35876.52 34353.06 30766.66 33078.68 345
mvsany_test162.30 31661.26 32065.41 33669.52 35854.86 31966.86 35249.78 37346.65 35068.50 29083.21 28249.15 26966.28 36556.93 28860.77 34575.11 351
test_fmvs268.35 29467.48 29470.98 32069.50 35951.95 33880.05 28776.38 33349.33 34874.65 22984.38 26523.30 35975.40 35174.51 12975.17 28385.60 295
new_pmnet50.91 33050.29 33052.78 35068.58 36034.94 37463.71 35956.63 37039.73 35844.95 36065.47 35621.93 36058.48 36934.98 36056.62 35164.92 358
DSMNet-mixed57.77 32256.90 32460.38 34267.70 36135.61 37269.18 34553.97 37132.30 36757.49 34979.88 31740.39 32568.57 36438.78 35772.37 30676.97 348
test_vis1_rt60.28 31958.42 32265.84 33567.25 36255.60 31370.44 34160.94 36644.33 35359.00 34366.64 35524.91 35568.67 36362.80 23169.48 32073.25 353
APD_test153.31 32649.93 33163.42 33965.68 36350.13 34971.59 33566.90 35834.43 36440.58 36371.56 3518.65 37576.27 34534.64 36155.36 35563.86 360
FPMVS53.68 32551.64 32759.81 34365.08 36451.03 34569.48 34469.58 35241.46 35640.67 36272.32 34916.46 36670.00 36224.24 36965.42 33558.40 364
pmmvs357.79 32154.26 32568.37 33064.02 36556.72 29775.12 32665.17 36040.20 35752.93 35769.86 35420.36 36175.48 35045.45 34555.25 35672.90 354
test_fmvs363.36 31561.82 31767.98 33162.51 36646.96 35777.37 31374.03 34345.24 35167.50 29678.79 32612.16 37072.98 35872.77 14966.02 33383.99 316
wuyk23d16.82 34415.94 34719.46 35858.74 36731.45 37539.22 3683.74 3836.84 3746.04 3772.70 3771.27 38224.29 37710.54 37614.40 3762.63 374
testf145.72 33341.96 33657.00 34456.90 36845.32 35966.14 35559.26 36726.19 36830.89 36760.96 3614.14 37870.64 36026.39 36746.73 36555.04 365
APD_test245.72 33341.96 33657.00 34456.90 36845.32 35966.14 35559.26 36726.19 36830.89 36760.96 3614.14 37870.64 36026.39 36746.73 36555.04 365
mvsany_test353.99 32451.45 32861.61 34155.51 37044.74 36463.52 36045.41 37743.69 35458.11 34776.45 33917.99 36363.76 36854.77 29847.59 36376.34 350
test_vis3_rt49.26 33247.02 33456.00 34654.30 37145.27 36266.76 35448.08 37436.83 36144.38 36153.20 3667.17 37764.07 36756.77 29055.66 35358.65 363
PMMVS240.82 33738.86 34046.69 35253.84 37216.45 38048.61 36749.92 37237.49 36031.67 36560.97 3608.14 37656.42 37128.42 36430.72 36967.19 357
test_f52.09 32850.82 32955.90 34753.82 37342.31 36859.42 36358.31 36936.45 36256.12 35470.96 35212.18 36957.79 37053.51 30456.57 35267.60 356
LCM-MVSNet54.25 32349.68 33267.97 33253.73 37445.28 36166.85 35380.78 29935.96 36339.45 36462.23 3598.70 37478.06 33648.24 33251.20 36080.57 340
E-PMN31.77 33830.64 34135.15 35552.87 37527.67 37657.09 36547.86 37524.64 37016.40 37533.05 37111.23 37154.90 37214.46 37418.15 37222.87 371
EMVS30.81 34029.65 34234.27 35650.96 37625.95 37856.58 36646.80 37624.01 37115.53 37630.68 37212.47 36854.43 37312.81 37517.05 37322.43 372
ANet_high50.57 33146.10 33563.99 33748.67 37739.13 37070.99 33880.85 29861.39 29631.18 36657.70 36417.02 36573.65 35731.22 36215.89 37479.18 344
MVEpermissive26.22 2330.37 34125.89 34543.81 35344.55 37835.46 37328.87 37139.07 37818.20 37218.58 37440.18 3692.68 38147.37 37517.07 37323.78 37148.60 368
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft37.38 2244.16 33640.28 33955.82 34840.82 37942.54 36765.12 35863.99 36334.43 36424.48 37057.12 3653.92 38076.17 34717.10 37255.52 35448.75 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft27.40 35740.17 38026.90 37724.59 38117.44 37323.95 37148.61 3689.77 37226.48 37618.06 37124.47 37028.83 370
test_method31.52 33929.28 34338.23 35427.03 3816.50 38320.94 37262.21 3654.05 37522.35 37352.50 36713.33 36747.58 37427.04 36634.04 36860.62 361
tmp_tt18.61 34321.40 34610.23 3594.82 38210.11 38134.70 36930.74 3801.48 37623.91 37226.07 37328.42 35213.41 37827.12 36515.35 3757.17 373
testmvs6.04 3478.02 3500.10 3610.08 3830.03 38569.74 3420.04 3840.05 3780.31 3791.68 3780.02 3840.04 3790.24 3770.02 3770.25 376
test1236.12 3468.11 3490.14 3600.06 3840.09 38471.05 3370.03 3850.04 3790.25 3801.30 3790.05 3830.03 3800.21 3780.01 3780.29 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
eth-test20.00 385
eth-test0.00 385
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k19.96 34226.61 3440.00 3620.00 3850.00 3860.00 37389.26 1670.00 3800.00 38188.61 16161.62 1480.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas5.26 3487.02 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38063.15 1250.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re7.23 3459.64 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38186.72 2110.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
PC_three_145268.21 22592.02 1294.00 4082.09 595.98 4984.58 3596.68 294.95 8
test_241102_TWO94.06 1077.24 4892.78 495.72 881.26 897.44 589.07 996.58 694.26 39
test_0728_THIRD78.38 3192.12 995.78 481.46 797.40 789.42 496.57 794.67 22
GSMVS88.96 226
sam_mvs151.32 24488.96 226
sam_mvs50.01 257
MTGPAbinary92.02 85
test_post178.90 3015.43 37648.81 27685.44 29959.25 263
test_post5.46 37550.36 25584.24 306
patchmatchnet-post74.00 34651.12 24688.60 273
MTMP92.18 3332.83 379
test9_res84.90 2995.70 2692.87 92
agg_prior282.91 5395.45 2892.70 95
test_prior472.60 3389.01 96
test_prior288.85 10275.41 9184.91 4793.54 4674.28 2983.31 4895.86 20
旧先验286.56 17558.10 32087.04 3088.98 26674.07 134
新几何286.29 183
无先验87.48 14688.98 17960.00 30594.12 11967.28 19988.97 225
原ACMM286.86 164
testdata291.01 23662.37 237
segment_acmp73.08 37
testdata184.14 23675.71 85
plane_prior592.44 6995.38 6778.71 8986.32 14291.33 136
plane_prior491.00 107
plane_prior368.60 10978.44 2978.92 127
plane_prior291.25 4879.12 21
plane_prior68.71 10490.38 6577.62 3786.16 146
n20.00 386
nn0.00 386
door-mid69.98 350
test1192.23 79
door69.44 353
HQP5-MVS66.98 142
BP-MVS77.47 101
HQP4-MVS77.24 16795.11 7891.03 148
HQP3-MVS92.19 8285.99 149
HQP2-MVS60.17 175
MDTV_nov1_ep13_2view37.79 37175.16 32455.10 33466.53 30849.34 26653.98 30187.94 247
ACMMP++_ref81.95 196
ACMMP++81.25 202
Test By Simon64.33 112