FOURS1 | | | | | | 98.86 1 | 85.54 74 | 98.29 1 | 97.49 5 | 89.79 43 | 96.29 15 | | | | | | |
|
test_0728_SECOND | | | | | 95.01 17 | 98.79 2 | 86.43 43 | 97.09 14 | 97.49 5 | | | | | 99.61 3 | 95.62 8 | 99.08 7 | 98.99 7 |
|
DVP-MVS |  | | 95.67 3 | 96.02 3 | 94.64 43 | 98.78 3 | 85.93 61 | 97.09 14 | 96.73 81 | 90.27 31 | 97.04 10 | 98.05 8 | 91.47 8 | 99.55 15 | 95.62 8 | 99.08 7 | 98.45 36 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 98.78 3 | 85.93 61 | 97.19 9 | 97.47 10 | 90.27 31 | 97.64 4 | 98.13 1 | 91.47 8 | | | | |
|
SED-MVS | | | 95.91 2 | 96.28 2 | 94.80 36 | 98.77 5 | 85.99 58 | 97.13 12 | 97.44 14 | 90.31 29 | 97.71 1 | 98.07 4 | 92.31 4 | 99.58 8 | 95.66 4 | 99.13 3 | 98.84 12 |
|
IU-MVS | | | | | | 98.77 5 | 86.00 56 | | 96.84 67 | 81.26 248 | 97.26 7 | | | | 95.50 10 | 99.13 3 | 99.03 6 |
|
test_241102_ONE | | | | | | 98.77 5 | 85.99 58 | | 97.44 14 | 90.26 33 | 97.71 1 | 97.96 10 | 92.31 4 | 99.38 32 | | | |
|
region2R | | | 94.43 23 | 94.27 25 | 94.92 22 | 98.65 8 | 86.67 34 | 96.92 22 | 97.23 35 | 88.60 76 | 93.58 51 | 97.27 29 | 85.22 59 | 99.54 19 | 92.21 52 | 98.74 33 | 98.56 23 |
|
ACMMPR | | | 94.43 23 | 94.28 23 | 94.91 24 | 98.63 9 | 86.69 32 | 96.94 18 | 97.32 27 | 88.63 74 | 93.53 54 | 97.26 31 | 85.04 62 | 99.54 19 | 92.35 49 | 98.78 25 | 98.50 26 |
|
HFP-MVS | | | 94.52 18 | 94.40 20 | 94.86 27 | 98.61 10 | 86.81 26 | 96.94 18 | 97.34 22 | 88.63 74 | 93.65 47 | 97.21 34 | 86.10 48 | 99.49 26 | 92.35 49 | 98.77 28 | 98.30 45 |
|
#test# | | | 94.32 29 | 94.14 32 | 94.86 27 | 98.61 10 | 86.81 26 | 96.43 34 | 97.34 22 | 87.51 107 | 93.65 47 | 97.21 34 | 86.10 48 | 99.49 26 | 91.68 73 | 98.77 28 | 98.30 45 |
|
test_one_0601 | | | | | | 98.58 12 | 85.83 67 | | 97.44 14 | 91.05 15 | 96.78 13 | 98.06 6 | 91.45 11 | | | | |
|
test_part2 | | | | | | 98.55 13 | 87.22 18 | | | | 96.40 14 | | | | | | |
|
XVS | | | 94.45 21 | 94.32 21 | 94.85 29 | 98.54 14 | 86.60 38 | 96.93 20 | 97.19 38 | 90.66 25 | 92.85 66 | 97.16 39 | 85.02 63 | 99.49 26 | 91.99 61 | 98.56 51 | 98.47 32 |
|
X-MVStestdata | | | 88.31 166 | 86.13 208 | 94.85 29 | 98.54 14 | 86.60 38 | 96.93 20 | 97.19 38 | 90.66 25 | 92.85 66 | 23.41 367 | 85.02 63 | 99.49 26 | 91.99 61 | 98.56 51 | 98.47 32 |
|
ZNCC-MVS | | | 94.47 19 | 94.28 23 | 95.03 16 | 98.52 16 | 86.96 19 | 96.85 26 | 97.32 27 | 88.24 86 | 93.15 59 | 97.04 45 | 86.17 47 | 99.62 1 | 92.40 47 | 98.81 22 | 98.52 24 |
|
mPP-MVS | | | 93.99 39 | 93.78 44 | 94.63 44 | 98.50 17 | 85.90 66 | 96.87 24 | 96.91 59 | 88.70 72 | 91.83 96 | 97.17 38 | 83.96 77 | 99.55 15 | 91.44 78 | 98.64 47 | 98.43 38 |
|
MSP-MVS | | | 95.42 6 | 95.56 6 | 94.98 21 | 98.49 18 | 86.52 40 | 96.91 23 | 97.47 10 | 91.73 8 | 96.10 17 | 96.69 61 | 89.90 12 | 99.30 42 | 94.70 12 | 98.04 70 | 99.13 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
MP-MVS |  | | 94.25 30 | 94.07 35 | 94.77 38 | 98.47 19 | 86.31 49 | 96.71 29 | 96.98 51 | 89.04 63 | 91.98 90 | 97.19 36 | 85.43 57 | 99.56 10 | 92.06 60 | 98.79 23 | 98.44 37 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MCST-MVS | | | 94.45 21 | 94.20 29 | 95.19 11 | 98.46 20 | 87.50 15 | 95.00 112 | 97.12 43 | 87.13 114 | 92.51 80 | 96.30 77 | 89.24 17 | 99.34 36 | 93.46 25 | 98.62 48 | 98.73 15 |
|
PGM-MVS | | | 93.96 41 | 93.72 46 | 94.68 41 | 98.43 21 | 86.22 52 | 95.30 89 | 97.78 1 | 87.45 110 | 93.26 55 | 97.33 26 | 84.62 68 | 99.51 24 | 90.75 91 | 98.57 50 | 98.32 44 |
|
zzz-MVS | | | 94.47 19 | 94.30 22 | 95.00 18 | 98.42 22 | 86.95 20 | 95.06 110 | 96.97 52 | 91.07 13 | 93.14 60 | 97.56 16 | 84.30 70 | 99.56 10 | 93.43 26 | 98.75 31 | 98.47 32 |
|
MTAPA | | | 94.42 25 | 94.22 26 | 95.00 18 | 98.42 22 | 86.95 20 | 94.36 160 | 96.97 52 | 91.07 13 | 93.14 60 | 97.56 16 | 84.30 70 | 99.56 10 | 93.43 26 | 98.75 31 | 98.47 32 |
|
GST-MVS | | | 94.21 34 | 93.97 39 | 94.90 26 | 98.41 24 | 86.82 25 | 96.54 33 | 97.19 38 | 88.24 86 | 93.26 55 | 96.83 54 | 85.48 56 | 99.59 7 | 91.43 79 | 98.40 57 | 98.30 45 |
|
HPM-MVS |  | | 94.02 38 | 93.88 40 | 94.43 53 | 98.39 25 | 85.78 69 | 97.25 8 | 97.07 47 | 86.90 122 | 92.62 77 | 96.80 58 | 84.85 66 | 99.17 53 | 92.43 45 | 98.65 46 | 98.33 43 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CP-MVS | | | 94.34 27 | 94.21 28 | 94.74 40 | 98.39 25 | 86.64 36 | 97.60 3 | 97.24 33 | 88.53 78 | 92.73 73 | 97.23 32 | 85.20 60 | 99.32 40 | 92.15 55 | 98.83 21 | 98.25 54 |
|
DPE-MVS |  | | 95.57 4 | 95.67 4 | 95.25 9 | 98.36 27 | 87.28 17 | 95.56 79 | 97.51 4 | 89.13 61 | 97.14 8 | 97.91 11 | 91.64 7 | 99.62 1 | 94.61 14 | 99.17 2 | 98.86 9 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
HPM-MVS_fast | | | 93.40 57 | 93.22 56 | 93.94 64 | 98.36 27 | 84.83 81 | 97.15 11 | 96.80 73 | 85.77 144 | 92.47 81 | 97.13 40 | 82.38 91 | 99.07 61 | 90.51 93 | 98.40 57 | 97.92 79 |
|
DP-MVS Recon | | | 91.95 79 | 91.28 85 | 93.96 63 | 98.33 29 | 85.92 63 | 94.66 135 | 96.66 91 | 82.69 213 | 90.03 121 | 95.82 98 | 82.30 94 | 99.03 67 | 84.57 158 | 96.48 106 | 96.91 122 |
|
APDe-MVS | | | 95.46 5 | 95.64 5 | 94.91 24 | 98.26 30 | 86.29 51 | 97.46 4 | 97.40 20 | 89.03 65 | 96.20 16 | 98.10 2 | 89.39 16 | 99.34 36 | 95.88 3 | 99.03 11 | 99.10 3 |
|
TSAR-MVS + MP. | | | 94.85 13 | 94.94 11 | 94.58 46 | 98.25 31 | 86.33 47 | 96.11 52 | 96.62 94 | 88.14 92 | 96.10 17 | 96.96 49 | 89.09 18 | 98.94 87 | 94.48 15 | 98.68 39 | 98.48 28 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
HPM-MVS++ |  | | 95.14 10 | 94.91 12 | 95.83 4 | 98.25 31 | 89.65 4 | 95.92 62 | 96.96 55 | 91.75 7 | 94.02 39 | 96.83 54 | 88.12 24 | 99.55 15 | 93.41 28 | 98.94 16 | 98.28 49 |
|
testtj | | | 94.39 26 | 94.18 30 | 95.00 18 | 98.24 33 | 86.77 30 | 96.16 47 | 97.23 35 | 87.28 112 | 94.85 28 | 97.04 45 | 86.99 40 | 99.52 23 | 91.54 75 | 98.33 60 | 98.71 16 |
|
CPTT-MVS | | | 91.99 78 | 91.80 79 | 92.55 111 | 98.24 33 | 81.98 160 | 96.76 28 | 96.49 102 | 81.89 233 | 90.24 117 | 96.44 74 | 78.59 136 | 98.61 110 | 89.68 98 | 97.85 77 | 97.06 114 |
|
SR-MVS | | | 94.23 32 | 94.17 31 | 94.43 53 | 98.21 35 | 85.78 69 | 96.40 37 | 96.90 60 | 88.20 89 | 94.33 31 | 97.40 23 | 84.75 67 | 99.03 67 | 93.35 29 | 97.99 71 | 98.48 28 |
|
MP-MVS-pluss | | | 94.21 34 | 94.00 38 | 94.85 29 | 98.17 36 | 86.65 35 | 94.82 124 | 97.17 41 | 86.26 135 | 92.83 68 | 97.87 12 | 85.57 55 | 99.56 10 | 94.37 17 | 98.92 17 | 98.34 42 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
ZD-MVS | | | | | | 98.15 37 | 86.62 37 | | 97.07 47 | 83.63 190 | 94.19 34 | 96.91 51 | 87.57 32 | 99.26 46 | 91.99 61 | 98.44 55 | |
|
SMA-MVS |  | | 95.20 8 | 95.07 10 | 95.59 5 | 98.14 38 | 88.48 8 | 96.26 43 | 97.28 31 | 85.90 141 | 97.67 3 | 98.10 2 | 88.41 20 | 99.56 10 | 94.66 13 | 99.19 1 | 98.71 16 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
test1172 | | | 93.97 40 | 94.07 35 | 93.66 74 | 98.11 39 | 83.45 120 | 96.26 43 | 96.84 67 | 88.33 82 | 94.19 34 | 97.43 20 | 84.24 72 | 99.01 73 | 93.26 31 | 97.98 72 | 98.52 24 |
|
CNVR-MVS | | | 95.40 7 | 95.37 7 | 95.50 7 | 98.11 39 | 88.51 7 | 95.29 92 | 96.96 55 | 92.09 3 | 95.32 23 | 97.08 42 | 89.49 15 | 99.33 39 | 95.10 11 | 98.85 19 | 98.66 18 |
|
114514_t | | | 89.51 131 | 88.50 141 | 92.54 112 | 98.11 39 | 81.99 159 | 95.16 103 | 96.36 110 | 70.19 346 | 85.81 187 | 95.25 114 | 76.70 154 | 98.63 108 | 82.07 193 | 96.86 96 | 97.00 118 |
|
ACMMP |  | | 93.24 61 | 92.88 65 | 94.30 57 | 98.09 42 | 85.33 77 | 96.86 25 | 97.45 13 | 88.33 82 | 90.15 119 | 97.03 47 | 81.44 105 | 99.51 24 | 90.85 89 | 95.74 112 | 98.04 70 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
APD-MVS |  | | 94.24 31 | 94.07 35 | 94.75 39 | 98.06 43 | 86.90 23 | 95.88 63 | 96.94 57 | 85.68 147 | 95.05 27 | 97.18 37 | 87.31 34 | 99.07 61 | 91.90 69 | 98.61 49 | 98.28 49 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CSCG | | | 93.23 62 | 93.05 60 | 93.76 72 | 98.04 44 | 84.07 103 | 96.22 45 | 97.37 21 | 84.15 179 | 90.05 120 | 95.66 104 | 87.77 26 | 99.15 56 | 89.91 96 | 98.27 62 | 98.07 67 |
|
ACMMP_NAP | | | 94.74 15 | 94.56 17 | 95.28 8 | 98.02 45 | 87.70 12 | 95.68 72 | 97.34 22 | 88.28 85 | 95.30 24 | 97.67 15 | 85.90 52 | 99.54 19 | 93.91 20 | 98.95 15 | 98.60 21 |
|
OPU-MVS | | | | | 96.21 3 | 98.00 46 | 90.85 3 | 97.13 12 | | | | 97.08 42 | 92.59 2 | 98.94 87 | 92.25 51 | 98.99 14 | 98.84 12 |
|
SR-MVS-dyc-post | | | 93.82 45 | 93.82 41 | 93.82 67 | 97.92 47 | 84.57 86 | 96.28 41 | 96.76 77 | 87.46 108 | 93.75 44 | 97.43 20 | 84.24 72 | 99.01 73 | 92.73 38 | 97.80 78 | 97.88 81 |
|
RE-MVS-def | | | | 93.68 48 | | 97.92 47 | 84.57 86 | 96.28 41 | 96.76 77 | 87.46 108 | 93.75 44 | 97.43 20 | 82.94 85 | | 92.73 38 | 97.80 78 | 97.88 81 |
|
APD-MVS_3200maxsize | | | 93.78 46 | 93.77 45 | 93.80 71 | 97.92 47 | 84.19 101 | 96.30 39 | 96.87 64 | 86.96 118 | 93.92 41 | 97.47 18 | 83.88 78 | 98.96 86 | 92.71 41 | 97.87 76 | 98.26 53 |
|
xxxxxxxxxxxxxcwj | | | 94.65 16 | 94.70 15 | 94.48 50 | 97.85 50 | 85.63 72 | 95.21 98 | 95.47 176 | 89.44 50 | 95.71 19 | 97.70 13 | 88.28 22 | 99.35 34 | 93.89 21 | 98.78 25 | 98.48 28 |
|
save fliter | | | | | | 97.85 50 | 85.63 72 | 95.21 98 | 96.82 71 | 89.44 50 | | | | | | | |
|
SF-MVS | | | 94.97 11 | 94.90 13 | 95.20 10 | 97.84 52 | 87.76 10 | 96.65 31 | 97.48 9 | 87.76 101 | 95.71 19 | 97.70 13 | 88.28 22 | 99.35 34 | 93.89 21 | 98.78 25 | 98.48 28 |
|
NCCC | | | 94.81 14 | 94.69 16 | 95.17 12 | 97.83 53 | 87.46 16 | 95.66 74 | 96.93 58 | 92.34 2 | 93.94 40 | 96.58 68 | 87.74 27 | 99.44 30 | 92.83 37 | 98.40 57 | 98.62 20 |
|
ETH3 D test6400 | | | 93.64 50 | 93.22 56 | 94.92 22 | 97.79 54 | 86.84 24 | 95.31 86 | 97.26 32 | 82.67 214 | 93.81 43 | 96.29 78 | 87.29 35 | 99.27 45 | 89.87 97 | 98.67 41 | 98.65 19 |
|
9.14 | | | | 94.47 18 | | 97.79 54 | | 96.08 53 | 97.44 14 | 86.13 139 | 95.10 26 | 97.40 23 | 88.34 21 | 99.22 49 | 93.25 32 | 98.70 36 | |
|
CDPH-MVS | | | 92.83 66 | 92.30 74 | 94.44 51 | 97.79 54 | 86.11 54 | 94.06 179 | 96.66 91 | 80.09 261 | 92.77 70 | 96.63 65 | 86.62 42 | 99.04 66 | 87.40 125 | 98.66 44 | 98.17 58 |
|
DVP-MVS++. | | | 95.98 1 | 96.36 1 | 94.82 34 | 97.78 57 | 86.00 56 | 98.29 1 | 97.49 5 | 90.75 20 | 97.62 5 | 98.06 6 | 92.59 2 | 99.61 3 | 95.64 6 | 99.02 12 | 98.86 9 |
|
MSC_two_6792asdad | | | | | 96.52 1 | 97.78 57 | 90.86 1 | | 96.85 65 | | | | | 99.61 3 | 96.03 1 | 99.06 9 | 99.07 4 |
|
No_MVS | | | | | 96.52 1 | 97.78 57 | 90.86 1 | | 96.85 65 | | | | | 99.61 3 | 96.03 1 | 99.06 9 | 99.07 4 |
|
ETH3D-3000-0.1 | | | 94.61 17 | 94.44 19 | 95.12 13 | 97.70 60 | 87.71 11 | 95.98 59 | 97.44 14 | 86.67 127 | 95.25 25 | 97.31 27 | 87.73 28 | 99.24 47 | 93.11 35 | 98.76 30 | 98.40 39 |
|
DP-MVS | | | 87.25 204 | 85.36 234 | 92.90 94 | 97.65 61 | 83.24 125 | 94.81 125 | 92.00 289 | 74.99 315 | 81.92 278 | 95.00 122 | 72.66 210 | 99.05 63 | 66.92 329 | 92.33 171 | 96.40 136 |
|
PAPM_NR | | | 91.22 93 | 90.78 96 | 92.52 113 | 97.60 62 | 81.46 173 | 94.37 159 | 96.24 117 | 86.39 133 | 87.41 157 | 94.80 131 | 82.06 100 | 98.48 116 | 82.80 182 | 95.37 120 | 97.61 92 |
|
TEST9 | | | | | | 97.53 63 | 86.49 41 | 94.07 177 | 96.78 74 | 81.61 241 | 92.77 70 | 96.20 83 | 87.71 29 | 99.12 58 | | | |
|
train_agg | | | 93.44 54 | 93.08 59 | 94.52 48 | 97.53 63 | 86.49 41 | 94.07 177 | 96.78 74 | 81.86 234 | 92.77 70 | 96.20 83 | 87.63 30 | 99.12 58 | 92.14 56 | 98.69 37 | 97.94 76 |
|
abl_6 | | | 93.18 63 | 93.05 60 | 93.57 76 | 97.52 65 | 84.27 100 | 95.53 80 | 96.67 90 | 87.85 98 | 93.20 58 | 97.22 33 | 80.35 112 | 99.18 52 | 91.91 66 | 97.21 89 | 97.26 105 |
|
test_8 | | | | | | 97.49 66 | 86.30 50 | 94.02 182 | 96.76 77 | 81.86 234 | 92.70 74 | 96.20 83 | 87.63 30 | 99.02 71 | | | |
|
DeepC-MVS_fast | | 89.43 2 | 94.04 37 | 93.79 43 | 94.80 36 | 97.48 67 | 86.78 28 | 95.65 76 | 96.89 61 | 89.40 53 | 92.81 69 | 96.97 48 | 85.37 58 | 99.24 47 | 90.87 88 | 98.69 37 | 98.38 41 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
AdaColmap |  | | 89.89 123 | 89.07 129 | 92.37 121 | 97.41 68 | 83.03 131 | 94.42 151 | 95.92 140 | 82.81 211 | 86.34 180 | 94.65 137 | 73.89 193 | 99.02 71 | 80.69 219 | 95.51 115 | 95.05 184 |
|
agg_prior1 | | | 93.29 59 | 92.97 63 | 94.26 58 | 97.38 69 | 85.92 63 | 93.92 188 | 96.72 83 | 81.96 228 | 92.16 85 | 96.23 81 | 87.85 25 | 98.97 83 | 91.95 65 | 98.55 53 | 97.90 80 |
|
agg_prior | | | | | | 97.38 69 | 85.92 63 | | 96.72 83 | | 92.16 85 | | | 98.97 83 | | | |
|
原ACMM1 | | | | | 92.01 133 | 97.34 71 | 81.05 185 | | 96.81 72 | 78.89 275 | 90.45 115 | 95.92 94 | 82.65 88 | 98.84 99 | 80.68 220 | 98.26 63 | 96.14 145 |
|
MSLP-MVS++ | | | 93.72 47 | 94.08 34 | 92.65 106 | 97.31 72 | 83.43 121 | 95.79 67 | 97.33 25 | 90.03 36 | 93.58 51 | 96.96 49 | 84.87 65 | 97.76 170 | 92.19 54 | 98.66 44 | 96.76 125 |
|
新几何1 | | | | | 93.10 84 | 97.30 73 | 84.35 99 | | 95.56 168 | 71.09 343 | 91.26 107 | 96.24 80 | 82.87 87 | 98.86 94 | 79.19 241 | 98.10 68 | 96.07 152 |
|
test_prior3 | | | 93.60 51 | 93.53 51 | 93.82 67 | 97.29 74 | 84.49 90 | 94.12 170 | 96.88 62 | 87.67 104 | 92.63 75 | 96.39 75 | 86.62 42 | 98.87 91 | 91.50 76 | 98.67 41 | 98.11 65 |
|
test_prior | | | | | 93.82 67 | 97.29 74 | 84.49 90 | | 96.88 62 | | | | | 98.87 91 | | | 98.11 65 |
|
1121 | | | 90.42 110 | 89.49 116 | 93.20 80 | 97.27 76 | 84.46 93 | 92.63 236 | 95.51 174 | 71.01 344 | 91.20 108 | 96.21 82 | 82.92 86 | 99.05 63 | 80.56 222 | 98.07 69 | 96.10 150 |
|
PLC |  | 84.53 7 | 89.06 146 | 88.03 154 | 92.15 129 | 97.27 76 | 82.69 145 | 94.29 162 | 95.44 182 | 79.71 266 | 84.01 244 | 94.18 155 | 76.68 155 | 98.75 103 | 77.28 258 | 93.41 152 | 95.02 185 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
SD-MVS | | | 94.96 12 | 95.33 8 | 93.88 65 | 97.25 78 | 86.69 32 | 96.19 46 | 97.11 45 | 90.42 28 | 96.95 12 | 97.27 29 | 89.53 14 | 96.91 243 | 94.38 16 | 98.85 19 | 98.03 71 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test12 | | | | | 94.34 56 | 97.13 79 | 86.15 53 | | 96.29 112 | | 91.04 111 | | 85.08 61 | 99.01 73 | | 98.13 67 | 97.86 83 |
|
MG-MVS | | | 91.77 82 | 91.70 81 | 92.00 135 | 97.08 80 | 80.03 215 | 93.60 201 | 95.18 196 | 87.85 98 | 90.89 112 | 96.47 73 | 82.06 100 | 98.36 125 | 85.07 150 | 97.04 93 | 97.62 91 |
|
SteuartSystems-ACMMP | | | 95.20 8 | 95.32 9 | 94.85 29 | 96.99 81 | 86.33 47 | 97.33 5 | 97.30 29 | 91.38 11 | 95.39 22 | 97.46 19 | 88.98 19 | 99.40 31 | 94.12 18 | 98.89 18 | 98.82 14 |
Skip Steuart: Steuart Systems R&D Blog. |
MVS_111021_HR | | | 93.45 53 | 93.31 54 | 93.84 66 | 96.99 81 | 84.84 80 | 93.24 218 | 97.24 33 | 88.76 71 | 91.60 101 | 95.85 97 | 86.07 50 | 98.66 105 | 91.91 66 | 98.16 65 | 98.03 71 |
|
CNLPA | | | 89.07 145 | 87.98 156 | 92.34 122 | 96.87 83 | 84.78 82 | 94.08 176 | 93.24 260 | 81.41 244 | 84.46 228 | 95.13 119 | 75.57 170 | 96.62 253 | 77.21 259 | 93.84 143 | 95.61 170 |
|
PHI-MVS | | | 93.89 44 | 93.65 49 | 94.62 45 | 96.84 84 | 86.43 43 | 96.69 30 | 97.49 5 | 85.15 163 | 93.56 53 | 96.28 79 | 85.60 54 | 99.31 41 | 92.45 44 | 98.79 23 | 98.12 63 |
|
旧先验1 | | | | | | 96.79 85 | 81.81 163 | | 95.67 160 | | | 96.81 56 | 86.69 41 | | | 97.66 82 | 96.97 119 |
|
ETH3D cwj APD-0.16 | | | 93.91 42 | 93.53 51 | 95.06 15 | 96.76 86 | 87.78 9 | 94.92 117 | 97.21 37 | 84.33 177 | 93.89 42 | 97.09 41 | 87.20 36 | 99.29 44 | 91.90 69 | 98.44 55 | 98.12 63 |
|
LFMVS | | | 90.08 115 | 89.13 128 | 92.95 92 | 96.71 87 | 82.32 155 | 96.08 53 | 89.91 337 | 86.79 123 | 92.15 87 | 96.81 56 | 62.60 302 | 98.34 128 | 87.18 129 | 93.90 141 | 98.19 57 |
|
Anonymous202405211 | | | 87.68 182 | 86.13 208 | 92.31 124 | 96.66 88 | 80.74 195 | 94.87 121 | 91.49 304 | 80.47 257 | 89.46 126 | 95.44 108 | 54.72 340 | 98.23 134 | 82.19 191 | 89.89 195 | 97.97 74 |
|
TAPA-MVS | | 84.62 6 | 88.16 170 | 87.01 178 | 91.62 154 | 96.64 89 | 80.65 196 | 94.39 154 | 96.21 122 | 76.38 300 | 86.19 183 | 95.44 108 | 79.75 120 | 98.08 150 | 62.75 344 | 95.29 122 | 96.13 146 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
MAR-MVS | | | 90.30 111 | 89.37 121 | 93.07 87 | 96.61 90 | 84.48 92 | 95.68 72 | 95.67 160 | 82.36 219 | 87.85 148 | 92.85 202 | 76.63 156 | 98.80 101 | 80.01 230 | 96.68 99 | 95.91 157 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
VNet | | | 92.24 77 | 91.91 78 | 93.24 79 | 96.59 91 | 83.43 121 | 94.84 123 | 96.44 103 | 89.19 59 | 94.08 38 | 95.90 95 | 77.85 147 | 98.17 138 | 88.90 107 | 93.38 153 | 98.13 62 |
|
TSAR-MVS + GP. | | | 93.66 49 | 93.41 53 | 94.41 55 | 96.59 91 | 86.78 28 | 94.40 152 | 93.93 246 | 89.77 44 | 94.21 33 | 95.59 107 | 87.35 33 | 98.61 110 | 92.72 40 | 96.15 109 | 97.83 85 |
|
test222 | | | | | | 96.55 93 | 81.70 165 | 92.22 250 | 95.01 203 | 68.36 349 | 90.20 118 | 96.14 88 | 80.26 115 | | | 97.80 78 | 96.05 154 |
|
Anonymous20240529 | | | 88.09 172 | 86.59 193 | 92.58 110 | 96.53 94 | 81.92 162 | 95.99 57 | 95.84 148 | 74.11 323 | 89.06 132 | 95.21 116 | 61.44 310 | 98.81 100 | 83.67 170 | 87.47 232 | 97.01 117 |
|
Anonymous20231211 | | | 86.59 227 | 85.13 237 | 90.98 184 | 96.52 95 | 81.50 169 | 96.14 49 | 96.16 123 | 73.78 325 | 83.65 253 | 92.15 225 | 63.26 300 | 97.37 209 | 82.82 181 | 81.74 288 | 94.06 232 |
|
DeepPCF-MVS | | 89.96 1 | 94.20 36 | 94.77 14 | 92.49 114 | 96.52 95 | 80.00 217 | 94.00 184 | 97.08 46 | 90.05 35 | 95.65 21 | 97.29 28 | 89.66 13 | 98.97 83 | 93.95 19 | 98.71 34 | 98.50 26 |
|
testdata | | | | | 90.49 197 | 96.40 97 | 77.89 263 | | 95.37 188 | 72.51 336 | 93.63 49 | 96.69 61 | 82.08 99 | 97.65 179 | 83.08 174 | 97.39 87 | 95.94 156 |
|
PVSNet_Blended_VisFu | | | 91.38 89 | 90.91 93 | 92.80 97 | 96.39 98 | 83.17 127 | 94.87 121 | 96.66 91 | 83.29 200 | 89.27 128 | 94.46 144 | 80.29 114 | 99.17 53 | 87.57 123 | 95.37 120 | 96.05 154 |
|
API-MVS | | | 90.66 104 | 90.07 106 | 92.45 116 | 96.36 99 | 84.57 86 | 96.06 55 | 95.22 195 | 82.39 217 | 89.13 129 | 94.27 153 | 80.32 113 | 98.46 118 | 80.16 229 | 96.71 98 | 94.33 220 |
|
F-COLMAP | | | 87.95 175 | 86.80 183 | 91.40 163 | 96.35 100 | 80.88 191 | 94.73 130 | 95.45 180 | 79.65 267 | 82.04 276 | 94.61 138 | 71.13 224 | 98.50 115 | 76.24 269 | 91.05 182 | 94.80 198 |
|
VDD-MVS | | | 90.74 100 | 89.92 112 | 93.20 80 | 96.27 101 | 83.02 132 | 95.73 69 | 93.86 250 | 88.42 81 | 92.53 78 | 96.84 53 | 62.09 305 | 98.64 107 | 90.95 86 | 92.62 167 | 97.93 78 |
|
OMC-MVS | | | 91.23 92 | 90.62 97 | 93.08 85 | 96.27 101 | 84.07 103 | 93.52 203 | 95.93 139 | 86.95 119 | 89.51 124 | 96.13 89 | 78.50 138 | 98.35 127 | 85.84 143 | 92.90 163 | 96.83 124 |
|
DPM-MVS | | | 92.58 70 | 91.74 80 | 95.08 14 | 96.19 103 | 89.31 5 | 92.66 235 | 96.56 100 | 83.44 196 | 91.68 100 | 95.04 121 | 86.60 45 | 98.99 80 | 85.60 146 | 97.92 75 | 96.93 121 |
|
CHOSEN 1792x2688 | | | 88.84 153 | 87.69 161 | 92.30 125 | 96.14 104 | 81.42 175 | 90.01 293 | 95.86 147 | 74.52 320 | 87.41 157 | 93.94 164 | 75.46 171 | 98.36 125 | 80.36 225 | 95.53 114 | 97.12 113 |
|
thres100view900 | | | 87.63 187 | 86.71 186 | 90.38 203 | 96.12 105 | 78.55 245 | 95.03 111 | 91.58 300 | 87.15 113 | 88.06 144 | 92.29 221 | 68.91 259 | 98.10 142 | 70.13 308 | 91.10 178 | 94.48 216 |
|
PVSNet_BlendedMVS | | | 89.98 118 | 89.70 113 | 90.82 186 | 96.12 105 | 81.25 179 | 93.92 188 | 96.83 69 | 83.49 195 | 89.10 130 | 92.26 222 | 81.04 109 | 98.85 97 | 86.72 137 | 87.86 230 | 92.35 302 |
|
PVSNet_Blended | | | 90.73 101 | 90.32 100 | 91.98 136 | 96.12 105 | 81.25 179 | 92.55 240 | 96.83 69 | 82.04 226 | 89.10 130 | 92.56 212 | 81.04 109 | 98.85 97 | 86.72 137 | 95.91 110 | 95.84 161 |
|
UA-Net | | | 92.83 66 | 92.54 71 | 93.68 73 | 96.10 108 | 84.71 83 | 95.66 74 | 96.39 108 | 91.92 4 | 93.22 57 | 96.49 72 | 83.16 82 | 98.87 91 | 84.47 159 | 95.47 117 | 97.45 100 |
|
thres600view7 | | | 87.65 184 | 86.67 188 | 90.59 190 | 96.08 109 | 78.72 241 | 94.88 120 | 91.58 300 | 87.06 116 | 88.08 143 | 92.30 220 | 68.91 259 | 98.10 142 | 70.05 311 | 91.10 178 | 94.96 189 |
|
DeepC-MVS | | 88.79 3 | 93.31 58 | 92.99 62 | 94.26 58 | 96.07 110 | 85.83 67 | 94.89 119 | 96.99 50 | 89.02 66 | 89.56 123 | 97.37 25 | 82.51 90 | 99.38 32 | 92.20 53 | 98.30 61 | 97.57 95 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
LS3D | | | 87.89 176 | 86.32 203 | 92.59 109 | 96.07 110 | 82.92 136 | 95.23 96 | 94.92 211 | 75.66 307 | 82.89 266 | 95.98 92 | 72.48 213 | 99.21 50 | 68.43 318 | 95.23 125 | 95.64 169 |
|
hse-mvs3 | | | 90.80 98 | 90.15 104 | 92.75 100 | 96.01 112 | 82.66 146 | 95.43 82 | 95.53 172 | 89.80 40 | 93.08 62 | 95.64 105 | 75.77 163 | 99.00 78 | 92.07 58 | 78.05 326 | 96.60 131 |
|
HyFIR lowres test | | | 88.09 172 | 86.81 182 | 91.93 140 | 96.00 113 | 80.63 197 | 90.01 293 | 95.79 152 | 73.42 328 | 87.68 153 | 92.10 230 | 73.86 194 | 97.96 161 | 80.75 218 | 91.70 174 | 97.19 109 |
|
tfpn200view9 | | | 87.58 191 | 86.64 189 | 90.41 200 | 95.99 114 | 78.64 243 | 94.58 138 | 91.98 291 | 86.94 120 | 88.09 141 | 91.77 240 | 69.18 256 | 98.10 142 | 70.13 308 | 91.10 178 | 94.48 216 |
|
thres400 | | | 87.62 189 | 86.64 189 | 90.57 191 | 95.99 114 | 78.64 243 | 94.58 138 | 91.98 291 | 86.94 120 | 88.09 141 | 91.77 240 | 69.18 256 | 98.10 142 | 70.13 308 | 91.10 178 | 94.96 189 |
|
MVS_111021_LR | | | 92.47 74 | 92.29 75 | 92.98 90 | 95.99 114 | 84.43 97 | 93.08 223 | 96.09 127 | 88.20 89 | 91.12 109 | 95.72 103 | 81.33 107 | 97.76 170 | 91.74 71 | 97.37 88 | 96.75 126 |
|
test_part1 | | | 89.00 150 | 87.99 155 | 92.04 131 | 95.94 117 | 83.81 110 | 96.14 49 | 96.05 132 | 86.44 131 | 85.69 190 | 93.73 178 | 71.57 219 | 97.66 177 | 85.80 144 | 80.54 307 | 94.66 201 |
|
PatchMatch-RL | | | 86.77 223 | 85.54 228 | 90.47 199 | 95.88 118 | 82.71 144 | 90.54 282 | 92.31 280 | 79.82 265 | 84.32 236 | 91.57 250 | 68.77 261 | 96.39 272 | 73.16 292 | 93.48 151 | 92.32 303 |
|
EPP-MVSNet | | | 91.70 85 | 91.56 82 | 92.13 130 | 95.88 118 | 80.50 202 | 97.33 5 | 95.25 192 | 86.15 137 | 89.76 122 | 95.60 106 | 83.42 81 | 98.32 131 | 87.37 127 | 93.25 156 | 97.56 96 |
|
IS-MVSNet | | | 91.43 88 | 91.09 90 | 92.46 115 | 95.87 120 | 81.38 176 | 96.95 17 | 93.69 255 | 89.72 46 | 89.50 125 | 95.98 92 | 78.57 137 | 97.77 169 | 83.02 176 | 96.50 105 | 98.22 56 |
|
PAPR | | | 90.02 117 | 89.27 126 | 92.29 126 | 95.78 121 | 80.95 189 | 92.68 234 | 96.22 119 | 81.91 231 | 86.66 173 | 93.75 177 | 82.23 95 | 98.44 122 | 79.40 240 | 94.79 127 | 97.48 98 |
|
Vis-MVSNet (Re-imp) | | | 89.59 129 | 89.44 118 | 90.03 217 | 95.74 122 | 75.85 294 | 95.61 77 | 90.80 322 | 87.66 106 | 87.83 149 | 95.40 111 | 76.79 152 | 96.46 269 | 78.37 246 | 96.73 97 | 97.80 86 |
|
test_yl | | | 90.69 102 | 90.02 110 | 92.71 102 | 95.72 123 | 82.41 153 | 94.11 172 | 95.12 198 | 85.63 148 | 91.49 102 | 94.70 133 | 74.75 178 | 98.42 123 | 86.13 141 | 92.53 168 | 97.31 102 |
|
DCV-MVSNet | | | 90.69 102 | 90.02 110 | 92.71 102 | 95.72 123 | 82.41 153 | 94.11 172 | 95.12 198 | 85.63 148 | 91.49 102 | 94.70 133 | 74.75 178 | 98.42 123 | 86.13 141 | 92.53 168 | 97.31 102 |
|
canonicalmvs | | | 93.27 60 | 92.75 67 | 94.85 29 | 95.70 125 | 87.66 13 | 96.33 38 | 96.41 106 | 90.00 37 | 94.09 37 | 94.60 139 | 82.33 93 | 98.62 109 | 92.40 47 | 92.86 164 | 98.27 51 |
|
CANet | | | 93.54 52 | 93.20 58 | 94.55 47 | 95.65 126 | 85.73 71 | 94.94 115 | 96.69 88 | 91.89 5 | 90.69 113 | 95.88 96 | 81.99 102 | 99.54 19 | 93.14 34 | 97.95 74 | 98.39 40 |
|
3Dnovator+ | | 87.14 4 | 92.42 75 | 91.37 83 | 95.55 6 | 95.63 127 | 88.73 6 | 97.07 16 | 96.77 76 | 90.84 17 | 84.02 243 | 96.62 66 | 75.95 162 | 99.34 36 | 87.77 120 | 97.68 81 | 98.59 22 |
|
alignmvs | | | 93.08 64 | 92.50 72 | 94.81 35 | 95.62 128 | 87.61 14 | 95.99 57 | 96.07 129 | 89.77 44 | 94.12 36 | 94.87 126 | 80.56 111 | 98.66 105 | 92.42 46 | 93.10 159 | 98.15 60 |
|
Regformer-1 | | | 94.22 33 | 94.13 33 | 94.51 49 | 95.54 129 | 86.36 46 | 94.57 140 | 96.44 103 | 91.69 9 | 94.32 32 | 96.56 70 | 87.05 39 | 99.03 67 | 93.35 29 | 97.65 83 | 98.15 60 |
|
Regformer-2 | | | 94.33 28 | 94.22 26 | 94.68 41 | 95.54 129 | 86.75 31 | 94.57 140 | 96.70 86 | 91.84 6 | 94.41 29 | 96.56 70 | 87.19 37 | 99.13 57 | 93.50 24 | 97.65 83 | 98.16 59 |
|
WTY-MVS | | | 89.60 128 | 88.92 133 | 91.67 153 | 95.47 131 | 81.15 183 | 92.38 244 | 94.78 221 | 83.11 203 | 89.06 132 | 94.32 148 | 78.67 135 | 96.61 256 | 81.57 205 | 90.89 184 | 97.24 106 |
|
DELS-MVS | | | 93.43 56 | 93.25 55 | 93.97 62 | 95.42 132 | 85.04 79 | 93.06 225 | 97.13 42 | 90.74 22 | 91.84 94 | 95.09 120 | 86.32 46 | 99.21 50 | 91.22 80 | 98.45 54 | 97.65 90 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
Regformer-3 | | | 93.68 48 | 93.64 50 | 93.81 70 | 95.36 133 | 84.61 84 | 94.68 132 | 95.83 149 | 91.27 12 | 93.60 50 | 96.71 59 | 85.75 53 | 98.86 94 | 92.87 36 | 96.65 100 | 97.96 75 |
|
Regformer-4 | | | 93.91 42 | 93.81 42 | 94.19 60 | 95.36 133 | 85.47 75 | 94.68 132 | 96.41 106 | 91.60 10 | 93.75 44 | 96.71 59 | 85.95 51 | 99.10 60 | 93.21 33 | 96.65 100 | 98.01 73 |
|
thres200 | | | 87.21 208 | 86.24 206 | 90.12 213 | 95.36 133 | 78.53 246 | 93.26 215 | 92.10 285 | 86.42 132 | 88.00 146 | 91.11 263 | 69.24 255 | 98.00 158 | 69.58 312 | 91.04 183 | 93.83 245 |
|
Vis-MVSNet |  | | 91.75 83 | 91.23 86 | 93.29 77 | 95.32 136 | 83.78 111 | 96.14 49 | 95.98 135 | 89.89 38 | 90.45 115 | 96.58 68 | 75.09 174 | 98.31 132 | 84.75 156 | 96.90 94 | 97.78 88 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
BH-RMVSNet | | | 88.37 164 | 87.48 166 | 91.02 179 | 95.28 137 | 79.45 227 | 92.89 230 | 93.07 264 | 85.45 154 | 86.91 168 | 94.84 130 | 70.35 238 | 97.76 170 | 73.97 287 | 94.59 132 | 95.85 160 |
|
COLMAP_ROB |  | 80.39 16 | 83.96 268 | 82.04 275 | 89.74 229 | 95.28 137 | 79.75 222 | 94.25 164 | 92.28 281 | 75.17 313 | 78.02 316 | 93.77 175 | 58.60 329 | 97.84 167 | 65.06 337 | 85.92 244 | 91.63 313 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PS-MVSNAJ | | | 91.18 94 | 90.92 92 | 91.96 138 | 95.26 139 | 82.60 149 | 92.09 255 | 95.70 158 | 86.27 134 | 91.84 94 | 92.46 214 | 79.70 122 | 98.99 80 | 89.08 105 | 95.86 111 | 94.29 221 |
|
BH-untuned | | | 88.60 160 | 88.13 153 | 90.01 219 | 95.24 140 | 78.50 248 | 93.29 213 | 94.15 240 | 84.75 171 | 84.46 228 | 93.40 182 | 75.76 165 | 97.40 205 | 77.59 255 | 94.52 134 | 94.12 227 |
|
DROMVSNet | | | 93.44 54 | 93.71 47 | 92.63 107 | 95.21 141 | 82.43 150 | 97.27 7 | 96.71 85 | 90.57 27 | 92.88 65 | 95.80 99 | 83.16 82 | 98.16 139 | 93.68 23 | 98.14 66 | 97.31 102 |
|
ETV-MVS | | | 92.74 68 | 92.66 69 | 92.97 91 | 95.20 142 | 84.04 105 | 95.07 107 | 96.51 101 | 90.73 23 | 92.96 64 | 91.19 257 | 84.06 74 | 98.34 128 | 91.72 72 | 96.54 103 | 96.54 135 |
|
GeoE | | | 90.05 116 | 89.43 119 | 91.90 143 | 95.16 143 | 80.37 204 | 95.80 66 | 94.65 225 | 83.90 184 | 87.55 156 | 94.75 132 | 78.18 142 | 97.62 183 | 81.28 208 | 93.63 145 | 97.71 89 |
|
EIA-MVS | | | 91.95 79 | 91.94 77 | 91.98 136 | 95.16 143 | 80.01 216 | 95.36 83 | 96.73 81 | 88.44 79 | 89.34 127 | 92.16 224 | 83.82 80 | 98.45 121 | 89.35 102 | 97.06 92 | 97.48 98 |
|
ab-mvs | | | 89.41 137 | 88.35 145 | 92.60 108 | 95.15 145 | 82.65 147 | 92.20 251 | 95.60 167 | 83.97 183 | 88.55 136 | 93.70 179 | 74.16 189 | 98.21 137 | 82.46 187 | 89.37 203 | 96.94 120 |
|
VDDNet | | | 89.56 130 | 88.49 143 | 92.76 99 | 95.07 146 | 82.09 157 | 96.30 39 | 93.19 262 | 81.05 253 | 91.88 92 | 96.86 52 | 61.16 315 | 98.33 130 | 88.43 113 | 92.49 170 | 97.84 84 |
|
AllTest | | | 83.42 274 | 81.39 280 | 89.52 237 | 95.01 147 | 77.79 267 | 93.12 220 | 90.89 320 | 77.41 292 | 76.12 328 | 93.34 183 | 54.08 343 | 97.51 189 | 68.31 319 | 84.27 257 | 93.26 268 |
|
TestCases | | | | | 89.52 237 | 95.01 147 | 77.79 267 | | 90.89 320 | 77.41 292 | 76.12 328 | 93.34 183 | 54.08 343 | 97.51 189 | 68.31 319 | 84.27 257 | 93.26 268 |
|
EI-MVSNet-Vis-set | | | 93.01 65 | 92.92 64 | 93.29 77 | 95.01 147 | 83.51 119 | 94.48 144 | 95.77 153 | 90.87 16 | 92.52 79 | 96.67 63 | 84.50 69 | 99.00 78 | 91.99 61 | 94.44 137 | 97.36 101 |
|
xiu_mvs_v2_base | | | 91.13 95 | 90.89 94 | 91.86 144 | 94.97 150 | 82.42 151 | 92.24 249 | 95.64 165 | 86.11 140 | 91.74 99 | 93.14 194 | 79.67 125 | 98.89 90 | 89.06 106 | 95.46 118 | 94.28 222 |
|
tttt0517 | | | 88.61 159 | 87.78 160 | 91.11 174 | 94.96 151 | 77.81 266 | 95.35 84 | 89.69 341 | 85.09 165 | 88.05 145 | 94.59 140 | 66.93 274 | 98.48 116 | 83.27 173 | 92.13 173 | 97.03 116 |
|
baseline1 | | | 88.10 171 | 87.28 172 | 90.57 191 | 94.96 151 | 80.07 211 | 94.27 163 | 91.29 309 | 86.74 124 | 87.41 157 | 94.00 161 | 76.77 153 | 96.20 280 | 80.77 217 | 79.31 322 | 95.44 174 |
|
Test_1112_low_res | | | 87.65 184 | 86.51 196 | 91.08 175 | 94.94 153 | 79.28 235 | 91.77 260 | 94.30 234 | 76.04 305 | 83.51 257 | 92.37 217 | 77.86 146 | 97.73 174 | 78.69 245 | 89.13 209 | 96.22 142 |
|
1112_ss | | | 88.42 162 | 87.33 170 | 91.72 151 | 94.92 154 | 80.98 187 | 92.97 228 | 94.54 226 | 78.16 289 | 83.82 248 | 93.88 169 | 78.78 133 | 97.91 165 | 79.45 236 | 89.41 202 | 96.26 141 |
|
QAPM | | | 89.51 131 | 88.15 152 | 93.59 75 | 94.92 154 | 84.58 85 | 96.82 27 | 96.70 86 | 78.43 284 | 83.41 259 | 96.19 86 | 73.18 205 | 99.30 42 | 77.11 261 | 96.54 103 | 96.89 123 |
|
BH-w/o | | | 87.57 192 | 87.05 177 | 89.12 246 | 94.90 156 | 77.90 262 | 92.41 242 | 93.51 257 | 82.89 210 | 83.70 251 | 91.34 251 | 75.75 166 | 97.07 232 | 75.49 274 | 93.49 149 | 92.39 300 |
|
thisisatest0530 | | | 88.67 157 | 87.61 164 | 91.86 144 | 94.87 157 | 80.07 211 | 94.63 136 | 89.90 338 | 84.00 182 | 88.46 138 | 93.78 174 | 66.88 276 | 98.46 118 | 83.30 172 | 92.65 166 | 97.06 114 |
|
CS-MVS-test | | | 92.55 71 | 92.72 68 | 92.02 132 | 94.87 157 | 81.34 177 | 96.43 34 | 96.57 98 | 89.04 63 | 91.05 110 | 94.41 145 | 83.85 79 | 98.09 148 | 90.83 90 | 97.47 86 | 96.64 130 |
|
EI-MVSNet-UG-set | | | 92.74 68 | 92.62 70 | 93.12 83 | 94.86 159 | 83.20 126 | 94.40 152 | 95.74 156 | 90.71 24 | 92.05 89 | 96.60 67 | 84.00 76 | 98.99 80 | 91.55 74 | 93.63 145 | 97.17 110 |
|
HY-MVS | | 83.01 12 | 89.03 147 | 87.94 158 | 92.29 126 | 94.86 159 | 82.77 138 | 92.08 256 | 94.49 227 | 81.52 243 | 86.93 166 | 92.79 208 | 78.32 141 | 98.23 134 | 79.93 231 | 90.55 185 | 95.88 159 |
|
hse-mvs2 | | | 89.88 124 | 89.34 122 | 91.51 158 | 94.83 161 | 81.12 184 | 93.94 187 | 93.91 249 | 89.80 40 | 93.08 62 | 93.60 180 | 75.77 163 | 97.66 177 | 92.07 58 | 77.07 333 | 95.74 166 |
|
AUN-MVS | | | 87.78 180 | 86.54 195 | 91.48 160 | 94.82 162 | 81.05 185 | 93.91 191 | 93.93 246 | 83.00 206 | 86.93 166 | 93.53 181 | 69.50 249 | 97.67 176 | 86.14 140 | 77.12 332 | 95.73 167 |
|
Fast-Effi-MVS+ | | | 89.41 137 | 88.64 138 | 91.71 152 | 94.74 163 | 80.81 193 | 93.54 202 | 95.10 200 | 83.11 203 | 86.82 171 | 90.67 275 | 79.74 121 | 97.75 173 | 80.51 224 | 93.55 147 | 96.57 133 |
|
ACMP | | 84.23 8 | 89.01 149 | 88.35 145 | 90.99 182 | 94.73 164 | 81.27 178 | 95.07 107 | 95.89 145 | 86.48 129 | 83.67 252 | 94.30 149 | 69.33 251 | 97.99 159 | 87.10 134 | 88.55 214 | 93.72 254 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PVSNet | | 78.82 18 | 85.55 245 | 84.65 248 | 88.23 271 | 94.72 165 | 71.93 326 | 87.12 328 | 92.75 271 | 78.80 278 | 84.95 219 | 90.53 277 | 64.43 296 | 96.71 250 | 74.74 282 | 93.86 142 | 96.06 153 |
|
LCM-MVSNet-Re | | | 88.30 167 | 88.32 148 | 88.27 268 | 94.71 166 | 72.41 325 | 93.15 219 | 90.98 316 | 87.77 100 | 79.25 310 | 91.96 236 | 78.35 140 | 95.75 300 | 83.04 175 | 95.62 113 | 96.65 129 |
|
HQP_MVS | | | 90.60 108 | 90.19 102 | 91.82 147 | 94.70 167 | 82.73 142 | 95.85 64 | 96.22 119 | 90.81 18 | 86.91 168 | 94.86 127 | 74.23 185 | 98.12 140 | 88.15 115 | 89.99 191 | 94.63 202 |
|
plane_prior7 | | | | | | 94.70 167 | 82.74 141 | | | | | | | | | | |
|
ACMH+ | | 81.04 14 | 85.05 256 | 83.46 264 | 89.82 225 | 94.66 169 | 79.37 229 | 94.44 149 | 94.12 243 | 82.19 222 | 78.04 315 | 92.82 205 | 58.23 330 | 97.54 187 | 73.77 289 | 82.90 274 | 92.54 294 |
|
ACMM | | 84.12 9 | 89.14 143 | 88.48 144 | 91.12 171 | 94.65 170 | 81.22 181 | 95.31 86 | 96.12 126 | 85.31 158 | 85.92 186 | 94.34 146 | 70.19 241 | 98.06 152 | 85.65 145 | 88.86 212 | 94.08 231 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
plane_prior1 | | | | | | 94.59 171 | | | | | | | | | | | |
|
3Dnovator | | 86.66 5 | 91.73 84 | 90.82 95 | 94.44 51 | 94.59 171 | 86.37 45 | 97.18 10 | 97.02 49 | 89.20 58 | 84.31 238 | 96.66 64 | 73.74 197 | 99.17 53 | 86.74 135 | 97.96 73 | 97.79 87 |
|
plane_prior6 | | | | | | 94.52 173 | 82.75 139 | | | | | | 74.23 185 | | | | |
|
UGNet | | | 89.95 120 | 88.95 132 | 92.95 92 | 94.51 174 | 83.31 124 | 95.70 71 | 95.23 193 | 89.37 54 | 87.58 154 | 93.94 164 | 64.00 297 | 98.78 102 | 83.92 165 | 96.31 108 | 96.74 127 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
LPG-MVS_test | | | 89.45 134 | 88.90 134 | 91.12 171 | 94.47 175 | 81.49 171 | 95.30 89 | 96.14 124 | 86.73 125 | 85.45 203 | 95.16 117 | 69.89 243 | 98.10 142 | 87.70 121 | 89.23 207 | 93.77 250 |
|
LGP-MVS_train | | | | | 91.12 171 | 94.47 175 | 81.49 171 | | 96.14 124 | 86.73 125 | 85.45 203 | 95.16 117 | 69.89 243 | 98.10 142 | 87.70 121 | 89.23 207 | 93.77 250 |
|
baseline | | | 92.39 76 | 92.29 75 | 92.69 105 | 94.46 177 | 81.77 164 | 94.14 169 | 96.27 113 | 89.22 57 | 91.88 92 | 96.00 91 | 82.35 92 | 97.99 159 | 91.05 82 | 95.27 124 | 98.30 45 |
|
ACMH | | 80.38 17 | 85.36 248 | 83.68 260 | 90.39 201 | 94.45 178 | 80.63 197 | 94.73 130 | 94.85 215 | 82.09 223 | 77.24 320 | 92.65 210 | 60.01 322 | 97.58 184 | 72.25 296 | 84.87 252 | 92.96 283 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
LTVRE_ROB | | 82.13 13 | 86.26 235 | 84.90 243 | 90.34 206 | 94.44 179 | 81.50 169 | 92.31 248 | 94.89 212 | 83.03 205 | 79.63 307 | 92.67 209 | 69.69 246 | 97.79 168 | 71.20 299 | 86.26 243 | 91.72 311 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
casdiffmvs | | | 92.51 73 | 92.43 73 | 92.74 101 | 94.41 180 | 81.98 160 | 94.54 142 | 96.23 118 | 89.57 48 | 91.96 91 | 96.17 87 | 82.58 89 | 98.01 157 | 90.95 86 | 95.45 119 | 98.23 55 |
|
MVS_Test | | | 91.31 91 | 91.11 88 | 91.93 140 | 94.37 181 | 80.14 208 | 93.46 206 | 95.80 151 | 86.46 130 | 91.35 106 | 93.77 175 | 82.21 96 | 98.09 148 | 87.57 123 | 94.95 126 | 97.55 97 |
|
NP-MVS | | | | | | 94.37 181 | 82.42 151 | | | | | 93.98 162 | | | | | |
|
TR-MVS | | | 86.78 220 | 85.76 225 | 89.82 225 | 94.37 181 | 78.41 250 | 92.47 241 | 92.83 268 | 81.11 252 | 86.36 179 | 92.40 216 | 68.73 262 | 97.48 191 | 73.75 290 | 89.85 197 | 93.57 258 |
|
Effi-MVS+ | | | 91.59 87 | 91.11 88 | 93.01 89 | 94.35 184 | 83.39 123 | 94.60 137 | 95.10 200 | 87.10 115 | 90.57 114 | 93.10 196 | 81.43 106 | 98.07 151 | 89.29 103 | 94.48 135 | 97.59 94 |
|
CLD-MVS | | | 89.47 133 | 88.90 134 | 91.18 170 | 94.22 185 | 82.07 158 | 92.13 253 | 96.09 127 | 87.90 96 | 85.37 212 | 92.45 215 | 74.38 183 | 97.56 186 | 87.15 130 | 90.43 186 | 93.93 237 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CS-MVS | | | 92.55 71 | 92.87 66 | 91.58 156 | 94.21 186 | 80.54 200 | 95.30 89 | 96.68 89 | 88.18 91 | 92.09 88 | 94.57 142 | 84.06 74 | 98.05 153 | 92.56 43 | 98.19 64 | 96.15 143 |
|
HQP-NCC | | | | | | 94.17 187 | | 94.39 154 | | 88.81 68 | 85.43 206 | | | | | | |
|
ACMP_Plane | | | | | | 94.17 187 | | 94.39 154 | | 88.81 68 | 85.43 206 | | | | | | |
|
HQP-MVS | | | 89.80 125 | 89.28 125 | 91.34 165 | 94.17 187 | 81.56 167 | 94.39 154 | 96.04 133 | 88.81 68 | 85.43 206 | 93.97 163 | 73.83 195 | 97.96 161 | 87.11 132 | 89.77 198 | 94.50 213 |
|
XVG-OURS | | | 89.40 139 | 88.70 137 | 91.52 157 | 94.06 190 | 81.46 173 | 91.27 271 | 96.07 129 | 86.14 138 | 88.89 134 | 95.77 101 | 68.73 262 | 97.26 217 | 87.39 126 | 89.96 193 | 95.83 162 |
|
sss | | | 88.93 151 | 88.26 151 | 90.94 185 | 94.05 191 | 80.78 194 | 91.71 263 | 95.38 186 | 81.55 242 | 88.63 135 | 93.91 168 | 75.04 175 | 95.47 311 | 82.47 186 | 91.61 175 | 96.57 133 |
|
PCF-MVS | | 84.11 10 | 87.74 181 | 86.08 212 | 92.70 104 | 94.02 192 | 84.43 97 | 89.27 303 | 95.87 146 | 73.62 327 | 84.43 230 | 94.33 147 | 78.48 139 | 98.86 94 | 70.27 304 | 94.45 136 | 94.81 197 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
GBi-Net | | | 87.26 202 | 85.98 215 | 91.08 175 | 94.01 193 | 83.10 128 | 95.14 104 | 94.94 206 | 83.57 191 | 84.37 231 | 91.64 243 | 66.59 281 | 96.34 276 | 78.23 249 | 85.36 248 | 93.79 246 |
|
test1 | | | 87.26 202 | 85.98 215 | 91.08 175 | 94.01 193 | 83.10 128 | 95.14 104 | 94.94 206 | 83.57 191 | 84.37 231 | 91.64 243 | 66.59 281 | 96.34 276 | 78.23 249 | 85.36 248 | 93.79 246 |
|
FMVSNet2 | | | 87.19 209 | 85.82 221 | 91.30 166 | 94.01 193 | 83.67 114 | 94.79 126 | 94.94 206 | 83.57 191 | 83.88 246 | 92.05 234 | 66.59 281 | 96.51 264 | 77.56 256 | 85.01 251 | 93.73 253 |
|
XVG-OURS-SEG-HR | | | 89.95 120 | 89.45 117 | 91.47 161 | 94.00 196 | 81.21 182 | 91.87 258 | 96.06 131 | 85.78 143 | 88.55 136 | 95.73 102 | 74.67 181 | 97.27 215 | 88.71 110 | 89.64 200 | 95.91 157 |
|
FIs | | | 90.51 109 | 90.35 99 | 90.99 182 | 93.99 197 | 80.98 187 | 95.73 69 | 97.54 3 | 89.15 60 | 86.72 172 | 94.68 135 | 81.83 104 | 97.24 219 | 85.18 149 | 88.31 222 | 94.76 199 |
|
xiu_mvs_v1_base_debu | | | 90.64 105 | 90.05 107 | 92.40 117 | 93.97 198 | 84.46 93 | 93.32 208 | 95.46 177 | 85.17 160 | 92.25 82 | 94.03 156 | 70.59 233 | 98.57 112 | 90.97 83 | 94.67 128 | 94.18 223 |
|
xiu_mvs_v1_base | | | 90.64 105 | 90.05 107 | 92.40 117 | 93.97 198 | 84.46 93 | 93.32 208 | 95.46 177 | 85.17 160 | 92.25 82 | 94.03 156 | 70.59 233 | 98.57 112 | 90.97 83 | 94.67 128 | 94.18 223 |
|
xiu_mvs_v1_base_debi | | | 90.64 105 | 90.05 107 | 92.40 117 | 93.97 198 | 84.46 93 | 93.32 208 | 95.46 177 | 85.17 160 | 92.25 82 | 94.03 156 | 70.59 233 | 98.57 112 | 90.97 83 | 94.67 128 | 94.18 223 |
|
VPA-MVSNet | | | 89.62 127 | 88.96 131 | 91.60 155 | 93.86 201 | 82.89 137 | 95.46 81 | 97.33 25 | 87.91 95 | 88.43 139 | 93.31 186 | 74.17 188 | 97.40 205 | 87.32 128 | 82.86 275 | 94.52 211 |
|
MVSFormer | | | 91.68 86 | 91.30 84 | 92.80 97 | 93.86 201 | 83.88 108 | 95.96 60 | 95.90 143 | 84.66 173 | 91.76 97 | 94.91 124 | 77.92 144 | 97.30 211 | 89.64 99 | 97.11 90 | 97.24 106 |
|
lupinMVS | | | 90.92 97 | 90.21 101 | 93.03 88 | 93.86 201 | 83.88 108 | 92.81 232 | 93.86 250 | 79.84 264 | 91.76 97 | 94.29 150 | 77.92 144 | 98.04 154 | 90.48 94 | 97.11 90 | 97.17 110 |
|
IterMVS-LS | | | 88.36 165 | 87.91 159 | 89.70 232 | 93.80 204 | 78.29 254 | 93.73 195 | 95.08 202 | 85.73 145 | 84.75 221 | 91.90 238 | 79.88 118 | 96.92 242 | 83.83 166 | 82.51 276 | 93.89 238 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MSDG | | | 84.86 260 | 83.09 267 | 90.14 212 | 93.80 204 | 80.05 213 | 89.18 306 | 93.09 263 | 78.89 275 | 78.19 313 | 91.91 237 | 65.86 290 | 97.27 215 | 68.47 317 | 88.45 218 | 93.11 278 |
|
FMVSNet3 | | | 87.40 199 | 86.11 210 | 91.30 166 | 93.79 206 | 83.64 115 | 94.20 167 | 94.81 219 | 83.89 185 | 84.37 231 | 91.87 239 | 68.45 265 | 96.56 261 | 78.23 249 | 85.36 248 | 93.70 255 |
|
FC-MVSNet-test | | | 90.27 112 | 90.18 103 | 90.53 193 | 93.71 207 | 79.85 221 | 95.77 68 | 97.59 2 | 89.31 55 | 86.27 181 | 94.67 136 | 81.93 103 | 97.01 237 | 84.26 161 | 88.09 226 | 94.71 200 |
|
TAMVS | | | 89.21 142 | 88.29 149 | 91.96 138 | 93.71 207 | 82.62 148 | 93.30 212 | 94.19 238 | 82.22 221 | 87.78 151 | 93.94 164 | 78.83 131 | 96.95 240 | 77.70 254 | 92.98 162 | 96.32 138 |
|
ET-MVSNet_ETH3D | | | 87.51 194 | 85.91 219 | 92.32 123 | 93.70 209 | 83.93 106 | 92.33 246 | 90.94 318 | 84.16 178 | 72.09 346 | 92.52 213 | 69.90 242 | 95.85 295 | 89.20 104 | 88.36 221 | 97.17 110 |
|
CDS-MVSNet | | | 89.45 134 | 88.51 140 | 92.29 126 | 93.62 210 | 83.61 117 | 93.01 226 | 94.68 224 | 81.95 229 | 87.82 150 | 93.24 190 | 78.69 134 | 96.99 238 | 80.34 226 | 93.23 157 | 96.28 140 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
UniMVSNet (Re) | | | 89.80 125 | 89.07 129 | 92.01 133 | 93.60 211 | 84.52 89 | 94.78 127 | 97.47 10 | 89.26 56 | 86.44 178 | 92.32 219 | 82.10 98 | 97.39 208 | 84.81 155 | 80.84 303 | 94.12 227 |
|
VPNet | | | 88.20 169 | 87.47 167 | 90.39 201 | 93.56 212 | 79.46 226 | 94.04 180 | 95.54 171 | 88.67 73 | 86.96 165 | 94.58 141 | 69.33 251 | 97.15 224 | 84.05 164 | 80.53 309 | 94.56 209 |
|
thisisatest0515 | | | 87.33 200 | 85.99 214 | 91.37 164 | 93.49 213 | 79.55 224 | 90.63 281 | 89.56 344 | 80.17 259 | 87.56 155 | 90.86 268 | 67.07 273 | 98.28 133 | 81.50 206 | 93.02 161 | 96.29 139 |
|
mvs_anonymous | | | 89.37 140 | 89.32 123 | 89.51 239 | 93.47 214 | 74.22 305 | 91.65 266 | 94.83 217 | 82.91 209 | 85.45 203 | 93.79 173 | 81.23 108 | 96.36 275 | 86.47 139 | 94.09 139 | 97.94 76 |
|
CANet_DTU | | | 90.26 113 | 89.41 120 | 92.81 96 | 93.46 215 | 83.01 133 | 93.48 204 | 94.47 228 | 89.43 52 | 87.76 152 | 94.23 154 | 70.54 237 | 99.03 67 | 84.97 151 | 96.39 107 | 96.38 137 |
|
UniMVSNet_NR-MVSNet | | | 89.92 122 | 89.29 124 | 91.81 149 | 93.39 216 | 83.72 112 | 94.43 150 | 97.12 43 | 89.80 40 | 86.46 175 | 93.32 185 | 83.16 82 | 97.23 220 | 84.92 152 | 81.02 299 | 94.49 215 |
|
Effi-MVS+-dtu | | | 88.65 158 | 88.35 145 | 89.54 236 | 93.33 217 | 76.39 289 | 94.47 147 | 94.36 231 | 87.70 102 | 85.43 206 | 89.56 297 | 73.45 200 | 97.26 217 | 85.57 147 | 91.28 177 | 94.97 186 |
|
mvs-test1 | | | 89.45 134 | 89.14 127 | 90.38 203 | 93.33 217 | 77.63 272 | 94.95 114 | 94.36 231 | 87.70 102 | 87.10 164 | 92.81 206 | 73.45 200 | 98.03 156 | 85.57 147 | 93.04 160 | 95.48 172 |
|
WR-MVS | | | 88.38 163 | 87.67 163 | 90.52 195 | 93.30 219 | 80.18 206 | 93.26 215 | 95.96 137 | 88.57 77 | 85.47 202 | 92.81 206 | 76.12 158 | 96.91 243 | 81.24 209 | 82.29 278 | 94.47 218 |
|
WR-MVS_H | | | 87.80 179 | 87.37 169 | 89.10 247 | 93.23 220 | 78.12 257 | 95.61 77 | 97.30 29 | 87.90 96 | 83.72 250 | 92.01 235 | 79.65 126 | 96.01 288 | 76.36 266 | 80.54 307 | 93.16 276 |
|
test_0402 | | | 81.30 296 | 79.17 304 | 87.67 281 | 93.19 221 | 78.17 256 | 92.98 227 | 91.71 296 | 75.25 312 | 76.02 330 | 90.31 281 | 59.23 326 | 96.37 273 | 50.22 359 | 83.63 264 | 88.47 349 |
|
OPM-MVS | | | 90.12 114 | 89.56 115 | 91.82 147 | 93.14 222 | 83.90 107 | 94.16 168 | 95.74 156 | 88.96 67 | 87.86 147 | 95.43 110 | 72.48 213 | 97.91 165 | 88.10 118 | 90.18 190 | 93.65 256 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
CP-MVSNet | | | 87.63 187 | 87.26 174 | 88.74 257 | 93.12 223 | 76.59 286 | 95.29 92 | 96.58 97 | 88.43 80 | 83.49 258 | 92.98 199 | 75.28 172 | 95.83 296 | 78.97 242 | 81.15 295 | 93.79 246 |
|
diffmvs | | | 91.37 90 | 91.23 86 | 91.77 150 | 93.09 224 | 80.27 205 | 92.36 245 | 95.52 173 | 87.03 117 | 91.40 105 | 94.93 123 | 80.08 116 | 97.44 196 | 92.13 57 | 94.56 133 | 97.61 92 |
|
nrg030 | | | 91.08 96 | 90.39 98 | 93.17 82 | 93.07 225 | 86.91 22 | 96.41 36 | 96.26 114 | 88.30 84 | 88.37 140 | 94.85 129 | 82.19 97 | 97.64 181 | 91.09 81 | 82.95 270 | 94.96 189 |
|
PAPM | | | 86.68 224 | 85.39 232 | 90.53 193 | 93.05 226 | 79.33 234 | 89.79 296 | 94.77 222 | 78.82 277 | 81.95 277 | 93.24 190 | 76.81 151 | 97.30 211 | 66.94 327 | 93.16 158 | 94.95 192 |
|
DU-MVS | | | 89.34 141 | 88.50 141 | 91.85 146 | 93.04 227 | 83.72 112 | 94.47 147 | 96.59 96 | 89.50 49 | 86.46 175 | 93.29 188 | 77.25 148 | 97.23 220 | 84.92 152 | 81.02 299 | 94.59 206 |
|
NR-MVSNet | | | 88.58 161 | 87.47 167 | 91.93 140 | 93.04 227 | 84.16 102 | 94.77 128 | 96.25 116 | 89.05 62 | 80.04 302 | 93.29 188 | 79.02 130 | 97.05 234 | 81.71 204 | 80.05 314 | 94.59 206 |
|
jason | | | 90.80 98 | 90.10 105 | 92.90 94 | 93.04 227 | 83.53 118 | 93.08 223 | 94.15 240 | 80.22 258 | 91.41 104 | 94.91 124 | 76.87 150 | 97.93 164 | 90.28 95 | 96.90 94 | 97.24 106 |
jason: jason. |
RRT_test8_iter05 | | | 86.90 215 | 86.36 200 | 88.52 262 | 93.00 230 | 73.27 313 | 94.32 161 | 95.96 137 | 85.50 153 | 84.26 239 | 92.86 201 | 60.76 317 | 97.70 175 | 88.32 114 | 82.29 278 | 94.60 205 |
|
PS-CasMVS | | | 87.32 201 | 86.88 179 | 88.63 260 | 92.99 231 | 76.33 291 | 95.33 85 | 96.61 95 | 88.22 88 | 83.30 263 | 93.07 197 | 73.03 207 | 95.79 299 | 78.36 247 | 81.00 301 | 93.75 252 |
|
MVSTER | | | 88.84 153 | 88.29 149 | 90.51 196 | 92.95 232 | 80.44 203 | 93.73 195 | 95.01 203 | 84.66 173 | 87.15 161 | 93.12 195 | 72.79 209 | 97.21 222 | 87.86 119 | 87.36 235 | 93.87 241 |
|
RPSCF | | | 85.07 255 | 84.27 252 | 87.48 287 | 92.91 233 | 70.62 338 | 91.69 265 | 92.46 276 | 76.20 304 | 82.67 269 | 95.22 115 | 63.94 298 | 97.29 214 | 77.51 257 | 85.80 246 | 94.53 210 |
|
FMVSNet1 | | | 85.85 241 | 84.11 254 | 91.08 175 | 92.81 234 | 83.10 128 | 95.14 104 | 94.94 206 | 81.64 239 | 82.68 268 | 91.64 243 | 59.01 328 | 96.34 276 | 75.37 276 | 83.78 260 | 93.79 246 |
|
tfpnnormal | | | 84.72 262 | 83.23 266 | 89.20 244 | 92.79 235 | 80.05 213 | 94.48 144 | 95.81 150 | 82.38 218 | 81.08 286 | 91.21 256 | 69.01 258 | 96.95 240 | 61.69 346 | 80.59 306 | 90.58 333 |
|
OpenMVS |  | 83.78 11 | 88.74 156 | 87.29 171 | 93.08 85 | 92.70 236 | 85.39 76 | 96.57 32 | 96.43 105 | 78.74 280 | 80.85 288 | 96.07 90 | 69.64 247 | 99.01 73 | 78.01 252 | 96.65 100 | 94.83 196 |
|
TranMVSNet+NR-MVSNet | | | 88.84 153 | 87.95 157 | 91.49 159 | 92.68 237 | 83.01 133 | 94.92 117 | 96.31 111 | 89.88 39 | 85.53 196 | 93.85 171 | 76.63 156 | 96.96 239 | 81.91 197 | 79.87 317 | 94.50 213 |
|
MVS | | | 87.44 197 | 86.10 211 | 91.44 162 | 92.61 238 | 83.62 116 | 92.63 236 | 95.66 162 | 67.26 350 | 81.47 280 | 92.15 225 | 77.95 143 | 98.22 136 | 79.71 233 | 95.48 116 | 92.47 297 |
|
CHOSEN 280x420 | | | 85.15 254 | 83.99 256 | 88.65 259 | 92.47 239 | 78.40 251 | 79.68 355 | 92.76 270 | 74.90 317 | 81.41 282 | 89.59 295 | 69.85 245 | 95.51 307 | 79.92 232 | 95.29 122 | 92.03 307 |
|
UniMVSNet_ETH3D | | | 87.53 193 | 86.37 199 | 91.00 181 | 92.44 240 | 78.96 240 | 94.74 129 | 95.61 166 | 84.07 181 | 85.36 213 | 94.52 143 | 59.78 324 | 97.34 210 | 82.93 177 | 87.88 229 | 96.71 128 |
|
1314 | | | 87.51 194 | 86.57 194 | 90.34 206 | 92.42 241 | 79.74 223 | 92.63 236 | 95.35 190 | 78.35 285 | 80.14 299 | 91.62 247 | 74.05 190 | 97.15 224 | 81.05 210 | 93.53 148 | 94.12 227 |
|
cl-mvsnet2 | | | 86.78 220 | 85.98 215 | 89.18 245 | 92.34 242 | 77.62 273 | 90.84 278 | 94.13 242 | 81.33 246 | 83.97 245 | 90.15 284 | 73.96 192 | 96.60 258 | 84.19 162 | 82.94 271 | 93.33 266 |
|
PEN-MVS | | | 86.80 219 | 86.27 205 | 88.40 264 | 92.32 243 | 75.71 296 | 95.18 101 | 96.38 109 | 87.97 93 | 82.82 267 | 93.15 193 | 73.39 203 | 95.92 291 | 76.15 270 | 79.03 324 | 93.59 257 |
|
cl_fuxian | | | 87.14 211 | 86.50 197 | 89.04 249 | 92.20 244 | 77.26 278 | 91.22 273 | 94.70 223 | 82.01 227 | 84.34 235 | 90.43 279 | 78.81 132 | 96.61 256 | 83.70 169 | 81.09 296 | 93.25 270 |
|
SCA | | | 86.32 234 | 85.18 236 | 89.73 231 | 92.15 245 | 76.60 285 | 91.12 274 | 91.69 298 | 83.53 194 | 85.50 199 | 88.81 304 | 66.79 277 | 96.48 266 | 76.65 264 | 90.35 188 | 96.12 147 |
|
XXY-MVS | | | 87.65 184 | 86.85 181 | 90.03 217 | 92.14 246 | 80.60 199 | 93.76 194 | 95.23 193 | 82.94 208 | 84.60 223 | 94.02 159 | 74.27 184 | 95.49 310 | 81.04 211 | 83.68 263 | 94.01 235 |
|
miper_ehance_all_eth | | | 87.22 207 | 86.62 192 | 89.02 250 | 92.13 247 | 77.40 277 | 90.91 277 | 94.81 219 | 81.28 247 | 84.32 236 | 90.08 286 | 79.26 128 | 96.62 253 | 83.81 167 | 82.94 271 | 93.04 281 |
|
IB-MVS | | 80.51 15 | 85.24 253 | 83.26 265 | 91.19 169 | 92.13 247 | 79.86 220 | 91.75 261 | 91.29 309 | 83.28 201 | 80.66 291 | 88.49 310 | 61.28 311 | 98.46 118 | 80.99 214 | 79.46 320 | 95.25 180 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
cascas | | | 86.43 233 | 84.98 240 | 90.80 187 | 92.10 249 | 80.92 190 | 90.24 287 | 95.91 142 | 73.10 331 | 83.57 256 | 88.39 311 | 65.15 292 | 97.46 193 | 84.90 154 | 91.43 176 | 94.03 234 |
|
Fast-Effi-MVS+-dtu | | | 87.44 197 | 86.72 185 | 89.63 234 | 92.04 250 | 77.68 271 | 94.03 181 | 93.94 245 | 85.81 142 | 82.42 270 | 91.32 254 | 70.33 239 | 97.06 233 | 80.33 227 | 90.23 189 | 94.14 226 |
|
cl-mvsnet____ | | | 86.52 229 | 85.78 222 | 88.75 255 | 92.03 251 | 76.46 287 | 90.74 279 | 94.30 234 | 81.83 236 | 83.34 261 | 90.78 272 | 75.74 168 | 96.57 259 | 81.74 202 | 81.54 290 | 93.22 273 |
|
cl-mvsnet1 | | | 86.53 228 | 85.78 222 | 88.75 255 | 92.02 252 | 76.45 288 | 90.74 279 | 94.30 234 | 81.83 236 | 83.34 261 | 90.82 270 | 75.75 166 | 96.57 259 | 81.73 203 | 81.52 291 | 93.24 271 |
|
RRT_MVS | | | 88.86 152 | 87.68 162 | 92.39 120 | 92.02 252 | 86.09 55 | 94.38 158 | 94.94 206 | 85.45 154 | 87.14 163 | 93.84 172 | 65.88 289 | 97.11 228 | 88.73 109 | 86.77 242 | 93.98 236 |
|
eth_miper_zixun_eth | | | 86.50 230 | 85.77 224 | 88.68 258 | 91.94 254 | 75.81 295 | 90.47 283 | 94.89 212 | 82.05 224 | 84.05 242 | 90.46 278 | 75.96 161 | 96.77 247 | 82.76 183 | 79.36 321 | 93.46 264 |
|
PS-MVSNAJss | | | 89.97 119 | 89.62 114 | 91.02 179 | 91.90 255 | 80.85 192 | 95.26 95 | 95.98 135 | 86.26 135 | 86.21 182 | 94.29 150 | 79.70 122 | 97.65 179 | 88.87 108 | 88.10 224 | 94.57 208 |
|
ITE_SJBPF | | | | | 88.24 270 | 91.88 256 | 77.05 281 | | 92.92 266 | 85.54 151 | 80.13 300 | 93.30 187 | 57.29 332 | 96.20 280 | 72.46 295 | 84.71 253 | 91.49 315 |
|
EI-MVSNet | | | 89.10 144 | 88.86 136 | 89.80 228 | 91.84 257 | 78.30 253 | 93.70 198 | 95.01 203 | 85.73 145 | 87.15 161 | 95.28 112 | 79.87 119 | 97.21 222 | 83.81 167 | 87.36 235 | 93.88 240 |
|
CVMVSNet | | | 84.69 263 | 84.79 246 | 84.37 324 | 91.84 257 | 64.92 357 | 93.70 198 | 91.47 305 | 66.19 352 | 86.16 184 | 95.28 112 | 67.18 271 | 93.33 337 | 80.89 216 | 90.42 187 | 94.88 194 |
|
MVS-HIRNet | | | 73.70 321 | 72.20 324 | 78.18 338 | 91.81 259 | 56.42 364 | 82.94 350 | 82.58 359 | 55.24 358 | 68.88 351 | 66.48 359 | 55.32 338 | 95.13 315 | 58.12 353 | 88.42 219 | 83.01 354 |
|
PatchmatchNet |  | | 85.85 241 | 84.70 247 | 89.29 242 | 91.76 260 | 75.54 297 | 88.49 315 | 91.30 308 | 81.63 240 | 85.05 217 | 88.70 308 | 71.71 217 | 96.24 279 | 74.61 284 | 89.05 210 | 96.08 151 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
TransMVSNet (Re) | | | 84.43 265 | 83.06 268 | 88.54 261 | 91.72 261 | 78.44 249 | 95.18 101 | 92.82 269 | 82.73 212 | 79.67 306 | 92.12 227 | 73.49 199 | 95.96 290 | 71.10 303 | 68.73 350 | 91.21 322 |
|
IterMVS-SCA-FT | | | 85.45 246 | 84.53 251 | 88.18 272 | 91.71 262 | 76.87 283 | 90.19 290 | 92.65 274 | 85.40 156 | 81.44 281 | 90.54 276 | 66.79 277 | 95.00 319 | 81.04 211 | 81.05 297 | 92.66 292 |
|
TinyColmap | | | 79.76 308 | 77.69 310 | 85.97 310 | 91.71 262 | 73.12 314 | 89.55 297 | 90.36 328 | 75.03 314 | 72.03 347 | 90.19 282 | 46.22 358 | 96.19 282 | 63.11 342 | 81.03 298 | 88.59 348 |
|
MDTV_nov1_ep13 | | | | 83.56 263 | | 91.69 264 | 69.93 342 | 87.75 323 | 91.54 302 | 78.60 282 | 84.86 220 | 88.90 303 | 69.54 248 | 96.03 286 | 70.25 305 | 88.93 211 | |
|
miper_enhance_ethall | | | 86.90 215 | 86.18 207 | 89.06 248 | 91.66 265 | 77.58 274 | 90.22 289 | 94.82 218 | 79.16 272 | 84.48 227 | 89.10 300 | 79.19 129 | 96.66 251 | 84.06 163 | 82.94 271 | 92.94 284 |
|
DTE-MVSNet | | | 86.11 236 | 85.48 230 | 87.98 276 | 91.65 266 | 74.92 299 | 94.93 116 | 95.75 155 | 87.36 111 | 82.26 272 | 93.04 198 | 72.85 208 | 95.82 297 | 74.04 286 | 77.46 330 | 93.20 274 |
|
MIMVSNet | | | 82.59 280 | 80.53 285 | 88.76 254 | 91.51 267 | 78.32 252 | 86.57 331 | 90.13 331 | 79.32 268 | 80.70 290 | 88.69 309 | 52.98 347 | 93.07 341 | 66.03 332 | 88.86 212 | 94.90 193 |
|
pm-mvs1 | | | 86.61 225 | 85.54 228 | 89.82 225 | 91.44 268 | 80.18 206 | 95.28 94 | 94.85 215 | 83.84 186 | 81.66 279 | 92.62 211 | 72.45 215 | 96.48 266 | 79.67 234 | 78.06 325 | 92.82 289 |
|
Baseline_NR-MVSNet | | | 87.07 212 | 86.63 191 | 88.40 264 | 91.44 268 | 77.87 264 | 94.23 166 | 92.57 275 | 84.12 180 | 85.74 189 | 92.08 231 | 77.25 148 | 96.04 285 | 82.29 190 | 79.94 315 | 91.30 319 |
|
IterMVS | | | 84.88 259 | 83.98 257 | 87.60 282 | 91.44 268 | 76.03 293 | 90.18 291 | 92.41 277 | 83.24 202 | 81.06 287 | 90.42 280 | 66.60 280 | 94.28 326 | 79.46 235 | 80.98 302 | 92.48 296 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DWT-MVSNet_test | | | 84.95 258 | 83.68 260 | 88.77 253 | 91.43 271 | 73.75 309 | 91.74 262 | 90.98 316 | 80.66 256 | 83.84 247 | 87.36 326 | 62.44 303 | 97.11 228 | 78.84 244 | 85.81 245 | 95.46 173 |
|
MS-PatchMatch | | | 85.05 256 | 84.16 253 | 87.73 280 | 91.42 272 | 78.51 247 | 91.25 272 | 93.53 256 | 77.50 291 | 80.15 298 | 91.58 248 | 61.99 306 | 95.51 307 | 75.69 273 | 94.35 138 | 89.16 343 |
|
tpm2 | | | 84.08 267 | 82.94 269 | 87.48 287 | 91.39 273 | 71.27 330 | 89.23 305 | 90.37 327 | 71.95 339 | 84.64 222 | 89.33 298 | 67.30 268 | 96.55 263 | 75.17 278 | 87.09 239 | 94.63 202 |
|
v8 | | | 87.50 196 | 86.71 186 | 89.89 222 | 91.37 274 | 79.40 228 | 94.50 143 | 95.38 186 | 84.81 170 | 83.60 255 | 91.33 252 | 76.05 159 | 97.42 198 | 82.84 180 | 80.51 311 | 92.84 288 |
|
ADS-MVSNet2 | | | 81.66 289 | 79.71 297 | 87.50 285 | 91.35 275 | 74.19 306 | 83.33 347 | 88.48 347 | 72.90 333 | 82.24 273 | 85.77 338 | 64.98 293 | 93.20 339 | 64.57 338 | 83.74 261 | 95.12 182 |
|
ADS-MVSNet | | | 81.56 291 | 79.78 295 | 86.90 301 | 91.35 275 | 71.82 327 | 83.33 347 | 89.16 345 | 72.90 333 | 82.24 273 | 85.77 338 | 64.98 293 | 93.76 332 | 64.57 338 | 83.74 261 | 95.12 182 |
|
GA-MVS | | | 86.61 225 | 85.27 235 | 90.66 188 | 91.33 277 | 78.71 242 | 90.40 284 | 93.81 253 | 85.34 157 | 85.12 216 | 89.57 296 | 61.25 312 | 97.11 228 | 80.99 214 | 89.59 201 | 96.15 143 |
|
miper_lstm_enhance | | | 85.27 252 | 84.59 250 | 87.31 289 | 91.28 278 | 74.63 300 | 87.69 324 | 94.09 244 | 81.20 251 | 81.36 283 | 89.85 292 | 74.97 177 | 94.30 325 | 81.03 213 | 79.84 318 | 93.01 282 |
|
XVG-ACMP-BASELINE | | | 86.00 237 | 84.84 245 | 89.45 240 | 91.20 279 | 78.00 259 | 91.70 264 | 95.55 169 | 85.05 166 | 82.97 265 | 92.25 223 | 54.49 341 | 97.48 191 | 82.93 177 | 87.45 234 | 92.89 286 |
|
v10 | | | 87.25 204 | 86.38 198 | 89.85 223 | 91.19 280 | 79.50 225 | 94.48 144 | 95.45 180 | 83.79 187 | 83.62 254 | 91.19 257 | 75.13 173 | 97.42 198 | 81.94 196 | 80.60 305 | 92.63 293 |
|
FMVSNet5 | | | 81.52 292 | 79.60 298 | 87.27 290 | 91.17 281 | 77.95 260 | 91.49 268 | 92.26 282 | 76.87 297 | 76.16 327 | 87.91 320 | 51.67 348 | 92.34 345 | 67.74 323 | 81.16 293 | 91.52 314 |
|
USDC | | | 82.76 277 | 81.26 282 | 87.26 291 | 91.17 281 | 74.55 301 | 89.27 303 | 93.39 259 | 78.26 287 | 75.30 333 | 92.08 231 | 54.43 342 | 96.63 252 | 71.64 297 | 85.79 247 | 90.61 330 |
|
CostFormer | | | 85.77 243 | 84.94 242 | 88.26 269 | 91.16 283 | 72.58 323 | 89.47 301 | 91.04 315 | 76.26 303 | 86.45 177 | 89.97 289 | 70.74 231 | 96.86 246 | 82.35 188 | 87.07 240 | 95.34 179 |
|
baseline2 | | | 86.50 230 | 85.39 232 | 89.84 224 | 91.12 284 | 76.70 284 | 91.88 257 | 88.58 346 | 82.35 220 | 79.95 303 | 90.95 267 | 73.42 202 | 97.63 182 | 80.27 228 | 89.95 194 | 95.19 181 |
|
tpm cat1 | | | 81.96 283 | 80.27 289 | 87.01 298 | 91.09 285 | 71.02 334 | 87.38 327 | 91.53 303 | 66.25 351 | 80.17 297 | 86.35 334 | 68.22 267 | 96.15 283 | 69.16 313 | 82.29 278 | 93.86 243 |
|
tpmvs | | | 83.35 276 | 82.07 274 | 87.20 296 | 91.07 286 | 71.00 335 | 88.31 318 | 91.70 297 | 78.91 274 | 80.49 294 | 87.18 330 | 69.30 254 | 97.08 231 | 68.12 322 | 83.56 265 | 93.51 262 |
|
v1144 | | | 87.61 190 | 86.79 184 | 90.06 216 | 91.01 287 | 79.34 231 | 93.95 186 | 95.42 185 | 83.36 199 | 85.66 192 | 91.31 255 | 74.98 176 | 97.42 198 | 83.37 171 | 82.06 281 | 93.42 265 |
|
v2v482 | | | 87.84 177 | 87.06 176 | 90.17 209 | 90.99 288 | 79.23 238 | 94.00 184 | 95.13 197 | 84.87 168 | 85.53 196 | 92.07 233 | 74.45 182 | 97.45 194 | 84.71 157 | 81.75 287 | 93.85 244 |
|
SixPastTwentyTwo | | | 83.91 270 | 82.90 270 | 86.92 300 | 90.99 288 | 70.67 337 | 93.48 204 | 91.99 290 | 85.54 151 | 77.62 319 | 92.11 229 | 60.59 318 | 96.87 245 | 76.05 271 | 77.75 327 | 93.20 274 |
|
test-LLR | | | 85.87 240 | 85.41 231 | 87.25 292 | 90.95 290 | 71.67 328 | 89.55 297 | 89.88 339 | 83.41 197 | 84.54 225 | 87.95 318 | 67.25 269 | 95.11 316 | 81.82 199 | 93.37 154 | 94.97 186 |
|
test-mter | | | 84.54 264 | 83.64 262 | 87.25 292 | 90.95 290 | 71.67 328 | 89.55 297 | 89.88 339 | 79.17 271 | 84.54 225 | 87.95 318 | 55.56 336 | 95.11 316 | 81.82 199 | 93.37 154 | 94.97 186 |
|
v148 | | | 87.04 213 | 86.32 203 | 89.21 243 | 90.94 292 | 77.26 278 | 93.71 197 | 94.43 229 | 84.84 169 | 84.36 234 | 90.80 271 | 76.04 160 | 97.05 234 | 82.12 192 | 79.60 319 | 93.31 267 |
|
mvs_tets | | | 88.06 174 | 87.28 172 | 90.38 203 | 90.94 292 | 79.88 219 | 95.22 97 | 95.66 162 | 85.10 164 | 84.21 241 | 93.94 164 | 63.53 299 | 97.40 205 | 88.50 112 | 88.40 220 | 93.87 241 |
|
MVP-Stereo | | | 85.97 238 | 84.86 244 | 89.32 241 | 90.92 294 | 82.19 156 | 92.11 254 | 94.19 238 | 78.76 279 | 78.77 312 | 91.63 246 | 68.38 266 | 96.56 261 | 75.01 281 | 93.95 140 | 89.20 342 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
Patchmatch-test | | | 81.37 294 | 79.30 300 | 87.58 283 | 90.92 294 | 74.16 307 | 80.99 353 | 87.68 351 | 70.52 345 | 76.63 325 | 88.81 304 | 71.21 223 | 92.76 343 | 60.01 352 | 86.93 241 | 95.83 162 |
|
jajsoiax | | | 88.24 168 | 87.50 165 | 90.48 198 | 90.89 296 | 80.14 208 | 95.31 86 | 95.65 164 | 84.97 167 | 84.24 240 | 94.02 159 | 65.31 291 | 97.42 198 | 88.56 111 | 88.52 216 | 93.89 238 |
|
tpmrst | | | 85.35 249 | 84.99 239 | 86.43 306 | 90.88 297 | 67.88 349 | 88.71 312 | 91.43 306 | 80.13 260 | 86.08 185 | 88.80 306 | 73.05 206 | 96.02 287 | 82.48 185 | 83.40 269 | 95.40 176 |
|
gg-mvs-nofinetune | | | 81.77 286 | 79.37 299 | 88.99 251 | 90.85 298 | 77.73 270 | 86.29 332 | 79.63 365 | 74.88 318 | 83.19 264 | 69.05 358 | 60.34 319 | 96.11 284 | 75.46 275 | 94.64 131 | 93.11 278 |
|
D2MVS | | | 85.90 239 | 85.09 238 | 88.35 266 | 90.79 299 | 77.42 276 | 91.83 259 | 95.70 158 | 80.77 255 | 80.08 301 | 90.02 287 | 66.74 279 | 96.37 273 | 81.88 198 | 87.97 228 | 91.26 320 |
|
OurMVSNet-221017-0 | | | 85.35 249 | 84.64 249 | 87.49 286 | 90.77 300 | 72.59 322 | 94.01 183 | 94.40 230 | 84.72 172 | 79.62 308 | 93.17 192 | 61.91 307 | 96.72 248 | 81.99 195 | 81.16 293 | 93.16 276 |
|
v1192 | | | 87.25 204 | 86.33 202 | 90.00 220 | 90.76 301 | 79.04 239 | 93.80 192 | 95.48 175 | 82.57 215 | 85.48 201 | 91.18 259 | 73.38 204 | 97.42 198 | 82.30 189 | 82.06 281 | 93.53 259 |
|
test_djsdf | | | 89.03 147 | 88.64 138 | 90.21 208 | 90.74 302 | 79.28 235 | 95.96 60 | 95.90 143 | 84.66 173 | 85.33 214 | 92.94 200 | 74.02 191 | 97.30 211 | 89.64 99 | 88.53 215 | 94.05 233 |
|
v7n | | | 86.81 218 | 85.76 225 | 89.95 221 | 90.72 303 | 79.25 237 | 95.07 107 | 95.92 140 | 84.45 176 | 82.29 271 | 90.86 268 | 72.60 212 | 97.53 188 | 79.42 239 | 80.52 310 | 93.08 280 |
|
PVSNet_0 | | 73.20 20 | 77.22 317 | 74.83 322 | 84.37 324 | 90.70 304 | 71.10 333 | 83.09 349 | 89.67 342 | 72.81 335 | 73.93 340 | 83.13 346 | 60.79 316 | 93.70 333 | 68.54 316 | 50.84 361 | 88.30 350 |
|
v144192 | | | 87.19 209 | 86.35 201 | 89.74 229 | 90.64 305 | 78.24 255 | 93.92 188 | 95.43 183 | 81.93 230 | 85.51 198 | 91.05 265 | 74.21 187 | 97.45 194 | 82.86 179 | 81.56 289 | 93.53 259 |
|
MVS_0304 | | | 83.46 273 | 81.92 276 | 88.10 274 | 90.63 306 | 77.49 275 | 93.26 215 | 93.75 254 | 80.04 262 | 80.44 295 | 87.24 329 | 47.94 355 | 95.55 304 | 75.79 272 | 88.16 223 | 91.26 320 |
|
V42 | | | 87.68 182 | 86.86 180 | 90.15 211 | 90.58 307 | 80.14 208 | 94.24 165 | 95.28 191 | 83.66 189 | 85.67 191 | 91.33 252 | 74.73 180 | 97.41 203 | 84.43 160 | 81.83 285 | 92.89 286 |
|
CR-MVSNet | | | 85.35 249 | 83.76 259 | 90.12 213 | 90.58 307 | 79.34 231 | 85.24 338 | 91.96 293 | 78.27 286 | 85.55 194 | 87.87 321 | 71.03 226 | 95.61 302 | 73.96 288 | 89.36 204 | 95.40 176 |
|
RPMNet | | | 83.95 269 | 81.53 279 | 91.21 168 | 90.58 307 | 79.34 231 | 85.24 338 | 96.76 77 | 71.44 341 | 85.55 194 | 82.97 347 | 70.87 229 | 98.91 89 | 61.01 348 | 89.36 204 | 95.40 176 |
|
v1921920 | | | 86.97 214 | 86.06 213 | 89.69 233 | 90.53 310 | 78.11 258 | 93.80 192 | 95.43 183 | 81.90 232 | 85.33 214 | 91.05 265 | 72.66 210 | 97.41 203 | 82.05 194 | 81.80 286 | 93.53 259 |
|
v1240 | | | 86.78 220 | 85.85 220 | 89.56 235 | 90.45 311 | 77.79 267 | 93.61 200 | 95.37 188 | 81.65 238 | 85.43 206 | 91.15 261 | 71.50 221 | 97.43 197 | 81.47 207 | 82.05 283 | 93.47 263 |
|
tpm | | | 84.73 261 | 84.02 255 | 86.87 303 | 90.33 312 | 68.90 345 | 89.06 307 | 89.94 336 | 80.85 254 | 85.75 188 | 89.86 291 | 68.54 264 | 95.97 289 | 77.76 253 | 84.05 259 | 95.75 165 |
|
EG-PatchMatch MVS | | | 82.37 282 | 80.34 288 | 88.46 263 | 90.27 313 | 79.35 230 | 92.80 233 | 94.33 233 | 77.14 296 | 73.26 343 | 90.18 283 | 47.47 357 | 96.72 248 | 70.25 305 | 87.32 237 | 89.30 340 |
|
EPNet_dtu | | | 86.49 232 | 85.94 218 | 88.14 273 | 90.24 314 | 72.82 317 | 94.11 172 | 92.20 283 | 86.66 128 | 79.42 309 | 92.36 218 | 73.52 198 | 95.81 298 | 71.26 298 | 93.66 144 | 95.80 164 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
EPMVS | | | 83.90 271 | 82.70 273 | 87.51 284 | 90.23 315 | 72.67 319 | 88.62 314 | 81.96 361 | 81.37 245 | 85.01 218 | 88.34 312 | 66.31 284 | 94.45 321 | 75.30 277 | 87.12 238 | 95.43 175 |
|
EPNet | | | 91.79 81 | 91.02 91 | 94.10 61 | 90.10 316 | 85.25 78 | 96.03 56 | 92.05 287 | 92.83 1 | 87.39 160 | 95.78 100 | 79.39 127 | 99.01 73 | 88.13 117 | 97.48 85 | 98.05 69 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PatchT | | | 82.68 279 | 81.27 281 | 86.89 302 | 90.09 317 | 70.94 336 | 84.06 344 | 90.15 330 | 74.91 316 | 85.63 193 | 83.57 344 | 69.37 250 | 94.87 320 | 65.19 334 | 88.50 217 | 94.84 195 |
|
Patchmtry | | | 82.71 278 | 80.93 284 | 88.06 275 | 90.05 318 | 76.37 290 | 84.74 342 | 91.96 293 | 72.28 338 | 81.32 284 | 87.87 321 | 71.03 226 | 95.50 309 | 68.97 314 | 80.15 313 | 92.32 303 |
|
pmmvs4 | | | 85.43 247 | 83.86 258 | 90.16 210 | 90.02 319 | 82.97 135 | 90.27 285 | 92.67 273 | 75.93 306 | 80.73 289 | 91.74 242 | 71.05 225 | 95.73 301 | 78.85 243 | 83.46 267 | 91.78 310 |
|
TESTMET0.1,1 | | | 83.74 272 | 82.85 271 | 86.42 307 | 89.96 320 | 71.21 332 | 89.55 297 | 87.88 348 | 77.41 292 | 83.37 260 | 87.31 327 | 56.71 333 | 93.65 334 | 80.62 221 | 92.85 165 | 94.40 219 |
|
dp | | | 81.47 293 | 80.23 290 | 85.17 319 | 89.92 321 | 65.49 355 | 86.74 329 | 90.10 332 | 76.30 302 | 81.10 285 | 87.12 331 | 62.81 301 | 95.92 291 | 68.13 321 | 79.88 316 | 94.09 230 |
|
K. test v3 | | | 81.59 290 | 80.15 292 | 85.91 313 | 89.89 322 | 69.42 344 | 92.57 239 | 87.71 350 | 85.56 150 | 73.44 342 | 89.71 294 | 55.58 335 | 95.52 306 | 77.17 260 | 69.76 344 | 92.78 290 |
|
MDA-MVSNet-bldmvs | | | 78.85 313 | 76.31 316 | 86.46 305 | 89.76 323 | 73.88 308 | 88.79 311 | 90.42 325 | 79.16 272 | 59.18 358 | 88.33 313 | 60.20 320 | 94.04 328 | 62.00 345 | 68.96 348 | 91.48 316 |
|
GG-mvs-BLEND | | | | | 87.94 278 | 89.73 324 | 77.91 261 | 87.80 321 | 78.23 367 | | 80.58 292 | 83.86 342 | 59.88 323 | 95.33 313 | 71.20 299 | 92.22 172 | 90.60 332 |
|
gm-plane-assit | | | | | | 89.60 325 | 68.00 347 | | | 77.28 295 | | 88.99 301 | | 97.57 185 | 79.44 237 | | |
|
anonymousdsp | | | 87.84 177 | 87.09 175 | 90.12 213 | 89.13 326 | 80.54 200 | 94.67 134 | 95.55 169 | 82.05 224 | 83.82 248 | 92.12 227 | 71.47 222 | 97.15 224 | 87.15 130 | 87.80 231 | 92.67 291 |
|
N_pmnet | | | 68.89 324 | 68.44 327 | 70.23 342 | 89.07 327 | 28.79 374 | 88.06 319 | 19.50 375 | 69.47 347 | 71.86 348 | 84.93 340 | 61.24 313 | 91.75 350 | 54.70 356 | 77.15 331 | 90.15 334 |
|
pmmvs5 | | | 84.21 266 | 82.84 272 | 88.34 267 | 88.95 328 | 76.94 282 | 92.41 242 | 91.91 295 | 75.63 308 | 80.28 296 | 91.18 259 | 64.59 295 | 95.57 303 | 77.09 262 | 83.47 266 | 92.53 295 |
|
PMMVS | | | 85.71 244 | 84.96 241 | 87.95 277 | 88.90 329 | 77.09 280 | 88.68 313 | 90.06 333 | 72.32 337 | 86.47 174 | 90.76 273 | 72.15 216 | 94.40 322 | 81.78 201 | 93.49 149 | 92.36 301 |
|
JIA-IIPM | | | 81.04 297 | 78.98 307 | 87.25 292 | 88.64 330 | 73.48 311 | 81.75 352 | 89.61 343 | 73.19 330 | 82.05 275 | 73.71 355 | 66.07 288 | 95.87 294 | 71.18 301 | 84.60 254 | 92.41 299 |
|
Gipuma |  | | 57.99 329 | 54.91 331 | 67.24 344 | 88.51 331 | 65.59 354 | 52.21 363 | 90.33 329 | 43.58 363 | 42.84 364 | 51.18 364 | 20.29 369 | 85.07 360 | 34.77 364 | 70.45 343 | 51.05 363 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
EU-MVSNet | | | 81.32 295 | 80.95 283 | 82.42 333 | 88.50 332 | 63.67 358 | 93.32 208 | 91.33 307 | 64.02 354 | 80.57 293 | 92.83 204 | 61.21 314 | 92.27 346 | 76.34 267 | 80.38 312 | 91.32 318 |
|
our_test_3 | | | 81.93 284 | 80.46 287 | 86.33 308 | 88.46 333 | 73.48 311 | 88.46 316 | 91.11 311 | 76.46 298 | 76.69 324 | 88.25 314 | 66.89 275 | 94.36 323 | 68.75 315 | 79.08 323 | 91.14 324 |
|
ppachtmachnet_test | | | 81.84 285 | 80.07 293 | 87.15 297 | 88.46 333 | 74.43 304 | 89.04 308 | 92.16 284 | 75.33 311 | 77.75 317 | 88.99 301 | 66.20 285 | 95.37 312 | 65.12 336 | 77.60 328 | 91.65 312 |
|
lessismore_v0 | | | | | 86.04 309 | 88.46 333 | 68.78 346 | | 80.59 363 | | 73.01 344 | 90.11 285 | 55.39 337 | 96.43 271 | 75.06 280 | 65.06 352 | 92.90 285 |
|
test0.0.03 1 | | | 82.41 281 | 81.69 277 | 84.59 322 | 88.23 336 | 72.89 316 | 90.24 287 | 87.83 349 | 83.41 197 | 79.86 304 | 89.78 293 | 67.25 269 | 88.99 356 | 65.18 335 | 83.42 268 | 91.90 309 |
|
bset_n11_16_dypcd | | | 86.83 217 | 85.55 227 | 90.65 189 | 88.22 337 | 81.70 165 | 88.88 310 | 90.42 325 | 85.26 159 | 85.49 200 | 90.69 274 | 67.11 272 | 97.02 236 | 89.51 101 | 84.39 255 | 93.23 272 |
|
MDA-MVSNet_test_wron | | | 79.21 312 | 77.19 314 | 85.29 317 | 88.22 337 | 72.77 318 | 85.87 334 | 90.06 333 | 74.34 321 | 62.62 357 | 87.56 324 | 66.14 286 | 91.99 348 | 66.90 330 | 73.01 338 | 91.10 327 |
|
YYNet1 | | | 79.22 311 | 77.20 313 | 85.28 318 | 88.20 339 | 72.66 320 | 85.87 334 | 90.05 335 | 74.33 322 | 62.70 356 | 87.61 323 | 66.09 287 | 92.03 347 | 66.94 327 | 72.97 339 | 91.15 323 |
|
pmmvs6 | | | 83.42 274 | 81.60 278 | 88.87 252 | 88.01 340 | 77.87 264 | 94.96 113 | 94.24 237 | 74.67 319 | 78.80 311 | 91.09 264 | 60.17 321 | 96.49 265 | 77.06 263 | 75.40 336 | 92.23 305 |
|
testgi | | | 80.94 300 | 80.20 291 | 83.18 329 | 87.96 341 | 66.29 352 | 91.28 270 | 90.70 324 | 83.70 188 | 78.12 314 | 92.84 203 | 51.37 349 | 90.82 353 | 63.34 341 | 82.46 277 | 92.43 298 |
|
Anonymous20231206 | | | 81.03 298 | 79.77 296 | 84.82 321 | 87.85 342 | 70.26 340 | 91.42 269 | 92.08 286 | 73.67 326 | 77.75 317 | 89.25 299 | 62.43 304 | 93.08 340 | 61.50 347 | 82.00 284 | 91.12 325 |
|
OpenMVS_ROB |  | 74.94 19 | 79.51 309 | 77.03 315 | 86.93 299 | 87.00 343 | 76.23 292 | 92.33 246 | 90.74 323 | 68.93 348 | 74.52 337 | 88.23 315 | 49.58 352 | 96.62 253 | 57.64 354 | 84.29 256 | 87.94 351 |
|
LF4IMVS | | | 80.37 303 | 79.07 306 | 84.27 326 | 86.64 344 | 69.87 343 | 89.39 302 | 91.05 314 | 76.38 300 | 74.97 335 | 90.00 288 | 47.85 356 | 94.25 327 | 74.55 285 | 80.82 304 | 88.69 347 |
|
MIMVSNet1 | | | 79.38 310 | 77.28 312 | 85.69 314 | 86.35 345 | 73.67 310 | 91.61 267 | 92.75 271 | 78.11 290 | 72.64 345 | 88.12 316 | 48.16 354 | 91.97 349 | 60.32 349 | 77.49 329 | 91.43 317 |
|
KD-MVS_2432*1600 | | | 78.50 314 | 76.02 319 | 85.93 311 | 86.22 346 | 74.47 302 | 84.80 340 | 92.33 278 | 79.29 269 | 76.98 322 | 85.92 336 | 53.81 345 | 93.97 329 | 67.39 324 | 57.42 358 | 89.36 338 |
|
miper_refine_blended | | | 78.50 314 | 76.02 319 | 85.93 311 | 86.22 346 | 74.47 302 | 84.80 340 | 92.33 278 | 79.29 269 | 76.98 322 | 85.92 336 | 53.81 345 | 93.97 329 | 67.39 324 | 57.42 358 | 89.36 338 |
|
CL-MVSNet_2432*1600 | | | 81.74 287 | 80.53 285 | 85.36 316 | 85.96 348 | 72.45 324 | 90.25 286 | 93.07 264 | 81.24 249 | 79.85 305 | 87.29 328 | 70.93 228 | 92.52 344 | 66.95 326 | 69.23 346 | 91.11 326 |
|
test20.03 | | | 79.95 306 | 79.08 305 | 82.55 332 | 85.79 349 | 67.74 350 | 91.09 275 | 91.08 312 | 81.23 250 | 74.48 338 | 89.96 290 | 61.63 308 | 90.15 354 | 60.08 350 | 76.38 334 | 89.76 336 |
|
Anonymous20240521 | | | 80.44 302 | 79.21 302 | 84.11 327 | 85.75 350 | 67.89 348 | 92.86 231 | 93.23 261 | 75.61 309 | 75.59 332 | 87.47 325 | 50.03 350 | 94.33 324 | 71.14 302 | 81.21 292 | 90.12 335 |
|
DIV-MVS_2432*1600 | | | 80.20 304 | 79.24 301 | 83.07 330 | 85.64 351 | 65.29 356 | 91.01 276 | 93.93 246 | 78.71 281 | 76.32 326 | 86.40 333 | 59.20 327 | 92.93 342 | 72.59 294 | 69.35 345 | 91.00 328 |
|
Patchmatch-RL test | | | 81.67 288 | 79.96 294 | 86.81 304 | 85.42 352 | 71.23 331 | 82.17 351 | 87.50 352 | 78.47 283 | 77.19 321 | 82.50 348 | 70.81 230 | 93.48 335 | 82.66 184 | 72.89 340 | 95.71 168 |
|
UnsupCasMVSNet_eth | | | 80.07 305 | 78.27 309 | 85.46 315 | 85.24 353 | 72.63 321 | 88.45 317 | 94.87 214 | 82.99 207 | 71.64 349 | 88.07 317 | 56.34 334 | 91.75 350 | 73.48 291 | 63.36 355 | 92.01 308 |
|
pmmvs-eth3d | | | 80.97 299 | 78.72 308 | 87.74 279 | 84.99 354 | 79.97 218 | 90.11 292 | 91.65 299 | 75.36 310 | 73.51 341 | 86.03 335 | 59.45 325 | 93.96 331 | 75.17 278 | 72.21 341 | 89.29 341 |
|
CMPMVS |  | 59.16 21 | 80.52 301 | 79.20 303 | 84.48 323 | 83.98 355 | 67.63 351 | 89.95 295 | 93.84 252 | 64.79 353 | 66.81 354 | 91.14 262 | 57.93 331 | 95.17 314 | 76.25 268 | 88.10 224 | 90.65 329 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
UnsupCasMVSNet_bld | | | 76.23 320 | 73.27 323 | 85.09 320 | 83.79 356 | 72.92 315 | 85.65 337 | 93.47 258 | 71.52 340 | 68.84 352 | 79.08 352 | 49.77 351 | 93.21 338 | 66.81 331 | 60.52 357 | 89.13 345 |
|
PM-MVS | | | 78.11 316 | 76.12 318 | 84.09 328 | 83.54 357 | 70.08 341 | 88.97 309 | 85.27 356 | 79.93 263 | 74.73 336 | 86.43 332 | 34.70 362 | 93.48 335 | 79.43 238 | 72.06 342 | 88.72 346 |
|
DSMNet-mixed | | | 76.94 318 | 76.29 317 | 78.89 336 | 83.10 358 | 56.11 365 | 87.78 322 | 79.77 364 | 60.65 356 | 75.64 331 | 88.71 307 | 61.56 309 | 88.34 357 | 60.07 351 | 89.29 206 | 92.21 306 |
|
new_pmnet | | | 72.15 322 | 70.13 325 | 78.20 337 | 82.95 359 | 65.68 353 | 83.91 345 | 82.40 360 | 62.94 355 | 64.47 355 | 79.82 351 | 42.85 360 | 86.26 359 | 57.41 355 | 74.44 337 | 82.65 356 |
|
new-patchmatchnet | | | 76.41 319 | 75.17 321 | 80.13 335 | 82.65 360 | 59.61 360 | 87.66 325 | 91.08 312 | 78.23 288 | 69.85 350 | 83.22 345 | 54.76 339 | 91.63 352 | 64.14 340 | 64.89 353 | 89.16 343 |
|
ambc | | | | | 83.06 331 | 79.99 361 | 63.51 359 | 77.47 356 | 92.86 267 | | 74.34 339 | 84.45 341 | 28.74 363 | 95.06 318 | 73.06 293 | 68.89 349 | 90.61 330 |
|
TDRefinement | | | 79.81 307 | 77.34 311 | 87.22 295 | 79.24 362 | 75.48 298 | 93.12 220 | 92.03 288 | 76.45 299 | 75.01 334 | 91.58 248 | 49.19 353 | 96.44 270 | 70.22 307 | 69.18 347 | 89.75 337 |
|
pmmvs3 | | | 71.81 323 | 68.71 326 | 81.11 334 | 75.86 363 | 70.42 339 | 86.74 329 | 83.66 358 | 58.95 357 | 68.64 353 | 80.89 350 | 36.93 361 | 89.52 355 | 63.10 343 | 63.59 354 | 83.39 353 |
|
DeepMVS_CX |  | | | | 56.31 348 | 74.23 364 | 51.81 367 | | 56.67 373 | 44.85 362 | 48.54 362 | 75.16 353 | 27.87 365 | 58.74 369 | 40.92 362 | 52.22 360 | 58.39 362 |
|
FPMVS | | | 64.63 326 | 62.55 328 | 70.88 341 | 70.80 365 | 56.71 362 | 84.42 343 | 84.42 357 | 51.78 360 | 49.57 360 | 81.61 349 | 23.49 366 | 81.48 362 | 40.61 363 | 76.25 335 | 74.46 359 |
|
PMMVS2 | | | 59.60 327 | 56.40 330 | 69.21 343 | 68.83 366 | 46.58 369 | 73.02 360 | 77.48 368 | 55.07 359 | 49.21 361 | 72.95 357 | 17.43 371 | 80.04 363 | 49.32 360 | 44.33 363 | 80.99 358 |
|
wuyk23d | | | 21.27 337 | 20.48 340 | 23.63 352 | 68.59 367 | 36.41 372 | 49.57 364 | 6.85 376 | 9.37 369 | 7.89 371 | 4.46 372 | 4.03 375 | 31.37 370 | 17.47 369 | 16.07 369 | 3.12 367 |
|
E-PMN | | | 43.23 333 | 42.29 335 | 46.03 349 | 65.58 368 | 37.41 371 | 73.51 358 | 64.62 369 | 33.99 365 | 28.47 369 | 47.87 365 | 19.90 370 | 67.91 366 | 22.23 367 | 24.45 365 | 32.77 364 |
|
LCM-MVSNet | | | 66.00 325 | 62.16 329 | 77.51 339 | 64.51 369 | 58.29 361 | 83.87 346 | 90.90 319 | 48.17 361 | 54.69 359 | 73.31 356 | 16.83 372 | 86.75 358 | 65.47 333 | 61.67 356 | 87.48 352 |
|
EMVS | | | 42.07 334 | 41.12 336 | 44.92 350 | 63.45 370 | 35.56 373 | 73.65 357 | 63.48 370 | 33.05 366 | 26.88 370 | 45.45 366 | 21.27 368 | 67.14 367 | 19.80 368 | 23.02 367 | 32.06 365 |
|
MVE |  | 39.65 23 | 43.39 332 | 38.59 338 | 57.77 346 | 56.52 371 | 48.77 368 | 55.38 362 | 58.64 372 | 29.33 367 | 28.96 368 | 52.65 363 | 4.68 374 | 64.62 368 | 28.11 366 | 33.07 364 | 59.93 361 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
ANet_high | | | 58.88 328 | 54.22 332 | 72.86 340 | 56.50 372 | 56.67 363 | 80.75 354 | 86.00 353 | 73.09 332 | 37.39 365 | 64.63 361 | 22.17 367 | 79.49 364 | 43.51 361 | 23.96 366 | 82.43 357 |
|
test_method | | | 50.52 331 | 48.47 333 | 56.66 347 | 52.26 373 | 18.98 376 | 41.51 365 | 81.40 362 | 10.10 368 | 44.59 363 | 75.01 354 | 28.51 364 | 68.16 365 | 53.54 357 | 49.31 362 | 82.83 355 |
|
PMVS |  | 47.18 22 | 52.22 330 | 48.46 334 | 63.48 345 | 45.72 374 | 46.20 370 | 73.41 359 | 78.31 366 | 41.03 364 | 30.06 367 | 65.68 360 | 6.05 373 | 83.43 361 | 30.04 365 | 65.86 351 | 60.80 360 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
tmp_tt | | | 35.64 335 | 39.24 337 | 24.84 351 | 14.87 375 | 23.90 375 | 62.71 361 | 51.51 374 | 6.58 370 | 36.66 366 | 62.08 362 | 44.37 359 | 30.34 371 | 52.40 358 | 22.00 368 | 20.27 366 |
|
testmvs | | | 8.92 338 | 11.52 341 | 1.12 354 | 1.06 376 | 0.46 378 | 86.02 333 | 0.65 377 | 0.62 371 | 2.74 372 | 9.52 370 | 0.31 377 | 0.45 373 | 2.38 370 | 0.39 370 | 2.46 369 |
|
test123 | | | 8.76 339 | 11.22 342 | 1.39 353 | 0.85 377 | 0.97 377 | 85.76 336 | 0.35 378 | 0.54 372 | 2.45 373 | 8.14 371 | 0.60 376 | 0.48 372 | 2.16 371 | 0.17 371 | 2.71 368 |
|
eth-test2 | | | | | | 0.00 378 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 378 | | | | | | | | | | | |
|
uanet_test | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
cdsmvs_eth3d_5k | | | 22.14 336 | 29.52 339 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 95.76 154 | 0.00 373 | 0.00 374 | 94.29 150 | 75.66 169 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
pcd_1.5k_mvsjas | | | 6.64 341 | 8.86 344 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 79.70 122 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
sosnet-low-res | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
sosnet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uncertanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
Regformer | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
ab-mvs-re | | | 7.82 340 | 10.43 343 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 93.88 169 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
uanet | | | 0.00 342 | 0.00 345 | 0.00 355 | 0.00 378 | 0.00 379 | 0.00 366 | 0.00 379 | 0.00 373 | 0.00 374 | 0.00 373 | 0.00 378 | 0.00 374 | 0.00 372 | 0.00 372 | 0.00 370 |
|
PC_three_1452 | | | | | | | | | | 82.47 216 | 97.09 9 | 97.07 44 | 92.72 1 | 98.04 154 | 92.70 42 | 99.02 12 | 98.86 9 |
|
test_241102_TWO | | | | | | | | | 97.44 14 | 90.31 29 | 97.62 5 | 98.07 4 | 91.46 10 | 99.58 8 | 95.66 4 | 99.12 6 | 98.98 8 |
|
test_0728_THIRD | | | | | | | | | | 90.75 20 | 97.04 10 | 98.05 8 | 92.09 6 | 99.55 15 | 95.64 6 | 99.13 3 | 99.13 1 |
|
GSMVS | | | | | | | | | | | | | | | | | 96.12 147 |
|
sam_mvs1 | | | | | | | | | | | | | 71.70 218 | | | | 96.12 147 |
|
sam_mvs | | | | | | | | | | | | | 70.60 232 | | | | |
|
MTGPA |  | | | | | | | | 96.97 52 | | | | | | | | |
|
test_post1 | | | | | | | | 88.00 320 | | | | 9.81 369 | 69.31 253 | 95.53 305 | 76.65 264 | | |
|
test_post | | | | | | | | | | | | 10.29 368 | 70.57 236 | 95.91 293 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 83.76 343 | 71.53 220 | 96.48 266 | | | |
|
MTMP | | | | | | | | 96.16 47 | 60.64 371 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 91.91 66 | 98.71 34 | 98.07 67 |
|
agg_prior2 | | | | | | | | | | | | | | | 90.54 92 | 98.68 39 | 98.27 51 |
|
test_prior4 | | | | | | | 85.96 60 | 94.11 172 | | | | | | | | | |
|
test_prior2 | | | | | | | | 94.12 170 | | 87.67 104 | 92.63 75 | 96.39 75 | 86.62 42 | | 91.50 76 | 98.67 41 | |
|
旧先验2 | | | | | | | | 93.36 207 | | 71.25 342 | 94.37 30 | | | 97.13 227 | 86.74 135 | | |
|
新几何2 | | | | | | | | 93.11 222 | | | | | | | | | |
|
无先验 | | | | | | | | 93.28 214 | 96.26 114 | 73.95 324 | | | | 99.05 63 | 80.56 222 | | 96.59 132 |
|
原ACMM2 | | | | | | | | 92.94 229 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 98.75 103 | 78.30 248 | | |
|
segment_acmp | | | | | | | | | | | | | 87.16 38 | | | | |
|
testdata1 | | | | | | | | 92.15 252 | | 87.94 94 | | | | | | | |
|
plane_prior5 | | | | | | | | | 96.22 119 | | | | | 98.12 140 | 88.15 115 | 89.99 191 | 94.63 202 |
|
plane_prior4 | | | | | | | | | | | | 94.86 127 | | | | | |
|
plane_prior3 | | | | | | | 82.75 139 | | | 90.26 33 | 86.91 168 | | | | | | |
|
plane_prior2 | | | | | | | | 95.85 64 | | 90.81 18 | | | | | | | |
|
plane_prior | | | | | | | 82.73 142 | 95.21 98 | | 89.66 47 | | | | | | 89.88 196 | |
|
n2 | | | | | | | | | 0.00 379 | | | | | | | | |
|
nn | | | | | | | | | 0.00 379 | | | | | | | | |
|
door-mid | | | | | | | | | 85.49 354 | | | | | | | | |
|
test11 | | | | | | | | | 96.57 98 | | | | | | | | |
|
door | | | | | | | | | 85.33 355 | | | | | | | | |
|
HQP5-MVS | | | | | | | 81.56 167 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 87.11 132 | | |
|
HQP4-MVS | | | | | | | | | | | 85.43 206 | | | 97.96 161 | | | 94.51 212 |
|
HQP3-MVS | | | | | | | | | 96.04 133 | | | | | | | 89.77 198 | |
|
HQP2-MVS | | | | | | | | | | | | | 73.83 195 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 55.91 366 | 87.62 326 | | 73.32 329 | 84.59 224 | | 70.33 239 | | 74.65 283 | | 95.50 171 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.47 232 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.01 227 | |
|
Test By Simon | | | | | | | | | | | | | 80.02 117 | | | | |
|