This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
FOURS198.86 185.54 7498.29 197.49 589.79 4396.29 15
test_0728_SECOND95.01 1798.79 286.43 4397.09 1497.49 599.61 395.62 899.08 798.99 7
DVP-MVScopyleft95.67 396.02 394.64 4398.78 385.93 6197.09 1496.73 8190.27 3197.04 1098.05 891.47 899.55 1595.62 899.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.78 385.93 6197.19 997.47 1090.27 3197.64 498.13 191.47 8
SED-MVS95.91 296.28 294.80 3698.77 585.99 5897.13 1297.44 1490.31 2997.71 198.07 492.31 499.58 895.66 499.13 398.84 12
IU-MVS98.77 586.00 5696.84 6781.26 24897.26 795.50 1099.13 399.03 6
test_241102_ONE98.77 585.99 5897.44 1490.26 3397.71 197.96 1092.31 499.38 32
region2R94.43 2394.27 2594.92 2298.65 886.67 3496.92 2297.23 3588.60 7693.58 5197.27 2985.22 5999.54 1992.21 5298.74 3398.56 23
ACMMPR94.43 2394.28 2394.91 2498.63 986.69 3296.94 1897.32 2788.63 7493.53 5497.26 3185.04 6299.54 1992.35 4998.78 2598.50 26
HFP-MVS94.52 1894.40 2094.86 2798.61 1086.81 2696.94 1897.34 2288.63 7493.65 4797.21 3486.10 4899.49 2692.35 4998.77 2898.30 45
#test#94.32 2994.14 3294.86 2798.61 1086.81 2696.43 3497.34 2287.51 10793.65 4797.21 3486.10 4899.49 2691.68 7398.77 2898.30 45
test_one_060198.58 1285.83 6797.44 1491.05 1596.78 1398.06 691.45 11
test_part298.55 1387.22 1896.40 14
XVS94.45 2194.32 2194.85 2998.54 1486.60 3896.93 2097.19 3890.66 2592.85 6697.16 3985.02 6399.49 2691.99 6198.56 5198.47 32
X-MVStestdata88.31 16686.13 20894.85 2998.54 1486.60 3896.93 2097.19 3890.66 2592.85 6623.41 36785.02 6399.49 2691.99 6198.56 5198.47 32
ZNCC-MVS94.47 1994.28 2395.03 1698.52 1686.96 1996.85 2697.32 2788.24 8693.15 5997.04 4586.17 4799.62 192.40 4798.81 2298.52 24
mPP-MVS93.99 3993.78 4494.63 4498.50 1785.90 6696.87 2496.91 5988.70 7291.83 9697.17 3883.96 7799.55 1591.44 7898.64 4798.43 38
MSP-MVS95.42 695.56 694.98 2198.49 1886.52 4096.91 2397.47 1091.73 896.10 1796.69 6189.90 1299.30 4294.70 1298.04 7099.13 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVScopyleft94.25 3094.07 3594.77 3898.47 1986.31 4996.71 2996.98 5189.04 6391.98 9097.19 3685.43 5799.56 1092.06 6098.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS94.45 2194.20 2995.19 1198.46 2087.50 1595.00 11297.12 4387.13 11492.51 8096.30 7789.24 1799.34 3693.46 2598.62 4898.73 15
PGM-MVS93.96 4193.72 4694.68 4198.43 2186.22 5295.30 8997.78 187.45 11093.26 5597.33 2684.62 6899.51 2490.75 9198.57 5098.32 44
zzz-MVS94.47 1994.30 2295.00 1898.42 2286.95 2095.06 11096.97 5291.07 1393.14 6097.56 1684.30 7099.56 1093.43 2698.75 3198.47 32
MTAPA94.42 2594.22 2695.00 1898.42 2286.95 2094.36 16096.97 5291.07 1393.14 6097.56 1684.30 7099.56 1093.43 2698.75 3198.47 32
GST-MVS94.21 3493.97 3994.90 2698.41 2486.82 2596.54 3397.19 3888.24 8693.26 5596.83 5485.48 5699.59 791.43 7998.40 5798.30 45
HPM-MVScopyleft94.02 3893.88 4094.43 5398.39 2585.78 6997.25 897.07 4786.90 12292.62 7796.80 5884.85 6699.17 5392.43 4598.65 4698.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS94.34 2794.21 2894.74 4098.39 2586.64 3697.60 397.24 3388.53 7892.73 7397.23 3285.20 6099.32 4092.15 5598.83 2198.25 54
DPE-MVScopyleft95.57 495.67 495.25 998.36 2787.28 1795.56 7997.51 489.13 6197.14 897.91 1191.64 799.62 194.61 1499.17 298.86 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS_fast93.40 5793.22 5693.94 6498.36 2784.83 8197.15 1196.80 7385.77 14492.47 8197.13 4082.38 9199.07 6190.51 9398.40 5797.92 79
DP-MVS Recon91.95 7991.28 8593.96 6398.33 2985.92 6394.66 13596.66 9182.69 21390.03 12195.82 9882.30 9499.03 6784.57 15896.48 10696.91 122
APDe-MVS95.46 595.64 594.91 2498.26 3086.29 5197.46 497.40 2089.03 6596.20 1698.10 289.39 1699.34 3695.88 399.03 1199.10 3
TSAR-MVS + MP.94.85 1394.94 1194.58 4698.25 3186.33 4796.11 5296.62 9488.14 9296.10 1796.96 4989.09 1898.94 8794.48 1598.68 3998.48 28
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft95.14 1094.91 1295.83 498.25 3189.65 495.92 6296.96 5591.75 794.02 3996.83 5488.12 2499.55 1593.41 2898.94 1698.28 49
testtj94.39 2694.18 3095.00 1898.24 3386.77 3096.16 4797.23 3587.28 11294.85 2897.04 4586.99 4099.52 2391.54 7598.33 6098.71 16
CPTT-MVS91.99 7891.80 7992.55 11198.24 3381.98 16096.76 2896.49 10281.89 23390.24 11796.44 7478.59 13698.61 11089.68 9897.85 7797.06 114
SR-MVS94.23 3294.17 3194.43 5398.21 3585.78 6996.40 3796.90 6088.20 8994.33 3197.40 2384.75 6799.03 6793.35 2997.99 7198.48 28
MP-MVS-pluss94.21 3494.00 3894.85 2998.17 3686.65 3594.82 12497.17 4186.26 13592.83 6897.87 1285.57 5599.56 1094.37 1798.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZD-MVS98.15 3786.62 3797.07 4783.63 19094.19 3496.91 5187.57 3299.26 4691.99 6198.44 55
SMA-MVScopyleft95.20 895.07 1095.59 598.14 3888.48 896.26 4397.28 3185.90 14197.67 398.10 288.41 2099.56 1094.66 1399.19 198.71 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test117293.97 4094.07 3593.66 7498.11 3983.45 12096.26 4396.84 6788.33 8294.19 3497.43 2084.24 7299.01 7393.26 3197.98 7298.52 24
CNVR-MVS95.40 795.37 795.50 798.11 3988.51 795.29 9296.96 5592.09 395.32 2397.08 4289.49 1599.33 3995.10 1198.85 1998.66 18
114514_t89.51 13188.50 14192.54 11298.11 3981.99 15995.16 10396.36 11070.19 34685.81 18795.25 11476.70 15498.63 10882.07 19396.86 9697.00 118
ACMMPcopyleft93.24 6192.88 6594.30 5798.09 4285.33 7796.86 2597.45 1388.33 8290.15 11997.03 4781.44 10599.51 2490.85 8995.74 11298.04 70
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APD-MVScopyleft94.24 3194.07 3594.75 3998.06 4386.90 2395.88 6396.94 5785.68 14795.05 2797.18 3787.31 3499.07 6191.90 6998.61 4998.28 49
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CSCG93.23 6293.05 6093.76 7298.04 4484.07 10396.22 4597.37 2184.15 17990.05 12095.66 10487.77 2699.15 5689.91 9698.27 6298.07 67
ACMMP_NAP94.74 1594.56 1795.28 898.02 4587.70 1295.68 7297.34 2288.28 8595.30 2497.67 1585.90 5299.54 1993.91 2098.95 1598.60 21
OPU-MVS96.21 398.00 4690.85 397.13 1297.08 4292.59 298.94 8792.25 5198.99 1498.84 12
SR-MVS-dyc-post93.82 4593.82 4193.82 6797.92 4784.57 8696.28 4196.76 7787.46 10893.75 4497.43 2084.24 7299.01 7392.73 3897.80 7897.88 81
RE-MVS-def93.68 4897.92 4784.57 8696.28 4196.76 7787.46 10893.75 4497.43 2082.94 8592.73 3897.80 7897.88 81
APD-MVS_3200maxsize93.78 4693.77 4593.80 7197.92 4784.19 10196.30 3996.87 6486.96 11893.92 4197.47 1883.88 7898.96 8692.71 4197.87 7698.26 53
xxxxxxxxxxxxxcwj94.65 1694.70 1594.48 5097.85 5085.63 7295.21 9895.47 17689.44 5095.71 1997.70 1388.28 2299.35 3493.89 2198.78 2598.48 28
save fliter97.85 5085.63 7295.21 9896.82 7189.44 50
SF-MVS94.97 1194.90 1395.20 1097.84 5287.76 1096.65 3197.48 987.76 10195.71 1997.70 1388.28 2299.35 3493.89 2198.78 2598.48 28
NCCC94.81 1494.69 1695.17 1297.83 5387.46 1695.66 7496.93 5892.34 293.94 4096.58 6887.74 2799.44 3092.83 3798.40 5798.62 20
ETH3 D test640093.64 5093.22 5694.92 2297.79 5486.84 2495.31 8697.26 3282.67 21493.81 4396.29 7887.29 3599.27 4589.87 9798.67 4198.65 19
9.1494.47 1897.79 5496.08 5397.44 1486.13 13995.10 2697.40 2388.34 2199.22 4993.25 3298.70 36
CDPH-MVS92.83 6692.30 7494.44 5197.79 5486.11 5494.06 17996.66 9180.09 26192.77 7096.63 6586.62 4299.04 6687.40 12598.66 4498.17 58
DVP-MVS++.95.98 196.36 194.82 3497.78 5786.00 5698.29 197.49 590.75 2097.62 598.06 692.59 299.61 395.64 699.02 1298.86 9
MSC_two_6792asdad96.52 197.78 5790.86 196.85 6599.61 396.03 199.06 999.07 4
No_MVS96.52 197.78 5790.86 196.85 6599.61 396.03 199.06 999.07 4
ETH3D-3000-0.194.61 1794.44 1995.12 1397.70 6087.71 1195.98 5997.44 1486.67 12795.25 2597.31 2787.73 2899.24 4793.11 3598.76 3098.40 39
DP-MVS87.25 20485.36 23492.90 9497.65 6183.24 12594.81 12592.00 28974.99 31581.92 27895.00 12272.66 21099.05 6366.92 32992.33 17196.40 136
PAPM_NR91.22 9390.78 9692.52 11397.60 6281.46 17394.37 15996.24 11786.39 13387.41 15794.80 13182.06 10098.48 11682.80 18295.37 12097.61 92
TEST997.53 6386.49 4194.07 17796.78 7481.61 24192.77 7096.20 8387.71 2999.12 58
train_agg93.44 5493.08 5994.52 4897.53 6386.49 4194.07 17796.78 7481.86 23492.77 7096.20 8387.63 3099.12 5892.14 5698.69 3797.94 76
abl_693.18 6393.05 6093.57 7697.52 6584.27 10095.53 8096.67 9087.85 9893.20 5897.22 3380.35 11299.18 5291.91 6697.21 8997.26 105
test_897.49 6686.30 5094.02 18296.76 7781.86 23492.70 7496.20 8387.63 3099.02 71
DeepC-MVS_fast89.43 294.04 3793.79 4394.80 3697.48 6786.78 2895.65 7696.89 6189.40 5392.81 6996.97 4885.37 5899.24 4790.87 8898.69 3798.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AdaColmapbinary89.89 12389.07 12992.37 12197.41 6883.03 13194.42 15195.92 14082.81 21186.34 18094.65 13773.89 19399.02 7180.69 21995.51 11595.05 184
agg_prior193.29 5992.97 6394.26 5897.38 6985.92 6393.92 18896.72 8381.96 22892.16 8596.23 8187.85 2598.97 8391.95 6598.55 5397.90 80
agg_prior97.38 6985.92 6396.72 8392.16 8598.97 83
原ACMM192.01 13397.34 7181.05 18596.81 7278.89 27590.45 11595.92 9482.65 8898.84 9980.68 22098.26 6396.14 145
MSLP-MVS++93.72 4794.08 3492.65 10697.31 7283.43 12195.79 6797.33 2590.03 3693.58 5196.96 4984.87 6597.76 17092.19 5498.66 4496.76 125
新几何193.10 8497.30 7384.35 9995.56 16871.09 34391.26 10796.24 8082.87 8798.86 9479.19 24198.10 6896.07 152
test_prior393.60 5193.53 5193.82 6797.29 7484.49 9094.12 17096.88 6287.67 10492.63 7596.39 7586.62 4298.87 9191.50 7698.67 4198.11 65
test_prior93.82 6797.29 7484.49 9096.88 6298.87 9198.11 65
112190.42 11089.49 11693.20 8097.27 7684.46 9392.63 23695.51 17471.01 34491.20 10896.21 8282.92 8699.05 6380.56 22298.07 6996.10 150
PLCcopyleft84.53 789.06 14688.03 15492.15 12997.27 7682.69 14594.29 16295.44 18279.71 26684.01 24494.18 15576.68 15598.75 10377.28 25893.41 15295.02 185
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SD-MVS94.96 1295.33 893.88 6597.25 7886.69 3296.19 4697.11 4590.42 2896.95 1297.27 2989.53 1496.91 24394.38 1698.85 1998.03 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test1294.34 5697.13 7986.15 5396.29 11291.04 11185.08 6199.01 7398.13 6797.86 83
MG-MVS91.77 8291.70 8192.00 13597.08 8080.03 21593.60 20195.18 19687.85 9890.89 11296.47 7382.06 10098.36 12585.07 15097.04 9397.62 91
SteuartSystems-ACMMP95.20 895.32 994.85 2996.99 8186.33 4797.33 597.30 2991.38 1195.39 2297.46 1988.98 1999.40 3194.12 1898.89 1898.82 14
Skip Steuart: Steuart Systems R&D Blog.
MVS_111021_HR93.45 5393.31 5493.84 6696.99 8184.84 8093.24 21897.24 3388.76 7191.60 10195.85 9786.07 5098.66 10591.91 6698.16 6598.03 71
CNLPA89.07 14587.98 15692.34 12296.87 8384.78 8294.08 17693.24 26081.41 24484.46 22895.13 11975.57 17096.62 25377.21 25993.84 14395.61 170
PHI-MVS93.89 4493.65 4994.62 4596.84 8486.43 4396.69 3097.49 585.15 16393.56 5396.28 7985.60 5499.31 4192.45 4498.79 2398.12 63
旧先验196.79 8581.81 16395.67 16096.81 5686.69 4197.66 8296.97 119
ETH3D cwj APD-0.1693.91 4293.53 5195.06 1596.76 8687.78 994.92 11797.21 3784.33 17793.89 4297.09 4187.20 3699.29 4491.90 6998.44 5598.12 63
LFMVS90.08 11589.13 12892.95 9296.71 8782.32 15596.08 5389.91 33786.79 12392.15 8796.81 5662.60 30298.34 12887.18 12993.90 14198.19 57
Anonymous20240521187.68 18286.13 20892.31 12496.66 8880.74 19594.87 12191.49 30480.47 25789.46 12695.44 10854.72 34098.23 13482.19 19189.89 19597.97 74
TAPA-MVS84.62 688.16 17087.01 17891.62 15496.64 8980.65 19694.39 15496.21 12276.38 30086.19 18395.44 10879.75 12098.08 15062.75 34495.29 12296.13 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MAR-MVS90.30 11189.37 12193.07 8796.61 9084.48 9295.68 7295.67 16082.36 21987.85 14892.85 20276.63 15698.80 10180.01 23096.68 9995.91 157
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VNet92.24 7791.91 7893.24 7996.59 9183.43 12194.84 12396.44 10389.19 5994.08 3895.90 9577.85 14798.17 13888.90 10793.38 15398.13 62
TSAR-MVS + GP.93.66 4993.41 5394.41 5596.59 9186.78 2894.40 15293.93 24689.77 4494.21 3395.59 10787.35 3398.61 11092.72 4096.15 10997.83 85
test22296.55 9381.70 16592.22 25095.01 20368.36 34990.20 11896.14 8880.26 11597.80 7896.05 154
Anonymous2024052988.09 17286.59 19392.58 11096.53 9481.92 16295.99 5795.84 14874.11 32389.06 13295.21 11661.44 31098.81 10083.67 17087.47 23297.01 117
Anonymous2023121186.59 22785.13 23790.98 18496.52 9581.50 16996.14 4996.16 12373.78 32583.65 25392.15 22563.26 30097.37 20982.82 18181.74 28894.06 232
DeepPCF-MVS89.96 194.20 3694.77 1492.49 11496.52 9580.00 21794.00 18497.08 4690.05 3595.65 2197.29 2889.66 1398.97 8393.95 1998.71 3498.50 26
testdata90.49 19796.40 9777.89 26395.37 18872.51 33693.63 4996.69 6182.08 9997.65 17983.08 17497.39 8795.94 156
PVSNet_Blended_VisFu91.38 8990.91 9392.80 9796.39 9883.17 12794.87 12196.66 9183.29 20089.27 12894.46 14480.29 11499.17 5387.57 12395.37 12096.05 154
API-MVS90.66 10490.07 10692.45 11696.36 9984.57 8696.06 5595.22 19582.39 21789.13 12994.27 15380.32 11398.46 11880.16 22996.71 9894.33 220
F-COLMAP87.95 17586.80 18391.40 16396.35 10080.88 19194.73 13095.45 18079.65 26782.04 27694.61 13871.13 22498.50 11576.24 26991.05 18294.80 198
VDD-MVS90.74 10089.92 11293.20 8096.27 10183.02 13295.73 6993.86 25088.42 8192.53 7896.84 5362.09 30598.64 10790.95 8692.62 16797.93 78
OMC-MVS91.23 9290.62 9793.08 8596.27 10184.07 10393.52 20395.93 13986.95 11989.51 12496.13 8978.50 13898.35 12785.84 14392.90 16396.83 124
DPM-MVS92.58 7091.74 8095.08 1496.19 10389.31 592.66 23596.56 10083.44 19691.68 10095.04 12186.60 4598.99 8085.60 14697.92 7596.93 121
CHOSEN 1792x268888.84 15387.69 16192.30 12596.14 10481.42 17590.01 29395.86 14774.52 32087.41 15793.94 16475.46 17198.36 12580.36 22595.53 11497.12 113
thres100view90087.63 18786.71 18690.38 20396.12 10578.55 24595.03 11191.58 30087.15 11388.06 14492.29 22168.91 25998.10 14270.13 30891.10 17894.48 216
PVSNet_BlendedMVS89.98 11889.70 11390.82 18696.12 10581.25 17993.92 18896.83 6983.49 19589.10 13092.26 22281.04 10998.85 9786.72 13787.86 23092.35 302
PVSNet_Blended90.73 10190.32 10091.98 13696.12 10581.25 17992.55 24096.83 6982.04 22689.10 13092.56 21281.04 10998.85 9786.72 13795.91 11095.84 161
UA-Net92.83 6692.54 7193.68 7396.10 10884.71 8395.66 7496.39 10891.92 493.22 5796.49 7283.16 8298.87 9184.47 15995.47 11797.45 100
thres600view787.65 18486.67 18890.59 19096.08 10978.72 24194.88 12091.58 30087.06 11688.08 14392.30 22068.91 25998.10 14270.05 31191.10 17894.96 189
DeepC-MVS88.79 393.31 5892.99 6294.26 5896.07 11085.83 6794.89 11996.99 5089.02 6689.56 12397.37 2582.51 9099.38 3292.20 5398.30 6197.57 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LS3D87.89 17686.32 20392.59 10996.07 11082.92 13695.23 9694.92 21175.66 30782.89 26695.98 9272.48 21399.21 5068.43 31895.23 12595.64 169
hse-mvs390.80 9890.15 10492.75 10096.01 11282.66 14695.43 8295.53 17289.80 4093.08 6295.64 10575.77 16399.00 7892.07 5878.05 32696.60 131
HyFIR lowres test88.09 17286.81 18291.93 14096.00 11380.63 19790.01 29395.79 15273.42 32887.68 15392.10 23073.86 19497.96 16180.75 21891.70 17497.19 109
tfpn200view987.58 19186.64 18990.41 20095.99 11478.64 24394.58 13891.98 29186.94 12088.09 14191.77 24069.18 25698.10 14270.13 30891.10 17894.48 216
thres40087.62 18986.64 18990.57 19195.99 11478.64 24394.58 13891.98 29186.94 12088.09 14191.77 24069.18 25698.10 14270.13 30891.10 17894.96 189
MVS_111021_LR92.47 7492.29 7592.98 9095.99 11484.43 9793.08 22396.09 12788.20 8991.12 10995.72 10381.33 10797.76 17091.74 7197.37 8896.75 126
test_part189.00 15087.99 15592.04 13195.94 11783.81 11096.14 4996.05 13286.44 13185.69 19093.73 17871.57 21997.66 17785.80 14480.54 30794.66 201
PatchMatch-RL86.77 22385.54 22890.47 19995.88 11882.71 14490.54 28292.31 28079.82 26584.32 23691.57 25068.77 26196.39 27273.16 29293.48 15192.32 303
EPP-MVSNet91.70 8591.56 8292.13 13095.88 11880.50 20297.33 595.25 19286.15 13789.76 12295.60 10683.42 8198.32 13187.37 12793.25 15697.56 96
IS-MVSNet91.43 8891.09 9092.46 11595.87 12081.38 17696.95 1793.69 25589.72 4689.50 12595.98 9278.57 13797.77 16983.02 17696.50 10598.22 56
PAPR90.02 11789.27 12692.29 12695.78 12180.95 18992.68 23496.22 11981.91 23186.66 17393.75 17782.23 9598.44 12279.40 24094.79 12797.48 98
Vis-MVSNet (Re-imp)89.59 12989.44 11890.03 21795.74 12275.85 29495.61 7790.80 32287.66 10687.83 14995.40 11176.79 15296.46 26978.37 24696.73 9797.80 86
test_yl90.69 10290.02 11092.71 10295.72 12382.41 15394.11 17295.12 19885.63 14891.49 10294.70 13374.75 17898.42 12386.13 14192.53 16897.31 102
DCV-MVSNet90.69 10290.02 11092.71 10295.72 12382.41 15394.11 17295.12 19885.63 14891.49 10294.70 13374.75 17898.42 12386.13 14192.53 16897.31 102
canonicalmvs93.27 6092.75 6794.85 2995.70 12587.66 1396.33 3896.41 10690.00 3794.09 3794.60 13982.33 9398.62 10992.40 4792.86 16498.27 51
CANet93.54 5293.20 5894.55 4795.65 12685.73 7194.94 11596.69 8891.89 590.69 11395.88 9681.99 10299.54 1993.14 3497.95 7498.39 40
3Dnovator+87.14 492.42 7591.37 8395.55 695.63 12788.73 697.07 1696.77 7690.84 1784.02 24396.62 6675.95 16299.34 3687.77 12097.68 8198.59 22
alignmvs93.08 6492.50 7294.81 3595.62 12887.61 1495.99 5796.07 12989.77 4494.12 3694.87 12680.56 11198.66 10592.42 4693.10 15998.15 60
Regformer-194.22 3394.13 3394.51 4995.54 12986.36 4694.57 14096.44 10391.69 994.32 3296.56 7087.05 3999.03 6793.35 2997.65 8398.15 60
Regformer-294.33 2894.22 2694.68 4195.54 12986.75 3194.57 14096.70 8691.84 694.41 2996.56 7087.19 3799.13 5793.50 2497.65 8398.16 59
WTY-MVS89.60 12888.92 13391.67 15395.47 13181.15 18392.38 24494.78 22183.11 20389.06 13294.32 14878.67 13596.61 25681.57 20590.89 18497.24 106
DELS-MVS93.43 5693.25 5593.97 6295.42 13285.04 7993.06 22597.13 4290.74 2291.84 9495.09 12086.32 4699.21 5091.22 8098.45 5497.65 90
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Regformer-393.68 4893.64 5093.81 7095.36 13384.61 8494.68 13295.83 14991.27 1293.60 5096.71 5985.75 5398.86 9492.87 3696.65 10097.96 75
Regformer-493.91 4293.81 4294.19 6095.36 13385.47 7594.68 13296.41 10691.60 1093.75 4496.71 5985.95 5199.10 6093.21 3396.65 10098.01 73
thres20087.21 20886.24 20690.12 21395.36 13378.53 24693.26 21592.10 28586.42 13288.00 14691.11 26369.24 25598.00 15869.58 31291.04 18393.83 245
Vis-MVSNetpermissive91.75 8391.23 8693.29 7795.32 13683.78 11196.14 4995.98 13589.89 3890.45 11596.58 6875.09 17498.31 13284.75 15696.90 9497.78 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
BH-RMVSNet88.37 16487.48 16691.02 17995.28 13779.45 22792.89 23093.07 26485.45 15486.91 16894.84 13070.35 23897.76 17073.97 28794.59 13295.85 160
COLMAP_ROBcopyleft80.39 1683.96 26882.04 27589.74 22995.28 13779.75 22294.25 16492.28 28175.17 31378.02 31693.77 17558.60 32997.84 16765.06 33785.92 24491.63 313
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PS-MVSNAJ91.18 9490.92 9291.96 13895.26 13982.60 14992.09 25595.70 15886.27 13491.84 9492.46 21479.70 12298.99 8089.08 10595.86 11194.29 221
BH-untuned88.60 16088.13 15390.01 21995.24 14078.50 24893.29 21394.15 24084.75 17184.46 22893.40 18275.76 16597.40 20577.59 25594.52 13494.12 227
DROMVSNet93.44 5493.71 4792.63 10795.21 14182.43 15097.27 796.71 8590.57 2792.88 6595.80 9983.16 8298.16 13993.68 2398.14 6697.31 102
ETV-MVS92.74 6892.66 6992.97 9195.20 14284.04 10595.07 10796.51 10190.73 2392.96 6491.19 25784.06 7498.34 12891.72 7296.54 10396.54 135
GeoE90.05 11689.43 11991.90 14395.16 14380.37 20495.80 6694.65 22583.90 18487.55 15694.75 13278.18 14297.62 18381.28 20893.63 14597.71 89
EIA-MVS91.95 7991.94 7791.98 13695.16 14380.01 21695.36 8396.73 8188.44 7989.34 12792.16 22483.82 8098.45 12189.35 10297.06 9297.48 98
ab-mvs89.41 13788.35 14592.60 10895.15 14582.65 14792.20 25195.60 16783.97 18388.55 13693.70 17974.16 18998.21 13782.46 18789.37 20396.94 120
VDDNet89.56 13088.49 14392.76 9995.07 14682.09 15796.30 3993.19 26281.05 25391.88 9296.86 5261.16 31598.33 13088.43 11392.49 17097.84 84
AllTest83.42 27481.39 28089.52 23795.01 14777.79 26793.12 22090.89 32077.41 29276.12 32893.34 18354.08 34397.51 18968.31 31984.27 25793.26 268
TestCases89.52 23795.01 14777.79 26790.89 32077.41 29276.12 32893.34 18354.08 34397.51 18968.31 31984.27 25793.26 268
EI-MVSNet-Vis-set93.01 6592.92 6493.29 7795.01 14783.51 11994.48 14495.77 15390.87 1692.52 7996.67 6384.50 6999.00 7891.99 6194.44 13797.36 101
xiu_mvs_v2_base91.13 9590.89 9491.86 14494.97 15082.42 15192.24 24995.64 16586.11 14091.74 9993.14 19479.67 12598.89 9089.06 10695.46 11894.28 222
tttt051788.61 15987.78 16091.11 17494.96 15177.81 26695.35 8489.69 34185.09 16588.05 14594.59 14066.93 27498.48 11683.27 17392.13 17397.03 116
baseline188.10 17187.28 17290.57 19194.96 15180.07 21194.27 16391.29 30986.74 12487.41 15794.00 16176.77 15396.20 28080.77 21779.31 32295.44 174
Test_1112_low_res87.65 18486.51 19691.08 17594.94 15379.28 23591.77 26094.30 23476.04 30583.51 25792.37 21777.86 14697.73 17478.69 24589.13 20996.22 142
1112_ss88.42 16287.33 17091.72 15194.92 15480.98 18792.97 22894.54 22678.16 28983.82 24893.88 16978.78 13397.91 16579.45 23689.41 20296.26 141
QAPM89.51 13188.15 15293.59 7594.92 15484.58 8596.82 2796.70 8678.43 28483.41 25996.19 8673.18 20599.30 4277.11 26196.54 10396.89 123
BH-w/o87.57 19287.05 17789.12 24694.90 15677.90 26292.41 24293.51 25782.89 21083.70 25191.34 25175.75 16697.07 23275.49 27493.49 14992.39 300
thisisatest053088.67 15787.61 16491.86 14494.87 15780.07 21194.63 13689.90 33884.00 18288.46 13893.78 17466.88 27698.46 11883.30 17292.65 16697.06 114
CS-MVS-test92.55 7192.72 6892.02 13294.87 15781.34 17796.43 3496.57 9889.04 6391.05 11094.41 14583.85 7998.09 14890.83 9097.47 8696.64 130
EI-MVSNet-UG-set92.74 6892.62 7093.12 8394.86 15983.20 12694.40 15295.74 15690.71 2492.05 8996.60 6784.00 7698.99 8091.55 7493.63 14597.17 110
HY-MVS83.01 1289.03 14787.94 15892.29 12694.86 15982.77 13892.08 25694.49 22781.52 24386.93 16692.79 20878.32 14198.23 13479.93 23190.55 18595.88 159
hse-mvs289.88 12489.34 12291.51 15894.83 16181.12 18493.94 18793.91 24989.80 4093.08 6293.60 18075.77 16397.66 17792.07 5877.07 33395.74 166
AUN-MVS87.78 18086.54 19591.48 16094.82 16281.05 18593.91 19193.93 24683.00 20686.93 16693.53 18169.50 24997.67 17686.14 14077.12 33295.73 167
Fast-Effi-MVS+89.41 13788.64 13891.71 15294.74 16380.81 19393.54 20295.10 20083.11 20386.82 17190.67 27579.74 12197.75 17380.51 22493.55 14796.57 133
ACMP84.23 889.01 14988.35 14590.99 18294.73 16481.27 17895.07 10795.89 14586.48 12983.67 25294.30 14969.33 25197.99 15987.10 13488.55 21493.72 254
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet78.82 1885.55 24584.65 24888.23 27194.72 16571.93 32687.12 32892.75 27178.80 27884.95 21990.53 27764.43 29696.71 25074.74 28293.86 14296.06 153
LCM-MVSNet-Re88.30 16788.32 14888.27 26894.71 16672.41 32593.15 21990.98 31687.77 10079.25 31091.96 23678.35 14095.75 30083.04 17595.62 11396.65 129
HQP_MVS90.60 10890.19 10291.82 14794.70 16782.73 14295.85 6496.22 11990.81 1886.91 16894.86 12774.23 18598.12 14088.15 11589.99 19194.63 202
plane_prior794.70 16782.74 141
ACMH+81.04 1485.05 25683.46 26489.82 22594.66 16979.37 22994.44 14994.12 24382.19 22278.04 31592.82 20558.23 33097.54 18773.77 28982.90 27492.54 294
ACMM84.12 989.14 14388.48 14491.12 17194.65 17081.22 18195.31 8696.12 12685.31 15885.92 18694.34 14670.19 24198.06 15285.65 14588.86 21294.08 231
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
plane_prior194.59 171
3Dnovator86.66 591.73 8490.82 9594.44 5194.59 17186.37 4597.18 1097.02 4989.20 5884.31 23896.66 6473.74 19799.17 5386.74 13597.96 7397.79 87
plane_prior694.52 17382.75 13974.23 185
UGNet89.95 12088.95 13292.95 9294.51 17483.31 12495.70 7195.23 19389.37 5487.58 15493.94 16464.00 29798.78 10283.92 16596.31 10896.74 127
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LPG-MVS_test89.45 13488.90 13491.12 17194.47 17581.49 17195.30 8996.14 12486.73 12585.45 20395.16 11769.89 24398.10 14287.70 12189.23 20793.77 250
LGP-MVS_train91.12 17194.47 17581.49 17196.14 12486.73 12585.45 20395.16 11769.89 24398.10 14287.70 12189.23 20793.77 250
baseline92.39 7692.29 7592.69 10594.46 17781.77 16494.14 16996.27 11389.22 5791.88 9296.00 9182.35 9297.99 15991.05 8295.27 12498.30 45
ACMH80.38 1785.36 24883.68 26090.39 20194.45 17880.63 19794.73 13094.85 21582.09 22377.24 32092.65 21060.01 32297.58 18472.25 29684.87 25292.96 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB82.13 1386.26 23584.90 24390.34 20694.44 17981.50 16992.31 24894.89 21283.03 20579.63 30792.67 20969.69 24697.79 16871.20 29986.26 24391.72 311
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
casdiffmvs92.51 7392.43 7392.74 10194.41 18081.98 16094.54 14296.23 11889.57 4891.96 9196.17 8782.58 8998.01 15790.95 8695.45 11998.23 55
MVS_Test91.31 9191.11 8891.93 14094.37 18180.14 20893.46 20695.80 15186.46 13091.35 10693.77 17582.21 9698.09 14887.57 12394.95 12697.55 97
NP-MVS94.37 18182.42 15193.98 162
TR-MVS86.78 22085.76 22589.82 22594.37 18178.41 25092.47 24192.83 26881.11 25286.36 17992.40 21668.73 26297.48 19173.75 29089.85 19793.57 258
Effi-MVS+91.59 8791.11 8893.01 8994.35 18483.39 12394.60 13795.10 20087.10 11590.57 11493.10 19681.43 10698.07 15189.29 10394.48 13597.59 94
CLD-MVS89.47 13388.90 13491.18 17094.22 18582.07 15892.13 25396.09 12787.90 9685.37 21292.45 21574.38 18397.56 18687.15 13090.43 18693.93 237
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS92.55 7192.87 6691.58 15694.21 18680.54 20095.30 8996.68 8988.18 9192.09 8894.57 14284.06 7498.05 15392.56 4398.19 6496.15 143
HQP-NCC94.17 18794.39 15488.81 6885.43 206
ACMP_Plane94.17 18794.39 15488.81 6885.43 206
HQP-MVS89.80 12589.28 12591.34 16594.17 18781.56 16794.39 15496.04 13388.81 6885.43 20693.97 16373.83 19597.96 16187.11 13289.77 19894.50 213
XVG-OURS89.40 13988.70 13791.52 15794.06 19081.46 17391.27 27196.07 12986.14 13888.89 13495.77 10168.73 26297.26 21787.39 12689.96 19395.83 162
sss88.93 15188.26 15190.94 18594.05 19180.78 19491.71 26395.38 18681.55 24288.63 13593.91 16875.04 17595.47 31182.47 18691.61 17596.57 133
PCF-MVS84.11 1087.74 18186.08 21292.70 10494.02 19284.43 9789.27 30395.87 14673.62 32784.43 23094.33 14778.48 13998.86 9470.27 30494.45 13694.81 197
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GBi-Net87.26 20285.98 21591.08 17594.01 19383.10 12895.14 10494.94 20683.57 19184.37 23191.64 24366.59 28196.34 27678.23 24985.36 24893.79 246
test187.26 20285.98 21591.08 17594.01 19383.10 12895.14 10494.94 20683.57 19184.37 23191.64 24366.59 28196.34 27678.23 24985.36 24893.79 246
FMVSNet287.19 20985.82 22191.30 16694.01 19383.67 11494.79 12694.94 20683.57 19183.88 24692.05 23466.59 28196.51 26477.56 25685.01 25193.73 253
XVG-OURS-SEG-HR89.95 12089.45 11791.47 16194.00 19681.21 18291.87 25896.06 13185.78 14388.55 13695.73 10274.67 18197.27 21588.71 11089.64 20095.91 157
FIs90.51 10990.35 9990.99 18293.99 19780.98 18795.73 6997.54 389.15 6086.72 17294.68 13581.83 10497.24 21985.18 14988.31 22294.76 199
xiu_mvs_v1_base_debu90.64 10590.05 10792.40 11793.97 19884.46 9393.32 20895.46 17785.17 16092.25 8294.03 15670.59 23398.57 11290.97 8394.67 12894.18 223
xiu_mvs_v1_base90.64 10590.05 10792.40 11793.97 19884.46 9393.32 20895.46 17785.17 16092.25 8294.03 15670.59 23398.57 11290.97 8394.67 12894.18 223
xiu_mvs_v1_base_debi90.64 10590.05 10792.40 11793.97 19884.46 9393.32 20895.46 17785.17 16092.25 8294.03 15670.59 23398.57 11290.97 8394.67 12894.18 223
VPA-MVSNet89.62 12788.96 13191.60 15593.86 20182.89 13795.46 8197.33 2587.91 9588.43 13993.31 18674.17 18897.40 20587.32 12882.86 27594.52 211
MVSFormer91.68 8691.30 8492.80 9793.86 20183.88 10895.96 6095.90 14384.66 17391.76 9794.91 12477.92 14497.30 21189.64 9997.11 9097.24 106
lupinMVS90.92 9790.21 10193.03 8893.86 20183.88 10892.81 23293.86 25079.84 26491.76 9794.29 15077.92 14498.04 15490.48 9497.11 9097.17 110
IterMVS-LS88.36 16587.91 15989.70 23293.80 20478.29 25493.73 19595.08 20285.73 14584.75 22191.90 23879.88 11896.92 24283.83 16682.51 27693.89 238
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG84.86 26083.09 26790.14 21293.80 20480.05 21389.18 30693.09 26378.89 27578.19 31391.91 23765.86 29097.27 21568.47 31788.45 21893.11 278
FMVSNet387.40 19986.11 21091.30 16693.79 20683.64 11594.20 16794.81 21983.89 18584.37 23191.87 23968.45 26596.56 26178.23 24985.36 24893.70 255
FC-MVSNet-test90.27 11290.18 10390.53 19393.71 20779.85 22195.77 6897.59 289.31 5586.27 18194.67 13681.93 10397.01 23784.26 16188.09 22694.71 200
TAMVS89.21 14288.29 14991.96 13893.71 20782.62 14893.30 21294.19 23882.22 22187.78 15193.94 16478.83 13196.95 24077.70 25492.98 16296.32 138
ET-MVSNet_ETH3D87.51 19485.91 21992.32 12393.70 20983.93 10692.33 24690.94 31884.16 17872.09 34692.52 21369.90 24295.85 29589.20 10488.36 22197.17 110
CDS-MVSNet89.45 13488.51 14092.29 12693.62 21083.61 11793.01 22694.68 22481.95 22987.82 15093.24 19078.69 13496.99 23880.34 22693.23 15796.28 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UniMVSNet (Re)89.80 12589.07 12992.01 13393.60 21184.52 8994.78 12797.47 1089.26 5686.44 17892.32 21982.10 9897.39 20884.81 15580.84 30394.12 227
VPNet88.20 16987.47 16790.39 20193.56 21279.46 22694.04 18095.54 17188.67 7386.96 16594.58 14169.33 25197.15 22484.05 16480.53 30994.56 209
thisisatest051587.33 20085.99 21491.37 16493.49 21379.55 22490.63 28189.56 34480.17 25987.56 15590.86 26867.07 27398.28 13381.50 20693.02 16196.29 139
mvs_anonymous89.37 14089.32 12389.51 23993.47 21474.22 30591.65 26694.83 21782.91 20985.45 20393.79 17381.23 10896.36 27586.47 13994.09 13997.94 76
CANet_DTU90.26 11389.41 12092.81 9693.46 21583.01 13393.48 20494.47 22889.43 5287.76 15294.23 15470.54 23799.03 6784.97 15196.39 10796.38 137
UniMVSNet_NR-MVSNet89.92 12289.29 12491.81 14993.39 21683.72 11294.43 15097.12 4389.80 4086.46 17593.32 18583.16 8297.23 22084.92 15281.02 29994.49 215
Effi-MVS+-dtu88.65 15888.35 14589.54 23693.33 21776.39 28994.47 14794.36 23187.70 10285.43 20689.56 29773.45 20097.26 21785.57 14791.28 17794.97 186
mvs-test189.45 13489.14 12790.38 20393.33 21777.63 27294.95 11494.36 23187.70 10287.10 16492.81 20673.45 20098.03 15685.57 14793.04 16095.48 172
WR-MVS88.38 16387.67 16390.52 19593.30 21980.18 20693.26 21595.96 13788.57 7785.47 20292.81 20676.12 15896.91 24381.24 20982.29 27894.47 218
WR-MVS_H87.80 17987.37 16989.10 24793.23 22078.12 25795.61 7797.30 2987.90 9683.72 25092.01 23579.65 12696.01 28876.36 26680.54 30793.16 276
test_040281.30 29679.17 30487.67 28193.19 22178.17 25692.98 22791.71 29675.25 31276.02 33090.31 28159.23 32696.37 27350.22 35983.63 26488.47 349
OPM-MVS90.12 11489.56 11591.82 14793.14 22283.90 10794.16 16895.74 15688.96 6787.86 14795.43 11072.48 21397.91 16588.10 11890.18 19093.65 256
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CP-MVSNet87.63 18787.26 17488.74 25793.12 22376.59 28695.29 9296.58 9788.43 8083.49 25892.98 19975.28 17295.83 29678.97 24281.15 29593.79 246
diffmvs91.37 9091.23 8691.77 15093.09 22480.27 20592.36 24595.52 17387.03 11791.40 10594.93 12380.08 11697.44 19692.13 5794.56 13397.61 92
nrg03091.08 9690.39 9893.17 8293.07 22586.91 2296.41 3696.26 11488.30 8488.37 14094.85 12982.19 9797.64 18191.09 8182.95 27094.96 189
PAPM86.68 22485.39 23290.53 19393.05 22679.33 23489.79 29694.77 22278.82 27781.95 27793.24 19076.81 15197.30 21166.94 32793.16 15894.95 192
DU-MVS89.34 14188.50 14191.85 14693.04 22783.72 11294.47 14796.59 9689.50 4986.46 17593.29 18877.25 14897.23 22084.92 15281.02 29994.59 206
NR-MVSNet88.58 16187.47 16791.93 14093.04 22784.16 10294.77 12896.25 11689.05 6280.04 30293.29 18879.02 13097.05 23481.71 20480.05 31494.59 206
jason90.80 9890.10 10592.90 9493.04 22783.53 11893.08 22394.15 24080.22 25891.41 10494.91 12476.87 15097.93 16490.28 9596.90 9497.24 106
jason: jason.
RRT_test8_iter0586.90 21586.36 20088.52 26293.00 23073.27 31394.32 16195.96 13785.50 15384.26 23992.86 20160.76 31797.70 17588.32 11482.29 27894.60 205
PS-CasMVS87.32 20186.88 17988.63 26092.99 23176.33 29195.33 8596.61 9588.22 8883.30 26393.07 19773.03 20795.79 29978.36 24781.00 30193.75 252
MVSTER88.84 15388.29 14990.51 19692.95 23280.44 20393.73 19595.01 20384.66 17387.15 16193.12 19572.79 20997.21 22287.86 11987.36 23593.87 241
RPSCF85.07 25584.27 25287.48 28792.91 23370.62 33891.69 26592.46 27676.20 30482.67 26995.22 11563.94 29897.29 21477.51 25785.80 24694.53 210
FMVSNet185.85 24184.11 25491.08 17592.81 23483.10 12895.14 10494.94 20681.64 23982.68 26891.64 24359.01 32896.34 27675.37 27683.78 26093.79 246
tfpnnormal84.72 26283.23 26689.20 24492.79 23580.05 21394.48 14495.81 15082.38 21881.08 28691.21 25669.01 25896.95 24061.69 34680.59 30690.58 333
OpenMVScopyleft83.78 1188.74 15687.29 17193.08 8592.70 23685.39 7696.57 3296.43 10578.74 28080.85 28896.07 9069.64 24799.01 7378.01 25296.65 10094.83 196
TranMVSNet+NR-MVSNet88.84 15387.95 15791.49 15992.68 23783.01 13394.92 11796.31 11189.88 3985.53 19693.85 17176.63 15696.96 23981.91 19779.87 31794.50 213
MVS87.44 19786.10 21191.44 16292.61 23883.62 11692.63 23695.66 16267.26 35081.47 28092.15 22577.95 14398.22 13679.71 23395.48 11692.47 297
CHOSEN 280x42085.15 25483.99 25688.65 25992.47 23978.40 25179.68 35592.76 27074.90 31781.41 28289.59 29569.85 24595.51 30779.92 23295.29 12292.03 307
UniMVSNet_ETH3D87.53 19386.37 19991.00 18192.44 24078.96 24094.74 12995.61 16684.07 18185.36 21394.52 14359.78 32497.34 21082.93 17787.88 22996.71 128
131487.51 19486.57 19490.34 20692.42 24179.74 22392.63 23695.35 19078.35 28580.14 29991.62 24774.05 19097.15 22481.05 21093.53 14894.12 227
cl-mvsnet286.78 22085.98 21589.18 24592.34 24277.62 27390.84 27894.13 24281.33 24683.97 24590.15 28473.96 19296.60 25884.19 16282.94 27193.33 266
PEN-MVS86.80 21986.27 20588.40 26492.32 24375.71 29695.18 10196.38 10987.97 9382.82 26793.15 19373.39 20395.92 29176.15 27079.03 32493.59 257
cl_fuxian87.14 21186.50 19789.04 24992.20 24477.26 27891.22 27394.70 22382.01 22784.34 23590.43 27978.81 13296.61 25683.70 16981.09 29693.25 270
SCA86.32 23485.18 23689.73 23192.15 24576.60 28591.12 27491.69 29883.53 19485.50 19988.81 30466.79 27796.48 26676.65 26490.35 18896.12 147
XXY-MVS87.65 18486.85 18190.03 21792.14 24680.60 19993.76 19495.23 19382.94 20884.60 22394.02 15974.27 18495.49 31081.04 21183.68 26394.01 235
miper_ehance_all_eth87.22 20786.62 19289.02 25092.13 24777.40 27790.91 27794.81 21981.28 24784.32 23690.08 28679.26 12896.62 25383.81 16782.94 27193.04 281
IB-MVS80.51 1585.24 25383.26 26591.19 16992.13 24779.86 22091.75 26191.29 30983.28 20180.66 29188.49 31061.28 31198.46 11880.99 21479.46 32095.25 180
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas86.43 23384.98 24090.80 18792.10 24980.92 19090.24 28795.91 14273.10 33183.57 25688.39 31165.15 29297.46 19384.90 15491.43 17694.03 234
Fast-Effi-MVS+-dtu87.44 19786.72 18589.63 23492.04 25077.68 27194.03 18193.94 24585.81 14282.42 27091.32 25470.33 23997.06 23380.33 22790.23 18994.14 226
cl-mvsnet____86.52 22985.78 22288.75 25592.03 25176.46 28790.74 27994.30 23481.83 23683.34 26190.78 27275.74 16896.57 25981.74 20281.54 29093.22 273
cl-mvsnet186.53 22885.78 22288.75 25592.02 25276.45 28890.74 27994.30 23481.83 23683.34 26190.82 27075.75 16696.57 25981.73 20381.52 29193.24 271
RRT_MVS88.86 15287.68 16292.39 12092.02 25286.09 5594.38 15894.94 20685.45 15487.14 16393.84 17265.88 28997.11 22888.73 10986.77 24293.98 236
eth_miper_zixun_eth86.50 23085.77 22488.68 25891.94 25475.81 29590.47 28394.89 21282.05 22484.05 24290.46 27875.96 16196.77 24782.76 18379.36 32193.46 264
PS-MVSNAJss89.97 11989.62 11491.02 17991.90 25580.85 19295.26 9595.98 13586.26 13586.21 18294.29 15079.70 12297.65 17988.87 10888.10 22494.57 208
ITE_SJBPF88.24 27091.88 25677.05 28192.92 26685.54 15180.13 30093.30 18757.29 33296.20 28072.46 29584.71 25391.49 315
EI-MVSNet89.10 14488.86 13689.80 22891.84 25778.30 25393.70 19895.01 20385.73 14587.15 16195.28 11279.87 11997.21 22283.81 16787.36 23593.88 240
CVMVSNet84.69 26384.79 24684.37 32491.84 25764.92 35793.70 19891.47 30566.19 35286.16 18495.28 11267.18 27193.33 33780.89 21690.42 18794.88 194
MVS-HIRNet73.70 32172.20 32478.18 33891.81 25956.42 36482.94 35082.58 35955.24 35868.88 35166.48 35955.32 33895.13 31558.12 35388.42 21983.01 354
PatchmatchNetpermissive85.85 24184.70 24789.29 24291.76 26075.54 29788.49 31591.30 30881.63 24085.05 21788.70 30871.71 21796.24 27974.61 28489.05 21096.08 151
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TransMVSNet (Re)84.43 26583.06 26888.54 26191.72 26178.44 24995.18 10192.82 26982.73 21279.67 30692.12 22773.49 19995.96 29071.10 30368.73 35091.21 322
IterMVS-SCA-FT85.45 24684.53 25188.18 27291.71 26276.87 28390.19 29092.65 27485.40 15681.44 28190.54 27666.79 27795.00 31981.04 21181.05 29792.66 292
TinyColmap79.76 30877.69 31085.97 31091.71 26273.12 31489.55 29790.36 32875.03 31472.03 34790.19 28246.22 35896.19 28263.11 34281.03 29888.59 348
MDTV_nov1_ep1383.56 26391.69 26469.93 34287.75 32391.54 30278.60 28284.86 22088.90 30369.54 24896.03 28670.25 30588.93 211
miper_enhance_ethall86.90 21586.18 20789.06 24891.66 26577.58 27490.22 28994.82 21879.16 27284.48 22789.10 30079.19 12996.66 25184.06 16382.94 27192.94 284
DTE-MVSNet86.11 23685.48 23087.98 27691.65 26674.92 29994.93 11695.75 15587.36 11182.26 27293.04 19872.85 20895.82 29774.04 28677.46 33093.20 274
MIMVSNet82.59 28080.53 28588.76 25491.51 26778.32 25286.57 33190.13 33179.32 26880.70 29088.69 30952.98 34793.07 34166.03 33288.86 21294.90 193
pm-mvs186.61 22585.54 22889.82 22591.44 26880.18 20695.28 9494.85 21583.84 18681.66 27992.62 21172.45 21596.48 26679.67 23478.06 32592.82 289
Baseline_NR-MVSNet87.07 21286.63 19188.40 26491.44 26877.87 26494.23 16692.57 27584.12 18085.74 18992.08 23177.25 14896.04 28582.29 19079.94 31591.30 319
IterMVS84.88 25983.98 25787.60 28291.44 26876.03 29390.18 29192.41 27783.24 20281.06 28790.42 28066.60 28094.28 32679.46 23580.98 30292.48 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DWT-MVSNet_test84.95 25883.68 26088.77 25391.43 27173.75 30991.74 26290.98 31680.66 25683.84 24787.36 32662.44 30397.11 22878.84 24485.81 24595.46 173
MS-PatchMatch85.05 25684.16 25387.73 28091.42 27278.51 24791.25 27293.53 25677.50 29180.15 29891.58 24861.99 30695.51 30775.69 27394.35 13889.16 343
tpm284.08 26782.94 26987.48 28791.39 27371.27 33089.23 30590.37 32771.95 33984.64 22289.33 29867.30 26896.55 26375.17 27887.09 23994.63 202
v887.50 19686.71 18689.89 22291.37 27479.40 22894.50 14395.38 18684.81 17083.60 25591.33 25276.05 15997.42 19882.84 18080.51 31192.84 288
ADS-MVSNet281.66 28979.71 29787.50 28591.35 27574.19 30683.33 34788.48 34772.90 33382.24 27385.77 33864.98 29393.20 33964.57 33883.74 26195.12 182
ADS-MVSNet81.56 29179.78 29586.90 30191.35 27571.82 32783.33 34789.16 34572.90 33382.24 27385.77 33864.98 29393.76 33264.57 33883.74 26195.12 182
GA-MVS86.61 22585.27 23590.66 18891.33 27778.71 24290.40 28493.81 25385.34 15785.12 21689.57 29661.25 31297.11 22880.99 21489.59 20196.15 143
miper_lstm_enhance85.27 25284.59 25087.31 28991.28 27874.63 30087.69 32494.09 24481.20 25181.36 28389.85 29274.97 17794.30 32581.03 21379.84 31893.01 282
XVG-ACMP-BASELINE86.00 23784.84 24589.45 24091.20 27978.00 25991.70 26495.55 16985.05 16682.97 26592.25 22354.49 34197.48 19182.93 17787.45 23492.89 286
v1087.25 20486.38 19889.85 22391.19 28079.50 22594.48 14495.45 18083.79 18783.62 25491.19 25775.13 17397.42 19881.94 19680.60 30592.63 293
FMVSNet581.52 29279.60 29887.27 29091.17 28177.95 26091.49 26892.26 28276.87 29776.16 32787.91 32051.67 34892.34 34567.74 32381.16 29391.52 314
USDC82.76 27781.26 28287.26 29191.17 28174.55 30189.27 30393.39 25978.26 28775.30 33392.08 23154.43 34296.63 25271.64 29785.79 24790.61 330
CostFormer85.77 24384.94 24288.26 26991.16 28372.58 32389.47 30191.04 31576.26 30386.45 17789.97 28970.74 23196.86 24682.35 18887.07 24095.34 179
baseline286.50 23085.39 23289.84 22491.12 28476.70 28491.88 25788.58 34682.35 22079.95 30390.95 26773.42 20297.63 18280.27 22889.95 19495.19 181
tpm cat181.96 28380.27 28987.01 29891.09 28571.02 33487.38 32791.53 30366.25 35180.17 29786.35 33468.22 26796.15 28369.16 31382.29 27893.86 243
tpmvs83.35 27682.07 27487.20 29691.07 28671.00 33588.31 31891.70 29778.91 27480.49 29487.18 33069.30 25497.08 23168.12 32283.56 26593.51 262
v114487.61 19086.79 18490.06 21691.01 28779.34 23193.95 18695.42 18583.36 19985.66 19291.31 25574.98 17697.42 19883.37 17182.06 28193.42 265
v2v48287.84 17787.06 17690.17 20990.99 28879.23 23894.00 18495.13 19784.87 16885.53 19692.07 23374.45 18297.45 19484.71 15781.75 28793.85 244
SixPastTwentyTwo83.91 27082.90 27086.92 30090.99 28870.67 33793.48 20491.99 29085.54 15177.62 31992.11 22960.59 31896.87 24576.05 27177.75 32793.20 274
test-LLR85.87 24085.41 23187.25 29290.95 29071.67 32889.55 29789.88 33983.41 19784.54 22587.95 31867.25 26995.11 31681.82 19993.37 15494.97 186
test-mter84.54 26483.64 26287.25 29290.95 29071.67 32889.55 29789.88 33979.17 27184.54 22587.95 31855.56 33695.11 31681.82 19993.37 15494.97 186
v14887.04 21386.32 20389.21 24390.94 29277.26 27893.71 19794.43 22984.84 16984.36 23490.80 27176.04 16097.05 23482.12 19279.60 31993.31 267
mvs_tets88.06 17487.28 17290.38 20390.94 29279.88 21995.22 9795.66 16285.10 16484.21 24193.94 16463.53 29997.40 20588.50 11288.40 22093.87 241
MVP-Stereo85.97 23884.86 24489.32 24190.92 29482.19 15692.11 25494.19 23878.76 27978.77 31291.63 24668.38 26696.56 26175.01 28193.95 14089.20 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-test81.37 29479.30 30087.58 28390.92 29474.16 30780.99 35387.68 35170.52 34576.63 32588.81 30471.21 22392.76 34360.01 35286.93 24195.83 162
jajsoiax88.24 16887.50 16590.48 19890.89 29680.14 20895.31 8695.65 16484.97 16784.24 24094.02 15965.31 29197.42 19888.56 11188.52 21693.89 238
tpmrst85.35 24984.99 23986.43 30690.88 29767.88 34988.71 31291.43 30680.13 26086.08 18588.80 30673.05 20696.02 28782.48 18583.40 26995.40 176
gg-mvs-nofinetune81.77 28679.37 29988.99 25190.85 29877.73 27086.29 33279.63 36574.88 31883.19 26469.05 35860.34 31996.11 28475.46 27594.64 13193.11 278
D2MVS85.90 23985.09 23888.35 26690.79 29977.42 27691.83 25995.70 15880.77 25580.08 30190.02 28766.74 27996.37 27381.88 19887.97 22891.26 320
OurMVSNet-221017-085.35 24984.64 24987.49 28690.77 30072.59 32294.01 18394.40 23084.72 17279.62 30893.17 19261.91 30796.72 24881.99 19581.16 29393.16 276
v119287.25 20486.33 20290.00 22090.76 30179.04 23993.80 19295.48 17582.57 21585.48 20191.18 25973.38 20497.42 19882.30 18982.06 28193.53 259
test_djsdf89.03 14788.64 13890.21 20890.74 30279.28 23595.96 6095.90 14384.66 17385.33 21492.94 20074.02 19197.30 21189.64 9988.53 21594.05 233
v7n86.81 21885.76 22589.95 22190.72 30379.25 23795.07 10795.92 14084.45 17682.29 27190.86 26872.60 21297.53 18879.42 23980.52 31093.08 280
PVSNet_073.20 2077.22 31774.83 32284.37 32490.70 30471.10 33383.09 34989.67 34272.81 33573.93 34083.13 34660.79 31693.70 33368.54 31650.84 36188.30 350
v14419287.19 20986.35 20189.74 22990.64 30578.24 25593.92 18895.43 18381.93 23085.51 19891.05 26574.21 18797.45 19482.86 17981.56 28993.53 259
MVS_030483.46 27381.92 27688.10 27490.63 30677.49 27593.26 21593.75 25480.04 26280.44 29587.24 32947.94 35595.55 30475.79 27288.16 22391.26 320
V4287.68 18286.86 18090.15 21190.58 30780.14 20894.24 16595.28 19183.66 18985.67 19191.33 25274.73 18097.41 20384.43 16081.83 28592.89 286
CR-MVSNet85.35 24983.76 25990.12 21390.58 30779.34 23185.24 33891.96 29378.27 28685.55 19487.87 32171.03 22695.61 30273.96 28889.36 20495.40 176
RPMNet83.95 26981.53 27991.21 16890.58 30779.34 23185.24 33896.76 7771.44 34185.55 19482.97 34770.87 22998.91 8961.01 34889.36 20495.40 176
v192192086.97 21486.06 21389.69 23390.53 31078.11 25893.80 19295.43 18381.90 23285.33 21491.05 26572.66 21097.41 20382.05 19481.80 28693.53 259
v124086.78 22085.85 22089.56 23590.45 31177.79 26793.61 20095.37 18881.65 23885.43 20691.15 26171.50 22197.43 19781.47 20782.05 28393.47 263
tpm84.73 26184.02 25586.87 30390.33 31268.90 34589.06 30789.94 33680.85 25485.75 18889.86 29168.54 26495.97 28977.76 25384.05 25995.75 165
EG-PatchMatch MVS82.37 28280.34 28888.46 26390.27 31379.35 23092.80 23394.33 23377.14 29673.26 34390.18 28347.47 35796.72 24870.25 30587.32 23789.30 340
EPNet_dtu86.49 23285.94 21888.14 27390.24 31472.82 31794.11 17292.20 28386.66 12879.42 30992.36 21873.52 19895.81 29871.26 29893.66 14495.80 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPMVS83.90 27182.70 27387.51 28490.23 31572.67 31988.62 31481.96 36181.37 24585.01 21888.34 31266.31 28494.45 32175.30 27787.12 23895.43 175
EPNet91.79 8191.02 9194.10 6190.10 31685.25 7896.03 5692.05 28792.83 187.39 16095.78 10079.39 12799.01 7388.13 11797.48 8598.05 69
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchT82.68 27981.27 28186.89 30290.09 31770.94 33684.06 34490.15 33074.91 31685.63 19383.57 34469.37 25094.87 32065.19 33488.50 21794.84 195
Patchmtry82.71 27880.93 28488.06 27590.05 31876.37 29084.74 34291.96 29372.28 33881.32 28487.87 32171.03 22695.50 30968.97 31480.15 31392.32 303
pmmvs485.43 24783.86 25890.16 21090.02 31982.97 13590.27 28592.67 27375.93 30680.73 28991.74 24271.05 22595.73 30178.85 24383.46 26791.78 310
TESTMET0.1,183.74 27282.85 27186.42 30789.96 32071.21 33289.55 29787.88 34877.41 29283.37 26087.31 32756.71 33393.65 33480.62 22192.85 16594.40 219
dp81.47 29380.23 29085.17 31989.92 32165.49 35586.74 32990.10 33276.30 30281.10 28587.12 33162.81 30195.92 29168.13 32179.88 31694.09 230
K. test v381.59 29080.15 29285.91 31389.89 32269.42 34492.57 23987.71 35085.56 15073.44 34289.71 29455.58 33595.52 30677.17 26069.76 34492.78 290
MDA-MVSNet-bldmvs78.85 31376.31 31686.46 30589.76 32373.88 30888.79 31190.42 32579.16 27259.18 35888.33 31360.20 32094.04 32862.00 34568.96 34891.48 316
GG-mvs-BLEND87.94 27889.73 32477.91 26187.80 32178.23 36780.58 29283.86 34259.88 32395.33 31371.20 29992.22 17290.60 332
gm-plane-assit89.60 32568.00 34777.28 29588.99 30197.57 18579.44 237
anonymousdsp87.84 17787.09 17590.12 21389.13 32680.54 20094.67 13495.55 16982.05 22483.82 24892.12 22771.47 22297.15 22487.15 13087.80 23192.67 291
N_pmnet68.89 32468.44 32770.23 34289.07 32728.79 37488.06 31919.50 37569.47 34771.86 34884.93 34061.24 31391.75 35054.70 35677.15 33190.15 334
pmmvs584.21 26682.84 27288.34 26788.95 32876.94 28292.41 24291.91 29575.63 30880.28 29691.18 25964.59 29595.57 30377.09 26283.47 26692.53 295
PMMVS85.71 24484.96 24187.95 27788.90 32977.09 28088.68 31390.06 33372.32 33786.47 17490.76 27372.15 21694.40 32281.78 20193.49 14992.36 301
JIA-IIPM81.04 29778.98 30787.25 29288.64 33073.48 31181.75 35289.61 34373.19 33082.05 27573.71 35566.07 28895.87 29471.18 30184.60 25492.41 299
Gipumacopyleft57.99 32954.91 33167.24 34488.51 33165.59 35452.21 36390.33 32943.58 36342.84 36451.18 36420.29 36985.07 36034.77 36470.45 34351.05 363
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EU-MVSNet81.32 29580.95 28382.42 33388.50 33263.67 35893.32 20891.33 30764.02 35480.57 29392.83 20461.21 31492.27 34676.34 26780.38 31291.32 318
our_test_381.93 28480.46 28786.33 30888.46 33373.48 31188.46 31691.11 31176.46 29876.69 32488.25 31466.89 27594.36 32368.75 31579.08 32391.14 324
ppachtmachnet_test81.84 28580.07 29387.15 29788.46 33374.43 30489.04 30892.16 28475.33 31177.75 31788.99 30166.20 28595.37 31265.12 33677.60 32891.65 312
lessismore_v086.04 30988.46 33368.78 34680.59 36373.01 34490.11 28555.39 33796.43 27175.06 28065.06 35292.90 285
test0.0.03 182.41 28181.69 27784.59 32288.23 33672.89 31690.24 28787.83 34983.41 19779.86 30489.78 29367.25 26988.99 35665.18 33583.42 26891.90 309
bset_n11_16_dypcd86.83 21785.55 22790.65 18988.22 33781.70 16588.88 31090.42 32585.26 15985.49 20090.69 27467.11 27297.02 23689.51 10184.39 25593.23 272
MDA-MVSNet_test_wron79.21 31277.19 31485.29 31788.22 33772.77 31885.87 33490.06 33374.34 32162.62 35787.56 32466.14 28691.99 34866.90 33073.01 33891.10 327
YYNet179.22 31177.20 31385.28 31888.20 33972.66 32085.87 33490.05 33574.33 32262.70 35687.61 32366.09 28792.03 34766.94 32772.97 33991.15 323
pmmvs683.42 27481.60 27888.87 25288.01 34077.87 26494.96 11394.24 23774.67 31978.80 31191.09 26460.17 32196.49 26577.06 26375.40 33692.23 305
testgi80.94 30080.20 29183.18 32987.96 34166.29 35291.28 27090.70 32483.70 18878.12 31492.84 20351.37 34990.82 35363.34 34182.46 27792.43 298
Anonymous2023120681.03 29879.77 29684.82 32187.85 34270.26 34091.42 26992.08 28673.67 32677.75 31789.25 29962.43 30493.08 34061.50 34782.00 28491.12 325
OpenMVS_ROBcopyleft74.94 1979.51 30977.03 31586.93 29987.00 34376.23 29292.33 24690.74 32368.93 34874.52 33788.23 31549.58 35296.62 25357.64 35484.29 25687.94 351
LF4IMVS80.37 30379.07 30684.27 32686.64 34469.87 34389.39 30291.05 31476.38 30074.97 33590.00 28847.85 35694.25 32774.55 28580.82 30488.69 347
MIMVSNet179.38 31077.28 31285.69 31486.35 34573.67 31091.61 26792.75 27178.11 29072.64 34588.12 31648.16 35491.97 34960.32 34977.49 32991.43 317
KD-MVS_2432*160078.50 31476.02 31985.93 31186.22 34674.47 30284.80 34092.33 27879.29 26976.98 32285.92 33653.81 34593.97 32967.39 32457.42 35889.36 338
miper_refine_blended78.50 31476.02 31985.93 31186.22 34674.47 30284.80 34092.33 27879.29 26976.98 32285.92 33653.81 34593.97 32967.39 32457.42 35889.36 338
CL-MVSNet_2432*160081.74 28780.53 28585.36 31685.96 34872.45 32490.25 28693.07 26481.24 24979.85 30587.29 32870.93 22892.52 34466.95 32669.23 34691.11 326
test20.0379.95 30679.08 30582.55 33285.79 34967.74 35091.09 27591.08 31281.23 25074.48 33889.96 29061.63 30890.15 35460.08 35076.38 33489.76 336
Anonymous2024052180.44 30279.21 30284.11 32785.75 35067.89 34892.86 23193.23 26175.61 30975.59 33287.47 32550.03 35094.33 32471.14 30281.21 29290.12 335
DIV-MVS_2432*160080.20 30479.24 30183.07 33085.64 35165.29 35691.01 27693.93 24678.71 28176.32 32686.40 33359.20 32792.93 34272.59 29469.35 34591.00 328
Patchmatch-RL test81.67 28879.96 29486.81 30485.42 35271.23 33182.17 35187.50 35278.47 28377.19 32182.50 34870.81 23093.48 33582.66 18472.89 34095.71 168
UnsupCasMVSNet_eth80.07 30578.27 30985.46 31585.24 35372.63 32188.45 31794.87 21482.99 20771.64 34988.07 31756.34 33491.75 35073.48 29163.36 35592.01 308
pmmvs-eth3d80.97 29978.72 30887.74 27984.99 35479.97 21890.11 29291.65 29975.36 31073.51 34186.03 33559.45 32593.96 33175.17 27872.21 34189.29 341
CMPMVSbinary59.16 2180.52 30179.20 30384.48 32383.98 35567.63 35189.95 29593.84 25264.79 35366.81 35491.14 26257.93 33195.17 31476.25 26888.10 22490.65 329
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UnsupCasMVSNet_bld76.23 32073.27 32385.09 32083.79 35672.92 31585.65 33793.47 25871.52 34068.84 35279.08 35249.77 35193.21 33866.81 33160.52 35789.13 345
PM-MVS78.11 31676.12 31884.09 32883.54 35770.08 34188.97 30985.27 35679.93 26374.73 33686.43 33234.70 36293.48 33579.43 23872.06 34288.72 346
DSMNet-mixed76.94 31876.29 31778.89 33683.10 35856.11 36587.78 32279.77 36460.65 35675.64 33188.71 30761.56 30988.34 35760.07 35189.29 20692.21 306
new_pmnet72.15 32270.13 32578.20 33782.95 35965.68 35383.91 34582.40 36062.94 35564.47 35579.82 35142.85 36086.26 35957.41 35574.44 33782.65 356
new-patchmatchnet76.41 31975.17 32180.13 33582.65 36059.61 36087.66 32591.08 31278.23 28869.85 35083.22 34554.76 33991.63 35264.14 34064.89 35389.16 343
ambc83.06 33179.99 36163.51 35977.47 35692.86 26774.34 33984.45 34128.74 36395.06 31873.06 29368.89 34990.61 330
TDRefinement79.81 30777.34 31187.22 29579.24 36275.48 29893.12 22092.03 28876.45 29975.01 33491.58 24849.19 35396.44 27070.22 30769.18 34789.75 337
pmmvs371.81 32368.71 32681.11 33475.86 36370.42 33986.74 32983.66 35858.95 35768.64 35380.89 35036.93 36189.52 35563.10 34363.59 35483.39 353
DeepMVS_CXcopyleft56.31 34874.23 36451.81 36756.67 37344.85 36248.54 36275.16 35327.87 36558.74 36940.92 36252.22 36058.39 362
FPMVS64.63 32662.55 32870.88 34170.80 36556.71 36284.42 34384.42 35751.78 36049.57 36081.61 34923.49 36681.48 36240.61 36376.25 33574.46 359
PMMVS259.60 32756.40 33069.21 34368.83 36646.58 36973.02 36077.48 36855.07 35949.21 36172.95 35717.43 37180.04 36349.32 36044.33 36380.99 358
wuyk23d21.27 33720.48 34023.63 35268.59 36736.41 37249.57 3646.85 3769.37 3697.89 3714.46 3724.03 37531.37 37017.47 36916.07 3693.12 367
E-PMN43.23 33342.29 33546.03 34965.58 36837.41 37173.51 35864.62 36933.99 36528.47 36947.87 36519.90 37067.91 36622.23 36724.45 36532.77 364
LCM-MVSNet66.00 32562.16 32977.51 33964.51 36958.29 36183.87 34690.90 31948.17 36154.69 35973.31 35616.83 37286.75 35865.47 33361.67 35687.48 352
EMVS42.07 33441.12 33644.92 35063.45 37035.56 37373.65 35763.48 37033.05 36626.88 37045.45 36621.27 36867.14 36719.80 36823.02 36732.06 365
MVEpermissive39.65 2343.39 33238.59 33857.77 34656.52 37148.77 36855.38 36258.64 37229.33 36728.96 36852.65 3634.68 37464.62 36828.11 36633.07 36459.93 361
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high58.88 32854.22 33272.86 34056.50 37256.67 36380.75 35486.00 35373.09 33237.39 36564.63 36122.17 36779.49 36443.51 36123.96 36682.43 357
test_method50.52 33148.47 33356.66 34752.26 37318.98 37641.51 36581.40 36210.10 36844.59 36375.01 35428.51 36468.16 36553.54 35749.31 36282.83 355
PMVScopyleft47.18 2252.22 33048.46 33463.48 34545.72 37446.20 37073.41 35978.31 36641.03 36430.06 36765.68 3606.05 37383.43 36130.04 36565.86 35160.80 360
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt35.64 33539.24 33724.84 35114.87 37523.90 37562.71 36151.51 3746.58 37036.66 36662.08 36244.37 35930.34 37152.40 35822.00 36820.27 366
testmvs8.92 33811.52 3411.12 3541.06 3760.46 37886.02 3330.65 3770.62 3712.74 3729.52 3700.31 3770.45 3732.38 3700.39 3702.46 369
test1238.76 33911.22 3421.39 3530.85 3770.97 37785.76 3360.35 3780.54 3722.45 3738.14 3710.60 3760.48 3722.16 3710.17 3712.71 368
eth-test20.00 378
eth-test0.00 378
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k22.14 33629.52 3390.00 3550.00 3780.00 3790.00 36695.76 1540.00 3730.00 37494.29 15075.66 1690.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas6.64 3418.86 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37379.70 1220.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re7.82 34010.43 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37493.88 1690.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
PC_three_145282.47 21697.09 997.07 4492.72 198.04 15492.70 4299.02 1298.86 9
test_241102_TWO97.44 1490.31 2997.62 598.07 491.46 1099.58 895.66 499.12 698.98 8
test_0728_THIRD90.75 2097.04 1098.05 892.09 699.55 1595.64 699.13 399.13 1
GSMVS96.12 147
sam_mvs171.70 21896.12 147
sam_mvs70.60 232
MTGPAbinary96.97 52
test_post188.00 3209.81 36969.31 25395.53 30576.65 264
test_post10.29 36870.57 23695.91 293
patchmatchnet-post83.76 34371.53 22096.48 266
MTMP96.16 4760.64 371
test9_res91.91 6698.71 3498.07 67
agg_prior290.54 9298.68 3998.27 51
test_prior485.96 6094.11 172
test_prior294.12 17087.67 10492.63 7596.39 7586.62 4291.50 7698.67 41
旧先验293.36 20771.25 34294.37 3097.13 22786.74 135
新几何293.11 222
无先验93.28 21496.26 11473.95 32499.05 6380.56 22296.59 132
原ACMM292.94 229
testdata298.75 10378.30 248
segment_acmp87.16 38
testdata192.15 25287.94 94
plane_prior596.22 11998.12 14088.15 11589.99 19194.63 202
plane_prior494.86 127
plane_prior382.75 13990.26 3386.91 168
plane_prior295.85 6490.81 18
plane_prior82.73 14295.21 9889.66 4789.88 196
n20.00 379
nn0.00 379
door-mid85.49 354
test1196.57 98
door85.33 355
HQP5-MVS81.56 167
BP-MVS87.11 132
HQP4-MVS85.43 20697.96 16194.51 212
HQP3-MVS96.04 13389.77 198
HQP2-MVS73.83 195
MDTV_nov1_ep13_2view55.91 36687.62 32673.32 32984.59 22470.33 23974.65 28395.50 171
ACMMP++_ref87.47 232
ACMMP++88.01 227
Test By Simon80.02 117