This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorcourty.delive.electrofacadekickermeadowofficepipesplaygr.reliefrelief.terraceterrai.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
DVP-MVS++89.14 191.86 185.97 192.55 292.38 191.69 476.31 393.31 183.11 392.44 491.18 181.17 289.55 287.93 891.01 796.21 1
DPE-MVScopyleft88.63 491.29 485.53 390.87 892.20 491.98 276.00 690.55 882.09 693.85 190.75 281.25 188.62 887.59 1490.96 995.48 4
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft88.67 391.62 285.22 490.47 1692.36 290.69 976.15 493.08 282.75 492.19 690.71 380.45 689.27 687.91 990.82 1195.84 2
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SED-MVS88.85 291.59 385.67 290.54 1592.29 391.71 376.40 292.41 383.24 292.50 390.64 481.10 389.53 388.02 791.00 895.73 3
SD-MVS86.96 1089.45 984.05 1490.13 1989.23 2289.77 1874.59 1489.17 1080.70 1089.93 1189.67 578.47 1287.57 1886.79 2290.67 1793.76 16
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS88.09 590.84 584.88 790.00 2391.80 691.63 575.80 791.99 481.23 892.54 289.18 680.89 487.99 1587.91 989.70 4594.51 7
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SF-MVS87.47 889.70 884.86 891.26 691.10 890.90 675.65 889.21 981.25 791.12 888.93 778.82 1087.42 1986.23 3091.28 393.90 13
SMA-MVScopyleft87.56 790.17 784.52 991.71 390.57 990.77 875.19 1390.67 780.50 1386.59 1788.86 878.09 1589.92 189.41 190.84 1095.19 5
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.86.88 1189.23 1084.14 1289.78 2688.67 3090.59 1073.46 2688.99 1180.52 1291.26 788.65 979.91 886.96 2986.22 3190.59 1993.83 14
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG85.28 2187.68 1982.49 2489.95 2491.99 588.82 2471.20 3786.41 2179.63 1679.26 2988.36 1073.94 4186.64 3186.67 2591.40 294.41 8
APDe-MVScopyleft88.00 690.50 685.08 590.95 791.58 792.03 175.53 1291.15 580.10 1492.27 588.34 1180.80 588.00 1486.99 1891.09 595.16 6
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS++copyleft87.09 988.92 1384.95 692.61 187.91 4090.23 1576.06 588.85 1281.20 987.33 1387.93 1279.47 988.59 988.23 590.15 3493.60 20
TSAR-MVS + ACMM85.10 2388.81 1580.77 3489.55 2988.53 3288.59 2772.55 3087.39 1571.90 4290.95 987.55 1374.57 3687.08 2686.54 2687.47 9393.67 17
SR-MVS88.99 3473.57 2487.54 14
train_agg84.86 2487.21 2282.11 2690.59 1385.47 5589.81 1673.55 2583.95 3173.30 3889.84 1287.23 1575.61 3386.47 3385.46 3889.78 4092.06 31
9.1486.88 16
APD-MVScopyleft86.84 1288.91 1484.41 1090.66 1190.10 1290.78 775.64 987.38 1678.72 1890.68 1086.82 1780.15 787.13 2486.45 2890.51 2193.83 14
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS86.36 1488.19 1784.23 1191.33 589.84 1490.34 1175.56 1087.36 1778.97 1781.19 2886.76 1878.74 1189.30 588.58 290.45 2794.33 10
MTAPA83.48 186.45 19
DeepPCF-MVS79.04 185.30 2088.93 1281.06 3188.77 3690.48 1085.46 4673.08 2890.97 673.77 3784.81 2285.95 2077.43 2288.22 1187.73 1187.85 8694.34 9
MCST-MVS85.13 2286.62 2383.39 1790.55 1489.82 1689.29 2173.89 2284.38 3076.03 2979.01 3185.90 2178.47 1287.81 1686.11 3392.11 193.29 22
TSAR-MVS + GP.83.69 2986.58 2580.32 3585.14 5486.96 4484.91 5070.25 4184.71 2873.91 3685.16 2185.63 2277.92 1785.44 4285.71 3689.77 4192.45 26
ACMMP_NAP86.52 1389.01 1183.62 1690.28 1890.09 1390.32 1374.05 1988.32 1379.74 1587.04 1585.59 2376.97 2889.35 488.44 490.35 3094.27 11
SteuartSystems-ACMMP85.99 1688.31 1683.27 2090.73 1089.84 1490.27 1474.31 1584.56 2975.88 3087.32 1485.04 2477.31 2389.01 788.46 391.14 493.96 12
Skip Steuart: Steuart Systems R&D Blog.
NCCC85.34 1986.59 2483.88 1591.48 488.88 2589.79 1775.54 1186.67 2077.94 2276.55 3484.99 2578.07 1688.04 1287.68 1290.46 2693.31 21
MTMP82.66 584.91 26
MP-MVScopyleft85.50 1887.40 2183.28 1990.65 1289.51 1989.16 2374.11 1883.70 3378.06 2185.54 2084.89 2777.31 2387.40 2187.14 1790.41 2893.65 19
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HFP-MVS86.15 1587.95 1884.06 1390.80 989.20 2389.62 1974.26 1687.52 1480.63 1186.82 1684.19 2878.22 1487.58 1787.19 1690.81 1293.13 24
TPM-MVS90.07 2188.36 3588.45 2977.10 2575.60 3783.98 2971.33 6389.75 4389.62 53
Ray Leroy Khuboni and Hongjun Xu: Textureless Resilient Propagation Matching in Multiple View Stereosis (TPM-MVS). SATNAC 2025
CP-MVS84.74 2686.43 2682.77 2389.48 3088.13 3988.64 2573.93 2184.92 2476.77 2681.94 2683.50 3077.29 2586.92 3086.49 2790.49 2293.14 23
MVS_030481.73 3883.86 3579.26 4186.22 4989.18 2486.41 3867.15 6475.28 5570.75 5274.59 4283.49 3174.42 3887.05 2786.34 2990.58 2091.08 39
ACMMPR85.52 1787.53 2083.17 2190.13 1989.27 2089.30 2073.97 2086.89 1977.14 2486.09 1883.18 3277.74 1987.42 1987.20 1590.77 1392.63 25
DPM-MVS83.30 3184.33 3482.11 2689.56 2888.49 3390.33 1273.24 2783.85 3276.46 2772.43 5282.65 3373.02 4886.37 3586.91 1990.03 3689.62 53
PHI-MVS82.36 3585.89 2978.24 4786.40 4789.52 1885.52 4469.52 4882.38 4165.67 7181.35 2782.36 3473.07 4787.31 2386.76 2389.24 5291.56 34
PGM-MVS84.42 2786.29 2782.23 2590.04 2288.82 2689.23 2271.74 3582.82 3874.61 3384.41 2382.09 3577.03 2787.13 2486.73 2490.73 1592.06 31
CANet81.62 3983.41 3679.53 4087.06 4288.59 3185.47 4567.96 5776.59 5374.05 3474.69 4181.98 3672.98 4986.14 3985.47 3789.68 4690.42 46
XVS86.63 4588.68 2785.00 4771.81 4581.92 3790.47 23
X-MVStestdata86.63 4588.68 2785.00 4771.81 4581.92 3790.47 23
X-MVS83.23 3285.20 3280.92 3389.71 2788.68 2788.21 3273.60 2382.57 3971.81 4577.07 3281.92 3771.72 5886.98 2886.86 2090.47 2392.36 28
CPTT-MVS81.77 3783.10 3880.21 3685.93 5086.45 4987.72 3470.98 3882.54 4071.53 4874.23 4581.49 4076.31 3182.85 7181.87 6788.79 6592.26 29
CDPH-MVS82.64 3385.03 3379.86 3889.41 3188.31 3688.32 3071.84 3480.11 4567.47 6482.09 2581.44 4171.85 5685.89 4186.15 3290.24 3291.25 37
mPP-MVS89.90 2581.29 42
DeepC-MVS_fast78.24 384.27 2885.50 3082.85 2290.46 1789.24 2187.83 3374.24 1784.88 2576.23 2875.26 3981.05 4377.62 2088.02 1387.62 1390.69 1692.41 27
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++82.09 3682.66 4081.42 2987.03 4387.22 4385.82 4270.04 4280.30 4478.66 1968.67 7281.04 4477.81 1885.19 4684.88 4389.19 5691.31 36
DeepC-MVS78.47 284.81 2586.03 2883.37 1889.29 3290.38 1188.61 2676.50 186.25 2277.22 2375.12 4080.28 4577.59 2188.39 1088.17 691.02 693.66 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UA-Net74.47 7877.80 6870.59 9285.33 5385.40 5773.54 14565.98 7360.65 13156.00 11072.11 5379.15 4654.63 17083.13 6882.25 6488.04 8081.92 127
OMC-MVS80.26 4182.59 4177.54 5083.04 6285.54 5483.25 5665.05 7987.32 1872.42 4172.04 5478.97 4773.30 4583.86 5781.60 7188.15 7588.83 58
PCF-MVS73.28 679.42 4980.41 5678.26 4684.88 6088.17 3786.08 3969.85 4375.23 5768.43 5868.03 7578.38 4871.76 5781.26 8980.65 8988.56 6891.18 38
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EC-MVSNet79.44 4881.35 4777.22 5282.95 6384.67 6381.31 6063.65 9272.47 6968.75 5773.15 4778.33 4975.99 3286.06 4083.96 4990.67 1790.79 41
ACMMPcopyleft83.42 3085.27 3181.26 3088.47 3788.49 3388.31 3172.09 3283.42 3472.77 4082.65 2478.22 5075.18 3486.24 3885.76 3590.74 1492.13 30
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
QAPM78.47 5980.22 5876.43 5885.03 5686.75 4780.62 6666.00 7273.77 6465.35 7365.54 8378.02 5172.69 5083.71 5983.36 5688.87 6290.41 47
3Dnovator+75.73 482.40 3482.76 3981.97 2888.02 3889.67 1786.60 3771.48 3681.28 4378.18 2064.78 8777.96 5277.13 2687.32 2286.83 2190.41 2891.48 35
MAR-MVS79.21 5280.32 5777.92 4987.46 4088.15 3883.95 5367.48 6374.28 5968.25 5964.70 8877.04 5372.17 5285.42 4385.00 4288.22 7287.62 67
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HQP-MVS81.19 4083.27 3778.76 4487.40 4185.45 5686.95 3570.47 4081.31 4266.91 6879.24 3076.63 5471.67 5984.43 5483.78 5289.19 5692.05 33
DELS-MVS79.15 5581.07 5176.91 5583.54 6187.31 4284.45 5164.92 8069.98 7169.34 5671.62 5676.26 5569.84 6886.57 3285.90 3489.39 4989.88 50
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CS-MVS-test78.79 5880.72 5276.53 5781.11 8283.88 7079.69 7663.72 9173.80 6369.95 5575.40 3876.17 5674.85 3584.50 5382.78 6089.87 3988.54 60
sasdasda79.16 5382.37 4275.41 6382.33 6986.38 5080.80 6363.18 9882.90 3667.34 6572.79 4976.07 5769.62 6983.46 6484.41 4589.20 5490.60 43
canonicalmvs79.16 5382.37 4275.41 6382.33 6986.38 5080.80 6363.18 9882.90 3667.34 6572.79 4976.07 5769.62 6983.46 6484.41 4589.20 5490.60 43
CS-MVS79.22 5181.11 5077.01 5481.36 7784.03 6780.35 6763.25 9673.43 6670.37 5374.10 4676.03 5976.40 3086.32 3783.95 5090.34 3189.93 49
TAPA-MVS71.42 977.69 6380.05 5974.94 6780.68 8684.52 6581.36 5963.14 10084.77 2664.82 7668.72 7075.91 6071.86 5581.62 7879.55 10687.80 8885.24 92
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MGCFI-Net76.55 6881.71 4470.52 9381.71 7384.62 6475.02 12062.17 12182.91 3553.58 12572.78 5175.87 6161.75 12282.96 6982.61 6288.86 6390.26 48
3Dnovator73.76 579.75 4580.52 5578.84 4384.94 5987.35 4184.43 5265.54 7578.29 4973.97 3563.00 9575.62 6274.07 4085.00 4785.34 3990.11 3589.04 56
MVS_111021_HR80.13 4281.46 4678.58 4585.77 5185.17 5983.45 5569.28 4974.08 6270.31 5474.31 4475.26 6373.13 4686.46 3485.15 4189.53 4789.81 51
DI_MVS_plusplus_trai75.13 7676.12 8273.96 7578.18 10681.55 9080.97 6262.54 11568.59 7765.13 7561.43 9874.81 6469.32 7381.01 9479.59 10487.64 9185.89 81
casdiffmvs_mvgpermissive77.79 6279.55 6175.73 6181.56 7484.70 6282.12 5764.26 8774.27 6067.93 6170.83 6174.66 6569.19 7483.33 6681.94 6689.29 5187.14 72
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet79.08 5680.62 5377.28 5188.90 3583.17 8283.65 5472.41 3174.41 5867.15 6776.78 3374.37 6664.43 9983.70 6083.69 5387.15 9788.19 62
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS79.68 4779.28 6280.15 3787.99 3986.77 4688.52 2872.72 2964.55 10067.65 6367.87 7674.33 6774.31 3986.37 3585.25 4089.73 4489.81 51
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
casdiffmvspermissive76.76 6678.46 6574.77 6980.32 9183.73 7480.65 6563.24 9773.58 6566.11 7069.39 6774.09 6869.49 7282.52 7479.35 11188.84 6486.52 77
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UGNet72.78 8777.67 6967.07 13871.65 16783.24 8075.20 11463.62 9364.93 9656.72 10671.82 5573.30 6949.02 18381.02 9380.70 8786.22 12588.67 59
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS_Test75.37 7477.13 7773.31 7879.07 10081.32 9579.98 6960.12 14469.72 7464.11 7870.53 6273.22 7068.90 7580.14 10979.48 10887.67 9085.50 87
CLD-MVS79.35 5081.23 4877.16 5385.01 5786.92 4585.87 4160.89 13380.07 4775.35 3272.96 4873.21 7168.43 7985.41 4484.63 4487.41 9485.44 89
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
diffmvspermissive74.86 7777.37 7471.93 8275.62 12980.35 10879.42 7960.15 14372.81 6864.63 7771.51 5773.11 7266.53 9379.02 12377.98 12585.25 14886.83 76
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR78.13 6179.85 6076.13 5981.12 8181.50 9280.28 6865.25 7776.09 5471.32 5076.49 3572.87 7372.21 5182.79 7281.29 7386.59 11987.91 64
OpenMVScopyleft70.44 1076.15 7176.82 7975.37 6585.01 5784.79 6178.99 8462.07 12271.27 7067.88 6257.91 12472.36 7470.15 6782.23 7681.41 7288.12 7787.78 66
EPP-MVSNet74.00 8177.41 7370.02 10180.53 8883.91 6974.99 12162.68 11365.06 9549.77 14768.68 7172.09 7563.06 10782.49 7580.73 8189.12 5888.91 57
baseline70.45 10874.09 9066.20 14770.95 17575.67 15474.26 13453.57 17568.33 7858.42 9669.87 6571.45 7661.55 12374.84 15974.76 16278.42 18183.72 112
PVSNet_Blended_VisFu76.57 6777.90 6775.02 6680.56 8786.58 4879.24 8066.18 6964.81 9768.18 6065.61 8171.45 7667.05 8384.16 5581.80 6888.90 6090.92 40
GG-mvs-BLEND46.86 21167.51 15122.75 2170.05 22976.21 15164.69 1870.04 22561.90 1210.09 23055.57 13571.32 780.08 22570.54 18767.19 19671.58 20669.86 193
Vis-MVSNetpermissive72.77 8877.20 7667.59 12874.19 14384.01 6876.61 10861.69 12760.62 13250.61 14270.25 6471.31 7955.57 16583.85 5882.28 6386.90 10688.08 63
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous2023121171.90 9372.48 10471.21 8580.14 9381.53 9176.92 10362.89 10464.46 10258.94 9143.80 19470.98 8062.22 11180.70 9780.19 9686.18 12685.73 82
LGP-MVS_train79.83 4381.22 4978.22 4886.28 4885.36 5886.76 3669.59 4677.34 5065.14 7475.68 3670.79 8171.37 6284.60 5084.01 4790.18 3390.74 42
IS_MVSNet73.33 8477.34 7568.65 11681.29 7883.47 7674.45 12763.58 9465.75 9248.49 15267.11 8070.61 8254.63 17084.51 5283.58 5489.48 4886.34 79
PVSNet_BlendedMVS76.21 6977.52 7174.69 7079.46 9783.79 7277.50 9864.34 8569.88 7271.88 4368.54 7370.42 8367.05 8383.48 6279.63 10287.89 8486.87 74
PVSNet_Blended76.21 6977.52 7174.69 7079.46 9783.79 7277.50 9864.34 8569.88 7271.88 4368.54 7370.42 8367.05 8383.48 6279.63 10287.89 8486.87 74
CANet_DTU73.29 8576.96 7869.00 11377.04 11882.06 8879.49 7856.30 17067.85 8153.29 12771.12 5970.37 8561.81 12181.59 7980.96 7886.09 12884.73 101
DCV-MVSNet73.65 8375.78 8371.16 8680.19 9279.27 11777.45 10061.68 12866.73 8558.72 9465.31 8469.96 8662.19 11281.29 8880.97 7786.74 11286.91 73
ETV-MVS77.32 6478.81 6375.58 6282.24 7183.64 7579.98 6964.02 8869.64 7663.90 7970.89 6069.94 8773.41 4485.39 4583.91 5189.92 3788.31 61
CNLPA77.20 6577.54 7076.80 5682.63 6584.31 6679.77 7364.64 8185.17 2373.18 3956.37 13169.81 8874.53 3781.12 9278.69 11786.04 13387.29 70
Vis-MVSNet (Re-imp)67.83 13873.52 9361.19 17178.37 10576.72 14766.80 17762.96 10265.50 9334.17 19867.19 7969.68 8939.20 20179.39 11979.44 10985.68 14076.73 168
RPSCF67.64 14371.25 11163.43 16461.86 20470.73 17867.26 17250.86 19274.20 6158.91 9267.49 7769.33 9064.10 10271.41 17868.45 19277.61 18377.17 164
ACMM72.26 878.86 5778.13 6679.71 3986.89 4483.40 7786.02 4070.50 3975.28 5571.49 4963.01 9469.26 9173.57 4384.11 5683.98 4889.76 4287.84 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP73.23 779.79 4480.53 5478.94 4285.61 5285.68 5385.61 4369.59 4677.33 5171.00 5174.45 4369.16 9271.88 5483.15 6783.37 5589.92 3790.57 45
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GBi-Net70.78 10373.37 9667.76 12172.95 15578.00 13075.15 11562.72 10864.13 10351.44 13558.37 11969.02 9357.59 14681.33 8580.72 8286.70 11382.02 121
test170.78 10373.37 9667.76 12172.95 15578.00 13075.15 11562.72 10864.13 10351.44 13558.37 11969.02 9357.59 14681.33 8580.72 8286.70 11382.02 121
FMVSNet370.49 10772.90 10167.67 12672.88 15877.98 13374.96 12462.72 10864.13 10351.44 13558.37 11969.02 9357.43 14979.43 11879.57 10586.59 11981.81 128
Effi-MVS+75.28 7576.20 8174.20 7481.15 8083.24 8081.11 6163.13 10166.37 8660.27 8964.30 9168.88 9670.93 6681.56 8081.69 6988.61 6687.35 68
AdaColmapbinary79.74 4678.62 6481.05 3289.23 3386.06 5284.95 4971.96 3379.39 4875.51 3163.16 9368.84 9776.51 2983.55 6182.85 5988.13 7686.46 78
GeoE74.23 7974.84 8773.52 7680.42 9081.46 9379.77 7361.06 13167.23 8363.67 8059.56 11168.74 9867.90 8080.25 10779.37 11088.31 6987.26 71
PLCcopyleft68.99 1175.68 7275.31 8476.12 6082.94 6481.26 9679.94 7166.10 7077.15 5266.86 6959.13 11468.53 9973.73 4280.38 10279.04 11287.13 10181.68 129
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FMVSNet270.39 10972.67 10367.72 12472.95 15578.00 13075.15 11562.69 11263.29 11151.25 13955.64 13468.49 10057.59 14680.91 9580.35 9486.70 11382.02 121
Anonymous20240521172.16 10780.85 8581.85 8976.88 10565.40 7662.89 11546.35 19067.99 10162.05 11481.15 9180.38 9385.97 13684.50 104
EIA-MVS75.64 7376.60 8074.53 7282.43 6883.84 7178.32 9162.28 12065.96 9063.28 8368.95 6867.54 10271.61 6082.55 7381.63 7089.24 5285.72 83
IterMVS-LS71.69 9672.82 10270.37 9577.54 11476.34 15075.13 11860.46 13961.53 12557.57 10164.89 8667.33 10366.04 9677.09 14477.37 13885.48 14485.18 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PMMVS65.06 15969.17 13260.26 17655.25 21763.43 20366.71 17843.01 21262.41 11750.64 14169.44 6667.04 10463.29 10574.36 16273.54 16882.68 16673.99 185
FA-MVS(training)73.66 8274.95 8672.15 8178.63 10480.46 10678.92 8554.79 17369.71 7565.37 7262.04 9666.89 10567.10 8280.72 9679.87 9988.10 7984.97 97
EPNet_dtu68.08 13371.00 11264.67 15579.64 9668.62 18775.05 11963.30 9566.36 8745.27 17367.40 7866.84 10643.64 19275.37 15574.98 16181.15 17177.44 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + COLMAP78.34 6081.64 4574.48 7380.13 9485.01 6081.73 5865.93 7484.75 2761.68 8585.79 1966.27 10771.39 6182.91 7080.78 8086.01 13485.98 80
MS-PatchMatch70.17 11270.49 11669.79 10380.98 8477.97 13577.51 9758.95 15662.33 11855.22 11453.14 15965.90 10862.03 11579.08 12277.11 14284.08 15977.91 159
Effi-MVS+-dtu71.82 9471.86 10971.78 8378.77 10180.47 10578.55 8861.67 12960.68 13055.49 11158.48 11865.48 10968.85 7676.92 14575.55 15787.35 9585.46 88
HyFIR lowres test69.47 12068.94 13470.09 10076.77 12082.93 8476.63 10760.17 14259.00 13954.03 11940.54 20465.23 11067.89 8176.54 15178.30 12285.03 15180.07 145
FMVSNet168.84 12670.47 11766.94 14071.35 17277.68 13874.71 12562.35 11956.93 15249.94 14550.01 17964.59 11157.07 15181.33 8580.72 8286.25 12482.00 124
gg-mvs-nofinetune62.55 17265.05 17059.62 18078.72 10377.61 13970.83 15953.63 17439.71 21322.04 21536.36 20864.32 11247.53 18581.16 9079.03 11385.00 15277.17 164
baseline170.10 11372.17 10667.69 12579.74 9576.80 14573.91 13864.38 8462.74 11648.30 15464.94 8564.08 11354.17 17281.46 8178.92 11485.66 14176.22 169
CHOSEN 280x42058.70 19361.88 19254.98 19655.45 21650.55 21964.92 18640.36 21355.21 16438.13 19248.31 18563.76 11463.03 10873.73 16668.58 19068.00 21473.04 187
MVSTER72.06 9274.24 8869.51 10770.39 17875.97 15376.91 10457.36 16764.64 9961.39 8768.86 6963.76 11463.46 10481.44 8279.70 10187.56 9285.31 91
FC-MVSNet-train72.60 8975.07 8569.71 10481.10 8378.79 12373.74 14465.23 7866.10 8953.34 12670.36 6363.40 11656.92 15481.44 8280.96 7887.93 8284.46 105
CostFormer68.92 12569.58 12668.15 11975.98 12576.17 15278.22 9351.86 18765.80 9161.56 8663.57 9262.83 11761.85 11970.40 19168.67 18879.42 17779.62 150
CDS-MVSNet67.65 14269.83 12365.09 15175.39 13176.55 14874.42 13063.75 9053.55 17749.37 14959.41 11262.45 11844.44 19079.71 11279.82 10083.17 16577.36 163
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+73.11 8673.66 9272.48 8077.72 11280.88 10278.55 8858.83 15965.19 9460.36 8859.98 10862.42 11971.22 6481.66 7780.61 9188.20 7384.88 100
ECVR-MVScopyleft72.20 9173.91 9170.20 9881.49 7583.27 7875.74 10967.59 6168.19 7949.31 15055.77 13362.00 12058.82 13684.76 4882.94 5788.27 7080.41 142
CHOSEN 1792x268869.20 12369.26 13069.13 11076.86 11978.93 11977.27 10160.12 14461.86 12254.42 11542.54 19861.61 12166.91 8878.55 12978.14 12479.23 17983.23 116
LS3D74.08 8073.39 9574.88 6885.05 5582.62 8679.71 7568.66 5272.82 6758.80 9357.61 12561.31 12271.07 6580.32 10378.87 11686.00 13580.18 144
test111171.56 9773.44 9469.38 10981.16 7982.95 8374.99 12167.68 5966.89 8446.33 16655.19 13960.91 12357.99 14484.59 5182.70 6188.12 7780.85 135
Fast-Effi-MVS+-dtu68.34 13069.47 12767.01 13975.15 13277.97 13577.12 10255.40 17257.87 14246.68 16456.17 13260.39 12462.36 11076.32 15276.25 15385.35 14781.34 131
test-LLR64.42 16264.36 17564.49 15675.02 13463.93 20066.61 17961.96 12354.41 17247.77 15757.46 12660.25 12555.20 16770.80 18569.33 18380.40 17574.38 182
TESTMET0.1,161.10 18664.36 17557.29 18857.53 21263.93 20066.61 17936.22 21654.41 17247.77 15757.46 12660.25 12555.20 16770.80 18569.33 18380.40 17574.38 182
SCA65.40 15766.58 16064.02 15970.65 17673.37 16967.35 17153.46 17763.66 10854.14 11760.84 10160.20 12761.50 12469.96 19268.14 19377.01 18869.91 192
IterMVS-SCA-FT66.89 15269.22 13164.17 15771.30 17375.64 15571.33 15653.17 17957.63 14849.08 15160.72 10260.05 12863.09 10674.99 15873.92 16577.07 18781.57 130
IterMVS66.36 15368.30 14464.10 15869.48 18574.61 16573.41 14850.79 19357.30 15048.28 15560.64 10359.92 12960.85 13174.14 16372.66 17281.80 16878.82 155
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IB-MVS66.94 1271.21 10271.66 11070.68 8979.18 9982.83 8572.61 15161.77 12659.66 13663.44 8253.26 15659.65 13059.16 13576.78 14882.11 6587.90 8387.33 69
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-mter60.84 18764.62 17456.42 19155.99 21564.18 19865.39 18434.23 21754.39 17446.21 16857.40 12859.49 13155.86 16171.02 18469.65 18280.87 17476.20 170
ET-MVSNet_ETH3D72.46 9074.19 8970.44 9462.50 20281.17 9779.90 7262.46 11864.52 10157.52 10271.49 5859.15 13272.08 5378.61 12881.11 7588.16 7483.29 115
MDTV_nov1_ep1364.37 16365.24 16763.37 16568.94 18770.81 17772.40 15450.29 19660.10 13553.91 12160.07 10759.15 13257.21 15069.43 19567.30 19577.47 18469.78 194
thisisatest053071.48 9973.01 9869.70 10573.83 14878.62 12574.53 12659.12 15364.13 10358.63 9564.60 8958.63 13464.27 10080.28 10580.17 9787.82 8784.64 103
TAMVS59.58 19162.81 18555.81 19366.03 19465.64 19763.86 19148.74 20149.95 19337.07 19554.77 14258.54 13544.44 19072.29 17171.79 17474.70 19866.66 200
tttt051771.41 10072.95 9969.60 10673.70 15078.70 12474.42 13059.12 15363.89 10758.35 9864.56 9058.39 13664.27 10080.29 10480.17 9787.74 8984.69 102
PatchmatchNetpermissive64.21 16564.65 17363.69 16171.29 17468.66 18669.63 16251.70 18963.04 11253.77 12259.83 11058.34 13760.23 13368.54 19866.06 20075.56 19468.08 198
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CVMVSNet62.55 17265.89 16158.64 18466.95 19169.15 18466.49 18156.29 17152.46 18332.70 19959.27 11358.21 13850.09 18171.77 17771.39 17779.31 17878.99 154
UniMVSNet_NR-MVSNet70.59 10672.19 10568.72 11477.72 11280.72 10373.81 14269.65 4561.99 12043.23 17960.54 10457.50 13958.57 13879.56 11581.07 7689.34 5083.97 107
v870.23 11069.86 12270.67 9074.69 13879.82 11278.79 8659.18 15258.80 14058.20 9955.00 14057.33 14066.31 9577.51 13876.71 14786.82 10983.88 110
UniMVSNet (Re)69.53 11871.90 10866.76 14376.42 12180.93 9972.59 15268.03 5661.75 12341.68 18458.34 12257.23 14153.27 17579.53 11680.62 9088.57 6784.90 99
baseline269.69 11670.27 11869.01 11275.72 12877.13 14373.82 14158.94 15761.35 12657.09 10461.68 9757.17 14261.99 11678.10 13376.58 14986.48 12279.85 146
V4268.76 12869.63 12567.74 12364.93 19878.01 12978.30 9256.48 16958.65 14156.30 10954.26 14757.03 14364.85 9877.47 13977.01 14385.60 14284.96 98
pm-mvs165.62 15567.42 15263.53 16373.66 15176.39 14969.66 16160.87 13449.73 19443.97 17851.24 17557.00 14448.16 18479.89 11077.84 12784.85 15579.82 147
dmvs_re67.22 14967.92 14766.40 14675.94 12670.55 18074.97 12363.87 8957.07 15144.75 17554.29 14456.72 14554.65 16979.53 11677.51 13484.20 15879.78 148
FC-MVSNet-test56.90 19765.20 16847.21 20766.98 19063.20 20549.11 21658.60 16059.38 13811.50 22365.60 8256.68 14624.66 21571.17 18171.36 17872.38 20569.02 196
CR-MVSNet64.83 16065.54 16564.01 16070.64 17769.41 18265.97 18252.74 18257.81 14452.65 13054.27 14556.31 14760.92 12872.20 17473.09 17081.12 17275.69 174
MSDG71.52 9869.87 12173.44 7782.21 7279.35 11679.52 7764.59 8266.15 8861.87 8453.21 15856.09 14865.85 9778.94 12478.50 11986.60 11876.85 167
EPMVS60.00 19061.97 19157.71 18768.46 18863.17 20664.54 18848.23 20563.30 11044.72 17660.19 10556.05 14950.85 18065.27 20562.02 20769.44 21163.81 205
v14867.85 13767.53 15068.23 11873.25 15377.57 14174.26 13457.36 16755.70 16257.45 10353.53 15255.42 15061.96 11775.23 15673.92 16585.08 15081.32 132
v1070.22 11169.76 12470.74 8774.79 13780.30 11079.22 8159.81 14757.71 14756.58 10854.22 14955.31 15166.95 8678.28 13177.47 13587.12 10385.07 95
tpmrst62.00 17962.35 19061.58 16971.62 16864.14 19969.07 16548.22 20662.21 11953.93 12058.26 12355.30 15255.81 16263.22 20762.62 20670.85 20870.70 191
v2v48270.05 11469.46 12870.74 8774.62 13980.32 10979.00 8360.62 13657.41 14956.89 10555.43 13855.14 15366.39 9477.25 14177.14 14186.90 10683.57 114
thisisatest051567.40 14668.78 13665.80 14970.02 18075.24 16069.36 16457.37 16654.94 17053.67 12355.53 13754.85 15458.00 14378.19 13278.91 11586.39 12383.78 111
tpm62.41 17563.15 18161.55 17072.24 16163.79 20271.31 15746.12 21057.82 14355.33 11259.90 10954.74 15553.63 17367.24 20164.29 20370.65 20974.25 184
test0.0.03 158.80 19261.58 19355.56 19475.02 13468.45 18859.58 20461.96 12352.74 18029.57 20249.75 18254.56 15631.46 20871.19 18069.77 18175.75 19264.57 203
MIMVSNet58.52 19461.34 19455.22 19560.76 20567.01 19266.81 17649.02 20056.43 15638.90 18940.59 20354.54 15740.57 19973.16 16771.65 17575.30 19766.00 201
v114469.93 11569.36 12970.61 9174.89 13680.93 9979.11 8260.64 13555.97 16155.31 11353.85 15154.14 15866.54 9278.10 13377.44 13687.14 10085.09 94
ACMH+66.54 1371.36 10170.09 11972.85 7982.59 6681.13 9878.56 8768.04 5561.55 12452.52 13351.50 17354.14 15868.56 7878.85 12579.50 10786.82 10983.94 109
Baseline_NR-MVSNet67.53 14568.77 13766.09 14875.99 12374.75 16472.43 15368.41 5361.33 12738.33 19151.31 17454.13 16056.03 15979.22 12078.19 12385.37 14682.45 119
GA-MVS68.14 13169.17 13266.93 14173.77 14978.50 12774.45 12758.28 16155.11 16648.44 15360.08 10653.99 16161.50 12478.43 13077.57 13285.13 14980.54 139
CMPMVSbinary47.78 1762.49 17462.52 18762.46 16670.01 18170.66 17962.97 19451.84 18851.98 18656.71 10742.87 19653.62 16257.80 14572.23 17270.37 18075.45 19675.91 171
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WR-MVS63.03 16867.40 15357.92 18675.14 13377.60 14060.56 20066.10 7054.11 17623.88 20953.94 15053.58 16334.50 20573.93 16477.71 12987.35 9580.94 134
thres20067.98 13468.55 14167.30 13377.89 10978.86 12174.18 13662.75 10656.35 15746.48 16552.98 16253.54 16456.46 15680.41 9977.97 12686.05 13179.78 148
DU-MVS69.63 11770.91 11368.13 12075.99 12379.54 11373.81 14269.20 5061.20 12843.23 17958.52 11653.50 16558.57 13879.22 12080.45 9287.97 8183.97 107
EG-PatchMatch MVS67.24 14866.94 15667.60 12778.73 10281.35 9473.28 14959.49 14946.89 20151.42 13843.65 19553.49 16655.50 16681.38 8480.66 8887.15 9781.17 133
TranMVSNet+NR-MVSNet69.25 12270.81 11467.43 12977.23 11779.46 11573.48 14769.66 4460.43 13339.56 18758.82 11553.48 16755.74 16379.59 11381.21 7488.89 6182.70 117
thres100view90067.60 14468.02 14567.12 13777.83 11077.75 13773.90 13962.52 11656.64 15446.82 16252.65 16653.47 16855.92 16078.77 12677.62 13185.72 13979.23 152
tfpn200view968.11 13268.72 13867.40 13077.83 11078.93 11974.28 13262.81 10556.64 15446.82 16252.65 16653.47 16856.59 15580.41 9978.43 12086.11 12780.52 140
FMVSNet557.24 19560.02 19853.99 19956.45 21462.74 20765.27 18547.03 20755.14 16539.55 18840.88 20153.42 17041.83 19372.35 17071.10 17973.79 20164.50 204
thres40067.95 13568.62 14067.17 13577.90 10778.59 12674.27 13362.72 10856.34 15845.77 17153.00 16153.35 17156.46 15680.21 10878.43 12085.91 13880.43 141
ADS-MVSNet55.94 19958.01 20053.54 20162.48 20358.48 21259.12 20546.20 20959.65 13742.88 18252.34 17053.31 17246.31 18762.00 20960.02 21064.23 21660.24 212
tpm cat165.41 15663.81 17967.28 13475.61 13072.88 17075.32 11252.85 18162.97 11363.66 8153.24 15753.29 17361.83 12065.54 20264.14 20474.43 19974.60 180
pmmvs662.41 17562.88 18361.87 16871.38 17175.18 16367.76 17059.45 15141.64 20942.52 18337.33 20652.91 17446.87 18677.67 13776.26 15283.23 16479.18 153
thres600view767.68 14068.43 14266.80 14277.90 10778.86 12173.84 14062.75 10656.07 16044.70 17752.85 16452.81 17555.58 16480.41 9977.77 12886.05 13180.28 143
v14419269.34 12168.68 13970.12 9974.06 14480.54 10478.08 9460.54 13754.99 16954.13 11852.92 16352.80 17666.73 9077.13 14376.72 14687.15 9785.63 84
anonymousdsp65.28 15867.98 14662.13 16758.73 21173.98 16767.10 17450.69 19448.41 19747.66 16054.27 14552.75 17761.45 12676.71 14980.20 9587.13 10189.53 55
v119269.50 11968.83 13570.29 9674.49 14080.92 10178.55 8860.54 13755.04 16754.21 11652.79 16552.33 17866.92 8777.88 13577.35 13987.04 10485.51 86
TransMVSNet (Re)64.74 16165.66 16463.66 16277.40 11675.33 15969.86 16062.67 11447.63 19941.21 18550.01 17952.33 17845.31 18979.57 11477.69 13085.49 14377.07 166
WR-MVS_H61.83 18365.87 16257.12 18971.72 16576.87 14461.45 19866.19 6851.97 18722.92 21353.13 16052.30 18033.80 20671.03 18375.00 16086.65 11780.78 136
PatchT61.97 18064.04 17759.55 18160.49 20667.40 19056.54 20748.65 20256.69 15352.65 13051.10 17652.14 18160.92 12872.20 17473.09 17078.03 18275.69 174
UniMVSNet_ETH3D67.18 15067.03 15567.36 13174.44 14178.12 12874.07 13766.38 6752.22 18446.87 16148.64 18451.84 18256.96 15277.29 14078.53 11885.42 14582.59 118
pmmvs467.89 13667.39 15468.48 11771.60 16973.57 16874.45 12760.98 13264.65 9857.97 10054.95 14151.73 18361.88 11873.78 16575.11 15983.99 16177.91 159
v192192069.03 12468.32 14369.86 10274.03 14580.37 10777.55 9660.25 14154.62 17153.59 12452.36 16951.50 18466.75 8977.17 14276.69 14886.96 10585.56 85
ACMH65.37 1470.71 10570.00 12071.54 8482.51 6782.47 8777.78 9568.13 5456.19 15946.06 16954.30 14351.20 18568.68 7780.66 9880.72 8286.07 12984.45 106
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs562.37 17864.04 17760.42 17465.03 19671.67 17567.17 17352.70 18450.30 19144.80 17454.23 14851.19 18649.37 18272.88 16873.48 16983.45 16274.55 181
v124068.64 12967.89 14969.51 10773.89 14780.26 11176.73 10659.97 14653.43 17953.08 12851.82 17250.84 18766.62 9176.79 14776.77 14586.78 11185.34 90
COLMAP_ROBcopyleft62.73 1567.66 14166.76 15868.70 11580.49 8977.98 13375.29 11362.95 10363.62 10949.96 14447.32 18950.72 18858.57 13876.87 14675.50 15884.94 15375.33 178
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchMatch-RL67.78 13966.65 15969.10 11173.01 15472.69 17168.49 16761.85 12562.93 11460.20 9056.83 13050.42 18969.52 7175.62 15474.46 16481.51 16973.62 186
RPMNet61.71 18562.88 18360.34 17569.51 18469.41 18263.48 19249.23 19857.81 14445.64 17250.51 17750.12 19053.13 17668.17 20068.49 19181.07 17375.62 176
v7n67.05 15166.94 15667.17 13572.35 16078.97 11873.26 15058.88 15851.16 19050.90 14048.21 18650.11 19160.96 12777.70 13677.38 13786.68 11685.05 96
NR-MVSNet68.79 12770.56 11566.71 14577.48 11579.54 11373.52 14669.20 5061.20 12839.76 18658.52 11650.11 19151.37 17980.26 10680.71 8688.97 5983.59 113
test250671.72 9572.95 9970.29 9681.49 7583.27 7875.74 10967.59 6168.19 7949.81 14661.15 9949.73 19358.82 13684.76 4882.94 5788.27 7080.63 138
MDTV_nov1_ep13_2view60.16 18960.51 19759.75 17865.39 19569.05 18568.00 16948.29 20451.99 18545.95 17048.01 18749.64 19453.39 17468.83 19766.52 19977.47 18469.55 195
PEN-MVS62.96 16965.77 16359.70 17973.98 14675.45 15763.39 19367.61 6052.49 18225.49 20853.39 15349.12 19540.85 19871.94 17677.26 14086.86 10880.72 137
DTE-MVSNet61.85 18164.96 17258.22 18574.32 14274.39 16661.01 19967.85 5851.76 18921.91 21653.28 15548.17 19637.74 20272.22 17376.44 15086.52 12178.49 156
CP-MVSNet62.68 17165.49 16659.40 18271.84 16375.34 15862.87 19567.04 6552.64 18127.19 20653.38 15448.15 19741.40 19671.26 17975.68 15586.07 12982.00 124
testgi54.39 20357.86 20150.35 20471.59 17067.24 19154.95 20953.25 17843.36 20623.78 21044.64 19347.87 19824.96 21370.45 18868.66 18973.60 20262.78 208
dps64.00 16662.99 18265.18 15073.29 15272.07 17368.98 16653.07 18057.74 14658.41 9755.55 13647.74 19960.89 13069.53 19467.14 19776.44 19171.19 190
PS-CasMVS62.38 17765.06 16959.25 18371.73 16475.21 16262.77 19666.99 6651.94 18826.96 20752.00 17147.52 20041.06 19771.16 18275.60 15685.97 13681.97 126
Anonymous2023120656.36 19857.80 20254.67 19770.08 17966.39 19460.46 20157.54 16449.50 19629.30 20333.86 21146.64 20135.18 20470.44 18968.88 18775.47 19568.88 197
EU-MVSNet54.63 20158.69 19949.90 20556.99 21362.70 20856.41 20850.64 19545.95 20423.14 21250.42 17846.51 20236.63 20365.51 20364.85 20275.57 19374.91 179
MVS-HIRNet54.41 20252.10 20957.11 19058.99 20856.10 21549.68 21549.10 19946.18 20352.15 13433.18 21246.11 20356.10 15863.19 20859.70 21176.64 19060.25 211
pmnet_mix0255.30 20057.01 20453.30 20264.14 19959.09 21158.39 20650.24 19753.47 17838.68 19049.75 18245.86 20440.14 20065.38 20460.22 20968.19 21365.33 202
test20.0353.93 20456.28 20551.19 20372.19 16265.83 19553.20 21161.08 13042.74 20722.08 21437.07 20745.76 20524.29 21670.44 18969.04 18574.31 20063.05 207
USDC67.36 14767.90 14866.74 14471.72 16575.23 16171.58 15560.28 14067.45 8250.54 14360.93 10045.20 20662.08 11376.56 15074.50 16384.25 15775.38 177
tfpnnormal64.27 16463.64 18065.02 15275.84 12775.61 15671.24 15862.52 11647.79 19842.97 18142.65 19744.49 20752.66 17778.77 12676.86 14484.88 15479.29 151
pmmvs-eth3d63.52 16762.44 18964.77 15466.82 19370.12 18169.41 16359.48 15054.34 17552.71 12946.24 19144.35 20856.93 15372.37 16973.77 16783.30 16375.91 171
TDRefinement66.09 15465.03 17167.31 13269.73 18276.75 14675.33 11164.55 8360.28 13449.72 14845.63 19242.83 20960.46 13275.75 15375.95 15484.08 15978.04 158
LTVRE_ROB59.44 1661.82 18462.64 18660.87 17372.83 15977.19 14264.37 18958.97 15533.56 21828.00 20552.59 16842.21 21063.93 10374.52 16076.28 15177.15 18682.13 120
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo61.84 18262.45 18861.12 17269.20 18672.20 17262.03 19757.40 16546.54 20238.03 19357.14 12941.72 21158.12 14269.67 19371.58 17681.94 16778.30 157
MIMVSNet149.27 20753.25 20744.62 20944.61 21961.52 21053.61 21052.18 18541.62 21018.68 21928.14 21741.58 21225.50 21168.46 19969.04 18573.15 20362.37 209
PM-MVS60.48 18860.94 19659.94 17758.85 20966.83 19364.27 19051.39 19055.03 16848.03 15650.00 18140.79 21358.26 14169.20 19667.13 19878.84 18077.60 161
gm-plane-assit57.00 19657.62 20356.28 19276.10 12262.43 20947.62 21746.57 20833.84 21723.24 21137.52 20540.19 21459.61 13479.81 11177.55 13384.55 15672.03 188
N_pmnet47.35 20950.13 21044.11 21059.98 20751.64 21851.86 21244.80 21149.58 19520.76 21740.65 20240.05 21529.64 20959.84 21155.15 21457.63 21754.00 215
test_method22.26 21725.94 21917.95 2193.24 2287.17 22823.83 2237.27 22337.35 21520.44 21821.87 22039.16 21618.67 22034.56 21920.84 22334.28 22220.64 224
new-patchmatchnet46.97 21049.47 21244.05 21162.82 20156.55 21445.35 21852.01 18642.47 20817.04 22135.73 21035.21 21721.84 21961.27 21054.83 21565.26 21560.26 210
TinyColmap62.84 17061.03 19564.96 15369.61 18371.69 17468.48 16859.76 14855.41 16347.69 15947.33 18834.20 21862.76 10974.52 16072.59 17381.44 17071.47 189
pmmvs347.65 20849.08 21345.99 20844.61 21954.79 21650.04 21331.95 22033.91 21629.90 20130.37 21333.53 21946.31 18763.50 20663.67 20573.14 20463.77 206
FPMVS51.87 20650.00 21154.07 19866.83 19257.25 21360.25 20250.91 19150.25 19234.36 19736.04 20932.02 22041.49 19558.98 21356.07 21370.56 21059.36 213
PMVScopyleft39.38 1846.06 21243.30 21549.28 20662.93 20038.75 22141.88 21953.50 17633.33 21935.46 19628.90 21631.01 22133.04 20758.61 21554.63 21668.86 21257.88 214
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet38.40 21442.64 21633.44 21437.54 22445.00 22036.60 22032.72 21940.27 21112.72 22229.89 21428.90 22224.78 21453.17 21752.90 21756.31 21848.34 216
WB-MVS40.01 21345.06 21434.13 21358.84 21053.28 21728.60 22258.10 16232.93 2204.65 22840.92 20028.33 2237.26 22258.86 21456.09 21247.36 22044.98 217
MDA-MVSNet-bldmvs53.37 20553.01 20853.79 20043.67 22167.95 18959.69 20357.92 16343.69 20532.41 20041.47 19927.89 22452.38 17856.97 21665.99 20176.68 18967.13 199
tmp_tt14.50 22114.68 2267.17 22810.46 2292.21 22437.73 21428.71 20425.26 21816.98 2254.37 22431.49 22029.77 22026.56 225
PMMVS225.60 21629.75 21820.76 21828.00 22530.93 22323.10 22429.18 22123.14 2221.46 22918.23 22116.54 2265.08 22340.22 21841.40 21937.76 22137.79 220
ambc53.42 20664.99 19763.36 20449.96 21447.07 20037.12 19428.97 21516.36 22741.82 19475.10 15767.34 19471.55 20775.72 173
DeepMVS_CXcopyleft18.74 22718.55 2258.02 22226.96 2217.33 22423.81 21913.05 22825.99 21025.17 22222.45 22736.25 221
Gipumacopyleft36.38 21535.80 21737.07 21245.76 21833.90 22229.81 22148.47 20339.91 21218.02 2208.00 2258.14 22925.14 21259.29 21261.02 20855.19 21940.31 218
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive19.12 1920.47 22023.27 22017.20 22012.66 22725.41 22410.52 22834.14 21814.79 2256.53 2278.79 2244.68 23016.64 22129.49 22141.63 21822.73 22638.11 219
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS20.98 21917.15 22225.44 21639.51 22319.37 22612.66 22639.59 21519.10 2236.62 2269.27 2234.40 23122.43 21717.99 22424.40 22231.81 22425.53 223
E-PMN21.77 21818.24 22125.89 21540.22 22219.58 22512.46 22739.87 21418.68 2246.71 2259.57 2224.31 23222.36 21819.89 22327.28 22133.73 22328.34 222
testmvs0.09 2210.15 2230.02 2220.01 2300.02 2300.05 2310.01 2260.11 2260.01 2310.26 2270.01 2330.06 2270.10 2250.10 2240.01 2280.43 226
uanet_test0.00 2230.00 2250.00 2240.00 2310.00 2320.00 2330.00 2280.00 2280.00 2320.00 2280.00 2340.00 2280.00 2270.00 2260.00 2300.00 227
sosnet-low-res0.00 2230.00 2250.00 2240.00 2310.00 2320.00 2330.00 2280.00 2280.00 2320.00 2280.00 2340.00 2280.00 2270.00 2260.00 2300.00 227
sosnet0.00 2230.00 2250.00 2240.00 2310.00 2320.00 2330.00 2280.00 2280.00 2320.00 2280.00 2340.00 2280.00 2270.00 2260.00 2300.00 227
test1230.09 2210.14 2240.02 2220.00 2310.02 2300.02 2320.01 2260.09 2270.00 2320.30 2260.00 2340.08 2250.03 2260.09 2250.01 2280.45 225
RE-MVS-def46.24 167
our_test_367.93 18970.99 17666.89 175
Patchmatch-RL test2.85 230
NP-MVS80.10 46
Patchmtry65.80 19665.97 18252.74 18252.65 130