This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10992.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
PC_three_145268.21 24792.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
IU-MVS95.30 271.25 5792.95 5266.81 25792.39 688.94 1696.63 494.85 19
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 43
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 34
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 34
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 100
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 88
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 44
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 8188.14 2495.09 1571.06 5996.67 2987.67 2996.37 1494.09 48
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8792.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 54
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10286.34 4695.29 1270.86 6196.00 4988.78 1996.04 1694.58 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8989.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 39
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15585.22 5691.90 9269.47 7696.42 3783.28 6295.94 1994.35 38
test_prior288.85 11375.41 9584.91 6193.54 5674.28 2983.31 6195.86 20
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5594.32 3171.76 5096.93 1985.53 3995.79 2294.32 40
9.1488.26 1592.84 6091.52 4694.75 173.93 12788.57 2294.67 1975.57 2295.79 5486.77 3595.76 23
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8893.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 29
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11791.89 9568.69 23985.00 5993.10 6774.43 2695.41 6984.97 4195.71 2593.02 102
test9_res84.90 4295.70 2692.87 106
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9191.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 33
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11886.57 187.39 3794.97 1671.70 5297.68 192.19 195.63 2895.57 1
MVS_030488.08 1488.08 1788.08 1489.67 11572.04 4892.26 3389.26 17584.19 285.01 5795.18 1369.93 7197.20 1491.63 295.60 2994.99 9
agg_prior282.91 6695.45 3092.70 109
CDPH-MVS85.76 5185.29 6187.17 4393.49 4771.08 6188.58 12592.42 7468.32 24684.61 6993.48 5872.32 4496.15 4579.00 10195.43 3194.28 42
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6993.94 1477.12 5582.82 9994.23 3572.13 4797.09 1684.83 4595.37 3293.65 71
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18892.02 8779.45 1985.88 4894.80 1768.07 9196.21 4286.69 3695.34 3393.23 91
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7693.36 6371.44 5696.76 2580.82 8795.33 3494.16 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8494.40 3072.24 4596.28 4085.65 3895.30 3593.62 74
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 15084.86 6492.89 7476.22 1796.33 3884.89 4495.13 3694.40 36
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6593.99 4870.67 6496.82 2284.18 5695.01 3793.90 57
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15288.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 109
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 5093.47 6073.02 4097.00 1884.90 4294.94 3994.10 47
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6894.52 2168.81 8696.65 3084.53 4994.90 4094.00 52
CS-MVS-test86.29 4286.48 3785.71 6691.02 8367.21 15292.36 2993.78 1878.97 2883.51 9091.20 11370.65 6595.15 7981.96 7694.89 4194.77 22
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6194.44 2870.78 6296.61 3284.53 4994.89 4193.66 67
iter_conf05_1181.63 11780.44 12785.20 7889.46 12466.20 16786.21 19886.97 23771.53 17283.35 9188.53 18143.22 33595.94 5379.82 9794.85 4393.47 81
ZD-MVS94.38 2572.22 4492.67 6270.98 18487.75 3294.07 4174.01 3296.70 2784.66 4794.84 44
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7294.52 2169.09 8096.70 2784.37 5194.83 4594.03 51
原ACMM184.35 10993.01 5768.79 10792.44 7163.96 29981.09 12191.57 10166.06 11395.45 6567.19 21894.82 4688.81 254
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8483.81 8593.95 5169.77 7496.01 4885.15 4094.66 4794.32 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPM-MVS84.93 6584.29 7286.84 4790.20 10073.04 2387.12 17093.04 3869.80 21082.85 9891.22 11273.06 3996.02 4776.72 12894.63 4891.46 154
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7674.62 11388.90 2093.85 5275.75 2096.00 4987.80 2894.63 4895.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7193.04 3875.53 9383.86 8394.42 2967.87 9496.64 3182.70 7294.57 5093.66 67
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8794.17 3667.45 9796.60 3383.06 6394.50 5194.07 49
X-MVStestdata80.37 14877.83 18588.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8712.47 40567.45 9796.60 3383.06 6394.50 5194.07 49
test1286.80 4992.63 6470.70 7291.79 10182.71 10171.67 5396.16 4494.50 5193.54 79
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8694.46 2567.93 9295.95 5284.20 5594.39 5493.23 91
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12583.16 9491.07 11875.94 1895.19 7779.94 9694.38 5593.55 78
MSLP-MVS++85.43 5785.76 5184.45 10591.93 7270.24 7690.71 5892.86 5477.46 4784.22 7692.81 7867.16 10192.94 18380.36 9294.35 5690.16 199
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8276.87 6282.81 10094.25 3466.44 10796.24 4182.88 6794.28 5793.38 85
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13887.63 3094.27 5893.65 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5994.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DELS-MVS85.41 5885.30 6085.77 6588.49 16567.93 13385.52 22193.44 2778.70 2983.63 8989.03 16674.57 2495.71 5780.26 9494.04 6093.66 67
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPNet83.72 7782.92 8986.14 5984.22 26969.48 9191.05 5585.27 26181.30 676.83 19391.65 9766.09 11295.56 6076.00 13493.85 6193.38 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EC-MVSNet86.01 4386.38 3884.91 9189.31 13466.27 16692.32 3093.63 2179.37 2084.17 7891.88 9369.04 8495.43 6783.93 5793.77 6293.01 103
3Dnovator+77.84 485.48 5584.47 7188.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19893.37 6260.40 19096.75 2677.20 12093.73 6395.29 5
CS-MVS86.69 3586.95 3185.90 6490.76 9167.57 14092.83 1793.30 3279.67 1784.57 7192.27 8671.47 5595.02 8884.24 5493.46 6495.13 6
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6881.78 481.32 11691.43 10670.34 6697.23 1384.26 5293.36 6594.37 37
新几何183.42 15093.13 5270.71 7185.48 25957.43 35681.80 11191.98 9063.28 13592.27 20464.60 23992.99 6687.27 286
HPM-MVS_fast85.35 5984.95 6586.57 5393.69 4270.58 7592.15 3691.62 10573.89 12882.67 10294.09 4062.60 14695.54 6280.93 8592.93 6793.57 76
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6974.50 11486.84 4494.65 2067.31 9995.77 5584.80 4692.85 6892.84 107
旧先验191.96 7165.79 18086.37 24793.08 7169.31 7992.74 6988.74 258
3Dnovator76.31 583.38 8782.31 9786.59 5287.94 18772.94 2890.64 5992.14 8677.21 5275.47 22492.83 7658.56 19794.72 10173.24 16192.71 7092.13 134
MVS_111021_HR85.14 6184.75 6686.32 5591.65 7672.70 3085.98 20490.33 14376.11 8382.08 10591.61 10071.36 5894.17 12181.02 8492.58 7192.08 135
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13885.94 4794.51 2465.80 11795.61 5983.04 6592.51 7293.53 80
test250677.30 22376.49 21979.74 24890.08 10352.02 35887.86 15363.10 39374.88 10680.16 13192.79 7938.29 36292.35 20168.74 20492.50 7394.86 17
ECVR-MVScopyleft79.61 16179.26 15280.67 23090.08 10354.69 34287.89 15177.44 35074.88 10680.27 12892.79 7948.96 29592.45 19568.55 20592.50 7394.86 17
test111179.43 16879.18 15680.15 24089.99 10853.31 35587.33 16577.05 35375.04 10380.23 13092.77 8148.97 29492.33 20368.87 20292.40 7594.81 20
patch_mono-283.65 7884.54 6880.99 22290.06 10765.83 17784.21 24988.74 20071.60 17085.01 5792.44 8474.51 2583.50 33582.15 7592.15 7693.64 73
dcpmvs_285.63 5386.15 4484.06 12791.71 7564.94 19886.47 19191.87 9773.63 13486.60 4593.02 7276.57 1591.87 21983.36 6092.15 7695.35 3
MAR-MVS81.84 10980.70 12085.27 7591.32 7971.53 5489.82 7790.92 12469.77 21278.50 15586.21 24762.36 15294.52 10765.36 23292.05 7889.77 223
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TSAR-MVS + GP.85.71 5285.33 5886.84 4791.34 7872.50 3689.07 10687.28 23076.41 7485.80 4990.22 13674.15 3195.37 7481.82 7791.88 7992.65 113
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 7873.53 13985.69 5194.45 2665.00 12595.56 6082.75 6891.87 8092.50 118
RE-MVS-def85.48 5593.06 5570.63 7391.88 3992.27 7873.53 13985.69 5194.45 2663.87 13182.75 6891.87 8092.50 118
IS-MVSNet83.15 9082.81 9084.18 11889.94 11063.30 23391.59 4388.46 20679.04 2579.49 13792.16 8865.10 12294.28 11367.71 21191.86 8294.95 10
Vis-MVSNet (Re-imp)78.36 19578.45 16978.07 27988.64 16151.78 36486.70 18579.63 33574.14 12375.11 24290.83 12561.29 17289.75 27158.10 29791.60 8392.69 111
MG-MVS83.41 8583.45 7883.28 15592.74 6262.28 25088.17 14089.50 16675.22 9881.49 11592.74 8266.75 10295.11 8272.85 16491.58 8492.45 121
CPTT-MVS83.73 7683.33 8284.92 9093.28 4970.86 6992.09 3790.38 13968.75 23879.57 13692.83 7660.60 18693.04 18180.92 8691.56 8590.86 172
test22291.50 7768.26 12584.16 25083.20 29354.63 36779.74 13391.63 9958.97 19591.42 8686.77 299
ETV-MVS84.90 6784.67 6785.59 6889.39 12968.66 11788.74 11992.64 6679.97 1584.10 7985.71 25669.32 7895.38 7180.82 8791.37 8792.72 108
testdata79.97 24390.90 8664.21 21384.71 26759.27 34085.40 5392.91 7362.02 15989.08 28368.95 20191.37 8786.63 303
API-MVS81.99 10781.23 11184.26 11690.94 8570.18 8291.10 5389.32 17171.51 17378.66 15188.28 18865.26 12095.10 8564.74 23891.23 8987.51 280
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6787.65 20167.22 15188.69 12193.04 3879.64 1885.33 5492.54 8373.30 3594.50 10883.49 5991.14 9095.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive83.46 8482.80 9185.43 7290.25 9968.74 11190.30 7090.13 15076.33 8080.87 12492.89 7461.00 17894.20 11972.45 17090.97 9193.35 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft72.83 1079.77 15978.33 17484.09 12385.17 24969.91 8490.57 6090.97 12366.70 26072.17 27891.91 9154.70 22693.96 12561.81 26590.95 9288.41 265
UA-Net85.08 6384.96 6485.45 7192.07 7068.07 13089.78 8090.86 12882.48 384.60 7093.20 6669.35 7795.22 7671.39 17690.88 9393.07 99
test_fmvsmconf_n85.92 4686.04 4785.57 6985.03 25569.51 9089.62 8790.58 13373.42 14187.75 3294.02 4472.85 4193.24 16390.37 390.75 9493.96 53
ACMMPcopyleft85.89 4985.39 5687.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12593.82 5364.33 12796.29 3982.67 7390.69 9593.23 91
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7082.99 30069.39 9789.65 8490.29 14673.31 14487.77 3194.15 3871.72 5193.23 16490.31 490.67 9693.89 58
casdiffmvspermissive85.11 6285.14 6285.01 8587.20 21765.77 18187.75 15492.83 5677.84 3784.36 7592.38 8572.15 4693.93 13181.27 8390.48 9795.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsm_n_192085.29 6085.34 5785.13 8186.12 23569.93 8388.65 12390.78 12969.97 20688.27 2393.98 4971.39 5791.54 23188.49 2390.45 9893.91 55
UGNet80.83 13179.59 14384.54 10188.04 18468.09 12989.42 9388.16 20876.95 5976.22 21089.46 15549.30 28893.94 12868.48 20690.31 9991.60 144
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline84.93 6584.98 6384.80 9587.30 21565.39 18987.30 16692.88 5377.62 3984.04 8192.26 8771.81 4993.96 12581.31 8190.30 10095.03 8
MVSFormer82.85 9682.05 10185.24 7687.35 20970.21 7790.50 6290.38 13968.55 24181.32 11689.47 15361.68 16193.46 15578.98 10290.26 10192.05 136
lupinMVS81.39 12280.27 13184.76 9687.35 20970.21 7785.55 21786.41 24562.85 30981.32 11688.61 17761.68 16192.24 20678.41 10990.26 10191.83 140
DP-MVS Recon83.11 9382.09 10086.15 5894.44 1970.92 6888.79 11592.20 8370.53 19479.17 14191.03 12164.12 12996.03 4668.39 20890.14 10391.50 150
EIA-MVS83.31 8982.80 9184.82 9389.59 11765.59 18388.21 13892.68 6174.66 11178.96 14386.42 24369.06 8295.26 7575.54 14090.09 10493.62 74
MVS_111021_LR82.61 9982.11 9984.11 11988.82 15271.58 5385.15 22486.16 25074.69 11080.47 12791.04 11962.29 15390.55 25980.33 9390.08 10590.20 198
jason81.39 12280.29 13084.70 9786.63 22969.90 8585.95 20586.77 24163.24 30281.07 12289.47 15361.08 17792.15 20878.33 11090.07 10692.05 136
jason: jason.
test_fmvsmvis_n_192084.02 7283.87 7484.49 10484.12 27169.37 9888.15 14287.96 21470.01 20483.95 8293.23 6568.80 8791.51 23488.61 2089.96 10792.57 114
test_fmvsmconf0.01_n84.73 6884.52 7085.34 7380.25 34069.03 10089.47 8989.65 16373.24 14886.98 4294.27 3266.62 10393.23 16490.26 589.95 10893.78 64
LFMVS81.82 11081.23 11183.57 14791.89 7363.43 23189.84 7681.85 31177.04 5883.21 9293.10 6752.26 24893.43 15771.98 17189.95 10893.85 59
MVS78.19 20076.99 20781.78 20085.66 24066.99 15484.66 23490.47 13755.08 36672.02 28085.27 26763.83 13294.11 12366.10 22689.80 11084.24 337
CANet_DTU80.61 14079.87 13782.83 17785.60 24263.17 23887.36 16388.65 20276.37 7875.88 21788.44 18453.51 23893.07 17873.30 15989.74 11192.25 127
PVSNet_Blended80.98 12780.34 12882.90 17588.85 14965.40 18784.43 24492.00 8967.62 25278.11 16685.05 27566.02 11494.27 11471.52 17389.50 11289.01 244
PAPM_NR83.02 9482.41 9484.82 9392.47 6766.37 16487.93 14991.80 10073.82 12977.32 18290.66 12767.90 9394.90 9370.37 18589.48 11393.19 95
114514_t80.68 13979.51 14484.20 11794.09 3867.27 14989.64 8591.11 12158.75 34674.08 25790.72 12658.10 20095.04 8769.70 19389.42 11490.30 195
LCM-MVSNet-Re77.05 22576.94 20877.36 28987.20 21751.60 36580.06 30980.46 32575.20 9967.69 32186.72 22862.48 14988.98 28563.44 24689.25 11591.51 148
fmvsm_l_conf0.5_n_a84.13 7184.16 7384.06 12785.38 24668.40 12188.34 13486.85 24067.48 25587.48 3693.40 6170.89 6091.61 22588.38 2589.22 11692.16 133
fmvsm_l_conf0.5_n84.47 6984.54 6884.27 11585.42 24568.81 10688.49 12787.26 23168.08 24888.03 2793.49 5772.04 4891.77 22188.90 1789.14 11792.24 129
alignmvs85.48 5585.32 5985.96 6389.51 12169.47 9289.74 8192.47 7076.17 8287.73 3491.46 10570.32 6793.78 13881.51 7888.95 11894.63 28
VNet82.21 10282.41 9481.62 20390.82 8860.93 26484.47 24089.78 15876.36 7984.07 8091.88 9364.71 12690.26 26170.68 18288.89 11993.66 67
PS-MVSNAJ81.69 11381.02 11583.70 14389.51 12168.21 12784.28 24890.09 15170.79 18681.26 12085.62 26163.15 14094.29 11275.62 13888.87 12088.59 261
sasdasda85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 11073.28 3693.91 13281.50 7988.80 12194.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 11073.28 3693.91 13281.50 7988.80 12194.77 22
QAPM80.88 12979.50 14585.03 8488.01 18668.97 10491.59 4392.00 8966.63 26675.15 24192.16 8857.70 20495.45 6563.52 24488.76 12390.66 179
MGCFI-Net85.06 6485.51 5483.70 14389.42 12663.01 23989.43 9192.62 6776.43 7387.53 3591.34 10872.82 4293.42 15881.28 8288.74 12494.66 27
VDD-MVS83.01 9582.36 9684.96 8791.02 8366.40 16388.91 11088.11 20977.57 4184.39 7493.29 6452.19 24993.91 13277.05 12288.70 12594.57 31
PVSNet_Blended_VisFu82.62 9881.83 10684.96 8790.80 8969.76 8788.74 11991.70 10469.39 21978.96 14388.46 18365.47 11994.87 9674.42 14788.57 12690.24 197
xiu_mvs_v2_base81.69 11381.05 11483.60 14589.15 14168.03 13284.46 24290.02 15270.67 18981.30 11986.53 24163.17 13994.19 12075.60 13988.54 12788.57 262
PAPR81.66 11680.89 11883.99 13590.27 9864.00 21686.76 18491.77 10368.84 23777.13 19189.50 15167.63 9594.88 9567.55 21388.52 12893.09 98
MVS_Test83.15 9083.06 8583.41 15286.86 22163.21 23586.11 20292.00 8974.31 11882.87 9789.44 15870.03 6993.21 16677.39 11988.50 12993.81 62
AdaColmapbinary80.58 14379.42 14684.06 12793.09 5468.91 10589.36 9688.97 19069.27 22275.70 22089.69 14557.20 21195.77 5563.06 24988.41 13087.50 281
VDDNet81.52 11980.67 12184.05 13090.44 9664.13 21589.73 8285.91 25371.11 18083.18 9393.48 5850.54 27393.49 15273.40 15888.25 13194.54 32
PCF-MVS73.52 780.38 14678.84 16285.01 8587.71 19868.99 10383.65 25791.46 11363.00 30677.77 17490.28 13366.10 11195.09 8661.40 26888.22 13290.94 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Effi-MVS+83.62 8183.08 8485.24 7688.38 17167.45 14288.89 11189.15 18175.50 9482.27 10388.28 18869.61 7594.45 11077.81 11487.84 13393.84 61
gg-mvs-nofinetune69.95 30667.96 31075.94 30083.07 29554.51 34577.23 34170.29 37763.11 30470.32 29362.33 38843.62 33188.69 29053.88 32287.76 13484.62 334
xiu_mvs_v1_base_debu80.80 13479.72 14084.03 13287.35 20970.19 7985.56 21488.77 19669.06 23181.83 10888.16 19250.91 26792.85 18578.29 11187.56 13589.06 239
xiu_mvs_v1_base80.80 13479.72 14084.03 13287.35 20970.19 7985.56 21488.77 19669.06 23181.83 10888.16 19250.91 26792.85 18578.29 11187.56 13589.06 239
xiu_mvs_v1_base_debi80.80 13479.72 14084.03 13287.35 20970.19 7985.56 21488.77 19669.06 23181.83 10888.16 19250.91 26792.85 18578.29 11187.56 13589.06 239
CLD-MVS82.31 10181.65 10784.29 11288.47 16667.73 13785.81 21292.35 7675.78 8878.33 16086.58 23864.01 13094.35 11176.05 13387.48 13890.79 173
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CDS-MVSNet79.07 17977.70 19283.17 16287.60 20368.23 12684.40 24686.20 24967.49 25476.36 20786.54 24061.54 16490.79 25561.86 26487.33 13990.49 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
diffmvspermissive82.10 10381.88 10582.76 18583.00 29863.78 22183.68 25689.76 15972.94 15382.02 10689.85 14265.96 11690.79 25582.38 7487.30 14093.71 66
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet83.40 8683.02 8684.57 9990.13 10164.47 20892.32 3090.73 13074.45 11779.35 13991.10 11669.05 8395.12 8072.78 16587.22 14194.13 46
TAMVS78.89 18477.51 19783.03 16987.80 19367.79 13684.72 23385.05 26467.63 25176.75 19687.70 20162.25 15490.82 25458.53 29387.13 14290.49 187
TAPA-MVS73.13 979.15 17677.94 18182.79 18289.59 11762.99 24388.16 14191.51 10965.77 27577.14 19091.09 11760.91 17993.21 16650.26 34387.05 14392.17 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PAPM77.68 21676.40 22281.51 20687.29 21661.85 25583.78 25589.59 16464.74 28671.23 28688.70 17362.59 14793.66 14552.66 32887.03 14489.01 244
test_yl81.17 12480.47 12583.24 15889.13 14263.62 22286.21 19889.95 15572.43 15881.78 11289.61 14857.50 20793.58 14670.75 18086.90 14592.52 116
DCV-MVSNet81.17 12480.47 12583.24 15889.13 14263.62 22286.21 19889.95 15572.43 15881.78 11289.61 14857.50 20793.58 14670.75 18086.90 14592.52 116
BH-untuned79.47 16678.60 16682.05 19589.19 14065.91 17586.07 20388.52 20572.18 16075.42 22887.69 20261.15 17593.54 15060.38 27586.83 14786.70 301
BH-RMVSNet79.61 16178.44 17083.14 16389.38 13065.93 17484.95 22987.15 23473.56 13778.19 16489.79 14356.67 21493.36 15959.53 28286.74 14890.13 201
LS3D76.95 22874.82 24383.37 15390.45 9567.36 14689.15 10486.94 23861.87 32169.52 30690.61 12851.71 26194.53 10646.38 36486.71 14988.21 267
Fast-Effi-MVS+80.81 13279.92 13583.47 14888.85 14964.51 20585.53 21989.39 16970.79 18678.49 15685.06 27467.54 9693.58 14667.03 22186.58 15092.32 124
EPNet_dtu75.46 25174.86 24277.23 29282.57 30954.60 34386.89 17783.09 29471.64 16566.25 34185.86 25455.99 21688.04 29954.92 31786.55 15189.05 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS83.50 8382.95 8885.14 7988.79 15570.95 6689.13 10591.52 10877.55 4480.96 12391.75 9560.71 18194.50 10879.67 9986.51 15289.97 215
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
OMC-MVS82.69 9781.97 10484.85 9288.75 15767.42 14387.98 14590.87 12774.92 10579.72 13491.65 9762.19 15693.96 12575.26 14286.42 15393.16 96
HQP_MVS83.64 7983.14 8385.14 7990.08 10368.71 11391.25 5092.44 7179.12 2378.92 14591.00 12260.42 18895.38 7178.71 10586.32 15491.33 155
plane_prior592.44 7195.38 7178.71 10586.32 15491.33 155
FA-MVS(test-final)80.96 12879.91 13684.10 12088.30 17465.01 19684.55 23990.01 15373.25 14779.61 13587.57 20558.35 19994.72 10171.29 17786.25 15692.56 115
thisisatest051577.33 22275.38 23683.18 16185.27 24863.80 22082.11 28083.27 29065.06 28275.91 21683.84 29549.54 28394.27 11467.24 21786.19 15791.48 152
plane_prior68.71 11390.38 6877.62 3986.16 158
UWE-MVS72.13 28671.49 27774.03 32186.66 22847.70 37881.40 29076.89 35563.60 30175.59 22184.22 28939.94 35485.62 31848.98 34986.13 15988.77 256
mvs_anonymous79.42 16979.11 15780.34 23684.45 26657.97 29682.59 27587.62 22367.40 25676.17 21488.56 18068.47 8889.59 27470.65 18386.05 16093.47 81
GeoE81.71 11281.01 11683.80 14189.51 12164.45 20988.97 10888.73 20171.27 17778.63 15289.76 14466.32 10993.20 16969.89 19186.02 16193.74 65
HQP3-MVS92.19 8485.99 162
HQP-MVS82.61 9982.02 10284.37 10789.33 13166.98 15589.17 10092.19 8476.41 7477.23 18590.23 13560.17 19195.11 8277.47 11785.99 16291.03 166
BH-w/o78.21 19877.33 20180.84 22688.81 15365.13 19484.87 23087.85 21969.75 21474.52 25384.74 27961.34 17093.11 17658.24 29685.84 16484.27 336
FE-MVS77.78 21175.68 22884.08 12488.09 18266.00 17283.13 26887.79 22068.42 24578.01 16985.23 26945.50 32195.12 8059.11 28685.83 16591.11 162
testing22274.04 26472.66 26778.19 27687.89 18855.36 33581.06 29379.20 33971.30 17674.65 25183.57 30239.11 35888.67 29151.43 33585.75 16690.53 185
CHOSEN 1792x268877.63 21775.69 22783.44 14989.98 10968.58 11978.70 32787.50 22656.38 36175.80 21986.84 22458.67 19691.40 23961.58 26785.75 16690.34 192
bld_raw_dy_0_6480.78 13779.36 14985.06 8389.46 12466.03 16989.63 8685.46 26069.76 21381.88 10789.06 16543.39 33395.70 5879.82 9785.74 16893.47 81
Anonymous20240521178.25 19677.01 20581.99 19791.03 8260.67 26984.77 23283.90 28070.65 19380.00 13291.20 11341.08 34991.43 23865.21 23385.26 16993.85 59
cascas76.72 23174.64 24482.99 17185.78 23965.88 17682.33 27789.21 17860.85 32772.74 26981.02 33147.28 30293.75 14267.48 21485.02 17089.34 234
FIs82.07 10582.42 9381.04 22188.80 15458.34 29088.26 13793.49 2676.93 6078.47 15791.04 11969.92 7292.34 20269.87 19284.97 17192.44 122
test-LLR72.94 27972.43 26974.48 31681.35 32858.04 29478.38 33077.46 34866.66 26169.95 30179.00 35148.06 29879.24 35566.13 22484.83 17286.15 309
test-mter71.41 29070.39 29374.48 31681.35 32858.04 29478.38 33077.46 34860.32 33069.95 30179.00 35136.08 36979.24 35566.13 22484.83 17286.15 309
EI-MVSNet-Vis-set84.19 7083.81 7585.31 7488.18 17667.85 13487.66 15689.73 16180.05 1482.95 9589.59 15070.74 6394.82 9780.66 9184.72 17493.28 90
thisisatest053079.40 17077.76 19084.31 11187.69 20065.10 19587.36 16384.26 27670.04 20377.42 17988.26 19049.94 27994.79 9970.20 18684.70 17593.03 101
fmvsm_s_conf0.5_n83.80 7583.71 7684.07 12586.69 22767.31 14789.46 9083.07 29571.09 18186.96 4393.70 5569.02 8591.47 23688.79 1884.62 17693.44 84
testing9176.54 23275.66 23079.18 26088.43 16955.89 32981.08 29283.00 29773.76 13275.34 23184.29 28646.20 31390.07 26564.33 24084.50 17791.58 146
fmvsm_s_conf0.1_n83.56 8283.38 8084.10 12084.86 25767.28 14889.40 9583.01 29670.67 18987.08 4093.96 5068.38 8991.45 23788.56 2284.50 17793.56 77
GG-mvs-BLEND75.38 30881.59 32355.80 33079.32 31869.63 37967.19 32773.67 37743.24 33488.90 28950.41 33884.50 17781.45 363
FC-MVSNet-test81.52 11982.02 10280.03 24288.42 17055.97 32887.95 14793.42 2977.10 5677.38 18090.98 12469.96 7091.79 22068.46 20784.50 17792.33 123
PVSNet64.34 1872.08 28770.87 28775.69 30386.21 23356.44 32074.37 35880.73 32062.06 32070.17 29682.23 32242.86 33883.31 33754.77 31884.45 18187.32 285
ETVMVS72.25 28571.05 28475.84 30187.77 19751.91 36179.39 31774.98 36269.26 22373.71 25982.95 31040.82 35186.14 31346.17 36584.43 18289.47 230
MS-PatchMatch73.83 26772.67 26677.30 29183.87 27766.02 17181.82 28184.66 26861.37 32568.61 31582.82 31447.29 30188.21 29659.27 28384.32 18377.68 375
iter_conf0580.00 15778.70 16383.91 13987.84 19165.83 17788.84 11484.92 26671.61 16978.70 14888.94 16743.88 33094.56 10479.28 10084.28 18491.33 155
ET-MVSNet_ETH3D78.63 18976.63 21884.64 9886.73 22669.47 9285.01 22784.61 26969.54 21766.51 33986.59 23650.16 27691.75 22276.26 13084.24 18592.69 111
testing9976.09 24375.12 24179.00 26188.16 17755.50 33480.79 29681.40 31573.30 14575.17 23984.27 28844.48 32690.02 26664.28 24184.22 18691.48 152
TESTMET0.1,169.89 30769.00 30172.55 33379.27 35656.85 31278.38 33074.71 36657.64 35368.09 31877.19 36437.75 36476.70 36863.92 24384.09 18784.10 340
EI-MVSNet-UG-set83.81 7483.38 8085.09 8287.87 18967.53 14187.44 16289.66 16279.74 1682.23 10489.41 15970.24 6894.74 10079.95 9583.92 18892.99 104
LPG-MVS_test82.08 10481.27 11084.50 10289.23 13868.76 10990.22 7191.94 9375.37 9676.64 19991.51 10254.29 23094.91 9078.44 10783.78 18989.83 220
LGP-MVS_train84.50 10289.23 13868.76 10991.94 9375.37 9676.64 19991.51 10254.29 23094.91 9078.44 10783.78 18989.83 220
testing1175.14 25674.01 25278.53 27188.16 17756.38 32280.74 29980.42 32670.67 18972.69 27283.72 29943.61 33289.86 26862.29 25883.76 19189.36 233
thres100view90076.50 23475.55 23279.33 25689.52 12056.99 31185.83 21183.23 29173.94 12676.32 20887.12 22051.89 25891.95 21448.33 35283.75 19289.07 237
tfpn200view976.42 23775.37 23779.55 25589.13 14257.65 30285.17 22283.60 28373.41 14276.45 20386.39 24452.12 25091.95 21448.33 35283.75 19289.07 237
thres40076.50 23475.37 23779.86 24589.13 14257.65 30285.17 22283.60 28373.41 14276.45 20386.39 24452.12 25091.95 21448.33 35283.75 19290.00 211
thres600view776.50 23475.44 23379.68 25089.40 12857.16 30885.53 21983.23 29173.79 13176.26 20987.09 22151.89 25891.89 21748.05 35783.72 19590.00 211
fmvsm_s_conf0.5_n_a83.63 8083.41 7984.28 11386.14 23468.12 12889.43 9182.87 30070.27 20087.27 3993.80 5469.09 8091.58 22788.21 2683.65 19693.14 97
thres20075.55 24974.47 24878.82 26487.78 19657.85 29983.07 27183.51 28672.44 15775.84 21884.42 28152.08 25391.75 22247.41 35983.64 19786.86 297
SDMVSNet80.38 14680.18 13280.99 22289.03 14764.94 19880.45 30589.40 16875.19 10076.61 20189.98 13960.61 18587.69 30376.83 12683.55 19890.33 193
sd_testset77.70 21577.40 19878.60 26889.03 14760.02 27879.00 32385.83 25575.19 10076.61 20189.98 13954.81 22185.46 32162.63 25583.55 19890.33 193
mvsmamba81.69 11380.74 11984.56 10087.45 20866.72 15991.26 4885.89 25474.66 11178.23 16290.56 12954.33 22994.91 9080.73 9083.54 20092.04 138
XVG-OURS80.41 14579.23 15383.97 13685.64 24169.02 10283.03 27390.39 13871.09 18177.63 17691.49 10454.62 22891.35 24075.71 13683.47 20191.54 147
fmvsm_s_conf0.1_n_a83.32 8882.99 8784.28 11383.79 27868.07 13089.34 9782.85 30169.80 21087.36 3894.06 4268.34 9091.56 22987.95 2783.46 20293.21 94
CNLPA78.08 20276.79 21281.97 19890.40 9771.07 6287.59 15884.55 27066.03 27372.38 27689.64 14757.56 20686.04 31459.61 28183.35 20388.79 255
MVP-Stereo76.12 24174.46 24981.13 21985.37 24769.79 8684.42 24587.95 21565.03 28367.46 32485.33 26653.28 24191.73 22458.01 29883.27 20481.85 361
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
131476.53 23375.30 23980.21 23983.93 27662.32 24984.66 23488.81 19460.23 33170.16 29784.07 29255.30 21990.73 25767.37 21583.21 20587.59 279
tttt051779.40 17077.91 18283.90 14088.10 18163.84 21988.37 13384.05 27871.45 17476.78 19589.12 16249.93 28194.89 9470.18 18783.18 20692.96 105
HyFIR lowres test77.53 21875.40 23583.94 13889.59 11766.62 16080.36 30688.64 20356.29 36276.45 20385.17 27157.64 20593.28 16161.34 27083.10 20791.91 139
ACMP74.13 681.51 12180.57 12284.36 10889.42 12668.69 11689.97 7591.50 11274.46 11675.04 24590.41 13253.82 23594.54 10577.56 11682.91 20889.86 219
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM73.20 880.78 13779.84 13883.58 14689.31 13468.37 12289.99 7491.60 10670.28 19977.25 18389.66 14653.37 24093.53 15174.24 15082.85 20988.85 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PMMVS69.34 31068.67 30271.35 34275.67 36962.03 25275.17 35273.46 36950.00 37868.68 31379.05 34952.07 25478.13 36061.16 27182.77 21073.90 381
PLCcopyleft70.83 1178.05 20476.37 22383.08 16691.88 7467.80 13588.19 13989.46 16764.33 29269.87 30388.38 18553.66 23693.58 14658.86 28982.73 21187.86 272
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS77.44 21976.18 22481.20 21688.24 17563.24 23484.61 23786.40 24667.55 25377.81 17286.48 24254.10 23293.15 17357.75 30082.72 21287.20 287
Anonymous2024052980.19 15378.89 16184.10 12090.60 9264.75 20288.95 10990.90 12565.97 27480.59 12691.17 11549.97 27893.73 14469.16 19982.70 21393.81 62
ab-mvs79.51 16478.97 16081.14 21888.46 16760.91 26583.84 25489.24 17770.36 19679.03 14288.87 17063.23 13890.21 26365.12 23482.57 21492.28 126
HY-MVS69.67 1277.95 20777.15 20380.36 23587.57 20760.21 27783.37 26487.78 22166.11 27075.37 23087.06 22363.27 13690.48 26061.38 26982.43 21590.40 191
PS-MVSNAJss82.07 10581.31 10984.34 11086.51 23067.27 14989.27 9891.51 10971.75 16479.37 13890.22 13663.15 14094.27 11477.69 11582.36 21691.49 151
UniMVSNet_ETH3D79.10 17878.24 17681.70 20286.85 22260.24 27687.28 16788.79 19574.25 12076.84 19290.53 13149.48 28491.56 22967.98 20982.15 21793.29 89
WB-MVSnew71.96 28871.65 27672.89 33084.67 26351.88 36282.29 27877.57 34762.31 31673.67 26083.00 30953.49 23981.10 34945.75 36882.13 21885.70 318
PVSNet_BlendedMVS80.60 14180.02 13382.36 19288.85 14965.40 18786.16 20192.00 8969.34 22178.11 16686.09 25166.02 11494.27 11471.52 17382.06 21987.39 282
WTY-MVS75.65 24875.68 22875.57 30586.40 23156.82 31377.92 33782.40 30565.10 28176.18 21287.72 20063.13 14380.90 35060.31 27681.96 22089.00 246
ACMMP++_ref81.95 221
DP-MVS76.78 23074.57 24583.42 15093.29 4869.46 9488.55 12683.70 28263.98 29870.20 29488.89 16954.01 23494.80 9846.66 36181.88 22286.01 313
CMPMVSbinary51.72 2170.19 30468.16 30776.28 29873.15 38357.55 30479.47 31683.92 27948.02 38056.48 38184.81 27743.13 33686.42 31162.67 25481.81 22384.89 330
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
XVG-OURS-SEG-HR80.81 13279.76 13983.96 13785.60 24268.78 10883.54 26290.50 13670.66 19276.71 19791.66 9660.69 18291.26 24276.94 12381.58 22491.83 140
MIMVSNet70.69 29869.30 29774.88 31284.52 26456.35 32475.87 34879.42 33664.59 28767.76 31982.41 31841.10 34881.54 34646.64 36381.34 22586.75 300
ACMMP++81.25 226
D2MVS74.82 25773.21 26279.64 25279.81 34762.56 24680.34 30787.35 22964.37 29168.86 31282.66 31646.37 30990.10 26467.91 21081.24 22786.25 306
test_vis1_n_192075.52 25075.78 22674.75 31579.84 34657.44 30683.26 26585.52 25862.83 31079.34 14086.17 24945.10 32379.71 35478.75 10481.21 22887.10 294
GA-MVS76.87 22975.17 24081.97 19882.75 30462.58 24581.44 28986.35 24872.16 16274.74 24982.89 31246.20 31392.02 21268.85 20381.09 22991.30 158
sss73.60 26973.64 25973.51 32582.80 30355.01 34076.12 34481.69 31262.47 31574.68 25085.85 25557.32 20978.11 36160.86 27380.93 23087.39 282
Effi-MVS+-dtu80.03 15578.57 16784.42 10685.13 25368.74 11188.77 11688.10 21074.99 10474.97 24683.49 30357.27 21093.36 15973.53 15580.88 23191.18 160
EG-PatchMatch MVS74.04 26471.82 27480.71 22984.92 25667.42 14385.86 20988.08 21166.04 27264.22 35383.85 29435.10 37192.56 19257.44 30280.83 23282.16 360
jajsoiax79.29 17377.96 18083.27 15684.68 26066.57 16289.25 9990.16 14969.20 22775.46 22689.49 15245.75 31993.13 17576.84 12480.80 23390.11 203
1112_ss77.40 22176.43 22180.32 23789.11 14660.41 27483.65 25787.72 22262.13 31973.05 26786.72 22862.58 14889.97 26762.11 26280.80 23390.59 183
mvs_tets79.13 17777.77 18983.22 16084.70 25966.37 16489.17 10090.19 14869.38 22075.40 22989.46 15544.17 32893.15 17376.78 12780.70 23590.14 200
PatchMatch-RL72.38 28270.90 28676.80 29688.60 16267.38 14579.53 31576.17 35962.75 31269.36 30882.00 32645.51 32084.89 32653.62 32380.58 23678.12 374
EI-MVSNet80.52 14479.98 13482.12 19384.28 26763.19 23786.41 19288.95 19174.18 12278.69 14987.54 20866.62 10392.43 19672.57 16880.57 23790.74 177
MVSTER79.01 18077.88 18482.38 19183.07 29564.80 20184.08 25388.95 19169.01 23478.69 14987.17 21954.70 22692.43 19674.69 14480.57 23789.89 218
XVG-ACMP-BASELINE76.11 24274.27 25181.62 20383.20 29164.67 20383.60 26089.75 16069.75 21471.85 28187.09 22132.78 37492.11 20969.99 19080.43 23988.09 268
Fast-Effi-MVS+-dtu78.02 20576.49 21982.62 18783.16 29466.96 15786.94 17587.45 22872.45 15571.49 28584.17 29054.79 22591.58 22767.61 21280.31 24089.30 235
LTVRE_ROB69.57 1376.25 24074.54 24781.41 20988.60 16264.38 21179.24 31989.12 18470.76 18869.79 30587.86 19949.09 29193.20 16956.21 31480.16 24186.65 302
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Test_1112_low_res76.40 23875.44 23379.27 25789.28 13658.09 29281.69 28487.07 23559.53 33872.48 27486.67 23361.30 17189.33 27860.81 27480.15 24290.41 190
test_djsdf80.30 15079.32 15083.27 15683.98 27565.37 19090.50 6290.38 13968.55 24176.19 21188.70 17356.44 21593.46 15578.98 10280.14 24390.97 169
test_fmvs170.93 29570.52 28972.16 33573.71 37755.05 33980.82 29478.77 34151.21 37778.58 15384.41 28231.20 37976.94 36775.88 13580.12 24484.47 335
test_fmvs1_n70.86 29670.24 29472.73 33272.51 38755.28 33781.27 29179.71 33451.49 37678.73 14784.87 27627.54 38477.02 36676.06 13279.97 24585.88 316
CHOSEN 280x42066.51 33164.71 33271.90 33681.45 32563.52 22757.98 39568.95 38353.57 36862.59 36276.70 36546.22 31275.29 38255.25 31679.68 24676.88 377
baseline275.70 24773.83 25781.30 21383.26 28961.79 25782.57 27680.65 32166.81 25766.88 33083.42 30457.86 20392.19 20763.47 24579.57 24789.91 216
GBi-Net78.40 19377.40 19881.40 21087.60 20363.01 23988.39 13089.28 17271.63 16675.34 23187.28 21254.80 22291.11 24562.72 25179.57 24790.09 205
test178.40 19377.40 19881.40 21087.60 20363.01 23988.39 13089.28 17271.63 16675.34 23187.28 21254.80 22291.11 24562.72 25179.57 24790.09 205
FMVSNet377.88 20976.85 21080.97 22486.84 22362.36 24786.52 19088.77 19671.13 17975.34 23186.66 23454.07 23391.10 24862.72 25179.57 24789.45 231
FMVSNet278.20 19977.21 20281.20 21687.60 20362.89 24487.47 16189.02 18671.63 16675.29 23787.28 21254.80 22291.10 24862.38 25679.38 25189.61 227
anonymousdsp78.60 19077.15 20382.98 17280.51 33867.08 15387.24 16889.53 16565.66 27775.16 24087.19 21852.52 24392.25 20577.17 12179.34 25289.61 227
nrg03083.88 7383.53 7784.96 8786.77 22569.28 9990.46 6592.67 6274.79 10882.95 9591.33 10972.70 4393.09 17780.79 8979.28 25392.50 118
VPA-MVSNet80.60 14180.55 12380.76 22888.07 18360.80 26786.86 17891.58 10775.67 9280.24 12989.45 15763.34 13490.25 26270.51 18479.22 25491.23 159
RRT_MVS80.35 14979.22 15483.74 14287.63 20265.46 18691.08 5488.92 19373.82 12976.44 20690.03 13849.05 29394.25 11876.84 12479.20 25591.51 148
tt080578.73 18677.83 18581.43 20885.17 24960.30 27589.41 9490.90 12571.21 17877.17 18988.73 17246.38 30893.21 16672.57 16878.96 25690.79 173
test_cas_vis1_n_192073.76 26873.74 25873.81 32375.90 36759.77 28080.51 30382.40 30558.30 34881.62 11485.69 25744.35 32776.41 37276.29 12978.61 25785.23 324
F-COLMAP76.38 23974.33 25082.50 18989.28 13666.95 15888.41 12989.03 18564.05 29666.83 33188.61 17746.78 30692.89 18457.48 30178.55 25887.67 275
FMVSNet177.44 21976.12 22581.40 21086.81 22463.01 23988.39 13089.28 17270.49 19574.39 25487.28 21249.06 29291.11 24560.91 27278.52 25990.09 205
MDTV_nov1_ep1369.97 29683.18 29253.48 35277.10 34280.18 33160.45 32869.33 30980.44 33748.89 29686.90 30751.60 33378.51 260
CVMVSNet72.99 27872.58 26874.25 31984.28 26750.85 37086.41 19283.45 28844.56 38373.23 26587.54 20849.38 28685.70 31665.90 22878.44 26186.19 308
tpm273.26 27471.46 27878.63 26683.34 28756.71 31680.65 30180.40 32756.63 36073.55 26182.02 32551.80 26091.24 24356.35 31378.42 26287.95 269
test_vis1_n69.85 30869.21 29971.77 33772.66 38655.27 33881.48 28776.21 35852.03 37375.30 23683.20 30728.97 38276.22 37474.60 14578.41 26383.81 343
CostFormer75.24 25573.90 25579.27 25782.65 30858.27 29180.80 29582.73 30361.57 32275.33 23583.13 30855.52 21791.07 25164.98 23678.34 26488.45 263
ACMH67.68 1675.89 24573.93 25481.77 20188.71 15966.61 16188.62 12489.01 18769.81 20966.78 33286.70 23241.95 34691.51 23455.64 31578.14 26587.17 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dmvs_re71.14 29270.58 28872.80 33181.96 31759.68 28175.60 35079.34 33768.55 24169.27 31080.72 33649.42 28576.54 36952.56 32977.79 26682.19 359
CR-MVSNet73.37 27171.27 28279.67 25181.32 33065.19 19275.92 34680.30 32859.92 33472.73 27081.19 32852.50 24486.69 30859.84 27977.71 26787.11 292
RPMNet73.51 27070.49 29082.58 18881.32 33065.19 19275.92 34692.27 7857.60 35472.73 27076.45 36752.30 24795.43 6748.14 35677.71 26787.11 292
SCA74.22 26272.33 27179.91 24484.05 27462.17 25179.96 31279.29 33866.30 26972.38 27680.13 34051.95 25688.60 29259.25 28477.67 26988.96 248
Anonymous2023121178.97 18277.69 19382.81 17990.54 9464.29 21290.11 7391.51 10965.01 28476.16 21588.13 19750.56 27293.03 18269.68 19477.56 27091.11 162
v114480.03 15579.03 15883.01 17083.78 27964.51 20587.11 17190.57 13571.96 16378.08 16886.20 24861.41 16893.94 12874.93 14377.23 27190.60 182
WR-MVS79.49 16579.22 15480.27 23888.79 15558.35 28985.06 22688.61 20478.56 3077.65 17588.34 18663.81 13390.66 25864.98 23677.22 27291.80 142
v119279.59 16378.43 17183.07 16783.55 28364.52 20486.93 17690.58 13370.83 18577.78 17385.90 25259.15 19493.94 12873.96 15277.19 27390.76 175
VPNet78.69 18878.66 16578.76 26588.31 17355.72 33184.45 24386.63 24376.79 6478.26 16190.55 13059.30 19389.70 27366.63 22277.05 27490.88 171
v124078.99 18177.78 18882.64 18683.21 29063.54 22686.62 18790.30 14569.74 21677.33 18185.68 25857.04 21293.76 14173.13 16276.92 27590.62 180
MSDG73.36 27370.99 28580.49 23384.51 26565.80 17980.71 30086.13 25165.70 27665.46 34483.74 29844.60 32490.91 25351.13 33676.89 27684.74 332
IterMVS-LS80.06 15479.38 14782.11 19485.89 23763.20 23686.79 18189.34 17074.19 12175.45 22786.72 22866.62 10392.39 19872.58 16776.86 27790.75 176
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192079.22 17478.03 17982.80 18083.30 28863.94 21886.80 18090.33 14369.91 20877.48 17885.53 26258.44 19893.75 14273.60 15476.85 27890.71 178
XXY-MVS75.41 25375.56 23174.96 31183.59 28257.82 30080.59 30283.87 28166.54 26774.93 24788.31 18763.24 13780.09 35362.16 26076.85 27886.97 295
v2v48280.23 15179.29 15183.05 16883.62 28164.14 21487.04 17289.97 15473.61 13578.18 16587.22 21661.10 17693.82 13676.11 13176.78 28091.18 160
v14419279.47 16678.37 17282.78 18383.35 28663.96 21786.96 17490.36 14269.99 20577.50 17785.67 25960.66 18393.77 14074.27 14976.58 28190.62 180
UniMVSNet (Re)81.60 11881.11 11383.09 16588.38 17164.41 21087.60 15793.02 4278.42 3278.56 15488.16 19269.78 7393.26 16269.58 19576.49 28291.60 144
UniMVSNet_NR-MVSNet81.88 10881.54 10882.92 17488.46 16763.46 22987.13 16992.37 7580.19 1278.38 15889.14 16171.66 5493.05 17970.05 18876.46 28392.25 127
DU-MVS81.12 12680.52 12482.90 17587.80 19363.46 22987.02 17391.87 9779.01 2678.38 15889.07 16365.02 12393.05 17970.05 18876.46 28392.20 130
cl2278.07 20377.01 20581.23 21582.37 31461.83 25683.55 26187.98 21368.96 23575.06 24483.87 29361.40 16991.88 21873.53 15576.39 28589.98 214
miper_ehance_all_eth78.59 19177.76 19081.08 22082.66 30761.56 25983.65 25789.15 18168.87 23675.55 22383.79 29766.49 10692.03 21173.25 16076.39 28589.64 226
miper_enhance_ethall77.87 21076.86 20980.92 22581.65 32161.38 26182.68 27488.98 18865.52 27975.47 22482.30 32065.76 11892.00 21372.95 16376.39 28589.39 232
Syy-MVS68.05 32167.85 31268.67 35784.68 26040.97 39878.62 32873.08 37166.65 26466.74 33379.46 34652.11 25282.30 34232.89 39076.38 28882.75 355
myMVS_eth3d67.02 32766.29 32869.21 35284.68 26042.58 39378.62 32873.08 37166.65 26466.74 33379.46 34631.53 37882.30 34239.43 38376.38 28882.75 355
PatchmatchNetpermissive73.12 27671.33 28178.49 27383.18 29260.85 26679.63 31478.57 34264.13 29371.73 28279.81 34551.20 26585.97 31557.40 30376.36 29088.66 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
USDC70.33 30268.37 30476.21 29980.60 33656.23 32579.19 32186.49 24460.89 32661.29 36485.47 26431.78 37789.47 27753.37 32576.21 29182.94 354
OpenMVS_ROBcopyleft64.09 1970.56 30068.19 30677.65 28580.26 33959.41 28585.01 22782.96 29958.76 34565.43 34582.33 31937.63 36591.23 24445.34 37176.03 29282.32 357
ACMH+68.96 1476.01 24474.01 25282.03 19688.60 16265.31 19188.86 11287.55 22470.25 20167.75 32087.47 21041.27 34793.19 17158.37 29475.94 29387.60 277
tpm72.37 28371.71 27574.35 31882.19 31552.00 35979.22 32077.29 35164.56 28872.95 26883.68 30151.35 26383.26 33858.33 29575.80 29487.81 273
Anonymous2023120668.60 31567.80 31571.02 34580.23 34150.75 37178.30 33380.47 32456.79 35966.11 34282.63 31746.35 31078.95 35743.62 37475.70 29583.36 347
v7n78.97 18277.58 19683.14 16383.45 28565.51 18488.32 13591.21 11673.69 13372.41 27586.32 24657.93 20193.81 13769.18 19875.65 29690.11 203
NR-MVSNet80.23 15179.38 14782.78 18387.80 19363.34 23286.31 19591.09 12279.01 2672.17 27889.07 16367.20 10092.81 18866.08 22775.65 29692.20 130
v1079.74 16078.67 16482.97 17384.06 27364.95 19787.88 15290.62 13273.11 14975.11 24286.56 23961.46 16794.05 12473.68 15375.55 29889.90 217
IB-MVS68.01 1575.85 24673.36 26183.31 15484.76 25866.03 16983.38 26385.06 26370.21 20269.40 30781.05 33045.76 31894.66 10365.10 23575.49 29989.25 236
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
h-mvs3383.15 9082.19 9886.02 6290.56 9370.85 7088.15 14289.16 18076.02 8584.67 6691.39 10761.54 16495.50 6382.71 7075.48 30091.72 143
c3_l78.75 18577.91 18281.26 21482.89 30261.56 25984.09 25289.13 18369.97 20675.56 22284.29 28666.36 10892.09 21073.47 15775.48 30090.12 202
V4279.38 17278.24 17682.83 17781.10 33265.50 18585.55 21789.82 15771.57 17178.21 16386.12 25060.66 18393.18 17275.64 13775.46 30289.81 222
testing368.56 31767.67 31871.22 34487.33 21442.87 39283.06 27271.54 37470.36 19669.08 31184.38 28330.33 38185.69 31737.50 38675.45 30385.09 329
cl____77.72 21376.76 21380.58 23182.49 31160.48 27283.09 26987.87 21769.22 22574.38 25585.22 27062.10 15791.53 23271.09 17875.41 30489.73 225
DIV-MVS_self_test77.72 21376.76 21380.58 23182.48 31260.48 27283.09 26987.86 21869.22 22574.38 25585.24 26862.10 15791.53 23271.09 17875.40 30589.74 224
v879.97 15879.02 15982.80 18084.09 27264.50 20787.96 14690.29 14674.13 12475.24 23886.81 22562.88 14593.89 13574.39 14875.40 30590.00 211
Baseline_NR-MVSNet78.15 20178.33 17477.61 28685.79 23856.21 32686.78 18285.76 25673.60 13677.93 17187.57 20565.02 12388.99 28467.14 21975.33 30787.63 276
pmmvs571.55 28970.20 29575.61 30477.83 36056.39 32181.74 28380.89 31757.76 35267.46 32484.49 28049.26 28985.32 32357.08 30675.29 30885.11 328
EPMVS69.02 31268.16 30771.59 33879.61 35149.80 37677.40 33966.93 38562.82 31170.01 29879.05 34945.79 31777.86 36356.58 31175.26 30987.13 291
TranMVSNet+NR-MVSNet80.84 13080.31 12982.42 19087.85 19062.33 24887.74 15591.33 11480.55 977.99 17089.86 14165.23 12192.62 18967.05 22075.24 31092.30 125
test_fmvs268.35 32067.48 32170.98 34669.50 39051.95 36080.05 31076.38 35749.33 37974.65 25184.38 28323.30 39075.40 38174.51 14675.17 31185.60 319
tfpnnormal74.39 25973.16 26378.08 27886.10 23658.05 29384.65 23687.53 22570.32 19871.22 28785.63 26054.97 22089.86 26843.03 37575.02 31286.32 305
COLMAP_ROBcopyleft66.92 1773.01 27770.41 29280.81 22787.13 21965.63 18288.30 13684.19 27762.96 30763.80 35787.69 20238.04 36392.56 19246.66 36174.91 31384.24 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchT68.46 31967.85 31270.29 34880.70 33543.93 39072.47 36374.88 36360.15 33270.55 28976.57 36649.94 27981.59 34550.58 33774.83 31485.34 322
pmmvs474.03 26671.91 27380.39 23481.96 31768.32 12381.45 28882.14 30759.32 33969.87 30385.13 27252.40 24688.13 29860.21 27774.74 31584.73 333
ITE_SJBPF78.22 27581.77 32060.57 27083.30 28969.25 22467.54 32287.20 21736.33 36887.28 30654.34 32074.62 31686.80 298
test0.0.03 168.00 32267.69 31768.90 35477.55 36147.43 37975.70 34972.95 37366.66 26166.56 33582.29 32148.06 29875.87 37644.97 37274.51 31783.41 346
test_040272.79 28070.44 29179.84 24688.13 17965.99 17385.93 20684.29 27465.57 27867.40 32685.49 26346.92 30592.61 19035.88 38774.38 31880.94 366
CP-MVSNet78.22 19778.34 17377.84 28187.83 19254.54 34487.94 14891.17 11877.65 3873.48 26288.49 18262.24 15588.43 29462.19 25974.07 31990.55 184
FMVSNet569.50 30967.96 31074.15 32082.97 30155.35 33680.01 31182.12 30862.56 31463.02 35881.53 32736.92 36681.92 34448.42 35174.06 32085.17 327
MVS-HIRNet59.14 34957.67 35263.57 36681.65 32143.50 39171.73 36565.06 39039.59 39051.43 38757.73 39438.34 36182.58 34139.53 38173.95 32164.62 390
tpmrst72.39 28172.13 27273.18 32980.54 33749.91 37479.91 31379.08 34063.11 30471.69 28379.95 34255.32 21882.77 34065.66 23173.89 32286.87 296
PS-CasMVS78.01 20678.09 17877.77 28387.71 19854.39 34688.02 14491.22 11577.50 4673.26 26488.64 17660.73 18088.41 29561.88 26373.88 32390.53 185
v14878.72 18777.80 18781.47 20782.73 30561.96 25486.30 19688.08 21173.26 14676.18 21285.47 26462.46 15092.36 20071.92 17273.82 32490.09 205
Patchmatch-test64.82 33963.24 34069.57 35079.42 35449.82 37563.49 39269.05 38251.98 37459.95 37080.13 34050.91 26770.98 39040.66 38073.57 32587.90 271
WR-MVS_H78.51 19278.49 16878.56 26988.02 18556.38 32288.43 12892.67 6277.14 5473.89 25887.55 20766.25 11089.24 28058.92 28873.55 32690.06 209
AUN-MVS79.21 17577.60 19584.05 13088.71 15967.61 13985.84 21087.26 23169.08 23077.23 18588.14 19653.20 24293.47 15475.50 14173.45 32791.06 164
hse-mvs281.72 11180.94 11784.07 12588.72 15867.68 13885.87 20887.26 23176.02 8584.67 6688.22 19161.54 16493.48 15382.71 7073.44 32891.06 164
testgi66.67 33066.53 32767.08 36275.62 37041.69 39775.93 34576.50 35666.11 27065.20 34986.59 23635.72 37074.71 38343.71 37373.38 32984.84 331
Anonymous2024052168.80 31467.22 32373.55 32474.33 37454.11 34783.18 26685.61 25758.15 34961.68 36380.94 33330.71 38081.27 34857.00 30773.34 33085.28 323
pm-mvs177.25 22476.68 21778.93 26384.22 26958.62 28886.41 19288.36 20771.37 17573.31 26388.01 19861.22 17489.15 28264.24 24273.01 33189.03 243
eth_miper_zixun_eth77.92 20876.69 21681.61 20583.00 29861.98 25383.15 26789.20 17969.52 21874.86 24884.35 28561.76 16092.56 19271.50 17572.89 33290.28 196
miper_lstm_enhance74.11 26373.11 26477.13 29380.11 34259.62 28272.23 36486.92 23966.76 25970.40 29282.92 31156.93 21382.92 33969.06 20072.63 33388.87 251
tpmvs71.09 29369.29 29876.49 29782.04 31656.04 32778.92 32581.37 31664.05 29667.18 32878.28 35749.74 28289.77 27049.67 34672.37 33483.67 344
PEN-MVS77.73 21277.69 19377.84 28187.07 22053.91 34987.91 15091.18 11777.56 4373.14 26688.82 17161.23 17389.17 28159.95 27872.37 33490.43 189
DSMNet-mixed57.77 35156.90 35360.38 37067.70 39235.61 40169.18 37653.97 40232.30 39857.49 37879.88 34340.39 35368.57 39538.78 38472.37 33476.97 376
IterMVS-SCA-FT75.43 25273.87 25680.11 24182.69 30664.85 20081.57 28683.47 28769.16 22870.49 29184.15 29151.95 25688.15 29769.23 19772.14 33787.34 284
tpm cat170.57 29968.31 30577.35 29082.41 31357.95 29778.08 33480.22 33052.04 37268.54 31677.66 36252.00 25587.84 30151.77 33172.07 33886.25 306
RPSCF73.23 27571.46 27878.54 27082.50 31059.85 27982.18 27982.84 30258.96 34371.15 28889.41 15945.48 32284.77 32758.82 29071.83 33991.02 168
IterMVS74.29 26072.94 26578.35 27481.53 32463.49 22881.58 28582.49 30468.06 24969.99 30083.69 30051.66 26285.54 31965.85 22971.64 34086.01 313
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AllTest70.96 29468.09 30979.58 25385.15 25163.62 22284.58 23879.83 33262.31 31660.32 36886.73 22632.02 37588.96 28750.28 34171.57 34186.15 309
TestCases79.58 25385.15 25163.62 22279.83 33262.31 31660.32 36886.73 22632.02 37588.96 28750.28 34171.57 34186.15 309
baseline176.98 22776.75 21577.66 28488.13 17955.66 33285.12 22581.89 30973.04 15176.79 19488.90 16862.43 15187.78 30263.30 24871.18 34389.55 229
Patchmtry70.74 29769.16 30075.49 30780.72 33454.07 34874.94 35780.30 32858.34 34770.01 29881.19 32852.50 24486.54 30953.37 32571.09 34485.87 317
DTE-MVSNet76.99 22676.80 21177.54 28886.24 23253.06 35787.52 15990.66 13177.08 5772.50 27388.67 17560.48 18789.52 27557.33 30470.74 34590.05 210
MIMVSNet168.58 31666.78 32673.98 32280.07 34351.82 36380.77 29784.37 27164.40 29059.75 37182.16 32336.47 36783.63 33442.73 37670.33 34686.48 304
pmmvs674.69 25873.39 26078.61 26781.38 32757.48 30586.64 18687.95 21564.99 28570.18 29586.61 23550.43 27489.52 27562.12 26170.18 34788.83 253
test_vis1_rt60.28 34858.42 35165.84 36367.25 39355.60 33370.44 37260.94 39644.33 38459.00 37266.64 38624.91 38668.67 39462.80 25069.48 34873.25 382
TinyColmap67.30 32664.81 33174.76 31481.92 31956.68 31780.29 30881.49 31460.33 32956.27 38283.22 30524.77 38787.66 30445.52 36969.47 34979.95 370
OurMVSNet-221017-074.26 26172.42 27079.80 24783.76 28059.59 28385.92 20786.64 24266.39 26866.96 32987.58 20439.46 35591.60 22665.76 23069.27 35088.22 266
JIA-IIPM66.32 33362.82 34476.82 29577.09 36461.72 25865.34 38875.38 36058.04 35164.51 35162.32 38942.05 34586.51 31051.45 33469.22 35182.21 358
ADS-MVSNet266.20 33663.33 33974.82 31379.92 34458.75 28767.55 38175.19 36153.37 36965.25 34775.86 37042.32 34180.53 35241.57 37868.91 35285.18 325
ADS-MVSNet64.36 34062.88 34368.78 35679.92 34447.17 38067.55 38171.18 37553.37 36965.25 34775.86 37042.32 34173.99 38641.57 37868.91 35285.18 325
test20.0367.45 32466.95 32568.94 35375.48 37144.84 38877.50 33877.67 34666.66 26163.01 35983.80 29647.02 30478.40 35942.53 37768.86 35483.58 345
EU-MVSNet68.53 31867.61 31971.31 34378.51 35947.01 38184.47 24084.27 27542.27 38666.44 34084.79 27840.44 35283.76 33258.76 29168.54 35583.17 348
dmvs_testset62.63 34464.11 33558.19 37278.55 35824.76 40875.28 35165.94 38867.91 25060.34 36776.01 36953.56 23773.94 38731.79 39167.65 35675.88 379
our_test_369.14 31167.00 32475.57 30579.80 34858.80 28677.96 33577.81 34559.55 33762.90 36178.25 35847.43 30083.97 33151.71 33267.58 35783.93 342
ppachtmachnet_test70.04 30567.34 32278.14 27779.80 34861.13 26279.19 32180.59 32259.16 34165.27 34679.29 34846.75 30787.29 30549.33 34766.72 35886.00 315
LF4IMVS64.02 34162.19 34569.50 35170.90 38853.29 35676.13 34377.18 35252.65 37158.59 37380.98 33223.55 38976.52 37053.06 32766.66 35978.68 373
Patchmatch-RL test70.24 30367.78 31677.61 28677.43 36259.57 28471.16 36770.33 37662.94 30868.65 31472.77 37950.62 27185.49 32069.58 19566.58 36087.77 274
dp66.80 32865.43 33070.90 34779.74 35048.82 37775.12 35574.77 36459.61 33664.08 35477.23 36342.89 33780.72 35148.86 35066.58 36083.16 349
test_fmvs363.36 34361.82 34667.98 35962.51 39746.96 38277.37 34074.03 36845.24 38267.50 32378.79 35412.16 40172.98 38972.77 16666.02 36283.99 341
CL-MVSNet_self_test72.37 28371.46 27875.09 31079.49 35353.53 35180.76 29885.01 26569.12 22970.51 29082.05 32457.92 20284.13 33052.27 33066.00 36387.60 277
FPMVS53.68 35651.64 35859.81 37165.08 39551.03 36969.48 37569.58 38041.46 38740.67 39372.32 38016.46 39770.00 39324.24 39965.42 36458.40 395
pmmvs-eth3d70.50 30167.83 31478.52 27277.37 36366.18 16881.82 28181.51 31358.90 34463.90 35680.42 33842.69 33986.28 31258.56 29265.30 36583.11 350
N_pmnet52.79 35853.26 35751.40 38278.99 3577.68 41469.52 3743.89 41351.63 37557.01 37974.98 37440.83 35065.96 39737.78 38564.67 36680.56 369
PM-MVS66.41 33264.14 33473.20 32873.92 37656.45 31978.97 32464.96 39163.88 30064.72 35080.24 33919.84 39383.44 33666.24 22364.52 36779.71 371
KD-MVS_self_test68.81 31367.59 32072.46 33474.29 37545.45 38377.93 33687.00 23663.12 30363.99 35578.99 35342.32 34184.77 32756.55 31264.09 36887.16 290
SixPastTwentyTwo73.37 27171.26 28379.70 24985.08 25457.89 29885.57 21383.56 28571.03 18365.66 34385.88 25342.10 34492.57 19159.11 28663.34 36988.65 260
EGC-MVSNET52.07 36047.05 36467.14 36183.51 28460.71 26880.50 30467.75 3840.07 4080.43 40975.85 37224.26 38881.54 34628.82 39362.25 37059.16 393
TransMVSNet (Re)75.39 25474.56 24677.86 28085.50 24457.10 31086.78 18286.09 25272.17 16171.53 28487.34 21163.01 14489.31 27956.84 30961.83 37187.17 288
MDA-MVSNet_test_wron65.03 33762.92 34171.37 34075.93 36656.73 31469.09 37974.73 36557.28 35754.03 38577.89 35945.88 31574.39 38549.89 34561.55 37282.99 353
YYNet165.03 33762.91 34271.38 33975.85 36856.60 31869.12 37874.66 36757.28 35754.12 38477.87 36045.85 31674.48 38449.95 34461.52 37383.05 351
mvsany_test162.30 34561.26 34965.41 36469.52 38954.86 34166.86 38349.78 40446.65 38168.50 31783.21 30649.15 29066.28 39656.93 30860.77 37475.11 380
ambc75.24 30973.16 38250.51 37263.05 39387.47 22764.28 35277.81 36117.80 39589.73 27257.88 29960.64 37585.49 320
TDRefinement67.49 32364.34 33376.92 29473.47 38161.07 26384.86 23182.98 29859.77 33558.30 37585.13 27226.06 38587.89 30047.92 35860.59 37681.81 362
Gipumacopyleft45.18 36641.86 36955.16 37977.03 36551.52 36632.50 40180.52 32332.46 39727.12 40035.02 4019.52 40475.50 37822.31 40060.21 37738.45 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new-patchmatchnet61.73 34661.73 34761.70 36872.74 38524.50 40969.16 37778.03 34461.40 32356.72 38075.53 37338.42 36076.48 37145.95 36757.67 37884.13 339
MDA-MVSNet-bldmvs66.68 32963.66 33875.75 30279.28 35560.56 27173.92 36078.35 34364.43 28950.13 38979.87 34444.02 32983.67 33346.10 36656.86 37983.03 352
new_pmnet50.91 36150.29 36152.78 38168.58 39134.94 40363.71 39056.63 40139.73 38944.95 39165.47 38721.93 39158.48 40034.98 38856.62 38064.92 389
test_f52.09 35950.82 36055.90 37653.82 40442.31 39659.42 39458.31 40036.45 39356.12 38370.96 38312.18 40057.79 40153.51 32456.57 38167.60 387
test_vis3_rt49.26 36347.02 36556.00 37554.30 40245.27 38766.76 38548.08 40536.83 39244.38 39253.20 3977.17 40864.07 39856.77 31055.66 38258.65 394
PMVScopyleft37.38 2244.16 36740.28 37055.82 37740.82 41042.54 39565.12 38963.99 39234.43 39524.48 40157.12 3963.92 41176.17 37517.10 40355.52 38348.75 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD_test153.31 35749.93 36263.42 36765.68 39450.13 37371.59 36666.90 38634.43 39540.58 39471.56 3828.65 40676.27 37334.64 38955.36 38463.86 391
pmmvs357.79 35054.26 35568.37 35864.02 39656.72 31575.12 35565.17 38940.20 38852.93 38669.86 38520.36 39275.48 37945.45 37055.25 38572.90 383
UnsupCasMVSNet_eth67.33 32565.99 32971.37 34073.48 38051.47 36775.16 35385.19 26265.20 28060.78 36680.93 33542.35 34077.20 36557.12 30553.69 38685.44 321
K. test v371.19 29168.51 30379.21 25983.04 29757.78 30184.35 24776.91 35472.90 15462.99 36082.86 31339.27 35691.09 25061.65 26652.66 38788.75 257
UnsupCasMVSNet_bld63.70 34261.53 34870.21 34973.69 37851.39 36872.82 36281.89 30955.63 36457.81 37771.80 38138.67 35978.61 35849.26 34852.21 38880.63 367
LCM-MVSNet54.25 35349.68 36367.97 36053.73 40545.28 38666.85 38480.78 31935.96 39439.45 39562.23 3908.70 40578.06 36248.24 35551.20 38980.57 368
KD-MVS_2432*160066.22 33463.89 33673.21 32675.47 37253.42 35370.76 37084.35 27264.10 29466.52 33778.52 35534.55 37284.98 32450.40 33950.33 39081.23 364
miper_refine_blended66.22 33463.89 33673.21 32675.47 37253.42 35370.76 37084.35 27264.10 29466.52 33778.52 35534.55 37284.98 32450.40 33950.33 39081.23 364
mvsany_test353.99 35451.45 35961.61 36955.51 40144.74 38963.52 39145.41 40843.69 38558.11 37676.45 36717.99 39463.76 39954.77 31847.59 39276.34 378
lessismore_v078.97 26281.01 33357.15 30965.99 38761.16 36582.82 31439.12 35791.34 24159.67 28046.92 39388.43 264
testf145.72 36441.96 36757.00 37356.90 39945.32 38466.14 38659.26 39826.19 39930.89 39860.96 3924.14 40970.64 39126.39 39746.73 39455.04 396
APD_test245.72 36441.96 36757.00 37356.90 39945.32 38466.14 38659.26 39826.19 39930.89 39860.96 3924.14 40970.64 39126.39 39746.73 39455.04 396
PVSNet_057.27 2061.67 34759.27 35068.85 35579.61 35157.44 30668.01 38073.44 37055.93 36358.54 37470.41 38444.58 32577.55 36447.01 36035.91 39671.55 384
WB-MVS54.94 35254.72 35455.60 37873.50 37920.90 41074.27 35961.19 39559.16 34150.61 38874.15 37547.19 30375.78 37717.31 40235.07 39770.12 385
test_method31.52 37029.28 37438.23 38527.03 4126.50 41520.94 40362.21 3944.05 40622.35 40452.50 39813.33 39847.58 40527.04 39634.04 39860.62 392
SSC-MVS53.88 35553.59 35654.75 38072.87 38419.59 41173.84 36160.53 39757.58 35549.18 39073.45 37846.34 31175.47 38016.20 40532.28 39969.20 386
PMMVS240.82 36838.86 37146.69 38353.84 40316.45 41248.61 39849.92 40337.49 39131.67 39660.97 3918.14 40756.42 40228.42 39430.72 40067.19 388
DeepMVS_CXcopyleft27.40 38840.17 41126.90 40624.59 41217.44 40423.95 40248.61 3999.77 40326.48 40718.06 40124.47 40128.83 401
MVEpermissive26.22 2330.37 37225.89 37643.81 38444.55 40935.46 40228.87 40239.07 40918.20 40318.58 40540.18 4002.68 41247.37 40617.07 40423.78 40248.60 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.77 36930.64 37235.15 38652.87 40627.67 40557.09 39647.86 40624.64 40116.40 40633.05 40211.23 40254.90 40314.46 40618.15 40322.87 402
EMVS30.81 37129.65 37334.27 38750.96 40725.95 40756.58 39746.80 40724.01 40215.53 40730.68 40312.47 39954.43 40412.81 40717.05 40422.43 403
ANet_high50.57 36246.10 36663.99 36548.67 40839.13 39970.99 36980.85 31861.39 32431.18 39757.70 39517.02 39673.65 38831.22 39215.89 40579.18 372
tmp_tt18.61 37421.40 37710.23 3904.82 41310.11 41334.70 40030.74 4111.48 40723.91 40326.07 40428.42 38313.41 40927.12 39515.35 4067.17 404
wuyk23d16.82 37515.94 37819.46 38958.74 39831.45 40439.22 3993.74 4146.84 4056.04 4082.70 4081.27 41324.29 40810.54 40814.40 4072.63 405
testmvs6.04 3788.02 3810.10 3920.08 4140.03 41769.74 3730.04 4150.05 4090.31 4101.68 4090.02 4150.04 4100.24 4090.02 4080.25 407
test1236.12 3778.11 3800.14 3910.06 4150.09 41671.05 3680.03 4160.04 4100.25 4111.30 4100.05 4140.03 4110.21 4100.01 4090.29 406
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k19.96 37326.61 3750.00 3930.00 4160.00 4180.00 40489.26 1750.00 4110.00 41288.61 17761.62 1630.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas5.26 3797.02 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41163.15 1400.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re7.23 3769.64 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41286.72 2280.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS42.58 39339.46 382
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 416
eth-test0.00 416
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
save fliter93.80 4072.35 4290.47 6491.17 11874.31 118
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 248
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26488.96 248
sam_mvs50.01 277
MTGPAbinary92.02 87
test_post178.90 3265.43 40748.81 29785.44 32259.25 284
test_post5.46 40650.36 27584.24 329
patchmatchnet-post74.00 37651.12 26688.60 292
MTMP92.18 3532.83 410
gm-plane-assit81.40 32653.83 35062.72 31380.94 33392.39 19863.40 247
TEST993.26 5072.96 2588.75 11791.89 9568.44 24485.00 5993.10 6774.36 2895.41 69
test_893.13 5272.57 3588.68 12291.84 9968.69 23984.87 6393.10 6774.43 2695.16 78
agg_prior92.85 5971.94 5191.78 10284.41 7394.93 89
test_prior472.60 3489.01 107
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6493.91 55
旧先验286.56 18958.10 35087.04 4188.98 28574.07 151
新几何286.29 197
无先验87.48 16088.98 18860.00 33394.12 12267.28 21688.97 247
原ACMM286.86 178
testdata291.01 25262.37 257
segment_acmp73.08 38
testdata184.14 25175.71 89
plane_prior790.08 10368.51 120
plane_prior689.84 11268.70 11560.42 188
plane_prior491.00 122
plane_prior368.60 11878.44 3178.92 145
plane_prior291.25 5079.12 23
plane_prior189.90 111
n20.00 417
nn0.00 417
door-mid69.98 378
test1192.23 81
door69.44 381
HQP5-MVS66.98 155
HQP-NCC89.33 13189.17 10076.41 7477.23 185
ACMP_Plane89.33 13189.17 10076.41 7477.23 185
BP-MVS77.47 117
HQP4-MVS77.24 18495.11 8291.03 166
HQP2-MVS60.17 191
NP-MVS89.62 11668.32 12390.24 134
MDTV_nov1_ep13_2view37.79 40075.16 35355.10 36566.53 33649.34 28753.98 32187.94 270
Test By Simon64.33 127