This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 44
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
IU-MVS95.30 271.25 5792.95 5266.81 25792.39 688.94 1696.63 494.85 19
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 88
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
test_part295.06 872.65 3291.80 13
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 100
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8792.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 54
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 39
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6894.52 2168.81 8696.65 3084.53 4994.90 4094.00 52
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7294.52 2169.09 8096.70 2784.37 5194.83 4594.03 51
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6194.44 2870.78 6296.61 3284.53 4994.89 4193.66 67
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 15084.86 6492.89 7476.22 1796.33 3884.89 4495.13 3694.40 36
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9191.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 33
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DP-MVS Recon83.11 9382.09 10086.15 5894.44 1970.92 6888.79 11592.20 8370.53 19479.17 14191.03 12164.12 12996.03 4668.39 20890.14 10391.50 150
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8794.17 3667.45 9796.60 3383.06 6394.50 5194.07 49
X-MVStestdata80.37 14877.83 18588.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 8712.47 40567.45 9796.60 3383.06 6394.50 5194.07 49
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8276.87 6282.81 10094.25 3466.44 10796.24 4182.88 6794.28 5793.38 85
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 5093.47 6073.02 4097.00 1884.90 4294.94 3994.10 47
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5594.32 3171.76 5096.93 1985.53 3995.79 2294.32 40
ZD-MVS94.38 2572.22 4492.67 6270.98 18487.75 3294.07 4174.01 3296.70 2784.66 4794.84 44
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8494.40 3072.24 4596.28 4085.65 3895.30 3593.62 74
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 34
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 34
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5994.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10992.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15288.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 109
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7193.04 3875.53 9383.86 8394.42 2967.87 9496.64 3182.70 7294.57 5093.66 67
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8694.46 2567.93 9295.95 5284.20 5594.39 5493.23 91
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18892.02 8779.45 1985.88 4894.80 1768.07 9196.21 4286.69 3695.34 3393.23 91
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6593.99 4870.67 6496.82 2284.18 5695.01 3793.90 57
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6974.50 11486.84 4494.65 2067.31 9995.77 5584.80 4692.85 6892.84 107
114514_t80.68 13979.51 14484.20 11794.09 3867.27 14989.64 8591.11 12158.75 34674.08 25790.72 12658.10 20095.04 8769.70 19389.42 11490.30 195
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8483.81 8593.95 5169.77 7496.01 4885.15 4094.66 4794.32 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
save fliter93.80 4072.35 4290.47 6491.17 11874.31 118
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 8188.14 2495.09 1571.06 5996.67 2987.67 2996.37 1494.09 48
HPM-MVS_fast85.35 5984.95 6586.57 5393.69 4270.58 7592.15 3691.62 10573.89 12882.67 10294.09 4062.60 14695.54 6280.93 8592.93 6793.57 76
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7674.62 11388.90 2093.85 5275.75 2096.00 4987.80 2894.63 4895.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10286.34 4695.29 1270.86 6196.00 4988.78 1996.04 1694.58 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMPcopyleft85.89 4985.39 5687.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12593.82 5364.33 12796.29 3982.67 7390.69 9593.23 91
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7693.36 6371.44 5696.76 2580.82 8795.33 3494.16 45
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS85.76 5185.29 6187.17 4393.49 4771.08 6188.58 12592.42 7468.32 24684.61 6993.48 5872.32 4496.15 4579.00 10195.43 3194.28 42
DP-MVS76.78 23074.57 24583.42 15093.29 4869.46 9488.55 12683.70 28263.98 29870.20 29488.89 16954.01 23494.80 9846.66 36181.88 22286.01 313
CPTT-MVS83.73 7683.33 8284.92 9093.28 4970.86 6992.09 3790.38 13968.75 23879.57 13692.83 7660.60 18693.04 18180.92 8691.56 8590.86 172
TEST993.26 5072.96 2588.75 11791.89 9568.44 24485.00 5993.10 6774.36 2895.41 69
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11791.89 9568.69 23985.00 5993.10 6774.43 2695.41 6984.97 4195.71 2593.02 102
test_893.13 5272.57 3588.68 12291.84 9968.69 23984.87 6393.10 6774.43 2695.16 78
新几何183.42 15093.13 5270.71 7185.48 25957.43 35681.80 11191.98 9063.28 13592.27 20464.60 23992.99 6687.27 286
AdaColmapbinary80.58 14379.42 14684.06 12793.09 5468.91 10589.36 9688.97 19069.27 22275.70 22089.69 14557.20 21195.77 5563.06 24988.41 13087.50 281
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 7873.53 13985.69 5194.45 2665.00 12595.56 6082.75 6891.87 8092.50 118
RE-MVS-def85.48 5593.06 5570.63 7391.88 3992.27 7873.53 13985.69 5194.45 2663.87 13182.75 6891.87 8092.50 118
原ACMM184.35 10993.01 5768.79 10792.44 7163.96 29981.09 12191.57 10166.06 11395.45 6567.19 21894.82 4688.81 254
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12583.16 9491.07 11875.94 1895.19 7779.94 9694.38 5593.55 78
agg_prior92.85 5971.94 5191.78 10284.41 7394.93 89
9.1488.26 1592.84 6091.52 4694.75 173.93 12788.57 2294.67 1975.57 2295.79 5486.77 3595.76 23
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8989.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
MG-MVS83.41 8583.45 7883.28 15592.74 6262.28 25088.17 14089.50 16675.22 9881.49 11592.74 8266.75 10295.11 8272.85 16491.58 8492.45 121
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13885.94 4794.51 2465.80 11795.61 5983.04 6592.51 7293.53 80
test1286.80 4992.63 6470.70 7291.79 10182.71 10171.67 5396.16 4494.50 5193.54 79
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6493.91 55
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13887.63 3094.27 5893.65 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PAPM_NR83.02 9482.41 9484.82 9392.47 6766.37 16487.93 14991.80 10073.82 12977.32 18290.66 12767.90 9394.90 9370.37 18589.48 11393.19 95
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8893.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 29
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
UA-Net85.08 6384.96 6485.45 7192.07 7068.07 13089.78 8090.86 12882.48 384.60 7093.20 6669.35 7795.22 7671.39 17690.88 9393.07 99
旧先验191.96 7165.79 18086.37 24793.08 7169.31 7992.74 6988.74 258
MSLP-MVS++85.43 5785.76 5184.45 10591.93 7270.24 7690.71 5892.86 5477.46 4784.22 7692.81 7867.16 10192.94 18380.36 9294.35 5690.16 199
LFMVS81.82 11081.23 11183.57 14791.89 7363.43 23189.84 7681.85 31177.04 5883.21 9293.10 6752.26 24893.43 15771.98 17189.95 10893.85 59
PLCcopyleft70.83 1178.05 20476.37 22383.08 16691.88 7467.80 13588.19 13989.46 16764.33 29269.87 30388.38 18553.66 23693.58 14658.86 28982.73 21187.86 272
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dcpmvs_285.63 5386.15 4484.06 12791.71 7564.94 19886.47 19191.87 9773.63 13486.60 4593.02 7276.57 1591.87 21983.36 6092.15 7695.35 3
MVS_111021_HR85.14 6184.75 6686.32 5591.65 7672.70 3085.98 20490.33 14376.11 8382.08 10591.61 10071.36 5894.17 12181.02 8492.58 7192.08 135
test22291.50 7768.26 12584.16 25083.20 29354.63 36779.74 13391.63 9958.97 19591.42 8686.77 299
TSAR-MVS + GP.85.71 5285.33 5886.84 4791.34 7872.50 3689.07 10687.28 23076.41 7485.80 4990.22 13674.15 3195.37 7481.82 7791.88 7992.65 113
MAR-MVS81.84 10980.70 12085.27 7591.32 7971.53 5489.82 7790.92 12469.77 21278.50 15586.21 24762.36 15294.52 10765.36 23292.05 7889.77 223
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6993.94 1477.12 5582.82 9994.23 3572.13 4797.09 1684.83 4595.37 3293.65 71
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+77.84 485.48 5584.47 7188.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19893.37 6260.40 19096.75 2677.20 12093.73 6395.29 5
Anonymous20240521178.25 19677.01 20581.99 19791.03 8260.67 26984.77 23283.90 28070.65 19380.00 13291.20 11341.08 34991.43 23865.21 23385.26 16993.85 59
CS-MVS-test86.29 4286.48 3785.71 6691.02 8367.21 15292.36 2993.78 1878.97 2883.51 9091.20 11370.65 6595.15 7981.96 7694.89 4194.77 22
VDD-MVS83.01 9582.36 9684.96 8791.02 8366.40 16388.91 11088.11 20977.57 4184.39 7493.29 6452.19 24993.91 13277.05 12288.70 12594.57 31
API-MVS81.99 10781.23 11184.26 11690.94 8570.18 8291.10 5389.32 17171.51 17378.66 15188.28 18865.26 12095.10 8564.74 23891.23 8987.51 280
testdata79.97 24390.90 8664.21 21384.71 26759.27 34085.40 5392.91 7362.02 15989.08 28368.95 20191.37 8786.63 303
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15585.22 5691.90 9269.47 7696.42 3783.28 6295.94 1994.35 38
VNet82.21 10282.41 9481.62 20390.82 8860.93 26484.47 24089.78 15876.36 7984.07 8091.88 9364.71 12690.26 26170.68 18288.89 11993.66 67
PVSNet_Blended_VisFu82.62 9881.83 10684.96 8790.80 8969.76 8788.74 11991.70 10469.39 21978.96 14388.46 18365.47 11994.87 9674.42 14788.57 12690.24 197
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11886.57 187.39 3794.97 1671.70 5297.68 192.19 195.63 2895.57 1
CS-MVS86.69 3586.95 3185.90 6490.76 9167.57 14092.83 1793.30 3279.67 1784.57 7192.27 8671.47 5595.02 8884.24 5493.46 6495.13 6
Anonymous2024052980.19 15378.89 16184.10 12090.60 9264.75 20288.95 10990.90 12565.97 27480.59 12691.17 11549.97 27893.73 14469.16 19982.70 21393.81 62
h-mvs3383.15 9082.19 9886.02 6290.56 9370.85 7088.15 14289.16 18076.02 8584.67 6691.39 10761.54 16495.50 6382.71 7075.48 30091.72 143
Anonymous2023121178.97 18277.69 19382.81 17990.54 9464.29 21290.11 7391.51 10965.01 28476.16 21588.13 19750.56 27293.03 18269.68 19477.56 27091.11 162
LS3D76.95 22874.82 24383.37 15390.45 9567.36 14689.15 10486.94 23861.87 32169.52 30690.61 12851.71 26194.53 10646.38 36486.71 14988.21 267
VDDNet81.52 11980.67 12184.05 13090.44 9664.13 21589.73 8285.91 25371.11 18083.18 9393.48 5850.54 27393.49 15273.40 15888.25 13194.54 32
CNLPA78.08 20276.79 21281.97 19890.40 9771.07 6287.59 15884.55 27066.03 27372.38 27689.64 14757.56 20686.04 31459.61 28183.35 20388.79 255
PAPR81.66 11680.89 11883.99 13590.27 9864.00 21686.76 18491.77 10368.84 23777.13 19189.50 15167.63 9594.88 9567.55 21388.52 12893.09 98
Vis-MVSNetpermissive83.46 8482.80 9185.43 7290.25 9968.74 11190.30 7090.13 15076.33 8080.87 12492.89 7461.00 17894.20 11972.45 17090.97 9193.35 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DPM-MVS84.93 6584.29 7286.84 4790.20 10073.04 2387.12 17093.04 3869.80 21082.85 9891.22 11273.06 3996.02 4776.72 12894.63 4891.46 154
EPP-MVSNet83.40 8683.02 8684.57 9990.13 10164.47 20892.32 3090.73 13074.45 11779.35 13991.10 11669.05 8395.12 8072.78 16587.22 14194.13 46
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6881.78 481.32 11691.43 10670.34 6697.23 1384.26 5293.36 6594.37 37
test250677.30 22376.49 21979.74 24890.08 10352.02 35887.86 15363.10 39374.88 10680.16 13192.79 7938.29 36292.35 20168.74 20492.50 7394.86 17
ECVR-MVScopyleft79.61 16179.26 15280.67 23090.08 10354.69 34287.89 15177.44 35074.88 10680.27 12892.79 7948.96 29592.45 19568.55 20592.50 7394.86 17
HQP_MVS83.64 7983.14 8385.14 7990.08 10368.71 11391.25 5092.44 7179.12 2378.92 14591.00 12260.42 18895.38 7178.71 10586.32 15491.33 155
plane_prior790.08 10368.51 120
patch_mono-283.65 7884.54 6880.99 22290.06 10765.83 17784.21 24988.74 20071.60 17085.01 5792.44 8474.51 2583.50 33582.15 7592.15 7693.64 73
test111179.43 16879.18 15680.15 24089.99 10853.31 35587.33 16577.05 35375.04 10380.23 13092.77 8148.97 29492.33 20368.87 20292.40 7594.81 20
CHOSEN 1792x268877.63 21775.69 22783.44 14989.98 10968.58 11978.70 32787.50 22656.38 36175.80 21986.84 22458.67 19691.40 23961.58 26785.75 16690.34 192
IS-MVSNet83.15 9082.81 9084.18 11889.94 11063.30 23391.59 4388.46 20679.04 2579.49 13792.16 8865.10 12294.28 11367.71 21191.86 8294.95 10
plane_prior189.90 111
sasdasda85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 11073.28 3693.91 13281.50 7988.80 12194.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 11073.28 3693.91 13281.50 7988.80 12194.77 22
plane_prior689.84 11268.70 11560.42 188
MVS_030488.08 1488.08 1788.08 1489.67 11572.04 4892.26 3389.26 17584.19 285.01 5795.18 1369.93 7197.20 1491.63 295.60 2994.99 9
NP-MVS89.62 11668.32 12390.24 134
EIA-MVS83.31 8982.80 9184.82 9389.59 11765.59 18388.21 13892.68 6174.66 11178.96 14386.42 24369.06 8295.26 7575.54 14090.09 10493.62 74
HyFIR lowres test77.53 21875.40 23583.94 13889.59 11766.62 16080.36 30688.64 20356.29 36276.45 20385.17 27157.64 20593.28 16161.34 27083.10 20791.91 139
TAPA-MVS73.13 979.15 17677.94 18182.79 18289.59 11762.99 24388.16 14191.51 10965.77 27577.14 19091.09 11760.91 17993.21 16650.26 34387.05 14392.17 132
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thres100view90076.50 23475.55 23279.33 25689.52 12056.99 31185.83 21183.23 29173.94 12676.32 20887.12 22051.89 25891.95 21448.33 35283.75 19289.07 237
GeoE81.71 11281.01 11683.80 14189.51 12164.45 20988.97 10888.73 20171.27 17778.63 15289.76 14466.32 10993.20 16969.89 19186.02 16193.74 65
alignmvs85.48 5585.32 5985.96 6389.51 12169.47 9289.74 8192.47 7076.17 8287.73 3491.46 10570.32 6793.78 13881.51 7888.95 11894.63 28
PS-MVSNAJ81.69 11381.02 11583.70 14389.51 12168.21 12784.28 24890.09 15170.79 18681.26 12085.62 26163.15 14094.29 11275.62 13888.87 12088.59 261
iter_conf05_1181.63 11780.44 12785.20 7889.46 12466.20 16786.21 19886.97 23771.53 17283.35 9188.53 18143.22 33595.94 5379.82 9794.85 4393.47 81
bld_raw_dy_0_6480.78 13779.36 14985.06 8389.46 12466.03 16989.63 8685.46 26069.76 21381.88 10789.06 16543.39 33395.70 5879.82 9785.74 16893.47 81
MGCFI-Net85.06 6485.51 5483.70 14389.42 12663.01 23989.43 9192.62 6776.43 7387.53 3591.34 10872.82 4293.42 15881.28 8288.74 12494.66 27
ACMP74.13 681.51 12180.57 12284.36 10889.42 12668.69 11689.97 7591.50 11274.46 11675.04 24590.41 13253.82 23594.54 10577.56 11682.91 20889.86 219
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
thres600view776.50 23475.44 23379.68 25089.40 12857.16 30885.53 21983.23 29173.79 13176.26 20987.09 22151.89 25891.89 21748.05 35783.72 19590.00 211
ETV-MVS84.90 6784.67 6785.59 6889.39 12968.66 11788.74 11992.64 6679.97 1584.10 7985.71 25669.32 7895.38 7180.82 8791.37 8792.72 108
BH-RMVSNet79.61 16178.44 17083.14 16389.38 13065.93 17484.95 22987.15 23473.56 13778.19 16489.79 14356.67 21493.36 15959.53 28286.74 14890.13 201
HQP-NCC89.33 13189.17 10076.41 7477.23 185
ACMP_Plane89.33 13189.17 10076.41 7477.23 185
HQP-MVS82.61 9982.02 10284.37 10789.33 13166.98 15589.17 10092.19 8476.41 7477.23 18590.23 13560.17 19195.11 8277.47 11785.99 16291.03 166
EC-MVSNet86.01 4386.38 3884.91 9189.31 13466.27 16692.32 3093.63 2179.37 2084.17 7891.88 9369.04 8495.43 6783.93 5793.77 6293.01 103
ACMM73.20 880.78 13779.84 13883.58 14689.31 13468.37 12289.99 7491.60 10670.28 19977.25 18389.66 14653.37 24093.53 15174.24 15082.85 20988.85 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Test_1112_low_res76.40 23875.44 23379.27 25789.28 13658.09 29281.69 28487.07 23559.53 33872.48 27486.67 23361.30 17189.33 27860.81 27480.15 24290.41 190
F-COLMAP76.38 23974.33 25082.50 18989.28 13666.95 15888.41 12989.03 18564.05 29666.83 33188.61 17746.78 30692.89 18457.48 30178.55 25887.67 275
LPG-MVS_test82.08 10481.27 11084.50 10289.23 13868.76 10990.22 7191.94 9375.37 9676.64 19991.51 10254.29 23094.91 9078.44 10783.78 18989.83 220
LGP-MVS_train84.50 10289.23 13868.76 10991.94 9375.37 9676.64 19991.51 10254.29 23094.91 9078.44 10783.78 18989.83 220
BH-untuned79.47 16678.60 16682.05 19589.19 14065.91 17586.07 20388.52 20572.18 16075.42 22887.69 20261.15 17593.54 15060.38 27586.83 14786.70 301
xiu_mvs_v2_base81.69 11381.05 11483.60 14589.15 14168.03 13284.46 24290.02 15270.67 18981.30 11986.53 24163.17 13994.19 12075.60 13988.54 12788.57 262
test_yl81.17 12480.47 12583.24 15889.13 14263.62 22286.21 19889.95 15572.43 15881.78 11289.61 14857.50 20793.58 14670.75 18086.90 14592.52 116
DCV-MVSNet81.17 12480.47 12583.24 15889.13 14263.62 22286.21 19889.95 15572.43 15881.78 11289.61 14857.50 20793.58 14670.75 18086.90 14592.52 116
tfpn200view976.42 23775.37 23779.55 25589.13 14257.65 30285.17 22283.60 28373.41 14276.45 20386.39 24452.12 25091.95 21448.33 35283.75 19289.07 237
thres40076.50 23475.37 23779.86 24589.13 14257.65 30285.17 22283.60 28373.41 14276.45 20386.39 24452.12 25091.95 21448.33 35283.75 19290.00 211
1112_ss77.40 22176.43 22180.32 23789.11 14660.41 27483.65 25787.72 22262.13 31973.05 26786.72 22862.58 14889.97 26762.11 26280.80 23390.59 183
SDMVSNet80.38 14680.18 13280.99 22289.03 14764.94 19880.45 30589.40 16875.19 10076.61 20189.98 13960.61 18587.69 30376.83 12683.55 19890.33 193
sd_testset77.70 21577.40 19878.60 26889.03 14760.02 27879.00 32385.83 25575.19 10076.61 20189.98 13954.81 22185.46 32162.63 25583.55 19890.33 193
Fast-Effi-MVS+80.81 13279.92 13583.47 14888.85 14964.51 20585.53 21989.39 16970.79 18678.49 15685.06 27467.54 9693.58 14667.03 22186.58 15092.32 124
PVSNet_BlendedMVS80.60 14180.02 13382.36 19288.85 14965.40 18786.16 20192.00 8969.34 22178.11 16686.09 25166.02 11494.27 11471.52 17382.06 21987.39 282
PVSNet_Blended80.98 12780.34 12882.90 17588.85 14965.40 18784.43 24492.00 8967.62 25278.11 16685.05 27566.02 11494.27 11471.52 17389.50 11289.01 244
MVS_111021_LR82.61 9982.11 9984.11 11988.82 15271.58 5385.15 22486.16 25074.69 11080.47 12791.04 11962.29 15390.55 25980.33 9390.08 10590.20 198
BH-w/o78.21 19877.33 20180.84 22688.81 15365.13 19484.87 23087.85 21969.75 21474.52 25384.74 27961.34 17093.11 17658.24 29685.84 16484.27 336
FIs82.07 10582.42 9381.04 22188.80 15458.34 29088.26 13793.49 2676.93 6078.47 15791.04 11969.92 7292.34 20269.87 19284.97 17192.44 122
OPM-MVS83.50 8382.95 8885.14 7988.79 15570.95 6689.13 10591.52 10877.55 4480.96 12391.75 9560.71 18194.50 10879.67 9986.51 15289.97 215
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
WR-MVS79.49 16579.22 15480.27 23888.79 15558.35 28985.06 22688.61 20478.56 3077.65 17588.34 18663.81 13390.66 25864.98 23677.22 27291.80 142
OMC-MVS82.69 9781.97 10484.85 9288.75 15767.42 14387.98 14590.87 12774.92 10579.72 13491.65 9762.19 15693.96 12575.26 14286.42 15393.16 96
hse-mvs281.72 11180.94 11784.07 12588.72 15867.68 13885.87 20887.26 23176.02 8584.67 6688.22 19161.54 16493.48 15382.71 7073.44 32891.06 164
AUN-MVS79.21 17577.60 19584.05 13088.71 15967.61 13985.84 21087.26 23169.08 23077.23 18588.14 19653.20 24293.47 15475.50 14173.45 32791.06 164
ACMH67.68 1675.89 24573.93 25481.77 20188.71 15966.61 16188.62 12489.01 18769.81 20966.78 33286.70 23241.95 34691.51 23455.64 31578.14 26587.17 288
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNet (Re-imp)78.36 19578.45 16978.07 27988.64 16151.78 36486.70 18579.63 33574.14 12375.11 24290.83 12561.29 17289.75 27158.10 29791.60 8392.69 111
PatchMatch-RL72.38 28270.90 28676.80 29688.60 16267.38 14579.53 31576.17 35962.75 31269.36 30882.00 32645.51 32084.89 32653.62 32380.58 23678.12 374
ACMH+68.96 1476.01 24474.01 25282.03 19688.60 16265.31 19188.86 11287.55 22470.25 20167.75 32087.47 21041.27 34793.19 17158.37 29475.94 29387.60 277
LTVRE_ROB69.57 1376.25 24074.54 24781.41 20988.60 16264.38 21179.24 31989.12 18470.76 18869.79 30587.86 19949.09 29193.20 16956.21 31480.16 24186.65 302
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DELS-MVS85.41 5885.30 6085.77 6588.49 16567.93 13385.52 22193.44 2778.70 2983.63 8989.03 16674.57 2495.71 5780.26 9494.04 6093.66 67
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CLD-MVS82.31 10181.65 10784.29 11288.47 16667.73 13785.81 21292.35 7675.78 8878.33 16086.58 23864.01 13094.35 11176.05 13387.48 13890.79 173
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 10881.54 10882.92 17488.46 16763.46 22987.13 16992.37 7580.19 1278.38 15889.14 16171.66 5493.05 17970.05 18876.46 28392.25 127
ab-mvs79.51 16478.97 16081.14 21888.46 16760.91 26583.84 25489.24 17770.36 19679.03 14288.87 17063.23 13890.21 26365.12 23482.57 21492.28 126
testing9176.54 23275.66 23079.18 26088.43 16955.89 32981.08 29283.00 29773.76 13275.34 23184.29 28646.20 31390.07 26564.33 24084.50 17791.58 146
FC-MVSNet-test81.52 11982.02 10280.03 24288.42 17055.97 32887.95 14793.42 2977.10 5677.38 18090.98 12469.96 7091.79 22068.46 20784.50 17792.33 123
Effi-MVS+83.62 8183.08 8485.24 7688.38 17167.45 14288.89 11189.15 18175.50 9482.27 10388.28 18869.61 7594.45 11077.81 11487.84 13393.84 61
UniMVSNet (Re)81.60 11881.11 11383.09 16588.38 17164.41 21087.60 15793.02 4278.42 3278.56 15488.16 19269.78 7393.26 16269.58 19576.49 28291.60 144
VPNet78.69 18878.66 16578.76 26588.31 17355.72 33184.45 24386.63 24376.79 6478.26 16190.55 13059.30 19389.70 27366.63 22277.05 27490.88 171
FA-MVS(test-final)80.96 12879.91 13684.10 12088.30 17465.01 19684.55 23990.01 15373.25 14779.61 13587.57 20558.35 19994.72 10171.29 17786.25 15692.56 115
TR-MVS77.44 21976.18 22481.20 21688.24 17563.24 23484.61 23786.40 24667.55 25377.81 17286.48 24254.10 23293.15 17357.75 30082.72 21287.20 287
EI-MVSNet-Vis-set84.19 7083.81 7585.31 7488.18 17667.85 13487.66 15689.73 16180.05 1482.95 9589.59 15070.74 6394.82 9780.66 9184.72 17493.28 90
testing1175.14 25674.01 25278.53 27188.16 17756.38 32280.74 29980.42 32670.67 18972.69 27283.72 29943.61 33289.86 26862.29 25883.76 19189.36 233
testing9976.09 24375.12 24179.00 26188.16 17755.50 33480.79 29681.40 31573.30 14575.17 23984.27 28844.48 32690.02 26664.28 24184.22 18691.48 152
baseline176.98 22776.75 21577.66 28488.13 17955.66 33285.12 22581.89 30973.04 15176.79 19488.90 16862.43 15187.78 30263.30 24871.18 34389.55 229
test_040272.79 28070.44 29179.84 24688.13 17965.99 17385.93 20684.29 27465.57 27867.40 32685.49 26346.92 30592.61 19035.88 38774.38 31880.94 366
tttt051779.40 17077.91 18283.90 14088.10 18163.84 21988.37 13384.05 27871.45 17476.78 19589.12 16249.93 28194.89 9470.18 18783.18 20692.96 105
FE-MVS77.78 21175.68 22884.08 12488.09 18266.00 17283.13 26887.79 22068.42 24578.01 16985.23 26945.50 32195.12 8059.11 28685.83 16591.11 162
VPA-MVSNet80.60 14180.55 12380.76 22888.07 18360.80 26786.86 17891.58 10775.67 9280.24 12989.45 15763.34 13490.25 26270.51 18479.22 25491.23 159
UGNet80.83 13179.59 14384.54 10188.04 18468.09 12989.42 9388.16 20876.95 5976.22 21089.46 15549.30 28893.94 12868.48 20690.31 9991.60 144
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WR-MVS_H78.51 19278.49 16878.56 26988.02 18556.38 32288.43 12892.67 6277.14 5473.89 25887.55 20766.25 11089.24 28058.92 28873.55 32690.06 209
QAPM80.88 12979.50 14585.03 8488.01 18668.97 10491.59 4392.00 8966.63 26675.15 24192.16 8857.70 20495.45 6563.52 24488.76 12390.66 179
3Dnovator76.31 583.38 8782.31 9786.59 5287.94 18772.94 2890.64 5992.14 8677.21 5275.47 22492.83 7658.56 19794.72 10173.24 16192.71 7092.13 134
testing22274.04 26472.66 26778.19 27687.89 18855.36 33581.06 29379.20 33971.30 17674.65 25183.57 30239.11 35888.67 29151.43 33585.75 16690.53 185
EI-MVSNet-UG-set83.81 7483.38 8085.09 8287.87 18967.53 14187.44 16289.66 16279.74 1682.23 10489.41 15970.24 6894.74 10079.95 9583.92 18892.99 104
TranMVSNet+NR-MVSNet80.84 13080.31 12982.42 19087.85 19062.33 24887.74 15591.33 11480.55 977.99 17089.86 14165.23 12192.62 18967.05 22075.24 31092.30 125
iter_conf0580.00 15778.70 16383.91 13987.84 19165.83 17788.84 11484.92 26671.61 16978.70 14888.94 16743.88 33094.56 10479.28 10084.28 18491.33 155
CP-MVSNet78.22 19778.34 17377.84 28187.83 19254.54 34487.94 14891.17 11877.65 3873.48 26288.49 18262.24 15588.43 29462.19 25974.07 31990.55 184
DU-MVS81.12 12680.52 12482.90 17587.80 19363.46 22987.02 17391.87 9779.01 2678.38 15889.07 16365.02 12393.05 17970.05 18876.46 28392.20 130
NR-MVSNet80.23 15179.38 14782.78 18387.80 19363.34 23286.31 19591.09 12279.01 2672.17 27889.07 16367.20 10092.81 18866.08 22775.65 29692.20 130
TAMVS78.89 18477.51 19783.03 16987.80 19367.79 13684.72 23385.05 26467.63 25176.75 19687.70 20162.25 15490.82 25458.53 29387.13 14290.49 187
thres20075.55 24974.47 24878.82 26487.78 19657.85 29983.07 27183.51 28672.44 15775.84 21884.42 28152.08 25391.75 22247.41 35983.64 19786.86 297
ETVMVS72.25 28571.05 28475.84 30187.77 19751.91 36179.39 31774.98 36269.26 22373.71 25982.95 31040.82 35186.14 31346.17 36584.43 18289.47 230
PS-CasMVS78.01 20678.09 17877.77 28387.71 19854.39 34688.02 14491.22 11577.50 4673.26 26488.64 17660.73 18088.41 29561.88 26373.88 32390.53 185
PCF-MVS73.52 780.38 14678.84 16285.01 8587.71 19868.99 10383.65 25791.46 11363.00 30677.77 17490.28 13366.10 11195.09 8661.40 26888.22 13290.94 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest053079.40 17077.76 19084.31 11187.69 20065.10 19587.36 16384.26 27670.04 20377.42 17988.26 19049.94 27994.79 9970.20 18684.70 17593.03 101
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6787.65 20167.22 15188.69 12193.04 3879.64 1885.33 5492.54 8373.30 3594.50 10883.49 5991.14 9095.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RRT_MVS80.35 14979.22 15483.74 14287.63 20265.46 18691.08 5488.92 19373.82 12976.44 20690.03 13849.05 29394.25 11876.84 12479.20 25591.51 148
GBi-Net78.40 19377.40 19881.40 21087.60 20363.01 23988.39 13089.28 17271.63 16675.34 23187.28 21254.80 22291.11 24562.72 25179.57 24790.09 205
test178.40 19377.40 19881.40 21087.60 20363.01 23988.39 13089.28 17271.63 16675.34 23187.28 21254.80 22291.11 24562.72 25179.57 24790.09 205
FMVSNet278.20 19977.21 20281.20 21687.60 20362.89 24487.47 16189.02 18671.63 16675.29 23787.28 21254.80 22291.10 24862.38 25679.38 25189.61 227
CDS-MVSNet79.07 17977.70 19283.17 16287.60 20368.23 12684.40 24686.20 24967.49 25476.36 20786.54 24061.54 16490.79 25561.86 26487.33 13990.49 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HY-MVS69.67 1277.95 20777.15 20380.36 23587.57 20760.21 27783.37 26487.78 22166.11 27075.37 23087.06 22363.27 13690.48 26061.38 26982.43 21590.40 191
mvsmamba81.69 11380.74 11984.56 10087.45 20866.72 15991.26 4885.89 25474.66 11178.23 16290.56 12954.33 22994.91 9080.73 9083.54 20092.04 138
xiu_mvs_v1_base_debu80.80 13479.72 14084.03 13287.35 20970.19 7985.56 21488.77 19669.06 23181.83 10888.16 19250.91 26792.85 18578.29 11187.56 13589.06 239
xiu_mvs_v1_base80.80 13479.72 14084.03 13287.35 20970.19 7985.56 21488.77 19669.06 23181.83 10888.16 19250.91 26792.85 18578.29 11187.56 13589.06 239
xiu_mvs_v1_base_debi80.80 13479.72 14084.03 13287.35 20970.19 7985.56 21488.77 19669.06 23181.83 10888.16 19250.91 26792.85 18578.29 11187.56 13589.06 239
MVSFormer82.85 9682.05 10185.24 7687.35 20970.21 7790.50 6290.38 13968.55 24181.32 11689.47 15361.68 16193.46 15578.98 10290.26 10192.05 136
lupinMVS81.39 12280.27 13184.76 9687.35 20970.21 7785.55 21786.41 24562.85 30981.32 11688.61 17761.68 16192.24 20678.41 10990.26 10191.83 140
testing368.56 31767.67 31871.22 34487.33 21442.87 39283.06 27271.54 37470.36 19669.08 31184.38 28330.33 38185.69 31737.50 38675.45 30385.09 329
baseline84.93 6584.98 6384.80 9587.30 21565.39 18987.30 16692.88 5377.62 3984.04 8192.26 8771.81 4993.96 12581.31 8190.30 10095.03 8
PAPM77.68 21676.40 22281.51 20687.29 21661.85 25583.78 25589.59 16464.74 28671.23 28688.70 17362.59 14793.66 14552.66 32887.03 14489.01 244
LCM-MVSNet-Re77.05 22576.94 20877.36 28987.20 21751.60 36580.06 30980.46 32575.20 9967.69 32186.72 22862.48 14988.98 28563.44 24689.25 11591.51 148
casdiffmvspermissive85.11 6285.14 6285.01 8587.20 21765.77 18187.75 15492.83 5677.84 3784.36 7592.38 8572.15 4693.93 13181.27 8390.48 9795.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
COLMAP_ROBcopyleft66.92 1773.01 27770.41 29280.81 22787.13 21965.63 18288.30 13684.19 27762.96 30763.80 35787.69 20238.04 36392.56 19246.66 36174.91 31384.24 337
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS77.73 21277.69 19377.84 28187.07 22053.91 34987.91 15091.18 11777.56 4373.14 26688.82 17161.23 17389.17 28159.95 27872.37 33490.43 189
MVS_Test83.15 9083.06 8583.41 15286.86 22163.21 23586.11 20292.00 8974.31 11882.87 9789.44 15870.03 6993.21 16677.39 11988.50 12993.81 62
UniMVSNet_ETH3D79.10 17878.24 17681.70 20286.85 22260.24 27687.28 16788.79 19574.25 12076.84 19290.53 13149.48 28491.56 22967.98 20982.15 21793.29 89
FMVSNet377.88 20976.85 21080.97 22486.84 22362.36 24786.52 19088.77 19671.13 17975.34 23186.66 23454.07 23391.10 24862.72 25179.57 24789.45 231
FMVSNet177.44 21976.12 22581.40 21086.81 22463.01 23988.39 13089.28 17270.49 19574.39 25487.28 21249.06 29291.11 24560.91 27278.52 25990.09 205
nrg03083.88 7383.53 7784.96 8786.77 22569.28 9990.46 6592.67 6274.79 10882.95 9591.33 10972.70 4393.09 17780.79 8979.28 25392.50 118
ET-MVSNet_ETH3D78.63 18976.63 21884.64 9886.73 22669.47 9285.01 22784.61 26969.54 21766.51 33986.59 23650.16 27691.75 22276.26 13084.24 18592.69 111
fmvsm_s_conf0.5_n83.80 7583.71 7684.07 12586.69 22767.31 14789.46 9083.07 29571.09 18186.96 4393.70 5569.02 8591.47 23688.79 1884.62 17693.44 84
UWE-MVS72.13 28671.49 27774.03 32186.66 22847.70 37881.40 29076.89 35563.60 30175.59 22184.22 28939.94 35485.62 31848.98 34986.13 15988.77 256
jason81.39 12280.29 13084.70 9786.63 22969.90 8585.95 20586.77 24163.24 30281.07 12289.47 15361.08 17792.15 20878.33 11090.07 10692.05 136
jason: jason.
PS-MVSNAJss82.07 10581.31 10984.34 11086.51 23067.27 14989.27 9891.51 10971.75 16479.37 13890.22 13663.15 14094.27 11477.69 11582.36 21691.49 151
WTY-MVS75.65 24875.68 22875.57 30586.40 23156.82 31377.92 33782.40 30565.10 28176.18 21287.72 20063.13 14380.90 35060.31 27681.96 22089.00 246
DTE-MVSNet76.99 22676.80 21177.54 28886.24 23253.06 35787.52 15990.66 13177.08 5772.50 27388.67 17560.48 18789.52 27557.33 30470.74 34590.05 210
PVSNet64.34 1872.08 28770.87 28775.69 30386.21 23356.44 32074.37 35880.73 32062.06 32070.17 29682.23 32242.86 33883.31 33754.77 31884.45 18187.32 285
fmvsm_s_conf0.5_n_a83.63 8083.41 7984.28 11386.14 23468.12 12889.43 9182.87 30070.27 20087.27 3993.80 5469.09 8091.58 22788.21 2683.65 19693.14 97
test_fmvsm_n_192085.29 6085.34 5785.13 8186.12 23569.93 8388.65 12390.78 12969.97 20688.27 2393.98 4971.39 5791.54 23188.49 2390.45 9893.91 55
tfpnnormal74.39 25973.16 26378.08 27886.10 23658.05 29384.65 23687.53 22570.32 19871.22 28785.63 26054.97 22089.86 26843.03 37575.02 31286.32 305
IterMVS-LS80.06 15479.38 14782.11 19485.89 23763.20 23686.79 18189.34 17074.19 12175.45 22786.72 22866.62 10392.39 19872.58 16776.86 27790.75 176
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Baseline_NR-MVSNet78.15 20178.33 17477.61 28685.79 23856.21 32686.78 18285.76 25673.60 13677.93 17187.57 20565.02 12388.99 28467.14 21975.33 30787.63 276
cascas76.72 23174.64 24482.99 17185.78 23965.88 17682.33 27789.21 17860.85 32772.74 26981.02 33147.28 30293.75 14267.48 21485.02 17089.34 234
MVS78.19 20076.99 20781.78 20085.66 24066.99 15484.66 23490.47 13755.08 36672.02 28085.27 26763.83 13294.11 12366.10 22689.80 11084.24 337
XVG-OURS80.41 14579.23 15383.97 13685.64 24169.02 10283.03 27390.39 13871.09 18177.63 17691.49 10454.62 22891.35 24075.71 13683.47 20191.54 147
CANet_DTU80.61 14079.87 13782.83 17785.60 24263.17 23887.36 16388.65 20276.37 7875.88 21788.44 18453.51 23893.07 17873.30 15989.74 11192.25 127
XVG-OURS-SEG-HR80.81 13279.76 13983.96 13785.60 24268.78 10883.54 26290.50 13670.66 19276.71 19791.66 9660.69 18291.26 24276.94 12381.58 22491.83 140
TransMVSNet (Re)75.39 25474.56 24677.86 28085.50 24457.10 31086.78 18286.09 25272.17 16171.53 28487.34 21163.01 14489.31 27956.84 30961.83 37187.17 288
fmvsm_l_conf0.5_n84.47 6984.54 6884.27 11585.42 24568.81 10688.49 12787.26 23168.08 24888.03 2793.49 5772.04 4891.77 22188.90 1789.14 11792.24 129
fmvsm_l_conf0.5_n_a84.13 7184.16 7384.06 12785.38 24668.40 12188.34 13486.85 24067.48 25587.48 3693.40 6170.89 6091.61 22588.38 2589.22 11692.16 133
MVP-Stereo76.12 24174.46 24981.13 21985.37 24769.79 8684.42 24587.95 21565.03 28367.46 32485.33 26653.28 24191.73 22458.01 29883.27 20481.85 361
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thisisatest051577.33 22275.38 23683.18 16185.27 24863.80 22082.11 28083.27 29065.06 28275.91 21683.84 29549.54 28394.27 11467.24 21786.19 15791.48 152
tt080578.73 18677.83 18581.43 20885.17 24960.30 27589.41 9490.90 12571.21 17877.17 18988.73 17246.38 30893.21 16672.57 16878.96 25690.79 173
OpenMVScopyleft72.83 1079.77 15978.33 17484.09 12385.17 24969.91 8490.57 6090.97 12366.70 26072.17 27891.91 9154.70 22693.96 12561.81 26590.95 9288.41 265
AllTest70.96 29468.09 30979.58 25385.15 25163.62 22284.58 23879.83 33262.31 31660.32 36886.73 22632.02 37588.96 28750.28 34171.57 34186.15 309
TestCases79.58 25385.15 25163.62 22279.83 33262.31 31660.32 36886.73 22632.02 37588.96 28750.28 34171.57 34186.15 309
Effi-MVS+-dtu80.03 15578.57 16784.42 10685.13 25368.74 11188.77 11688.10 21074.99 10474.97 24683.49 30357.27 21093.36 15973.53 15580.88 23191.18 160
SixPastTwentyTwo73.37 27171.26 28379.70 24985.08 25457.89 29885.57 21383.56 28571.03 18365.66 34385.88 25342.10 34492.57 19159.11 28663.34 36988.65 260
test_fmvsmconf_n85.92 4686.04 4785.57 6985.03 25569.51 9089.62 8790.58 13373.42 14187.75 3294.02 4472.85 4193.24 16390.37 390.75 9493.96 53
EG-PatchMatch MVS74.04 26471.82 27480.71 22984.92 25667.42 14385.86 20988.08 21166.04 27264.22 35383.85 29435.10 37192.56 19257.44 30280.83 23282.16 360
fmvsm_s_conf0.1_n83.56 8283.38 8084.10 12084.86 25767.28 14889.40 9583.01 29670.67 18987.08 4093.96 5068.38 8991.45 23788.56 2284.50 17793.56 77
IB-MVS68.01 1575.85 24673.36 26183.31 15484.76 25866.03 16983.38 26385.06 26370.21 20269.40 30781.05 33045.76 31894.66 10365.10 23575.49 29989.25 236
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvs_tets79.13 17777.77 18983.22 16084.70 25966.37 16489.17 10090.19 14869.38 22075.40 22989.46 15544.17 32893.15 17376.78 12780.70 23590.14 200
Syy-MVS68.05 32167.85 31268.67 35784.68 26040.97 39878.62 32873.08 37166.65 26466.74 33379.46 34652.11 25282.30 34232.89 39076.38 28882.75 355
myMVS_eth3d67.02 32766.29 32869.21 35284.68 26042.58 39378.62 32873.08 37166.65 26466.74 33379.46 34631.53 37882.30 34239.43 38376.38 28882.75 355
jajsoiax79.29 17377.96 18083.27 15684.68 26066.57 16289.25 9990.16 14969.20 22775.46 22689.49 15245.75 31993.13 17576.84 12480.80 23390.11 203
WB-MVSnew71.96 28871.65 27672.89 33084.67 26351.88 36282.29 27877.57 34762.31 31673.67 26083.00 30953.49 23981.10 34945.75 36882.13 21885.70 318
MIMVSNet70.69 29869.30 29774.88 31284.52 26456.35 32475.87 34879.42 33664.59 28767.76 31982.41 31841.10 34881.54 34646.64 36381.34 22586.75 300
MSDG73.36 27370.99 28580.49 23384.51 26565.80 17980.71 30086.13 25165.70 27665.46 34483.74 29844.60 32490.91 25351.13 33676.89 27684.74 332
mvs_anonymous79.42 16979.11 15780.34 23684.45 26657.97 29682.59 27587.62 22367.40 25676.17 21488.56 18068.47 8889.59 27470.65 18386.05 16093.47 81
EI-MVSNet80.52 14479.98 13482.12 19384.28 26763.19 23786.41 19288.95 19174.18 12278.69 14987.54 20866.62 10392.43 19672.57 16880.57 23790.74 177
CVMVSNet72.99 27872.58 26874.25 31984.28 26750.85 37086.41 19283.45 28844.56 38373.23 26587.54 20849.38 28685.70 31665.90 22878.44 26186.19 308
pm-mvs177.25 22476.68 21778.93 26384.22 26958.62 28886.41 19288.36 20771.37 17573.31 26388.01 19861.22 17489.15 28264.24 24273.01 33189.03 243
EPNet83.72 7782.92 8986.14 5984.22 26969.48 9191.05 5585.27 26181.30 676.83 19391.65 9766.09 11295.56 6076.00 13493.85 6193.38 85
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmvis_n_192084.02 7283.87 7484.49 10484.12 27169.37 9888.15 14287.96 21470.01 20483.95 8293.23 6568.80 8791.51 23488.61 2089.96 10792.57 114
v879.97 15879.02 15982.80 18084.09 27264.50 20787.96 14690.29 14674.13 12475.24 23886.81 22562.88 14593.89 13574.39 14875.40 30590.00 211
v1079.74 16078.67 16482.97 17384.06 27364.95 19787.88 15290.62 13273.11 14975.11 24286.56 23961.46 16794.05 12473.68 15375.55 29889.90 217
SCA74.22 26272.33 27179.91 24484.05 27462.17 25179.96 31279.29 33866.30 26972.38 27680.13 34051.95 25688.60 29259.25 28477.67 26988.96 248
test_djsdf80.30 15079.32 15083.27 15683.98 27565.37 19090.50 6290.38 13968.55 24176.19 21188.70 17356.44 21593.46 15578.98 10280.14 24390.97 169
131476.53 23375.30 23980.21 23983.93 27662.32 24984.66 23488.81 19460.23 33170.16 29784.07 29255.30 21990.73 25767.37 21583.21 20587.59 279
MS-PatchMatch73.83 26772.67 26677.30 29183.87 27766.02 17181.82 28184.66 26861.37 32568.61 31582.82 31447.29 30188.21 29659.27 28384.32 18377.68 375
fmvsm_s_conf0.1_n_a83.32 8882.99 8784.28 11383.79 27868.07 13089.34 9782.85 30169.80 21087.36 3894.06 4268.34 9091.56 22987.95 2783.46 20293.21 94
v114480.03 15579.03 15883.01 17083.78 27964.51 20587.11 17190.57 13571.96 16378.08 16886.20 24861.41 16893.94 12874.93 14377.23 27190.60 182
OurMVSNet-221017-074.26 26172.42 27079.80 24783.76 28059.59 28385.92 20786.64 24266.39 26866.96 32987.58 20439.46 35591.60 22665.76 23069.27 35088.22 266
v2v48280.23 15179.29 15183.05 16883.62 28164.14 21487.04 17289.97 15473.61 13578.18 16587.22 21661.10 17693.82 13676.11 13176.78 28091.18 160
XXY-MVS75.41 25375.56 23174.96 31183.59 28257.82 30080.59 30283.87 28166.54 26774.93 24788.31 18763.24 13780.09 35362.16 26076.85 27886.97 295
v119279.59 16378.43 17183.07 16783.55 28364.52 20486.93 17690.58 13370.83 18577.78 17385.90 25259.15 19493.94 12873.96 15277.19 27390.76 175
EGC-MVSNET52.07 36047.05 36467.14 36183.51 28460.71 26880.50 30467.75 3840.07 4080.43 40975.85 37224.26 38881.54 34628.82 39362.25 37059.16 393
v7n78.97 18277.58 19683.14 16383.45 28565.51 18488.32 13591.21 11673.69 13372.41 27586.32 24657.93 20193.81 13769.18 19875.65 29690.11 203
v14419279.47 16678.37 17282.78 18383.35 28663.96 21786.96 17490.36 14269.99 20577.50 17785.67 25960.66 18393.77 14074.27 14976.58 28190.62 180
tpm273.26 27471.46 27878.63 26683.34 28756.71 31680.65 30180.40 32756.63 36073.55 26182.02 32551.80 26091.24 24356.35 31378.42 26287.95 269
v192192079.22 17478.03 17982.80 18083.30 28863.94 21886.80 18090.33 14369.91 20877.48 17885.53 26258.44 19893.75 14273.60 15476.85 27890.71 178
baseline275.70 24773.83 25781.30 21383.26 28961.79 25782.57 27680.65 32166.81 25766.88 33083.42 30457.86 20392.19 20763.47 24579.57 24789.91 216
v124078.99 18177.78 18882.64 18683.21 29063.54 22686.62 18790.30 14569.74 21677.33 18185.68 25857.04 21293.76 14173.13 16276.92 27590.62 180
XVG-ACMP-BASELINE76.11 24274.27 25181.62 20383.20 29164.67 20383.60 26089.75 16069.75 21471.85 28187.09 22132.78 37492.11 20969.99 19080.43 23988.09 268
MDTV_nov1_ep1369.97 29683.18 29253.48 35277.10 34280.18 33160.45 32869.33 30980.44 33748.89 29686.90 30751.60 33378.51 260
PatchmatchNetpermissive73.12 27671.33 28178.49 27383.18 29260.85 26679.63 31478.57 34264.13 29371.73 28279.81 34551.20 26585.97 31557.40 30376.36 29088.66 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Fast-Effi-MVS+-dtu78.02 20576.49 21982.62 18783.16 29466.96 15786.94 17587.45 22872.45 15571.49 28584.17 29054.79 22591.58 22767.61 21280.31 24089.30 235
gg-mvs-nofinetune69.95 30667.96 31075.94 30083.07 29554.51 34577.23 34170.29 37763.11 30470.32 29362.33 38843.62 33188.69 29053.88 32287.76 13484.62 334
MVSTER79.01 18077.88 18482.38 19183.07 29564.80 20184.08 25388.95 19169.01 23478.69 14987.17 21954.70 22692.43 19674.69 14480.57 23789.89 218
K. test v371.19 29168.51 30379.21 25983.04 29757.78 30184.35 24776.91 35472.90 15462.99 36082.86 31339.27 35691.09 25061.65 26652.66 38788.75 257
eth_miper_zixun_eth77.92 20876.69 21681.61 20583.00 29861.98 25383.15 26789.20 17969.52 21874.86 24884.35 28561.76 16092.56 19271.50 17572.89 33290.28 196
diffmvspermissive82.10 10381.88 10582.76 18583.00 29863.78 22183.68 25689.76 15972.94 15382.02 10689.85 14265.96 11690.79 25582.38 7487.30 14093.71 66
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7082.99 30069.39 9789.65 8490.29 14673.31 14487.77 3194.15 3871.72 5193.23 16490.31 490.67 9693.89 58
FMVSNet569.50 30967.96 31074.15 32082.97 30155.35 33680.01 31182.12 30862.56 31463.02 35881.53 32736.92 36681.92 34448.42 35174.06 32085.17 327
c3_l78.75 18577.91 18281.26 21482.89 30261.56 25984.09 25289.13 18369.97 20675.56 22284.29 28666.36 10892.09 21073.47 15775.48 30090.12 202
sss73.60 26973.64 25973.51 32582.80 30355.01 34076.12 34481.69 31262.47 31574.68 25085.85 25557.32 20978.11 36160.86 27380.93 23087.39 282
GA-MVS76.87 22975.17 24081.97 19882.75 30462.58 24581.44 28986.35 24872.16 16274.74 24982.89 31246.20 31392.02 21268.85 20381.09 22991.30 158
v14878.72 18777.80 18781.47 20782.73 30561.96 25486.30 19688.08 21173.26 14676.18 21285.47 26462.46 15092.36 20071.92 17273.82 32490.09 205
IterMVS-SCA-FT75.43 25273.87 25680.11 24182.69 30664.85 20081.57 28683.47 28769.16 22870.49 29184.15 29151.95 25688.15 29769.23 19772.14 33787.34 284
miper_ehance_all_eth78.59 19177.76 19081.08 22082.66 30761.56 25983.65 25789.15 18168.87 23675.55 22383.79 29766.49 10692.03 21173.25 16076.39 28589.64 226
CostFormer75.24 25573.90 25579.27 25782.65 30858.27 29180.80 29582.73 30361.57 32275.33 23583.13 30855.52 21791.07 25164.98 23678.34 26488.45 263
EPNet_dtu75.46 25174.86 24277.23 29282.57 30954.60 34386.89 17783.09 29471.64 16566.25 34185.86 25455.99 21688.04 29954.92 31786.55 15189.05 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPSCF73.23 27571.46 27878.54 27082.50 31059.85 27982.18 27982.84 30258.96 34371.15 28889.41 15945.48 32284.77 32758.82 29071.83 33991.02 168
cl____77.72 21376.76 21380.58 23182.49 31160.48 27283.09 26987.87 21769.22 22574.38 25585.22 27062.10 15791.53 23271.09 17875.41 30489.73 225
DIV-MVS_self_test77.72 21376.76 21380.58 23182.48 31260.48 27283.09 26987.86 21869.22 22574.38 25585.24 26862.10 15791.53 23271.09 17875.40 30589.74 224
tpm cat170.57 29968.31 30577.35 29082.41 31357.95 29778.08 33480.22 33052.04 37268.54 31677.66 36252.00 25587.84 30151.77 33172.07 33886.25 306
cl2278.07 20377.01 20581.23 21582.37 31461.83 25683.55 26187.98 21368.96 23575.06 24483.87 29361.40 16991.88 21873.53 15576.39 28589.98 214
tpm72.37 28371.71 27574.35 31882.19 31552.00 35979.22 32077.29 35164.56 28872.95 26883.68 30151.35 26383.26 33858.33 29575.80 29487.81 273
tpmvs71.09 29369.29 29876.49 29782.04 31656.04 32778.92 32581.37 31664.05 29667.18 32878.28 35749.74 28289.77 27049.67 34672.37 33483.67 344
dmvs_re71.14 29270.58 28872.80 33181.96 31759.68 28175.60 35079.34 33768.55 24169.27 31080.72 33649.42 28576.54 36952.56 32977.79 26682.19 359
pmmvs474.03 26671.91 27380.39 23481.96 31768.32 12381.45 28882.14 30759.32 33969.87 30385.13 27252.40 24688.13 29860.21 27774.74 31584.73 333
TinyColmap67.30 32664.81 33174.76 31481.92 31956.68 31780.29 30881.49 31460.33 32956.27 38283.22 30524.77 38787.66 30445.52 36969.47 34979.95 370
ITE_SJBPF78.22 27581.77 32060.57 27083.30 28969.25 22467.54 32287.20 21736.33 36887.28 30654.34 32074.62 31686.80 298
miper_enhance_ethall77.87 21076.86 20980.92 22581.65 32161.38 26182.68 27488.98 18865.52 27975.47 22482.30 32065.76 11892.00 21372.95 16376.39 28589.39 232
MVS-HIRNet59.14 34957.67 35263.57 36681.65 32143.50 39171.73 36565.06 39039.59 39051.43 38757.73 39438.34 36182.58 34139.53 38173.95 32164.62 390
GG-mvs-BLEND75.38 30881.59 32355.80 33079.32 31869.63 37967.19 32773.67 37743.24 33488.90 28950.41 33884.50 17781.45 363
IterMVS74.29 26072.94 26578.35 27481.53 32463.49 22881.58 28582.49 30468.06 24969.99 30083.69 30051.66 26285.54 31965.85 22971.64 34086.01 313
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 280x42066.51 33164.71 33271.90 33681.45 32563.52 22757.98 39568.95 38353.57 36862.59 36276.70 36546.22 31275.29 38255.25 31679.68 24676.88 377
gm-plane-assit81.40 32653.83 35062.72 31380.94 33392.39 19863.40 247
pmmvs674.69 25873.39 26078.61 26781.38 32757.48 30586.64 18687.95 21564.99 28570.18 29586.61 23550.43 27489.52 27562.12 26170.18 34788.83 253
test-LLR72.94 27972.43 26974.48 31681.35 32858.04 29478.38 33077.46 34866.66 26169.95 30179.00 35148.06 29879.24 35566.13 22484.83 17286.15 309
test-mter71.41 29070.39 29374.48 31681.35 32858.04 29478.38 33077.46 34860.32 33069.95 30179.00 35136.08 36979.24 35566.13 22484.83 17286.15 309
CR-MVSNet73.37 27171.27 28279.67 25181.32 33065.19 19275.92 34680.30 32859.92 33472.73 27081.19 32852.50 24486.69 30859.84 27977.71 26787.11 292
RPMNet73.51 27070.49 29082.58 18881.32 33065.19 19275.92 34692.27 7857.60 35472.73 27076.45 36752.30 24795.43 6748.14 35677.71 26787.11 292
V4279.38 17278.24 17682.83 17781.10 33265.50 18585.55 21789.82 15771.57 17178.21 16386.12 25060.66 18393.18 17275.64 13775.46 30289.81 222
lessismore_v078.97 26281.01 33357.15 30965.99 38761.16 36582.82 31439.12 35791.34 24159.67 28046.92 39388.43 264
Patchmtry70.74 29769.16 30075.49 30780.72 33454.07 34874.94 35780.30 32858.34 34770.01 29881.19 32852.50 24486.54 30953.37 32571.09 34485.87 317
PatchT68.46 31967.85 31270.29 34880.70 33543.93 39072.47 36374.88 36360.15 33270.55 28976.57 36649.94 27981.59 34550.58 33774.83 31485.34 322
USDC70.33 30268.37 30476.21 29980.60 33656.23 32579.19 32186.49 24460.89 32661.29 36485.47 26431.78 37789.47 27753.37 32576.21 29182.94 354
tpmrst72.39 28172.13 27273.18 32980.54 33749.91 37479.91 31379.08 34063.11 30471.69 28379.95 34255.32 21882.77 34065.66 23173.89 32286.87 296
anonymousdsp78.60 19077.15 20382.98 17280.51 33867.08 15387.24 16889.53 16565.66 27775.16 24087.19 21852.52 24392.25 20577.17 12179.34 25289.61 227
OpenMVS_ROBcopyleft64.09 1970.56 30068.19 30677.65 28580.26 33959.41 28585.01 22782.96 29958.76 34565.43 34582.33 31937.63 36591.23 24445.34 37176.03 29282.32 357
test_fmvsmconf0.01_n84.73 6884.52 7085.34 7380.25 34069.03 10089.47 8989.65 16373.24 14886.98 4294.27 3266.62 10393.23 16490.26 589.95 10893.78 64
Anonymous2023120668.60 31567.80 31571.02 34580.23 34150.75 37178.30 33380.47 32456.79 35966.11 34282.63 31746.35 31078.95 35743.62 37475.70 29583.36 347
miper_lstm_enhance74.11 26373.11 26477.13 29380.11 34259.62 28272.23 36486.92 23966.76 25970.40 29282.92 31156.93 21382.92 33969.06 20072.63 33388.87 251
MIMVSNet168.58 31666.78 32673.98 32280.07 34351.82 36380.77 29784.37 27164.40 29059.75 37182.16 32336.47 36783.63 33442.73 37670.33 34686.48 304
ADS-MVSNet266.20 33663.33 33974.82 31379.92 34458.75 28767.55 38175.19 36153.37 36965.25 34775.86 37042.32 34180.53 35241.57 37868.91 35285.18 325
ADS-MVSNet64.36 34062.88 34368.78 35679.92 34447.17 38067.55 38171.18 37553.37 36965.25 34775.86 37042.32 34173.99 38641.57 37868.91 35285.18 325
test_vis1_n_192075.52 25075.78 22674.75 31579.84 34657.44 30683.26 26585.52 25862.83 31079.34 14086.17 24945.10 32379.71 35478.75 10481.21 22887.10 294
D2MVS74.82 25773.21 26279.64 25279.81 34762.56 24680.34 30787.35 22964.37 29168.86 31282.66 31646.37 30990.10 26467.91 21081.24 22786.25 306
our_test_369.14 31167.00 32475.57 30579.80 34858.80 28677.96 33577.81 34559.55 33762.90 36178.25 35847.43 30083.97 33151.71 33267.58 35783.93 342
ppachtmachnet_test70.04 30567.34 32278.14 27779.80 34861.13 26279.19 32180.59 32259.16 34165.27 34679.29 34846.75 30787.29 30549.33 34766.72 35886.00 315
dp66.80 32865.43 33070.90 34779.74 35048.82 37775.12 35574.77 36459.61 33664.08 35477.23 36342.89 33780.72 35148.86 35066.58 36083.16 349
EPMVS69.02 31268.16 30771.59 33879.61 35149.80 37677.40 33966.93 38562.82 31170.01 29879.05 34945.79 31777.86 36356.58 31175.26 30987.13 291
PVSNet_057.27 2061.67 34759.27 35068.85 35579.61 35157.44 30668.01 38073.44 37055.93 36358.54 37470.41 38444.58 32577.55 36447.01 36035.91 39671.55 384
CL-MVSNet_self_test72.37 28371.46 27875.09 31079.49 35353.53 35180.76 29885.01 26569.12 22970.51 29082.05 32457.92 20284.13 33052.27 33066.00 36387.60 277
Patchmatch-test64.82 33963.24 34069.57 35079.42 35449.82 37563.49 39269.05 38251.98 37459.95 37080.13 34050.91 26770.98 39040.66 38073.57 32587.90 271
MDA-MVSNet-bldmvs66.68 32963.66 33875.75 30279.28 35560.56 27173.92 36078.35 34364.43 28950.13 38979.87 34444.02 32983.67 33346.10 36656.86 37983.03 352
TESTMET0.1,169.89 30769.00 30172.55 33379.27 35656.85 31278.38 33074.71 36657.64 35368.09 31877.19 36437.75 36476.70 36863.92 24384.09 18784.10 340
N_pmnet52.79 35853.26 35751.40 38278.99 3577.68 41469.52 3743.89 41351.63 37557.01 37974.98 37440.83 35065.96 39737.78 38564.67 36680.56 369
dmvs_testset62.63 34464.11 33558.19 37278.55 35824.76 40875.28 35165.94 38867.91 25060.34 36776.01 36953.56 23773.94 38731.79 39167.65 35675.88 379
EU-MVSNet68.53 31867.61 31971.31 34378.51 35947.01 38184.47 24084.27 27542.27 38666.44 34084.79 27840.44 35283.76 33258.76 29168.54 35583.17 348
pmmvs571.55 28970.20 29575.61 30477.83 36056.39 32181.74 28380.89 31757.76 35267.46 32484.49 28049.26 28985.32 32357.08 30675.29 30885.11 328
test0.0.03 168.00 32267.69 31768.90 35477.55 36147.43 37975.70 34972.95 37366.66 26166.56 33582.29 32148.06 29875.87 37644.97 37274.51 31783.41 346
Patchmatch-RL test70.24 30367.78 31677.61 28677.43 36259.57 28471.16 36770.33 37662.94 30868.65 31472.77 37950.62 27185.49 32069.58 19566.58 36087.77 274
pmmvs-eth3d70.50 30167.83 31478.52 27277.37 36366.18 16881.82 28181.51 31358.90 34463.90 35680.42 33842.69 33986.28 31258.56 29265.30 36583.11 350
JIA-IIPM66.32 33362.82 34476.82 29577.09 36461.72 25865.34 38875.38 36058.04 35164.51 35162.32 38942.05 34586.51 31051.45 33469.22 35182.21 358
Gipumacopyleft45.18 36641.86 36955.16 37977.03 36551.52 36632.50 40180.52 32332.46 39727.12 40035.02 4019.52 40475.50 37822.31 40060.21 37738.45 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MDA-MVSNet_test_wron65.03 33762.92 34171.37 34075.93 36656.73 31469.09 37974.73 36557.28 35754.03 38577.89 35945.88 31574.39 38549.89 34561.55 37282.99 353
test_cas_vis1_n_192073.76 26873.74 25873.81 32375.90 36759.77 28080.51 30382.40 30558.30 34881.62 11485.69 25744.35 32776.41 37276.29 12978.61 25785.23 324
YYNet165.03 33762.91 34271.38 33975.85 36856.60 31869.12 37874.66 36757.28 35754.12 38477.87 36045.85 31674.48 38449.95 34461.52 37383.05 351
PMMVS69.34 31068.67 30271.35 34275.67 36962.03 25275.17 35273.46 36950.00 37868.68 31379.05 34952.07 25478.13 36061.16 27182.77 21073.90 381
testgi66.67 33066.53 32767.08 36275.62 37041.69 39775.93 34576.50 35666.11 27065.20 34986.59 23635.72 37074.71 38343.71 37373.38 32984.84 331
test20.0367.45 32466.95 32568.94 35375.48 37144.84 38877.50 33877.67 34666.66 26163.01 35983.80 29647.02 30478.40 35942.53 37768.86 35483.58 345
KD-MVS_2432*160066.22 33463.89 33673.21 32675.47 37253.42 35370.76 37084.35 27264.10 29466.52 33778.52 35534.55 37284.98 32450.40 33950.33 39081.23 364
miper_refine_blended66.22 33463.89 33673.21 32675.47 37253.42 35370.76 37084.35 27264.10 29466.52 33778.52 35534.55 37284.98 32450.40 33950.33 39081.23 364
Anonymous2024052168.80 31467.22 32373.55 32474.33 37454.11 34783.18 26685.61 25758.15 34961.68 36380.94 33330.71 38081.27 34857.00 30773.34 33085.28 323
KD-MVS_self_test68.81 31367.59 32072.46 33474.29 37545.45 38377.93 33687.00 23663.12 30363.99 35578.99 35342.32 34184.77 32756.55 31264.09 36887.16 290
PM-MVS66.41 33264.14 33473.20 32873.92 37656.45 31978.97 32464.96 39163.88 30064.72 35080.24 33919.84 39383.44 33666.24 22364.52 36779.71 371
test_fmvs170.93 29570.52 28972.16 33573.71 37755.05 33980.82 29478.77 34151.21 37778.58 15384.41 28231.20 37976.94 36775.88 13580.12 24484.47 335
UnsupCasMVSNet_bld63.70 34261.53 34870.21 34973.69 37851.39 36872.82 36281.89 30955.63 36457.81 37771.80 38138.67 35978.61 35849.26 34852.21 38880.63 367
WB-MVS54.94 35254.72 35455.60 37873.50 37920.90 41074.27 35961.19 39559.16 34150.61 38874.15 37547.19 30375.78 37717.31 40235.07 39770.12 385
UnsupCasMVSNet_eth67.33 32565.99 32971.37 34073.48 38051.47 36775.16 35385.19 26265.20 28060.78 36680.93 33542.35 34077.20 36557.12 30553.69 38685.44 321
TDRefinement67.49 32364.34 33376.92 29473.47 38161.07 26384.86 23182.98 29859.77 33558.30 37585.13 27226.06 38587.89 30047.92 35860.59 37681.81 362
ambc75.24 30973.16 38250.51 37263.05 39387.47 22764.28 35277.81 36117.80 39589.73 27257.88 29960.64 37585.49 320
CMPMVSbinary51.72 2170.19 30468.16 30776.28 29873.15 38357.55 30479.47 31683.92 27948.02 38056.48 38184.81 27743.13 33686.42 31162.67 25481.81 22384.89 330
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SSC-MVS53.88 35553.59 35654.75 38072.87 38419.59 41173.84 36160.53 39757.58 35549.18 39073.45 37846.34 31175.47 38016.20 40532.28 39969.20 386
new-patchmatchnet61.73 34661.73 34761.70 36872.74 38524.50 40969.16 37778.03 34461.40 32356.72 38075.53 37338.42 36076.48 37145.95 36757.67 37884.13 339
test_vis1_n69.85 30869.21 29971.77 33772.66 38655.27 33881.48 28776.21 35852.03 37375.30 23683.20 30728.97 38276.22 37474.60 14578.41 26383.81 343
test_fmvs1_n70.86 29670.24 29472.73 33272.51 38755.28 33781.27 29179.71 33451.49 37678.73 14784.87 27627.54 38477.02 36676.06 13279.97 24585.88 316
LF4IMVS64.02 34162.19 34569.50 35170.90 38853.29 35676.13 34377.18 35252.65 37158.59 37380.98 33223.55 38976.52 37053.06 32766.66 35978.68 373
mvsany_test162.30 34561.26 34965.41 36469.52 38954.86 34166.86 38349.78 40446.65 38168.50 31783.21 30649.15 29066.28 39656.93 30860.77 37475.11 380
test_fmvs268.35 32067.48 32170.98 34669.50 39051.95 36080.05 31076.38 35749.33 37974.65 25184.38 28323.30 39075.40 38174.51 14675.17 31185.60 319
new_pmnet50.91 36150.29 36152.78 38168.58 39134.94 40363.71 39056.63 40139.73 38944.95 39165.47 38721.93 39158.48 40034.98 38856.62 38064.92 389
DSMNet-mixed57.77 35156.90 35360.38 37067.70 39235.61 40169.18 37653.97 40232.30 39857.49 37879.88 34340.39 35368.57 39538.78 38472.37 33476.97 376
test_vis1_rt60.28 34858.42 35165.84 36367.25 39355.60 33370.44 37260.94 39644.33 38459.00 37266.64 38624.91 38668.67 39462.80 25069.48 34873.25 382
APD_test153.31 35749.93 36263.42 36765.68 39450.13 37371.59 36666.90 38634.43 39540.58 39471.56 3828.65 40676.27 37334.64 38955.36 38463.86 391
FPMVS53.68 35651.64 35859.81 37165.08 39551.03 36969.48 37569.58 38041.46 38740.67 39372.32 38016.46 39770.00 39324.24 39965.42 36458.40 395
pmmvs357.79 35054.26 35568.37 35864.02 39656.72 31575.12 35565.17 38940.20 38852.93 38669.86 38520.36 39275.48 37945.45 37055.25 38572.90 383
test_fmvs363.36 34361.82 34667.98 35962.51 39746.96 38277.37 34074.03 36845.24 38267.50 32378.79 35412.16 40172.98 38972.77 16666.02 36283.99 341
wuyk23d16.82 37515.94 37819.46 38958.74 39831.45 40439.22 3993.74 4146.84 4056.04 4082.70 4081.27 41324.29 40810.54 40814.40 4072.63 405
testf145.72 36441.96 36757.00 37356.90 39945.32 38466.14 38659.26 39826.19 39930.89 39860.96 3924.14 40970.64 39126.39 39746.73 39455.04 396
APD_test245.72 36441.96 36757.00 37356.90 39945.32 38466.14 38659.26 39826.19 39930.89 39860.96 3924.14 40970.64 39126.39 39746.73 39455.04 396
mvsany_test353.99 35451.45 35961.61 36955.51 40144.74 38963.52 39145.41 40843.69 38558.11 37676.45 36717.99 39463.76 39954.77 31847.59 39276.34 378
test_vis3_rt49.26 36347.02 36556.00 37554.30 40245.27 38766.76 38548.08 40536.83 39244.38 39253.20 3977.17 40864.07 39856.77 31055.66 38258.65 394
PMMVS240.82 36838.86 37146.69 38353.84 40316.45 41248.61 39849.92 40337.49 39131.67 39660.97 3918.14 40756.42 40228.42 39430.72 40067.19 388
test_f52.09 35950.82 36055.90 37653.82 40442.31 39659.42 39458.31 40036.45 39356.12 38370.96 38312.18 40057.79 40153.51 32456.57 38167.60 387
LCM-MVSNet54.25 35349.68 36367.97 36053.73 40545.28 38666.85 38480.78 31935.96 39439.45 39562.23 3908.70 40578.06 36248.24 35551.20 38980.57 368
E-PMN31.77 36930.64 37235.15 38652.87 40627.67 40557.09 39647.86 40624.64 40116.40 40633.05 40211.23 40254.90 40314.46 40618.15 40322.87 402
EMVS30.81 37129.65 37334.27 38750.96 40725.95 40756.58 39746.80 40724.01 40215.53 40730.68 40312.47 39954.43 40412.81 40717.05 40422.43 403
ANet_high50.57 36246.10 36663.99 36548.67 40839.13 39970.99 36980.85 31861.39 32431.18 39757.70 39517.02 39673.65 38831.22 39215.89 40579.18 372
MVEpermissive26.22 2330.37 37225.89 37643.81 38444.55 40935.46 40228.87 40239.07 40918.20 40318.58 40540.18 4002.68 41247.37 40617.07 40423.78 40248.60 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft37.38 2244.16 36740.28 37055.82 37740.82 41042.54 39565.12 38963.99 39234.43 39524.48 40157.12 3963.92 41176.17 37517.10 40355.52 38348.75 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepMVS_CXcopyleft27.40 38840.17 41126.90 40624.59 41217.44 40423.95 40248.61 3999.77 40326.48 40718.06 40124.47 40128.83 401
test_method31.52 37029.28 37438.23 38527.03 4126.50 41520.94 40362.21 3944.05 40622.35 40452.50 39813.33 39847.58 40527.04 39634.04 39860.62 392
tmp_tt18.61 37421.40 37710.23 3904.82 41310.11 41334.70 40030.74 4111.48 40723.91 40326.07 40428.42 38313.41 40927.12 39515.35 4067.17 404
testmvs6.04 3788.02 3810.10 3920.08 4140.03 41769.74 3730.04 4150.05 4090.31 4101.68 4090.02 4150.04 4100.24 4090.02 4080.25 407
test1236.12 3778.11 3800.14 3910.06 4150.09 41671.05 3680.03 4160.04 4100.25 4111.30 4100.05 4140.03 4110.21 4100.01 4090.29 406
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
eth-test20.00 416
eth-test0.00 416
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k19.96 37326.61 3750.00 3930.00 4160.00 4180.00 40489.26 1750.00 4110.00 41288.61 17761.62 1630.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas5.26 3797.02 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41163.15 1400.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re7.23 3769.64 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41286.72 2280.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS42.58 39339.46 382
PC_three_145268.21 24792.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 43
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
GSMVS88.96 248
sam_mvs151.32 26488.96 248
sam_mvs50.01 277
MTGPAbinary92.02 87
test_post178.90 3265.43 40748.81 29785.44 32259.25 284
test_post5.46 40650.36 27584.24 329
patchmatchnet-post74.00 37651.12 26688.60 292
MTMP92.18 3532.83 410
test9_res84.90 4295.70 2692.87 106
agg_prior282.91 6695.45 3092.70 109
test_prior472.60 3489.01 107
test_prior288.85 11375.41 9584.91 6193.54 5674.28 2983.31 6195.86 20
旧先验286.56 18958.10 35087.04 4188.98 28574.07 151
新几何286.29 197
无先验87.48 16088.98 18860.00 33394.12 12267.28 21688.97 247
原ACMM286.86 178
testdata291.01 25262.37 257
segment_acmp73.08 38
testdata184.14 25175.71 89
plane_prior592.44 7195.38 7178.71 10586.32 15491.33 155
plane_prior491.00 122
plane_prior368.60 11878.44 3178.92 145
plane_prior291.25 5079.12 23
plane_prior68.71 11390.38 6877.62 3986.16 158
n20.00 417
nn0.00 417
door-mid69.98 378
test1192.23 81
door69.44 381
HQP5-MVS66.98 155
BP-MVS77.47 117
HQP4-MVS77.24 18495.11 8291.03 166
HQP3-MVS92.19 8485.99 162
HQP2-MVS60.17 191
MDTV_nov1_ep13_2view37.79 40075.16 35355.10 36566.53 33649.34 28753.98 32187.94 270
ACMMP++_ref81.95 221
ACMMP++81.25 226
Test By Simon64.33 127