This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
APDe-MVS97.82 597.73 498.08 1799.15 3394.82 2698.81 798.30 2494.76 3398.30 1798.90 393.77 1799.68 4597.93 199.69 399.75 5
test_vis1_n_192094.17 10094.58 8492.91 25997.42 13182.02 31997.83 7397.85 10594.68 3698.10 2098.49 2570.15 31599.32 10497.91 298.82 8297.40 182
MSC_two_6792asdad98.86 198.67 5896.94 197.93 9499.86 897.68 399.67 699.77 1
No_MVS98.86 198.67 5896.94 197.93 9499.86 897.68 399.67 699.77 1
patch_mono-296.83 3397.44 995.01 15799.05 3985.39 28296.98 16098.77 594.70 3597.99 2398.66 1493.61 1999.91 197.67 599.50 3399.72 10
test_vis1_n92.37 17492.26 15992.72 26694.75 27282.64 31198.02 5596.80 21891.18 14997.77 2897.93 7458.02 35398.29 20397.63 698.21 10397.23 188
test_fmvs1_n92.73 16492.88 13292.29 27696.08 20781.05 32797.98 5797.08 18890.72 16196.79 5098.18 5663.07 34698.45 18897.62 798.42 9897.36 183
test_fmvs193.21 13893.53 10892.25 27896.55 17981.20 32697.40 12496.96 20190.68 16396.80 4998.04 6569.25 31998.40 19197.58 898.50 9297.16 189
SED-MVS98.05 297.99 198.24 1099.42 795.30 1798.25 3698.27 3095.13 1699.19 198.89 495.54 599.85 1697.52 999.66 1099.56 25
test_241102_TWO98.27 3095.13 1698.93 698.89 494.99 1199.85 1697.52 999.65 1299.74 7
DVP-MVScopyleft97.91 397.81 398.22 1299.45 395.36 1398.21 4397.85 10594.92 2298.73 1098.87 695.08 899.84 2197.52 999.67 699.48 39
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.51 499.45 395.93 598.21 4398.28 2799.86 897.52 999.67 699.75 5
DVP-MVS++98.06 197.99 198.28 998.67 5895.39 1199.29 198.28 2794.78 3198.93 698.87 696.04 299.86 897.45 1399.58 2199.59 19
test_0728_THIRD94.78 3198.73 1098.87 695.87 499.84 2197.45 1399.72 299.77 1
DROMVSNet96.42 4696.47 4296.26 9797.01 15291.52 11098.89 597.75 11194.42 4396.64 5997.68 9389.32 7798.60 17697.45 1399.11 7398.67 114
IU-MVS99.42 795.39 1197.94 9390.40 17798.94 597.41 1699.66 1099.74 7
dcpmvs_296.37 4897.05 1694.31 19698.96 4684.11 29997.56 10597.51 13993.92 5697.43 3398.52 2292.75 2799.32 10497.32 1799.50 3399.51 33
CS-MVS96.86 3097.06 1496.26 9798.16 9591.16 13099.09 397.87 10095.30 1197.06 4498.03 6691.72 4398.71 16797.10 1899.17 6798.90 95
TSAR-MVS + MP.97.42 997.33 1197.69 3899.25 2794.24 3798.07 5297.85 10593.72 6298.57 1398.35 3793.69 1899.40 9797.06 1999.46 3999.44 43
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS97.68 697.44 998.37 798.90 5095.86 697.27 13698.08 6395.81 497.87 2798.31 4694.26 1399.68 4597.02 2099.49 3699.57 22
SD-MVS97.41 1097.53 797.06 6098.57 6994.46 3097.92 6598.14 5394.82 2899.01 398.55 2094.18 1497.41 30396.94 2199.64 1399.32 55
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CS-MVS-test96.89 2897.04 1796.45 8298.29 8191.66 10499.03 497.85 10595.84 396.90 4797.97 7291.24 5598.75 16196.92 2299.33 5398.94 90
CANet96.39 4796.02 5297.50 4397.62 12393.38 5997.02 15597.96 9195.42 894.86 11197.81 8587.38 10799.82 2696.88 2399.20 6599.29 56
TSAR-MVS + GP.96.69 3996.49 4197.27 5298.31 8093.39 5896.79 17396.72 22194.17 5097.44 3197.66 9692.76 2699.33 10296.86 2497.76 11799.08 76
DeepPCF-MVS93.97 196.61 4297.09 1395.15 14998.09 9886.63 26296.00 23798.15 5195.43 797.95 2498.56 1893.40 2099.36 10196.77 2599.48 3799.45 41
SMA-MVScopyleft97.35 1297.03 1898.30 899.06 3895.42 1097.94 6398.18 4690.57 17398.85 998.94 193.33 2199.83 2496.72 2699.68 499.63 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft97.86 497.65 598.47 599.17 3295.78 797.21 14498.35 2095.16 1598.71 1298.80 1195.05 1099.89 396.70 2799.73 199.73 9
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS97.59 897.54 697.73 3499.40 1193.77 5298.53 1598.29 2595.55 698.56 1497.81 8593.90 1599.65 4996.62 2899.21 6499.77 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MSLP-MVS++96.94 2697.06 1496.59 7098.72 5591.86 9997.67 9098.49 1394.66 3897.24 3798.41 3492.31 3798.94 14596.61 2999.46 3998.96 87
MP-MVS-pluss96.70 3896.27 4997.98 2099.23 3094.71 2796.96 16298.06 7190.67 16495.55 9998.78 1291.07 5999.86 896.58 3099.55 2499.38 51
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP97.62 797.53 797.87 2298.39 7694.25 3698.43 2498.27 3095.34 1098.11 1998.56 1894.53 1299.71 3796.57 3199.62 1599.65 12
Skip Steuart: Steuart Systems R&D Blog.
MCST-MVS97.18 1696.84 2598.20 1399.30 2495.35 1597.12 15198.07 6893.54 7096.08 8097.69 9293.86 1699.71 3796.50 3299.39 4899.55 28
SF-MVS97.39 1197.13 1298.17 1499.02 4295.28 1998.23 4098.27 3092.37 11398.27 1898.65 1693.33 2199.72 3696.49 3399.52 2899.51 33
EI-MVSNet-Vis-set96.51 4496.47 4296.63 6798.24 8591.20 12596.89 16697.73 11494.74 3496.49 6698.49 2590.88 6499.58 6496.44 3498.32 10099.13 70
VDD-MVS93.82 11893.08 12596.02 10997.88 10989.96 16697.72 8595.85 26592.43 11195.86 8898.44 3168.42 32499.39 9896.31 3594.85 17798.71 111
ACMMP_NAP97.20 1596.86 2398.23 1199.09 3495.16 2297.60 10198.19 4492.82 10297.93 2598.74 1391.60 4899.86 896.26 3699.52 2899.67 11
diffmvspermissive95.25 7495.13 7295.63 12796.43 18789.34 18895.99 23897.35 16892.83 10196.31 7397.37 11486.44 11898.67 17096.26 3697.19 13598.87 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-UG-set96.34 4996.30 4896.47 7998.20 9090.93 13796.86 16797.72 11694.67 3796.16 7898.46 2990.43 6999.58 6496.23 3897.96 11198.90 95
SR-MVS97.01 2396.86 2397.47 4499.09 3493.27 6497.98 5798.07 6893.75 6197.45 3098.48 2891.43 5199.59 6196.22 3999.27 5799.54 29
xiu_mvs_v1_base_debu95.01 8094.76 7895.75 11996.58 17491.71 10096.25 22397.35 16892.99 9196.70 5496.63 15882.67 17899.44 9396.22 3997.46 12196.11 219
xiu_mvs_v1_base95.01 8094.76 7895.75 11996.58 17491.71 10096.25 22397.35 16892.99 9196.70 5496.63 15882.67 17899.44 9396.22 3997.46 12196.11 219
xiu_mvs_v1_base_debi95.01 8094.76 7895.75 11996.58 17491.71 10096.25 22397.35 16892.99 9196.70 5496.63 15882.67 17899.44 9396.22 3997.46 12196.11 219
alignmvs95.87 6095.23 6997.78 2997.56 12995.19 2197.86 6897.17 17994.39 4596.47 6896.40 17185.89 12699.20 11496.21 4395.11 17598.95 89
canonicalmvs96.02 5595.45 6297.75 3397.59 12695.15 2398.28 3297.60 12894.52 4196.27 7596.12 18487.65 10099.18 11796.20 4494.82 17998.91 94
MTAPA97.08 1996.78 3097.97 2199.37 1694.42 3297.24 13898.08 6395.07 2096.11 7998.59 1790.88 6499.90 296.18 4599.50 3399.58 21
APD-MVS_3200maxsize96.81 3496.71 3397.12 5899.01 4592.31 8697.98 5798.06 7193.11 8897.44 3198.55 2090.93 6299.55 7496.06 4699.25 6199.51 33
SR-MVS-dyc-post96.88 2996.80 2997.11 5999.02 4292.34 8497.98 5798.03 8093.52 7297.43 3398.51 2391.40 5299.56 7296.05 4799.26 5999.43 45
RE-MVS-def96.72 3299.02 4292.34 8497.98 5798.03 8093.52 7297.43 3398.51 2390.71 6696.05 4799.26 5999.43 45
MVS_111021_HR96.68 4196.58 3896.99 6198.46 7092.31 8696.20 22898.90 294.30 4895.86 8897.74 9092.33 3599.38 10096.04 4999.42 4499.28 58
PHI-MVS96.77 3696.46 4497.71 3798.40 7494.07 4498.21 4398.45 1689.86 18597.11 4298.01 6992.52 3399.69 4396.03 5099.53 2799.36 53
casdiffmvs_mvgpermissive95.81 6195.57 5896.51 7596.87 15791.49 11197.50 11197.56 13593.99 5495.13 10897.92 7587.89 9698.78 15695.97 5197.33 12999.26 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HPM-MVS++copyleft97.34 1396.97 2098.47 599.08 3696.16 497.55 10897.97 9095.59 596.61 6097.89 7692.57 3299.84 2195.95 5299.51 3199.40 48
DELS-MVS96.61 4296.38 4797.30 4997.79 11393.19 6595.96 23998.18 4695.23 1295.87 8797.65 9791.45 5099.70 4295.87 5399.44 4399.00 85
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_LR96.24 5296.19 5196.39 8798.23 8991.35 11796.24 22698.79 493.99 5495.80 9097.65 9789.92 7599.24 11195.87 5399.20 6598.58 116
h-mvs3394.15 10193.52 11096.04 10897.81 11290.22 15797.62 10097.58 13195.19 1396.74 5297.45 11083.67 15599.61 5795.85 5579.73 33898.29 143
hse-mvs293.45 13192.99 12794.81 17197.02 15188.59 20996.69 18496.47 24095.19 1396.74 5296.16 18383.67 15598.48 18795.85 5579.13 34297.35 185
NCCC97.30 1497.03 1898.11 1698.77 5395.06 2497.34 12998.04 7895.96 297.09 4397.88 7893.18 2399.71 3795.84 5799.17 6799.56 25
VNet95.89 5995.45 6297.21 5598.07 10092.94 7197.50 11198.15 5193.87 5897.52 2997.61 10385.29 13399.53 7895.81 5895.27 17199.16 66
PC_three_145290.77 15898.89 898.28 5196.24 198.35 19895.76 5999.58 2199.59 19
9.1496.75 3198.93 4797.73 8298.23 4091.28 14597.88 2698.44 3193.00 2499.65 4995.76 5999.47 38
XVS97.18 1696.96 2197.81 2699.38 1494.03 4698.59 1298.20 4294.85 2496.59 6298.29 4991.70 4599.80 2895.66 6199.40 4699.62 15
X-MVStestdata91.71 19889.67 25797.81 2699.38 1494.03 4698.59 1298.20 4294.85 2496.59 6232.69 37491.70 4599.80 2895.66 6199.40 4699.62 15
baseline95.58 6695.42 6496.08 10496.78 16490.41 15597.16 14897.45 15293.69 6595.65 9797.85 8287.29 10898.68 16995.66 6197.25 13399.13 70
ETV-MVS96.02 5595.89 5596.40 8597.16 13892.44 8297.47 11797.77 11094.55 4096.48 6794.51 25791.23 5798.92 14695.65 6498.19 10497.82 165
casdiffmvspermissive95.64 6495.49 6096.08 10496.76 16890.45 15397.29 13597.44 15694.00 5395.46 10397.98 7187.52 10498.73 16395.64 6597.33 12999.08 76
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HFP-MVS97.14 1896.92 2297.83 2499.42 794.12 4298.52 1698.32 2293.21 8297.18 3898.29 4992.08 3999.83 2495.63 6699.59 1799.54 29
ACMMPR97.07 2096.84 2597.79 2899.44 693.88 4898.52 1698.31 2393.21 8297.15 3998.33 4391.35 5399.86 895.63 6699.59 1799.62 15
HPM-MVScopyleft96.69 3996.45 4597.40 4699.36 1893.11 6798.87 698.06 7191.17 15096.40 7197.99 7090.99 6199.58 6495.61 6899.61 1699.49 37
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS97.02 2296.81 2897.64 4199.33 2193.54 5598.80 898.28 2792.99 9196.45 7098.30 4891.90 4299.85 1695.61 6899.68 499.54 29
DeepC-MVS93.07 396.06 5395.66 5797.29 5097.96 10293.17 6697.30 13498.06 7193.92 5693.38 14498.66 1486.83 11399.73 3395.60 7099.22 6398.96 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS96.96 2496.67 3497.85 2399.37 1694.12 4298.49 2098.18 4692.64 10896.39 7298.18 5691.61 4799.88 495.59 7199.55 2499.57 22
mvsmamba93.83 11793.46 11394.93 16694.88 26590.85 14098.55 1495.49 28394.24 4991.29 19396.97 13383.04 16998.14 21595.56 7291.17 23395.78 233
region2R97.07 2096.84 2597.77 3199.46 293.79 5098.52 1698.24 3793.19 8597.14 4098.34 4091.59 4999.87 795.46 7399.59 1799.64 13
iter_conf0593.18 14392.63 14494.83 16896.64 17090.69 14697.60 10195.53 28292.52 10991.58 18096.64 15276.35 27798.13 21695.43 7491.42 22895.68 243
OPU-MVS98.55 398.82 5296.86 398.25 3698.26 5296.04 299.24 11195.36 7599.59 1799.56 25
iter_conf_final93.60 12493.11 12495.04 15497.13 14191.30 11897.92 6595.65 27692.98 9691.60 17996.64 15279.28 23998.13 21695.34 7691.49 22595.70 241
lupinMVS94.99 8494.56 8596.29 9596.34 19191.21 12395.83 24496.27 24888.93 21496.22 7696.88 13986.20 12398.85 15195.27 7799.05 7498.82 104
mPP-MVS96.86 3096.60 3697.64 4199.40 1193.44 5798.50 1998.09 6293.27 8195.95 8698.33 4391.04 6099.88 495.20 7899.57 2399.60 18
DeepC-MVS_fast93.89 296.93 2796.64 3597.78 2998.64 6494.30 3397.41 12098.04 7894.81 2996.59 6298.37 3691.24 5599.64 5695.16 7999.52 2899.42 47
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
jason94.84 8994.39 9396.18 10295.52 22490.93 13796.09 23296.52 23789.28 20296.01 8497.32 11584.70 14098.77 15995.15 8098.91 8198.85 101
jason: jason.
train_agg96.30 5095.83 5697.72 3598.70 5694.19 3896.41 20698.02 8388.58 22696.03 8197.56 10792.73 2999.59 6195.04 8199.37 5299.39 49
mvsany_test193.93 11393.98 9793.78 22594.94 26086.80 25594.62 28092.55 34588.77 22396.85 4898.49 2588.98 8198.08 22795.03 8295.62 16696.46 209
test_prior296.35 21592.80 10396.03 8197.59 10492.01 4095.01 8399.38 49
nrg03094.05 10893.31 12096.27 9695.22 24694.59 2898.34 2797.46 14792.93 9991.21 19696.64 15287.23 11098.22 20794.99 8485.80 28895.98 223
VDDNet93.05 14892.07 16296.02 10996.84 15990.39 15698.08 5195.85 26586.22 28395.79 9198.46 2967.59 32799.19 11594.92 8594.85 17798.47 128
APD-MVScopyleft96.95 2596.60 3698.01 1899.03 4194.93 2597.72 8598.10 6191.50 13598.01 2298.32 4592.33 3599.58 6494.85 8699.51 3199.53 32
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS96.85 3296.52 4097.82 2599.36 1894.14 4198.29 3198.13 5492.72 10596.70 5498.06 6391.35 5399.86 894.83 8799.28 5699.47 40
MP-MVScopyleft96.77 3696.45 4597.72 3599.39 1393.80 4998.41 2598.06 7193.37 7895.54 10198.34 4090.59 6899.88 494.83 8799.54 2699.49 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test9_res94.81 8999.38 4999.45 41
PS-MVSNAJ95.37 7095.33 6795.49 13797.35 13290.66 14895.31 26597.48 14293.85 5996.51 6595.70 20888.65 8799.65 4994.80 9098.27 10196.17 214
HPM-MVS_fast96.51 4496.27 4997.22 5499.32 2292.74 7498.74 998.06 7190.57 17396.77 5198.35 3790.21 7199.53 7894.80 9099.63 1499.38 51
xiu_mvs_v2_base95.32 7295.29 6895.40 14297.22 13490.50 15195.44 25997.44 15693.70 6496.46 6996.18 18088.59 9099.53 7894.79 9297.81 11496.17 214
CSCG96.05 5495.91 5496.46 8199.24 2890.47 15298.30 3098.57 1289.01 20993.97 13197.57 10592.62 3199.76 3194.66 9399.27 5799.15 68
test_fmvs289.77 26989.93 24689.31 32693.68 30976.37 35397.64 9795.90 26289.84 18891.49 18396.26 17858.77 35297.10 31394.65 9491.13 23494.46 306
EIA-MVS95.53 6895.47 6195.71 12497.06 14789.63 17297.82 7497.87 10093.57 6693.92 13295.04 23490.61 6798.95 14494.62 9598.68 8798.54 118
ZD-MVS99.05 3994.59 2898.08 6389.22 20497.03 4598.10 5992.52 3399.65 4994.58 9699.31 55
ACMMPcopyleft96.27 5195.93 5397.28 5199.24 2892.62 7798.25 3698.81 392.99 9194.56 11798.39 3588.96 8299.85 1694.57 9797.63 11899.36 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PGM-MVS96.81 3496.53 3997.65 3999.35 2093.53 5697.65 9398.98 192.22 11597.14 4098.44 3191.17 5899.85 1694.35 9899.46 3999.57 22
RRT_MVS93.10 14592.83 13493.93 21894.76 27088.04 22898.47 2296.55 23693.44 7590.01 22297.04 13080.64 21497.93 25694.33 9990.21 25095.83 228
ET-MVSNet_ETH3D91.49 21090.11 23895.63 12796.40 18891.57 10995.34 26293.48 33790.60 17275.58 35595.49 21980.08 22596.79 32594.25 10089.76 25498.52 120
LFMVS93.60 12492.63 14496.52 7298.13 9791.27 12097.94 6393.39 33890.57 17396.29 7498.31 4669.00 32099.16 11994.18 10195.87 15999.12 73
MVSFormer95.37 7095.16 7195.99 11196.34 19191.21 12398.22 4197.57 13291.42 13996.22 7697.32 11586.20 12397.92 25794.07 10299.05 7498.85 101
test_djsdf93.07 14792.76 13794.00 20993.49 31588.70 20798.22 4197.57 13291.42 13990.08 22095.55 21682.85 17597.92 25794.07 10291.58 22395.40 256
mvs_anonymous93.82 11893.74 10194.06 20596.44 18685.41 28095.81 24597.05 19389.85 18790.09 21996.36 17387.44 10697.75 27393.97 10496.69 14699.02 79
VPA-MVSNet93.24 13792.48 15495.51 13595.70 21792.39 8397.86 6898.66 1092.30 11492.09 17395.37 22280.49 21798.40 19193.95 10585.86 28795.75 238
agg_prior293.94 10699.38 4999.50 36
mvs_tets92.31 17891.76 17293.94 21693.41 31888.29 21897.63 9997.53 13792.04 12488.76 25896.45 16874.62 28898.09 22693.91 10791.48 22695.45 252
Effi-MVS+94.93 8594.45 9196.36 9096.61 17191.47 11396.41 20697.41 16191.02 15594.50 11895.92 19287.53 10398.78 15693.89 10896.81 14198.84 103
jajsoiax92.42 17191.89 17094.03 20893.33 32188.50 21497.73 8297.53 13792.00 12688.85 25596.50 16675.62 28498.11 22293.88 10991.56 22495.48 247
XVG-OURS-SEG-HR93.86 11693.55 10694.81 17197.06 14788.53 21395.28 26697.45 15291.68 13294.08 12897.68 9382.41 18698.90 14993.84 11092.47 20896.98 192
PS-MVSNAJss93.74 12193.51 11194.44 18893.91 30189.28 19397.75 7997.56 13592.50 11089.94 22396.54 16488.65 8798.18 21293.83 11190.90 24095.86 224
EPNet95.20 7794.56 8597.14 5792.80 32992.68 7697.85 7194.87 31596.64 192.46 16097.80 8786.23 12099.65 4993.72 11298.62 8999.10 75
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu95.27 7394.91 7696.38 8898.20 9090.86 13997.27 13698.25 3590.21 17894.18 12597.27 11787.48 10599.73 3393.53 11397.77 11698.55 117
CPTT-MVS95.57 6795.19 7096.70 6499.27 2691.48 11298.33 2898.11 5987.79 24995.17 10798.03 6687.09 11199.61 5793.51 11499.42 4499.02 79
MVSTER93.20 13992.81 13694.37 19296.56 17789.59 17597.06 15297.12 18391.24 14691.30 19095.96 19082.02 19398.05 23493.48 11590.55 24595.47 250
PVSNet_BlendedMVS94.06 10793.92 9894.47 18798.27 8289.46 18396.73 17898.36 1790.17 17994.36 12095.24 22888.02 9399.58 6493.44 11690.72 24394.36 310
PVSNet_Blended94.87 8894.56 8595.81 11698.27 8289.46 18395.47 25898.36 1788.84 21794.36 12096.09 18888.02 9399.58 6493.44 11698.18 10598.40 136
3Dnovator91.36 595.19 7894.44 9297.44 4596.56 17793.36 6198.65 1198.36 1794.12 5189.25 24898.06 6382.20 19099.77 3093.41 11899.32 5499.18 65
EPP-MVSNet95.22 7695.04 7495.76 11797.49 13089.56 17698.67 1097.00 19990.69 16294.24 12397.62 10289.79 7698.81 15493.39 11996.49 15098.92 93
CHOSEN 280x42093.12 14492.72 14294.34 19496.71 16987.27 24390.29 35097.72 11686.61 27591.34 18795.29 22484.29 14898.41 19093.25 12098.94 7997.35 185
3Dnovator+91.43 495.40 6994.48 9098.16 1596.90 15695.34 1698.48 2197.87 10094.65 3988.53 26398.02 6883.69 15499.71 3793.18 12198.96 7899.44 43
test_yl94.78 9194.23 9496.43 8397.74 11591.22 12196.85 16897.10 18591.23 14795.71 9396.93 13484.30 14699.31 10693.10 12295.12 17398.75 106
DCV-MVSNet94.78 9194.23 9496.43 8397.74 11591.22 12196.85 16897.10 18591.23 14795.71 9396.93 13484.30 14699.31 10693.10 12295.12 17398.75 106
test_vis1_rt86.16 30485.06 30589.46 32493.47 31780.46 33396.41 20686.61 36985.22 29779.15 34988.64 34752.41 36097.06 31493.08 12490.57 24490.87 353
test111193.19 14092.82 13594.30 19797.58 12884.56 29498.21 4389.02 36293.53 7194.58 11698.21 5372.69 29899.05 13793.06 12598.48 9599.28 58
ECVR-MVScopyleft93.19 14092.73 14194.57 18597.66 12085.41 28098.21 4388.23 36393.43 7694.70 11498.21 5372.57 29999.07 13493.05 12698.49 9399.25 61
HQP_MVS93.78 12093.43 11694.82 16996.21 19589.99 16297.74 8097.51 13994.85 2491.34 18796.64 15281.32 20498.60 17693.02 12792.23 21195.86 224
plane_prior597.51 13998.60 17693.02 12792.23 21195.86 224
test250691.60 20290.78 21094.04 20797.66 12083.81 30298.27 3375.53 37793.43 7695.23 10598.21 5367.21 33099.07 13493.01 12998.49 9399.25 61
MVS_Test94.89 8794.62 8295.68 12596.83 16189.55 17796.70 18297.17 17991.17 15095.60 9896.11 18787.87 9798.76 16093.01 12997.17 13698.72 109
bld_raw_dy_0_6492.37 17491.69 17694.39 19194.28 29389.73 17197.71 8793.65 33592.78 10490.46 20496.67 15075.88 27997.97 24592.92 13190.89 24195.48 247
CLD-MVS92.98 15192.53 15194.32 19596.12 20489.20 19595.28 26697.47 14592.66 10689.90 22495.62 21280.58 21598.40 19192.73 13292.40 20995.38 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
XVG-OURS93.72 12293.35 11994.80 17497.07 14488.61 20894.79 27797.46 14791.97 12793.99 12997.86 8181.74 19998.88 15092.64 13392.67 20696.92 196
旧先验295.94 24081.66 33397.34 3698.82 15392.26 134
CDPH-MVS95.97 5795.38 6597.77 3198.93 4794.44 3196.35 21597.88 9886.98 26896.65 5897.89 7691.99 4199.47 8992.26 13499.46 3999.39 49
FIs94.09 10693.70 10295.27 14595.70 21792.03 9598.10 4998.68 893.36 8090.39 20696.70 14687.63 10197.94 25392.25 13690.50 24795.84 227
LPG-MVS_test92.94 15492.56 14894.10 20396.16 20088.26 22097.65 9397.46 14791.29 14290.12 21697.16 12379.05 24298.73 16392.25 13691.89 21995.31 262
LGP-MVS_train94.10 20396.16 20088.26 22097.46 14791.29 14290.12 21697.16 12379.05 24298.73 16392.25 13691.89 21995.31 262
cascas91.20 22690.08 23994.58 18494.97 25689.16 19893.65 31797.59 13079.90 34489.40 24092.92 31075.36 28598.36 19792.14 13994.75 18196.23 211
OPM-MVS93.28 13692.76 13794.82 16994.63 27990.77 14496.65 18897.18 17793.72 6291.68 17897.26 11879.33 23898.63 17392.13 14092.28 21095.07 273
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
BP-MVS92.13 140
HQP-MVS93.19 14092.74 14094.54 18695.86 21089.33 18996.65 18897.39 16293.55 6790.14 21095.87 19480.95 20798.50 18492.13 14092.10 21695.78 233
DP-MVS Recon95.68 6395.12 7397.37 4799.19 3194.19 3897.03 15398.08 6388.35 23395.09 10997.65 9789.97 7499.48 8892.08 14398.59 9098.44 133
VPNet92.23 18491.31 19094.99 15895.56 22290.96 13597.22 14397.86 10492.96 9890.96 19896.62 16175.06 28698.20 20991.90 14483.65 32195.80 231
sss94.51 9493.80 10096.64 6597.07 14491.97 9796.32 21898.06 7188.94 21394.50 11896.78 14184.60 14199.27 10991.90 14496.02 15598.68 113
anonymousdsp92.16 18691.55 18193.97 21292.58 33389.55 17797.51 11097.42 16089.42 19988.40 26494.84 24380.66 21397.88 26291.87 14691.28 23194.48 305
test_fmvs383.21 31983.02 31683.78 34186.77 36368.34 36696.76 17694.91 31086.49 27684.14 32389.48 34536.04 36891.73 36391.86 14780.77 33591.26 352
ACMP89.59 1092.62 16692.14 16194.05 20696.40 18888.20 22397.36 12897.25 17691.52 13488.30 26796.64 15278.46 25498.72 16691.86 14791.48 22695.23 269
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HyFIR lowres test93.66 12392.92 13095.87 11498.24 8589.88 16794.58 28298.49 1385.06 30193.78 13495.78 20382.86 17498.67 17091.77 14995.71 16499.07 78
UGNet94.04 10993.28 12196.31 9296.85 15891.19 12697.88 6797.68 12194.40 4493.00 15296.18 18073.39 29799.61 5791.72 15098.46 9698.13 148
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet93.37 13392.67 14395.47 14095.34 23592.83 7297.17 14798.58 1192.98 9690.13 21495.80 19988.37 9297.85 26391.71 15183.93 31695.73 240
DU-MVS92.90 15692.04 16395.49 13794.95 25892.83 7297.16 14898.24 3793.02 9090.13 21495.71 20683.47 15897.85 26391.71 15183.93 31695.78 233
Effi-MVS+-dtu93.08 14693.21 12392.68 26996.02 20883.25 30997.14 15096.72 22193.85 5991.20 19793.44 30483.08 16798.30 20291.69 15395.73 16396.50 206
UniMVSNet (Re)93.31 13592.55 14995.61 12995.39 22993.34 6297.39 12598.71 693.14 8790.10 21894.83 24487.71 9898.03 23891.67 15483.99 31595.46 251
LCM-MVSNet-Re92.50 16792.52 15292.44 27296.82 16381.89 32096.92 16493.71 33492.41 11284.30 31994.60 25585.08 13697.03 31691.51 15597.36 12798.40 136
FC-MVSNet-test93.94 11293.57 10595.04 15495.48 22691.45 11598.12 4898.71 693.37 7890.23 20996.70 14687.66 9997.85 26391.49 15690.39 24895.83 228
PMMVS92.86 15892.34 15694.42 19094.92 26186.73 25894.53 28496.38 24484.78 30694.27 12295.12 23383.13 16698.40 19191.47 15796.49 15098.12 149
Vis-MVSNetpermissive95.23 7594.81 7796.51 7597.18 13791.58 10898.26 3598.12 5694.38 4694.90 11098.15 5882.28 18898.92 14691.45 15898.58 9199.01 82
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CHOSEN 1792x268894.15 10193.51 11196.06 10698.27 8289.38 18695.18 27298.48 1585.60 29193.76 13597.11 12683.15 16599.61 5791.33 15998.72 8699.19 64
OMC-MVS95.09 7994.70 8196.25 10098.46 7091.28 11996.43 20497.57 13292.04 12494.77 11397.96 7387.01 11299.09 12991.31 16096.77 14298.36 140
MG-MVS95.61 6595.38 6596.31 9298.42 7390.53 15096.04 23497.48 14293.47 7495.67 9698.10 5989.17 7999.25 11091.27 16198.77 8499.13 70
ACMM89.79 892.96 15292.50 15394.35 19396.30 19388.71 20697.58 10397.36 16791.40 14190.53 20296.65 15179.77 23198.75 16191.24 16291.64 22195.59 245
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WTY-MVS94.71 9394.02 9696.79 6397.71 11792.05 9496.59 19797.35 16890.61 17094.64 11596.93 13486.41 11999.39 9891.20 16394.71 18398.94 90
tt080591.09 23090.07 24294.16 20195.61 21988.31 21797.56 10596.51 23889.56 19389.17 24995.64 21167.08 33498.38 19691.07 16488.44 26695.80 231
Anonymous2024052991.98 19290.73 21395.73 12298.14 9689.40 18597.99 5697.72 11679.63 34593.54 13997.41 11369.94 31799.56 7291.04 16591.11 23598.22 145
AUN-MVS91.76 19790.75 21294.81 17197.00 15388.57 21096.65 18896.49 23989.63 19192.15 16996.12 18478.66 25198.50 18490.83 16679.18 34197.36 183
mvsany_test383.59 31782.44 32087.03 33583.80 36473.82 35893.70 31390.92 35886.42 27882.51 33490.26 33846.76 36395.71 33990.82 16776.76 34891.57 347
CANet_DTU94.37 9593.65 10496.55 7196.46 18592.13 9296.21 22796.67 22894.38 4693.53 14097.03 13179.34 23799.71 3790.76 16898.45 9797.82 165
ab-mvs93.57 12792.55 14996.64 6597.28 13391.96 9895.40 26097.45 15289.81 18993.22 15096.28 17679.62 23499.46 9090.74 16993.11 20098.50 123
CostFormer91.18 22990.70 21492.62 27094.84 26781.76 32194.09 30194.43 32284.15 31292.72 15993.77 29379.43 23698.20 20990.70 17092.18 21497.90 158
Anonymous20240521192.07 18990.83 20995.76 11798.19 9288.75 20597.58 10395.00 30586.00 28693.64 13697.45 11066.24 33899.53 7890.68 17192.71 20499.01 82
tpmrst91.44 21291.32 18991.79 29095.15 24979.20 34693.42 32295.37 28788.55 22993.49 14193.67 29882.49 18498.27 20490.41 17289.34 25797.90 158
thisisatest053093.03 14992.21 16095.49 13797.07 14489.11 19997.49 11692.19 34790.16 18094.09 12796.41 17076.43 27699.05 13790.38 17395.68 16598.31 142
UA-Net95.95 5895.53 5997.20 5697.67 11892.98 7097.65 9398.13 5494.81 2996.61 6098.35 3788.87 8399.51 8390.36 17497.35 12899.11 74
UniMVSNet_ETH3D91.34 22090.22 23594.68 17994.86 26687.86 23597.23 14297.46 14787.99 24189.90 22496.92 13766.35 33698.23 20690.30 17590.99 23897.96 155
tttt051792.96 15292.33 15794.87 16797.11 14287.16 24997.97 6292.09 34890.63 16893.88 13397.01 13276.50 27399.06 13690.29 17695.45 16898.38 138
FA-MVS(test-final)93.52 12992.92 13095.31 14496.77 16588.54 21294.82 27696.21 25389.61 19294.20 12495.25 22783.24 16299.14 12290.01 17796.16 15498.25 144
IS-MVSNet94.90 8694.52 8896.05 10797.67 11890.56 14998.44 2396.22 25193.21 8293.99 12997.74 9085.55 13198.45 18889.98 17897.86 11299.14 69
miper_enhance_ethall91.54 20891.01 20193.15 25195.35 23487.07 25193.97 30396.90 20986.79 27289.17 24993.43 30686.55 11697.64 28189.97 17986.93 27894.74 299
EI-MVSNet93.03 14992.88 13293.48 23995.77 21586.98 25296.44 20297.12 18390.66 16691.30 19097.64 10086.56 11598.05 23489.91 18090.55 24595.41 253
IterMVS-LS92.29 18091.94 16893.34 24496.25 19486.97 25396.57 20097.05 19390.67 16489.50 23994.80 24686.59 11497.64 28189.91 18086.11 28695.40 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2291.21 22590.56 22093.14 25296.09 20686.80 25594.41 28996.58 23587.80 24888.58 26293.99 28680.85 21297.62 28489.87 18286.93 27894.99 276
CDS-MVSNet94.14 10493.54 10795.93 11296.18 19891.46 11496.33 21797.04 19588.97 21293.56 13796.51 16587.55 10297.89 26189.80 18395.95 15798.44 133
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WR-MVS92.34 17691.53 18294.77 17695.13 25190.83 14196.40 21097.98 8991.88 12889.29 24595.54 21782.50 18397.80 26889.79 18485.27 29695.69 242
NR-MVSNet92.34 17691.27 19395.53 13494.95 25893.05 6897.39 12598.07 6892.65 10784.46 31795.71 20685.00 13797.77 27289.71 18583.52 32295.78 233
Anonymous2023121190.63 24989.42 26194.27 19898.24 8589.19 19798.05 5397.89 9679.95 34388.25 27094.96 23672.56 30098.13 21689.70 18685.14 29895.49 246
testdata95.46 14198.18 9488.90 20397.66 12282.73 32797.03 4598.07 6290.06 7298.85 15189.67 18798.98 7798.64 115
Baseline_NR-MVSNet91.20 22690.62 21692.95 25893.83 30488.03 22997.01 15895.12 30188.42 23189.70 23095.13 23283.47 15897.44 30089.66 18883.24 32493.37 328
DPM-MVS95.69 6294.92 7598.01 1898.08 9995.71 995.27 26897.62 12790.43 17695.55 9997.07 12891.72 4399.50 8689.62 18998.94 7998.82 104
XXY-MVS92.16 18691.23 19594.95 16394.75 27290.94 13697.47 11797.43 15989.14 20688.90 25296.43 16979.71 23298.24 20589.56 19087.68 27195.67 244
miper_ehance_all_eth91.59 20391.13 19992.97 25795.55 22386.57 26394.47 28596.88 21287.77 25088.88 25494.01 28486.22 12197.54 29089.49 19186.93 27894.79 295
XVG-ACMP-BASELINE90.93 23990.21 23693.09 25394.31 29185.89 27395.33 26397.26 17491.06 15489.38 24195.44 22168.61 32298.60 17689.46 19291.05 23694.79 295
thisisatest051592.29 18091.30 19195.25 14696.60 17288.90 20394.36 29192.32 34687.92 24393.43 14394.57 25677.28 26999.00 14189.42 19395.86 16097.86 161
c3_l91.38 21590.89 20392.88 26195.58 22186.30 26694.68 27996.84 21688.17 23788.83 25794.23 27685.65 13097.47 29789.36 19484.63 30694.89 285
AdaColmapbinary94.34 9693.68 10396.31 9298.59 6691.68 10396.59 19797.81 10989.87 18492.15 16997.06 12983.62 15799.54 7689.34 19598.07 10897.70 169
TranMVSNet+NR-MVSNet92.50 16791.63 17895.14 15094.76 27092.07 9397.53 10998.11 5992.90 10089.56 23696.12 18483.16 16497.60 28689.30 19683.20 32595.75 238
D2MVS91.30 22290.95 20292.35 27494.71 27585.52 27896.18 22998.21 4188.89 21586.60 30093.82 29179.92 22997.95 25289.29 19790.95 23993.56 324
131492.81 16292.03 16495.14 15095.33 23889.52 18096.04 23497.44 15687.72 25386.25 30395.33 22383.84 15298.79 15589.26 19897.05 13897.11 190
v2v48291.59 20390.85 20793.80 22393.87 30388.17 22596.94 16396.88 21289.54 19489.53 23794.90 24081.70 20098.02 23989.25 19985.04 30295.20 270
114514_t93.95 11193.06 12696.63 6799.07 3791.61 10597.46 11997.96 9177.99 35193.00 15297.57 10586.14 12599.33 10289.22 20099.15 6998.94 90
PAPM_NR95.01 8094.59 8396.26 9798.89 5190.68 14797.24 13897.73 11491.80 12992.93 15796.62 16189.13 8099.14 12289.21 20197.78 11598.97 86
baseline192.82 16191.90 16995.55 13397.20 13690.77 14497.19 14594.58 32092.20 11792.36 16496.34 17484.16 14998.21 20889.20 20283.90 31997.68 170
IB-MVS87.33 1789.91 26488.28 27794.79 17595.26 24587.70 23895.12 27493.95 33289.35 20187.03 29492.49 31670.74 31099.19 11589.18 20381.37 33297.49 180
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS89.66 993.87 11592.95 12996.63 6797.10 14392.49 8195.64 25296.64 22989.05 20893.00 15295.79 20285.77 12999.45 9289.16 20494.35 18597.96 155
V4291.58 20590.87 20493.73 22694.05 29888.50 21497.32 13296.97 20088.80 22289.71 22994.33 26882.54 18298.05 23489.01 20585.07 30094.64 303
OurMVSNet-221017-090.51 25290.19 23791.44 29993.41 31881.25 32496.98 16096.28 24791.68 13286.55 30196.30 17574.20 29197.98 24288.96 20687.40 27695.09 272
API-MVS94.84 8994.49 8995.90 11397.90 10892.00 9697.80 7697.48 14289.19 20594.81 11296.71 14488.84 8499.17 11888.91 20798.76 8596.53 204
test-LLR91.42 21391.19 19792.12 28094.59 28080.66 32994.29 29592.98 34091.11 15290.76 20092.37 31879.02 24498.07 23188.81 20896.74 14397.63 171
test-mter90.19 26089.54 26092.12 28094.59 28080.66 32994.29 29592.98 34087.68 25490.76 20092.37 31867.67 32698.07 23188.81 20896.74 14397.63 171
eth_miper_zixun_eth91.02 23490.59 21892.34 27595.33 23884.35 29594.10 30096.90 20988.56 22888.84 25694.33 26884.08 15097.60 28688.77 21084.37 31295.06 274
TAMVS94.01 11093.46 11395.64 12696.16 20090.45 15396.71 18196.89 21189.27 20393.46 14296.92 13787.29 10897.94 25388.70 21195.74 16298.53 119
Patchmatch-RL test87.38 29386.24 29490.81 30988.74 35878.40 35088.12 36193.17 33987.11 26782.17 33689.29 34681.95 19595.60 34288.64 21277.02 34698.41 135
baseline291.63 20190.86 20593.94 21694.33 28986.32 26595.92 24191.64 35289.37 20086.94 29694.69 25081.62 20198.69 16888.64 21294.57 18496.81 199
TESTMET0.1,190.06 26289.42 26191.97 28394.41 28780.62 33194.29 29591.97 35087.28 26490.44 20592.47 31768.79 32197.67 27888.50 21496.60 14897.61 175
Vis-MVSNet (Re-imp)94.15 10193.88 9994.95 16397.61 12487.92 23298.10 4995.80 26792.22 11593.02 15197.45 11084.53 14397.91 26088.24 21597.97 11099.02 79
1112_ss93.37 13392.42 15596.21 10197.05 14990.99 13396.31 21996.72 22186.87 27189.83 22796.69 14886.51 11799.14 12288.12 21693.67 19498.50 123
CVMVSNet91.23 22491.75 17389.67 32395.77 21574.69 35696.44 20294.88 31285.81 28892.18 16897.64 10079.07 24195.58 34388.06 21795.86 16098.74 108
MAR-MVS94.22 9893.46 11396.51 7598.00 10192.19 9197.67 9097.47 14588.13 24093.00 15295.84 19684.86 13999.51 8387.99 21898.17 10697.83 164
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
原ACMM196.38 8898.59 6691.09 13297.89 9687.41 26095.22 10697.68 9390.25 7099.54 7687.95 21999.12 7298.49 125
CP-MVSNet91.89 19491.24 19493.82 22295.05 25488.57 21097.82 7498.19 4491.70 13188.21 27195.76 20481.96 19497.52 29487.86 22084.65 30595.37 259
v14890.99 23590.38 22492.81 26493.83 30485.80 27496.78 17596.68 22689.45 19888.75 25993.93 28882.96 17397.82 26787.83 22183.25 32394.80 293
v114491.37 21790.60 21793.68 23193.89 30288.23 22296.84 17097.03 19788.37 23289.69 23194.39 26482.04 19297.98 24287.80 22285.37 29394.84 287
DIV-MVS_self_test90.97 23790.33 22592.88 26195.36 23386.19 27094.46 28796.63 23287.82 24688.18 27294.23 27682.99 17097.53 29287.72 22385.57 29094.93 281
gm-plane-assit93.22 32278.89 34984.82 30593.52 30198.64 17287.72 223
GeoE93.89 11493.28 12195.72 12396.96 15589.75 17098.24 3996.92 20889.47 19792.12 17197.21 12184.42 14498.39 19587.71 22596.50 14999.01 82
cl____90.96 23890.32 22692.89 26095.37 23286.21 26994.46 28796.64 22987.82 24688.15 27394.18 27982.98 17197.54 29087.70 22685.59 28994.92 283
pmmvs490.93 23989.85 24994.17 20093.34 32090.79 14394.60 28196.02 25884.62 30787.45 28495.15 23081.88 19797.45 29987.70 22687.87 27094.27 315
Test_1112_low_res92.84 16091.84 17195.85 11597.04 15089.97 16595.53 25696.64 22985.38 29489.65 23395.18 22985.86 12799.10 12687.70 22693.58 19998.49 125
无先验95.79 24697.87 10083.87 31799.65 4987.68 22998.89 98
Fast-Effi-MVS+93.46 13092.75 13995.59 13096.77 16590.03 15996.81 17297.13 18288.19 23691.30 19094.27 27386.21 12298.63 17387.66 23096.46 15298.12 149
CNLPA94.28 9793.53 10896.52 7298.38 7792.55 7996.59 19796.88 21290.13 18191.91 17597.24 11985.21 13499.09 12987.64 23197.83 11397.92 157
v891.29 22390.53 22193.57 23694.15 29488.12 22797.34 12997.06 19288.99 21088.32 26694.26 27583.08 16798.01 24087.62 23283.92 31894.57 304
pmmvs589.86 26788.87 27092.82 26392.86 32786.23 26896.26 22295.39 28584.24 31187.12 29194.51 25774.27 29097.36 30687.61 23387.57 27294.86 286
Fast-Effi-MVS+-dtu92.29 18091.99 16693.21 25095.27 24285.52 27897.03 15396.63 23292.09 12289.11 25195.14 23180.33 22198.08 22787.54 23494.74 18296.03 222
OpenMVScopyleft89.19 1292.86 15891.68 17796.40 8595.34 23592.73 7598.27 3398.12 5684.86 30485.78 30697.75 8978.89 24999.74 3287.50 23598.65 8896.73 201
miper_lstm_enhance90.50 25390.06 24391.83 28795.33 23883.74 30393.86 30996.70 22587.56 25787.79 27993.81 29283.45 16096.92 32287.39 23684.62 30794.82 290
IterMVS-SCA-FT90.31 25589.81 25191.82 28895.52 22484.20 29894.30 29496.15 25590.61 17087.39 28794.27 27375.80 28196.44 32887.34 23786.88 28294.82 290
PLCcopyleft91.00 694.11 10593.43 11696.13 10398.58 6891.15 13196.69 18497.39 16287.29 26391.37 18696.71 14488.39 9199.52 8287.33 23897.13 13797.73 167
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm90.25 25789.74 25691.76 29393.92 30079.73 34293.98 30293.54 33688.28 23491.99 17493.25 30777.51 26897.44 30087.30 23987.94 26998.12 149
GA-MVS91.38 21590.31 22794.59 18094.65 27787.62 23994.34 29296.19 25490.73 16090.35 20793.83 28971.84 30297.96 25087.22 24093.61 19798.21 146
BH-untuned92.94 15492.62 14693.92 21997.22 13486.16 27196.40 21096.25 25090.06 18289.79 22896.17 18283.19 16398.35 19887.19 24197.27 13297.24 187
v14419291.06 23290.28 22993.39 24293.66 31087.23 24696.83 17197.07 19087.43 25989.69 23194.28 27281.48 20298.00 24187.18 24284.92 30494.93 281
RPSCF90.75 24490.86 20590.42 31696.84 15976.29 35495.61 25396.34 24583.89 31591.38 18597.87 7976.45 27498.78 15687.16 24392.23 21196.20 212
test_f80.57 32479.62 32683.41 34283.38 36667.80 36893.57 32093.72 33380.80 34077.91 35287.63 35533.40 36992.08 36287.14 24479.04 34390.34 356
PS-CasMVS91.55 20790.84 20893.69 23094.96 25788.28 21997.84 7298.24 3791.46 13788.04 27595.80 19979.67 23397.48 29687.02 24584.54 31095.31 262
pm-mvs190.72 24689.65 25993.96 21394.29 29289.63 17297.79 7796.82 21789.07 20786.12 30595.48 22078.61 25297.78 27086.97 24681.67 33094.46 306
IterMVS90.15 26189.67 25791.61 29595.48 22683.72 30494.33 29396.12 25689.99 18387.31 29094.15 28175.78 28396.27 33186.97 24686.89 28194.83 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP93.58 12692.98 12895.37 14398.40 7488.98 20197.18 14697.29 17387.75 25290.49 20397.10 12785.21 13499.50 8686.70 24896.72 14597.63 171
PVSNet86.66 1892.24 18391.74 17593.73 22697.77 11483.69 30692.88 33196.72 22187.91 24493.00 15294.86 24278.51 25399.05 13786.53 24997.45 12598.47 128
v119291.07 23190.23 23393.58 23593.70 30787.82 23696.73 17897.07 19087.77 25089.58 23494.32 27080.90 21197.97 24586.52 25085.48 29194.95 277
新几何197.32 4898.60 6593.59 5497.75 11181.58 33495.75 9297.85 8290.04 7399.67 4786.50 25199.13 7198.69 112
v1091.04 23390.23 23393.49 23894.12 29588.16 22697.32 13297.08 18888.26 23588.29 26894.22 27882.17 19197.97 24586.45 25284.12 31494.33 311
v192192090.85 24190.03 24493.29 24693.55 31186.96 25496.74 17797.04 19587.36 26189.52 23894.34 26780.23 22397.97 24586.27 25385.21 29794.94 279
MDTV_nov1_ep13_2view70.35 36293.10 32983.88 31693.55 13882.47 18586.25 25498.38 138
test_post192.81 33316.58 37880.53 21697.68 27786.20 255
SCA91.84 19591.18 19893.83 22195.59 22084.95 29094.72 27895.58 27990.82 15692.25 16793.69 29575.80 28198.10 22386.20 25595.98 15698.45 130
PAPR94.18 9993.42 11896.48 7897.64 12291.42 11695.55 25497.71 12088.99 21092.34 16695.82 19889.19 7899.11 12586.14 25797.38 12698.90 95
GBi-Net91.35 21890.27 23094.59 18096.51 18191.18 12797.50 11196.93 20488.82 21989.35 24294.51 25773.87 29297.29 30986.12 25888.82 26095.31 262
test191.35 21890.27 23094.59 18096.51 18191.18 12797.50 11196.93 20488.82 21989.35 24294.51 25773.87 29297.29 30986.12 25888.82 26095.31 262
FMVSNet391.78 19690.69 21595.03 15696.53 18092.27 8897.02 15596.93 20489.79 19089.35 24294.65 25377.01 27097.47 29786.12 25888.82 26095.35 260
EPMVS90.70 24789.81 25193.37 24394.73 27484.21 29793.67 31688.02 36489.50 19692.38 16393.49 30277.82 26697.78 27086.03 26192.68 20598.11 152
MVS91.71 19890.44 22295.51 13595.20 24891.59 10796.04 23497.45 15273.44 35987.36 28895.60 21385.42 13299.10 12685.97 26297.46 12195.83 228
testdata299.67 4785.96 263
K. test v387.64 29286.75 29390.32 31793.02 32679.48 34496.61 19492.08 34990.66 16680.25 34594.09 28267.21 33096.65 32785.96 26380.83 33494.83 288
WR-MVS_H92.00 19191.35 18793.95 21495.09 25389.47 18198.04 5498.68 891.46 13788.34 26594.68 25185.86 12797.56 28885.77 26584.24 31394.82 290
gg-mvs-nofinetune87.82 29085.61 29994.44 18894.46 28489.27 19491.21 34584.61 37280.88 33789.89 22674.98 36571.50 30497.53 29285.75 26697.21 13496.51 205
tpm289.96 26389.21 26592.23 27994.91 26381.25 32493.78 31194.42 32380.62 34191.56 18193.44 30476.44 27597.94 25385.60 26792.08 21897.49 180
v124090.70 24789.85 24993.23 24893.51 31486.80 25596.61 19497.02 19887.16 26689.58 23494.31 27179.55 23597.98 24285.52 26885.44 29294.90 284
PEN-MVS91.20 22690.44 22293.48 23994.49 28387.91 23497.76 7898.18 4691.29 14287.78 28095.74 20580.35 22097.33 30785.46 26982.96 32695.19 271
QAPM93.45 13192.27 15896.98 6296.77 16592.62 7798.39 2698.12 5684.50 30988.27 26997.77 8882.39 18799.81 2785.40 27098.81 8398.51 122
EU-MVSNet88.72 28288.90 26988.20 33093.15 32474.21 35796.63 19394.22 32885.18 29887.32 28995.97 18976.16 27894.98 34885.27 27186.17 28495.41 253
BH-w/o92.14 18891.75 17393.31 24596.99 15485.73 27595.67 24995.69 27288.73 22489.26 24794.82 24582.97 17298.07 23185.26 27296.32 15396.13 218
FMVSNet291.31 22190.08 23994.99 15896.51 18192.21 8997.41 12096.95 20288.82 21988.62 26094.75 24873.87 29297.42 30285.20 27388.55 26595.35 260
PM-MVS83.48 31881.86 32388.31 32987.83 36177.59 35193.43 32191.75 35186.91 26980.63 34189.91 34244.42 36495.84 33785.17 27476.73 34991.50 349
LF4IMVS87.94 28987.25 28689.98 32092.38 33880.05 34094.38 29095.25 29587.59 25684.34 31894.74 24964.31 34397.66 28084.83 27587.45 27392.23 341
PatchmatchNetpermissive91.91 19391.35 18793.59 23495.38 23084.11 29993.15 32795.39 28589.54 19492.10 17293.68 29782.82 17698.13 21684.81 27695.32 17098.52 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs687.81 29186.19 29592.69 26891.32 34286.30 26697.34 12996.41 24380.59 34284.05 32694.37 26667.37 32997.67 27884.75 27779.51 34094.09 319
v7n90.76 24389.86 24893.45 24193.54 31287.60 24097.70 8997.37 16588.85 21687.65 28294.08 28381.08 20698.10 22384.68 27883.79 32094.66 302
SixPastTwentyTwo89.15 27488.54 27490.98 30693.49 31580.28 33796.70 18294.70 31690.78 15784.15 32295.57 21471.78 30397.71 27684.63 27985.07 30094.94 279
TDRefinement86.53 29884.76 30991.85 28682.23 36884.25 29696.38 21395.35 28884.97 30384.09 32494.94 23765.76 34198.34 20184.60 28074.52 35292.97 330
MVS_030488.79 28087.57 28292.46 27194.65 27786.15 27296.40 21097.17 17986.44 27788.02 27691.71 33056.68 35697.03 31684.47 28192.58 20794.19 316
ACMH87.59 1690.53 25189.42 26193.87 22096.21 19587.92 23297.24 13896.94 20388.45 23083.91 32796.27 17771.92 30198.62 17584.43 28289.43 25695.05 275
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+87.92 1490.20 25989.18 26693.25 24796.48 18486.45 26496.99 15996.68 22688.83 21884.79 31696.22 17970.16 31498.53 18284.42 28388.04 26894.77 298
test_vis3_rt72.73 32870.55 33179.27 34580.02 36968.13 36793.92 30774.30 37976.90 35458.99 36873.58 36820.29 37795.37 34684.16 28472.80 35774.31 367
FE-MVS92.05 19091.05 20095.08 15396.83 16187.93 23193.91 30895.70 27086.30 28094.15 12694.97 23576.59 27299.21 11384.10 28596.86 13998.09 153
MS-PatchMatch90.27 25689.77 25391.78 29194.33 28984.72 29395.55 25496.73 22086.17 28486.36 30295.28 22671.28 30697.80 26884.09 28698.14 10792.81 333
PatchMatch-RL92.90 15692.02 16595.56 13198.19 9290.80 14295.27 26897.18 17787.96 24291.86 17795.68 20980.44 21898.99 14284.01 28797.54 12096.89 197
lessismore_v090.45 31591.96 34179.09 34887.19 36780.32 34494.39 26466.31 33797.55 28984.00 28876.84 34794.70 300
CMPMVSbinary62.92 2185.62 31084.92 30787.74 33289.14 35573.12 36094.17 29896.80 21873.98 35773.65 35894.93 23866.36 33597.61 28583.95 28991.28 23192.48 339
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVP-Stereo90.74 24590.08 23992.71 26793.19 32388.20 22395.86 24396.27 24886.07 28584.86 31594.76 24777.84 26597.75 27383.88 29098.01 10992.17 344
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LS3D93.57 12792.61 14796.47 7997.59 12691.61 10597.67 9097.72 11685.17 29990.29 20898.34 4084.60 14199.73 3383.85 29198.27 10198.06 154
DTE-MVSNet90.56 25089.75 25593.01 25593.95 29987.25 24497.64 9797.65 12490.74 15987.12 29195.68 20979.97 22897.00 32083.33 29281.66 33194.78 297
BH-RMVSNet92.72 16591.97 16794.97 16197.16 13887.99 23096.15 23095.60 27790.62 16991.87 17697.15 12578.41 25598.57 18083.16 29397.60 11998.36 140
pmmvs-eth3d86.22 30384.45 31091.53 29688.34 35987.25 24494.47 28595.01 30483.47 32279.51 34889.61 34469.75 31895.71 33983.13 29476.73 34991.64 345
FMVSNet189.88 26688.31 27694.59 18095.41 22891.18 12797.50 11196.93 20486.62 27487.41 28694.51 25765.94 34097.29 30983.04 29587.43 27495.31 262
MDTV_nov1_ep1390.76 21195.22 24680.33 33593.03 33095.28 29288.14 23992.84 15893.83 28981.34 20398.08 22782.86 29694.34 186
TR-MVS91.48 21190.59 21894.16 20196.40 18887.33 24195.67 24995.34 29187.68 25491.46 18495.52 21876.77 27198.35 19882.85 29793.61 19796.79 200
JIA-IIPM88.26 28787.04 29191.91 28493.52 31381.42 32389.38 35694.38 32480.84 33890.93 19980.74 36379.22 24097.92 25782.76 29891.62 22296.38 210
PVSNet_082.17 1985.46 31183.64 31490.92 30795.27 24279.49 34390.55 34995.60 27783.76 31883.00 33389.95 34171.09 30797.97 24582.75 29960.79 36995.31 262
ambc86.56 33783.60 36570.00 36385.69 36394.97 30780.60 34288.45 34837.42 36796.84 32482.69 30075.44 35192.86 332
USDC88.94 27687.83 28192.27 27794.66 27684.96 28993.86 30995.90 26287.34 26283.40 32995.56 21567.43 32898.19 21182.64 30189.67 25593.66 323
ITE_SJBPF92.43 27395.34 23585.37 28395.92 26091.47 13687.75 28196.39 17271.00 30897.96 25082.36 30289.86 25393.97 320
UnsupCasMVSNet_eth85.99 30684.45 31090.62 31389.97 35082.40 31693.62 31897.37 16589.86 18578.59 35192.37 31865.25 34295.35 34782.27 30370.75 35994.10 317
GG-mvs-BLEND93.62 23293.69 30889.20 19592.39 33883.33 37387.98 27889.84 34371.00 30896.87 32382.08 30495.40 16994.80 293
thres600view792.49 16991.60 17995.18 14897.91 10789.47 18197.65 9394.66 31792.18 12193.33 14594.91 23978.06 26299.10 12681.61 30594.06 19196.98 192
LTVRE_ROB88.41 1390.99 23589.92 24794.19 19996.18 19889.55 17796.31 21997.09 18787.88 24585.67 30795.91 19378.79 25098.57 18081.50 30689.98 25194.44 308
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tpmvs89.83 26889.15 26791.89 28594.92 26180.30 33693.11 32895.46 28486.28 28188.08 27492.65 31280.44 21898.52 18381.47 30789.92 25296.84 198
thres100view90092.43 17091.58 18094.98 16097.92 10689.37 18797.71 8794.66 31792.20 11793.31 14694.90 24078.06 26299.08 13181.40 30894.08 18896.48 207
tfpn200view992.38 17391.52 18394.95 16397.85 11089.29 19197.41 12094.88 31292.19 11993.27 14894.46 26278.17 25899.08 13181.40 30894.08 18896.48 207
thres40092.42 17191.52 18395.12 15297.85 11089.29 19197.41 12094.88 31292.19 11993.27 14894.46 26278.17 25899.08 13181.40 30894.08 18896.98 192
DP-MVS92.76 16391.51 18596.52 7298.77 5390.99 13397.38 12796.08 25782.38 32889.29 24597.87 7983.77 15399.69 4381.37 31196.69 14698.89 98
thres20092.23 18491.39 18694.75 17897.61 12489.03 20096.60 19695.09 30292.08 12393.28 14794.00 28578.39 25699.04 14081.26 31294.18 18796.19 213
CR-MVSNet90.82 24289.77 25393.95 21494.45 28587.19 24790.23 35195.68 27486.89 27092.40 16192.36 32180.91 20997.05 31581.09 31393.95 19297.60 176
MSDG91.42 21390.24 23294.96 16297.15 14088.91 20293.69 31596.32 24685.72 29086.93 29796.47 16780.24 22298.98 14380.57 31495.05 17696.98 192
dp88.90 27888.26 27890.81 30994.58 28276.62 35292.85 33294.93 30985.12 30090.07 22193.07 30875.81 28098.12 22180.53 31587.42 27597.71 168
tpm cat188.36 28587.21 28891.81 28995.13 25180.55 33292.58 33595.70 27074.97 35687.45 28491.96 32678.01 26498.17 21380.39 31688.74 26396.72 202
KD-MVS_self_test85.95 30784.95 30688.96 32789.55 35479.11 34795.13 27396.42 24285.91 28784.07 32590.48 33670.03 31694.82 34980.04 31772.94 35692.94 331
AllTest90.23 25888.98 26893.98 21097.94 10486.64 25996.51 20195.54 28085.38 29485.49 30996.77 14270.28 31299.15 12080.02 31892.87 20196.15 216
TestCases93.98 21097.94 10486.64 25995.54 28085.38 29485.49 30996.77 14270.28 31299.15 12080.02 31892.87 20196.15 216
ADS-MVSNet289.45 27188.59 27392.03 28295.86 21082.26 31790.93 34694.32 32783.23 32491.28 19491.81 32879.01 24695.99 33379.52 32091.39 22997.84 162
ADS-MVSNet89.89 26588.68 27293.53 23795.86 21084.89 29190.93 34695.07 30383.23 32491.28 19491.81 32879.01 24697.85 26379.52 32091.39 22997.84 162
our_test_388.78 28187.98 28091.20 30492.45 33682.53 31393.61 31995.69 27285.77 28984.88 31493.71 29479.99 22796.78 32679.47 32286.24 28394.28 314
EPNet_dtu91.71 19891.28 19292.99 25693.76 30683.71 30596.69 18495.28 29293.15 8687.02 29595.95 19183.37 16197.38 30579.46 32396.84 14097.88 160
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TransMVSNet (Re)88.94 27687.56 28393.08 25494.35 28888.45 21697.73 8295.23 29687.47 25884.26 32095.29 22479.86 23097.33 30779.44 32474.44 35393.45 327
EG-PatchMatch MVS87.02 29685.44 30091.76 29392.67 33185.00 28896.08 23396.45 24183.41 32379.52 34793.49 30257.10 35597.72 27579.34 32590.87 24292.56 337
Patchmtry88.64 28387.25 28692.78 26594.09 29686.64 25989.82 35495.68 27480.81 33987.63 28392.36 32180.91 20997.03 31678.86 32685.12 29994.67 301
FMVSNet587.29 29485.79 29891.78 29194.80 26987.28 24295.49 25795.28 29284.09 31383.85 32891.82 32762.95 34794.17 35478.48 32785.34 29593.91 321
COLMAP_ROBcopyleft87.81 1590.40 25489.28 26493.79 22497.95 10387.13 25096.92 16495.89 26482.83 32686.88 29997.18 12273.77 29599.29 10878.44 32893.62 19694.95 277
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052186.42 30085.44 30089.34 32590.33 34779.79 34196.73 17895.92 26083.71 31983.25 33091.36 33363.92 34496.01 33278.39 32985.36 29492.22 342
test0.0.03 189.37 27388.70 27191.41 30092.47 33585.63 27695.22 27192.70 34391.11 15286.91 29893.65 29979.02 24493.19 36078.00 33089.18 25895.41 253
MIMVSNet88.50 28486.76 29293.72 22894.84 26787.77 23791.39 34194.05 32986.41 27987.99 27792.59 31563.27 34595.82 33877.44 33192.84 20397.57 178
MDA-MVSNet_test_wron85.87 30884.23 31290.80 31192.38 33882.57 31293.17 32595.15 29982.15 32967.65 36092.33 32478.20 25795.51 34477.33 33279.74 33794.31 313
YYNet185.87 30884.23 31290.78 31292.38 33882.46 31593.17 32595.14 30082.12 33067.69 35992.36 32178.16 26095.50 34577.31 33379.73 33894.39 309
UnsupCasMVSNet_bld82.13 32379.46 32790.14 31988.00 36082.47 31490.89 34896.62 23478.94 34875.61 35484.40 36156.63 35796.31 33077.30 33466.77 36591.63 346
KD-MVS_2432*160084.81 31482.64 31891.31 30191.07 34485.34 28491.22 34395.75 26885.56 29283.09 33190.21 33967.21 33095.89 33477.18 33562.48 36792.69 334
miper_refine_blended84.81 31482.64 31891.31 30191.07 34485.34 28491.22 34395.75 26885.56 29283.09 33190.21 33967.21 33095.89 33477.18 33562.48 36792.69 334
PCF-MVS89.48 1191.56 20689.95 24596.36 9096.60 17292.52 8092.51 33697.26 17479.41 34688.90 25296.56 16384.04 15199.55 7477.01 33797.30 13197.01 191
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testgi87.97 28887.21 28890.24 31892.86 32780.76 32896.67 18794.97 30791.74 13085.52 30895.83 19762.66 34894.47 35276.25 33888.36 26795.48 247
TinyColmap86.82 29785.35 30391.21 30394.91 26382.99 31093.94 30594.02 33183.58 32081.56 33794.68 25162.34 34998.13 21675.78 33987.35 27792.52 338
ppachtmachnet_test88.35 28687.29 28591.53 29692.45 33683.57 30793.75 31295.97 25984.28 31085.32 31294.18 27979.00 24896.93 32175.71 34084.99 30394.10 317
PAPM91.52 20990.30 22895.20 14795.30 24189.83 16893.38 32396.85 21586.26 28288.59 26195.80 19984.88 13898.15 21475.67 34195.93 15897.63 171
CL-MVSNet_self_test86.31 30285.15 30489.80 32288.83 35781.74 32293.93 30696.22 25186.67 27385.03 31390.80 33578.09 26194.50 35074.92 34271.86 35893.15 329
tfpnnormal89.70 27088.40 27593.60 23395.15 24990.10 15897.56 10598.16 5087.28 26486.16 30494.63 25477.57 26798.05 23474.48 34384.59 30892.65 336
DSMNet-mixed86.34 30186.12 29787.00 33689.88 35170.43 36194.93 27590.08 36077.97 35285.42 31192.78 31174.44 28993.96 35574.43 34495.14 17296.62 203
Patchmatch-test89.42 27287.99 27993.70 22995.27 24285.11 28688.98 35794.37 32581.11 33587.10 29393.69 29582.28 18897.50 29574.37 34594.76 18098.48 127
LCM-MVSNet72.55 32969.39 33382.03 34370.81 37865.42 37190.12 35394.36 32655.02 36865.88 36281.72 36224.16 37689.96 36474.32 34668.10 36490.71 355
new-patchmatchnet83.18 32081.87 32287.11 33486.88 36275.99 35593.70 31395.18 29885.02 30277.30 35388.40 34965.99 33993.88 35674.19 34770.18 36091.47 350
MDA-MVSNet-bldmvs85.00 31282.95 31791.17 30593.13 32583.33 30894.56 28395.00 30584.57 30865.13 36492.65 31270.45 31195.85 33673.57 34877.49 34594.33 311
pmmvs379.97 32577.50 33087.39 33382.80 36779.38 34592.70 33490.75 35970.69 36078.66 35087.47 35751.34 36193.40 35873.39 34969.65 36189.38 358
test_method66.11 33664.89 33869.79 35372.62 37635.23 38365.19 37192.83 34220.35 37465.20 36388.08 35343.14 36582.70 37173.12 35063.46 36691.45 351
PatchT88.87 27987.42 28493.22 24994.08 29785.10 28789.51 35594.64 31981.92 33192.36 16488.15 35280.05 22697.01 31972.43 35193.65 19597.54 179
Anonymous2023120687.09 29586.14 29689.93 32191.22 34380.35 33496.11 23195.35 28883.57 32184.16 32193.02 30973.54 29695.61 34172.16 35286.14 28593.84 322
MVS-HIRNet82.47 32281.21 32486.26 33895.38 23069.21 36488.96 35889.49 36166.28 36280.79 34074.08 36768.48 32397.39 30471.93 35395.47 16792.18 343
new_pmnet82.89 32181.12 32588.18 33189.63 35280.18 33891.77 34092.57 34476.79 35575.56 35688.23 35161.22 35094.48 35171.43 35482.92 32789.87 357
TAPA-MVS90.10 792.30 17991.22 19695.56 13198.33 7989.60 17496.79 17397.65 12481.83 33291.52 18297.23 12087.94 9598.91 14871.31 35598.37 9998.17 147
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test20.0386.14 30585.40 30288.35 32890.12 34880.06 33995.90 24295.20 29788.59 22581.29 33893.62 30071.43 30592.65 36171.26 35681.17 33392.34 340
tmp_tt51.94 34253.82 34246.29 35833.73 38245.30 38178.32 36867.24 38118.02 37550.93 37187.05 35852.99 35953.11 37770.76 35725.29 37540.46 373
MIMVSNet184.93 31383.05 31590.56 31489.56 35384.84 29295.40 26095.35 28883.91 31480.38 34392.21 32557.23 35493.34 35970.69 35882.75 32993.50 325
APD_test179.31 32677.70 32984.14 34089.11 35669.07 36592.36 33991.50 35369.07 36173.87 35792.63 31439.93 36694.32 35370.54 35980.25 33689.02 359
RPMNet88.98 27587.05 29094.77 17694.45 28587.19 24790.23 35198.03 8077.87 35392.40 16187.55 35680.17 22499.51 8368.84 36093.95 19297.60 176
N_pmnet78.73 32778.71 32878.79 34692.80 32946.50 37994.14 29943.71 38278.61 34980.83 33991.66 33174.94 28796.36 32967.24 36184.45 31193.50 325
OpenMVS_ROBcopyleft81.14 2084.42 31682.28 32190.83 30890.06 34984.05 30195.73 24894.04 33073.89 35880.17 34691.53 33259.15 35197.64 28166.92 36289.05 25990.80 354
PMMVS270.19 33166.92 33480.01 34476.35 37265.67 37086.22 36287.58 36664.83 36462.38 36580.29 36426.78 37488.49 36863.79 36354.07 37085.88 360
test_040286.46 29984.79 30891.45 29895.02 25585.55 27796.29 22194.89 31180.90 33682.21 33593.97 28768.21 32597.29 30962.98 36488.68 26491.51 348
DeepMVS_CXcopyleft74.68 35290.84 34664.34 37281.61 37565.34 36367.47 36188.01 35448.60 36280.13 37362.33 36573.68 35579.58 364
testf169.31 33266.76 33576.94 34878.61 37061.93 37388.27 35986.11 37055.62 36659.69 36685.31 35920.19 37889.32 36557.62 36669.44 36279.58 364
APD_test269.31 33266.76 33576.94 34878.61 37061.93 37388.27 35986.11 37055.62 36659.69 36685.31 35920.19 37889.32 36557.62 36669.44 36279.58 364
EGC-MVSNET68.77 33463.01 33986.07 33992.49 33482.24 31893.96 30490.96 3570.71 3792.62 38090.89 33453.66 35893.46 35757.25 36884.55 30982.51 362
FPMVS71.27 33069.85 33275.50 35074.64 37359.03 37591.30 34291.50 35358.80 36557.92 36988.28 35029.98 37285.53 37053.43 36982.84 32881.95 363
ANet_high63.94 33759.58 34077.02 34761.24 38066.06 36985.66 36487.93 36578.53 35042.94 37271.04 36925.42 37580.71 37252.60 37030.83 37384.28 361
Gipumacopyleft67.86 33565.41 33775.18 35192.66 33273.45 35966.50 37094.52 32153.33 36957.80 37066.07 37030.81 37089.20 36748.15 37178.88 34462.90 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft53.92 2258.58 33855.40 34168.12 35451.00 38148.64 37778.86 36787.10 36846.77 37035.84 37674.28 3668.76 38086.34 36942.07 37273.91 35469.38 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive50.73 2353.25 34048.81 34566.58 35565.34 37957.50 37672.49 36970.94 38040.15 37339.28 37563.51 3716.89 38273.48 37638.29 37342.38 37168.76 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN53.28 33952.56 34355.43 35674.43 37447.13 37883.63 36676.30 37642.23 37142.59 37362.22 37228.57 37374.40 37431.53 37431.51 37244.78 371
EMVS52.08 34151.31 34454.39 35772.62 37645.39 38083.84 36575.51 37841.13 37240.77 37459.65 37330.08 37173.60 37528.31 37529.90 37444.18 372
wuyk23d25.11 34324.57 34726.74 35973.98 37539.89 38257.88 3729.80 38312.27 37610.39 3776.97 3797.03 38136.44 37825.43 37617.39 3763.89 376
testmvs13.36 34516.33 3484.48 3615.04 3832.26 38593.18 3243.28 3842.70 3778.24 37821.66 3752.29 3842.19 3797.58 3772.96 3779.00 375
test12313.04 34615.66 3495.18 3604.51 3843.45 38492.50 3371.81 3852.50 3787.58 37920.15 3763.67 3832.18 3807.13 3781.07 3789.90 374
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k23.24 34430.99 3460.00 3620.00 3850.00 3860.00 37397.63 1260.00 3800.00 38196.88 13984.38 1450.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas7.39 3489.85 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38088.65 870.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.06 34710.74 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38196.69 1480.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.55 193.34 6299.29 198.35 2094.98 2198.49 15
test_one_060199.32 2295.20 2098.25 3595.13 1698.48 1698.87 695.16 7
eth-test20.00 385
eth-test0.00 385
test_241102_ONE99.42 795.30 1798.27 3095.09 1999.19 198.81 1095.54 599.65 49
save fliter98.91 4994.28 3497.02 15598.02 8395.35 9
test072699.45 395.36 1398.31 2998.29 2594.92 2298.99 498.92 295.08 8
GSMVS98.45 130
test_part299.28 2595.74 898.10 20
sam_mvs182.76 17798.45 130
sam_mvs81.94 196
MTGPAbinary98.08 63
test_post17.58 37781.76 19898.08 227
patchmatchnet-post90.45 33782.65 18198.10 223
MTMP97.86 6882.03 374
TEST998.70 5694.19 3896.41 20698.02 8388.17 23796.03 8197.56 10792.74 2899.59 61
test_898.67 5894.06 4596.37 21498.01 8688.58 22695.98 8597.55 10992.73 2999.58 64
agg_prior98.67 5893.79 5098.00 8795.68 9599.57 71
test_prior493.66 5396.42 205
test_prior97.23 5398.67 5892.99 6998.00 8799.41 9699.29 56
新几何295.79 246
旧先验198.38 7793.38 5997.75 11198.09 6192.30 3899.01 7699.16 66
原ACMM295.67 249
test22298.24 8592.21 8995.33 26397.60 12879.22 34795.25 10497.84 8488.80 8599.15 6998.72 109
segment_acmp92.89 25
testdata195.26 27093.10 89
test1297.65 3998.46 7094.26 3597.66 12295.52 10290.89 6399.46 9099.25 6199.22 63
plane_prior796.21 19589.98 164
plane_prior696.10 20590.00 16081.32 204
plane_prior496.64 152
plane_prior390.00 16094.46 4291.34 187
plane_prior297.74 8094.85 24
plane_prior196.14 203
plane_prior89.99 16297.24 13894.06 5292.16 215
n20.00 386
nn0.00 386
door-mid91.06 356
test1197.88 98
door91.13 355
HQP5-MVS89.33 189
HQP-NCC95.86 21096.65 18893.55 6790.14 210
ACMP_Plane95.86 21096.65 18893.55 6790.14 210
HQP4-MVS90.14 21098.50 18495.78 233
HQP3-MVS97.39 16292.10 216
HQP2-MVS80.95 207
NP-MVS95.99 20989.81 16995.87 194
ACMMP++_ref90.30 249
ACMMP++91.02 237
Test By Simon88.73 86