This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
fmvsm_l_conf0.5_n_a99.09 199.08 199.11 5199.43 5497.48 7698.88 10899.30 1398.47 999.85 499.43 2896.71 1799.96 499.86 199.80 1999.89 5
fmvsm_l_conf0.5_n99.07 499.05 299.14 4799.41 5697.54 7498.89 10399.31 1298.49 899.86 299.42 2996.45 2499.96 499.86 199.74 4599.90 3
MVS_030498.47 3798.22 4999.21 3999.00 11397.80 6798.88 10895.32 36898.86 298.53 8499.44 2794.38 8799.94 899.86 199.70 5499.90 3
MM99.33 2698.14 5498.93 9597.02 33398.96 199.17 4199.47 2091.97 12999.94 899.85 499.69 5699.91 2
test_fmvsm_n_192098.87 1099.01 398.45 9399.42 5596.43 12698.96 8999.36 998.63 599.86 299.51 1395.91 3999.97 199.72 599.75 4198.94 174
test_fmvsmconf_n98.92 798.87 699.04 5598.88 12597.25 8898.82 12699.34 1098.75 399.80 599.61 495.16 6899.95 799.70 699.80 1999.93 1
fmvsm_s_conf0.5_n98.42 4398.51 1898.13 12299.30 6895.25 18798.85 11899.39 797.94 1499.74 999.62 392.59 11099.91 3999.65 799.52 9299.25 133
test_fmvsmvis_n_192098.44 4098.51 1898.23 11398.33 17796.15 14198.97 8499.15 2898.55 798.45 8999.55 694.26 9199.97 199.65 799.66 6198.57 204
test_fmvsmconf0.1_n98.58 2398.44 2498.99 5797.73 22597.15 9398.84 12298.97 4298.75 399.43 2799.54 893.29 10299.93 2599.64 999.79 2599.89 5
fmvsm_s_conf0.5_n_a98.38 4698.42 2598.27 10799.09 10595.41 17898.86 11699.37 897.69 2199.78 699.61 492.38 11399.91 3999.58 1099.43 10499.49 96
test_fmvsmconf0.01_n97.86 6897.54 7798.83 6795.48 34896.83 10498.95 9098.60 14198.58 698.93 5799.55 688.57 20699.91 3999.54 1199.61 7299.77 27
fmvsm_s_conf0.1_n98.18 5898.21 5098.11 12698.54 15795.24 18898.87 11399.24 1797.50 3199.70 1399.67 191.33 14599.89 4799.47 1299.54 8999.21 138
fmvsm_s_conf0.1_n_a98.08 5998.04 5998.21 11497.66 23195.39 17998.89 10399.17 2697.24 5099.76 899.67 191.13 15099.88 5699.39 1399.41 10699.35 115
test_vis1_n_192096.71 12896.84 10996.31 26199.11 10389.74 33199.05 6598.58 14998.08 1299.87 199.37 3878.48 34199.93 2599.29 1499.69 5699.27 129
test_vis1_n95.47 18895.13 18896.49 24597.77 22090.41 32299.27 2698.11 24296.58 8399.66 1599.18 7367.00 38099.62 13799.21 1599.40 10999.44 107
patch_mono-298.36 4998.87 696.82 21299.53 3690.68 31798.64 16999.29 1497.88 1599.19 4099.52 1196.80 1599.97 199.11 1699.86 199.82 16
test_fmvs196.42 14096.67 12095.66 28798.82 13288.53 35398.80 13598.20 22296.39 9399.64 1799.20 6780.35 33199.67 12699.04 1799.57 8098.78 186
test_fmvs1_n95.90 16795.99 14795.63 28898.67 14688.32 35799.26 2798.22 21996.40 9299.67 1499.26 5773.91 36899.70 11999.02 1899.50 9498.87 178
dcpmvs_298.08 5998.59 1496.56 23699.57 3390.34 32499.15 4798.38 19396.82 7399.29 3499.49 1795.78 4399.57 14298.94 1999.86 199.77 27
EC-MVSNet98.21 5798.11 5598.49 8998.34 17597.26 8799.61 598.43 18496.78 7498.87 6198.84 12393.72 9899.01 21598.91 2099.50 9499.19 143
APDe-MVScopyleft99.02 698.84 899.55 999.57 3398.96 1699.39 1298.93 5097.38 3999.41 2899.54 896.66 1899.84 6798.86 2199.85 599.87 7
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CS-MVS-test98.49 3498.50 2098.46 9299.20 9297.05 9599.64 498.50 16997.45 3598.88 6099.14 8195.25 6499.15 19198.83 2299.56 8699.20 139
CANet98.05 6197.76 6698.90 6598.73 13797.27 8398.35 20698.78 10097.37 4197.72 13398.96 11091.53 14199.92 3198.79 2399.65 6499.51 89
CS-MVS98.44 4098.49 2198.31 10599.08 10696.73 10999.67 398.47 17597.17 5598.94 5399.10 8695.73 4499.13 19498.71 2499.49 9699.09 157
VDD-MVS95.82 17295.23 18497.61 16498.84 13193.98 24498.68 16297.40 31195.02 16097.95 11799.34 4874.37 36799.78 10198.64 2596.80 20299.08 161
EI-MVSNet-Vis-set98.47 3798.39 2798.69 7299.46 4996.49 12398.30 21598.69 12097.21 5298.84 6299.36 4295.41 5399.78 10198.62 2699.65 6499.80 18
test_cas_vis1_n_192097.38 10097.36 8897.45 17098.95 12093.25 27399.00 7898.53 15997.70 2099.77 799.35 4484.71 28899.85 6398.57 2799.66 6199.26 131
EI-MVSNet-UG-set98.41 4498.34 3598.61 7799.45 5296.32 13498.28 21898.68 12397.17 5598.74 6999.37 3895.25 6499.79 9898.57 2799.54 8999.73 42
CHOSEN 280x42097.18 11097.18 9597.20 18498.81 13393.27 27195.78 36699.15 2895.25 14796.79 17398.11 20292.29 11699.07 20598.56 2999.85 599.25 133
MSC_two_6792asdad99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
No_MVS99.62 699.17 9499.08 1198.63 13899.94 898.53 3099.80 1999.86 8
xiu_mvs_v1_base_debu97.60 8397.56 7497.72 15298.35 17095.98 14697.86 26798.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 244
xiu_mvs_v1_base97.60 8397.56 7497.72 15298.35 17095.98 14697.86 26798.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 244
xiu_mvs_v1_base_debi97.60 8397.56 7497.72 15298.35 17095.98 14697.86 26798.51 16497.13 5999.01 4998.40 17291.56 13799.80 8898.53 3098.68 14097.37 244
VNet97.79 7297.40 8698.96 6198.88 12597.55 7398.63 17298.93 5096.74 7799.02 4898.84 12390.33 16799.83 6998.53 3096.66 20699.50 91
MSLP-MVS++98.56 2998.57 1598.55 8199.26 8096.80 10598.71 15599.05 3697.28 4598.84 6299.28 5496.47 2399.40 16898.52 3699.70 5499.47 100
TSAR-MVS + GP.98.38 4698.24 4698.81 6899.22 8997.25 8898.11 24098.29 21197.19 5498.99 5299.02 9896.22 2699.67 12698.52 3698.56 14999.51 89
DVP-MVS++99.08 398.89 599.64 399.17 9499.23 799.69 198.88 6297.32 4299.53 2399.47 2097.81 399.94 898.47 3899.72 5199.74 37
DVP-MVScopyleft99.03 598.83 999.63 499.72 1299.25 298.97 8498.58 14997.62 2499.45 2599.46 2497.42 999.94 898.47 3899.81 1299.69 56
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD97.32 4299.45 2599.46 2497.88 199.94 898.47 3899.86 199.85 10
test_0728_SECOND99.71 199.72 1299.35 198.97 8498.88 6299.94 898.47 3899.81 1299.84 12
SED-MVS99.09 198.91 499.63 499.71 1999.24 599.02 7498.87 6997.65 2299.73 1099.48 1897.53 799.94 898.43 4299.81 1299.70 53
test_241102_TWO98.87 6997.65 2299.53 2399.48 1897.34 1199.94 898.43 4299.80 1999.83 13
DELS-MVS98.40 4598.20 5198.99 5799.00 11397.66 6897.75 27698.89 5997.71 1998.33 9798.97 10594.97 7499.88 5698.42 4499.76 3799.42 111
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
mvsany_test197.69 7897.70 6897.66 16198.24 18394.18 24097.53 29297.53 29795.52 13199.66 1599.51 1394.30 8999.56 14598.38 4598.62 14599.23 135
alignmvs97.56 8897.07 10099.01 5698.66 14798.37 3998.83 12498.06 25796.74 7798.00 11597.65 24490.80 15899.48 16298.37 4696.56 21099.19 143
IU-MVS99.71 1999.23 798.64 13695.28 14599.63 1898.35 4799.81 1299.83 13
TSAR-MVS + MP.98.78 1198.62 1399.24 3699.69 2498.28 4599.14 4998.66 13196.84 7199.56 2099.31 5196.34 2599.70 11998.32 4899.73 4899.73 42
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DeepPCF-MVS96.37 297.93 6698.48 2396.30 26299.00 11389.54 33697.43 29798.87 6998.16 1199.26 3699.38 3796.12 3199.64 13198.30 4999.77 3199.72 45
canonicalmvs97.67 7997.23 9398.98 5998.70 14298.38 3599.34 1898.39 19096.76 7697.67 13697.40 26492.26 11799.49 15898.28 5096.28 22299.08 161
casdiffmvs_mvgpermissive97.72 7597.48 8198.44 9598.42 16496.59 11798.92 9798.44 18096.20 9997.76 12799.20 6791.66 13599.23 18198.27 5198.41 15899.49 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SD-MVS98.64 1698.68 1198.53 8599.33 5998.36 4098.90 9998.85 7897.28 4599.72 1299.39 3296.63 2097.60 34398.17 5299.85 599.64 71
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
diffmvspermissive97.58 8697.40 8698.13 12298.32 18095.81 16498.06 24498.37 19496.20 9998.74 6998.89 11891.31 14799.25 17898.16 5398.52 15099.34 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive97.63 8297.41 8598.28 10698.33 17796.14 14298.82 12698.32 20196.38 9497.95 11799.21 6591.23 14999.23 18198.12 5498.37 15999.48 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline97.64 8197.44 8498.25 11198.35 17096.20 13899.00 7898.32 20196.33 9698.03 10999.17 7491.35 14499.16 18898.10 5598.29 16599.39 112
MP-MVS-pluss98.31 5597.92 6399.49 1299.72 1298.88 1898.43 20198.78 10094.10 19297.69 13599.42 2995.25 6499.92 3198.09 5699.80 1999.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SMA-MVScopyleft98.58 2398.25 4499.56 899.51 3999.04 1598.95 9098.80 9393.67 22499.37 3199.52 1196.52 2299.89 4798.06 5799.81 1299.76 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS98.78 1198.56 1699.45 1599.32 6298.87 1998.47 19598.81 8697.72 1798.76 6899.16 7797.05 1399.78 10198.06 5799.66 6199.69 56
MVS_111021_HR98.47 3798.34 3598.88 6699.22 8997.32 8197.91 25899.58 397.20 5398.33 9799.00 10395.99 3699.64 13198.05 5999.76 3799.69 56
VDDNet95.36 19994.53 21697.86 13998.10 20095.13 19498.85 11897.75 27990.46 32698.36 9499.39 3273.27 37099.64 13197.98 6096.58 20998.81 182
mvsmamba96.57 13596.32 13397.32 18096.60 30396.43 12699.54 797.98 26396.49 8695.20 21298.64 14690.82 15698.55 26597.97 6193.65 26296.98 255
h-mvs3396.17 15295.62 16797.81 14499.03 10994.45 22698.64 16998.75 10697.48 3298.67 7398.72 13989.76 17499.86 6297.95 6281.59 37099.11 155
hse-mvs295.71 17795.30 18296.93 20498.50 15993.53 26198.36 20598.10 24597.48 3298.67 7397.99 21289.76 17499.02 21397.95 6280.91 37498.22 217
SDMVSNet96.85 12396.42 12898.14 11999.30 6896.38 13099.21 3899.23 2095.92 11095.96 20298.76 13685.88 26299.44 16797.93 6495.59 23298.60 199
MCST-MVS98.65 1598.37 2999.48 1399.60 3198.87 1998.41 20498.68 12397.04 6398.52 8598.80 12896.78 1699.83 6997.93 6499.61 7299.74 37
MTAPA98.58 2398.29 4299.46 1499.76 298.64 2598.90 9998.74 10897.27 4998.02 11199.39 3294.81 7799.96 497.91 6699.79 2599.77 27
MVS_111021_LR98.34 5298.23 4798.67 7499.27 7896.90 10197.95 25499.58 397.14 5898.44 9199.01 10295.03 7399.62 13797.91 6699.75 4199.50 91
ACMMP_NAP98.61 1898.30 4199.55 999.62 3098.95 1798.82 12698.81 8695.80 11899.16 4499.47 2095.37 5699.92 3197.89 6899.75 4199.79 19
iter_conf0596.13 15595.79 15397.15 18898.16 19695.99 14598.88 10897.98 26395.91 11295.58 20798.46 16685.53 26998.59 26197.88 6993.75 25896.86 274
PS-MVSNAJ97.73 7497.77 6597.62 16398.68 14595.58 17097.34 30698.51 16497.29 4498.66 7797.88 22294.51 8199.90 4597.87 7099.17 12097.39 242
XVS98.70 1498.49 2199.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8699.20 6795.90 4199.89 4797.85 7199.74 4599.78 21
X-MVStestdata94.06 28192.30 30499.34 2399.70 2298.35 4199.29 2298.88 6297.40 3698.46 8643.50 39695.90 4199.89 4797.85 7199.74 4599.78 21
iter_conf_final96.42 14096.12 14097.34 17998.46 16296.55 12199.08 6198.06 25796.03 10695.63 20698.46 16687.72 22898.59 26197.84 7393.80 25796.87 271
xiu_mvs_v2_base97.66 8097.70 6897.56 16798.61 15295.46 17697.44 29598.46 17697.15 5798.65 7898.15 19994.33 8899.80 8897.84 7398.66 14497.41 240
DeepC-MVS95.98 397.88 6797.58 7298.77 6999.25 8196.93 9998.83 12498.75 10696.96 6796.89 16799.50 1590.46 16499.87 5897.84 7399.76 3799.52 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS98.74 1398.55 1799.29 2999.75 398.23 4699.26 2798.88 6297.52 2999.41 2898.78 13096.00 3599.79 9897.79 7699.59 7699.85 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CP-MVS98.57 2798.36 3099.19 4099.66 2697.86 6299.34 1898.87 6995.96 10998.60 8199.13 8296.05 3399.94 897.77 7799.86 199.77 27
SteuartSystems-ACMMP98.90 998.75 1099.36 2199.22 8998.43 3399.10 5898.87 6997.38 3999.35 3299.40 3197.78 599.87 5897.77 7799.85 599.78 21
Skip Steuart: Steuart Systems R&D Blog.
APD-MVS_3200maxsize98.53 3298.33 3999.15 4699.50 4197.92 6199.15 4798.81 8696.24 9799.20 3899.37 3895.30 6099.80 8897.73 7999.67 5999.72 45
SR-MVS-dyc-post98.54 3198.35 3299.13 4899.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.34 5899.82 7697.72 8099.65 6499.71 49
RE-MVS-def98.34 3599.49 4597.86 6299.11 5598.80 9396.49 8699.17 4199.35 4495.29 6197.72 8099.65 6499.71 49
SF-MVS98.59 2198.32 4099.41 1799.54 3598.71 2299.04 6898.81 8695.12 15399.32 3399.39 3296.22 2699.84 6797.72 8099.73 4899.67 65
LFMVS95.86 16994.98 19798.47 9198.87 12796.32 13498.84 12296.02 35993.40 23598.62 7999.20 6774.99 36399.63 13497.72 8097.20 19399.46 104
SR-MVS98.57 2798.35 3299.24 3699.53 3698.18 4999.09 5998.82 8196.58 8399.10 4699.32 4995.39 5499.82 7697.70 8499.63 6999.72 45
PHI-MVS98.34 5298.06 5799.18 4299.15 10098.12 5599.04 6899.09 3193.32 23898.83 6499.10 8696.54 2199.83 6997.70 8499.76 3799.59 79
HPM-MVScopyleft98.36 4998.10 5699.13 4899.74 797.82 6699.53 898.80 9394.63 17698.61 8098.97 10595.13 7099.77 10697.65 8699.83 1199.79 19
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPE-MVScopyleft98.92 798.67 1299.65 299.58 3299.20 998.42 20398.91 5697.58 2799.54 2299.46 2497.10 1299.94 897.64 8799.84 1099.83 13
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ETV-MVS97.96 6397.81 6498.40 10098.42 16497.27 8398.73 15098.55 15596.84 7198.38 9397.44 26195.39 5499.35 17197.62 8898.89 13198.58 203
HFP-MVS98.63 1798.40 2699.32 2899.72 1298.29 4499.23 3198.96 4596.10 10498.94 5399.17 7496.06 3299.92 3197.62 8899.78 2999.75 35
ACMMPR98.59 2198.36 3099.29 2999.74 798.15 5299.23 3198.95 4696.10 10498.93 5799.19 7295.70 4599.94 897.62 8899.79 2599.78 21
jason97.32 10397.08 9998.06 13097.45 25095.59 16997.87 26697.91 27294.79 16998.55 8398.83 12591.12 15199.23 18197.58 9199.60 7499.34 116
jason: jason.
lupinMVS97.44 9597.22 9498.12 12598.07 20195.76 16597.68 28197.76 27894.50 18298.79 6598.61 14892.34 11499.30 17597.58 9199.59 7699.31 122
HPM-MVS_fast98.38 4698.13 5399.12 5099.75 397.86 6299.44 1198.82 8194.46 18498.94 5399.20 6795.16 6899.74 11197.58 9199.85 599.77 27
ZNCC-MVS98.49 3498.20 5199.35 2299.73 1198.39 3499.19 4298.86 7595.77 11998.31 9999.10 8695.46 5199.93 2597.57 9499.81 1299.74 37
region2R98.61 1898.38 2899.29 2999.74 798.16 5199.23 3198.93 5096.15 10198.94 5399.17 7495.91 3999.94 897.55 9599.79 2599.78 21
DeepC-MVS_fast96.70 198.55 3098.34 3599.18 4299.25 8198.04 5798.50 19298.78 10097.72 1798.92 5999.28 5495.27 6299.82 7697.55 9599.77 3199.69 56
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS++copyleft98.58 2398.25 4499.55 999.50 4199.08 1198.72 15498.66 13197.51 3098.15 10098.83 12595.70 4599.92 3197.53 9799.67 5999.66 68
PC_three_145295.08 15899.60 1999.16 7797.86 298.47 27597.52 9899.72 5199.74 37
nrg03096.28 14995.72 15897.96 13696.90 28898.15 5299.39 1298.31 20395.47 13394.42 23798.35 17892.09 12498.69 25197.50 9989.05 32797.04 251
test_vis1_rt91.29 31790.65 31793.19 34497.45 25086.25 36998.57 18390.90 39493.30 24086.94 36293.59 37162.07 38499.11 19897.48 10095.58 23494.22 368
CSCG97.85 7097.74 6798.20 11699.67 2595.16 19199.22 3599.32 1193.04 25297.02 16098.92 11695.36 5799.91 3997.43 10199.64 6899.52 86
mPP-MVS98.51 3398.26 4399.25 3599.75 398.04 5799.28 2498.81 8696.24 9798.35 9699.23 6295.46 5199.94 897.42 10299.81 1299.77 27
mvs_anonymous96.70 12996.53 12697.18 18698.19 19193.78 24998.31 21398.19 22494.01 19794.47 23198.27 19092.08 12598.46 27697.39 10397.91 17499.31 122
EIA-MVS97.75 7397.58 7298.27 10798.38 16796.44 12599.01 7698.60 14195.88 11597.26 14997.53 25594.97 7499.33 17397.38 10499.20 11899.05 163
NCCC98.61 1898.35 3299.38 1899.28 7798.61 2698.45 19698.76 10497.82 1698.45 8998.93 11496.65 1999.83 6997.38 10499.41 10699.71 49
VPA-MVSNet95.75 17495.11 19197.69 15697.24 26397.27 8398.94 9399.23 2095.13 15295.51 20897.32 26785.73 26598.91 22997.33 10689.55 31996.89 268
OPU-MVS99.37 2099.24 8799.05 1499.02 7499.16 7797.81 399.37 17097.24 10799.73 4899.70 53
RRT_MVS95.98 16095.78 15496.56 23696.48 31194.22 23999.57 697.92 27095.89 11393.95 26198.70 14089.27 18698.42 28197.23 10893.02 27697.04 251
3Dnovator94.51 597.46 9196.93 10599.07 5397.78 21997.64 6999.35 1799.06 3497.02 6493.75 27299.16 7789.25 18799.92 3197.22 10999.75 4199.64 71
ACMMPcopyleft98.23 5697.95 6299.09 5299.74 797.62 7199.03 7199.41 695.98 10797.60 14399.36 4294.45 8599.93 2597.14 11098.85 13599.70 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PVSNet_Blended_VisFu97.70 7797.46 8298.44 9599.27 7895.91 15998.63 17299.16 2794.48 18397.67 13698.88 11992.80 10799.91 3997.11 11199.12 12199.50 91
mvs_tets95.41 19595.00 19596.65 22295.58 34494.42 22899.00 7898.55 15595.73 12293.21 29198.38 17583.45 31298.63 25797.09 11294.00 25196.91 265
GST-MVS98.43 4298.12 5499.34 2399.72 1298.38 3599.09 5998.82 8195.71 12398.73 7199.06 9695.27 6299.93 2597.07 11399.63 6999.72 45
9.1498.06 5799.47 4798.71 15598.82 8194.36 18699.16 4499.29 5396.05 3399.81 8197.00 11499.71 53
EPNet97.28 10496.87 10898.51 8694.98 35696.14 14298.90 9997.02 33398.28 1095.99 20099.11 8491.36 14399.89 4796.98 11599.19 11999.50 91
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HyFIR lowres test96.90 12196.49 12798.14 11999.33 5995.56 17197.38 30099.65 292.34 27797.61 14298.20 19689.29 18599.10 20296.97 11697.60 18799.77 27
3Dnovator+94.38 697.43 9696.78 11399.38 1897.83 21798.52 2899.37 1498.71 11697.09 6292.99 29999.13 8289.36 18399.89 4796.97 11699.57 8099.71 49
jajsoiax95.45 19195.03 19496.73 21695.42 35294.63 21799.14 4998.52 16295.74 12093.22 29098.36 17783.87 30898.65 25696.95 11894.04 24996.91 265
ET-MVSNet_ETH3D94.13 27492.98 29097.58 16598.22 18696.20 13897.31 30995.37 36794.53 17979.56 38297.63 24886.51 24997.53 34796.91 11990.74 30399.02 165
MVSFormer97.57 8797.49 7997.84 14098.07 20195.76 16599.47 998.40 18894.98 16198.79 6598.83 12592.34 11498.41 28996.91 11999.59 7699.34 116
test_djsdf96.00 15995.69 16496.93 20495.72 34095.49 17599.47 998.40 18894.98 16194.58 22797.86 22389.16 19098.41 28996.91 11994.12 24896.88 269
ECVR-MVScopyleft95.95 16295.71 16196.65 22299.02 11090.86 31299.03 7191.80 39096.96 6798.10 10399.26 5781.31 32199.51 15796.90 12299.04 12399.59 79
test_prior297.80 27296.12 10397.89 12498.69 14195.96 3796.89 12399.60 74
EPP-MVSNet97.46 9197.28 9197.99 13398.64 14995.38 18099.33 2198.31 20393.61 22897.19 15199.07 9594.05 9499.23 18196.89 12398.43 15799.37 114
PS-MVSNAJss96.43 13996.26 13696.92 20795.84 33895.08 19699.16 4698.50 16995.87 11693.84 26898.34 18294.51 8198.61 25896.88 12593.45 26997.06 250
PVSNet_BlendedMVS96.73 12796.60 12297.12 19199.25 8195.35 18398.26 22199.26 1594.28 18797.94 11997.46 25892.74 10899.81 8196.88 12593.32 27296.20 337
PVSNet_Blended97.38 10097.12 9698.14 11999.25 8195.35 18397.28 31199.26 1593.13 24897.94 11998.21 19592.74 10899.81 8196.88 12599.40 10999.27 129
test111195.94 16495.78 15496.41 25498.99 11790.12 32699.04 6892.45 38996.99 6698.03 10999.27 5681.40 32099.48 16296.87 12899.04 12399.63 73
Effi-MVS+97.12 11396.69 11898.39 10198.19 19196.72 11097.37 30298.43 18493.71 21797.65 13998.02 20892.20 12199.25 17896.87 12897.79 17999.19 143
CHOSEN 1792x268897.12 11396.80 11098.08 12899.30 6894.56 22498.05 24599.71 193.57 22997.09 15498.91 11788.17 21699.89 4796.87 12899.56 8699.81 17
test_yl97.22 10696.78 11398.54 8398.73 13796.60 11598.45 19698.31 20394.70 17098.02 11198.42 17090.80 15899.70 11996.81 13196.79 20399.34 116
DCV-MVSNet97.22 10696.78 11398.54 8398.73 13796.60 11598.45 19698.31 20394.70 17098.02 11198.42 17090.80 15899.70 11996.81 13196.79 20399.34 116
PGM-MVS98.49 3498.23 4799.27 3499.72 1298.08 5698.99 8199.49 595.43 13599.03 4799.32 4995.56 4899.94 896.80 13399.77 3199.78 21
test250694.44 25693.91 25396.04 27099.02 11088.99 34699.06 6379.47 40396.96 6798.36 9499.26 5777.21 35399.52 15696.78 13499.04 12399.59 79
XVG-OURS-SEG-HR96.51 13796.34 13197.02 19798.77 13593.76 25097.79 27498.50 16995.45 13496.94 16299.09 9287.87 22699.55 15296.76 13595.83 23197.74 230
MP-MVScopyleft98.33 5498.01 6099.28 3299.75 398.18 4999.22 3598.79 9896.13 10297.92 12299.23 6294.54 8099.94 896.74 13699.78 2999.73 42
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
train_agg97.97 6297.52 7899.33 2699.31 6498.50 2997.92 25698.73 11192.98 25497.74 13098.68 14296.20 2899.80 8896.59 13799.57 8099.68 61
MVSTER96.06 15795.72 15897.08 19498.23 18595.93 15798.73 15098.27 21294.86 16795.07 21498.09 20388.21 21598.54 26796.59 13793.46 26796.79 280
bld_raw_dy_0_6495.74 17595.31 18197.03 19696.35 31795.76 16599.12 5397.37 31495.97 10894.70 22598.48 16285.80 26498.49 27196.55 13993.48 26696.84 276
UGNet96.78 12696.30 13498.19 11898.24 18395.89 16198.88 10898.93 5097.39 3896.81 17197.84 22682.60 31599.90 4596.53 14099.49 9698.79 183
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
APD-MVScopyleft98.35 5198.00 6199.42 1699.51 3998.72 2198.80 13598.82 8194.52 18199.23 3799.25 6195.54 5099.80 8896.52 14199.77 3199.74 37
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPNet94.99 22094.19 23397.40 17697.16 27296.57 11898.71 15598.97 4295.67 12594.84 21998.24 19480.36 33098.67 25596.46 14287.32 34796.96 257
sss97.39 9996.98 10498.61 7798.60 15396.61 11498.22 22398.93 5093.97 20098.01 11498.48 16291.98 12799.85 6396.45 14398.15 16799.39 112
MVS_Test97.28 10497.00 10298.13 12298.33 17795.97 15198.74 14698.07 25294.27 18898.44 9198.07 20492.48 11199.26 17796.43 14498.19 16699.16 149
FIs96.51 13796.12 14097.67 15897.13 27497.54 7499.36 1599.22 2395.89 11394.03 25898.35 17891.98 12798.44 27996.40 14592.76 28197.01 253
test9_res96.39 14699.57 8099.69 56
Anonymous2024052995.10 21494.22 23197.75 15099.01 11294.26 23698.87 11398.83 8085.79 36996.64 17698.97 10578.73 33999.85 6396.27 14794.89 23799.12 154
test_fmvs293.43 29093.58 27592.95 34696.97 28283.91 37399.19 4297.24 32195.74 12095.20 21298.27 19069.65 37398.72 25096.26 14893.73 25996.24 335
PMMVS96.60 13196.33 13297.41 17497.90 21493.93 24597.35 30598.41 18692.84 26097.76 12797.45 26091.10 15399.20 18596.26 14897.91 17499.11 155
CLD-MVS95.62 18395.34 17696.46 25197.52 24493.75 25297.27 31298.46 17695.53 13094.42 23798.00 21186.21 25698.97 21796.25 15094.37 23896.66 298
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous20240521195.28 20494.49 21897.67 15899.00 11393.75 25298.70 15997.04 33090.66 32296.49 18698.80 12878.13 34599.83 6996.21 15195.36 23699.44 107
ZD-MVS99.46 4998.70 2398.79 9893.21 24398.67 7398.97 10595.70 4599.83 6996.07 15299.58 79
HQP_MVS96.14 15495.90 15096.85 21097.42 25294.60 22298.80 13598.56 15397.28 4595.34 20998.28 18787.09 24099.03 21096.07 15294.27 24096.92 260
plane_prior598.56 15399.03 21096.07 15294.27 24096.92 260
CPTT-MVS97.72 7597.32 9098.92 6399.64 2897.10 9499.12 5398.81 8692.34 27798.09 10499.08 9493.01 10599.92 3196.06 15599.77 3199.75 35
DP-MVS Recon97.86 6897.46 8299.06 5499.53 3698.35 4198.33 20898.89 5992.62 26698.05 10698.94 11395.34 5899.65 12996.04 15699.42 10599.19 143
FC-MVSNet-test96.42 14096.05 14397.53 16896.95 28397.27 8399.36 1599.23 2095.83 11793.93 26298.37 17692.00 12698.32 29896.02 15792.72 28297.00 254
Vis-MVSNetpermissive97.42 9797.11 9798.34 10398.66 14796.23 13799.22 3599.00 3996.63 8298.04 10899.21 6588.05 22199.35 17196.01 15899.21 11799.45 106
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ab-mvs96.42 14095.71 16198.55 8198.63 15096.75 10897.88 26598.74 10893.84 20796.54 18498.18 19885.34 27499.75 10995.93 15996.35 21699.15 150
WTY-MVS97.37 10296.92 10698.72 7198.86 12896.89 10398.31 21398.71 11695.26 14697.67 13698.56 15692.21 12099.78 10195.89 16096.85 20199.48 98
XVG-OURS96.55 13696.41 12996.99 19898.75 13693.76 25097.50 29498.52 16295.67 12596.83 16899.30 5288.95 20099.53 15395.88 16196.26 22397.69 233
agg_prior295.87 16299.57 8099.68 61
UniMVSNet_NR-MVSNet95.71 17795.15 18797.40 17696.84 29196.97 9798.74 14699.24 1795.16 15193.88 26597.72 23791.68 13398.31 30095.81 16387.25 34896.92 260
DU-MVS95.42 19394.76 20697.40 17696.53 30796.97 9798.66 16798.99 4195.43 13593.88 26597.69 24088.57 20698.31 30095.81 16387.25 34896.92 260
UniMVSNet (Re)95.78 17395.19 18697.58 16596.99 28197.47 7898.79 14099.18 2595.60 12793.92 26397.04 29391.68 13398.48 27295.80 16587.66 34296.79 280
cascas94.63 24093.86 25796.93 20496.91 28794.27 23596.00 36398.51 16485.55 37094.54 22896.23 33484.20 30198.87 23695.80 16596.98 20097.66 234
Effi-MVS+-dtu96.29 14796.56 12395.51 29197.89 21590.22 32598.80 13598.10 24596.57 8596.45 18996.66 31990.81 15798.91 22995.72 16797.99 17197.40 241
LPG-MVS_test95.62 18395.34 17696.47 24897.46 24793.54 25998.99 8198.54 15794.67 17494.36 24098.77 13285.39 27199.11 19895.71 16894.15 24696.76 283
LGP-MVS_train96.47 24897.46 24793.54 25998.54 15794.67 17494.36 24098.77 13285.39 27199.11 19895.71 16894.15 24696.76 283
旧先验297.57 29191.30 31098.67 7399.80 8895.70 170
LCM-MVSNet-Re95.22 20795.32 17994.91 31098.18 19387.85 36398.75 14395.66 36595.11 15488.96 35096.85 31290.26 16997.65 34195.65 17198.44 15599.22 137
anonymousdsp95.42 19394.91 20096.94 20395.10 35595.90 16099.14 4998.41 18693.75 21293.16 29297.46 25887.50 23598.41 28995.63 17294.03 25096.50 322
sd_testset96.17 15295.76 15697.42 17399.30 6894.34 23398.82 12699.08 3295.92 11095.96 20298.76 13682.83 31499.32 17495.56 17395.59 23298.60 199
CDPH-MVS97.94 6597.49 7999.28 3299.47 4798.44 3197.91 25898.67 12892.57 26998.77 6798.85 12295.93 3899.72 11395.56 17399.69 5699.68 61
CostFormer94.95 22494.73 20895.60 29097.28 26189.06 34397.53 29296.89 34289.66 34196.82 17096.72 31786.05 25998.95 22695.53 17596.13 22898.79 183
ACMM93.85 995.69 18095.38 17496.61 22997.61 23493.84 24898.91 9898.44 18095.25 14794.28 24498.47 16486.04 26199.12 19695.50 17693.95 25396.87 271
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP93.49 1095.34 20194.98 19796.43 25397.67 22993.48 26398.73 15098.44 18094.94 16692.53 31298.53 15784.50 29499.14 19395.48 17794.00 25196.66 298
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
tttt051796.07 15695.51 16997.78 14698.41 16694.84 20899.28 2494.33 37994.26 18997.64 14098.64 14684.05 30399.47 16495.34 17897.60 18799.03 164
TAMVS97.02 11696.79 11297.70 15598.06 20495.31 18598.52 18798.31 20393.95 20197.05 15998.61 14893.49 10098.52 26995.33 17997.81 17899.29 127
BP-MVS95.30 180
HQP-MVS95.72 17695.40 17096.69 22097.20 26794.25 23798.05 24598.46 17696.43 8994.45 23297.73 23586.75 24698.96 22195.30 18094.18 24496.86 274
thisisatest053096.01 15895.36 17597.97 13498.38 16795.52 17498.88 10894.19 38194.04 19497.64 14098.31 18583.82 31099.46 16595.29 18297.70 18498.93 175
WR-MVS95.15 21194.46 22197.22 18396.67 30196.45 12498.21 22498.81 8694.15 19093.16 29297.69 24087.51 23398.30 30295.29 18288.62 33396.90 267
tpmrst95.63 18295.69 16495.44 29597.54 24188.54 35296.97 33197.56 29093.50 23197.52 14596.93 30789.49 17899.16 18895.25 18496.42 21598.64 197
CDS-MVSNet96.99 11796.69 11897.90 13898.05 20595.98 14698.20 22698.33 20093.67 22496.95 16198.49 16193.54 9998.42 28195.24 18597.74 18299.31 122
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OPM-MVS95.69 18095.33 17896.76 21596.16 32694.63 21798.43 20198.39 19096.64 8195.02 21698.78 13085.15 27899.05 20695.21 18694.20 24396.60 303
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
OMC-MVS97.55 8997.34 8998.20 11699.33 5995.92 15898.28 21898.59 14495.52 13197.97 11699.10 8693.28 10399.49 15895.09 18798.88 13299.19 143
UniMVSNet_ETH3D94.24 26793.33 28496.97 20197.19 27093.38 26898.74 14698.57 15191.21 31693.81 26998.58 15372.85 37198.77 24795.05 18893.93 25498.77 187
CANet_DTU96.96 11896.55 12498.21 11498.17 19596.07 14497.98 25298.21 22097.24 5097.13 15398.93 11486.88 24599.91 3995.00 18999.37 11298.66 195
UA-Net97.96 6397.62 7098.98 5998.86 12897.47 7898.89 10399.08 3296.67 8098.72 7299.54 893.15 10499.81 8194.87 19098.83 13699.65 69
114514_t96.93 11996.27 13598.92 6399.50 4197.63 7098.85 11898.90 5784.80 37397.77 12699.11 8492.84 10699.66 12894.85 19199.77 3199.47 100
Anonymous2023121194.10 27793.26 28796.61 22999.11 10394.28 23499.01 7698.88 6286.43 36392.81 30297.57 25281.66 31998.68 25494.83 19289.02 32996.88 269
XXY-MVS95.20 20994.45 22397.46 16996.75 29696.56 11998.86 11698.65 13593.30 24093.27 28998.27 19084.85 28398.87 23694.82 19391.26 29896.96 257
MG-MVS97.81 7197.60 7198.44 9599.12 10295.97 15197.75 27698.78 10096.89 7098.46 8699.22 6493.90 9799.68 12594.81 19499.52 9299.67 65
tt080594.54 24693.85 25896.63 22697.98 21093.06 28098.77 14297.84 27593.67 22493.80 27098.04 20776.88 35698.96 22194.79 19592.86 27997.86 227
mvsany_test388.80 33788.04 33891.09 35689.78 38381.57 38197.83 27195.49 36693.81 21087.53 35993.95 36956.14 38797.43 34994.68 19683.13 36494.26 366
EI-MVSNet95.96 16195.83 15296.36 25797.93 21293.70 25698.12 23898.27 21293.70 21995.07 21499.02 9892.23 11998.54 26794.68 19693.46 26796.84 276
thisisatest051595.61 18694.89 20297.76 14998.15 19795.15 19396.77 34794.41 37792.95 25697.18 15297.43 26284.78 28599.45 16694.63 19897.73 18398.68 192
IterMVS-LS95.46 18995.21 18596.22 26598.12 19893.72 25598.32 21298.13 23893.71 21794.26 24597.31 26892.24 11898.10 31694.63 19890.12 31096.84 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
131496.25 15195.73 15797.79 14597.13 27495.55 17398.19 22998.59 14493.47 23292.03 32497.82 23091.33 14599.49 15894.62 20098.44 15598.32 214
baseline195.84 17095.12 19098.01 13298.49 16195.98 14698.73 15097.03 33195.37 14096.22 19398.19 19789.96 17299.16 18894.60 20187.48 34398.90 177
IS-MVSNet97.22 10696.88 10798.25 11198.85 13096.36 13299.19 4297.97 26595.39 13797.23 15098.99 10491.11 15298.93 22794.60 20198.59 14799.47 100
NR-MVSNet94.98 22294.16 23697.44 17196.53 30797.22 9098.74 14698.95 4694.96 16389.25 34997.69 24089.32 18498.18 31094.59 20387.40 34596.92 260
IB-MVS91.98 1793.27 29591.97 30897.19 18597.47 24693.41 26697.09 32695.99 36093.32 23892.47 31595.73 34678.06 34699.53 15394.59 20382.98 36598.62 198
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS93.96 896.82 12596.23 13898.57 7998.46 16297.00 9698.14 23598.21 22093.95 20196.72 17497.99 21291.58 13699.76 10794.51 20596.54 21198.95 173
D2MVS95.18 21095.08 19295.48 29297.10 27692.07 29098.30 21599.13 3094.02 19692.90 30096.73 31689.48 17998.73 24994.48 20693.60 26595.65 350
Baseline_NR-MVSNet94.35 26093.81 26095.96 27596.20 32294.05 24398.61 17596.67 35191.44 30393.85 26797.60 24988.57 20698.14 31394.39 20786.93 35195.68 349
AdaColmapbinary97.15 11296.70 11798.48 9099.16 9896.69 11198.01 24998.89 5994.44 18596.83 16898.68 14290.69 16199.76 10794.36 20899.29 11698.98 169
AUN-MVS94.53 24893.73 26896.92 20798.50 15993.52 26298.34 20798.10 24593.83 20995.94 20497.98 21485.59 26899.03 21094.35 20980.94 37398.22 217
1112_ss96.63 13096.00 14698.50 8798.56 15496.37 13198.18 23398.10 24592.92 25794.84 21998.43 16892.14 12299.58 14194.35 20996.51 21299.56 85
CP-MVSNet94.94 22694.30 22996.83 21196.72 29895.56 17199.11 5598.95 4693.89 20492.42 31797.90 21987.19 23998.12 31594.32 21188.21 33696.82 279
CNLPA97.45 9497.03 10198.73 7099.05 10797.44 8098.07 24398.53 15995.32 14396.80 17298.53 15793.32 10199.72 11394.31 21299.31 11599.02 165
testdata98.26 11099.20 9295.36 18198.68 12391.89 29198.60 8199.10 8694.44 8699.82 7694.27 21399.44 10399.58 83
PVSNet91.96 1896.35 14596.15 13996.96 20299.17 9492.05 29196.08 35998.68 12393.69 22097.75 12997.80 23288.86 20199.69 12494.26 21499.01 12699.15 150
miper_enhance_ethall95.10 21494.75 20796.12 26997.53 24393.73 25496.61 35398.08 25092.20 28593.89 26496.65 32192.44 11298.30 30294.21 21591.16 29996.34 331
Test_1112_low_res96.34 14695.66 16698.36 10298.56 15495.94 15497.71 27998.07 25292.10 28694.79 22397.29 26991.75 13299.56 14594.17 21696.50 21399.58 83
TranMVSNet+NR-MVSNet95.14 21294.48 21997.11 19296.45 31396.36 13299.03 7199.03 3795.04 15993.58 27597.93 21788.27 21498.03 32294.13 21786.90 35396.95 259
FA-MVS(test-final)96.41 14495.94 14897.82 14398.21 18795.20 19097.80 27297.58 28893.21 24397.36 14797.70 23889.47 18099.56 14594.12 21897.99 17198.71 190
API-MVS97.41 9897.25 9297.91 13798.70 14296.80 10598.82 12698.69 12094.53 17998.11 10298.28 18794.50 8499.57 14294.12 21899.49 9697.37 244
cl2294.68 23594.19 23396.13 26898.11 19993.60 25796.94 33398.31 20392.43 27493.32 28896.87 31186.51 24998.28 30694.10 22091.16 29996.51 320
PLCcopyleft95.07 497.20 10996.78 11398.44 9599.29 7396.31 13698.14 23598.76 10492.41 27596.39 19098.31 18594.92 7699.78 10194.06 22198.77 13999.23 135
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
XVG-ACMP-BASELINE94.54 24694.14 23895.75 28596.55 30691.65 29998.11 24098.44 18094.96 16394.22 24897.90 21979.18 33899.11 19894.05 22293.85 25596.48 325
test_fmvs387.17 34287.06 34587.50 36191.21 37975.66 38599.05 6596.61 35392.79 26288.85 35392.78 37643.72 39193.49 38493.95 22384.56 36193.34 378
F-COLMAP97.09 11596.80 11097.97 13499.45 5294.95 20498.55 18598.62 14093.02 25396.17 19598.58 15394.01 9599.81 8193.95 22398.90 13099.14 152
MDTV_nov1_ep13_2view84.26 37296.89 34190.97 31997.90 12389.89 17393.91 22599.18 148
baseline295.11 21394.52 21796.87 20996.65 30293.56 25898.27 22094.10 38393.45 23392.02 32597.43 26287.45 23799.19 18693.88 22697.41 19197.87 226
原ACMM198.65 7599.32 6296.62 11298.67 12893.27 24297.81 12598.97 10595.18 6799.83 6993.84 22799.46 10299.50 91
RPSCF94.87 22895.40 17093.26 34298.89 12482.06 38098.33 20898.06 25790.30 33196.56 18099.26 5787.09 24099.49 15893.82 22896.32 21898.24 215
PAPM_NR97.46 9197.11 9798.50 8799.50 4196.41 12998.63 17298.60 14195.18 15097.06 15898.06 20594.26 9199.57 14293.80 22998.87 13499.52 86
ACMH92.88 1694.55 24593.95 25096.34 25997.63 23393.26 27298.81 13498.49 17493.43 23489.74 34498.53 15781.91 31799.08 20493.69 23093.30 27396.70 292
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_ehance_all_eth95.01 21894.69 21095.97 27497.70 22793.31 27097.02 32998.07 25292.23 28293.51 28096.96 30391.85 13098.15 31293.68 23191.16 29996.44 328
MAR-MVS96.91 12096.40 13098.45 9398.69 14496.90 10198.66 16798.68 12392.40 27697.07 15797.96 21591.54 14099.75 10993.68 23198.92 12998.69 191
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Vis-MVSNet (Re-imp)96.87 12296.55 12497.83 14198.73 13795.46 17699.20 4098.30 20994.96 16396.60 17998.87 12090.05 17098.59 26193.67 23398.60 14699.46 104
LS3D97.16 11196.66 12198.68 7398.53 15897.19 9198.93 9598.90 5792.83 26195.99 20099.37 3892.12 12399.87 5893.67 23399.57 8098.97 170
PS-CasMVS94.67 23893.99 24896.71 21796.68 30095.26 18699.13 5299.03 3793.68 22292.33 31897.95 21685.35 27398.10 31693.59 23588.16 33896.79 280
c3_l94.79 23094.43 22595.89 27997.75 22193.12 27897.16 32398.03 26092.23 28293.46 28397.05 29291.39 14298.01 32393.58 23689.21 32596.53 314
CVMVSNet95.43 19296.04 14493.57 33697.93 21283.62 37498.12 23898.59 14495.68 12496.56 18099.02 9887.51 23397.51 34893.56 23797.44 18999.60 77
OurMVSNet-221017-094.21 26894.00 24694.85 31495.60 34389.22 34198.89 10397.43 30995.29 14492.18 32198.52 16082.86 31398.59 26193.46 23891.76 29096.74 285
eth_miper_zixun_eth94.68 23594.41 22695.47 29397.64 23291.71 29896.73 35098.07 25292.71 26493.64 27397.21 27690.54 16398.17 31193.38 23989.76 31496.54 312
OpenMVScopyleft93.04 1395.83 17195.00 19598.32 10497.18 27197.32 8199.21 3898.97 4289.96 33591.14 33299.05 9786.64 24899.92 3193.38 23999.47 9997.73 231
无先验97.58 29098.72 11391.38 30499.87 5893.36 24199.60 77
gm-plane-assit95.88 33687.47 36489.74 34096.94 30699.19 18693.32 242
WR-MVS_H95.05 21794.46 22196.81 21396.86 29095.82 16399.24 3099.24 1793.87 20692.53 31296.84 31390.37 16598.24 30893.24 24387.93 33996.38 330
tpm94.13 27493.80 26195.12 30496.50 30987.91 36297.44 29595.89 36492.62 26696.37 19196.30 33184.13 30298.30 30293.24 24391.66 29399.14 152
Fast-Effi-MVS+-dtu95.87 16895.85 15195.91 27797.74 22491.74 29798.69 16198.15 23595.56 12994.92 21797.68 24388.98 19898.79 24593.19 24597.78 18097.20 248
pmmvs593.65 28892.97 29195.68 28695.49 34792.37 28598.20 22697.28 31889.66 34192.58 31097.26 27082.14 31698.09 31893.18 24690.95 30296.58 305
TESTMET0.1,194.18 27293.69 27195.63 28896.92 28589.12 34296.91 33694.78 37493.17 24594.88 21896.45 32878.52 34098.92 22893.09 24798.50 15298.85 179
test-LLR95.10 21494.87 20395.80 28296.77 29389.70 33296.91 33695.21 36995.11 15494.83 22195.72 34887.71 22998.97 21793.06 24898.50 15298.72 188
test-mter94.08 27993.51 27995.80 28296.77 29389.70 33296.91 33695.21 36992.89 25894.83 22195.72 34877.69 34898.97 21793.06 24898.50 15298.72 188
BH-untuned95.95 16295.72 15896.65 22298.55 15692.26 28798.23 22297.79 27793.73 21594.62 22698.01 21088.97 19999.00 21693.04 25098.51 15198.68 192
EPMVS94.99 22094.48 21996.52 24397.22 26591.75 29697.23 31391.66 39194.11 19197.28 14896.81 31485.70 26698.84 23993.04 25097.28 19298.97 170
pmmvs494.69 23393.99 24896.81 21395.74 33995.94 15497.40 29897.67 28290.42 32893.37 28697.59 25089.08 19398.20 30992.97 25291.67 29296.30 334
GeoE96.58 13496.07 14298.10 12798.35 17095.89 16199.34 1898.12 23993.12 24996.09 19698.87 12089.71 17698.97 21792.95 25398.08 17099.43 109
v2v48294.69 23394.03 24296.65 22296.17 32494.79 21398.67 16598.08 25092.72 26394.00 25997.16 27887.69 23298.45 27792.91 25488.87 33196.72 288
Fast-Effi-MVS+96.28 14995.70 16398.03 13198.29 18295.97 15198.58 17898.25 21791.74 29495.29 21197.23 27491.03 15599.15 19192.90 25597.96 17398.97 170
V4294.78 23194.14 23896.70 21996.33 31995.22 18998.97 8498.09 24992.32 27994.31 24397.06 29088.39 21298.55 26592.90 25588.87 33196.34 331
DP-MVS96.59 13295.93 14998.57 7999.34 5796.19 14098.70 15998.39 19089.45 34594.52 22999.35 4491.85 13099.85 6392.89 25798.88 13299.68 61
TDRefinement91.06 32189.68 32695.21 30185.35 39391.49 30298.51 19197.07 32891.47 30188.83 35497.84 22677.31 35299.09 20392.79 25877.98 38295.04 360
ACMH+92.99 1494.30 26393.77 26495.88 28097.81 21892.04 29298.71 15598.37 19493.99 19990.60 33898.47 16480.86 32799.05 20692.75 25992.40 28496.55 311
cl____94.51 25094.01 24596.02 27197.58 23693.40 26797.05 32797.96 26791.73 29692.76 30497.08 28689.06 19498.13 31492.61 26090.29 30896.52 317
DIV-MVS_self_test94.52 24994.03 24295.99 27297.57 24093.38 26897.05 32797.94 26891.74 29492.81 30297.10 28089.12 19198.07 32092.60 26190.30 30796.53 314
DPM-MVS97.55 8996.99 10399.23 3899.04 10898.55 2797.17 32198.35 19794.85 16897.93 12198.58 15395.07 7299.71 11892.60 26199.34 11399.43 109
test_post196.68 35130.43 40087.85 22798.69 25192.59 263
SCA95.46 18995.13 18896.46 25197.67 22991.29 30597.33 30797.60 28794.68 17396.92 16597.10 28083.97 30598.89 23392.59 26398.32 16499.20 139
v14894.29 26493.76 26695.91 27796.10 32792.93 28198.58 17897.97 26592.59 26893.47 28296.95 30588.53 21098.32 29892.56 26587.06 35096.49 323
PEN-MVS94.42 25793.73 26896.49 24596.28 32094.84 20899.17 4599.00 3993.51 23092.23 32097.83 22986.10 25897.90 33192.55 26686.92 35296.74 285
Patchmatch-RL test91.49 31590.85 31693.41 33891.37 37884.40 37192.81 38495.93 36391.87 29287.25 36094.87 35988.99 19596.53 36692.54 26782.00 36799.30 125
miper_lstm_enhance94.33 26194.07 24195.11 30597.75 22190.97 30997.22 31498.03 26091.67 29892.76 30496.97 30190.03 17197.78 33892.51 26889.64 31696.56 309
IterMVS94.09 27893.85 25894.80 31797.99 20890.35 32397.18 31998.12 23993.68 22292.46 31697.34 26584.05 30397.41 35092.51 26891.33 29596.62 301
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT94.11 27693.87 25694.85 31497.98 21090.56 32097.18 31998.11 24293.75 21292.58 31097.48 25783.97 30597.41 35092.48 27091.30 29696.58 305
tpm294.19 27093.76 26695.46 29497.23 26489.04 34497.31 30996.85 34687.08 36096.21 19496.79 31583.75 31198.74 24892.43 27196.23 22598.59 201
PVSNet_088.72 1991.28 31890.03 32495.00 30897.99 20887.29 36694.84 37598.50 16992.06 28789.86 34395.19 35579.81 33499.39 16992.27 27269.79 38998.33 213
gg-mvs-nofinetune92.21 31190.58 31997.13 19096.75 29695.09 19595.85 36489.40 39685.43 37194.50 23081.98 38980.80 32898.40 29592.16 27398.33 16297.88 225
pm-mvs193.94 28493.06 28996.59 23296.49 31095.16 19198.95 9098.03 26092.32 27991.08 33397.84 22684.54 29398.41 28992.16 27386.13 35996.19 338
K. test v392.55 30791.91 31094.48 32695.64 34289.24 34099.07 6294.88 37394.04 19486.78 36397.59 25077.64 35197.64 34292.08 27589.43 32296.57 307
GBi-Net94.49 25193.80 26196.56 23698.21 18795.00 19898.82 12698.18 22792.46 27094.09 25497.07 28781.16 32297.95 32792.08 27592.14 28596.72 288
test194.49 25193.80 26196.56 23698.21 18795.00 19898.82 12698.18 22792.46 27094.09 25497.07 28781.16 32297.95 32792.08 27592.14 28596.72 288
FMVSNet394.97 22394.26 23097.11 19298.18 19396.62 11298.56 18498.26 21693.67 22494.09 25497.10 28084.25 29798.01 32392.08 27592.14 28596.70 292
PatchmatchNetpermissive95.71 17795.52 16896.29 26397.58 23690.72 31696.84 34597.52 29894.06 19397.08 15596.96 30389.24 18898.90 23292.03 27998.37 15999.26 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
QAPM96.29 14795.40 17098.96 6197.85 21697.60 7299.23 3198.93 5089.76 33993.11 29699.02 9889.11 19299.93 2591.99 28099.62 7199.34 116
新几何199.16 4599.34 5798.01 5998.69 12090.06 33498.13 10198.95 11294.60 7999.89 4791.97 28199.47 9999.59 79
MDTV_nov1_ep1395.40 17097.48 24588.34 35696.85 34497.29 31793.74 21497.48 14697.26 27089.18 18999.05 20691.92 28297.43 190
EU-MVSNet93.66 28694.14 23892.25 35295.96 33483.38 37698.52 18798.12 23994.69 17292.61 30998.13 20187.36 23896.39 36891.82 28390.00 31296.98 255
GA-MVS94.81 22994.03 24297.14 18997.15 27393.86 24796.76 34897.58 28894.00 19894.76 22497.04 29380.91 32598.48 27291.79 28496.25 22499.09 157
PatchMatch-RL96.59 13296.03 14598.27 10799.31 6496.51 12297.91 25899.06 3493.72 21696.92 16598.06 20588.50 21199.65 12991.77 28599.00 12798.66 195
v114494.59 24393.92 25196.60 23196.21 32194.78 21498.59 17698.14 23791.86 29394.21 24997.02 29687.97 22298.41 28991.72 28689.57 31796.61 302
v894.47 25493.77 26496.57 23596.36 31694.83 21099.05 6598.19 22491.92 29093.16 29296.97 30188.82 20398.48 27291.69 28787.79 34096.39 329
testdata299.89 4791.65 288
BH-w/o95.38 19695.08 19296.26 26498.34 17591.79 29497.70 28097.43 30992.87 25994.24 24797.22 27588.66 20498.84 23991.55 28997.70 18498.16 220
LF4IMVS93.14 30192.79 29494.20 33195.88 33688.67 35097.66 28397.07 32893.81 21091.71 32797.65 24477.96 34798.81 24391.47 29091.92 28995.12 357
JIA-IIPM93.35 29292.49 30095.92 27696.48 31190.65 31895.01 37196.96 33685.93 36796.08 19787.33 38687.70 23198.78 24691.35 29195.58 23498.34 212
test_f86.07 34685.39 34788.10 36089.28 38575.57 38697.73 27896.33 35789.41 34785.35 37291.56 38243.31 39395.53 37591.32 29284.23 36393.21 379
FE-MVS95.62 18394.90 20197.78 14698.37 16994.92 20597.17 32197.38 31390.95 32097.73 13297.70 23885.32 27699.63 13491.18 29398.33 16298.79 183
FMVSNet294.47 25493.61 27497.04 19598.21 18796.43 12698.79 14098.27 21292.46 27093.50 28197.09 28481.16 32298.00 32591.09 29491.93 28896.70 292
v14419294.39 25993.70 27096.48 24796.06 32994.35 23298.58 17898.16 23491.45 30294.33 24297.02 29687.50 23598.45 27791.08 29589.11 32696.63 300
tpmvs94.60 24194.36 22895.33 29997.46 24788.60 35196.88 34297.68 28191.29 31193.80 27096.42 32988.58 20599.24 18091.06 29696.04 22998.17 219
LTVRE_ROB92.95 1594.60 24193.90 25496.68 22197.41 25594.42 22898.52 18798.59 14491.69 29791.21 33198.35 17884.87 28299.04 20991.06 29693.44 27096.60 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PAPR96.84 12496.24 13798.65 7598.72 14196.92 10097.36 30498.57 15193.33 23796.67 17597.57 25294.30 8999.56 14591.05 29898.59 14799.47 100
dmvs_re94.48 25394.18 23595.37 29797.68 22890.11 32798.54 18697.08 32694.56 17794.42 23797.24 27384.25 29797.76 33991.02 29992.83 28098.24 215
SixPastTwentyTwo93.34 29392.86 29294.75 31895.67 34189.41 33998.75 14396.67 35193.89 20490.15 34298.25 19380.87 32698.27 30790.90 30090.64 30496.57 307
COLMAP_ROBcopyleft93.27 1295.33 20294.87 20396.71 21799.29 7393.24 27498.58 17898.11 24289.92 33693.57 27699.10 8686.37 25499.79 9890.78 30198.10 16997.09 249
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
pmmvs691.77 31390.63 31895.17 30394.69 36391.24 30698.67 16597.92 27086.14 36589.62 34597.56 25475.79 36098.34 29690.75 30284.56 36195.94 344
BH-RMVSNet95.92 16695.32 17997.69 15698.32 18094.64 21698.19 22997.45 30794.56 17796.03 19898.61 14885.02 27999.12 19690.68 30399.06 12299.30 125
DTE-MVSNet93.98 28393.26 28796.14 26796.06 32994.39 23099.20 4098.86 7593.06 25191.78 32697.81 23185.87 26397.58 34590.53 30486.17 35796.46 327
v1094.29 26493.55 27796.51 24496.39 31594.80 21298.99 8198.19 22491.35 30793.02 29896.99 29988.09 21998.41 28990.50 30588.41 33596.33 333
ambc89.49 35886.66 39075.78 38492.66 38596.72 34886.55 36692.50 37946.01 38997.90 33190.32 30682.09 36694.80 364
lessismore_v094.45 32994.93 35888.44 35591.03 39386.77 36497.64 24676.23 35898.42 28190.31 30785.64 36096.51 320
v119294.32 26293.58 27596.53 24296.10 32794.45 22698.50 19298.17 23291.54 30094.19 25097.06 29086.95 24498.43 28090.14 30889.57 31796.70 292
MVS94.67 23893.54 27898.08 12896.88 28996.56 11998.19 22998.50 16978.05 38392.69 30798.02 20891.07 15499.63 13490.09 30998.36 16198.04 222
ADS-MVSNet294.58 24494.40 22795.11 30598.00 20688.74 34996.04 36097.30 31690.15 33296.47 18796.64 32287.89 22497.56 34690.08 31097.06 19599.02 165
ADS-MVSNet95.00 21994.45 22396.63 22698.00 20691.91 29396.04 36097.74 28090.15 33296.47 18796.64 32287.89 22498.96 22190.08 31097.06 19599.02 165
MSDG95.93 16595.30 18297.83 14198.90 12395.36 18196.83 34698.37 19491.32 30994.43 23698.73 13890.27 16899.60 13990.05 31298.82 13798.52 205
v192192094.20 26993.47 28196.40 25695.98 33294.08 24298.52 18798.15 23591.33 30894.25 24697.20 27786.41 25398.42 28190.04 31389.39 32396.69 297
dp94.15 27393.90 25494.90 31197.31 26086.82 36896.97 33197.19 32391.22 31596.02 19996.61 32485.51 27099.02 21390.00 31494.30 23998.85 179
CMPMVSbinary66.06 2189.70 33189.67 32789.78 35793.19 37276.56 38397.00 33098.35 19780.97 38081.57 37997.75 23474.75 36498.61 25889.85 31593.63 26394.17 369
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TR-MVS94.94 22694.20 23297.17 18797.75 22194.14 24197.59 28997.02 33392.28 28195.75 20597.64 24683.88 30798.96 22189.77 31696.15 22798.40 209
MS-PatchMatch93.84 28593.63 27394.46 32896.18 32389.45 33797.76 27598.27 21292.23 28292.13 32297.49 25679.50 33598.69 25189.75 31799.38 11195.25 354
ITE_SJBPF95.44 29597.42 25291.32 30497.50 30095.09 15793.59 27498.35 17881.70 31898.88 23589.71 31893.39 27196.12 339
MVP-Stereo94.28 26693.92 25195.35 29894.95 35792.60 28497.97 25397.65 28391.61 29990.68 33797.09 28486.32 25598.42 28189.70 31999.34 11395.02 361
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AllTest95.24 20694.65 21196.99 19899.25 8193.21 27598.59 17698.18 22791.36 30593.52 27898.77 13284.67 28999.72 11389.70 31997.87 17698.02 223
TestCases96.99 19899.25 8193.21 27598.18 22791.36 30593.52 27898.77 13284.67 28999.72 11389.70 31997.87 17698.02 223
GG-mvs-BLEND96.59 23296.34 31894.98 20196.51 35688.58 39793.10 29794.34 36780.34 33298.05 32189.53 32296.99 19796.74 285
USDC93.33 29492.71 29595.21 30196.83 29290.83 31496.91 33697.50 30093.84 20790.72 33698.14 20077.69 34898.82 24289.51 32393.21 27595.97 343
v7n94.19 27093.43 28296.47 24895.90 33594.38 23199.26 2798.34 19991.99 28892.76 30497.13 27988.31 21398.52 26989.48 32487.70 34196.52 317
PM-MVS87.77 34086.55 34691.40 35591.03 38183.36 37796.92 33495.18 37191.28 31286.48 36793.42 37253.27 38896.74 36089.43 32581.97 36894.11 370
FMVSNet193.19 29992.07 30696.56 23697.54 24195.00 19898.82 12698.18 22790.38 32992.27 31997.07 28773.68 36997.95 32789.36 32691.30 29696.72 288
tpm cat193.36 29192.80 29395.07 30797.58 23687.97 36196.76 34897.86 27482.17 37993.53 27796.04 34086.13 25799.13 19489.24 32795.87 23098.10 221
UnsupCasMVSNet_eth90.99 32289.92 32594.19 33294.08 36689.83 32997.13 32598.67 12893.69 22085.83 36996.19 33775.15 36296.74 36089.14 32879.41 37896.00 342
v124094.06 28193.29 28696.34 25996.03 33193.90 24698.44 19998.17 23291.18 31794.13 25397.01 29886.05 25998.42 28189.13 32989.50 32196.70 292
test_vis3_rt79.22 34977.40 35584.67 36686.44 39174.85 38897.66 28381.43 40184.98 37267.12 39281.91 39028.09 40197.60 34388.96 33080.04 37681.55 390
tmp_tt68.90 35966.97 36174.68 37750.78 40359.95 40187.13 38983.47 40038.80 39762.21 39396.23 33464.70 38276.91 39988.91 33130.49 39787.19 388
pmmvs-eth3d90.36 32789.05 33294.32 33091.10 38092.12 28897.63 28896.95 33788.86 35284.91 37493.13 37578.32 34296.74 36088.70 33281.81 36994.09 371
WAC-MVS90.94 31088.66 333
thres600view795.49 18794.77 20597.67 15898.98 11895.02 19798.85 11896.90 34095.38 13896.63 17796.90 30884.29 29599.59 14088.65 33496.33 21798.40 209
testing393.19 29992.48 30195.30 30098.07 20192.27 28698.64 16997.17 32493.94 20393.98 26097.04 29367.97 37796.01 37288.40 33597.14 19497.63 235
myMVS_eth3d92.73 30592.01 30794.89 31297.39 25690.94 31097.91 25897.46 30393.16 24693.42 28495.37 35368.09 37696.12 37088.34 33696.99 19797.60 236
thres100view90095.38 19694.70 20997.41 17498.98 11894.92 20598.87 11396.90 34095.38 13896.61 17896.88 30984.29 29599.56 14588.11 33796.29 21997.76 228
tfpn200view995.32 20394.62 21297.43 17298.94 12194.98 20198.68 16296.93 33895.33 14196.55 18296.53 32584.23 29999.56 14588.11 33796.29 21997.76 228
thres40095.38 19694.62 21297.65 16298.94 12194.98 20198.68 16296.93 33895.33 14196.55 18296.53 32584.23 29999.56 14588.11 33796.29 21998.40 209
our_test_393.65 28893.30 28594.69 31995.45 35089.68 33496.91 33697.65 28391.97 28991.66 32896.88 30989.67 17797.93 33088.02 34091.49 29496.48 325
thres20095.25 20594.57 21497.28 18198.81 13394.92 20598.20 22697.11 32595.24 14996.54 18496.22 33684.58 29299.53 15387.93 34196.50 21397.39 242
EG-PatchMatch MVS91.13 32090.12 32394.17 33394.73 36289.00 34598.13 23797.81 27689.22 34985.32 37396.46 32767.71 37898.42 28187.89 34293.82 25695.08 359
CR-MVSNet94.76 23294.15 23796.59 23297.00 27993.43 26494.96 37297.56 29092.46 27096.93 16396.24 33288.15 21797.88 33587.38 34396.65 20798.46 207
Patchmtry93.22 29792.35 30395.84 28196.77 29393.09 27994.66 37997.56 29087.37 35992.90 30096.24 33288.15 21797.90 33187.37 34490.10 31196.53 314
test0.0.03 194.08 27993.51 27995.80 28295.53 34692.89 28297.38 30095.97 36195.11 15492.51 31496.66 31987.71 22996.94 35787.03 34593.67 26097.57 238
TinyColmap92.31 31091.53 31194.65 32196.92 28589.75 33096.92 33496.68 35090.45 32789.62 34597.85 22576.06 35998.81 24386.74 34692.51 28395.41 352
MIMVSNet93.26 29692.21 30596.41 25497.73 22593.13 27795.65 36797.03 33191.27 31394.04 25796.06 33975.33 36197.19 35386.56 34796.23 22598.92 176
TransMVSNet (Re)92.67 30691.51 31296.15 26696.58 30594.65 21598.90 9996.73 34790.86 32189.46 34897.86 22385.62 26798.09 31886.45 34881.12 37195.71 348
DSMNet-mixed92.52 30992.58 29992.33 35094.15 36582.65 37898.30 21594.26 38089.08 35092.65 30895.73 34685.01 28095.76 37486.24 34997.76 18198.59 201
testgi93.06 30292.45 30294.88 31396.43 31489.90 32898.75 14397.54 29695.60 12791.63 32997.91 21874.46 36697.02 35586.10 35093.67 26097.72 232
YYNet190.70 32589.39 32894.62 32294.79 36190.65 31897.20 31697.46 30387.54 35872.54 38895.74 34486.51 24996.66 36486.00 35186.76 35596.54 312
MDA-MVSNet_test_wron90.71 32489.38 32994.68 32094.83 35990.78 31597.19 31897.46 30387.60 35772.41 38995.72 34886.51 24996.71 36385.92 35286.80 35496.56 309
UnsupCasMVSNet_bld87.17 34285.12 34993.31 34191.94 37688.77 34894.92 37498.30 20984.30 37582.30 37790.04 38363.96 38397.25 35285.85 35374.47 38893.93 375
EPNet_dtu95.21 20894.95 19995.99 27296.17 32490.45 32198.16 23497.27 31996.77 7593.14 29598.33 18390.34 16698.42 28185.57 35498.81 13899.09 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FMVSNet591.81 31290.92 31594.49 32597.21 26692.09 28998.00 25197.55 29589.31 34890.86 33595.61 35174.48 36595.32 37885.57 35489.70 31596.07 341
tfpnnormal93.66 28692.70 29696.55 24196.94 28495.94 15498.97 8499.19 2491.04 31891.38 33097.34 26584.94 28198.61 25885.45 35689.02 32995.11 358
Patchmatch-test94.42 25793.68 27296.63 22697.60 23591.76 29594.83 37697.49 30289.45 34594.14 25297.10 28088.99 19598.83 24185.37 35798.13 16899.29 127
ppachtmachnet_test93.22 29792.63 29794.97 30995.45 35090.84 31396.88 34297.88 27390.60 32392.08 32397.26 27088.08 22097.86 33685.12 35890.33 30696.22 336
KD-MVS_2432*160089.61 33387.96 34094.54 32394.06 36791.59 30095.59 36897.63 28589.87 33788.95 35194.38 36578.28 34396.82 35884.83 35968.05 39095.21 355
miper_refine_blended89.61 33387.96 34094.54 32394.06 36791.59 30095.59 36897.63 28589.87 33788.95 35194.38 36578.28 34396.82 35884.83 35968.05 39095.21 355
PCF-MVS93.45 1194.68 23593.43 28298.42 9998.62 15196.77 10795.48 37098.20 22284.63 37493.34 28798.32 18488.55 20999.81 8184.80 36198.96 12898.68 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_method79.03 35078.17 35281.63 37386.06 39254.40 40482.75 39296.89 34239.54 39680.98 38195.57 35258.37 38694.73 38184.74 36278.61 37995.75 347
KD-MVS_self_test90.38 32689.38 32993.40 33992.85 37488.94 34797.95 25497.94 26890.35 33090.25 34093.96 36879.82 33395.94 37384.62 36376.69 38495.33 353
Anonymous2024052191.18 31990.44 32093.42 33793.70 37088.47 35498.94 9397.56 29088.46 35489.56 34795.08 35877.15 35596.97 35683.92 36489.55 31994.82 363
MDA-MVSNet-bldmvs89.97 33088.35 33694.83 31695.21 35491.34 30397.64 28597.51 29988.36 35571.17 39096.13 33879.22 33796.63 36583.65 36586.27 35696.52 317
MVS-HIRNet89.46 33588.40 33592.64 34797.58 23682.15 37994.16 38393.05 38875.73 38590.90 33482.52 38879.42 33698.33 29783.53 36698.68 14097.43 239
APD_test188.22 33988.01 33988.86 35995.98 33274.66 38997.21 31596.44 35583.96 37686.66 36597.90 21960.95 38597.84 33782.73 36790.23 30994.09 371
new-patchmatchnet88.50 33887.45 34391.67 35490.31 38285.89 37097.16 32397.33 31589.47 34483.63 37692.77 37776.38 35795.06 38082.70 36877.29 38394.06 373
PAPM94.95 22494.00 24697.78 14697.04 27895.65 16896.03 36298.25 21791.23 31494.19 25097.80 23291.27 14898.86 23882.61 36997.61 18698.84 181
LCM-MVSNet78.70 35376.24 35886.08 36377.26 39971.99 39194.34 38196.72 34861.62 39176.53 38389.33 38433.91 39992.78 38881.85 37074.60 38793.46 376
new_pmnet90.06 32989.00 33393.22 34394.18 36488.32 35796.42 35896.89 34286.19 36485.67 37093.62 37077.18 35497.10 35481.61 37189.29 32494.23 367
pmmvs386.67 34584.86 35092.11 35388.16 38787.19 36796.63 35294.75 37579.88 38187.22 36192.75 37866.56 38195.20 37981.24 37276.56 38593.96 374
CL-MVSNet_self_test90.11 32889.14 33193.02 34591.86 37788.23 35996.51 35698.07 25290.49 32490.49 33994.41 36384.75 28695.34 37780.79 37374.95 38695.50 351
N_pmnet87.12 34487.77 34285.17 36595.46 34961.92 39997.37 30270.66 40485.83 36888.73 35596.04 34085.33 27597.76 33980.02 37490.48 30595.84 345
TAPA-MVS93.98 795.35 20094.56 21597.74 15199.13 10194.83 21098.33 20898.64 13686.62 36196.29 19298.61 14894.00 9699.29 17680.00 37599.41 10699.09 157
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DeepMVS_CXcopyleft86.78 36297.09 27772.30 39095.17 37275.92 38484.34 37595.19 35570.58 37295.35 37679.98 37689.04 32892.68 380
Anonymous2023120691.66 31491.10 31493.33 34094.02 36987.35 36598.58 17897.26 32090.48 32590.16 34196.31 33083.83 30996.53 36679.36 37789.90 31396.12 339
test20.0390.89 32390.38 32192.43 34893.48 37188.14 36098.33 20897.56 29093.40 23587.96 35796.71 31880.69 32994.13 38379.15 37886.17 35795.01 362
PatchT93.06 30291.97 30896.35 25896.69 29992.67 28394.48 38097.08 32686.62 36197.08 15592.23 38087.94 22397.90 33178.89 37996.69 20598.49 206
MIMVSNet189.67 33288.28 33793.82 33492.81 37591.08 30898.01 24997.45 30787.95 35687.90 35895.87 34367.63 37994.56 38278.73 38088.18 33795.83 346
test_040291.32 31690.27 32294.48 32696.60 30391.12 30798.50 19297.22 32286.10 36688.30 35696.98 30077.65 35097.99 32678.13 38192.94 27894.34 365
OpenMVS_ROBcopyleft86.42 2089.00 33687.43 34493.69 33593.08 37389.42 33897.91 25896.89 34278.58 38285.86 36894.69 36069.48 37498.29 30577.13 38293.29 27493.36 377
Syy-MVS92.55 30792.61 29892.38 34997.39 25683.41 37597.91 25897.46 30393.16 24693.42 28495.37 35384.75 28696.12 37077.00 38396.99 19797.60 236
RPMNet92.81 30491.34 31397.24 18297.00 27993.43 26494.96 37298.80 9382.27 37896.93 16392.12 38186.98 24399.82 7676.32 38496.65 20798.46 207
PMMVS277.95 35575.44 35985.46 36482.54 39474.95 38794.23 38293.08 38772.80 38674.68 38487.38 38536.36 39691.56 38973.95 38563.94 39289.87 384
EGC-MVSNET75.22 35769.54 36092.28 35194.81 36089.58 33597.64 28596.50 3541.82 4015.57 40295.74 34468.21 37596.26 36973.80 38691.71 29190.99 381
testf179.02 35177.70 35382.99 37088.10 38866.90 39594.67 37793.11 38571.08 38774.02 38593.41 37334.15 39793.25 38572.25 38778.50 38088.82 385
APD_test279.02 35177.70 35382.99 37088.10 38866.90 39594.67 37793.11 38571.08 38774.02 38593.41 37334.15 39793.25 38572.25 38778.50 38088.82 385
dmvs_testset87.64 34188.93 33483.79 36795.25 35363.36 39897.20 31691.17 39293.07 25085.64 37195.98 34285.30 27791.52 39069.42 38987.33 34696.49 323
FPMVS77.62 35677.14 35679.05 37579.25 39760.97 40095.79 36595.94 36265.96 38967.93 39194.40 36437.73 39588.88 39468.83 39088.46 33487.29 387
Gipumacopyleft78.40 35476.75 35783.38 36995.54 34580.43 38279.42 39397.40 31164.67 39073.46 38780.82 39145.65 39093.14 38766.32 39187.43 34476.56 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high69.08 35865.37 36280.22 37465.99 40171.96 39290.91 38890.09 39582.62 37749.93 39778.39 39229.36 40081.75 39562.49 39238.52 39686.95 389
PMVScopyleft61.03 2365.95 36063.57 36473.09 37857.90 40251.22 40585.05 39193.93 38454.45 39244.32 39883.57 38713.22 40289.15 39358.68 39381.00 37278.91 392
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WB-MVS84.86 34785.33 34883.46 36889.48 38469.56 39398.19 22996.42 35689.55 34381.79 37894.67 36184.80 28490.12 39152.44 39480.64 37590.69 382
MVEpermissive62.14 2263.28 36359.38 36674.99 37674.33 40065.47 39785.55 39080.50 40252.02 39451.10 39675.00 39510.91 40580.50 39651.60 39553.40 39378.99 391
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
SSC-MVS84.27 34884.71 35182.96 37289.19 38668.83 39498.08 24296.30 35889.04 35181.37 38094.47 36284.60 29189.89 39249.80 39679.52 37790.15 383
E-PMN64.94 36164.25 36367.02 37982.28 39559.36 40291.83 38785.63 39852.69 39360.22 39477.28 39341.06 39480.12 39746.15 39741.14 39461.57 395
EMVS64.07 36263.26 36566.53 38081.73 39658.81 40391.85 38684.75 39951.93 39559.09 39575.13 39443.32 39279.09 39842.03 39839.47 39561.69 394
wuyk23d30.17 36430.18 36830.16 38178.61 39843.29 40666.79 39414.21 40517.31 39814.82 40111.93 40111.55 40441.43 40037.08 39919.30 3985.76 398
test12320.95 36723.72 37012.64 38213.54 4058.19 40796.55 3556.13 4077.48 40016.74 40037.98 39812.97 4036.05 40116.69 4005.43 40023.68 396
testmvs21.48 36624.95 36911.09 38314.89 4046.47 40896.56 3549.87 4067.55 39917.93 39939.02 3979.43 4065.90 40216.56 40112.72 39920.91 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k23.98 36531.98 3670.00 3840.00 4060.00 4090.00 39598.59 1440.00 4020.00 40398.61 14890.60 1620.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.88 36910.50 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40294.51 810.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.20 36810.94 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40398.43 1680.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
FOURS199.82 198.66 2499.69 198.95 4697.46 3499.39 30
test_one_060199.66 2699.25 298.86 7597.55 2899.20 3899.47 2097.57 6
eth-test20.00 406
eth-test0.00 406
test_241102_ONE99.71 1999.24 598.87 6997.62 2499.73 1099.39 3297.53 799.74 111
save fliter99.46 4998.38 3598.21 22498.71 11697.95 13
test072699.72 1299.25 299.06 6398.88 6297.62 2499.56 2099.50 1597.42 9
GSMVS99.20 139
test_part299.63 2999.18 1099.27 35
sam_mvs189.45 18199.20 139
sam_mvs88.99 195
MTGPAbinary98.74 108
test_post31.83 39988.83 20298.91 229
patchmatchnet-post95.10 35789.42 18298.89 233
MTMP98.89 10394.14 382
TEST999.31 6498.50 2997.92 25698.73 11192.63 26597.74 13098.68 14296.20 2899.80 88
test_899.29 7398.44 3197.89 26498.72 11392.98 25497.70 13498.66 14596.20 2899.80 88
agg_prior99.30 6898.38 3598.72 11397.57 14499.81 81
test_prior498.01 5997.86 267
test_prior99.19 4099.31 6498.22 4798.84 7999.70 11999.65 69
新几何297.64 285
旧先验199.29 7397.48 7698.70 11999.09 9295.56 4899.47 9999.61 75
原ACMM297.67 282
test22299.23 8897.17 9297.40 29898.66 13188.68 35398.05 10698.96 11094.14 9399.53 9199.61 75
segment_acmp96.85 14
testdata197.32 30896.34 95
test1299.18 4299.16 9898.19 4898.53 15998.07 10595.13 7099.72 11399.56 8699.63 73
plane_prior797.42 25294.63 217
plane_prior697.35 25994.61 22087.09 240
plane_prior498.28 187
plane_prior394.61 22097.02 6495.34 209
plane_prior298.80 13597.28 45
plane_prior197.37 258
plane_prior94.60 22298.44 19996.74 7794.22 242
n20.00 408
nn0.00 408
door-mid94.37 378
test1198.66 131
door94.64 376
HQP5-MVS94.25 237
HQP-NCC97.20 26798.05 24596.43 8994.45 232
ACMP_Plane97.20 26798.05 24596.43 8994.45 232
HQP4-MVS94.45 23298.96 22196.87 271
HQP3-MVS98.46 17694.18 244
HQP2-MVS86.75 246
NP-MVS97.28 26194.51 22597.73 235
ACMMP++_ref92.97 277
ACMMP++93.61 264
Test By Simon94.64 78