This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MM95.10 1194.91 1395.68 596.09 10188.34 996.68 3394.37 23695.08 194.68 3697.72 2482.94 8399.64 197.85 198.76 2899.06 7
MVS_030494.60 1894.38 2595.23 1195.41 13287.49 1696.53 3892.75 27993.82 293.07 6797.84 2283.66 7499.59 897.61 298.76 2898.61 22
test_fmvsmconf_n94.60 1894.81 1693.98 5594.62 17384.96 7496.15 5697.35 2289.37 5696.03 2398.11 586.36 4199.01 6397.45 397.83 7497.96 75
test_fmvsmconf0.1_n94.20 3494.31 2893.88 5992.46 25784.80 7796.18 5396.82 6889.29 5995.68 2898.11 585.10 5698.99 7097.38 497.75 7897.86 82
test_fmvsmconf0.01_n93.19 6593.02 6493.71 6789.25 35084.42 9396.06 6696.29 10789.06 6694.68 3698.13 379.22 13098.98 7497.22 597.24 8597.74 89
fmvsm_l_conf0.5_n94.29 2894.46 2193.79 6595.28 13685.43 6895.68 8696.43 9786.56 13996.84 1497.81 2387.56 3298.77 9297.14 696.82 9797.16 114
test_fmvsm_n_192094.71 1795.11 1093.50 7195.79 11584.62 8096.15 5697.64 289.85 4297.19 897.89 1986.28 4398.71 9797.11 798.08 6697.17 110
fmvsm_l_conf0.5_n_a94.20 3494.40 2393.60 6995.29 13584.98 7395.61 9396.28 11086.31 14596.75 1697.86 2187.40 3398.74 9597.07 897.02 9097.07 116
fmvsm_s_conf0.5_n93.76 4694.06 4192.86 9695.62 12483.17 12496.14 5896.12 12588.13 10195.82 2698.04 1683.43 7598.48 11496.97 996.23 10896.92 129
fmvsm_s_conf0.1_n93.46 5393.66 5392.85 9793.75 21883.13 12696.02 6995.74 15687.68 11595.89 2598.17 282.78 8698.46 11896.71 1096.17 10996.98 125
fmvsm_s_conf0.5_n_a93.57 5093.76 4993.00 8895.02 14983.67 10896.19 5196.10 12787.27 12295.98 2498.05 1383.07 8298.45 12296.68 1195.51 11796.88 132
test_fmvsmvis_n_192093.44 5593.55 5593.10 8193.67 22284.26 9595.83 7996.14 12289.00 7292.43 8897.50 2883.37 7898.72 9696.61 1297.44 8296.32 151
fmvsm_s_conf0.1_n_a93.19 6593.26 5892.97 9092.49 25583.62 11196.02 6995.72 15986.78 13496.04 2298.19 182.30 9498.43 12796.38 1395.42 12396.86 133
MSC_two_6792asdad96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
No_MVS96.52 197.78 5190.86 196.85 6399.61 496.03 1499.06 999.07 5
APDe-MVScopyleft95.46 595.64 594.91 2198.26 2886.29 4697.46 697.40 2089.03 6996.20 1998.10 789.39 1699.34 3495.88 1699.03 1199.10 4
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SED-MVS95.91 296.28 294.80 3398.77 585.99 5297.13 1497.44 1590.31 2897.71 198.07 992.31 499.58 1095.66 1799.13 398.84 14
test_241102_TWO97.44 1590.31 2897.62 598.07 991.46 1099.58 1095.66 1799.12 698.98 10
DVP-MVS++95.98 196.36 194.82 3197.78 5186.00 5098.29 197.49 690.75 1997.62 598.06 1192.59 299.61 495.64 1999.02 1298.86 11
test_0728_THIRD90.75 1997.04 1198.05 1392.09 699.55 1695.64 1999.13 399.13 2
DVP-MVScopyleft95.67 396.02 394.64 3998.78 385.93 5597.09 1696.73 7990.27 3197.04 1198.05 1391.47 899.55 1695.62 2199.08 798.45 36
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND95.01 1798.79 286.43 3997.09 1697.49 699.61 495.62 2199.08 798.99 9
IU-MVS98.77 586.00 5096.84 6581.26 27097.26 795.50 2399.13 399.03 8
CNVR-MVS95.40 795.37 795.50 898.11 3688.51 795.29 10796.96 5292.09 695.32 3197.08 4989.49 1599.33 3795.10 2498.85 1998.66 20
MSP-MVS95.42 695.56 694.98 1998.49 1786.52 3696.91 2597.47 1191.73 1096.10 2096.69 6689.90 1299.30 4094.70 2598.04 6799.13 2
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SMA-MVScopyleft95.20 895.07 1195.59 698.14 3588.48 896.26 4897.28 3185.90 15797.67 398.10 788.41 2099.56 1294.66 2699.19 198.71 19
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DPE-MVScopyleft95.57 495.67 495.25 1098.36 2587.28 1895.56 9697.51 589.13 6597.14 997.91 1891.64 799.62 294.61 2799.17 298.86 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.94.85 1494.94 1294.58 4298.25 2986.33 4296.11 6196.62 8888.14 10096.10 2096.96 5589.09 1898.94 7894.48 2898.68 3898.48 30
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS94.96 1395.33 893.88 5997.25 6986.69 2896.19 5197.11 4390.42 2796.95 1397.27 3889.53 1496.91 25494.38 2998.85 1998.03 72
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MP-MVS-pluss94.21 3294.00 4294.85 2598.17 3386.65 3194.82 13797.17 3986.26 14792.83 7397.87 2085.57 5099.56 1294.37 3098.92 1798.34 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SteuartSystems-ACMMP95.20 895.32 994.85 2596.99 7286.33 4297.33 797.30 2991.38 1295.39 3097.46 3088.98 1999.40 3094.12 3198.89 1898.82 16
Skip Steuart: Steuart Systems R&D Blog.
patch_mono-293.74 4794.32 2692.01 13497.54 5778.37 25993.40 21997.19 3588.02 10394.99 3597.21 4288.35 2198.44 12494.07 3298.09 6499.23 1
DeepPCF-MVS89.96 194.20 3494.77 1792.49 11696.52 8780.00 22194.00 19597.08 4490.05 3595.65 2997.29 3789.66 1398.97 7593.95 3398.71 3398.50 27
ACMMP_NAP94.74 1694.56 1995.28 998.02 4187.70 1195.68 8697.34 2388.28 9395.30 3297.67 2685.90 4799.54 2093.91 3498.95 1598.60 23
SF-MVS94.97 1294.90 1595.20 1297.84 4787.76 1096.65 3597.48 1087.76 11395.71 2797.70 2588.28 2399.35 3393.89 3598.78 2598.48 30
EC-MVSNet93.44 5593.71 5192.63 10995.21 14182.43 15197.27 996.71 8290.57 2692.88 7095.80 10683.16 7998.16 14693.68 3698.14 6197.31 103
CS-MVS94.12 3794.44 2293.17 7896.55 8483.08 13197.63 396.95 5491.71 1193.50 5996.21 8685.61 4898.24 14093.64 3798.17 5998.19 60
dcpmvs_293.49 5294.19 3691.38 16897.69 5476.78 29194.25 17496.29 10788.33 9094.46 3896.88 5888.07 2598.64 10093.62 3898.09 6498.73 17
MCST-MVS94.45 2294.20 3595.19 1398.46 1987.50 1595.00 12697.12 4187.13 12492.51 8596.30 8389.24 1799.34 3493.46 3998.62 4598.73 17
MTAPA94.42 2694.22 3395.00 1898.42 2186.95 2194.36 17196.97 5091.07 1393.14 6497.56 2784.30 6799.56 1293.43 4098.75 3098.47 33
test_vis1_n_192089.39 14589.84 11688.04 29092.97 24572.64 33994.71 14596.03 13586.18 15191.94 10096.56 7861.63 32195.74 31593.42 4195.11 13095.74 180
HPM-MVS++copyleft95.14 1094.91 1395.83 498.25 2989.65 495.92 7596.96 5291.75 994.02 4796.83 6188.12 2499.55 1693.41 4298.94 1698.28 50
SR-MVS94.23 3194.17 3794.43 4798.21 3285.78 6396.40 4196.90 5988.20 9894.33 4097.40 3384.75 6499.03 5893.35 4397.99 6898.48 30
9.1494.47 2097.79 4996.08 6297.44 1586.13 15595.10 3397.40 3388.34 2299.22 4493.25 4498.70 35
test_vis1_n86.56 24486.49 21186.78 32288.51 35672.69 33694.68 14693.78 26079.55 29090.70 12095.31 12148.75 38093.28 35793.15 4593.99 14994.38 239
CANet93.54 5193.20 6194.55 4395.65 12285.73 6594.94 12996.69 8491.89 890.69 12195.88 10281.99 10499.54 2093.14 4697.95 7098.39 39
CS-MVS-test94.02 3994.29 2993.24 7596.69 7883.24 12197.49 596.92 5792.14 592.90 6995.77 10885.02 5998.33 13593.03 4798.62 4598.13 64
test_fmvs1_n87.03 22987.04 19086.97 31589.74 34671.86 34694.55 15394.43 23278.47 30791.95 9995.50 11651.16 37593.81 34993.02 4894.56 14095.26 196
test_fmvs187.34 21287.56 17686.68 32390.59 32871.80 34894.01 19394.04 25078.30 31191.97 9795.22 12556.28 35693.71 35192.89 4994.71 13494.52 227
NCCC94.81 1594.69 1895.17 1497.83 4887.46 1795.66 8996.93 5692.34 493.94 4896.58 7687.74 2799.44 2992.83 5098.40 5398.62 21
SR-MVS-dyc-post93.82 4493.82 4593.82 6297.92 4384.57 8296.28 4696.76 7587.46 11893.75 5197.43 3184.24 6899.01 6392.73 5197.80 7597.88 80
RE-MVS-def93.68 5297.92 4384.57 8296.28 4696.76 7587.46 11893.75 5197.43 3182.94 8392.73 5197.80 7597.88 80
TSAR-MVS + GP.93.66 4993.41 5694.41 4996.59 8286.78 2694.40 16493.93 25289.77 4794.21 4195.59 11587.35 3498.61 10592.72 5396.15 11097.83 85
APD-MVS_3200maxsize93.78 4593.77 4893.80 6497.92 4384.19 9696.30 4496.87 6286.96 12893.92 4997.47 2983.88 7298.96 7792.71 5497.87 7298.26 56
PC_three_145282.47 23797.09 1097.07 5192.72 198.04 16392.70 5599.02 1298.86 11
PHI-MVS93.89 4393.65 5494.62 4196.84 7586.43 3996.69 3297.49 685.15 17793.56 5796.28 8485.60 4999.31 3992.45 5698.79 2398.12 66
HPM-MVScopyleft94.02 3993.88 4494.43 4798.39 2385.78 6397.25 1097.07 4586.90 13292.62 8296.80 6584.85 6399.17 4792.43 5798.65 4398.33 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
alignmvs93.08 6792.50 7594.81 3295.62 12487.61 1495.99 7196.07 13089.77 4794.12 4394.87 13980.56 11398.66 9892.42 5893.10 17098.15 63
sasdasda93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4296.41 9990.00 3794.09 4494.60 15582.33 9298.62 10392.40 5992.86 17498.27 52
ZNCC-MVS94.47 2194.28 3095.03 1698.52 1586.96 2096.85 2897.32 2788.24 9493.15 6397.04 5286.17 4499.62 292.40 5998.81 2298.52 26
canonicalmvs93.27 6192.75 6994.85 2595.70 12087.66 1296.33 4296.41 9990.00 3794.09 4494.60 15582.33 9298.62 10392.40 5992.86 17498.27 52
HFP-MVS94.52 2094.40 2394.86 2498.61 1086.81 2596.94 2097.34 2388.63 8293.65 5397.21 4286.10 4599.49 2692.35 6298.77 2798.30 47
ACMMPR94.43 2494.28 3094.91 2198.63 986.69 2896.94 2097.32 2788.63 8293.53 5897.26 4085.04 5899.54 2092.35 6298.78 2598.50 27
MGCFI-Net93.03 6892.63 7294.23 5395.62 12485.92 5796.08 6296.33 10589.86 4193.89 5094.66 15282.11 9998.50 11292.33 6492.82 17798.27 52
OPU-MVS96.21 398.00 4290.85 397.13 1497.08 4992.59 298.94 7892.25 6598.99 1498.84 14
region2R94.43 2494.27 3294.92 2098.65 886.67 3096.92 2497.23 3488.60 8493.58 5597.27 3885.22 5499.54 2092.21 6698.74 3198.56 25
DeepC-MVS88.79 393.31 6092.99 6594.26 5296.07 10385.83 6194.89 13296.99 4889.02 7189.56 13597.37 3582.51 8999.38 3192.20 6798.30 5697.57 96
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++93.72 4894.08 3892.65 10897.31 6583.43 11695.79 8197.33 2590.03 3693.58 5596.96 5584.87 6297.76 17892.19 6898.66 4196.76 136
CP-MVS94.34 2794.21 3494.74 3798.39 2386.64 3297.60 497.24 3288.53 8692.73 7997.23 4185.20 5599.32 3892.15 6998.83 2198.25 57
train_agg93.44 5593.08 6294.52 4497.53 5886.49 3794.07 18796.78 7281.86 25492.77 7696.20 8787.63 2999.12 5192.14 7098.69 3697.94 76
diffmvspermissive91.37 9391.23 8991.77 15493.09 23780.27 20892.36 25995.52 17587.03 12791.40 11494.93 13680.08 11797.44 20892.13 7194.56 14097.61 93
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
h-mvs3390.80 10190.15 10792.75 10296.01 10582.66 14795.43 9995.53 17489.80 4393.08 6595.64 11375.77 16699.00 6892.07 7278.05 35396.60 142
hse-mvs289.88 12889.34 12791.51 16294.83 16381.12 18793.94 19893.91 25589.80 4393.08 6593.60 19675.77 16697.66 18592.07 7277.07 36095.74 180
casdiffmvs_mvgpermissive92.96 7092.83 6893.35 7294.59 17483.40 11895.00 12696.34 10490.30 3092.05 9496.05 9583.43 7598.15 14792.07 7295.67 11498.49 29
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVScopyleft94.25 2994.07 3994.77 3598.47 1886.31 4496.71 3196.98 4989.04 6891.98 9697.19 4485.43 5299.56 1292.06 7598.79 2398.44 37
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZD-MVS98.15 3486.62 3397.07 4583.63 20994.19 4296.91 5787.57 3199.26 4291.99 7698.44 52
EI-MVSNet-Vis-set93.01 6992.92 6693.29 7395.01 15083.51 11594.48 15695.77 15390.87 1592.52 8496.67 6884.50 6699.00 6891.99 7694.44 14597.36 102
XVS94.45 2294.32 2694.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7197.16 4785.02 5999.49 2691.99 7698.56 4998.47 33
X-MVStestdata88.31 17786.13 22394.85 2598.54 1386.60 3496.93 2297.19 3590.66 2492.85 7123.41 40585.02 5999.49 2691.99 7698.56 4998.47 33
test9_res91.91 8098.71 3398.07 68
MVS_111021_HR93.45 5493.31 5793.84 6196.99 7284.84 7593.24 23197.24 3288.76 7791.60 11095.85 10386.07 4698.66 9891.91 8098.16 6098.03 72
APD-MVScopyleft94.24 3094.07 3994.75 3698.06 3986.90 2395.88 7696.94 5585.68 16395.05 3497.18 4587.31 3599.07 5391.90 8298.61 4798.28 50
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_LR92.47 7792.29 7892.98 8995.99 10984.43 9193.08 23696.09 12888.20 9891.12 11795.72 11181.33 10997.76 17891.74 8397.37 8496.75 137
ETV-MVS92.74 7392.66 7192.97 9095.20 14284.04 10095.07 12296.51 9490.73 2292.96 6891.19 27584.06 6998.34 13391.72 8496.54 10296.54 147
test_cas_vis1_n_192088.83 16588.85 14388.78 26991.15 30576.72 29293.85 20394.93 21083.23 22392.81 7496.00 9661.17 33094.45 33691.67 8594.84 13295.17 199
EI-MVSNet-UG-set92.74 7392.62 7393.12 8094.86 16183.20 12394.40 16495.74 15690.71 2392.05 9496.60 7584.00 7098.99 7091.55 8693.63 15597.17 110
test_prior294.12 18187.67 11692.63 8196.39 8286.62 3891.50 8798.67 40
mPP-MVS93.99 4193.78 4794.63 4098.50 1685.90 6096.87 2696.91 5888.70 8091.83 10597.17 4683.96 7199.55 1691.44 8898.64 4498.43 38
GST-MVS94.21 3293.97 4394.90 2398.41 2286.82 2496.54 3797.19 3588.24 9493.26 6096.83 6185.48 5199.59 891.43 8998.40 5398.30 47
DELS-MVS93.43 5893.25 5993.97 5695.42 13185.04 7293.06 23897.13 4090.74 2191.84 10395.09 13386.32 4299.21 4591.22 9098.45 5197.65 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
nrg03091.08 9990.39 10193.17 7893.07 23886.91 2296.41 3996.26 11288.30 9288.37 15594.85 14282.19 9897.64 18991.09 9182.95 29894.96 207
baseline92.39 7992.29 7892.69 10794.46 18381.77 16694.14 18096.27 11189.22 6191.88 10196.00 9682.35 9197.99 16791.05 9295.27 12898.30 47
mvsmamba89.96 12389.50 12191.33 17192.90 24881.82 16496.68 3392.37 28889.03 6987.00 17994.85 14273.05 20997.65 18691.03 9388.63 23794.51 229
xiu_mvs_v1_base_debu90.64 10890.05 11092.40 12093.97 20984.46 8893.32 22295.46 17785.17 17492.25 8994.03 17370.59 23798.57 10990.97 9494.67 13594.18 244
xiu_mvs_v1_base90.64 10890.05 11092.40 12093.97 20984.46 8893.32 22295.46 17785.17 17492.25 8994.03 17370.59 23798.57 10990.97 9494.67 13594.18 244
xiu_mvs_v1_base_debi90.64 10890.05 11092.40 12093.97 20984.46 8893.32 22295.46 17785.17 17492.25 8994.03 17370.59 23798.57 10990.97 9494.67 13594.18 244
VDD-MVS90.74 10389.92 11593.20 7796.27 9383.02 13395.73 8393.86 25688.42 8992.53 8396.84 6062.09 31898.64 10090.95 9792.62 17997.93 78
casdiffmvspermissive92.51 7692.43 7692.74 10394.41 18781.98 16194.54 15496.23 11689.57 5191.96 9896.17 9182.58 8898.01 16590.95 9795.45 12298.23 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS_fast89.43 294.04 3893.79 4694.80 3397.48 6186.78 2695.65 9196.89 6089.40 5592.81 7496.97 5485.37 5399.24 4390.87 9998.69 3698.38 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPcopyleft93.24 6392.88 6794.30 5198.09 3885.33 7096.86 2797.45 1488.33 9090.15 13097.03 5381.44 10799.51 2490.85 10095.74 11398.04 71
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PGM-MVS93.96 4293.72 5094.68 3898.43 2086.22 4795.30 10597.78 187.45 12093.26 6097.33 3684.62 6599.51 2490.75 10198.57 4898.32 46
iter_conf0588.85 16188.08 16491.17 17794.27 19481.64 16895.18 11592.15 29786.23 14987.28 17694.07 17263.89 30997.55 19590.63 10289.00 23394.32 241
test_fmvs283.98 28984.03 27483.83 35187.16 37067.53 37593.93 19992.89 27477.62 31786.89 18693.53 19747.18 38492.02 36990.54 10386.51 26991.93 331
agg_prior290.54 10398.68 3898.27 52
HPM-MVS_fast93.40 5993.22 6093.94 5898.36 2584.83 7697.15 1396.80 7185.77 16092.47 8797.13 4882.38 9099.07 5390.51 10598.40 5397.92 79
iter_conf05_1189.88 12889.04 13592.41 11995.12 14681.63 16992.87 24592.45 28686.21 15092.48 8693.95 18159.05 34498.60 10790.50 10698.72 3296.99 123
bld_raw_dy_0_6488.86 16087.75 17292.21 13195.12 14681.19 18595.56 9691.29 32385.30 17389.10 14294.38 16159.04 34598.44 12490.50 10689.43 22396.99 123
lupinMVS90.92 10090.21 10493.03 8693.86 21283.88 10392.81 24793.86 25679.84 28691.76 10694.29 16677.92 14698.04 16390.48 10897.11 8697.17 110
jason90.80 10190.10 10892.90 9493.04 24183.53 11493.08 23694.15 24580.22 28091.41 11394.91 13776.87 15397.93 17290.28 10996.90 9397.24 106
jason: jason.
CSCG93.23 6493.05 6393.76 6698.04 4084.07 9896.22 5097.37 2184.15 19790.05 13195.66 11287.77 2699.15 5089.91 11098.27 5798.07 68
CPTT-MVS91.99 8191.80 8292.55 11398.24 3181.98 16196.76 3096.49 9581.89 25390.24 12696.44 8178.59 13898.61 10589.68 11197.85 7397.06 117
MVSFormer91.68 8991.30 8792.80 9993.86 21283.88 10395.96 7395.90 14484.66 19191.76 10694.91 13777.92 14697.30 22489.64 11297.11 8697.24 106
test_djsdf89.03 15688.64 14590.21 21890.74 32479.28 24295.96 7395.90 14484.66 19185.33 23692.94 21774.02 19597.30 22489.64 11288.53 23994.05 254
EIA-MVS91.95 8291.94 8091.98 13895.16 14380.01 22095.36 10096.73 7988.44 8789.34 13992.16 24183.82 7398.45 12289.35 11497.06 8897.48 99
RRT_MVS89.09 15288.62 14890.49 20592.85 24979.65 23096.41 3994.41 23488.22 9685.50 22194.77 14669.36 25597.31 22389.33 11586.73 26894.51 229
Effi-MVS+91.59 9091.11 9193.01 8794.35 19283.39 11994.60 15095.10 20087.10 12590.57 12293.10 21381.43 10898.07 16189.29 11694.48 14397.59 95
ET-MVSNet_ETH3D87.51 20585.91 23592.32 12593.70 22183.93 10192.33 26290.94 33384.16 19672.09 37492.52 23069.90 24695.85 30889.20 11788.36 24597.17 110
PS-MVSNAJ91.18 9790.92 9591.96 14095.26 13982.60 15092.09 27195.70 16086.27 14691.84 10392.46 23179.70 12398.99 7089.08 11895.86 11294.29 242
xiu_mvs_v2_base91.13 9890.89 9791.86 14894.97 15382.42 15292.24 26595.64 16786.11 15691.74 10893.14 21179.67 12698.89 8189.06 11995.46 12194.28 243
SDMVSNet90.19 11689.61 11991.93 14296.00 10683.09 13092.89 24395.98 13688.73 7886.85 18795.20 12872.09 22197.08 24288.90 12089.85 21695.63 185
VNet92.24 8091.91 8193.24 7596.59 8283.43 11694.84 13696.44 9689.19 6394.08 4695.90 10177.85 14998.17 14588.90 12093.38 16498.13 64
PS-MVSNAJss89.97 12289.62 11891.02 18691.90 27580.85 19595.26 11095.98 13686.26 14786.21 20394.29 16679.70 12397.65 18688.87 12288.10 24794.57 224
XVG-OURS-SEG-HR89.95 12489.45 12291.47 16594.00 20781.21 18491.87 27596.06 13285.78 15988.55 15195.73 11074.67 18597.27 22888.71 12389.64 22195.91 171
jajsoiax88.24 17987.50 17790.48 20790.89 31880.14 21295.31 10395.65 16684.97 18184.24 26494.02 17665.31 29997.42 21088.56 12488.52 24093.89 258
mvs_tets88.06 18587.28 18490.38 21490.94 31479.88 22495.22 11295.66 16485.10 17884.21 26593.94 18263.53 31097.40 21788.50 12588.40 24493.87 261
VDDNet89.56 13688.49 15392.76 10195.07 14882.09 15896.30 4493.19 26981.05 27591.88 10196.86 5961.16 33198.33 13588.43 12692.49 18397.84 84
HQP_MVS90.60 11190.19 10591.82 15194.70 16982.73 14395.85 7796.22 11790.81 1786.91 18394.86 14074.23 18998.12 14888.15 12789.99 21094.63 219
plane_prior596.22 11798.12 14888.15 12789.99 21094.63 219
EPNet91.79 8491.02 9494.10 5490.10 33885.25 7196.03 6892.05 30092.83 387.39 17595.78 10779.39 12899.01 6388.13 12997.48 8198.05 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvs377.67 34477.16 34179.22 36479.52 39461.14 39092.34 26191.64 31373.98 35378.86 33586.59 35827.38 39887.03 38988.12 13075.97 36489.50 364
OPM-MVS90.12 11789.56 12091.82 15193.14 23583.90 10294.16 17995.74 15688.96 7387.86 16295.43 11972.48 21797.91 17388.10 13190.18 20993.65 277
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVSTER88.84 16288.29 15990.51 20492.95 24680.44 20593.73 20795.01 20384.66 19187.15 17793.12 21272.79 21397.21 23587.86 13287.36 26193.87 261
3Dnovator+87.14 492.42 7891.37 8695.55 795.63 12388.73 697.07 1896.77 7490.84 1684.02 26796.62 7475.95 16599.34 3487.77 13397.68 7998.59 24
LPG-MVS_test89.45 14088.90 14091.12 17894.47 18181.49 17495.30 10596.14 12286.73 13685.45 22595.16 13069.89 24798.10 15087.70 13489.23 22993.77 271
LGP-MVS_train91.12 17894.47 18181.49 17496.14 12286.73 13685.45 22595.16 13069.89 24798.10 15087.70 13489.23 22993.77 271
MVS_Test91.31 9491.11 9191.93 14294.37 18880.14 21293.46 21895.80 15186.46 14291.35 11593.77 19282.21 9798.09 15887.57 13694.95 13197.55 98
PVSNet_Blended_VisFu91.38 9290.91 9692.80 9996.39 9083.17 12494.87 13496.66 8583.29 22089.27 14094.46 16080.29 11599.17 4787.57 13695.37 12496.05 168
CDPH-MVS92.83 7192.30 7794.44 4597.79 4986.11 4994.06 18996.66 8580.09 28392.77 7696.63 7386.62 3899.04 5787.40 13898.66 4198.17 62
XVG-OURS89.40 14488.70 14491.52 16194.06 20181.46 17691.27 29196.07 13086.14 15388.89 14795.77 10868.73 26897.26 23087.39 13989.96 21295.83 176
EPP-MVSNet91.70 8891.56 8592.13 13395.88 11280.50 20497.33 795.25 19286.15 15289.76 13495.60 11483.42 7798.32 13787.37 14093.25 16797.56 97
VPA-MVSNet89.62 13388.96 13691.60 15993.86 21282.89 13895.46 9897.33 2587.91 10688.43 15493.31 20374.17 19297.40 21787.32 14182.86 30394.52 227
LFMVS90.08 11889.13 13292.95 9296.71 7782.32 15696.08 6289.91 35386.79 13392.15 9396.81 6362.60 31698.34 13387.18 14293.90 15198.19 60
anonymousdsp87.84 18887.09 18790.12 22389.13 35180.54 20394.67 14795.55 17182.05 24583.82 27192.12 24471.47 22697.15 23787.15 14387.80 25692.67 311
CLD-MVS89.47 13988.90 14091.18 17694.22 19682.07 15992.13 26996.09 12887.90 10785.37 23492.45 23274.38 18797.56 19487.15 14390.43 20593.93 257
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BP-MVS87.11 145
HQP-MVS89.80 13089.28 13091.34 17094.17 19781.56 17094.39 16696.04 13388.81 7485.43 22893.97 18073.83 19997.96 16987.11 14589.77 21994.50 232
ACMP84.23 889.01 15888.35 15590.99 18994.73 16681.27 18095.07 12295.89 14686.48 14083.67 27594.30 16569.33 25697.99 16787.10 14788.55 23893.72 275
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
旧先验293.36 22071.25 37494.37 3997.13 24086.74 148
3Dnovator86.66 591.73 8790.82 9894.44 4594.59 17486.37 4197.18 1297.02 4789.20 6284.31 26396.66 6973.74 20199.17 4786.74 14897.96 6997.79 87
PVSNet_BlendedMVS89.98 12189.70 11790.82 19496.12 9781.25 18193.92 20096.83 6683.49 21489.10 14292.26 23981.04 11198.85 8686.72 15087.86 25392.35 323
PVSNet_Blended90.73 10490.32 10391.98 13896.12 9781.25 18192.55 25496.83 6682.04 24789.10 14292.56 22981.04 11198.85 8686.72 15095.91 11195.84 175
mvs_anonymous89.37 14689.32 12889.51 25393.47 22774.22 32291.65 28294.83 21882.91 23085.45 22593.79 19081.23 11096.36 28786.47 15294.09 14897.94 76
test111189.10 15088.64 14590.48 20795.53 12974.97 31396.08 6284.89 38188.13 10190.16 12996.65 7063.29 31298.10 15086.14 15396.90 9398.39 39
AUN-MVS87.78 19186.54 20891.48 16494.82 16481.05 18893.91 20293.93 25283.00 22786.93 18193.53 19769.50 25397.67 18386.14 15377.12 35995.73 182
test_yl90.69 10590.02 11392.71 10495.72 11882.41 15494.11 18295.12 19885.63 16491.49 11194.70 14874.75 18198.42 12886.13 15592.53 18197.31 103
DCV-MVSNet90.69 10590.02 11392.71 10495.72 11882.41 15494.11 18295.12 19885.63 16491.49 11194.70 14874.75 18198.42 12886.13 15592.53 18197.31 103
test250687.21 22186.28 21890.02 22995.62 12473.64 32796.25 4971.38 40587.89 10990.45 12396.65 7055.29 36298.09 15886.03 15796.94 9198.33 43
mvsany_test185.42 26685.30 25385.77 33387.95 36775.41 31087.61 35780.97 39176.82 32588.68 14995.83 10477.44 15090.82 37985.90 15886.51 26991.08 352
ECVR-MVScopyleft89.09 15288.53 14990.77 19695.62 12475.89 30496.16 5484.22 38387.89 10990.20 12796.65 7063.19 31498.10 15085.90 15896.94 9198.33 43
OMC-MVS91.23 9590.62 10093.08 8396.27 9384.07 9893.52 21595.93 14086.95 12989.51 13696.13 9378.50 14098.35 13285.84 16092.90 17396.83 135
ACMM84.12 989.14 14988.48 15491.12 17894.65 17281.22 18395.31 10396.12 12585.31 17285.92 20894.34 16270.19 24598.06 16285.65 16188.86 23594.08 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DPM-MVS92.58 7591.74 8395.08 1596.19 9589.31 592.66 25096.56 9383.44 21591.68 10995.04 13486.60 4098.99 7085.60 16297.92 7196.93 128
Effi-MVS+-dtu88.65 16888.35 15589.54 25093.33 23176.39 29894.47 15994.36 23787.70 11485.43 22889.56 32073.45 20497.26 23085.57 16391.28 19294.97 204
tt080586.92 23185.74 24390.48 20792.22 26279.98 22295.63 9294.88 21483.83 20584.74 24692.80 22357.61 35197.67 18385.48 16484.42 28393.79 266
FIs90.51 11290.35 10290.99 18993.99 20880.98 19095.73 8397.54 489.15 6486.72 19094.68 15081.83 10697.24 23285.18 16588.31 24694.76 217
MG-MVS91.77 8591.70 8492.00 13797.08 7180.03 21993.60 21395.18 19687.85 11190.89 11996.47 8082.06 10298.36 13085.07 16697.04 8997.62 92
CANet_DTU90.26 11589.41 12592.81 9893.46 22883.01 13493.48 21694.47 23189.43 5487.76 16794.23 17070.54 24199.03 5884.97 16796.39 10696.38 150
UniMVSNet_NR-MVSNet89.92 12689.29 12991.81 15393.39 23083.72 10694.43 16297.12 4189.80 4386.46 19493.32 20283.16 7997.23 23384.92 16881.02 32794.49 234
DU-MVS89.34 14788.50 15191.85 15093.04 24183.72 10694.47 15996.59 9089.50 5286.46 19493.29 20577.25 15197.23 23384.92 16881.02 32794.59 222
cascas86.43 25184.98 25990.80 19592.10 26880.92 19390.24 31295.91 14373.10 36283.57 27988.39 33765.15 30097.46 20484.90 17091.43 19094.03 255
UniMVSNet (Re)89.80 13089.07 13392.01 13493.60 22484.52 8594.78 14097.47 1189.26 6086.44 19792.32 23682.10 10097.39 22084.81 17180.84 33194.12 248
Vis-MVSNetpermissive91.75 8691.23 8993.29 7395.32 13483.78 10596.14 5895.98 13689.89 3990.45 12396.58 7675.09 17798.31 13884.75 17296.90 9397.78 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v2v48287.84 18887.06 18890.17 21990.99 31079.23 24594.00 19595.13 19784.87 18385.53 21892.07 25074.45 18697.45 20584.71 17381.75 31593.85 264
DP-MVS Recon91.95 8291.28 8893.96 5798.33 2785.92 5794.66 14896.66 8582.69 23590.03 13295.82 10582.30 9499.03 5884.57 17496.48 10596.91 130
test_vis1_rt77.96 34376.46 34382.48 35785.89 37771.74 34990.25 31078.89 39571.03 37671.30 37881.35 38442.49 39091.05 37884.55 17582.37 30684.65 382
UA-Net92.83 7192.54 7493.68 6896.10 10084.71 7995.66 8996.39 10191.92 793.22 6296.49 7983.16 7998.87 8284.47 17695.47 12097.45 101
V4287.68 19386.86 19390.15 22190.58 32980.14 21294.24 17695.28 19183.66 20885.67 21391.33 27074.73 18397.41 21584.43 17781.83 31392.89 306
FC-MVSNet-test90.27 11490.18 10690.53 20193.71 21979.85 22695.77 8297.59 389.31 5886.27 20194.67 15181.93 10597.01 24884.26 17888.09 24994.71 218
cl2286.78 23585.98 23189.18 26092.34 26077.62 28190.84 30194.13 24781.33 26883.97 26990.15 30673.96 19696.60 26984.19 17982.94 29993.33 287
miper_enhance_ethall86.90 23286.18 22189.06 26391.66 28677.58 28290.22 31494.82 21979.16 29584.48 25289.10 32579.19 13196.66 26284.06 18082.94 29992.94 304
VPNet88.20 18087.47 17990.39 21293.56 22579.46 23394.04 19095.54 17388.67 8186.96 18094.58 15869.33 25697.15 23784.05 18180.53 33694.56 225
FA-MVS(test-final)89.66 13288.91 13991.93 14294.57 17780.27 20891.36 28794.74 22484.87 18389.82 13392.61 22874.72 18498.47 11783.97 18293.53 15897.04 119
UGNet89.95 12488.95 13792.95 9294.51 18083.31 12095.70 8595.23 19389.37 5687.58 16993.94 18264.00 30698.78 9183.92 18396.31 10796.74 138
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS-LS88.36 17687.91 16989.70 24493.80 21578.29 26293.73 20795.08 20285.73 16184.75 24591.90 25579.88 11996.92 25383.83 18482.51 30493.89 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth87.22 22086.62 20589.02 26592.13 26677.40 28490.91 30094.81 22081.28 26984.32 26190.08 30979.26 12996.62 26483.81 18582.94 29993.04 301
EI-MVSNet89.10 15088.86 14289.80 24091.84 27778.30 26193.70 21095.01 20385.73 16187.15 17795.28 12279.87 12097.21 23583.81 18587.36 26193.88 260
c3_l87.14 22586.50 21089.04 26492.20 26377.26 28591.22 29494.70 22682.01 24884.34 26090.43 29878.81 13496.61 26783.70 18781.09 32493.25 291
Anonymous2024052988.09 18386.59 20692.58 11296.53 8681.92 16395.99 7195.84 14974.11 35289.06 14595.21 12761.44 32498.81 8983.67 18887.47 25897.01 121
v114487.61 20186.79 19790.06 22691.01 30979.34 23893.95 19795.42 18583.36 21985.66 21491.31 27374.98 17997.42 21083.37 18982.06 30993.42 286
thisisatest053088.67 16787.61 17591.86 14894.87 16080.07 21594.63 14989.90 35484.00 20088.46 15393.78 19166.88 28398.46 11883.30 19092.65 17897.06 117
tttt051788.61 16987.78 17191.11 18194.96 15477.81 27495.35 10189.69 35785.09 17988.05 16094.59 15766.93 28198.48 11483.27 19192.13 18697.03 120
testdata90.49 20596.40 8977.89 27195.37 18872.51 36793.63 5496.69 6682.08 10197.65 18683.08 19297.39 8395.94 170
LCM-MVSNet-Re88.30 17888.32 15888.27 28394.71 16872.41 34493.15 23290.98 33187.77 11279.25 33491.96 25378.35 14295.75 31483.04 19395.62 11596.65 141
IS-MVSNet91.43 9191.09 9392.46 11795.87 11481.38 17996.95 1993.69 26289.72 4989.50 13795.98 9878.57 13997.77 17783.02 19496.50 10498.22 59
UniMVSNet_ETH3D87.53 20486.37 21391.00 18892.44 25878.96 24794.74 14295.61 16884.07 19985.36 23594.52 15959.78 33997.34 22282.93 19587.88 25296.71 139
XVG-ACMP-BASELINE86.00 25584.84 26489.45 25491.20 30078.00 26791.70 28095.55 17185.05 18082.97 28892.25 24054.49 36597.48 20182.93 19587.45 26092.89 306
v14419287.19 22386.35 21489.74 24190.64 32778.24 26393.92 20095.43 18381.93 25085.51 22091.05 28374.21 19197.45 20582.86 19781.56 31793.53 280
v887.50 20786.71 19989.89 23491.37 29579.40 23594.50 15595.38 18684.81 18683.60 27891.33 27076.05 16297.42 21082.84 19880.51 33892.84 308
Anonymous2023121186.59 24385.13 25690.98 19196.52 8781.50 17296.14 5896.16 12173.78 35583.65 27692.15 24263.26 31397.37 22182.82 19981.74 31694.06 253
PAPM_NR91.22 9690.78 9992.52 11597.60 5681.46 17694.37 17096.24 11586.39 14487.41 17294.80 14582.06 10298.48 11482.80 20095.37 12497.61 93
eth_miper_zixun_eth86.50 24785.77 24088.68 27491.94 27275.81 30690.47 30694.89 21282.05 24584.05 26690.46 29775.96 16496.77 25882.76 20179.36 34893.46 285
Patchmatch-RL test81.67 31179.96 31786.81 32185.42 38171.23 35382.17 38787.50 37178.47 30777.19 34882.50 38270.81 23493.48 35482.66 20272.89 37095.71 183
tpmrst85.35 26884.99 25886.43 32590.88 31967.88 37288.71 34091.43 32080.13 28286.08 20688.80 33273.05 20996.02 30082.48 20383.40 29795.40 191
sss88.93 15988.26 16190.94 19294.05 20280.78 19791.71 27995.38 18681.55 26488.63 15093.91 18675.04 17895.47 32682.47 20491.61 18896.57 145
ab-mvs89.41 14288.35 15592.60 11095.15 14582.65 14892.20 26795.60 16983.97 20188.55 15193.70 19574.16 19398.21 14482.46 20589.37 22596.94 127
mvsany_test374.95 34973.26 35380.02 36374.61 39763.16 38885.53 37178.42 39674.16 35174.89 36386.46 35936.02 39389.09 38682.39 20666.91 38387.82 380
CostFormer85.77 26184.94 26188.26 28491.16 30472.58 34289.47 32991.04 33076.26 33186.45 19689.97 31270.74 23596.86 25782.35 20787.07 26695.34 195
v119287.25 21786.33 21590.00 23190.76 32379.04 24693.80 20495.48 17682.57 23685.48 22391.18 27773.38 20797.42 21082.30 20882.06 30993.53 280
Baseline_NR-MVSNet87.07 22786.63 20488.40 27991.44 29077.87 27294.23 17792.57 28484.12 19885.74 21292.08 24877.25 15196.04 29882.29 20979.94 34291.30 344
testing9986.72 23985.73 24489.69 24594.23 19574.91 31591.35 28890.97 33286.14 15386.36 19890.22 30259.41 34197.48 20182.24 21090.66 20296.69 140
Anonymous20240521187.68 19386.13 22392.31 12696.66 7980.74 19894.87 13491.49 31880.47 27989.46 13895.44 11754.72 36498.23 14182.19 21189.89 21497.97 74
v14887.04 22886.32 21689.21 25890.94 31477.26 28593.71 20994.43 23284.84 18584.36 25990.80 29076.04 16397.05 24682.12 21279.60 34693.31 288
testing9187.11 22686.18 22189.92 23394.43 18675.38 31291.53 28492.27 29386.48 14086.50 19290.24 30161.19 32997.53 19782.10 21390.88 20196.84 134
testing1186.44 25085.35 25289.69 24594.29 19375.40 31191.30 28990.53 34084.76 18785.06 23990.13 30758.95 34797.45 20582.08 21491.09 19796.21 157
114514_t89.51 13788.50 15192.54 11498.11 3681.99 16095.16 11896.36 10370.19 37885.81 20995.25 12476.70 15798.63 10282.07 21596.86 9697.00 122
v192192086.97 23086.06 22889.69 24590.53 33278.11 26693.80 20495.43 18381.90 25285.33 23691.05 28372.66 21497.41 21582.05 21681.80 31493.53 280
OurMVSNet-221017-085.35 26884.64 26887.49 30190.77 32272.59 34194.01 19394.40 23584.72 18979.62 33293.17 20961.91 32096.72 25981.99 21781.16 32193.16 296
v1087.25 21786.38 21289.85 23591.19 30179.50 23294.48 15695.45 18083.79 20683.62 27791.19 27575.13 17697.42 21081.94 21880.60 33392.63 313
TranMVSNet+NR-MVSNet88.84 16287.95 16791.49 16392.68 25383.01 13494.92 13196.31 10689.88 4085.53 21893.85 18976.63 15996.96 25081.91 21979.87 34494.50 232
D2MVS85.90 25785.09 25788.35 28190.79 32177.42 28391.83 27695.70 16080.77 27780.08 32490.02 31066.74 28696.37 28581.88 22087.97 25191.26 345
test-LLR85.87 25885.41 24887.25 30790.95 31271.67 35089.55 32589.88 35583.41 21684.54 25087.95 34467.25 27795.11 33181.82 22193.37 16594.97 204
test-mter84.54 28383.64 28187.25 30790.95 31271.67 35089.55 32589.88 35579.17 29484.54 25087.95 34455.56 35895.11 33181.82 22193.37 16594.97 204
PMMVS85.71 26284.96 26087.95 29288.90 35477.09 28788.68 34190.06 34972.32 36986.47 19390.76 29272.15 22094.40 33881.78 22393.49 16092.36 322
cl____86.52 24685.78 23888.75 27192.03 27076.46 29690.74 30294.30 23981.83 25683.34 28490.78 29175.74 17196.57 27081.74 22481.54 31893.22 293
DIV-MVS_self_test86.53 24585.78 23888.75 27192.02 27176.45 29790.74 30294.30 23981.83 25683.34 28490.82 28975.75 16996.57 27081.73 22581.52 31993.24 292
NR-MVSNet88.58 17287.47 17991.93 14293.04 24184.16 9794.77 14196.25 11489.05 6780.04 32593.29 20579.02 13297.05 24681.71 22680.05 34194.59 222
WTY-MVS89.60 13488.92 13891.67 15795.47 13081.15 18692.38 25894.78 22283.11 22489.06 14594.32 16478.67 13796.61 26781.57 22790.89 20097.24 106
thisisatest051587.33 21385.99 23091.37 16993.49 22679.55 23190.63 30489.56 36080.17 28187.56 17090.86 28667.07 28098.28 13981.50 22893.02 17196.29 153
v124086.78 23585.85 23689.56 24990.45 33377.79 27693.61 21295.37 18881.65 26085.43 22891.15 27971.50 22597.43 20981.47 22982.05 31193.47 284
GeoE90.05 11989.43 12491.90 14795.16 14380.37 20795.80 8094.65 22883.90 20287.55 17194.75 14778.18 14497.62 19181.28 23093.63 15597.71 90
WR-MVS88.38 17487.67 17490.52 20393.30 23280.18 21093.26 22995.96 13988.57 8585.47 22492.81 22276.12 16196.91 25481.24 23182.29 30794.47 237
131487.51 20586.57 20790.34 21692.42 25979.74 22892.63 25195.35 19078.35 31080.14 32291.62 26474.05 19497.15 23781.05 23293.53 15894.12 248
IterMVS-SCA-FT85.45 26484.53 27088.18 28791.71 28376.87 29090.19 31592.65 28385.40 17081.44 30590.54 29566.79 28495.00 33481.04 23381.05 32592.66 312
XXY-MVS87.65 19586.85 19490.03 22792.14 26580.60 20293.76 20695.23 19382.94 22984.60 24894.02 17674.27 18895.49 32581.04 23383.68 29194.01 256
miper_lstm_enhance85.27 27184.59 26987.31 30491.28 29974.63 31787.69 35494.09 24981.20 27381.36 30789.85 31574.97 18094.30 34181.03 23579.84 34593.01 302
GA-MVS86.61 24185.27 25490.66 19791.33 29878.71 24990.40 30793.81 25985.34 17185.12 23889.57 31961.25 32697.11 24180.99 23689.59 22296.15 158
IB-MVS80.51 1585.24 27283.26 28691.19 17592.13 26679.86 22591.75 27891.29 32383.28 22180.66 31588.49 33661.28 32598.46 11880.99 23679.46 34795.25 197
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet84.69 28284.79 26584.37 34691.84 27764.92 38293.70 21091.47 31966.19 38486.16 20595.28 12267.18 27993.33 35680.89 23890.42 20694.88 212
baseline188.10 18287.28 18490.57 19994.96 15480.07 21594.27 17391.29 32386.74 13587.41 17294.00 17876.77 15696.20 29380.77 23979.31 34995.44 189
HyFIR lowres test88.09 18386.81 19591.93 14296.00 10680.63 20090.01 31995.79 15273.42 35987.68 16892.10 24773.86 19897.96 16980.75 24091.70 18797.19 109
AdaColmapbinary89.89 12789.07 13392.37 12397.41 6283.03 13294.42 16395.92 14182.81 23286.34 20094.65 15373.89 19799.02 6180.69 24195.51 11795.05 202
原ACMM192.01 13497.34 6481.05 18896.81 7078.89 29990.45 12395.92 10082.65 8798.84 8880.68 24298.26 5896.14 159
TESTMET0.1,183.74 29582.85 29586.42 32689.96 34271.21 35489.55 32587.88 36777.41 31983.37 28387.31 35256.71 35493.65 35380.62 24392.85 17694.40 238
无先验93.28 22896.26 11273.95 35499.05 5580.56 24496.59 143
Fast-Effi-MVS+89.41 14288.64 14591.71 15694.74 16580.81 19693.54 21495.10 20083.11 22486.82 18990.67 29479.74 12297.75 18180.51 24593.55 15796.57 145
CHOSEN 1792x268888.84 16287.69 17392.30 12796.14 9681.42 17890.01 31995.86 14874.52 34887.41 17293.94 18275.46 17498.36 13080.36 24695.53 11697.12 115
CDS-MVSNet89.45 14088.51 15092.29 12893.62 22383.61 11393.01 23994.68 22781.95 24987.82 16593.24 20778.69 13696.99 24980.34 24793.23 16896.28 154
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Fast-Effi-MVS+-dtu87.44 20886.72 19889.63 24892.04 26977.68 28094.03 19193.94 25185.81 15882.42 29391.32 27270.33 24397.06 24580.33 24890.23 20894.14 247
baseline286.50 24785.39 24989.84 23691.12 30676.70 29391.88 27488.58 36382.35 24179.95 32690.95 28573.42 20597.63 19080.27 24989.95 21395.19 198
API-MVS90.66 10790.07 10992.45 11896.36 9184.57 8296.06 6695.22 19582.39 23889.13 14194.27 16980.32 11498.46 11880.16 25096.71 9994.33 240
MAR-MVS90.30 11389.37 12693.07 8596.61 8184.48 8795.68 8695.67 16282.36 24087.85 16392.85 21876.63 15998.80 9080.01 25196.68 10095.91 171
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
HY-MVS83.01 1289.03 15687.94 16892.29 12894.86 16182.77 13992.08 27294.49 23081.52 26586.93 18192.79 22478.32 14398.23 14179.93 25290.55 20395.88 173
CHOSEN 280x42085.15 27383.99 27688.65 27592.47 25678.40 25879.68 39392.76 27874.90 34581.41 30689.59 31869.85 24995.51 32279.92 25395.29 12692.03 329
MVS87.44 20886.10 22691.44 16692.61 25483.62 11192.63 25195.66 16467.26 38281.47 30492.15 24277.95 14598.22 14379.71 25495.48 11992.47 317
pm-mvs186.61 24185.54 24589.82 23791.44 29080.18 21095.28 10994.85 21683.84 20481.66 30292.62 22772.45 21996.48 27779.67 25578.06 35292.82 309
sd_testset88.59 17187.85 17090.83 19396.00 10680.42 20692.35 26094.71 22588.73 7886.85 18795.20 12867.31 27596.43 28279.64 25689.85 21695.63 185
IterMVS84.88 27783.98 27787.60 29791.44 29076.03 30290.18 31692.41 28783.24 22281.06 31190.42 29966.60 28794.28 34279.46 25780.98 33092.48 316
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
1112_ss88.42 17387.33 18291.72 15594.92 15780.98 19092.97 24194.54 22978.16 31583.82 27193.88 18778.78 13597.91 17379.45 25889.41 22496.26 155
gm-plane-assit89.60 34968.00 37077.28 32288.99 32797.57 19379.44 259
PM-MVS78.11 34276.12 34684.09 35083.54 38670.08 36488.97 33885.27 38079.93 28474.73 36486.43 36034.70 39493.48 35479.43 26072.06 37288.72 373
v7n86.81 23385.76 24189.95 23290.72 32579.25 24495.07 12295.92 14184.45 19482.29 29490.86 28672.60 21697.53 19779.42 26180.52 33793.08 300
PAPR90.02 12089.27 13192.29 12895.78 11680.95 19292.68 24996.22 11781.91 25186.66 19193.75 19482.23 9698.44 12479.40 26294.79 13397.48 99
新几何193.10 8197.30 6684.35 9495.56 17071.09 37591.26 11696.24 8582.87 8598.86 8479.19 26398.10 6396.07 165
CP-MVSNet87.63 19887.26 18688.74 27393.12 23676.59 29595.29 10796.58 9188.43 8883.49 28192.98 21675.28 17595.83 30978.97 26481.15 32393.79 266
pmmvs485.43 26583.86 27890.16 22090.02 34182.97 13690.27 30892.67 28275.93 33480.73 31391.74 25971.05 22995.73 31678.85 26583.46 29591.78 333
Test_1112_low_res87.65 19586.51 20991.08 18294.94 15679.28 24291.77 27794.30 23976.04 33383.51 28092.37 23477.86 14897.73 18278.69 26689.13 23196.22 156
Vis-MVSNet (Re-imp)89.59 13589.44 12390.03 22795.74 11775.85 30595.61 9390.80 33787.66 11787.83 16495.40 12076.79 15596.46 28078.37 26796.73 9897.80 86
PS-CasMVS87.32 21486.88 19288.63 27692.99 24476.33 30095.33 10296.61 8988.22 9683.30 28693.07 21473.03 21195.79 31378.36 26881.00 32993.75 273
test_f71.95 35370.87 35575.21 37174.21 39959.37 39485.07 37585.82 37665.25 38570.42 38083.13 37723.62 39982.93 39978.32 26971.94 37383.33 384
testdata298.75 9378.30 270
GBi-Net87.26 21585.98 23191.08 18294.01 20483.10 12795.14 11994.94 20683.57 21084.37 25691.64 26066.59 28896.34 28878.23 27185.36 27693.79 266
test187.26 21585.98 23191.08 18294.01 20483.10 12795.14 11994.94 20683.57 21084.37 25691.64 26066.59 28896.34 28878.23 27185.36 27693.79 266
FMVSNet387.40 21086.11 22591.30 17293.79 21783.64 11094.20 17894.81 22083.89 20384.37 25691.87 25668.45 27196.56 27278.23 27185.36 27693.70 276
OpenMVScopyleft83.78 1188.74 16687.29 18393.08 8392.70 25285.39 6996.57 3696.43 9778.74 30480.85 31296.07 9469.64 25199.01 6378.01 27496.65 10194.83 214
tpm84.73 28084.02 27586.87 32090.33 33468.90 36889.06 33689.94 35280.85 27685.75 21189.86 31468.54 27095.97 30277.76 27584.05 28795.75 179
TAMVS89.21 14888.29 15991.96 14093.71 21982.62 14993.30 22694.19 24382.22 24287.78 16693.94 18278.83 13396.95 25177.70 27692.98 17296.32 151
BH-untuned88.60 17088.13 16390.01 23095.24 14078.50 25593.29 22794.15 24584.75 18884.46 25393.40 19975.76 16897.40 21777.59 27794.52 14294.12 248
FMVSNet287.19 22385.82 23791.30 17294.01 20483.67 10894.79 13994.94 20683.57 21083.88 27092.05 25166.59 28896.51 27577.56 27885.01 27993.73 274
RPSCF85.07 27484.27 27187.48 30292.91 24770.62 36191.69 28192.46 28576.20 33282.67 29295.22 12563.94 30797.29 22777.51 27985.80 27394.53 226
PLCcopyleft84.53 789.06 15588.03 16592.15 13297.27 6882.69 14694.29 17295.44 18279.71 28884.01 26894.18 17176.68 15898.75 9377.28 28093.41 16395.02 203
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CNLPA89.07 15487.98 16692.34 12496.87 7484.78 7894.08 18693.24 26781.41 26684.46 25395.13 13275.57 17396.62 26477.21 28193.84 15395.61 187
K. test v381.59 31380.15 31585.91 33289.89 34469.42 36792.57 25387.71 36985.56 16673.44 37089.71 31755.58 35795.52 32177.17 28269.76 37692.78 310
QAPM89.51 13788.15 16293.59 7094.92 15784.58 8196.82 2996.70 8378.43 30983.41 28296.19 9073.18 20899.30 4077.11 28396.54 10296.89 131
pmmvs584.21 28682.84 29688.34 28288.95 35376.94 28992.41 25691.91 30875.63 33680.28 31991.18 27764.59 30395.57 31977.09 28483.47 29492.53 315
pmmvs683.42 29781.60 30188.87 26888.01 36577.87 27294.96 12894.24 24274.67 34778.80 33891.09 28260.17 33696.49 27677.06 28575.40 36692.23 326
test_vis3_rt65.12 36062.60 36272.69 37371.44 40060.71 39187.17 35965.55 40663.80 38853.22 39465.65 39814.54 40889.44 38576.65 28665.38 38567.91 397
test_post188.00 3499.81 40769.31 25895.53 32076.65 286
SCA86.32 25285.18 25589.73 24392.15 26476.60 29491.12 29591.69 31183.53 21385.50 22188.81 33066.79 28496.48 27776.65 28690.35 20796.12 161
WR-MVS_H87.80 19087.37 18189.10 26293.23 23378.12 26595.61 9397.30 2987.90 10783.72 27392.01 25279.65 12796.01 30176.36 28980.54 33593.16 296
EU-MVSNet81.32 31880.95 30682.42 35888.50 35863.67 38693.32 22291.33 32164.02 38780.57 31792.83 22061.21 32892.27 36776.34 29080.38 33991.32 343
CMPMVSbinary59.16 2180.52 32479.20 32884.48 34583.98 38467.63 37489.95 32193.84 25864.79 38666.81 38591.14 28057.93 35095.17 32976.25 29188.10 24790.65 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
F-COLMAP87.95 18686.80 19691.40 16796.35 9280.88 19494.73 14395.45 18079.65 28982.04 29994.61 15471.13 22898.50 11276.24 29291.05 19894.80 216
PEN-MVS86.80 23486.27 21988.40 27992.32 26175.71 30795.18 11596.38 10287.97 10482.82 29093.15 21073.39 20695.92 30476.15 29379.03 35193.59 278
SixPastTwentyTwo83.91 29282.90 29486.92 31790.99 31070.67 36093.48 21691.99 30385.54 16777.62 34692.11 24660.59 33396.87 25676.05 29477.75 35493.20 294
MS-PatchMatch85.05 27584.16 27287.73 29591.42 29378.51 25491.25 29293.53 26377.50 31880.15 32191.58 26661.99 31995.51 32275.69 29594.35 14689.16 370
BH-w/o87.57 20387.05 18989.12 26194.90 15977.90 27092.41 25693.51 26482.89 23183.70 27491.34 26975.75 16997.07 24475.49 29693.49 16092.39 321
gg-mvs-nofinetune81.77 30979.37 32488.99 26690.85 32077.73 27986.29 36579.63 39474.88 34683.19 28769.05 39560.34 33496.11 29775.46 29794.64 13893.11 298
FMVSNet185.85 25984.11 27391.08 18292.81 25083.10 12795.14 11994.94 20681.64 26182.68 29191.64 26059.01 34696.34 28875.37 29883.78 28893.79 266
EPMVS83.90 29382.70 29787.51 29990.23 33772.67 33788.62 34281.96 38981.37 26785.01 24188.34 33866.31 29194.45 33675.30 29987.12 26495.43 190
pmmvs-eth3d80.97 32278.72 33487.74 29484.99 38379.97 22390.11 31791.65 31275.36 33873.51 36986.03 36359.45 34093.96 34875.17 30072.21 37189.29 368
tpm284.08 28882.94 29287.48 30291.39 29471.27 35289.23 33390.37 34271.95 37184.64 24789.33 32267.30 27696.55 27475.17 30087.09 26594.63 219
lessismore_v086.04 32888.46 35968.78 36980.59 39273.01 37290.11 30855.39 35996.43 28275.06 30265.06 38692.90 305
MVP-Stereo85.97 25684.86 26389.32 25690.92 31682.19 15792.11 27094.19 24378.76 30378.77 33991.63 26368.38 27296.56 27275.01 30393.95 15089.20 369
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FE-MVS87.40 21086.02 22991.57 16094.56 17879.69 22990.27 30893.72 26180.57 27888.80 14891.62 26465.32 29898.59 10874.97 30494.33 14796.44 148
PVSNet78.82 1885.55 26384.65 26788.23 28694.72 16771.93 34587.12 36092.75 27978.80 30284.95 24290.53 29664.43 30496.71 26174.74 30593.86 15296.06 167
MDTV_nov1_ep13_2view55.91 40287.62 35673.32 36084.59 24970.33 24374.65 30695.50 188
PatchmatchNetpermissive85.85 25984.70 26689.29 25791.76 28175.54 30888.49 34391.30 32281.63 26285.05 24088.70 33471.71 22296.24 29274.61 30789.05 23296.08 164
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
LF4IMVS80.37 32779.07 33184.27 34886.64 37269.87 36689.39 33091.05 32976.38 32874.97 36290.00 31147.85 38294.25 34374.55 30880.82 33288.69 374
DTE-MVSNet86.11 25485.48 24787.98 29191.65 28774.92 31494.93 13095.75 15587.36 12182.26 29593.04 21572.85 21295.82 31074.04 30977.46 35793.20 294
BH-RMVSNet88.37 17587.48 17891.02 18695.28 13679.45 23492.89 24393.07 27185.45 16986.91 18394.84 14470.35 24297.76 17873.97 31094.59 13995.85 174
CR-MVSNet85.35 26883.76 27990.12 22390.58 32979.34 23885.24 37391.96 30678.27 31285.55 21687.87 34771.03 23095.61 31873.96 31189.36 22695.40 191
ACMH+81.04 1485.05 27583.46 28389.82 23794.66 17179.37 23694.44 16194.12 24882.19 24378.04 34292.82 22158.23 34997.54 19673.77 31282.90 30292.54 314
TR-MVS86.78 23585.76 24189.82 23794.37 18878.41 25792.47 25592.83 27681.11 27486.36 19892.40 23368.73 26897.48 20173.75 31389.85 21693.57 279
UnsupCasMVSNet_eth80.07 32978.27 33585.46 33685.24 38272.63 34088.45 34594.87 21582.99 22871.64 37788.07 34356.34 35591.75 37273.48 31463.36 38992.01 330
PatchMatch-RL86.77 23885.54 24590.47 21095.88 11282.71 14590.54 30592.31 29179.82 28784.32 26191.57 26868.77 26796.39 28473.16 31593.48 16292.32 324
ambc83.06 35479.99 39363.51 38777.47 39492.86 27574.34 36784.45 37228.74 39595.06 33373.06 31668.89 38190.61 356
KD-MVS_self_test80.20 32879.24 32683.07 35385.64 38065.29 38091.01 29893.93 25278.71 30576.32 35386.40 36159.20 34392.93 36272.59 31769.35 37791.00 353
ITE_SJBPF88.24 28591.88 27677.05 28892.92 27385.54 16780.13 32393.30 20457.29 35296.20 29372.46 31884.71 28191.49 340
ACMH80.38 1785.36 26783.68 28090.39 21294.45 18480.63 20094.73 14394.85 21682.09 24477.24 34792.65 22660.01 33797.58 19272.25 31984.87 28092.96 303
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
USDC82.76 30081.26 30587.26 30691.17 30274.55 31889.27 33193.39 26678.26 31375.30 36092.08 24854.43 36696.63 26371.64 32085.79 27490.61 356
dmvs_re84.20 28783.22 28887.14 31391.83 27977.81 27490.04 31890.19 34584.70 19081.49 30389.17 32464.37 30591.13 37771.58 32185.65 27592.46 318
EPNet_dtu86.49 24985.94 23488.14 28890.24 33672.82 33494.11 18292.20 29586.66 13879.42 33392.36 23573.52 20295.81 31171.26 32293.66 15495.80 178
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GG-mvs-BLEND87.94 29389.73 34777.91 26987.80 35078.23 39880.58 31683.86 37359.88 33895.33 32871.20 32392.22 18590.60 358
LTVRE_ROB82.13 1386.26 25384.90 26290.34 21694.44 18581.50 17292.31 26494.89 21283.03 22679.63 33192.67 22569.69 25097.79 17671.20 32386.26 27191.72 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
JIA-IIPM81.04 32078.98 33287.25 30788.64 35573.48 32981.75 38889.61 35973.19 36182.05 29873.71 39266.07 29695.87 30771.18 32584.60 28292.41 320
Anonymous2024052180.44 32679.21 32784.11 34985.75 37967.89 37192.86 24693.23 26875.61 33775.59 35987.47 35150.03 37694.33 34071.14 32681.21 32090.12 361
TransMVSNet (Re)84.43 28483.06 29188.54 27791.72 28278.44 25695.18 11592.82 27782.73 23479.67 33092.12 24473.49 20395.96 30371.10 32768.73 38291.21 346
UWE-MVS83.69 29683.09 28985.48 33593.06 23965.27 38190.92 29986.14 37479.90 28586.26 20290.72 29357.17 35395.81 31171.03 32892.62 17995.35 194
testing22284.84 27983.32 28489.43 25594.15 20075.94 30391.09 29689.41 36184.90 18285.78 21089.44 32152.70 37296.28 29170.80 32991.57 18996.07 165
PCF-MVS84.11 1087.74 19286.08 22792.70 10694.02 20384.43 9189.27 33195.87 14773.62 35784.43 25594.33 16378.48 14198.86 8470.27 33094.45 14494.81 215
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EG-PatchMatch MVS82.37 30580.34 31188.46 27890.27 33579.35 23792.80 24894.33 23877.14 32373.26 37190.18 30547.47 38396.72 25970.25 33187.32 26389.30 367
MDTV_nov1_ep1383.56 28291.69 28569.93 36587.75 35391.54 31678.60 30684.86 24388.90 32969.54 25296.03 29970.25 33188.93 234
TDRefinement79.81 33277.34 33787.22 31079.24 39575.48 30993.12 23392.03 30176.45 32775.01 36191.58 26649.19 37996.44 28170.22 33369.18 37989.75 363
thres100view90087.63 19886.71 19990.38 21496.12 9778.55 25295.03 12591.58 31487.15 12388.06 15992.29 23868.91 26598.10 15070.13 33491.10 19394.48 235
tfpn200view987.58 20286.64 20290.41 21195.99 10978.64 25094.58 15191.98 30486.94 13088.09 15691.77 25769.18 26198.10 15070.13 33491.10 19394.48 235
thres40087.62 20086.64 20290.57 19995.99 10978.64 25094.58 15191.98 30486.94 13088.09 15691.77 25769.18 26198.10 15070.13 33491.10 19394.96 207
thres600view787.65 19586.67 20190.59 19896.08 10278.72 24894.88 13391.58 31487.06 12688.08 15892.30 23768.91 26598.10 15070.05 33791.10 19394.96 207
thres20087.21 22186.24 22090.12 22395.36 13378.53 25393.26 22992.10 29886.42 14388.00 16191.11 28169.24 26098.00 16669.58 33891.04 19993.83 265
tpm cat181.96 30680.27 31287.01 31491.09 30771.02 35787.38 35891.53 31766.25 38380.17 32086.35 36268.22 27396.15 29669.16 33982.29 30793.86 263
Patchmtry82.71 30180.93 30788.06 28990.05 34076.37 29984.74 37891.96 30672.28 37081.32 30887.87 34771.03 23095.50 32468.97 34080.15 34092.32 324
our_test_381.93 30780.46 31086.33 32788.46 35973.48 32988.46 34491.11 32676.46 32676.69 35188.25 34066.89 28294.36 33968.75 34179.08 35091.14 348
PVSNet_073.20 2077.22 34574.83 35184.37 34690.70 32671.10 35583.09 38589.67 35872.81 36673.93 36883.13 37760.79 33293.70 35268.54 34250.84 39888.30 377
MSDG84.86 27883.09 28990.14 22293.80 21580.05 21789.18 33493.09 27078.89 29978.19 34091.91 25465.86 29797.27 22868.47 34388.45 24293.11 298
LS3D87.89 18786.32 21692.59 11196.07 10382.92 13795.23 11194.92 21175.66 33582.89 28995.98 9872.48 21799.21 4568.43 34495.23 12995.64 184
AllTest83.42 29781.39 30389.52 25195.01 15077.79 27693.12 23390.89 33577.41 31976.12 35593.34 20054.08 36797.51 19968.31 34584.27 28593.26 289
TestCases89.52 25195.01 15077.79 27690.89 33577.41 31976.12 35593.34 20054.08 36797.51 19968.31 34584.27 28593.26 289
dp81.47 31680.23 31385.17 34189.92 34365.49 37986.74 36290.10 34876.30 33081.10 30987.12 35762.81 31595.92 30468.13 34779.88 34394.09 251
tpmvs83.35 29982.07 29887.20 31191.07 30871.00 35888.31 34691.70 31078.91 29780.49 31887.18 35669.30 25997.08 24268.12 34883.56 29393.51 283
FMVSNet581.52 31579.60 32287.27 30591.17 30277.95 26891.49 28592.26 29476.87 32476.16 35487.91 34651.67 37392.34 36667.74 34981.16 32191.52 339
KD-MVS_2432*160078.50 34076.02 34785.93 33086.22 37474.47 31984.80 37692.33 28979.29 29276.98 34985.92 36453.81 36993.97 34667.39 35057.42 39489.36 365
miper_refine_blended78.50 34076.02 34785.93 33086.22 37474.47 31984.80 37692.33 28979.29 29276.98 34985.92 36453.81 36993.97 34667.39 35057.42 39489.36 365
ETVMVS84.43 28482.92 29388.97 26794.37 18874.67 31691.23 29388.35 36583.37 21886.06 20789.04 32655.38 36095.67 31767.12 35291.34 19196.58 144
CL-MVSNet_self_test81.74 31080.53 30885.36 33785.96 37672.45 34390.25 31093.07 27181.24 27179.85 32987.29 35370.93 23292.52 36466.95 35369.23 37891.11 350
YYNet179.22 33777.20 33985.28 33988.20 36472.66 33885.87 36790.05 35174.33 35062.70 38787.61 34966.09 29592.03 36866.94 35472.97 36991.15 347
PAPM86.68 24085.39 24990.53 20193.05 24079.33 24189.79 32294.77 22378.82 30181.95 30093.24 20776.81 15497.30 22466.94 35493.16 16994.95 210
DP-MVS87.25 21785.36 25192.90 9497.65 5583.24 12194.81 13892.00 30274.99 34381.92 30195.00 13572.66 21499.05 5566.92 35692.33 18496.40 149
MDA-MVSNet_test_wron79.21 33877.19 34085.29 33888.22 36372.77 33585.87 36790.06 34974.34 34962.62 38987.56 35066.14 29491.99 37066.90 35773.01 36891.10 351
UnsupCasMVSNet_bld76.23 34873.27 35285.09 34283.79 38572.92 33285.65 37093.47 26571.52 37268.84 38379.08 38749.77 37793.21 35866.81 35860.52 39189.13 372
MIMVSNet82.59 30380.53 30888.76 27091.51 28878.32 26086.57 36490.13 34779.32 29180.70 31488.69 33552.98 37193.07 36166.03 35988.86 23594.90 211
LCM-MVSNet66.00 35962.16 36477.51 36964.51 40758.29 39583.87 38290.90 33448.17 39654.69 39373.31 39316.83 40786.75 39065.47 36061.67 39087.48 381
PatchT82.68 30281.27 30486.89 31990.09 33970.94 35984.06 38090.15 34674.91 34485.63 21583.57 37569.37 25494.87 33565.19 36188.50 24194.84 213
test0.0.03 182.41 30481.69 30084.59 34488.23 36272.89 33390.24 31287.83 36883.41 21679.86 32889.78 31667.25 27788.99 38765.18 36283.42 29691.90 332
ppachtmachnet_test81.84 30880.07 31687.15 31288.46 35974.43 32189.04 33792.16 29675.33 33977.75 34488.99 32766.20 29395.37 32765.12 36377.60 35591.65 335
COLMAP_ROBcopyleft80.39 1683.96 29082.04 29989.74 24195.28 13679.75 22794.25 17492.28 29275.17 34178.02 34393.77 19258.60 34897.84 17565.06 36485.92 27291.63 336
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WB-MVSnew83.77 29483.28 28585.26 34091.48 28971.03 35691.89 27387.98 36678.91 29784.78 24490.22 30269.11 26394.02 34564.70 36590.44 20490.71 354
ADS-MVSNet281.66 31279.71 32187.50 30091.35 29674.19 32383.33 38388.48 36472.90 36482.24 29685.77 36664.98 30193.20 35964.57 36683.74 28995.12 200
ADS-MVSNet81.56 31479.78 31886.90 31891.35 29671.82 34783.33 38389.16 36272.90 36482.24 29685.77 36664.98 30193.76 35064.57 36683.74 28995.12 200
new-patchmatchnet76.41 34775.17 35080.13 36282.65 38959.61 39387.66 35591.08 32778.23 31469.85 38183.22 37654.76 36391.63 37464.14 36864.89 38789.16 370
testgi80.94 32380.20 31483.18 35287.96 36666.29 37691.28 29090.70 33983.70 20778.12 34192.84 21951.37 37490.82 37963.34 36982.46 30592.43 319
TinyColmap79.76 33377.69 33685.97 32991.71 28373.12 33189.55 32590.36 34375.03 34272.03 37590.19 30446.22 38596.19 29563.11 37081.03 32688.59 375
pmmvs371.81 35468.71 35781.11 36075.86 39670.42 36286.74 36283.66 38458.95 39168.64 38480.89 38536.93 39289.52 38463.10 37163.59 38883.39 383
TAPA-MVS84.62 688.16 18187.01 19191.62 15896.64 8080.65 19994.39 16696.21 12076.38 32886.19 20495.44 11779.75 12198.08 16062.75 37295.29 12696.13 160
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MDA-MVSNet-bldmvs78.85 33976.31 34486.46 32489.76 34573.88 32588.79 33990.42 34179.16 29559.18 39188.33 33960.20 33594.04 34462.00 37368.96 38091.48 341
tfpnnormal84.72 28183.23 28789.20 25992.79 25180.05 21794.48 15695.81 15082.38 23981.08 31091.21 27469.01 26496.95 25161.69 37480.59 33490.58 359
Anonymous2023120681.03 32179.77 32084.82 34387.85 36870.26 36391.42 28692.08 29973.67 35677.75 34489.25 32362.43 31793.08 36061.50 37582.00 31291.12 349
RPMNet83.95 29181.53 30291.21 17490.58 32979.34 23885.24 37396.76 7571.44 37385.55 21682.97 38070.87 23398.91 8061.01 37689.36 22695.40 191
MIMVSNet179.38 33677.28 33885.69 33486.35 37373.67 32691.61 28392.75 27978.11 31672.64 37388.12 34248.16 38191.97 37160.32 37777.49 35691.43 342
test20.0379.95 33179.08 33082.55 35685.79 37867.74 37391.09 29691.08 32781.23 27274.48 36689.96 31361.63 32190.15 38160.08 37876.38 36289.76 362
DSMNet-mixed76.94 34676.29 34578.89 36583.10 38756.11 40187.78 35179.77 39360.65 39075.64 35888.71 33361.56 32388.34 38860.07 37989.29 22892.21 327
Patchmatch-test81.37 31779.30 32587.58 29890.92 31674.16 32480.99 38987.68 37070.52 37776.63 35288.81 33071.21 22792.76 36360.01 38086.93 26795.83 176
WAC-MVS64.08 38459.14 381
myMVS_eth3d79.67 33478.79 33382.32 35991.92 27364.08 38489.75 32387.40 37281.72 25878.82 33687.20 35445.33 38691.29 37559.09 38287.84 25491.60 337
MVS-HIRNet73.70 35172.20 35478.18 36891.81 28056.42 40082.94 38682.58 38755.24 39268.88 38266.48 39655.32 36195.13 33058.12 38388.42 24383.01 385
OpenMVS_ROBcopyleft74.94 1979.51 33577.03 34286.93 31687.00 37176.23 30192.33 26290.74 33868.93 38074.52 36588.23 34149.58 37896.62 26457.64 38484.29 28487.94 379
new_pmnet72.15 35270.13 35678.20 36782.95 38865.68 37783.91 38182.40 38862.94 38964.47 38679.82 38642.85 38986.26 39357.41 38574.44 36782.65 387
testing380.46 32579.59 32383.06 35493.44 22964.64 38393.33 22185.47 37884.34 19579.93 32790.84 28844.35 38892.39 36557.06 38687.56 25792.16 328
APD_test169.04 35566.26 36177.36 37080.51 39262.79 38985.46 37283.51 38554.11 39459.14 39284.79 37123.40 40189.61 38355.22 38770.24 37579.68 391
N_pmnet68.89 35668.44 35870.23 37689.07 35228.79 41388.06 34719.50 41369.47 37971.86 37684.93 36961.24 32791.75 37254.70 38877.15 35890.15 360
test_method50.52 36948.47 37156.66 38552.26 41118.98 41541.51 40381.40 39010.10 40544.59 40075.01 39128.51 39668.16 40353.54 38949.31 39982.83 386
tmp_tt35.64 37339.24 37524.84 38914.87 41323.90 41462.71 39951.51 4126.58 40736.66 40362.08 40044.37 38730.34 40952.40 39022.00 40620.27 404
test_040281.30 31979.17 32987.67 29693.19 23478.17 26492.98 24091.71 30975.25 34076.02 35790.31 30059.23 34296.37 28550.22 39183.63 29288.47 376
PMMVS259.60 36356.40 36569.21 37968.83 40446.58 40573.02 39877.48 40155.07 39349.21 39672.95 39417.43 40680.04 40149.32 39244.33 40180.99 389
Syy-MVS80.07 32979.78 31880.94 36191.92 27359.93 39289.75 32387.40 37281.72 25878.82 33687.20 35466.29 29291.29 37547.06 39387.84 25491.60 337
dmvs_testset74.57 35075.81 34970.86 37587.72 36940.47 40887.05 36177.90 40082.75 23371.15 37985.47 36867.98 27484.12 39745.26 39476.98 36188.00 378
EGC-MVSNET61.97 36256.37 36678.77 36689.63 34873.50 32889.12 33582.79 3860.21 4101.24 41184.80 37039.48 39190.04 38244.13 39575.94 36572.79 394
ANet_high58.88 36654.22 37072.86 37256.50 41056.67 39780.75 39086.00 37573.09 36337.39 40264.63 39922.17 40279.49 40243.51 39623.96 40482.43 388
testf159.54 36456.11 36769.85 37769.28 40256.61 39880.37 39176.55 40342.58 39945.68 39875.61 38811.26 40984.18 39543.20 39760.44 39268.75 395
APD_test259.54 36456.11 36769.85 37769.28 40256.61 39880.37 39176.55 40342.58 39945.68 39875.61 38811.26 40984.18 39543.20 39760.44 39268.75 395
DeepMVS_CXcopyleft56.31 38674.23 39851.81 40356.67 41144.85 39748.54 39775.16 39027.87 39758.74 40740.92 39952.22 39658.39 400
FPMVS64.63 36162.55 36370.88 37470.80 40156.71 39684.42 37984.42 38251.78 39549.57 39581.61 38323.49 40081.48 40040.61 40076.25 36374.46 393
Gipumacopyleft57.99 36754.91 36967.24 38288.51 35665.59 37852.21 40190.33 34443.58 39842.84 40151.18 40220.29 40485.07 39434.77 40170.45 37451.05 401
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft47.18 2252.22 36848.46 37263.48 38345.72 41246.20 40673.41 39778.31 39741.03 40130.06 40465.68 3976.05 41183.43 39830.04 40265.86 38460.80 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive39.65 2343.39 37038.59 37657.77 38456.52 40948.77 40455.38 40058.64 41029.33 40428.96 40552.65 4014.68 41264.62 40628.11 40333.07 40259.93 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVS67.92 35767.49 35969.21 37981.09 39041.17 40788.03 34878.00 39973.50 35862.63 38883.11 37963.94 30786.52 39125.66 40451.45 39779.94 390
SSC-MVS67.06 35866.56 36068.56 38180.54 39140.06 40987.77 35277.37 40272.38 36861.75 39082.66 38163.37 31186.45 39224.48 40548.69 40079.16 392
E-PMN43.23 37142.29 37346.03 38765.58 40637.41 41073.51 39664.62 40733.99 40228.47 40647.87 40319.90 40567.91 40422.23 40624.45 40332.77 402
EMVS42.07 37241.12 37444.92 38863.45 40835.56 41273.65 39563.48 40833.05 40326.88 40745.45 40421.27 40367.14 40519.80 40723.02 40532.06 403
wuyk23d21.27 37520.48 37823.63 39068.59 40536.41 41149.57 4026.85 4149.37 4067.89 4084.46 4104.03 41331.37 40817.47 40816.07 4073.12 405
testmvs8.92 37611.52 3791.12 3921.06 4140.46 41786.02 3660.65 4150.62 4082.74 4099.52 4080.31 4150.45 4112.38 4090.39 4082.46 407
test1238.76 37711.22 3801.39 3910.85 4150.97 41685.76 3690.35 4160.54 4092.45 4108.14 4090.60 4140.48 4102.16 4100.17 4092.71 406
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k22.14 37429.52 3770.00 3930.00 4160.00 4180.00 40495.76 1540.00 4110.00 41294.29 16675.66 1720.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas6.64 3798.86 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41179.70 1230.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re7.82 37810.43 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41293.88 1870.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
FOURS198.86 185.54 6798.29 197.49 689.79 4696.29 18
test_one_060198.58 1185.83 6197.44 1591.05 1496.78 1598.06 1191.45 11
eth-test20.00 416
eth-test0.00 416
test_241102_ONE98.77 585.99 5297.44 1590.26 3397.71 197.96 1792.31 499.38 31
save fliter97.85 4685.63 6695.21 11396.82 6889.44 53
test072698.78 385.93 5597.19 1197.47 1190.27 3197.64 498.13 391.47 8
GSMVS96.12 161
test_part298.55 1287.22 1996.40 17
sam_mvs171.70 22396.12 161
sam_mvs70.60 236
MTGPAbinary96.97 50
test_post10.29 40670.57 24095.91 306
patchmatchnet-post83.76 37471.53 22496.48 277
MTMP96.16 5460.64 409
TEST997.53 5886.49 3794.07 18796.78 7281.61 26392.77 7696.20 8787.71 2899.12 51
test_897.49 6086.30 4594.02 19296.76 7581.86 25492.70 8096.20 8787.63 2999.02 61
agg_prior97.38 6385.92 5796.72 8192.16 9298.97 75
test_prior485.96 5494.11 182
test_prior93.82 6297.29 6784.49 8696.88 6198.87 8298.11 67
新几何293.11 235
旧先验196.79 7681.81 16595.67 16296.81 6386.69 3797.66 8096.97 126
原ACMM292.94 242
test22296.55 8481.70 16792.22 26695.01 20368.36 38190.20 12796.14 9280.26 11697.80 7596.05 168
segment_acmp87.16 36
testdata192.15 26887.94 105
test1294.34 5097.13 7086.15 4896.29 10791.04 11885.08 5799.01 6398.13 6297.86 82
plane_prior794.70 16982.74 142
plane_prior694.52 17982.75 14074.23 189
plane_prior494.86 140
plane_prior382.75 14090.26 3386.91 183
plane_prior295.85 7790.81 17
plane_prior194.59 174
plane_prior82.73 14395.21 11389.66 5089.88 215
n20.00 417
nn0.00 417
door-mid85.49 377
test1196.57 92
door85.33 379
HQP5-MVS81.56 170
HQP-NCC94.17 19794.39 16688.81 7485.43 228
ACMP_Plane94.17 19794.39 16688.81 7485.43 228
HQP4-MVS85.43 22897.96 16994.51 229
HQP3-MVS96.04 13389.77 219
HQP2-MVS73.83 199
NP-MVS94.37 18882.42 15293.98 179
ACMMP++_ref87.47 258
ACMMP++88.01 250
Test By Simon80.02 118