| test_0728_SECOND | | | | | 87.71 32 | 95.34 1 | 71.43 56 | 93.49 9 | 94.23 3 | | | | | 97.49 4 | 89.08 12 | 96.41 12 | 94.21 42 |
|
| SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 26 | 95.30 2 | 70.98 63 | 93.57 7 | 94.06 10 | 77.24 50 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 6 | 89.07 14 | 96.63 4 | 94.88 14 |
|
| IU-MVS | | | | | | 95.30 2 | 71.25 57 | | 92.95 51 | 66.81 250 | 92.39 6 | | | | 88.94 16 | 96.63 4 | 94.85 19 |
|
| test_241102_ONE | | | | | | 95.30 2 | 70.98 63 | | 94.06 10 | 77.17 53 | 93.10 1 | 95.39 11 | 82.99 1 | 97.27 11 | | | |
|
| DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 40 | 95.27 5 | 71.25 57 | 93.49 9 | 92.73 59 | 77.33 48 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 8 | 89.08 12 | 96.41 12 | 93.33 84 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 95.27 5 | 71.25 57 | 93.60 6 | 94.11 6 | 77.33 48 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
| test_one_0601 | | | | | | 95.07 7 | 71.46 55 | | 94.14 5 | 78.27 35 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
| test_part2 | | | | | | 95.06 8 | 72.65 32 | | | | 91.80 13 | | | | | | |
|
| HPM-MVS++ |  | | 89.02 8 | 89.15 8 | 88.63 5 | 95.01 9 | 76.03 1 | 92.38 27 | 92.85 54 | 80.26 11 | 87.78 29 | 94.27 32 | 75.89 19 | 96.81 23 | 87.45 32 | 96.44 9 | 93.05 96 |
|
| FOURS1 | | | | | | 95.00 10 | 72.39 39 | 95.06 1 | 93.84 15 | 74.49 113 | 91.30 15 | | | | | | |
|
| DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 16 | 94.80 11 | 72.69 31 | 91.59 43 | 94.10 8 | 75.90 85 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 10 | 87.44 33 | 96.34 15 | 93.95 52 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| CNVR-MVS | | | 88.93 9 | 89.13 9 | 88.33 8 | 94.77 12 | 73.82 8 | 90.51 61 | 93.00 43 | 80.90 7 | 88.06 26 | 94.06 42 | 76.43 16 | 96.84 21 | 88.48 24 | 95.99 18 | 94.34 37 |
|
| ACMMPR | | | 87.44 22 | 87.23 26 | 88.08 14 | 94.64 13 | 73.59 12 | 93.04 12 | 93.20 34 | 76.78 65 | 84.66 66 | 94.52 21 | 68.81 84 | 96.65 30 | 84.53 49 | 94.90 40 | 94.00 50 |
|
| region2R | | | 87.42 24 | 87.20 27 | 88.09 13 | 94.63 14 | 73.55 13 | 93.03 14 | 93.12 37 | 76.73 68 | 84.45 70 | 94.52 21 | 69.09 78 | 96.70 27 | 84.37 51 | 94.83 44 | 94.03 49 |
|
| OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 44 | 82.45 3 | 96.87 20 | 83.77 58 | 96.48 8 | 94.88 14 |
|
| HFP-MVS | | | 87.58 21 | 87.47 23 | 87.94 19 | 94.58 16 | 73.54 15 | 93.04 12 | 93.24 33 | 76.78 65 | 84.91 59 | 94.44 28 | 70.78 60 | 96.61 32 | 84.53 49 | 94.89 41 | 93.66 65 |
|
| MCST-MVS | | | 87.37 26 | 87.25 25 | 87.73 28 | 94.53 17 | 72.46 38 | 89.82 77 | 93.82 16 | 73.07 147 | 84.86 62 | 92.89 74 | 76.22 17 | 96.33 38 | 84.89 44 | 95.13 36 | 94.40 34 |
|
| APDe-MVS |  | | 89.15 6 | 89.63 6 | 87.73 28 | 94.49 18 | 71.69 52 | 93.83 4 | 93.96 13 | 75.70 89 | 91.06 16 | 96.03 1 | 76.84 14 | 97.03 17 | 89.09 11 | 95.65 27 | 94.47 31 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| DP-MVS Recon | | | 83.11 90 | 82.09 97 | 86.15 58 | 94.44 19 | 70.92 68 | 88.79 113 | 92.20 81 | 70.53 188 | 79.17 137 | 91.03 119 | 64.12 127 | 96.03 46 | 68.39 206 | 90.14 102 | 91.50 145 |
|
| XVS | | | 87.18 28 | 86.91 32 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 45 | 79.14 21 | 83.67 85 | 94.17 36 | 67.45 95 | 96.60 33 | 83.06 63 | 94.50 50 | 94.07 47 |
|
| X-MVStestdata | | | 80.37 144 | 77.83 181 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 45 | 79.14 21 | 83.67 85 | 12.47 396 | 67.45 95 | 96.60 33 | 83.06 63 | 94.50 50 | 94.07 47 |
|
| mPP-MVS | | | 86.67 36 | 86.32 38 | 87.72 30 | 94.41 22 | 73.55 13 | 92.74 20 | 92.22 80 | 76.87 62 | 82.81 97 | 94.25 34 | 66.44 105 | 96.24 41 | 82.88 67 | 94.28 56 | 93.38 81 |
|
| NCCC | | | 88.06 14 | 88.01 18 | 88.24 11 | 94.41 22 | 73.62 11 | 91.22 52 | 92.83 55 | 81.50 5 | 85.79 48 | 93.47 60 | 73.02 39 | 97.00 18 | 84.90 42 | 94.94 39 | 94.10 45 |
|
| ZNCC-MVS | | | 87.94 18 | 87.85 19 | 88.20 12 | 94.39 24 | 73.33 19 | 93.03 14 | 93.81 17 | 76.81 63 | 85.24 53 | 94.32 31 | 71.76 48 | 96.93 19 | 85.53 39 | 95.79 22 | 94.32 38 |
|
| ZD-MVS | | | | | | 94.38 25 | 72.22 44 | | 92.67 61 | 70.98 179 | 87.75 31 | 94.07 41 | 74.01 32 | 96.70 27 | 84.66 47 | 94.84 43 | |
|
| MP-MVS |  | | 87.71 19 | 87.64 21 | 87.93 21 | 94.36 26 | 73.88 6 | 92.71 22 | 92.65 64 | 77.57 41 | 83.84 82 | 94.40 30 | 72.24 43 | 96.28 40 | 85.65 38 | 95.30 35 | 93.62 72 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 24 | 94.34 27 | 71.25 57 | 95.06 1 | 94.23 3 | 78.38 33 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 4 | 89.42 9 | 96.68 2 | 94.95 10 |
|
| MSC_two_6792asdad | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 45 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 32 |
|
| No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 45 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 32 |
|
| MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 10 | 94.28 30 | 73.46 17 | 92.90 16 | 94.11 6 | 80.27 10 | 91.35 14 | 94.16 37 | 78.35 13 | 96.77 24 | 89.59 8 | 94.22 58 | 94.67 24 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| SMA-MVS |  | | 89.08 7 | 89.23 7 | 88.61 6 | 94.25 31 | 73.73 9 | 92.40 24 | 93.63 21 | 74.77 107 | 92.29 7 | 95.97 2 | 74.28 29 | 97.24 12 | 88.58 21 | 96.91 1 | 94.87 16 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| APD-MVS |  | | 87.44 22 | 87.52 22 | 87.19 42 | 94.24 32 | 72.39 39 | 91.86 41 | 92.83 55 | 73.01 149 | 88.58 21 | 94.52 21 | 73.36 34 | 96.49 36 | 84.26 52 | 95.01 37 | 92.70 105 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| PGM-MVS | | | 86.68 35 | 86.27 39 | 87.90 22 | 94.22 33 | 73.38 18 | 90.22 70 | 93.04 38 | 75.53 91 | 83.86 81 | 94.42 29 | 67.87 92 | 96.64 31 | 82.70 72 | 94.57 49 | 93.66 65 |
|
| CP-MVS | | | 87.11 29 | 86.92 31 | 87.68 34 | 94.20 34 | 73.86 7 | 93.98 3 | 92.82 58 | 76.62 70 | 83.68 84 | 94.46 25 | 67.93 90 | 95.95 52 | 84.20 55 | 94.39 53 | 93.23 87 |
|
| MTAPA | | | 87.23 27 | 87.00 28 | 87.90 22 | 94.18 35 | 74.25 5 | 86.58 187 | 92.02 85 | 79.45 19 | 85.88 46 | 94.80 17 | 68.07 89 | 96.21 42 | 86.69 36 | 95.34 33 | 93.23 87 |
|
| GST-MVS | | | 87.42 24 | 87.26 24 | 87.89 24 | 94.12 36 | 72.97 24 | 92.39 26 | 93.43 28 | 76.89 61 | 84.68 63 | 93.99 48 | 70.67 62 | 96.82 22 | 84.18 56 | 95.01 37 | 93.90 55 |
|
| SR-MVS | | | 86.73 33 | 86.67 34 | 86.91 46 | 94.11 37 | 72.11 47 | 92.37 28 | 92.56 67 | 74.50 112 | 86.84 42 | 94.65 20 | 67.31 97 | 95.77 54 | 84.80 46 | 92.85 67 | 92.84 103 |
|
| 114514_t | | | 80.68 134 | 79.51 140 | 84.20 115 | 94.09 38 | 67.27 149 | 89.64 85 | 91.11 119 | 58.75 337 | 74.08 250 | 90.72 124 | 58.10 198 | 95.04 85 | 69.70 191 | 89.42 113 | 90.30 189 |
|
| HPM-MVS |  | | 87.11 29 | 86.98 29 | 87.50 38 | 93.88 39 | 72.16 45 | 92.19 34 | 93.33 31 | 76.07 82 | 83.81 83 | 93.95 51 | 69.77 72 | 96.01 48 | 85.15 40 | 94.66 46 | 94.32 38 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| save fliter | | | | | | 93.80 40 | 72.35 42 | 90.47 64 | 91.17 116 | 74.31 116 | | | | | | | |
|
| ACMMP_NAP | | | 88.05 16 | 88.08 16 | 87.94 19 | 93.70 41 | 73.05 22 | 90.86 56 | 93.59 23 | 76.27 79 | 88.14 24 | 95.09 15 | 71.06 57 | 96.67 29 | 87.67 29 | 96.37 14 | 94.09 46 |
|
| HPM-MVS_fast | | | 85.35 57 | 84.95 62 | 86.57 53 | 93.69 42 | 70.58 75 | 92.15 36 | 91.62 103 | 73.89 126 | 82.67 99 | 94.09 40 | 62.60 144 | 95.54 60 | 80.93 83 | 92.93 66 | 93.57 74 |
|
| TSAR-MVS + MP. | | | 88.02 17 | 88.11 15 | 87.72 30 | 93.68 43 | 72.13 46 | 91.41 47 | 92.35 74 | 74.62 111 | 88.90 20 | 93.85 52 | 75.75 20 | 96.00 49 | 87.80 28 | 94.63 47 | 95.04 7 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| MP-MVS-pluss | | | 87.67 20 | 87.72 20 | 87.54 36 | 93.64 44 | 72.04 48 | 89.80 79 | 93.50 25 | 75.17 100 | 86.34 44 | 95.29 12 | 70.86 59 | 96.00 49 | 88.78 19 | 96.04 16 | 94.58 27 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| ACMMP |  | | 85.89 47 | 85.39 53 | 87.38 39 | 93.59 45 | 72.63 33 | 92.74 20 | 93.18 36 | 76.78 65 | 80.73 121 | 93.82 53 | 64.33 125 | 96.29 39 | 82.67 73 | 90.69 94 | 93.23 87 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| DeepC-MVS_fast | | 79.65 3 | 86.91 32 | 86.62 35 | 87.76 27 | 93.52 46 | 72.37 41 | 91.26 48 | 93.04 38 | 76.62 70 | 84.22 74 | 93.36 63 | 71.44 54 | 96.76 25 | 80.82 85 | 95.33 34 | 94.16 43 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| CDPH-MVS | | | 85.76 49 | 85.29 58 | 87.17 43 | 93.49 47 | 71.08 61 | 88.58 123 | 92.42 72 | 68.32 239 | 84.61 67 | 93.48 58 | 72.32 42 | 96.15 45 | 79.00 98 | 95.43 31 | 94.28 40 |
|
| DP-MVS | | | 76.78 227 | 74.57 240 | 83.42 147 | 93.29 48 | 69.46 94 | 88.55 124 | 83.70 279 | 63.98 291 | 70.20 285 | 88.89 168 | 54.01 232 | 94.80 96 | 46.66 354 | 81.88 212 | 86.01 305 |
|
| CPTT-MVS | | | 83.73 73 | 83.33 79 | 84.92 87 | 93.28 49 | 70.86 69 | 92.09 37 | 90.38 137 | 68.75 231 | 79.57 132 | 92.83 76 | 60.60 184 | 93.04 178 | 80.92 84 | 91.56 84 | 90.86 167 |
|
| TEST9 | | | | | | 93.26 50 | 72.96 25 | 88.75 115 | 91.89 93 | 68.44 237 | 85.00 57 | 93.10 67 | 74.36 28 | 95.41 67 | | | |
|
| train_agg | | | 86.43 38 | 86.20 40 | 87.13 44 | 93.26 50 | 72.96 25 | 88.75 115 | 91.89 93 | 68.69 232 | 85.00 57 | 93.10 67 | 74.43 26 | 95.41 67 | 84.97 41 | 95.71 25 | 93.02 98 |
|
| test_8 | | | | | | 93.13 52 | 72.57 35 | 88.68 120 | 91.84 97 | 68.69 232 | 84.87 61 | 93.10 67 | 74.43 26 | 95.16 76 | | | |
|
| 新几何1 | | | | | 83.42 147 | 93.13 52 | 70.71 71 | | 85.48 256 | 57.43 347 | 81.80 107 | 91.98 90 | 63.28 133 | 92.27 201 | 64.60 237 | 92.99 65 | 87.27 278 |
|
| AdaColmap |  | | 80.58 139 | 79.42 142 | 84.06 125 | 93.09 54 | 68.91 104 | 89.36 94 | 88.97 188 | 69.27 215 | 75.70 217 | 89.69 143 | 57.20 209 | 95.77 54 | 63.06 245 | 88.41 127 | 87.50 273 |
|
| SR-MVS-dyc-post | | | 85.77 48 | 85.61 51 | 86.23 56 | 93.06 55 | 70.63 73 | 91.88 39 | 92.27 76 | 73.53 136 | 85.69 49 | 94.45 26 | 65.00 123 | 95.56 58 | 82.75 68 | 91.87 79 | 92.50 114 |
|
| RE-MVS-def | | | | 85.48 52 | | 93.06 55 | 70.63 73 | 91.88 39 | 92.27 76 | 73.53 136 | 85.69 49 | 94.45 26 | 63.87 129 | | 82.75 68 | 91.87 79 | 92.50 114 |
|
| 原ACMM1 | | | | | 84.35 107 | 93.01 57 | 68.79 106 | | 92.44 69 | 63.96 292 | 81.09 117 | 91.57 101 | 66.06 111 | 95.45 63 | 67.19 216 | 94.82 45 | 88.81 247 |
|
| CSCG | | | 86.41 40 | 86.19 41 | 87.07 45 | 92.91 58 | 72.48 37 | 90.81 57 | 93.56 24 | 73.95 123 | 83.16 91 | 91.07 116 | 75.94 18 | 95.19 75 | 79.94 94 | 94.38 54 | 93.55 76 |
|
| agg_prior | | | | | | 92.85 59 | 71.94 51 | | 91.78 100 | | 84.41 71 | | | 94.93 87 | | | |
|
| 9.14 | | | | 88.26 14 | | 92.84 60 | | 91.52 46 | 94.75 1 | 73.93 125 | 88.57 22 | 94.67 19 | 75.57 22 | 95.79 53 | 86.77 35 | 95.76 23 | |
|
| SF-MVS | | | 88.46 11 | 88.74 11 | 87.64 35 | 92.78 61 | 71.95 50 | 92.40 24 | 94.74 2 | 75.71 87 | 89.16 19 | 95.10 14 | 75.65 21 | 96.19 43 | 87.07 34 | 96.01 17 | 94.79 21 |
|
| MG-MVS | | | 83.41 82 | 83.45 75 | 83.28 152 | 92.74 62 | 62.28 248 | 88.17 138 | 89.50 164 | 75.22 96 | 81.49 111 | 92.74 82 | 66.75 100 | 95.11 80 | 72.85 162 | 91.58 83 | 92.45 117 |
|
| APD-MVS_3200maxsize | | | 85.97 44 | 85.88 47 | 86.22 57 | 92.69 63 | 69.53 89 | 91.93 38 | 92.99 45 | 73.54 135 | 85.94 45 | 94.51 24 | 65.80 115 | 95.61 57 | 83.04 65 | 92.51 71 | 93.53 78 |
|
| test12 | | | | | 86.80 49 | 92.63 64 | 70.70 72 | | 91.79 99 | | 82.71 98 | | 71.67 51 | 96.16 44 | | 94.50 50 | 93.54 77 |
|
| test_prior | | | | | 86.33 54 | 92.61 65 | 69.59 88 | | 92.97 50 | | | | | 95.48 62 | | | 93.91 53 |
|
| SD-MVS | | | 88.06 14 | 88.50 13 | 86.71 51 | 92.60 66 | 72.71 29 | 91.81 42 | 93.19 35 | 77.87 36 | 90.32 17 | 94.00 46 | 74.83 23 | 93.78 136 | 87.63 30 | 94.27 57 | 93.65 69 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| PAPM_NR | | | 83.02 91 | 82.41 91 | 84.82 90 | 92.47 67 | 66.37 164 | 87.93 148 | 91.80 98 | 73.82 127 | 77.32 179 | 90.66 125 | 67.90 91 | 94.90 91 | 70.37 183 | 89.48 112 | 93.19 91 |
|
| DeepPCF-MVS | | 80.84 1 | 88.10 12 | 88.56 12 | 86.73 50 | 92.24 68 | 69.03 99 | 89.57 87 | 93.39 30 | 77.53 45 | 89.79 18 | 94.12 39 | 78.98 12 | 96.58 35 | 85.66 37 | 95.72 24 | 94.58 27 |
|
| SteuartSystems-ACMMP | | | 88.72 10 | 88.86 10 | 88.32 9 | 92.14 69 | 72.96 25 | 93.73 5 | 93.67 20 | 80.19 12 | 88.10 25 | 94.80 17 | 73.76 33 | 97.11 15 | 87.51 31 | 95.82 21 | 94.90 13 |
| Skip Steuart: Steuart Systems R&D Blog. |
| UA-Net | | | 85.08 61 | 84.96 61 | 85.45 70 | 92.07 70 | 68.07 129 | 89.78 80 | 90.86 126 | 82.48 3 | 84.60 68 | 93.20 66 | 69.35 75 | 95.22 74 | 71.39 174 | 90.88 92 | 93.07 95 |
|
| 旧先验1 | | | | | | 91.96 71 | 65.79 178 | | 86.37 244 | | | 93.08 71 | 69.31 77 | | | 92.74 68 | 88.74 250 |
|
| MSLP-MVS++ | | | 85.43 55 | 85.76 49 | 84.45 103 | 91.93 72 | 70.24 76 | 90.71 58 | 92.86 53 | 77.46 47 | 84.22 74 | 92.81 78 | 67.16 99 | 92.94 180 | 80.36 90 | 94.35 55 | 90.16 193 |
|
| LFMVS | | | 81.82 107 | 81.23 108 | 83.57 144 | 91.89 73 | 63.43 230 | 89.84 76 | 81.85 307 | 77.04 58 | 83.21 89 | 93.10 67 | 52.26 245 | 93.43 155 | 71.98 169 | 89.95 107 | 93.85 57 |
|
| PLC |  | 70.83 11 | 78.05 200 | 76.37 219 | 83.08 163 | 91.88 74 | 67.80 134 | 88.19 137 | 89.46 165 | 64.33 285 | 69.87 294 | 88.38 183 | 53.66 234 | 93.58 144 | 58.86 284 | 82.73 202 | 87.86 264 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| dcpmvs_2 | | | 85.63 51 | 86.15 43 | 84.06 125 | 91.71 75 | 64.94 197 | 86.47 190 | 91.87 95 | 73.63 131 | 86.60 43 | 93.02 72 | 76.57 15 | 91.87 216 | 83.36 60 | 92.15 75 | 95.35 3 |
|
| MVS_111021_HR | | | 85.14 59 | 84.75 63 | 86.32 55 | 91.65 76 | 72.70 30 | 85.98 202 | 90.33 141 | 76.11 81 | 82.08 102 | 91.61 100 | 71.36 56 | 94.17 120 | 81.02 82 | 92.58 70 | 92.08 131 |
|
| test222 | | | | | | 91.50 77 | 68.26 124 | 84.16 248 | 83.20 290 | 54.63 358 | 79.74 129 | 91.63 99 | 58.97 193 | | | 91.42 85 | 86.77 291 |
|
| TSAR-MVS + GP. | | | 85.71 50 | 85.33 55 | 86.84 47 | 91.34 78 | 72.50 36 | 89.07 104 | 87.28 228 | 76.41 72 | 85.80 47 | 90.22 134 | 74.15 31 | 95.37 72 | 81.82 77 | 91.88 78 | 92.65 109 |
|
| MAR-MVS | | | 81.84 106 | 80.70 117 | 85.27 74 | 91.32 79 | 71.53 54 | 89.82 77 | 90.92 122 | 69.77 206 | 78.50 151 | 86.21 245 | 62.36 150 | 94.52 106 | 65.36 230 | 92.05 77 | 89.77 217 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| DeepC-MVS | | 79.81 2 | 87.08 31 | 86.88 33 | 87.69 33 | 91.16 80 | 72.32 43 | 90.31 68 | 93.94 14 | 77.12 55 | 82.82 96 | 94.23 35 | 72.13 45 | 97.09 16 | 84.83 45 | 95.37 32 | 93.65 69 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| 3Dnovator+ | | 77.84 4 | 85.48 53 | 84.47 68 | 88.51 7 | 91.08 81 | 73.49 16 | 93.18 11 | 93.78 18 | 80.79 8 | 76.66 195 | 93.37 62 | 60.40 188 | 96.75 26 | 77.20 117 | 93.73 62 | 95.29 5 |
|
| Anonymous202405211 | | | 78.25 192 | 77.01 201 | 81.99 194 | 91.03 82 | 60.67 267 | 84.77 230 | 83.90 277 | 70.65 187 | 80.00 128 | 91.20 111 | 41.08 343 | 91.43 235 | 65.21 231 | 85.26 163 | 93.85 57 |
|
| CS-MVS-test | | | 86.29 41 | 86.48 36 | 85.71 65 | 91.02 83 | 67.21 152 | 92.36 29 | 93.78 18 | 78.97 28 | 83.51 88 | 91.20 111 | 70.65 63 | 95.15 77 | 81.96 76 | 94.89 41 | 94.77 22 |
|
| VDD-MVS | | | 83.01 92 | 82.36 93 | 84.96 84 | 91.02 83 | 66.40 163 | 88.91 108 | 88.11 207 | 77.57 41 | 84.39 72 | 93.29 64 | 52.19 246 | 93.91 131 | 77.05 119 | 88.70 122 | 94.57 29 |
|
| API-MVS | | | 81.99 104 | 81.23 108 | 84.26 114 | 90.94 85 | 70.18 82 | 91.10 53 | 89.32 169 | 71.51 169 | 78.66 147 | 88.28 186 | 65.26 118 | 95.10 83 | 64.74 236 | 91.23 88 | 87.51 272 |
|
| testdata | | | | | 79.97 241 | 90.90 86 | 64.21 212 | | 84.71 263 | 59.27 331 | 85.40 51 | 92.91 73 | 62.02 157 | 89.08 277 | 68.95 199 | 91.37 86 | 86.63 295 |
|
| PHI-MVS | | | 86.43 38 | 86.17 42 | 87.24 41 | 90.88 87 | 70.96 65 | 92.27 32 | 94.07 9 | 72.45 152 | 85.22 54 | 91.90 92 | 69.47 74 | 96.42 37 | 83.28 62 | 95.94 19 | 94.35 36 |
|
| VNet | | | 82.21 99 | 82.41 91 | 81.62 200 | 90.82 88 | 60.93 262 | 84.47 238 | 89.78 156 | 76.36 77 | 84.07 78 | 91.88 93 | 64.71 124 | 90.26 258 | 70.68 180 | 88.89 118 | 93.66 65 |
|
| PVSNet_Blended_VisFu | | | 82.62 95 | 81.83 103 | 84.96 84 | 90.80 89 | 69.76 87 | 88.74 117 | 91.70 102 | 69.39 212 | 78.96 139 | 88.46 181 | 65.47 117 | 94.87 94 | 74.42 145 | 88.57 123 | 90.24 191 |
|
| CS-MVS | | | 86.69 34 | 86.95 30 | 85.90 63 | 90.76 90 | 67.57 140 | 92.83 17 | 93.30 32 | 79.67 17 | 84.57 69 | 92.27 86 | 71.47 53 | 95.02 86 | 84.24 54 | 93.46 63 | 95.13 6 |
|
| Anonymous20240529 | | | 80.19 149 | 78.89 157 | 84.10 118 | 90.60 91 | 64.75 201 | 88.95 107 | 90.90 123 | 65.97 267 | 80.59 122 | 91.17 113 | 49.97 275 | 93.73 142 | 69.16 197 | 82.70 204 | 93.81 60 |
|
| h-mvs33 | | | 83.15 87 | 82.19 95 | 86.02 61 | 90.56 92 | 70.85 70 | 88.15 140 | 89.16 178 | 76.02 83 | 84.67 64 | 91.39 107 | 61.54 162 | 95.50 61 | 82.71 70 | 75.48 291 | 91.72 139 |
|
| Anonymous20231211 | | | 78.97 178 | 77.69 189 | 82.81 176 | 90.54 93 | 64.29 211 | 90.11 72 | 91.51 107 | 65.01 277 | 76.16 212 | 88.13 195 | 50.56 269 | 93.03 179 | 69.68 192 | 77.56 261 | 91.11 156 |
|
| LS3D | | | 76.95 225 | 74.82 238 | 83.37 150 | 90.45 94 | 67.36 146 | 89.15 102 | 86.94 235 | 61.87 312 | 69.52 297 | 90.61 126 | 51.71 258 | 94.53 105 | 46.38 357 | 86.71 146 | 88.21 259 |
|
| VDDNet | | | 81.52 115 | 80.67 118 | 84.05 128 | 90.44 95 | 64.13 214 | 89.73 82 | 85.91 250 | 71.11 175 | 83.18 90 | 93.48 58 | 50.54 270 | 93.49 150 | 73.40 156 | 88.25 128 | 94.54 30 |
|
| CNLPA | | | 78.08 198 | 76.79 208 | 81.97 195 | 90.40 96 | 71.07 62 | 87.59 157 | 84.55 266 | 66.03 266 | 72.38 267 | 89.64 145 | 57.56 204 | 86.04 307 | 59.61 276 | 83.35 194 | 88.79 248 |
|
| PAPR | | | 81.66 113 | 80.89 115 | 83.99 133 | 90.27 97 | 64.00 215 | 86.76 183 | 91.77 101 | 68.84 230 | 77.13 188 | 89.50 149 | 67.63 93 | 94.88 93 | 67.55 211 | 88.52 125 | 93.09 94 |
|
| Vis-MVSNet |  | | 83.46 81 | 82.80 88 | 85.43 71 | 90.25 98 | 68.74 110 | 90.30 69 | 90.13 148 | 76.33 78 | 80.87 120 | 92.89 74 | 61.00 176 | 94.20 118 | 72.45 168 | 90.97 90 | 93.35 83 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| DPM-MVS | | | 84.93 62 | 84.29 69 | 86.84 47 | 90.20 99 | 73.04 23 | 87.12 169 | 93.04 38 | 69.80 204 | 82.85 95 | 91.22 110 | 73.06 38 | 96.02 47 | 76.72 126 | 94.63 47 | 91.46 148 |
|
| EPP-MVSNet | | | 83.40 83 | 83.02 83 | 84.57 96 | 90.13 100 | 64.47 207 | 92.32 30 | 90.73 128 | 74.45 115 | 79.35 135 | 91.10 114 | 69.05 81 | 95.12 78 | 72.78 163 | 87.22 138 | 94.13 44 |
|
| CANet | | | 86.45 37 | 86.10 44 | 87.51 37 | 90.09 101 | 70.94 67 | 89.70 83 | 92.59 66 | 81.78 4 | 81.32 112 | 91.43 106 | 70.34 64 | 97.23 13 | 84.26 52 | 93.36 64 | 94.37 35 |
|
| test2506 | | | 77.30 219 | 76.49 215 | 79.74 246 | 90.08 102 | 52.02 352 | 87.86 152 | 63.10 384 | 74.88 104 | 80.16 127 | 92.79 79 | 38.29 353 | 92.35 198 | 68.74 202 | 92.50 72 | 94.86 17 |
|
| ECVR-MVS |  | | 79.61 157 | 79.26 148 | 80.67 228 | 90.08 102 | 54.69 336 | 87.89 150 | 77.44 343 | 74.88 104 | 80.27 124 | 92.79 79 | 48.96 292 | 92.45 192 | 68.55 203 | 92.50 72 | 94.86 17 |
|
| HQP_MVS | | | 83.64 76 | 83.14 80 | 85.14 77 | 90.08 102 | 68.71 112 | 91.25 50 | 92.44 69 | 79.12 23 | 78.92 141 | 91.00 120 | 60.42 186 | 95.38 69 | 78.71 102 | 86.32 151 | 91.33 149 |
|
| plane_prior7 | | | | | | 90.08 102 | 68.51 119 | | | | | | | | | | |
|
| patch_mono-2 | | | 83.65 75 | 84.54 65 | 80.99 220 | 90.06 106 | 65.83 175 | 84.21 247 | 88.74 198 | 71.60 167 | 85.01 55 | 92.44 84 | 74.51 25 | 83.50 327 | 82.15 75 | 92.15 75 | 93.64 71 |
|
| test1111 | | | 79.43 164 | 79.18 152 | 80.15 238 | 89.99 107 | 53.31 349 | 87.33 164 | 77.05 346 | 75.04 101 | 80.23 126 | 92.77 81 | 48.97 291 | 92.33 200 | 68.87 200 | 92.40 74 | 94.81 20 |
|
| CHOSEN 1792x2688 | | | 77.63 213 | 75.69 224 | 83.44 146 | 89.98 108 | 68.58 118 | 78.70 318 | 87.50 224 | 56.38 352 | 75.80 216 | 86.84 222 | 58.67 194 | 91.40 236 | 61.58 262 | 85.75 162 | 90.34 186 |
|
| IS-MVSNet | | | 83.15 87 | 82.81 87 | 84.18 116 | 89.94 109 | 63.30 232 | 91.59 43 | 88.46 204 | 79.04 25 | 79.49 133 | 92.16 88 | 65.10 120 | 94.28 112 | 67.71 209 | 91.86 81 | 94.95 10 |
|
| plane_prior1 | | | | | | 89.90 110 | | | | | | | | | | | |
|
| canonicalmvs | | | 85.91 46 | 85.87 48 | 86.04 60 | 89.84 111 | 69.44 95 | 90.45 66 | 93.00 43 | 76.70 69 | 88.01 28 | 91.23 109 | 73.28 36 | 93.91 131 | 81.50 79 | 88.80 120 | 94.77 22 |
|
| plane_prior6 | | | | | | 89.84 111 | 68.70 114 | | | | | | 60.42 186 | | | | |
|
| MVS_0304 | | | 88.08 13 | 88.08 16 | 88.08 14 | 89.67 113 | 72.04 48 | 92.26 33 | 89.26 173 | 84.19 2 | 85.01 55 | 95.18 13 | 69.93 69 | 97.20 14 | 91.63 2 | 95.60 29 | 94.99 9 |
|
| NP-MVS | | | | | | 89.62 114 | 68.32 122 | | | | | 90.24 132 | | | | | |
|
| EIA-MVS | | | 83.31 86 | 82.80 88 | 84.82 90 | 89.59 115 | 65.59 181 | 88.21 136 | 92.68 60 | 74.66 109 | 78.96 139 | 86.42 241 | 69.06 80 | 95.26 73 | 75.54 138 | 90.09 103 | 93.62 72 |
|
| HyFIR lowres test | | | 77.53 214 | 75.40 231 | 83.94 136 | 89.59 115 | 66.62 160 | 80.36 298 | 88.64 201 | 56.29 353 | 76.45 200 | 85.17 269 | 57.64 203 | 93.28 158 | 61.34 265 | 83.10 198 | 91.91 135 |
|
| TAPA-MVS | | 73.13 9 | 79.15 172 | 77.94 177 | 82.79 179 | 89.59 115 | 62.99 241 | 88.16 139 | 91.51 107 | 65.77 268 | 77.14 187 | 91.09 115 | 60.91 177 | 93.21 163 | 50.26 337 | 87.05 140 | 92.17 128 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| thres100view900 | | | 76.50 230 | 75.55 228 | 79.33 254 | 89.52 118 | 56.99 309 | 85.83 209 | 83.23 288 | 73.94 124 | 76.32 205 | 87.12 218 | 51.89 255 | 91.95 211 | 48.33 345 | 83.75 183 | 89.07 230 |
|
| GeoE | | | 81.71 109 | 81.01 113 | 83.80 139 | 89.51 119 | 64.45 208 | 88.97 106 | 88.73 199 | 71.27 172 | 78.63 148 | 89.76 142 | 66.32 107 | 93.20 166 | 69.89 189 | 86.02 157 | 93.74 63 |
|
| alignmvs | | | 85.48 53 | 85.32 56 | 85.96 62 | 89.51 119 | 69.47 92 | 89.74 81 | 92.47 68 | 76.17 80 | 87.73 33 | 91.46 105 | 70.32 65 | 93.78 136 | 81.51 78 | 88.95 117 | 94.63 26 |
|
| PS-MVSNAJ | | | 81.69 110 | 81.02 112 | 83.70 141 | 89.51 119 | 68.21 126 | 84.28 246 | 90.09 149 | 70.79 181 | 81.26 116 | 85.62 259 | 63.15 138 | 94.29 111 | 75.62 136 | 88.87 119 | 88.59 253 |
|
| ACMP | | 74.13 6 | 81.51 117 | 80.57 119 | 84.36 106 | 89.42 122 | 68.69 115 | 89.97 74 | 91.50 110 | 74.46 114 | 75.04 239 | 90.41 130 | 53.82 233 | 94.54 104 | 77.56 113 | 82.91 199 | 89.86 213 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| thres600view7 | | | 76.50 230 | 75.44 229 | 79.68 248 | 89.40 123 | 57.16 306 | 85.53 217 | 83.23 288 | 73.79 129 | 76.26 206 | 87.09 219 | 51.89 255 | 91.89 214 | 48.05 350 | 83.72 186 | 90.00 205 |
|
| ETV-MVS | | | 84.90 64 | 84.67 64 | 85.59 67 | 89.39 124 | 68.66 116 | 88.74 117 | 92.64 65 | 79.97 15 | 84.10 77 | 85.71 254 | 69.32 76 | 95.38 69 | 80.82 85 | 91.37 86 | 92.72 104 |
|
| BH-RMVSNet | | | 79.61 157 | 78.44 166 | 83.14 160 | 89.38 125 | 65.93 172 | 84.95 227 | 87.15 232 | 73.56 134 | 78.19 161 | 89.79 141 | 56.67 212 | 93.36 156 | 59.53 277 | 86.74 145 | 90.13 195 |
|
| iter_conf_final | | | 80.63 135 | 79.35 145 | 84.46 102 | 89.36 126 | 67.70 137 | 89.85 75 | 84.49 267 | 73.19 145 | 78.30 157 | 88.94 165 | 45.98 311 | 94.56 102 | 79.59 96 | 84.48 174 | 91.11 156 |
|
| HQP-NCC | | | | | | 89.33 127 | | 89.17 98 | | 76.41 72 | 77.23 182 | | | | | | |
|
| ACMP_Plane | | | | | | 89.33 127 | | 89.17 98 | | 76.41 72 | 77.23 182 | | | | | | |
|
| HQP-MVS | | | 82.61 96 | 82.02 99 | 84.37 105 | 89.33 127 | 66.98 155 | 89.17 98 | 92.19 82 | 76.41 72 | 77.23 182 | 90.23 133 | 60.17 189 | 95.11 80 | 77.47 114 | 85.99 158 | 91.03 161 |
|
| EC-MVSNet | | | 86.01 42 | 86.38 37 | 84.91 88 | 89.31 130 | 66.27 166 | 92.32 30 | 93.63 21 | 79.37 20 | 84.17 76 | 91.88 93 | 69.04 82 | 95.43 65 | 83.93 57 | 93.77 61 | 93.01 99 |
|
| ACMM | | 73.20 8 | 80.78 133 | 79.84 134 | 83.58 143 | 89.31 130 | 68.37 121 | 89.99 73 | 91.60 104 | 70.28 193 | 77.25 180 | 89.66 144 | 53.37 237 | 93.53 149 | 74.24 148 | 82.85 200 | 88.85 245 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| Test_1112_low_res | | | 76.40 234 | 75.44 229 | 79.27 255 | 89.28 132 | 58.09 290 | 81.69 281 | 87.07 233 | 59.53 329 | 72.48 265 | 86.67 231 | 61.30 169 | 89.33 272 | 60.81 269 | 80.15 233 | 90.41 184 |
|
| F-COLMAP | | | 76.38 235 | 74.33 245 | 82.50 186 | 89.28 132 | 66.95 158 | 88.41 127 | 89.03 183 | 64.05 289 | 66.83 322 | 88.61 176 | 46.78 303 | 92.89 181 | 57.48 296 | 78.55 249 | 87.67 267 |
|
| LPG-MVS_test | | | 82.08 101 | 81.27 107 | 84.50 99 | 89.23 134 | 68.76 108 | 90.22 70 | 91.94 91 | 75.37 94 | 76.64 196 | 91.51 102 | 54.29 228 | 94.91 88 | 78.44 104 | 83.78 181 | 89.83 214 |
|
| LGP-MVS_train | | | | | 84.50 99 | 89.23 134 | 68.76 108 | | 91.94 91 | 75.37 94 | 76.64 196 | 91.51 102 | 54.29 228 | 94.91 88 | 78.44 104 | 83.78 181 | 89.83 214 |
|
| BH-untuned | | | 79.47 162 | 78.60 162 | 82.05 192 | 89.19 136 | 65.91 173 | 86.07 201 | 88.52 203 | 72.18 157 | 75.42 224 | 87.69 200 | 61.15 173 | 93.54 148 | 60.38 270 | 86.83 144 | 86.70 293 |
|
| xiu_mvs_v2_base | | | 81.69 110 | 81.05 111 | 83.60 142 | 89.15 137 | 68.03 131 | 84.46 240 | 90.02 150 | 70.67 184 | 81.30 115 | 86.53 239 | 63.17 137 | 94.19 119 | 75.60 137 | 88.54 124 | 88.57 254 |
|
| test_yl | | | 81.17 120 | 80.47 122 | 83.24 155 | 89.13 138 | 63.62 221 | 86.21 197 | 89.95 153 | 72.43 155 | 81.78 108 | 89.61 146 | 57.50 205 | 93.58 144 | 70.75 178 | 86.90 142 | 92.52 112 |
|
| DCV-MVSNet | | | 81.17 120 | 80.47 122 | 83.24 155 | 89.13 138 | 63.62 221 | 86.21 197 | 89.95 153 | 72.43 155 | 81.78 108 | 89.61 146 | 57.50 205 | 93.58 144 | 70.75 178 | 86.90 142 | 92.52 112 |
|
| tfpn200view9 | | | 76.42 233 | 75.37 233 | 79.55 253 | 89.13 138 | 57.65 300 | 85.17 220 | 83.60 280 | 73.41 139 | 76.45 200 | 86.39 242 | 52.12 247 | 91.95 211 | 48.33 345 | 83.75 183 | 89.07 230 |
|
| thres400 | | | 76.50 230 | 75.37 233 | 79.86 243 | 89.13 138 | 57.65 300 | 85.17 220 | 83.60 280 | 73.41 139 | 76.45 200 | 86.39 242 | 52.12 247 | 91.95 211 | 48.33 345 | 83.75 183 | 90.00 205 |
|
| 1112_ss | | | 77.40 217 | 76.43 217 | 80.32 235 | 89.11 142 | 60.41 272 | 83.65 255 | 87.72 220 | 62.13 310 | 73.05 259 | 86.72 226 | 62.58 146 | 89.97 262 | 62.11 257 | 80.80 224 | 90.59 178 |
|
| SDMVSNet | | | 80.38 142 | 80.18 128 | 80.99 220 | 89.03 143 | 64.94 197 | 80.45 297 | 89.40 166 | 75.19 98 | 76.61 198 | 89.98 137 | 60.61 183 | 87.69 297 | 76.83 123 | 83.55 189 | 90.33 187 |
|
| sd_testset | | | 77.70 211 | 77.40 194 | 78.60 264 | 89.03 143 | 60.02 276 | 79.00 314 | 85.83 252 | 75.19 98 | 76.61 198 | 89.98 137 | 54.81 219 | 85.46 313 | 62.63 251 | 83.55 189 | 90.33 187 |
|
| Fast-Effi-MVS+ | | | 80.81 128 | 79.92 131 | 83.47 145 | 88.85 145 | 64.51 204 | 85.53 217 | 89.39 167 | 70.79 181 | 78.49 152 | 85.06 272 | 67.54 94 | 93.58 144 | 67.03 219 | 86.58 147 | 92.32 120 |
|
| PVSNet_BlendedMVS | | | 80.60 137 | 80.02 129 | 82.36 189 | 88.85 145 | 65.40 186 | 86.16 199 | 92.00 87 | 69.34 214 | 78.11 163 | 86.09 249 | 66.02 112 | 94.27 113 | 71.52 171 | 82.06 209 | 87.39 274 |
|
| PVSNet_Blended | | | 80.98 123 | 80.34 124 | 82.90 172 | 88.85 145 | 65.40 186 | 84.43 242 | 92.00 87 | 67.62 245 | 78.11 163 | 85.05 273 | 66.02 112 | 94.27 113 | 71.52 171 | 89.50 111 | 89.01 237 |
|
| MVS_111021_LR | | | 82.61 96 | 82.11 96 | 84.11 117 | 88.82 148 | 71.58 53 | 85.15 222 | 86.16 247 | 74.69 108 | 80.47 123 | 91.04 117 | 62.29 151 | 90.55 256 | 80.33 91 | 90.08 104 | 90.20 192 |
|
| BH-w/o | | | 78.21 194 | 77.33 197 | 80.84 224 | 88.81 149 | 65.13 193 | 84.87 228 | 87.85 217 | 69.75 207 | 74.52 246 | 84.74 277 | 61.34 168 | 93.11 173 | 58.24 291 | 85.84 160 | 84.27 327 |
|
| FIs | | | 82.07 102 | 82.42 90 | 81.04 219 | 88.80 150 | 58.34 288 | 88.26 135 | 93.49 26 | 76.93 60 | 78.47 153 | 91.04 117 | 69.92 70 | 92.34 199 | 69.87 190 | 84.97 165 | 92.44 118 |
|
| OPM-MVS | | | 83.50 80 | 82.95 85 | 85.14 77 | 88.79 151 | 70.95 66 | 89.13 103 | 91.52 106 | 77.55 44 | 80.96 119 | 91.75 95 | 60.71 179 | 94.50 107 | 79.67 95 | 86.51 149 | 89.97 209 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| WR-MVS | | | 79.49 161 | 79.22 150 | 80.27 236 | 88.79 151 | 58.35 287 | 85.06 224 | 88.61 202 | 78.56 30 | 77.65 172 | 88.34 184 | 63.81 131 | 90.66 255 | 64.98 234 | 77.22 263 | 91.80 138 |
|
| OMC-MVS | | | 82.69 94 | 81.97 101 | 84.85 89 | 88.75 153 | 67.42 143 | 87.98 144 | 90.87 125 | 74.92 103 | 79.72 130 | 91.65 97 | 62.19 154 | 93.96 124 | 75.26 140 | 86.42 150 | 93.16 92 |
|
| hse-mvs2 | | | 81.72 108 | 80.94 114 | 84.07 123 | 88.72 154 | 67.68 138 | 85.87 206 | 87.26 229 | 76.02 83 | 84.67 64 | 88.22 189 | 61.54 162 | 93.48 151 | 82.71 70 | 73.44 319 | 91.06 159 |
|
| AUN-MVS | | | 79.21 171 | 77.60 191 | 84.05 128 | 88.71 155 | 67.61 139 | 85.84 208 | 87.26 229 | 69.08 223 | 77.23 182 | 88.14 194 | 53.20 239 | 93.47 152 | 75.50 139 | 73.45 318 | 91.06 159 |
|
| ACMH | | 67.68 16 | 75.89 240 | 73.93 248 | 81.77 198 | 88.71 155 | 66.61 161 | 88.62 122 | 89.01 185 | 69.81 203 | 66.78 323 | 86.70 230 | 41.95 340 | 91.51 231 | 55.64 310 | 78.14 256 | 87.17 280 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| Vis-MVSNet (Re-imp) | | | 78.36 191 | 78.45 165 | 78.07 273 | 88.64 157 | 51.78 356 | 86.70 184 | 79.63 329 | 74.14 121 | 75.11 236 | 90.83 123 | 61.29 170 | 89.75 265 | 58.10 292 | 91.60 82 | 92.69 107 |
|
| PatchMatch-RL | | | 72.38 275 | 70.90 276 | 76.80 290 | 88.60 158 | 67.38 145 | 79.53 307 | 76.17 351 | 62.75 304 | 69.36 299 | 82.00 317 | 45.51 317 | 84.89 318 | 53.62 318 | 80.58 227 | 78.12 365 |
|
| ACMH+ | | 68.96 14 | 76.01 239 | 74.01 247 | 82.03 193 | 88.60 158 | 65.31 190 | 88.86 110 | 87.55 222 | 70.25 195 | 67.75 311 | 87.47 208 | 41.27 341 | 93.19 168 | 58.37 289 | 75.94 284 | 87.60 269 |
|
| LTVRE_ROB | | 69.57 13 | 76.25 236 | 74.54 242 | 81.41 206 | 88.60 158 | 64.38 210 | 79.24 310 | 89.12 182 | 70.76 183 | 69.79 296 | 87.86 197 | 49.09 288 | 93.20 166 | 56.21 309 | 80.16 232 | 86.65 294 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| DELS-MVS | | | 85.41 56 | 85.30 57 | 85.77 64 | 88.49 161 | 67.93 132 | 85.52 219 | 93.44 27 | 78.70 29 | 83.63 87 | 89.03 164 | 74.57 24 | 95.71 56 | 80.26 92 | 94.04 59 | 93.66 65 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| CLD-MVS | | | 82.31 98 | 81.65 104 | 84.29 110 | 88.47 162 | 67.73 136 | 85.81 210 | 92.35 74 | 75.78 86 | 78.33 156 | 86.58 236 | 64.01 128 | 94.35 110 | 76.05 131 | 87.48 135 | 90.79 168 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| UniMVSNet_NR-MVSNet | | | 81.88 105 | 81.54 105 | 82.92 171 | 88.46 163 | 63.46 228 | 87.13 168 | 92.37 73 | 80.19 12 | 78.38 154 | 89.14 160 | 71.66 52 | 93.05 176 | 70.05 186 | 76.46 274 | 92.25 123 |
|
| ab-mvs | | | 79.51 160 | 78.97 156 | 81.14 216 | 88.46 163 | 60.91 263 | 83.84 252 | 89.24 175 | 70.36 190 | 79.03 138 | 88.87 169 | 63.23 136 | 90.21 260 | 65.12 232 | 82.57 205 | 92.28 122 |
|
| FC-MVSNet-test | | | 81.52 115 | 82.02 99 | 80.03 240 | 88.42 165 | 55.97 325 | 87.95 146 | 93.42 29 | 77.10 56 | 77.38 177 | 90.98 122 | 69.96 68 | 91.79 217 | 68.46 205 | 84.50 171 | 92.33 119 |
|
| Effi-MVS+ | | | 83.62 78 | 83.08 81 | 85.24 75 | 88.38 166 | 67.45 142 | 88.89 109 | 89.15 179 | 75.50 92 | 82.27 100 | 88.28 186 | 69.61 73 | 94.45 109 | 77.81 111 | 87.84 130 | 93.84 59 |
|
| UniMVSNet (Re) | | | 81.60 114 | 81.11 110 | 83.09 162 | 88.38 166 | 64.41 209 | 87.60 156 | 93.02 42 | 78.42 32 | 78.56 150 | 88.16 190 | 69.78 71 | 93.26 159 | 69.58 193 | 76.49 273 | 91.60 140 |
|
| VPNet | | | 78.69 184 | 78.66 161 | 78.76 261 | 88.31 168 | 55.72 327 | 84.45 241 | 86.63 240 | 76.79 64 | 78.26 158 | 90.55 128 | 59.30 191 | 89.70 267 | 66.63 220 | 77.05 265 | 90.88 166 |
|
| FA-MVS(test-final) | | | 80.96 124 | 79.91 132 | 84.10 118 | 88.30 169 | 65.01 195 | 84.55 237 | 90.01 151 | 73.25 143 | 79.61 131 | 87.57 203 | 58.35 197 | 94.72 99 | 71.29 175 | 86.25 153 | 92.56 111 |
|
| TR-MVS | | | 77.44 215 | 76.18 220 | 81.20 214 | 88.24 170 | 63.24 233 | 84.61 235 | 86.40 243 | 67.55 246 | 77.81 169 | 86.48 240 | 54.10 230 | 93.15 170 | 57.75 295 | 82.72 203 | 87.20 279 |
|
| EI-MVSNet-Vis-set | | | 84.19 67 | 83.81 72 | 85.31 73 | 88.18 171 | 67.85 133 | 87.66 155 | 89.73 159 | 80.05 14 | 82.95 92 | 89.59 148 | 70.74 61 | 94.82 95 | 80.66 89 | 84.72 168 | 93.28 86 |
|
| baseline1 | | | 76.98 224 | 76.75 211 | 77.66 278 | 88.13 172 | 55.66 328 | 85.12 223 | 81.89 305 | 73.04 148 | 76.79 191 | 88.90 167 | 62.43 149 | 87.78 296 | 63.30 244 | 71.18 334 | 89.55 223 |
|
| test_0402 | | | 72.79 273 | 70.44 281 | 79.84 244 | 88.13 172 | 65.99 171 | 85.93 204 | 84.29 271 | 65.57 271 | 67.40 317 | 85.49 261 | 46.92 302 | 92.61 187 | 35.88 378 | 74.38 309 | 80.94 357 |
|
| tttt0517 | | | 79.40 166 | 77.91 178 | 83.90 138 | 88.10 174 | 63.84 218 | 88.37 131 | 84.05 275 | 71.45 170 | 76.78 192 | 89.12 161 | 49.93 278 | 94.89 92 | 70.18 185 | 83.18 197 | 92.96 101 |
|
| FE-MVS | | | 77.78 207 | 75.68 225 | 84.08 122 | 88.09 175 | 66.00 170 | 83.13 266 | 87.79 218 | 68.42 238 | 78.01 166 | 85.23 267 | 45.50 318 | 95.12 78 | 59.11 281 | 85.83 161 | 91.11 156 |
|
| VPA-MVSNet | | | 80.60 137 | 80.55 120 | 80.76 226 | 88.07 176 | 60.80 265 | 86.86 177 | 91.58 105 | 75.67 90 | 80.24 125 | 89.45 155 | 63.34 132 | 90.25 259 | 70.51 182 | 79.22 245 | 91.23 153 |
|
| UGNet | | | 80.83 127 | 79.59 139 | 84.54 98 | 88.04 177 | 68.09 128 | 89.42 91 | 88.16 206 | 76.95 59 | 76.22 207 | 89.46 153 | 49.30 285 | 93.94 127 | 68.48 204 | 90.31 98 | 91.60 140 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| WR-MVS_H | | | 78.51 188 | 78.49 164 | 78.56 265 | 88.02 178 | 56.38 320 | 88.43 126 | 92.67 61 | 77.14 54 | 73.89 251 | 87.55 205 | 66.25 108 | 89.24 274 | 58.92 283 | 73.55 317 | 90.06 203 |
|
| QAPM | | | 80.88 125 | 79.50 141 | 85.03 81 | 88.01 179 | 68.97 103 | 91.59 43 | 92.00 87 | 66.63 259 | 75.15 235 | 92.16 88 | 57.70 202 | 95.45 63 | 63.52 240 | 88.76 121 | 90.66 174 |
|
| 3Dnovator | | 76.31 5 | 83.38 84 | 82.31 94 | 86.59 52 | 87.94 180 | 72.94 28 | 90.64 59 | 92.14 84 | 77.21 52 | 75.47 220 | 92.83 76 | 58.56 195 | 94.72 99 | 73.24 159 | 92.71 69 | 92.13 130 |
|
| EI-MVSNet-UG-set | | | 83.81 71 | 83.38 77 | 85.09 80 | 87.87 181 | 67.53 141 | 87.44 161 | 89.66 160 | 79.74 16 | 82.23 101 | 89.41 157 | 70.24 66 | 94.74 98 | 79.95 93 | 83.92 180 | 92.99 100 |
|
| TranMVSNet+NR-MVSNet | | | 80.84 126 | 80.31 125 | 82.42 187 | 87.85 182 | 62.33 246 | 87.74 154 | 91.33 112 | 80.55 9 | 77.99 167 | 89.86 139 | 65.23 119 | 92.62 186 | 67.05 218 | 75.24 301 | 92.30 121 |
|
| iter_conf05 | | | 80.00 153 | 78.70 159 | 83.91 137 | 87.84 183 | 65.83 175 | 88.84 112 | 84.92 262 | 71.61 166 | 78.70 144 | 88.94 165 | 43.88 326 | 94.56 102 | 79.28 97 | 84.28 177 | 91.33 149 |
|
| CP-MVSNet | | | 78.22 193 | 78.34 169 | 77.84 275 | 87.83 184 | 54.54 338 | 87.94 147 | 91.17 116 | 77.65 38 | 73.48 254 | 88.49 180 | 62.24 153 | 88.43 288 | 62.19 254 | 74.07 310 | 90.55 179 |
|
| DU-MVS | | | 81.12 122 | 80.52 121 | 82.90 172 | 87.80 185 | 63.46 228 | 87.02 172 | 91.87 95 | 79.01 26 | 78.38 154 | 89.07 162 | 65.02 121 | 93.05 176 | 70.05 186 | 76.46 274 | 92.20 126 |
|
| NR-MVSNet | | | 80.23 147 | 79.38 143 | 82.78 180 | 87.80 185 | 63.34 231 | 86.31 194 | 91.09 120 | 79.01 26 | 72.17 269 | 89.07 162 | 67.20 98 | 92.81 185 | 66.08 225 | 75.65 287 | 92.20 126 |
|
| TAMVS | | | 78.89 180 | 77.51 193 | 83.03 166 | 87.80 185 | 67.79 135 | 84.72 231 | 85.05 260 | 67.63 244 | 76.75 193 | 87.70 199 | 62.25 152 | 90.82 251 | 58.53 288 | 87.13 139 | 90.49 181 |
|
| thres200 | | | 75.55 244 | 74.47 243 | 78.82 260 | 87.78 188 | 57.85 297 | 83.07 269 | 83.51 283 | 72.44 154 | 75.84 215 | 84.42 279 | 52.08 250 | 91.75 219 | 47.41 352 | 83.64 188 | 86.86 289 |
|
| PS-CasMVS | | | 78.01 202 | 78.09 174 | 77.77 277 | 87.71 189 | 54.39 340 | 88.02 143 | 91.22 113 | 77.50 46 | 73.26 256 | 88.64 175 | 60.73 178 | 88.41 289 | 61.88 258 | 73.88 314 | 90.53 180 |
|
| PCF-MVS | | 73.52 7 | 80.38 142 | 78.84 158 | 85.01 82 | 87.71 189 | 68.99 102 | 83.65 255 | 91.46 111 | 63.00 298 | 77.77 171 | 90.28 131 | 66.10 109 | 95.09 84 | 61.40 263 | 88.22 129 | 90.94 165 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| thisisatest0530 | | | 79.40 166 | 77.76 186 | 84.31 109 | 87.69 191 | 65.10 194 | 87.36 162 | 84.26 273 | 70.04 197 | 77.42 176 | 88.26 188 | 49.94 276 | 94.79 97 | 70.20 184 | 84.70 169 | 93.03 97 |
|
| casdiffmvs_mvg |  | | 85.99 43 | 86.09 45 | 85.70 66 | 87.65 192 | 67.22 151 | 88.69 119 | 93.04 38 | 79.64 18 | 85.33 52 | 92.54 83 | 73.30 35 | 94.50 107 | 83.49 59 | 91.14 89 | 95.37 2 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| RRT_MVS | | | 80.35 145 | 79.22 150 | 83.74 140 | 87.63 193 | 65.46 185 | 91.08 54 | 88.92 191 | 73.82 127 | 76.44 203 | 90.03 136 | 49.05 290 | 94.25 117 | 76.84 121 | 79.20 246 | 91.51 143 |
|
| GBi-Net | | | 78.40 189 | 77.40 194 | 81.40 207 | 87.60 194 | 63.01 238 | 88.39 128 | 89.28 170 | 71.63 163 | 75.34 227 | 87.28 210 | 54.80 220 | 91.11 242 | 62.72 247 | 79.57 238 | 90.09 199 |
|
| test1 | | | 78.40 189 | 77.40 194 | 81.40 207 | 87.60 194 | 63.01 238 | 88.39 128 | 89.28 170 | 71.63 163 | 75.34 227 | 87.28 210 | 54.80 220 | 91.11 242 | 62.72 247 | 79.57 238 | 90.09 199 |
|
| FMVSNet2 | | | 78.20 195 | 77.21 198 | 81.20 214 | 87.60 194 | 62.89 242 | 87.47 160 | 89.02 184 | 71.63 163 | 75.29 232 | 87.28 210 | 54.80 220 | 91.10 245 | 62.38 252 | 79.38 242 | 89.61 221 |
|
| CDS-MVSNet | | | 79.07 175 | 77.70 188 | 83.17 159 | 87.60 194 | 68.23 125 | 84.40 244 | 86.20 246 | 67.49 247 | 76.36 204 | 86.54 238 | 61.54 162 | 90.79 252 | 61.86 259 | 87.33 136 | 90.49 181 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| HY-MVS | | 69.67 12 | 77.95 203 | 77.15 199 | 80.36 233 | 87.57 198 | 60.21 275 | 83.37 262 | 87.78 219 | 66.11 263 | 75.37 226 | 87.06 221 | 63.27 134 | 90.48 257 | 61.38 264 | 82.43 206 | 90.40 185 |
|
| mvsmamba | | | 81.69 110 | 80.74 116 | 84.56 97 | 87.45 199 | 66.72 159 | 91.26 48 | 85.89 251 | 74.66 109 | 78.23 159 | 90.56 127 | 54.33 227 | 94.91 88 | 80.73 88 | 83.54 191 | 92.04 134 |
|
| xiu_mvs_v1_base_debu | | | 80.80 130 | 79.72 136 | 84.03 130 | 87.35 200 | 70.19 79 | 85.56 212 | 88.77 194 | 69.06 224 | 81.83 104 | 88.16 190 | 50.91 264 | 92.85 182 | 78.29 108 | 87.56 132 | 89.06 232 |
|
| xiu_mvs_v1_base | | | 80.80 130 | 79.72 136 | 84.03 130 | 87.35 200 | 70.19 79 | 85.56 212 | 88.77 194 | 69.06 224 | 81.83 104 | 88.16 190 | 50.91 264 | 92.85 182 | 78.29 108 | 87.56 132 | 89.06 232 |
|
| xiu_mvs_v1_base_debi | | | 80.80 130 | 79.72 136 | 84.03 130 | 87.35 200 | 70.19 79 | 85.56 212 | 88.77 194 | 69.06 224 | 81.83 104 | 88.16 190 | 50.91 264 | 92.85 182 | 78.29 108 | 87.56 132 | 89.06 232 |
|
| MVSFormer | | | 82.85 93 | 82.05 98 | 85.24 75 | 87.35 200 | 70.21 77 | 90.50 62 | 90.38 137 | 68.55 234 | 81.32 112 | 89.47 151 | 61.68 159 | 93.46 153 | 78.98 99 | 90.26 100 | 92.05 132 |
|
| lupinMVS | | | 81.39 118 | 80.27 127 | 84.76 93 | 87.35 200 | 70.21 77 | 85.55 215 | 86.41 242 | 62.85 301 | 81.32 112 | 88.61 176 | 61.68 159 | 92.24 203 | 78.41 106 | 90.26 100 | 91.83 136 |
|
| testing3 | | | 68.56 307 | 67.67 308 | 71.22 335 | 87.33 205 | 42.87 383 | 83.06 270 | 71.54 365 | 70.36 190 | 69.08 302 | 84.38 281 | 30.33 372 | 85.69 310 | 37.50 377 | 75.45 294 | 85.09 320 |
|
| baseline | | | 84.93 62 | 84.98 60 | 84.80 92 | 87.30 206 | 65.39 188 | 87.30 165 | 92.88 52 | 77.62 39 | 84.04 79 | 92.26 87 | 71.81 47 | 93.96 124 | 81.31 80 | 90.30 99 | 95.03 8 |
|
| PAPM | | | 77.68 212 | 76.40 218 | 81.51 203 | 87.29 207 | 61.85 253 | 83.78 253 | 89.59 162 | 64.74 279 | 71.23 277 | 88.70 172 | 62.59 145 | 93.66 143 | 52.66 323 | 87.03 141 | 89.01 237 |
|
| LCM-MVSNet-Re | | | 77.05 222 | 76.94 204 | 77.36 283 | 87.20 208 | 51.60 357 | 80.06 301 | 80.46 320 | 75.20 97 | 67.69 312 | 86.72 226 | 62.48 147 | 88.98 279 | 63.44 242 | 89.25 114 | 91.51 143 |
|
| casdiffmvs |  | | 85.11 60 | 85.14 59 | 85.01 82 | 87.20 208 | 65.77 179 | 87.75 153 | 92.83 55 | 77.84 37 | 84.36 73 | 92.38 85 | 72.15 44 | 93.93 130 | 81.27 81 | 90.48 96 | 95.33 4 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| COLMAP_ROB |  | 66.92 17 | 73.01 270 | 70.41 282 | 80.81 225 | 87.13 210 | 65.63 180 | 88.30 134 | 84.19 274 | 62.96 299 | 63.80 348 | 87.69 200 | 38.04 354 | 92.56 189 | 46.66 354 | 74.91 304 | 84.24 328 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| PEN-MVS | | | 77.73 208 | 77.69 189 | 77.84 275 | 87.07 211 | 53.91 343 | 87.91 149 | 91.18 115 | 77.56 43 | 73.14 258 | 88.82 170 | 61.23 171 | 89.17 275 | 59.95 273 | 72.37 325 | 90.43 183 |
|
| MVS_Test | | | 83.15 87 | 83.06 82 | 83.41 149 | 86.86 212 | 63.21 234 | 86.11 200 | 92.00 87 | 74.31 116 | 82.87 94 | 89.44 156 | 70.03 67 | 93.21 163 | 77.39 116 | 88.50 126 | 93.81 60 |
|
| UniMVSNet_ETH3D | | | 79.10 174 | 78.24 172 | 81.70 199 | 86.85 213 | 60.24 274 | 87.28 166 | 88.79 193 | 74.25 118 | 76.84 189 | 90.53 129 | 49.48 281 | 91.56 226 | 67.98 207 | 82.15 208 | 93.29 85 |
|
| FMVSNet3 | | | 77.88 205 | 76.85 206 | 80.97 222 | 86.84 214 | 62.36 245 | 86.52 189 | 88.77 194 | 71.13 174 | 75.34 227 | 86.66 232 | 54.07 231 | 91.10 245 | 62.72 247 | 79.57 238 | 89.45 224 |
|
| FMVSNet1 | | | 77.44 215 | 76.12 221 | 81.40 207 | 86.81 215 | 63.01 238 | 88.39 128 | 89.28 170 | 70.49 189 | 74.39 247 | 87.28 210 | 49.06 289 | 91.11 242 | 60.91 267 | 78.52 250 | 90.09 199 |
|
| nrg030 | | | 83.88 70 | 83.53 74 | 84.96 84 | 86.77 216 | 69.28 98 | 90.46 65 | 92.67 61 | 74.79 106 | 82.95 92 | 91.33 108 | 72.70 41 | 93.09 174 | 80.79 87 | 79.28 244 | 92.50 114 |
|
| ET-MVSNet_ETH3D | | | 78.63 185 | 76.63 214 | 84.64 95 | 86.73 217 | 69.47 92 | 85.01 225 | 84.61 265 | 69.54 210 | 66.51 330 | 86.59 234 | 50.16 273 | 91.75 219 | 76.26 128 | 84.24 178 | 92.69 107 |
|
| fmvsm_s_conf0.5_n | | | 83.80 72 | 83.71 73 | 84.07 123 | 86.69 218 | 67.31 147 | 89.46 89 | 83.07 292 | 71.09 176 | 86.96 41 | 93.70 55 | 69.02 83 | 91.47 233 | 88.79 18 | 84.62 170 | 93.44 80 |
|
| jason | | | 81.39 118 | 80.29 126 | 84.70 94 | 86.63 219 | 69.90 85 | 85.95 203 | 86.77 238 | 63.24 294 | 81.07 118 | 89.47 151 | 61.08 175 | 92.15 205 | 78.33 107 | 90.07 105 | 92.05 132 |
| jason: jason. |
| PS-MVSNAJss | | | 82.07 102 | 81.31 106 | 84.34 108 | 86.51 220 | 67.27 149 | 89.27 96 | 91.51 107 | 71.75 161 | 79.37 134 | 90.22 134 | 63.15 138 | 94.27 113 | 77.69 112 | 82.36 207 | 91.49 146 |
|
| WTY-MVS | | | 75.65 243 | 75.68 225 | 75.57 298 | 86.40 221 | 56.82 311 | 77.92 328 | 82.40 301 | 65.10 274 | 76.18 209 | 87.72 198 | 63.13 141 | 80.90 341 | 60.31 271 | 81.96 210 | 89.00 239 |
|
| DTE-MVSNet | | | 76.99 223 | 76.80 207 | 77.54 282 | 86.24 222 | 53.06 351 | 87.52 158 | 90.66 129 | 77.08 57 | 72.50 264 | 88.67 174 | 60.48 185 | 89.52 269 | 57.33 299 | 70.74 336 | 90.05 204 |
|
| PVSNet | | 64.34 18 | 72.08 278 | 70.87 277 | 75.69 296 | 86.21 223 | 56.44 318 | 74.37 349 | 80.73 315 | 62.06 311 | 70.17 287 | 82.23 313 | 42.86 331 | 83.31 329 | 54.77 313 | 84.45 175 | 87.32 277 |
|
| fmvsm_s_conf0.5_n_a | | | 83.63 77 | 83.41 76 | 84.28 111 | 86.14 224 | 68.12 127 | 89.43 90 | 82.87 296 | 70.27 194 | 87.27 37 | 93.80 54 | 69.09 78 | 91.58 224 | 88.21 26 | 83.65 187 | 93.14 93 |
|
| test_fmvsm_n_1920 | | | 85.29 58 | 85.34 54 | 85.13 79 | 86.12 225 | 69.93 83 | 88.65 121 | 90.78 127 | 69.97 200 | 88.27 23 | 93.98 49 | 71.39 55 | 91.54 228 | 88.49 23 | 90.45 97 | 93.91 53 |
|
| tfpnnormal | | | 74.39 253 | 73.16 257 | 78.08 272 | 86.10 226 | 58.05 291 | 84.65 234 | 87.53 223 | 70.32 192 | 71.22 278 | 85.63 258 | 54.97 218 | 89.86 263 | 43.03 366 | 75.02 303 | 86.32 297 |
|
| IterMVS-LS | | | 80.06 150 | 79.38 143 | 82.11 191 | 85.89 227 | 63.20 235 | 86.79 180 | 89.34 168 | 74.19 119 | 75.45 223 | 86.72 226 | 66.62 101 | 92.39 195 | 72.58 165 | 76.86 268 | 90.75 171 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Baseline_NR-MVSNet | | | 78.15 197 | 78.33 170 | 77.61 280 | 85.79 228 | 56.21 323 | 86.78 181 | 85.76 253 | 73.60 133 | 77.93 168 | 87.57 203 | 65.02 121 | 88.99 278 | 67.14 217 | 75.33 298 | 87.63 268 |
|
| cascas | | | 76.72 228 | 74.64 239 | 82.99 168 | 85.78 229 | 65.88 174 | 82.33 275 | 89.21 176 | 60.85 318 | 72.74 261 | 81.02 322 | 47.28 299 | 93.75 140 | 67.48 212 | 85.02 164 | 89.34 226 |
|
| MVS | | | 78.19 196 | 76.99 203 | 81.78 197 | 85.66 230 | 66.99 154 | 84.66 232 | 90.47 135 | 55.08 357 | 72.02 271 | 85.27 265 | 63.83 130 | 94.11 122 | 66.10 224 | 89.80 109 | 84.24 328 |
|
| XVG-OURS | | | 80.41 141 | 79.23 149 | 83.97 134 | 85.64 231 | 69.02 101 | 83.03 271 | 90.39 136 | 71.09 176 | 77.63 173 | 91.49 104 | 54.62 226 | 91.35 237 | 75.71 134 | 83.47 192 | 91.54 142 |
|
| CANet_DTU | | | 80.61 136 | 79.87 133 | 82.83 174 | 85.60 232 | 63.17 237 | 87.36 162 | 88.65 200 | 76.37 76 | 75.88 214 | 88.44 182 | 53.51 236 | 93.07 175 | 73.30 157 | 89.74 110 | 92.25 123 |
|
| XVG-OURS-SEG-HR | | | 80.81 128 | 79.76 135 | 83.96 135 | 85.60 232 | 68.78 107 | 83.54 260 | 90.50 134 | 70.66 186 | 76.71 194 | 91.66 96 | 60.69 180 | 91.26 239 | 76.94 120 | 81.58 215 | 91.83 136 |
|
| TransMVSNet (Re) | | | 75.39 249 | 74.56 241 | 77.86 274 | 85.50 234 | 57.10 308 | 86.78 181 | 86.09 249 | 72.17 158 | 71.53 275 | 87.34 209 | 63.01 142 | 89.31 273 | 56.84 304 | 61.83 362 | 87.17 280 |
|
| fmvsm_l_conf0.5_n | | | 84.47 66 | 84.54 65 | 84.27 113 | 85.42 235 | 68.81 105 | 88.49 125 | 87.26 229 | 68.08 241 | 88.03 27 | 93.49 57 | 72.04 46 | 91.77 218 | 88.90 17 | 89.14 116 | 92.24 125 |
|
| fmvsm_l_conf0.5_n_a | | | 84.13 68 | 84.16 70 | 84.06 125 | 85.38 236 | 68.40 120 | 88.34 132 | 86.85 237 | 67.48 248 | 87.48 34 | 93.40 61 | 70.89 58 | 91.61 222 | 88.38 25 | 89.22 115 | 92.16 129 |
|
| MVP-Stereo | | | 76.12 237 | 74.46 244 | 81.13 217 | 85.37 237 | 69.79 86 | 84.42 243 | 87.95 213 | 65.03 276 | 67.46 315 | 85.33 264 | 53.28 238 | 91.73 221 | 58.01 293 | 83.27 195 | 81.85 352 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| thisisatest0515 | | | 77.33 218 | 75.38 232 | 83.18 158 | 85.27 238 | 63.80 219 | 82.11 277 | 83.27 287 | 65.06 275 | 75.91 213 | 83.84 290 | 49.54 280 | 94.27 113 | 67.24 215 | 86.19 154 | 91.48 147 |
|
| tt0805 | | | 78.73 182 | 77.83 181 | 81.43 205 | 85.17 239 | 60.30 273 | 89.41 92 | 90.90 123 | 71.21 173 | 77.17 186 | 88.73 171 | 46.38 305 | 93.21 163 | 72.57 166 | 78.96 247 | 90.79 168 |
|
| OpenMVS |  | 72.83 10 | 79.77 155 | 78.33 170 | 84.09 121 | 85.17 239 | 69.91 84 | 90.57 60 | 90.97 121 | 66.70 253 | 72.17 269 | 91.91 91 | 54.70 224 | 93.96 124 | 61.81 260 | 90.95 91 | 88.41 257 |
|
| AllTest | | | 70.96 284 | 68.09 299 | 79.58 251 | 85.15 241 | 63.62 221 | 84.58 236 | 79.83 326 | 62.31 308 | 60.32 359 | 86.73 224 | 32.02 366 | 88.96 281 | 50.28 335 | 71.57 332 | 86.15 301 |
|
| TestCases | | | | | 79.58 251 | 85.15 241 | 63.62 221 | | 79.83 326 | 62.31 308 | 60.32 359 | 86.73 224 | 32.02 366 | 88.96 281 | 50.28 335 | 71.57 332 | 86.15 301 |
|
| Effi-MVS+-dtu | | | 80.03 151 | 78.57 163 | 84.42 104 | 85.13 243 | 68.74 110 | 88.77 114 | 88.10 208 | 74.99 102 | 74.97 240 | 83.49 296 | 57.27 208 | 93.36 156 | 73.53 153 | 80.88 222 | 91.18 154 |
|
| SixPastTwentyTwo | | | 73.37 264 | 71.26 274 | 79.70 247 | 85.08 244 | 57.89 296 | 85.57 211 | 83.56 282 | 71.03 178 | 65.66 334 | 85.88 251 | 42.10 338 | 92.57 188 | 59.11 281 | 63.34 360 | 88.65 252 |
|
| bld_raw_dy_0_64 | | | 77.29 220 | 75.98 222 | 81.22 213 | 85.04 245 | 65.47 184 | 88.14 142 | 77.56 340 | 69.20 219 | 73.77 252 | 89.40 159 | 42.24 337 | 88.85 284 | 76.78 124 | 81.64 214 | 89.33 227 |
|
| test_fmvsmconf_n | | | 85.92 45 | 86.04 46 | 85.57 68 | 85.03 246 | 69.51 90 | 89.62 86 | 90.58 131 | 73.42 138 | 87.75 31 | 94.02 44 | 72.85 40 | 93.24 160 | 90.37 3 | 90.75 93 | 93.96 51 |
|
| EG-PatchMatch MVS | | | 74.04 258 | 71.82 267 | 80.71 227 | 84.92 247 | 67.42 143 | 85.86 207 | 88.08 209 | 66.04 265 | 64.22 344 | 83.85 289 | 35.10 362 | 92.56 189 | 57.44 297 | 80.83 223 | 82.16 351 |
|
| fmvsm_s_conf0.1_n | | | 83.56 79 | 83.38 77 | 84.10 118 | 84.86 248 | 67.28 148 | 89.40 93 | 83.01 293 | 70.67 184 | 87.08 38 | 93.96 50 | 68.38 87 | 91.45 234 | 88.56 22 | 84.50 171 | 93.56 75 |
|
| IB-MVS | | 68.01 15 | 75.85 241 | 73.36 255 | 83.31 151 | 84.76 249 | 66.03 168 | 83.38 261 | 85.06 259 | 70.21 196 | 69.40 298 | 81.05 321 | 45.76 315 | 94.66 101 | 65.10 233 | 75.49 290 | 89.25 229 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| mvs_tets | | | 79.13 173 | 77.77 185 | 83.22 157 | 84.70 250 | 66.37 164 | 89.17 98 | 90.19 146 | 69.38 213 | 75.40 225 | 89.46 153 | 44.17 324 | 93.15 170 | 76.78 124 | 80.70 226 | 90.14 194 |
|
| Syy-MVS | | | 68.05 311 | 67.85 302 | 68.67 348 | 84.68 251 | 40.97 389 | 78.62 319 | 73.08 362 | 66.65 257 | 66.74 324 | 79.46 337 | 52.11 249 | 82.30 334 | 32.89 381 | 76.38 279 | 82.75 346 |
|
| myMVS_eth3d | | | 67.02 317 | 66.29 318 | 69.21 343 | 84.68 251 | 42.58 384 | 78.62 319 | 73.08 362 | 66.65 257 | 66.74 324 | 79.46 337 | 31.53 369 | 82.30 334 | 39.43 374 | 76.38 279 | 82.75 346 |
|
| jajsoiax | | | 79.29 169 | 77.96 176 | 83.27 153 | 84.68 251 | 66.57 162 | 89.25 97 | 90.16 147 | 69.20 219 | 75.46 222 | 89.49 150 | 45.75 316 | 93.13 172 | 76.84 121 | 80.80 224 | 90.11 197 |
|
| MIMVSNet | | | 70.69 288 | 69.30 287 | 74.88 305 | 84.52 254 | 56.35 321 | 75.87 339 | 79.42 330 | 64.59 280 | 67.76 310 | 82.41 309 | 41.10 342 | 81.54 338 | 46.64 356 | 81.34 216 | 86.75 292 |
|
| MSDG | | | 73.36 266 | 70.99 275 | 80.49 231 | 84.51 255 | 65.80 177 | 80.71 292 | 86.13 248 | 65.70 269 | 65.46 335 | 83.74 293 | 44.60 321 | 90.91 250 | 51.13 330 | 76.89 267 | 84.74 323 |
|
| mvs_anonymous | | | 79.42 165 | 79.11 153 | 80.34 234 | 84.45 256 | 57.97 294 | 82.59 273 | 87.62 221 | 67.40 249 | 76.17 211 | 88.56 179 | 68.47 86 | 89.59 268 | 70.65 181 | 86.05 156 | 93.47 79 |
|
| EI-MVSNet | | | 80.52 140 | 79.98 130 | 82.12 190 | 84.28 257 | 63.19 236 | 86.41 191 | 88.95 189 | 74.18 120 | 78.69 145 | 87.54 206 | 66.62 101 | 92.43 193 | 72.57 166 | 80.57 228 | 90.74 172 |
|
| CVMVSNet | | | 72.99 271 | 72.58 261 | 74.25 312 | 84.28 257 | 50.85 362 | 86.41 191 | 83.45 285 | 44.56 374 | 73.23 257 | 87.54 206 | 49.38 283 | 85.70 309 | 65.90 226 | 78.44 252 | 86.19 300 |
|
| pm-mvs1 | | | 77.25 221 | 76.68 213 | 78.93 259 | 84.22 259 | 58.62 286 | 86.41 191 | 88.36 205 | 71.37 171 | 73.31 255 | 88.01 196 | 61.22 172 | 89.15 276 | 64.24 238 | 73.01 322 | 89.03 236 |
|
| EPNet | | | 83.72 74 | 82.92 86 | 86.14 59 | 84.22 259 | 69.48 91 | 91.05 55 | 85.27 257 | 81.30 6 | 76.83 190 | 91.65 97 | 66.09 110 | 95.56 58 | 76.00 132 | 93.85 60 | 93.38 81 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| test_fmvsmvis_n_1920 | | | 84.02 69 | 83.87 71 | 84.49 101 | 84.12 261 | 69.37 97 | 88.15 140 | 87.96 212 | 70.01 198 | 83.95 80 | 93.23 65 | 68.80 85 | 91.51 231 | 88.61 20 | 89.96 106 | 92.57 110 |
|
| v8 | | | 79.97 154 | 79.02 155 | 82.80 177 | 84.09 262 | 64.50 206 | 87.96 145 | 90.29 144 | 74.13 122 | 75.24 233 | 86.81 223 | 62.88 143 | 93.89 133 | 74.39 146 | 75.40 296 | 90.00 205 |
|
| v10 | | | 79.74 156 | 78.67 160 | 82.97 170 | 84.06 263 | 64.95 196 | 87.88 151 | 90.62 130 | 73.11 146 | 75.11 236 | 86.56 237 | 61.46 165 | 94.05 123 | 73.68 151 | 75.55 289 | 89.90 211 |
|
| SCA | | | 74.22 256 | 72.33 264 | 79.91 242 | 84.05 264 | 62.17 249 | 79.96 304 | 79.29 332 | 66.30 262 | 72.38 267 | 80.13 331 | 51.95 253 | 88.60 286 | 59.25 279 | 77.67 260 | 88.96 241 |
|
| test_djsdf | | | 80.30 146 | 79.32 146 | 83.27 153 | 83.98 265 | 65.37 189 | 90.50 62 | 90.38 137 | 68.55 234 | 76.19 208 | 88.70 172 | 56.44 213 | 93.46 153 | 78.98 99 | 80.14 234 | 90.97 164 |
|
| 1314 | | | 76.53 229 | 75.30 235 | 80.21 237 | 83.93 266 | 62.32 247 | 84.66 232 | 88.81 192 | 60.23 322 | 70.16 288 | 84.07 287 | 55.30 217 | 90.73 254 | 67.37 213 | 83.21 196 | 87.59 271 |
|
| MS-PatchMatch | | | 73.83 260 | 72.67 260 | 77.30 285 | 83.87 267 | 66.02 169 | 81.82 278 | 84.66 264 | 61.37 316 | 68.61 306 | 82.82 305 | 47.29 298 | 88.21 290 | 59.27 278 | 84.32 176 | 77.68 366 |
|
| fmvsm_s_conf0.1_n_a | | | 83.32 85 | 82.99 84 | 84.28 111 | 83.79 268 | 68.07 129 | 89.34 95 | 82.85 297 | 69.80 204 | 87.36 36 | 94.06 42 | 68.34 88 | 91.56 226 | 87.95 27 | 83.46 193 | 93.21 90 |
|
| v1144 | | | 80.03 151 | 79.03 154 | 83.01 167 | 83.78 269 | 64.51 204 | 87.11 170 | 90.57 133 | 71.96 160 | 78.08 165 | 86.20 246 | 61.41 166 | 93.94 127 | 74.93 141 | 77.23 262 | 90.60 177 |
|
| OurMVSNet-221017-0 | | | 74.26 255 | 72.42 263 | 79.80 245 | 83.76 270 | 59.59 281 | 85.92 205 | 86.64 239 | 66.39 261 | 66.96 320 | 87.58 202 | 39.46 347 | 91.60 223 | 65.76 228 | 69.27 341 | 88.22 258 |
|
| v2v482 | | | 80.23 147 | 79.29 147 | 83.05 165 | 83.62 271 | 64.14 213 | 87.04 171 | 89.97 152 | 73.61 132 | 78.18 162 | 87.22 214 | 61.10 174 | 93.82 134 | 76.11 129 | 76.78 271 | 91.18 154 |
|
| XXY-MVS | | | 75.41 248 | 75.56 227 | 74.96 304 | 83.59 272 | 57.82 298 | 80.59 294 | 83.87 278 | 66.54 260 | 74.93 241 | 88.31 185 | 63.24 135 | 80.09 344 | 62.16 255 | 76.85 269 | 86.97 287 |
|
| v1192 | | | 79.59 159 | 78.43 167 | 83.07 164 | 83.55 273 | 64.52 203 | 86.93 175 | 90.58 131 | 70.83 180 | 77.78 170 | 85.90 250 | 59.15 192 | 93.94 127 | 73.96 150 | 77.19 264 | 90.76 170 |
|
| EGC-MVSNET | | | 52.07 350 | 47.05 354 | 67.14 352 | 83.51 274 | 60.71 266 | 80.50 296 | 67.75 375 | 0.07 399 | 0.43 400 | 75.85 363 | 24.26 379 | 81.54 338 | 28.82 384 | 62.25 361 | 59.16 384 |
|
| v7n | | | 78.97 178 | 77.58 192 | 83.14 160 | 83.45 275 | 65.51 182 | 88.32 133 | 91.21 114 | 73.69 130 | 72.41 266 | 86.32 244 | 57.93 199 | 93.81 135 | 69.18 196 | 75.65 287 | 90.11 197 |
|
| v144192 | | | 79.47 162 | 78.37 168 | 82.78 180 | 83.35 276 | 63.96 216 | 86.96 173 | 90.36 140 | 69.99 199 | 77.50 174 | 85.67 257 | 60.66 181 | 93.77 138 | 74.27 147 | 76.58 272 | 90.62 175 |
|
| tpm2 | | | 73.26 267 | 71.46 269 | 78.63 262 | 83.34 277 | 56.71 314 | 80.65 293 | 80.40 321 | 56.63 351 | 73.55 253 | 82.02 316 | 51.80 257 | 91.24 240 | 56.35 308 | 78.42 253 | 87.95 261 |
|
| v1921920 | | | 79.22 170 | 78.03 175 | 82.80 177 | 83.30 278 | 63.94 217 | 86.80 179 | 90.33 141 | 69.91 202 | 77.48 175 | 85.53 260 | 58.44 196 | 93.75 140 | 73.60 152 | 76.85 269 | 90.71 173 |
|
| baseline2 | | | 75.70 242 | 73.83 251 | 81.30 210 | 83.26 279 | 61.79 255 | 82.57 274 | 80.65 316 | 66.81 250 | 66.88 321 | 83.42 297 | 57.86 201 | 92.19 204 | 63.47 241 | 79.57 238 | 89.91 210 |
|
| v1240 | | | 78.99 177 | 77.78 184 | 82.64 183 | 83.21 280 | 63.54 225 | 86.62 186 | 90.30 143 | 69.74 209 | 77.33 178 | 85.68 256 | 57.04 210 | 93.76 139 | 73.13 160 | 76.92 266 | 90.62 175 |
|
| XVG-ACMP-BASELINE | | | 76.11 238 | 74.27 246 | 81.62 200 | 83.20 281 | 64.67 202 | 83.60 258 | 89.75 158 | 69.75 207 | 71.85 272 | 87.09 219 | 32.78 365 | 92.11 206 | 69.99 188 | 80.43 230 | 88.09 260 |
|
| MDTV_nov1_ep13 | | | | 69.97 286 | | 83.18 282 | 53.48 346 | 77.10 333 | 80.18 325 | 60.45 319 | 69.33 300 | 80.44 328 | 48.89 293 | 86.90 301 | 51.60 328 | 78.51 251 | |
|
| PatchmatchNet |  | | 73.12 269 | 71.33 272 | 78.49 268 | 83.18 282 | 60.85 264 | 79.63 306 | 78.57 335 | 64.13 286 | 71.73 273 | 79.81 336 | 51.20 262 | 85.97 308 | 57.40 298 | 76.36 281 | 88.66 251 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| Fast-Effi-MVS+-dtu | | | 78.02 201 | 76.49 215 | 82.62 184 | 83.16 284 | 66.96 157 | 86.94 174 | 87.45 226 | 72.45 152 | 71.49 276 | 84.17 285 | 54.79 223 | 91.58 224 | 67.61 210 | 80.31 231 | 89.30 228 |
|
| gg-mvs-nofinetune | | | 69.95 296 | 67.96 300 | 75.94 294 | 83.07 285 | 54.51 339 | 77.23 332 | 70.29 368 | 63.11 296 | 70.32 284 | 62.33 379 | 43.62 327 | 88.69 285 | 53.88 317 | 87.76 131 | 84.62 325 |
|
| MVSTER | | | 79.01 176 | 77.88 180 | 82.38 188 | 83.07 285 | 64.80 200 | 84.08 251 | 88.95 189 | 69.01 227 | 78.69 145 | 87.17 217 | 54.70 224 | 92.43 193 | 74.69 142 | 80.57 228 | 89.89 212 |
|
| K. test v3 | | | 71.19 281 | 68.51 293 | 79.21 257 | 83.04 287 | 57.78 299 | 84.35 245 | 76.91 347 | 72.90 151 | 62.99 351 | 82.86 304 | 39.27 348 | 91.09 247 | 61.65 261 | 52.66 378 | 88.75 249 |
|
| eth_miper_zixun_eth | | | 77.92 204 | 76.69 212 | 81.61 202 | 83.00 288 | 61.98 251 | 83.15 265 | 89.20 177 | 69.52 211 | 74.86 242 | 84.35 283 | 61.76 158 | 92.56 189 | 71.50 173 | 72.89 323 | 90.28 190 |
|
| diffmvs |  | | 82.10 100 | 81.88 102 | 82.76 182 | 83.00 288 | 63.78 220 | 83.68 254 | 89.76 157 | 72.94 150 | 82.02 103 | 89.85 140 | 65.96 114 | 90.79 252 | 82.38 74 | 87.30 137 | 93.71 64 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_fmvsmconf0.1_n | | | 85.61 52 | 85.65 50 | 85.50 69 | 82.99 290 | 69.39 96 | 89.65 84 | 90.29 144 | 73.31 141 | 87.77 30 | 94.15 38 | 71.72 49 | 93.23 161 | 90.31 4 | 90.67 95 | 93.89 56 |
|
| FMVSNet5 | | | 69.50 299 | 67.96 300 | 74.15 313 | 82.97 291 | 55.35 330 | 80.01 303 | 82.12 304 | 62.56 306 | 63.02 349 | 81.53 318 | 36.92 357 | 81.92 336 | 48.42 344 | 74.06 311 | 85.17 318 |
|
| c3_l | | | 78.75 181 | 77.91 178 | 81.26 211 | 82.89 292 | 61.56 257 | 84.09 250 | 89.13 181 | 69.97 200 | 75.56 218 | 84.29 284 | 66.36 106 | 92.09 207 | 73.47 155 | 75.48 291 | 90.12 196 |
|
| sss | | | 73.60 262 | 73.64 253 | 73.51 317 | 82.80 293 | 55.01 334 | 76.12 335 | 81.69 308 | 62.47 307 | 74.68 244 | 85.85 253 | 57.32 207 | 78.11 352 | 60.86 268 | 80.93 221 | 87.39 274 |
|
| GA-MVS | | | 76.87 226 | 75.17 236 | 81.97 195 | 82.75 294 | 62.58 243 | 81.44 286 | 86.35 245 | 72.16 159 | 74.74 243 | 82.89 303 | 46.20 310 | 92.02 209 | 68.85 201 | 81.09 220 | 91.30 152 |
|
| v148 | | | 78.72 183 | 77.80 183 | 81.47 204 | 82.73 295 | 61.96 252 | 86.30 195 | 88.08 209 | 73.26 142 | 76.18 209 | 85.47 262 | 62.46 148 | 92.36 197 | 71.92 170 | 73.82 315 | 90.09 199 |
|
| IterMVS-SCA-FT | | | 75.43 247 | 73.87 250 | 80.11 239 | 82.69 296 | 64.85 199 | 81.57 283 | 83.47 284 | 69.16 221 | 70.49 282 | 84.15 286 | 51.95 253 | 88.15 291 | 69.23 195 | 72.14 328 | 87.34 276 |
|
| miper_ehance_all_eth | | | 78.59 187 | 77.76 186 | 81.08 218 | 82.66 297 | 61.56 257 | 83.65 255 | 89.15 179 | 68.87 229 | 75.55 219 | 83.79 292 | 66.49 104 | 92.03 208 | 73.25 158 | 76.39 276 | 89.64 220 |
|
| CostFormer | | | 75.24 250 | 73.90 249 | 79.27 255 | 82.65 298 | 58.27 289 | 80.80 289 | 82.73 299 | 61.57 313 | 75.33 230 | 83.13 301 | 55.52 215 | 91.07 248 | 64.98 234 | 78.34 255 | 88.45 255 |
|
| EPNet_dtu | | | 75.46 246 | 74.86 237 | 77.23 286 | 82.57 299 | 54.60 337 | 86.89 176 | 83.09 291 | 71.64 162 | 66.25 332 | 85.86 252 | 55.99 214 | 88.04 293 | 54.92 312 | 86.55 148 | 89.05 235 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| RPSCF | | | 73.23 268 | 71.46 269 | 78.54 266 | 82.50 300 | 59.85 277 | 82.18 276 | 82.84 298 | 58.96 334 | 71.15 279 | 89.41 157 | 45.48 319 | 84.77 319 | 58.82 285 | 71.83 330 | 91.02 163 |
|
| cl____ | | | 77.72 209 | 76.76 209 | 80.58 229 | 82.49 301 | 60.48 270 | 83.09 267 | 87.87 215 | 69.22 217 | 74.38 248 | 85.22 268 | 62.10 155 | 91.53 229 | 71.09 176 | 75.41 295 | 89.73 219 |
|
| DIV-MVS_self_test | | | 77.72 209 | 76.76 209 | 80.58 229 | 82.48 302 | 60.48 270 | 83.09 267 | 87.86 216 | 69.22 217 | 74.38 248 | 85.24 266 | 62.10 155 | 91.53 229 | 71.09 176 | 75.40 296 | 89.74 218 |
|
| tpm cat1 | | | 70.57 289 | 68.31 295 | 77.35 284 | 82.41 303 | 57.95 295 | 78.08 325 | 80.22 324 | 52.04 363 | 68.54 307 | 77.66 353 | 52.00 252 | 87.84 295 | 51.77 326 | 72.07 329 | 86.25 298 |
|
| cl22 | | | 78.07 199 | 77.01 201 | 81.23 212 | 82.37 304 | 61.83 254 | 83.55 259 | 87.98 211 | 68.96 228 | 75.06 238 | 83.87 288 | 61.40 167 | 91.88 215 | 73.53 153 | 76.39 276 | 89.98 208 |
|
| tpm | | | 72.37 276 | 71.71 268 | 74.35 311 | 82.19 305 | 52.00 353 | 79.22 311 | 77.29 344 | 64.56 281 | 72.95 260 | 83.68 295 | 51.35 260 | 83.26 330 | 58.33 290 | 75.80 285 | 87.81 265 |
|
| tpmvs | | | 71.09 283 | 69.29 288 | 76.49 291 | 82.04 306 | 56.04 324 | 78.92 316 | 81.37 311 | 64.05 289 | 67.18 319 | 78.28 348 | 49.74 279 | 89.77 264 | 49.67 340 | 72.37 325 | 83.67 335 |
|
| dmvs_re | | | 71.14 282 | 70.58 278 | 72.80 322 | 81.96 307 | 59.68 279 | 75.60 341 | 79.34 331 | 68.55 234 | 69.27 301 | 80.72 327 | 49.42 282 | 76.54 360 | 52.56 324 | 77.79 257 | 82.19 350 |
|
| pmmvs4 | | | 74.03 259 | 71.91 266 | 80.39 232 | 81.96 307 | 68.32 122 | 81.45 285 | 82.14 303 | 59.32 330 | 69.87 294 | 85.13 270 | 52.40 243 | 88.13 292 | 60.21 272 | 74.74 306 | 84.73 324 |
|
| TinyColmap | | | 67.30 316 | 64.81 321 | 74.76 307 | 81.92 309 | 56.68 315 | 80.29 300 | 81.49 310 | 60.33 320 | 56.27 373 | 83.22 298 | 24.77 378 | 87.66 298 | 45.52 360 | 69.47 340 | 79.95 361 |
|
| ITE_SJBPF | | | | | 78.22 270 | 81.77 310 | 60.57 268 | | 83.30 286 | 69.25 216 | 67.54 313 | 87.20 215 | 36.33 359 | 87.28 300 | 54.34 315 | 74.62 307 | 86.80 290 |
|
| miper_enhance_ethall | | | 77.87 206 | 76.86 205 | 80.92 223 | 81.65 311 | 61.38 259 | 82.68 272 | 88.98 186 | 65.52 272 | 75.47 220 | 82.30 311 | 65.76 116 | 92.00 210 | 72.95 161 | 76.39 276 | 89.39 225 |
|
| MVS-HIRNet | | | 59.14 339 | 57.67 342 | 63.57 357 | 81.65 311 | 43.50 382 | 71.73 356 | 65.06 381 | 39.59 381 | 51.43 378 | 57.73 385 | 38.34 352 | 82.58 333 | 39.53 372 | 73.95 312 | 64.62 381 |
|
| GG-mvs-BLEND | | | | | 75.38 301 | 81.59 313 | 55.80 326 | 79.32 309 | 69.63 370 | | 67.19 318 | 73.67 368 | 43.24 328 | 88.90 283 | 50.41 332 | 84.50 171 | 81.45 354 |
|
| IterMVS | | | 74.29 254 | 72.94 259 | 78.35 269 | 81.53 314 | 63.49 227 | 81.58 282 | 82.49 300 | 68.06 242 | 69.99 291 | 83.69 294 | 51.66 259 | 85.54 311 | 65.85 227 | 71.64 331 | 86.01 305 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| CHOSEN 280x420 | | | 66.51 321 | 64.71 322 | 71.90 327 | 81.45 315 | 63.52 226 | 57.98 386 | 68.95 374 | 53.57 359 | 62.59 353 | 76.70 356 | 46.22 309 | 75.29 373 | 55.25 311 | 79.68 237 | 76.88 368 |
|
| gm-plane-assit | | | | | | 81.40 316 | 53.83 344 | | | 62.72 305 | | 80.94 324 | | 92.39 195 | 63.40 243 | | |
|
| pmmvs6 | | | 74.69 252 | 73.39 254 | 78.61 263 | 81.38 317 | 57.48 303 | 86.64 185 | 87.95 213 | 64.99 278 | 70.18 286 | 86.61 233 | 50.43 271 | 89.52 269 | 62.12 256 | 70.18 338 | 88.83 246 |
|
| test-LLR | | | 72.94 272 | 72.43 262 | 74.48 309 | 81.35 318 | 58.04 292 | 78.38 321 | 77.46 341 | 66.66 254 | 69.95 292 | 79.00 342 | 48.06 295 | 79.24 346 | 66.13 222 | 84.83 166 | 86.15 301 |
|
| test-mter | | | 71.41 280 | 70.39 283 | 74.48 309 | 81.35 318 | 58.04 292 | 78.38 321 | 77.46 341 | 60.32 321 | 69.95 292 | 79.00 342 | 36.08 360 | 79.24 346 | 66.13 222 | 84.83 166 | 86.15 301 |
|
| CR-MVSNet | | | 73.37 264 | 71.27 273 | 79.67 249 | 81.32 320 | 65.19 191 | 75.92 337 | 80.30 322 | 59.92 325 | 72.73 262 | 81.19 319 | 52.50 241 | 86.69 302 | 59.84 274 | 77.71 258 | 87.11 284 |
|
| RPMNet | | | 73.51 263 | 70.49 280 | 82.58 185 | 81.32 320 | 65.19 191 | 75.92 337 | 92.27 76 | 57.60 345 | 72.73 262 | 76.45 358 | 52.30 244 | 95.43 65 | 48.14 349 | 77.71 258 | 87.11 284 |
|
| V42 | | | 79.38 168 | 78.24 172 | 82.83 174 | 81.10 322 | 65.50 183 | 85.55 215 | 89.82 155 | 71.57 168 | 78.21 160 | 86.12 248 | 60.66 181 | 93.18 169 | 75.64 135 | 75.46 293 | 89.81 216 |
|
| lessismore_v0 | | | | | 78.97 258 | 81.01 323 | 57.15 307 | | 65.99 378 | | 61.16 356 | 82.82 305 | 39.12 349 | 91.34 238 | 59.67 275 | 46.92 384 | 88.43 256 |
|
| Patchmtry | | | 70.74 287 | 69.16 290 | 75.49 300 | 80.72 324 | 54.07 342 | 74.94 348 | 80.30 322 | 58.34 338 | 70.01 289 | 81.19 319 | 52.50 241 | 86.54 303 | 53.37 320 | 71.09 335 | 85.87 309 |
|
| PatchT | | | 68.46 309 | 67.85 302 | 70.29 339 | 80.70 325 | 43.93 381 | 72.47 354 | 74.88 354 | 60.15 323 | 70.55 280 | 76.57 357 | 49.94 276 | 81.59 337 | 50.58 331 | 74.83 305 | 85.34 313 |
|
| USDC | | | 70.33 292 | 68.37 294 | 76.21 293 | 80.60 326 | 56.23 322 | 79.19 312 | 86.49 241 | 60.89 317 | 61.29 355 | 85.47 262 | 31.78 368 | 89.47 271 | 53.37 320 | 76.21 282 | 82.94 345 |
|
| tpmrst | | | 72.39 274 | 72.13 265 | 73.18 321 | 80.54 327 | 49.91 366 | 79.91 305 | 79.08 333 | 63.11 296 | 71.69 274 | 79.95 333 | 55.32 216 | 82.77 332 | 65.66 229 | 73.89 313 | 86.87 288 |
|
| anonymousdsp | | | 78.60 186 | 77.15 199 | 82.98 169 | 80.51 328 | 67.08 153 | 87.24 167 | 89.53 163 | 65.66 270 | 75.16 234 | 87.19 216 | 52.52 240 | 92.25 202 | 77.17 118 | 79.34 243 | 89.61 221 |
|
| OpenMVS_ROB |  | 64.09 19 | 70.56 290 | 68.19 296 | 77.65 279 | 80.26 329 | 59.41 283 | 85.01 225 | 82.96 295 | 58.76 336 | 65.43 336 | 82.33 310 | 37.63 356 | 91.23 241 | 45.34 362 | 76.03 283 | 82.32 348 |
|
| test_fmvsmconf0.01_n | | | 84.73 65 | 84.52 67 | 85.34 72 | 80.25 330 | 69.03 99 | 89.47 88 | 89.65 161 | 73.24 144 | 86.98 40 | 94.27 32 | 66.62 101 | 93.23 161 | 90.26 5 | 89.95 107 | 93.78 62 |
|
| Anonymous20231206 | | | 68.60 305 | 67.80 305 | 71.02 336 | 80.23 331 | 50.75 363 | 78.30 324 | 80.47 319 | 56.79 350 | 66.11 333 | 82.63 308 | 46.35 307 | 78.95 348 | 43.62 365 | 75.70 286 | 83.36 338 |
|
| miper_lstm_enhance | | | 74.11 257 | 73.11 258 | 77.13 287 | 80.11 332 | 59.62 280 | 72.23 355 | 86.92 236 | 66.76 252 | 70.40 283 | 82.92 302 | 56.93 211 | 82.92 331 | 69.06 198 | 72.63 324 | 88.87 244 |
|
| MIMVSNet1 | | | 68.58 306 | 66.78 316 | 73.98 314 | 80.07 333 | 51.82 355 | 80.77 290 | 84.37 268 | 64.40 283 | 59.75 362 | 82.16 314 | 36.47 358 | 83.63 326 | 42.73 367 | 70.33 337 | 86.48 296 |
|
| ADS-MVSNet2 | | | 66.20 326 | 63.33 329 | 74.82 306 | 79.92 334 | 58.75 285 | 67.55 372 | 75.19 353 | 53.37 360 | 65.25 338 | 75.86 361 | 42.32 334 | 80.53 343 | 41.57 369 | 68.91 343 | 85.18 316 |
|
| ADS-MVSNet | | | 64.36 330 | 62.88 333 | 68.78 347 | 79.92 334 | 47.17 371 | 67.55 372 | 71.18 366 | 53.37 360 | 65.25 338 | 75.86 361 | 42.32 334 | 73.99 377 | 41.57 369 | 68.91 343 | 85.18 316 |
|
| test_vis1_n_1920 | | | 75.52 245 | 75.78 223 | 74.75 308 | 79.84 336 | 57.44 304 | 83.26 263 | 85.52 255 | 62.83 302 | 79.34 136 | 86.17 247 | 45.10 320 | 79.71 345 | 78.75 101 | 81.21 219 | 87.10 286 |
|
| D2MVS | | | 74.82 251 | 73.21 256 | 79.64 250 | 79.81 337 | 62.56 244 | 80.34 299 | 87.35 227 | 64.37 284 | 68.86 303 | 82.66 307 | 46.37 306 | 90.10 261 | 67.91 208 | 81.24 218 | 86.25 298 |
|
| our_test_3 | | | 69.14 301 | 67.00 314 | 75.57 298 | 79.80 338 | 58.80 284 | 77.96 326 | 77.81 338 | 59.55 328 | 62.90 352 | 78.25 349 | 47.43 297 | 83.97 323 | 51.71 327 | 67.58 348 | 83.93 333 |
|
| ppachtmachnet_test | | | 70.04 295 | 67.34 312 | 78.14 271 | 79.80 338 | 61.13 260 | 79.19 312 | 80.59 317 | 59.16 332 | 65.27 337 | 79.29 339 | 46.75 304 | 87.29 299 | 49.33 341 | 66.72 349 | 86.00 307 |
|
| dp | | | 66.80 318 | 65.43 320 | 70.90 338 | 79.74 340 | 48.82 369 | 75.12 346 | 74.77 355 | 59.61 327 | 64.08 345 | 77.23 354 | 42.89 330 | 80.72 342 | 48.86 343 | 66.58 351 | 83.16 340 |
|
| EPMVS | | | 69.02 302 | 68.16 297 | 71.59 329 | 79.61 341 | 49.80 368 | 77.40 330 | 66.93 376 | 62.82 303 | 70.01 289 | 79.05 340 | 45.79 314 | 77.86 354 | 56.58 306 | 75.26 300 | 87.13 283 |
|
| PVSNet_0 | | 57.27 20 | 61.67 337 | 59.27 340 | 68.85 346 | 79.61 341 | 57.44 304 | 68.01 371 | 73.44 361 | 55.93 354 | 58.54 365 | 70.41 375 | 44.58 322 | 77.55 355 | 47.01 353 | 35.91 387 | 71.55 375 |
|
| CL-MVSNet_self_test | | | 72.37 276 | 71.46 269 | 75.09 303 | 79.49 343 | 53.53 345 | 80.76 291 | 85.01 261 | 69.12 222 | 70.51 281 | 82.05 315 | 57.92 200 | 84.13 322 | 52.27 325 | 66.00 354 | 87.60 269 |
|
| Patchmatch-test | | | 64.82 329 | 63.24 330 | 69.57 341 | 79.42 344 | 49.82 367 | 63.49 383 | 69.05 373 | 51.98 365 | 59.95 361 | 80.13 331 | 50.91 264 | 70.98 381 | 40.66 371 | 73.57 316 | 87.90 263 |
|
| MDA-MVSNet-bldmvs | | | 66.68 319 | 63.66 328 | 75.75 295 | 79.28 345 | 60.56 269 | 73.92 351 | 78.35 336 | 64.43 282 | 50.13 380 | 79.87 335 | 44.02 325 | 83.67 325 | 46.10 358 | 56.86 370 | 83.03 343 |
|
| TESTMET0.1,1 | | | 69.89 297 | 69.00 291 | 72.55 324 | 79.27 346 | 56.85 310 | 78.38 321 | 74.71 357 | 57.64 344 | 68.09 309 | 77.19 355 | 37.75 355 | 76.70 359 | 63.92 239 | 84.09 179 | 84.10 331 |
|
| N_pmnet | | | 52.79 348 | 53.26 347 | 51.40 373 | 78.99 347 | 7.68 405 | 69.52 365 | 3.89 404 | 51.63 366 | 57.01 370 | 74.98 365 | 40.83 344 | 65.96 388 | 37.78 376 | 64.67 357 | 80.56 360 |
|
| dmvs_testset | | | 62.63 334 | 64.11 325 | 58.19 363 | 78.55 348 | 24.76 399 | 75.28 342 | 65.94 379 | 67.91 243 | 60.34 358 | 76.01 360 | 53.56 235 | 73.94 378 | 31.79 382 | 67.65 347 | 75.88 370 |
|
| EU-MVSNet | | | 68.53 308 | 67.61 309 | 71.31 334 | 78.51 349 | 47.01 372 | 84.47 238 | 84.27 272 | 42.27 377 | 66.44 331 | 84.79 276 | 40.44 345 | 83.76 324 | 58.76 286 | 68.54 346 | 83.17 339 |
|
| pmmvs5 | | | 71.55 279 | 70.20 285 | 75.61 297 | 77.83 350 | 56.39 319 | 81.74 280 | 80.89 312 | 57.76 343 | 67.46 315 | 84.49 278 | 49.26 286 | 85.32 315 | 57.08 301 | 75.29 299 | 85.11 319 |
|
| test0.0.03 1 | | | 68.00 312 | 67.69 307 | 68.90 345 | 77.55 351 | 47.43 370 | 75.70 340 | 72.95 364 | 66.66 254 | 66.56 326 | 82.29 312 | 48.06 295 | 75.87 367 | 44.97 363 | 74.51 308 | 83.41 337 |
|
| Patchmatch-RL test | | | 70.24 293 | 67.78 306 | 77.61 280 | 77.43 352 | 59.57 282 | 71.16 358 | 70.33 367 | 62.94 300 | 68.65 305 | 72.77 370 | 50.62 268 | 85.49 312 | 69.58 193 | 66.58 351 | 87.77 266 |
|
| pmmvs-eth3d | | | 70.50 291 | 67.83 304 | 78.52 267 | 77.37 353 | 66.18 167 | 81.82 278 | 81.51 309 | 58.90 335 | 63.90 347 | 80.42 329 | 42.69 332 | 86.28 306 | 58.56 287 | 65.30 356 | 83.11 341 |
|
| JIA-IIPM | | | 66.32 323 | 62.82 334 | 76.82 289 | 77.09 354 | 61.72 256 | 65.34 379 | 75.38 352 | 58.04 342 | 64.51 342 | 62.32 380 | 42.05 339 | 86.51 304 | 51.45 329 | 69.22 342 | 82.21 349 |
|
| Gipuma |  | | 45.18 356 | 41.86 359 | 55.16 370 | 77.03 355 | 51.52 358 | 32.50 392 | 80.52 318 | 32.46 388 | 27.12 391 | 35.02 392 | 9.52 395 | 75.50 369 | 22.31 391 | 60.21 368 | 38.45 391 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| MDA-MVSNet_test_wron | | | 65.03 327 | 62.92 331 | 71.37 331 | 75.93 356 | 56.73 312 | 69.09 370 | 74.73 356 | 57.28 348 | 54.03 376 | 77.89 350 | 45.88 312 | 74.39 376 | 49.89 339 | 61.55 363 | 82.99 344 |
|
| test_cas_vis1_n_1920 | | | 73.76 261 | 73.74 252 | 73.81 315 | 75.90 357 | 59.77 278 | 80.51 295 | 82.40 301 | 58.30 339 | 81.62 110 | 85.69 255 | 44.35 323 | 76.41 363 | 76.29 127 | 78.61 248 | 85.23 315 |
|
| YYNet1 | | | 65.03 327 | 62.91 332 | 71.38 330 | 75.85 358 | 56.60 316 | 69.12 369 | 74.66 358 | 57.28 348 | 54.12 375 | 77.87 351 | 45.85 313 | 74.48 375 | 49.95 338 | 61.52 364 | 83.05 342 |
|
| PMMVS | | | 69.34 300 | 68.67 292 | 71.35 333 | 75.67 359 | 62.03 250 | 75.17 343 | 73.46 360 | 50.00 369 | 68.68 304 | 79.05 340 | 52.07 251 | 78.13 351 | 61.16 266 | 82.77 201 | 73.90 372 |
|
| testgi | | | 66.67 320 | 66.53 317 | 67.08 353 | 75.62 360 | 41.69 388 | 75.93 336 | 76.50 348 | 66.11 263 | 65.20 340 | 86.59 234 | 35.72 361 | 74.71 374 | 43.71 364 | 73.38 320 | 84.84 322 |
|
| test20.03 | | | 67.45 314 | 66.95 315 | 68.94 344 | 75.48 361 | 44.84 379 | 77.50 329 | 77.67 339 | 66.66 254 | 63.01 350 | 83.80 291 | 47.02 301 | 78.40 350 | 42.53 368 | 68.86 345 | 83.58 336 |
|
| KD-MVS_2432*1600 | | | 66.22 324 | 63.89 326 | 73.21 318 | 75.47 362 | 53.42 347 | 70.76 361 | 84.35 269 | 64.10 287 | 66.52 328 | 78.52 346 | 34.55 363 | 84.98 316 | 50.40 333 | 50.33 381 | 81.23 355 |
|
| miper_refine_blended | | | 66.22 324 | 63.89 326 | 73.21 318 | 75.47 362 | 53.42 347 | 70.76 361 | 84.35 269 | 64.10 287 | 66.52 328 | 78.52 346 | 34.55 363 | 84.98 316 | 50.40 333 | 50.33 381 | 81.23 355 |
|
| Anonymous20240521 | | | 68.80 304 | 67.22 313 | 73.55 316 | 74.33 364 | 54.11 341 | 83.18 264 | 85.61 254 | 58.15 340 | 61.68 354 | 80.94 324 | 30.71 371 | 81.27 340 | 57.00 302 | 73.34 321 | 85.28 314 |
|
| KD-MVS_self_test | | | 68.81 303 | 67.59 310 | 72.46 325 | 74.29 365 | 45.45 374 | 77.93 327 | 87.00 234 | 63.12 295 | 63.99 346 | 78.99 344 | 42.32 334 | 84.77 319 | 56.55 307 | 64.09 359 | 87.16 282 |
|
| PM-MVS | | | 66.41 322 | 64.14 324 | 73.20 320 | 73.92 366 | 56.45 317 | 78.97 315 | 64.96 382 | 63.88 293 | 64.72 341 | 80.24 330 | 19.84 384 | 83.44 328 | 66.24 221 | 64.52 358 | 79.71 362 |
|
| test_fmvs1 | | | 70.93 285 | 70.52 279 | 72.16 326 | 73.71 367 | 55.05 333 | 80.82 288 | 78.77 334 | 51.21 368 | 78.58 149 | 84.41 280 | 31.20 370 | 76.94 358 | 75.88 133 | 80.12 235 | 84.47 326 |
|
| UnsupCasMVSNet_bld | | | 63.70 332 | 61.53 338 | 70.21 340 | 73.69 368 | 51.39 360 | 72.82 353 | 81.89 305 | 55.63 355 | 57.81 368 | 71.80 372 | 38.67 350 | 78.61 349 | 49.26 342 | 52.21 379 | 80.63 358 |
|
| WB-MVS | | | 54.94 342 | 54.72 344 | 55.60 369 | 73.50 369 | 20.90 401 | 74.27 350 | 61.19 386 | 59.16 332 | 50.61 379 | 74.15 366 | 47.19 300 | 75.78 368 | 17.31 393 | 35.07 388 | 70.12 376 |
|
| UnsupCasMVSNet_eth | | | 67.33 315 | 65.99 319 | 71.37 331 | 73.48 370 | 51.47 359 | 75.16 344 | 85.19 258 | 65.20 273 | 60.78 357 | 80.93 326 | 42.35 333 | 77.20 356 | 57.12 300 | 53.69 377 | 85.44 312 |
|
| TDRefinement | | | 67.49 313 | 64.34 323 | 76.92 288 | 73.47 371 | 61.07 261 | 84.86 229 | 82.98 294 | 59.77 326 | 58.30 366 | 85.13 270 | 26.06 376 | 87.89 294 | 47.92 351 | 60.59 367 | 81.81 353 |
|
| ambc | | | | | 75.24 302 | 73.16 372 | 50.51 364 | 63.05 384 | 87.47 225 | | 64.28 343 | 77.81 352 | 17.80 386 | 89.73 266 | 57.88 294 | 60.64 366 | 85.49 311 |
|
| CMPMVS |  | 51.72 21 | 70.19 294 | 68.16 297 | 76.28 292 | 73.15 373 | 57.55 302 | 79.47 308 | 83.92 276 | 48.02 371 | 56.48 372 | 84.81 275 | 43.13 329 | 86.42 305 | 62.67 250 | 81.81 213 | 84.89 321 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| SSC-MVS | | | 53.88 345 | 53.59 346 | 54.75 371 | 72.87 374 | 19.59 402 | 73.84 352 | 60.53 388 | 57.58 346 | 49.18 381 | 73.45 369 | 46.34 308 | 75.47 371 | 16.20 396 | 32.28 390 | 69.20 377 |
|
| new-patchmatchnet | | | 61.73 336 | 61.73 337 | 61.70 359 | 72.74 375 | 24.50 400 | 69.16 368 | 78.03 337 | 61.40 314 | 56.72 371 | 75.53 364 | 38.42 351 | 76.48 362 | 45.95 359 | 57.67 369 | 84.13 330 |
|
| test_vis1_n | | | 69.85 298 | 69.21 289 | 71.77 328 | 72.66 376 | 55.27 332 | 81.48 284 | 76.21 350 | 52.03 364 | 75.30 231 | 83.20 300 | 28.97 373 | 76.22 365 | 74.60 143 | 78.41 254 | 83.81 334 |
|
| test_fmvs1_n | | | 70.86 286 | 70.24 284 | 72.73 323 | 72.51 377 | 55.28 331 | 81.27 287 | 79.71 328 | 51.49 367 | 78.73 143 | 84.87 274 | 27.54 375 | 77.02 357 | 76.06 130 | 79.97 236 | 85.88 308 |
|
| LF4IMVS | | | 64.02 331 | 62.19 335 | 69.50 342 | 70.90 378 | 53.29 350 | 76.13 334 | 77.18 345 | 52.65 362 | 58.59 364 | 80.98 323 | 23.55 380 | 76.52 361 | 53.06 322 | 66.66 350 | 78.68 364 |
|
| mvsany_test1 | | | 62.30 335 | 61.26 339 | 65.41 355 | 69.52 379 | 54.86 335 | 66.86 374 | 49.78 395 | 46.65 372 | 68.50 308 | 83.21 299 | 49.15 287 | 66.28 387 | 56.93 303 | 60.77 365 | 75.11 371 |
|
| test_fmvs2 | | | 68.35 310 | 67.48 311 | 70.98 337 | 69.50 380 | 51.95 354 | 80.05 302 | 76.38 349 | 49.33 370 | 74.65 245 | 84.38 281 | 23.30 381 | 75.40 372 | 74.51 144 | 75.17 302 | 85.60 310 |
|
| new_pmnet | | | 50.91 351 | 50.29 351 | 52.78 372 | 68.58 381 | 34.94 394 | 63.71 381 | 56.63 392 | 39.73 380 | 44.95 382 | 65.47 378 | 21.93 382 | 58.48 391 | 34.98 379 | 56.62 371 | 64.92 380 |
|
| DSMNet-mixed | | | 57.77 341 | 56.90 343 | 60.38 361 | 67.70 382 | 35.61 392 | 69.18 367 | 53.97 393 | 32.30 389 | 57.49 369 | 79.88 334 | 40.39 346 | 68.57 386 | 38.78 375 | 72.37 325 | 76.97 367 |
|
| test_vis1_rt | | | 60.28 338 | 58.42 341 | 65.84 354 | 67.25 383 | 55.60 329 | 70.44 363 | 60.94 387 | 44.33 375 | 59.00 363 | 66.64 377 | 24.91 377 | 68.67 385 | 62.80 246 | 69.48 339 | 73.25 373 |
|
| APD_test1 | | | 53.31 347 | 49.93 352 | 63.42 358 | 65.68 384 | 50.13 365 | 71.59 357 | 66.90 377 | 34.43 386 | 40.58 385 | 71.56 373 | 8.65 397 | 76.27 364 | 34.64 380 | 55.36 375 | 63.86 382 |
|
| FPMVS | | | 53.68 346 | 51.64 348 | 59.81 362 | 65.08 385 | 51.03 361 | 69.48 366 | 69.58 371 | 41.46 378 | 40.67 384 | 72.32 371 | 16.46 388 | 70.00 384 | 24.24 390 | 65.42 355 | 58.40 386 |
|
| pmmvs3 | | | 57.79 340 | 54.26 345 | 68.37 349 | 64.02 386 | 56.72 313 | 75.12 346 | 65.17 380 | 40.20 379 | 52.93 377 | 69.86 376 | 20.36 383 | 75.48 370 | 45.45 361 | 55.25 376 | 72.90 374 |
|
| test_fmvs3 | | | 63.36 333 | 61.82 336 | 67.98 350 | 62.51 387 | 46.96 373 | 77.37 331 | 74.03 359 | 45.24 373 | 67.50 314 | 78.79 345 | 12.16 392 | 72.98 380 | 72.77 164 | 66.02 353 | 83.99 332 |
|
| wuyk23d | | | 16.82 365 | 15.94 368 | 19.46 380 | 58.74 388 | 31.45 395 | 39.22 390 | 3.74 405 | 6.84 396 | 6.04 399 | 2.70 399 | 1.27 404 | 24.29 399 | 10.54 399 | 14.40 398 | 2.63 396 |
|
| testf1 | | | 45.72 354 | 41.96 357 | 57.00 364 | 56.90 389 | 45.32 375 | 66.14 377 | 59.26 389 | 26.19 390 | 30.89 389 | 60.96 383 | 4.14 400 | 70.64 382 | 26.39 388 | 46.73 385 | 55.04 387 |
|
| APD_test2 | | | 45.72 354 | 41.96 357 | 57.00 364 | 56.90 389 | 45.32 375 | 66.14 377 | 59.26 389 | 26.19 390 | 30.89 389 | 60.96 383 | 4.14 400 | 70.64 382 | 26.39 388 | 46.73 385 | 55.04 387 |
|
| mvsany_test3 | | | 53.99 344 | 51.45 349 | 61.61 360 | 55.51 391 | 44.74 380 | 63.52 382 | 45.41 399 | 43.69 376 | 58.11 367 | 76.45 358 | 17.99 385 | 63.76 390 | 54.77 313 | 47.59 383 | 76.34 369 |
|
| test_vis3_rt | | | 49.26 353 | 47.02 355 | 56.00 366 | 54.30 392 | 45.27 378 | 66.76 376 | 48.08 396 | 36.83 383 | 44.38 383 | 53.20 388 | 7.17 399 | 64.07 389 | 56.77 305 | 55.66 373 | 58.65 385 |
|
| PMMVS2 | | | 40.82 358 | 38.86 361 | 46.69 374 | 53.84 393 | 16.45 403 | 48.61 389 | 49.92 394 | 37.49 382 | 31.67 387 | 60.97 382 | 8.14 398 | 56.42 393 | 28.42 385 | 30.72 391 | 67.19 379 |
|
| test_f | | | 52.09 349 | 50.82 350 | 55.90 367 | 53.82 394 | 42.31 387 | 59.42 385 | 58.31 391 | 36.45 384 | 56.12 374 | 70.96 374 | 12.18 391 | 57.79 392 | 53.51 319 | 56.57 372 | 67.60 378 |
|
| LCM-MVSNet | | | 54.25 343 | 49.68 353 | 67.97 351 | 53.73 395 | 45.28 377 | 66.85 375 | 80.78 314 | 35.96 385 | 39.45 386 | 62.23 381 | 8.70 396 | 78.06 353 | 48.24 348 | 51.20 380 | 80.57 359 |
|
| E-PMN | | | 31.77 359 | 30.64 362 | 35.15 377 | 52.87 396 | 27.67 396 | 57.09 387 | 47.86 397 | 24.64 392 | 16.40 397 | 33.05 393 | 11.23 393 | 54.90 394 | 14.46 397 | 18.15 394 | 22.87 393 |
|
| EMVS | | | 30.81 361 | 29.65 363 | 34.27 378 | 50.96 397 | 25.95 398 | 56.58 388 | 46.80 398 | 24.01 393 | 15.53 398 | 30.68 394 | 12.47 390 | 54.43 395 | 12.81 398 | 17.05 395 | 22.43 394 |
|
| ANet_high | | | 50.57 352 | 46.10 356 | 63.99 356 | 48.67 398 | 39.13 390 | 70.99 360 | 80.85 313 | 61.39 315 | 31.18 388 | 57.70 386 | 17.02 387 | 73.65 379 | 31.22 383 | 15.89 396 | 79.18 363 |
|
| MVE |  | 26.22 23 | 30.37 362 | 25.89 366 | 43.81 375 | 44.55 399 | 35.46 393 | 28.87 393 | 39.07 400 | 18.20 394 | 18.58 396 | 40.18 391 | 2.68 403 | 47.37 397 | 17.07 395 | 23.78 393 | 48.60 390 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| PMVS |  | 37.38 22 | 44.16 357 | 40.28 360 | 55.82 368 | 40.82 400 | 42.54 386 | 65.12 380 | 63.99 383 | 34.43 386 | 24.48 392 | 57.12 387 | 3.92 402 | 76.17 366 | 17.10 394 | 55.52 374 | 48.75 389 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| DeepMVS_CX |  | | | | 27.40 379 | 40.17 401 | 26.90 397 | | 24.59 403 | 17.44 395 | 23.95 393 | 48.61 390 | 9.77 394 | 26.48 398 | 18.06 392 | 24.47 392 | 28.83 392 |
|
| test_method | | | 31.52 360 | 29.28 364 | 38.23 376 | 27.03 402 | 6.50 406 | 20.94 394 | 62.21 385 | 4.05 397 | 22.35 395 | 52.50 389 | 13.33 389 | 47.58 396 | 27.04 387 | 34.04 389 | 60.62 383 |
|
| tmp_tt | | | 18.61 364 | 21.40 367 | 10.23 381 | 4.82 403 | 10.11 404 | 34.70 391 | 30.74 402 | 1.48 398 | 23.91 394 | 26.07 395 | 28.42 374 | 13.41 400 | 27.12 386 | 15.35 397 | 7.17 395 |
|
| testmvs | | | 6.04 368 | 8.02 371 | 0.10 383 | 0.08 404 | 0.03 408 | 69.74 364 | 0.04 406 | 0.05 400 | 0.31 401 | 1.68 400 | 0.02 406 | 0.04 401 | 0.24 400 | 0.02 399 | 0.25 398 |
|
| test123 | | | 6.12 367 | 8.11 370 | 0.14 382 | 0.06 405 | 0.09 407 | 71.05 359 | 0.03 407 | 0.04 401 | 0.25 402 | 1.30 401 | 0.05 405 | 0.03 402 | 0.21 401 | 0.01 400 | 0.29 397 |
|
| test_blank | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| eth-test2 | | | | | | 0.00 406 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 406 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| DCPMVS | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| cdsmvs_eth3d_5k | | | 19.96 363 | 26.61 365 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 89.26 173 | 0.00 402 | 0.00 403 | 88.61 176 | 61.62 161 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| pcd_1.5k_mvsjas | | | 5.26 369 | 7.02 372 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 63.15 138 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| sosnet-low-res | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| sosnet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uncertanet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| Regformer | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| ab-mvs-re | | | 7.23 366 | 9.64 369 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 86.72 226 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uanet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| MM | | | | | 88.97 4 | | 73.65 10 | 92.66 23 | 91.17 116 | 86.57 1 | 87.39 35 | 94.97 16 | 71.70 50 | 97.68 1 | 92.19 1 | 95.63 28 | 95.57 1 |
|
| WAC-MVS | | | | | | | 42.58 384 | | | | | | | | 39.46 373 | | |
|
| PC_three_1452 | | | | | | | | | | 68.21 240 | 92.02 12 | 94.00 46 | 82.09 5 | 95.98 51 | 84.58 48 | 96.68 2 | 94.95 10 |
|
| test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 50 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 6 | 89.07 14 | 96.58 6 | 94.26 41 |
|
| test_0728_THIRD | | | | | | | | | | 78.38 33 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 8 | 89.42 9 | 96.57 7 | 94.67 24 |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.96 241 |
|
| sam_mvs1 | | | | | | | | | | | | | 51.32 261 | | | | 88.96 241 |
|
| sam_mvs | | | | | | | | | | | | | 50.01 274 | | | | |
|
| MTGPA |  | | | | | | | | 92.02 85 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.90 317 | | | | 5.43 398 | 48.81 294 | 85.44 314 | 59.25 279 | | |
|
| test_post | | | | | | | | | | | | 5.46 397 | 50.36 272 | 84.24 321 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 74.00 367 | 51.12 263 | 88.60 286 | | | |
|
| MTMP | | | | | | | | 92.18 35 | 32.83 401 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 84.90 42 | 95.70 26 | 92.87 102 |
|
| agg_prior2 | | | | | | | | | | | | | | | 82.91 66 | 95.45 30 | 92.70 105 |
|
| test_prior4 | | | | | | | 72.60 34 | 89.01 105 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 88.85 111 | | 75.41 93 | 84.91 59 | 93.54 56 | 74.28 29 | | 83.31 61 | 95.86 20 | |
|
| 旧先验2 | | | | | | | | 86.56 188 | | 58.10 341 | 87.04 39 | | | 88.98 279 | 74.07 149 | | |
|
| 新几何2 | | | | | | | | 86.29 196 | | | | | | | | | |
|
| 无先验 | | | | | | | | 87.48 159 | 88.98 186 | 60.00 324 | | | | 94.12 121 | 67.28 214 | | 88.97 240 |
|
| 原ACMM2 | | | | | | | | 86.86 177 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 91.01 249 | 62.37 253 | | |
|
| segment_acmp | | | | | | | | | | | | | 73.08 37 | | | | |
|
| testdata1 | | | | | | | | 84.14 249 | | 75.71 87 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 92.44 69 | | | | | 95.38 69 | 78.71 102 | 86.32 151 | 91.33 149 |
|
| plane_prior4 | | | | | | | | | | | | 91.00 120 | | | | | |
|
| plane_prior3 | | | | | | | 68.60 117 | | | 78.44 31 | 78.92 141 | | | | | | |
|
| plane_prior2 | | | | | | | | 91.25 50 | | 79.12 23 | | | | | | | |
|
| plane_prior | | | | | | | 68.71 112 | 90.38 67 | | 77.62 39 | | | | | | 86.16 155 | |
|
| n2 | | | | | | | | | 0.00 408 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 408 | | | | | | | | |
|
| door-mid | | | | | | | | | 69.98 369 | | | | | | | | |
|
| test11 | | | | | | | | | 92.23 79 | | | | | | | | |
|
| door | | | | | | | | | 69.44 372 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 66.98 155 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.47 114 | | |
|
| HQP4-MVS | | | | | | | | | | | 77.24 181 | | | 95.11 80 | | | 91.03 161 |
|
| HQP3-MVS | | | | | | | | | 92.19 82 | | | | | | | 85.99 158 | |
|
| HQP2-MVS | | | | | | | | | | | | | 60.17 189 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 37.79 391 | 75.16 344 | | 55.10 356 | 66.53 327 | | 49.34 284 | | 53.98 316 | | 87.94 262 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 211 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 81.25 217 | |
|
| Test By Simon | | | | | | | | | | | | | 64.33 125 | | | | |
|